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terms. \\lhen each vehicle has enough sensors to measure the full gradient at its 
current position, then the closed-loop system becomes Lagrangian. \\'e focus in 
the present paper upon the more practical situation where each vehicle has only 
one sensor with which to sample the environment. We take this into account by 
replacing the full gradient in the closed-loop equations by its projection on the 
direction of motion for each individual vehicle. This gives rise to a differential 
equation with discontinuous right-hand side. In order to avoid the (practical and 
theoretical) complications that arise as a consequence of these discontinuities, we 
modify the inter-vehicle forcing terms and represent the velocity of each vehicle 
b~' a magnitude and an angle. resulting in a set of smooth differential equations. 
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l. I~TRODUCTIO~ 

\Ve propose a coordinated control strategy for 
multi-vehicle gradient descent (or ascent) in a 
sampled environment. Vehicle networks that can 
efficiently climb gradients are of great interest 
in missions such as search and map where a 
spatially distributed environmental signal is to be 
mapped or its source is to be found. Such vehicle 
networks could be used. for example. to locate 
hydrothermal vents deep in the sea by climbing 
the associated mineral plume and/or temperature 
gradient. 



A vehicle network has a number of important 
advantages over a single large vehicle. The large 
vehicle could be outfitted with distributed sensors 
so that local gradients could be computed. How­
ever, the sensor arra~' would then be rigid and 
therefore there would be little ability to adapt the 
arra:-' configuration to the environment. Further­
more, failure of the vehicle would mean failure of 
the entire mission. A group of smaller vehicles. 
on the other hand. could provide a reconfigurable 
distributed sensor array. A successful coordinated 
control strategy would enable the vehicles to per­
form as a network that could change shape and 
maneuver in response to the measured environ­
ment. 

Gradient following by autonomous vehicle S~'S­

tems inspired by bacterial chemotaxis has been 
explored by Burian et al. (1996) and Hoskills 
(1995). Burian et al. (1996) use the Autonomous 
Benthic Explorer (ABE) to find the deepest spot 
in a lake following the run and tumble behavior 
of flagellated bacteria like the Escherichia coli 
as described by Adler (1966) and Berg (1983). 
Hoskins (1995) applies the chemotaxis approach 
together with some basic agent interactions to a 
multiple agent problem. Gazi and Passino (2002) 
take an approach similar to ours in which indi­
viduals balance their own gradient descent with 
inter-vehicle attraction and repulsion terms. The 
approach of Gazi and Passino (2002) differs from 
ours, however, in that individuals are modeled 
with kinematic equations (i.e., velocity inputs 
rather than forces) , it is assumed that the gradient 
of the environmental field is known at the individ­
ual's position, and each individual must know the 
position of every member in the group. 

Bachma~Ter and Leonard (2001: 2002) first out­
lined the gradient climbing approach where each 
vehicle within the net\vork uses control forces that 
consist of an approximation of the local gradient 
and additional inter-vehicle control forces derived 
from artificial potentials. The approximation of 
the local gradient is based on a single sensor 
per vehicle: each vehicle is assumed to be able 
to measure the gradient only in the direction of 
motion. The inter-vehicle forces not only con­
tribute to maintaining a uniforml~' spaced vehicle 
network, but also provide the necessary implicit 
communication to drive the group as a whole to 
the global minimum (or maximum) of the sampled 
environmental field. 

In Section 2 we discuss the coordinated strategy 
for gradient descent in the case that each whi­
cle can measure the full gradient at its current 
position. In Section 3 we consider the case that 
each vehicle can onl~' measure the gradient in 
its direction of motion leading to a coordinated 
gradient descent strateg~' with projected gradient 
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information. In Sections 4 and 5 we introduce 
a modification of the projected gradient descent 
equations of the previous section and study some 
of its properties. We demonstrate our approach 
with simulations. 

2. GRADIE~T DESCE:'\T 

Our goal is to enable a network of lY \'ehicles 
to locate minima of an em'ironmental variable 
b~' coordinated gradient descent. For the purpose 
of the present study, we restrict attention to 
gradient descent in a planar environment and 
model each vehicle as a point mass with fully 
actuated dynamics 

x, = Ui' (1) 

where the subscript i refers to agent 1. The 
environmental variable is assumed to be time­
invariant and is modeled by a smooth function T : 
1R2 -+ lR. 

Bachmayer and Leonard (2002. Section 3) propose 
a feedback controller 

N 

Ui = -kdXi - kV'T(Xi) + L Fij , (2) 
j=I ,#' 

with k and kd positive constants. In this feedback 
controller, -kV'T(Xi) is a gradient descent control 
term and Fij is a force acting on vehicle i gener­
ated by vehicle j. These inter-vehicle forces Fij 
are included to enforce coordinated gradient de­
scent , and are derived from a scalar, inter-vehicle 
artificial potential (Leonard and Fiorelli, 2001) 
V : 1R2 -+ IR according to 

Fij = - V'V(Xi - Xj). 

vVe assume that the inter-vehicle potential V is 
rotationally symmetric, which implies that the 
force on vehicle i generated b~' vehicle j equals 
minus the force on vehicle j generated by vehicle i: 

With this controller, the closed-loop system be­
comes a (damped) Lagrangian s:-'stem with ki­

netic energy L.;~l ll xi I1 2 / 2 and potential en­

erg~ .. kL.t~1 T(x,) + L.;:~I L.~~i+ 1 F(Xi - Xj)' 
Taking the sum of kinetic and potential energy 
as a candidate Lyapunov function V and evaluat­
ing its time-derivatiw along the solutions of the 
closed-loop system. we obtain the inequality 

/I.' 

V = -kd L Il x/ ll :? S O. (3) 
1=1 

If the potential ener~' is radiall~' unbounded as 
a function of (Xl .... ,XN), then an application of 
LaSalle's invariance principle yields convergence 
of the vehicle network to the set of equilibria 



where X, = 0 and k'VT(Xi) + 'L.f=I,Hi 'VV(x; -
x j) = 0 for each i. 

Based upon these Lyapunoy /LaSaJle arguments. 
Bachmayer and Leonard (2002) show by means 
of various examples that the vehicle network is 
indeed able to locate local minima of the em'iron­
mental variable T through coordinated gradient­
descent. 

The above controller addresses gradient descent 
of vehicle lIetworks ill a full gradient information 
context, assuming that each vehicle is equipped 
with enough sensors to measure the gradient at 
its current position. In the present paper we 
are interested in the more practical situation of 
vehicles that each have onl~' one sensor with which 
to sample the enyironment. In this case, each 
vehicle has only partial information about the 
local gradient at its current position. By sampling 
the environmental field T along its path, vehicle i 
can estimate the directional derivative of T in 
the direction of Xi. " 'e may thus assume that the 
directional derivative 'VT(Xi) . Xi is available for 
feedback. 

In this paper we present several modified gradient 
descent algorithms \vhich rely only upon informa­
tion about the directional derivative. Anticipating 
the results to follow, we mention that these modi­
fied gradient descent schemes give rise to the same 
Lyapunov balance as in the full gradient case: thus 
suggesting that these modified vehicle networks 
indeed may be able to successfully perform gradi­
ent descent. 

3. GRADIE~T DESCEr\T WITH 
PROJECTED GRADIE~T I:'-iFOR\IATIO:,\ 

The first and probably most natural modification 
of the original gradient descent algorithm has been 
outlined by Bachmayer and Leonard (2002) and 
is obtained by replacing the full gradient 'VT(x;) 
in (2) by the projected gradient 'V pT(Xi), which 
is defined for all Xi #- 0 as follows : 

'VpT(Ti) = ('VT(X;)' 1\:: 11 ) II ~: II' (4) 

The projected gradient is the projection of the 
full gradient 'VT(x;) on the direction of motion 
(Fig. 1). The modified closed-loop dynamics are 

;\" 

X, = -kdX; - k'VpT(x,) - L 'VF(x; - Xj). 
j=l.jioi 

(5) 
Of course, this differential equation only makes 
sense as long as all X; are different from zero. as 
the projected gradient has onl~' been defined for 
nonzero Xi. There is. however, no guarantee that 
the yelocities of the vehicles will be nonzero for all 
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direction of motion 

Fig. l. Projected gradient 

times, even if all initial velocities are nonzero. In 
order to give a meaning to the differential equa­
tion (5) for zero Xi, we introduce the differential 
inclusion which arises by giving a set-valued inter­
pretation to the projected gradient when X; = O. 
We define. for Xi = O. 

'VpT(x;) = {('VT(x,) . e) e : e E ]R2 with lIell = 1} . 
(6) 

In this case, the projected gradient corresponds to 
all those vectors whose end points are located on 
the circle featuring in Fig. l. " ' ith this definition. 
the differential equation (5) may be interpreted 
as the differential inclusion (with an abuse of 
notation) 

N 

Xi E -kdXi-kco('VpT(Xi))- L 'VV(Xi-Xj) , 
j=l , j#; 

(7) 
where co ('V pT(Xi)) denotes the smallest COll­

vex set containing 'VpT(Xi). The right-hand side 
of this differential inclusion is a nonempty-, 
compact- and convex-valued set-valued function 
which is upper semi-continuous. It is known that , 
because of these properties, the differential in­
clusion (7) has solutions for all possible initial 
conditions (Filippov, 1988, Theorems 1 and 2, 
pp. 77- 78). 

Theorem 1. The time-derivative of the Lyapunov 
function V along the solutions of the differ­
ential inclusion (7) is a well-defined function 
of (Xl ..... XN, Xl .. .. . j- N) and satisfies 

1''-

V = - kd L Il x, 11 2 S; O. 
1=1 

These considerations suggest that the proposed 
dynamics may give rise to cooperatiw gradient de­
scent for the vehicle network. There are. however. 
a couple of problems with the proposed dynamics. 
First of all. the physical interpretation of the solu­
tions of the differential inclusion (7) is problematic 
since. in general. this differential inclusion does 
not ha\"e unique solutions. Furthermore. the Lya­
puno\" balance suggests that the vehicle net\\'ork 
will ewntually converge to the set of discontinuit~· 

where all Xi are zero. This is reflected b~' the 



fact that a numerical simulation of the differential 
equation (5) is problematic and it suggests that we 
ma.y face practical problems when trying to im­
plement this gradient descent scheme in practice. 
Finally. a theoretical (stability) analysis of the 
dynamics around the equilibrium configurations 
is complicated by the discontinuities which are 
inherent to the present gradient descent scheme. 
In order to deal with all of these problems. we 
propose in the present paper a second. different 
modification of the original gradient descent al­
gorithm, which is applicable in the context of 
sampling the environment with one sensor for each 
vehicle. In addition to replacing the full gradient 
by the projected gradient. we also introduce a new 
representation for the velocities and we modify the 
inter-vehicle forcing terms. This is the subject of 
the following section. 

4. LAGRANGIAN DYNA!\UCS VnTH 
PROJECTED GRADIENT INFOR!\lATION 

\Vhen each vehicle samples the environmental 
field T along its path. it is convenient to represent 
the velocity Xi E JR2 of the i-th vehicle by an angle 
variable Qi E SI (the direction of the velocity) 
and a real number Vi E JR (the magnitude of the 
\'elocity), related to Xi E JR2 by 

We refer to the couple (Vi' <Pi) as quasi-polar 
coordinates for the velocity Xi. The prefix 'quasi' 
refers to the fact that the magnitude Vi is allo\','ed 
to be any real number. not necessarily positive. 
As a consequence. the mapping from (Vi . 0;) to Xi 
is not invertible and we have to be very careful 
with the interpretation of this representation. \,re 
postpone these interpretation issues until the end 
of this section. 

In the present case of sampling T along the paths 
of the vehicles, we replace the full gradient equa­
tions (1)- (2) by the following equations. which 
depend on the derivative of T in the direction of 
the velocit~· onl~': 

X; = (r,cos(o,).v,sin(o;)). (9) 

L;i = -kdl', - kVT(x,)· (cos(oi).sin(o;)) 
1 .... 

L VF(Xi - Ij)' (cos(o;).sin(o,)). 
}=l. j#; 

(10) 
1\' 

0;=- L VF{x;-l.'j)·( - sin(o;).cos(o;)). 
j=l.j#i 

(11 ) 

Equations (9)- (11) form a smooth d~'namical sys­
tem on the manifold (JR3 x SI ).1\' . The smoothness 
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of the right-hand sides of (9) - (11) should be con­
trasted with the discontinuities that were inherent 
to the projected gradient equations of the previous 
section. The importance of the current smooth­
ness property should not be underestimated. It 
guarantees uniqueness of solutions, which is cru­
cial for a meaningful physical interpretation. and 
it makes the set of equations amenable for stan­
dard analysis tools. such as the linearization prin­
ciple. 

Using the relation (8). we ma~' project equa­
tions (9)- (11) onto the cartesian space JR4N re­
sulting in the differential inclusion (with an abuse 
of notation) 

N 

i, E -kdXi - kVpT(x;)- L Vp\ ' (Xi - Xj) 
j = l.j#i 

N 

± IXi l L V 1. V(Xi - x)). (12) 
j=l , j#i 

W here V p V ( .) and V 1. V ( .) are defined as follows: 

VpV(·)= (VV(-)' I I~:II) I I ~: I I' 
V 1. V(·) = VV(·) - VpV(·), 

when Xi i' 0, and as follows: 

VpV(.) = V 1. V(·) 

= {(VV(·)· e)e: e E JR2 with Ile ll = I} (13) 

when Xi = O. In words, VpV(·) and V 1. V(·) are. 
respectively, the projection of VV (.) on the direc­
tion of motion and on the direction perpendicular 
to the direction of motion. The right-hand side 
of the differential inclusion (12) is constructed 
from the right-hand side of the differential equa­
tions (9)- (11) via the projection (8) through the 
process of taking the pointwise push-forward of 
individual vectors. The plus-minus sign in the 
right-hand side of (12) arises from the fact that 
each non zero velocit~, vector Xi has two represen­
tations in quasi-polar coordinates, one with posi­
tive magnitude and one with negative magnitude. 
The set-valued nature of the projected gradients 
\vhen Xi = 0 arises from the fact that Xi = 0 
has infinitely man~' representations in quasi-polar 
coordinates. corresponding to t', = 0 and arbi­
trar~' 0; E SI. The following result is an immedi­
ate consequence of the preceding construction. 

Theorem 2. E\'ery solution of the differential equa­
tions (9)- (11) projects. via the relation (8). to a 
solution of the differential inclusion (12). 

Comparing the differential inclusion (12) \vith the 
gradient descent equation (i) from the previous 
section. we clearl~' see that the inter-vehicle forc­
ing terms have been modified for the present 
gradient descent scheme. The components of the 



inter-vehicle forcing terms which are orthogonal to 
the velocities of the whicles have been multiplied 
by a factor ±1i:;I. 

\Vhen we introduced quasi-polar coordinates for 
the velocities of the agents in the beginning of 
this section. we mentioned that we have to be 
ver~' careful with the interpretation of this coordi­
nate representation. ''''e now discuss these inter­
pretation issues in some depth. A problem ma~' 
arise when the dynamics (9)- (11) give rise to a 
trajector~' along which. during some time-interval 
and for some vehicle i. v, is identically zero and 
Qi changes value. This leads to interpretation 
problems. since the quasi-polar dynamics assume 
knowledge of VT(:rd . (COS(9i)' sin(Qd). which is 
physically not available when @i is changing while 
the vehicle is not moving. Fortunately. it is to be 
expected that this is a very unlikely situation. In­
deed, it is to be expected that. at least generically, 
the set of initial conditions that give rise to such 
trajectories is of measure zero. This follows from 
the fact that having a trajectory along which Vi 

and Vi vanish simultaneously at some time instant 
for some vehicle i is already expected to be a de­
generate situation. Indeed , based upon dimension 
counting arguments, it is to be expected that the 
set {Vi = V, = O} has dimension 4]V - 2 and thus 
that the set of initial conditions from which the 
above set can be reached has dimension 411/ - l. 
and thus has measure zero. Of course, the above 
arguments are only intuitive. A rigorous treat­
ment of these interpretation issues is a subject for 
further research. 

5. STABILITY PROPERTIES OF THE 
LAGRA~GIA!\ DY:,\A~I1CS ,nTH 

PROJECTED GRADIE:,\T I:,\FOR\IATIO:,\ 

"'"e are interested in the extent to which the quasi­
polar gradient descent scheme indeed enables a 
vehicle network to locate minima of an em'iron­
mental field via coordinated gradient descent. 

A first observation in this regard concerns the 
Lyapunov function 

N N 1\'-1 I\' 

V= I>? /2+kLT(x,) + L L \'(x,-Xj)' 
;=1 ;=1 ,=1 j=; + 1 

(14) 
which represents the sum of kinetic and potential 
energy in quasi-polar wlocit~· coordinates. and 
corresponds to the original L~'apunov function V 
on IRY". 

Theorem J. The time-derivative of the L~'apunov 
function V along the solutions of the differential 
equations (9)- (11) satisfies 

61 

N 

V = -kd L vl ::; O. (15 ) 
,=1 

""hat does this Lyapunov balance tell us about 
the asymptotic properties of the vehide netv,'ork'? 
Recall that the equivalent Lyapunov balance (3) 
on lR~N pla~'ed an instrumental role in proving 
that vehide networks are able to locate min­
ima of T in a full-gradient information context 
(Bachmayer and Leonard, 2002). Theorem 3 thus 
suggests that the proposed quasi-polar d~"nalll­

ics ma~' indeed give rise to cooperative gradient 
descent enabling the vehicle network to locate 
minima of the em'ironmental field T. 

However. this need not necessaril~" be true. Indeed. 
the time-derivative of the Lyapunov functions V 
and V are only negative semi-definite. Hence. 
LaSalle's principle needs to be invoked in addition 
to those Lyapunov arguments. LaSalle's principle 
enables us to conclude convergence to the largest 
invariant set contained in {V = O} respectively 

{V = O}. In the present context, where V and V 
are given by (3) and (15) respectively, LaSalle's 
principle enables us to conclude convergellce to 
the set of equilibrium points. However, the quasi­
polar dynamics (9)- (11) give rise to many more 
equilibria than the original gradient descent algo­
rithm (1) - (2) , and there is, in general , no guar­
antee that the combined basin of attraction of 
all these additional equilibrium points has zero 
measure. Accordingly, the convergence properties 
of the quasi-polar gradient scheme in a sampled 
environment may differ significantly from the con­
vergence properties of the original gradient de­
scent scheme in a full gradient context. 

This is ver~' well illustrated by the single vehicle 
case j\" = 1. Let us. for example, consider a 
single vehicle in a quadratic environmental field 
given by T(x) = 11 .1' 11 2

. Clearly. in a full gradient 
information context. the single vehicle will con­
verge exponentiall~' to the unique minimum at 
the origin. In a sampled environment, however. 
when implementing the quasi-polar gradient de­
scent scheme (9)-( 11). a single vehicle will. in 
general. not converge to the minimum. Indeed. 
since there is no inter-vehicle force acting on the 
vehicle. the whicle onl~' feels a projected gradient 
descent control term acting along the direction 
of motion. and thus the vehicle is constrained to 
move on a straight line determined by its initial 
velocity direction. The quasi-polar dynamics will 
enable the single vehicle to converge to the relative 
minimum of T along this constraint line (Fig. 2). 

We thus see that. with the quasi-polar gradient 
descent algorithm. a single vehicle is. in general. 
not able to locate the minima of an enyironmental 
field T. This ma~' be interpreted as follows: by 
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Fig. 2. Gradient descent by a single vehicle sam­
pling the environment. Simulation of equa­
tions (9) - (11) with T(x) = Ilx 112, k = 0.2 , 
kd = 10. Since there is only one vehicle, 
there is no need to specify the inter-vehicle 
potential V. The initial velocity of the vehicle 
is given by (v ,<p ) = (1,1T/2). 

sampling the environmental field along its path , 
a single vehicle does not gather enough informa­
tion to determine the full gradient at its current 
position. 

The above situation of a single vehicle should be 
contrasted with the multiple vehicle case. Unlike a 
single vehicle, a network of multiple vehicles may 
be able to locate minima of an environmental field 
via the quasi-polar gradient descent algorithm. 
This is illustrated in Fig. 3. It is important to 
stress that the exchange of information between 
individual vehicles , which enables the vehicle net­
work to perform gradient descent. is not achieved 
through explicit communication. Instead. the nec­
essar~- information exchange is a consequence of 
the implicit communication that arises from the 
inter-vehicle forces keeping the vehicles in forma­
tion. 
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