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Cooperative Exploration of Level Surfaces of Three Dimensional
Scalar Fields *

Wencen Wu “and Fumin Zhang ?

4Flectrical and Computer Engineering, Georgia Institute of Technology,
Atlanta, GA, 30332

Abstract

We develop strategies for a group of mobile sensing agents to cooperatively explore level surfaces of an unknown 3D scalar field. A
cooperative Kalman filter is constructed to combine sensor readings from all agents and give estimates of the field value and gradient at
the center of the formation formed by the sensing agents. The formation formed by the agents is controlled to track curves on a level
surface in the field under steering control laws. We prove that the formation center can move to a desired level surface and can follow a
curve with known frame and curvatures. In particular, we present results on tracking lines of curvature on a desired level surface, revealing
the 3D geometry of the scalar field. Taubin’s algorithm is modified and applied to detect and estimate principal curvatures and principal
directions for lines of curvature. We prove the sufficient and necessary conditions that ensure reliable estimates using Taubin’s algorithm.
We also theoretically justify the minimum number of agents that can be utilized to accomplish the exploration tasks. Simulation results
demonstrate that a line of curvature on a desired level surface can be detected and traced successfully.

Key words: Cooperative exploration; Curvature estimation; Cooperative filtering.

1 Introduction

The problem of cooperative exploration investigates how to
deploy a group of collaborative mobile agents to explore an
unknown scalar field efficiently and adaptively [3] [6]. Co-
operative exploration missions in the literature include, but
are not limited to, climbing gradients [15], cooperative path
following [7], and monitoring environmental boundaries [9]
[10]. Most existing results are for exploring two dimensional
(2D) scalar fields. In this paper, we focus on the problem
of exploring three dimensional (3D) scalar fields. This work
significantly extends the earlier results on 2D cooperative
exploration introduced by Zhang and Leonard [21].

We control a group of agents to move in a formation so
that the local structure of the field can be estimated from
the measurements taken by all the agents. To combine the
measurements from the agents, a cooperative Kalman filter is
constructed to give estimates of the field value and gradient
at the formation center. We estimate the Hessian matrix that

* The research work is supported by ONR grants N00014-08-1-
1007, N00014-09-1-1074, and N00014-10-10712 (YIP), and NSF
grants ECCS- 0841195 (CAREER), CNS-0931576, and ECCS-
1056253.
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is used in the implementation of the cooperative Kalman
filter by relating each of its elements to the curvatures of
the local level surfaces of the field in a neighborhood of the
formation center.

The desired formation is maintained by the formation shape
control law described in [19-21], which is based on Jacobi
transform. The Jacobi transform decouples the dynamics of
the formation center from the dynamics of the formation
shape, which allows us to develop separate control laws.
Following a differential geometric approach [16] [12] [11],
we develop steering control laws that control the formation
center to detect and move to a desired level surface and track
a curve on the surface with known frame and curvatures.
Once the formation shape control and the formation center
motion control are combined, the formation can be viewed
as a “super-agent” that is able to accomplish curve tracking
tasks.

Among all possible curves that the formation may detect
and follow, we study the problem of controlling the for-
mation to detect and track one of the lines of curvature on
a desired level surface. Lines of curvature are curves that
are associated with principal directions and principal cur-
vatures [5] [14], which measure how the surface bends. To
implement the tracking control, we apply Taubin’s algo-
rithm [17], which is modified to generate estimates of prin-
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cipal directions and principal curvatures with a small num-
ber of agents in a formation at each time instant. An impor-
tant concern here is the quantity of agents required to ob-
tain valid estimates. However, Taubin’s algorithm and other
related works [4] [8] were developed for computer vision
applications and do not contain conditions about the mini-
mum number of agents and their arrangements to generate
valid estimates. We establish sufficient and necessary con-
ditions for Taulin’s algorithm to provide non-singular es-
timates. The conditions theoretically justify the minimum
number of agents required and constraints on the formation
shape. Our results have not been reported in literature on
Taubin’s algorithm.

We have found that some techniques developed for the 2D
exploration in earlier works [21] can be applied to the 3D
case with only slight extension. These include the cooper-
ative Kalman filtering algorithm and the formation control
law based on Jacobi transform. Such techniques are only
briefly reviewed in this paper. On the other hand, we have
discovered that the 3D exploration offers significantly more
difficult challenges to curvature estimation, Hessian estima-
tion, and tracking control, which are the main topics of this

paper.

This paper is organized as follows. In Section 2, we review
the information dynamics and the formation shape control
for the cooperative exploration problems. In Section 3, we
develop control laws to control the formation center to track
a curve on a level surface. In Section 4, the principal curva-
ture estimation algorithm and the constraints on agent quan-
tity are discussed. Estimation of the Hessian matrix is per-
formed in Section 5. Simulation results are shown in Section
6, and concluding remarks are presented in Section 7.

2 Extension of the Information Dynamics and the For-
mation Control to 3D

Assume that z(r) is an unknown smooth scalar field where
r € R?. The field consists of level surfaces I'(r) = {r|z(r) =
Ci,i =1,---}, where C; are constants that correspond to
different field values. The scalar field z(r) is perturbed by
noises. We consider the problem of estimating the local geo-
metric structure of the field by deploying a group of sensing
agents in the field. In this section, we review the informa-
tion dynamic model and the cooperative control for the co-
operative exploration problem discussed in [21] and make
extensions to 3D space.

2.1 Information Dynamics

Suppose N sensing agents are deployed to explore an un-
known field. In most applications, the measurements are
taken discretely over time. We assume that each agent can
only take one measurement of the field at each time instant
k where k is an integer. At time instant &, the position of the
ith agent is denoted by r; ; and the field value at the position

r;; is denoted as z;x, where i = 1,2,--- ,N. The measure-
ment taken by the ith agent can be written as

Pik = Zik T Wik + i, (D

where n;; is 1.i.d Gaussian noise and w; ; is spatially corre-
lated Gaussian noise.

Since the group of agents can be considered as a “super-
agent” when exploring the field, we are interested in the
estimates of the field value and gradient at the formation
center r.; at each time instant, where r is defined as the
average of the positions of all the agents in the form of
XN ri . Therefore, the state is chosen as s = (2.4, sz I7
where z. 4 is the field value and Vz. is the field gradient at
rcx. Using Taylor’s expansion to approximate z;x, we can
get

1

2k e+ (Fig —Ter) Vaer+ 3 (Fise = Tese) " V2o k(Xig —Tep)-

(2)
where Vch,k is the Hessian of the field at r.;. Let
Cr be a N x4 matrix with the ith row defined by
[1,(rig —rei)T] fori=1,2,...,N. Let Dy be a N x 9 matrix
with its ith row defined by %((r,-_yk —Tek) @ (rig —rex))
where ® is the Kronecker product. Define H.; as the
estimate of the Hessian Vch,k- Suppose I_-'Icﬁk is de-
fined by rearranging the elements of H.; as I_-‘IL._yk =
[He k1) He k21)s He ke 31y He g(12) s He j(22) s He j(32)  He x(13)
,HC’k(23>,HC’k(33>]. Now the measurement equation can be
written as

pr = Cisi+ Dkﬁc,k + Wi + Dy + 1y, 3)

where ey is the error vector associated with estimating the
Hessian. The variables p;, wy and n; are N X 1 vectors, i.e.
P = [Pik], Wi = [wix] and ny = [n; ;] where i =1,--- |N.
When the formation center moves, the state s; evolves ac-
cording to

T
Zeqk = Zeh—11 (rc.k - chcfl) VZc,kfl ,
VZc,k = Vzc,kfl + Hc,kfl (rc,k —Tek—1 ) €]

Define hy_; = (OaE[Hc,k(rc,k —I'c’kfl)]T)T, I3z asthe3x3

1 (rex—rep1)”

identity matrix, and A} | = . Then
0 I3
the state equation can be expressed as
sk =Ap Sk e, &)

where &, is a N x 1 noise vector that is independent of the
measurement noise ny.

2.2 Cooperative Kalman Filter

Once the state equation (5) and measurement equation (3)
are known, a cooperative Kalman filter is constructed to re-



duce the measurement noise. Denote U = E [eke,{], R, =
E [nkn,{] and M; = E [ekekT | where ey, n; and & are intro-
duced in section 2.1. The cooperative Kalman filter equa-
tions are as follows

Sk(—) = Ao 18k—1(+) T -1,
Py = AL Py A + My,

Ky = Py \CY [CkPy—\Cil + DyUD] +Ri] ™,
Sk(+) = Sk(—) + Ke(px — Cisy(—) — DieHley),

Py = Py + CUDWUDE +Ri] ™' Ce (6)

The subscript (—) and (+) indicate the predictions and the
updated estimates, respectively. The convergence of the co-
operative Kalman filter can be proved in a similar way as the
proof in [21]. We will discuss the estimates of the Hessian
term Hj in Section 5.

Note: For the rest of the paper, we drop the subscript k for
simplicity whenever only the kth step is concerned.

2.3 Formation Shape Control

We use Jacobi vectors to describe the formation of the
agents: [rc,q, - ,qn—1] = [r1,r2, -, 15|V, where ¥ is the
Jacobi transform [20]. For example, if N = 3, we can define
the Jacobi vectors to be q; = @(rz -r3),q2 = %(Zrl —
ry —r3). Assume that each agent has unit mass. The dynam-
ics of the agents are described by Newton’s equations: ¥; =
fi,i=1,--- N, where f; is the control force to the ith agent.
Given the Jacobi vectors and the dynamics of the agents,
the following relationships hold: §; =w;,j=1,--- ,N—1
and Ni, = f,, where u; are the formation control forces that
need to be designed and f. is the force applied to the forma-
tion center. The forces u; that use q; as feedback, the force
f. that uses r. as feedback, and the forces f; are related by
the Jacobi transform:

fo,up, - uy—q] = [f,5,--  Iy]W. @)

The control of the formation shape and the control of the
formation center motion are decoupled via the Jacobi trans-
form W.

Let q(}, j=1,---,N—1 be the desired Jacobi vectors that
define a certain formation. For example, if N =3 and the
agents form an equilateral triangle with side length a, then

V2 V2

q? = %S-ae; and qg = 5=ae; where e and e; are two desired
directions with unit length. In order to keep all the sensing
agents in the desired formation so that the q;’s converge to
q?, we use the control laws in the form of: u; = —K;(q; —
q(}) —K>q;for j=1,--- ,N—1, where K and K are positive
gains. It can be proved that under this control law, the sensing
agents converge to the desired formation with an exponential
rate of convergence [21].

3 Curve Tracking on a Level Surface

In this section, we design 3D steering control laws that con-
trol the formation center to move to a desired level surface
and track a curve with known curvatures and frame on the
level surface.

3.1 Curve Tracking Dynamics

At each time instant, for a 3D scalar field, consider a level
surface with the level value z. passing through the formation
center r.. The gradients of the 3D scalar field are perpen-
dicular to the level surfaces. At the formation center r., a
unit normal vector n, which is perpendicular to the surface

can be defined as n = %. When the formation is moving
@

in the field at unit speed, its velocity vector is a unit vector
X. The field value z., which is estimated by the cooperative
Kalman filter, is changing with respect to time:

dr,
z’c=Vzc-d—;=sz-X1 = ||Vze|n-X;. (8)

Suppose ¥(s) is a curve passing through the formation center
r. that lies on the level surface, where s is the arc-length pa-
rameter. Then a right-handed orthonormal frame (x;,x,n)
for the curve is established where x; is the unit tangent vec-
tor to the curve and x; is defined by n x x;. To describe
the trajectory traced by the formation center moving with
unit speed, a natural frame [2] can be established. Let X
be the unit tangent vector to the trajectory of the forma-
tion center, and let N, and X, be unit normal vectors to the
trajectory that are parallel transported along the trajectory
from an arbitrarily chosen initial configuration so that X,
X,, and N, always form an orthornormal basis of R3. Fig.
1 illustrates the frame [x1,X2,n] of the curve ¥(s) on a level
surface that passing through the formation center and the
frame [X, X, N] of the formation center trajectory.

n

Fig. 1. The frame [xj,xp,n] of a curve Y(s) on a level surface
that is passing through the formation center and the natural frame
[X1,X7,N] of the trajectory of the formation center.

There are two sets of dynamic equations that are similar
to the well-known Frenet-Serret equations that describe the
changes of the two frames, one set for the curve y(s) on the
level surface, and the other for the trajectory of the formation



center. We list the two sets of equations side by side as
follows.

Y= oax; F. =X
X| = 0K, + 0K,X) X = uN, +vX,
Xy = —0KgX| + QTgn X, = —vX

0= — 0K, X| — ATeXp N, = —uX]. )

The term o = ds/dt is the instantaneous rate of change for
the curve length of y(s) when the formation center moves.
The terms x,, k, and 7, are the normal curvature, the
geodesic curvature, and the geodesic torsion of the curve
¥(s) on the level surface. We will discuss their geometric
meaning in more detail in Section 4.1. The terms u and v
are the steering controls for the formation center moving at
the unit speed.

3.2 Steering Control Law Design

We define the steering control problem for the formation
center as follows:

Problem 3.1 Consider the motion of the formation center
r. moving at unit speed and the following assumptions about
the 3D scalar field:

Al Suppose there exists a unique level surface I'(r.) passing
through r. along the trajectory of r..

A2 Suppose a unit tangent vector to a curve Y(s) € I'(r)
passing through r. is well defined at r. and known as Xi.
This implies that X1 is known or accurately measured at
every point of the trajectory of r..

A3 Suppose the curvatures (K,(s), K, (s), Tq(s)) are bounded
and known at v, for the curve y(s) . This implies that the
curvatures are known or accurately measured at every
point of the trajectory of r..

Given a desired field value C, design the steering control
laws u and v so that the formation center converges to the
level surface with value C and moves along the curve Y(s)
with the tangent direction X1. In other words, as t — oo, the
goal is to achieve z. — C and X1 — X|.

Remark 3.2 Assumptions (A2) and (A3) usually do not
specify a unique curve on a level surface to track. Instead,
we aim to track one out of a class of curves with desired
curvatures and tangent directions. We will use the formation
to estimate the tangent X| and the curvatures. In Section 4,
we will show that the lines of curvature of a surface can be
traced in this setting.

The relative displacement between the two frames at the for-
mation center can be described by a set of “shape variables”
[12][20] as ((x1-X1), (x2-X1), (n-X}),z.). Define two 3 x 3
matrices g1 = (X1,Xz,n) and g = (X1, X7, N,). From the fact
that g1,g2 € SO(3), we have the orthonormality conditions
that g7 g1 = Iz.3, g38> = Is3x3 and (g1 g2) (g7 2)" = I3x3

[1]. Hence, the last equation and the orthonomality of the
frames give

(x2-Ne)(x1 -Ne) + (%2 - X0) (x1 - X)) = —(x2- X)) (x1 - X)),
(x1-Ne)(n-Ne) + (x1 - X2)(n-Xo) = —(x1 - X1)(n- X)),
(x1-X2)* 4+ (x1-No)2 = 1— (x1 - X)) (10)

These identities will be used to simplify the dynamics of the
shape variables.

From the equation X = uN, +vX,, we can derive that u =
X;-N.andv=X;-X;. Since x; ,Xo and n form an orthogonal
basis of R3, X; can be expressed by the linear combination
of X1,X, and n as X = a;X; 4+ a»X; +azn, where a;, a; and
as are scalars that depend on the dynamics of the formation
center and the curve. Hence, u and v can be represented as

= al(xl -NC) +a2(X2-NC) +a3(n-NC),
=a(x;-Xo)+ax(x2-X2) +a3(n-Xp). (11)

The design of u and v becomes finding the parameters
(ay,a2,a3). With u and v as in (11), we can obtain that

d(X] ~X])
dt

= (aKun+ aK,Xo) - X + X - (uNe +vX>)

= OtKn(lLXl) + OCK'g(Xz -Xl) —|—a1((x1 -NC)2 + (Xl -Xg)z)

+ax((x2-Ne)(x1-Ne) + (x2 - Xo) (x1 - X2))

+a3((n-N)(xp-Ne) + (n-X2) (x1 - X2)). (12)

=% -X; +x1-Xj

x1-X1)

Applying the identities in (10), ‘KT becomes

W = aKﬂ(n'Xl)+aKg(X2-X1)—|—a1(1 — (Xl 'Xl)z)
—ax(x2- X)) (x1-Xy) —as(x1-Xi) (n- X)) (13)

which only depends on the shape variables. Applying similar

. d(xo X dnX;) .
calculations to (Xih U and ("d, 1 oives us

@ = _aKg(Xl ‘X1)+OCTg(D-X1) —al(xl -Xl)(X2~X1)
‘f'clz(l—(Xg-Xl)z)—613(X2~X1)(11-X1)7 (14)
w = 7(XK‘n(X1 ~X1) 7(1Tg(X2 ~X1) 7(11(X1 ~X1)(H~X1)
—ax(x2-Xp)(0-Xp) +a3(1—(n-X;)?). (15)

If the control laws u and v (e.g. a1, az, and a3) are designed
as feedback laws using only the shape variables, we can
then focus on analyzing the closed-loop dynamics of the
shape variables described by the equations (8), (13)-(15) as
a time-varying nonlinear system. We want to stabilize the
equilibrium of the closed-loop dynamics that corresponds to
the desired tracking behavior.



Suppose the scalar field has extrema z,,;; < Znayx. Consider
a Lyapunov candidate function that is analogous to the one
chosen in [12]:

V:—ln(x1~X1)+h(zC), (16)
where h(z.) satisfies the following assumptions:

B1 h(z:) is continuously differentiable on (zuin,Zmax) and

flze) = ddfi is a Lipschitz continuous function.

B2 f(C) =0, and f(z) # 0 if z # C where C is the desired
level surface value.

B3 lim, .., h(z) = eo,lim, . h(z) = and 37 such that
h(z) =0.

The term In(x; - X;) in the Lyapunov function aims to align
the moving direction of the formation center with the tangent
direction of the curve on the level surface. We will prove that
as long as we set x; - X; > 0 initially, 0 < x; -X; <1 all the
time, which makes the term — In(x; - X;) > 0. The other term
h(z¢) serves to control the agent to stay on a desired level
surface. The derivative of the Lyapunov candidate function
can be calculated as

1 d(X1 -Xl)

V:—Xl.)(1 T+f(Zc)Zc (17

oK oKy
x1-X;? x1-X1
f(ze)|[Vze||, where u is a positive constant and plug
(a1,a2,a3) into u and v in equation (11), we get

If we choose a; = U,ap = and a3 =

oK,

u=p(x;-No)+ X, & (x2-N¢)+ X, (n-N,)
7f(zc)||VZc||( No),

v = p(x-Xa) + “’;1 (x2-X2) + Xf‘.’i’zl (n-X»)
— f(z)IVze||(n-Xa). (18)

If we plug a;, a; and a3 into (13) and then use (§8), we can
calculate that
u

_— e
V= X1-X1(1 (x1-X1)%) <0. (19)

We have the following proposition.

Proposition 3.3 Consider a smooth scalar field and the for-
mation center satisfying assumptions (Al1-A3) and the fol-
lowing additional assumptions:

A4 All level surfaces are compact.

A5 The field has isolated extrema at a finite set of points
Ry.p. Suppose the infimums are all equal to Zyy, and the
supremums are all equal t0 Zygy.

Let the desired level value C € (Zymin,Zmax) be given. Then
under the control laws u and v in equations (18) with as-
sumptions (B1-B3), as t — oo, we have X| — X and z. — C
from all initial states satisfying X1 - X1 > 0 and r(ty) ¢ Ryp.

Proof Consider the Lyapunov candidate function V in (16)
and V in (19). Since V — oo as x; - X| — 0, 2o — Zmnax, OF
Zc — Zmin, if the trajectory of the formation center initially
satisfies x; - X| > 0 and z; € (Zmin, Zmax), then the trajectory
will stay in a compact sub-level set of the Lyapunov function
V. Let E be the following set within the sub-level set where
V=0

E={((x1-X1),(x2-X1), (m Xl),zc)\
(X] X]) 1,(X2 X]) (nXl):O} (20)

Because the closed-loop system is time-varying, we can not
apply the classical LaSalle’s Invariance Principle. Instead, a
more advanced invariance theorem can be applied (Theorem
8.4 in [13]) to claim that the trajectory will converge to the
set E when ¢t — oo. At points in E, the closed loop system
becomes

., dxi-Xy) o od(xo-Xy)

=0 dt =0, dt =0,

d X

% £ IVzll: @1

In the current context, n-X; = 0 on set £ and we have
shown that the dynamics will converge to set E, hence n-
X; — 0. According to the Barbalat Lemma (Lemma 8.2
in [13]), if f(z.)||Vzc|| is uniformly continuous and n-X; —

0, then % — 0 must hold. Since all level surfaces are
compact and the field is smooth, it is straightforward to show
that ||Vzc|| is uniformly continuous along smooth curves
with bounded curvatures on the level surfaces. Therefore, we
conclude that f(z.)||Vz|| = 0, which implies that f(z.) =0
on E. This means the tangent vector X to the trajectory of
the formation center will be aligned with the known tangent
vector x; along the curve and the field value at the formation
center will converge to the desired constant value C. [ |

4 Curvature Estimation Using Formations

For exploration problems, the field that is going to be ex-
plored is unknown. Assumptions (A2) and (A3) can only
be satisfied based on estimates made by sensing agents. We
consider a special case, which is to detect and track one of
the lines of curvature on a desired level surface [18]. We de-
sign a formation formed by N agents so that by combining
the measurements taken by all of the agents, the curvatures
and the directions of a line of curvature can be estimated.

4.1 Principal Curvatures and Directions

We start with reviewing the definition of the lines of cur-
vature briefly [14]. As shown in Fig. 2, ¥(s) is a curve that
lies on a smooth surface I', which can be described by the
equations (9) (left). y1(s1) is another curve which also lies
on I' and intersects with y(s) at the point r.. As introduced
in Section 3.1, the frame (x;,X2,n) is used to describe the



n»

Fig. 2. Two curves on a level surface I'. x; and x, are the tangent
vectors of y(s) and ¥ (s1). n is the normal vector to I at re.

curve Y(s). If the curve ¥;(s1) has X, as its unit tangent vec-
tor at r, then at the same point r., the frame for 7, (s;) is
(X27 —X1, l'l) .

Suppose &, and ki, are the normal curvatures of ¥(s) and
%1 (s1) at the point r., which are also known as the directional
curvatures of the surface I' at r. in the directions x; and x;.
Among all possible directional curvatures of the surface I" at
r., if K, takes the maximum value along X1, then k;, is one of
the principal curvatures and X is the corresponding principal
direction of I' at r.. Since x; and x, are perpendicular to
each other, then x; is another principal direction and kj,
is the corresponding principal curvature with the minimum
value among all directional curvatures of I" at r.. Note that
the principal directions may not be unique for some smooth
surfaces such as a sphere. If the tangent direction x; of y(s)
at each point is a principal direction at that point, then ¥(s)
is a line of curvature of the surface I'. Another important
property of lines of curvature is that the geodesic torsion T,
is zero. Examples of the lines of curvature are the meridians
and circles of latitude of a surface of revolution, such as a
cylinder.

Fig. 3. T! and T? are the two principal directions of the surface at
r.. T and Ty are two arbitrarily chosen tangent vectors that form
certain angles with T!. n is the normal vector to the surface at rc.

4.2 Taubin’s Algorithm

To estimate the principal directions and the principal cur-
vatures of a line of curvature on a level surface, we intro-
duce the curvature estimation algorithm described by Taubin
in [17]. As shown in Fig. 3, let T! and T? denote the two
principal directions of the surface I" at the %)oint r. with cor-
responding principal curvatures k' and x> where k! > k2.
Choose an arbitrary unit tangent vector T to the surface at
r. that forms an angle 6 with T! where 6 is unknown. For
—T < 0 < &, define another unit tangent vector Ty to the
surface at r. that forms an angle 6 with T. Let «,(Tg) be

the directional curvature associated with the direction Ty.
Then a symmetric matrix M, can be constructed by an in-
tegral formula as

1 [+= r
p= ﬁ/ K,(Tg)TeTgdb. (22)
-

It can be shown that the principal directions and the unit
normal vector are the eigenvectors of M, which can be
computed by diagonalizing M, as

M 0O ;
M, = (T1 T2 n) 020 (Tl T? n) , (23)
000
where A; and A, are the two non-zero eigenvalues of M,,. It

is further shown in [17] that the principal curvatures can be
calculated as k! =31, — A, and x¥2 =31, — ;.

Fig. 4. r. is the center of the formation. r;,i =1,---,N—3 are
points on the level surface obtained by searching along either the
negative or positive direction of the normal vector n starting from
ri,i=1,--- N-3.T;;i=1,--- ,N—3 are projections of rﬁ—rc
to the tangent plane of I" at r.

We introduce a discretized Taubin’s algorithm for estimating
curvatures using formations. We arrange a formation formed
by N agents as illustrated in Fig 4. We allocate N — 3 agents
on a plane in a circular fashion, among which we arbitrarily
select one as r; and label the others ry,---,ry_3 counter-
clockwisely. The remaining three agents are allocated along
a line perpendicular to the plane with the Nth agent located
at the center of the formation formed by the N — 3 agents
and the agents N — 1 and N — 2 located symmetrically on
the opposite sides of the plane. The position of the Nth
agent ry overlaps with the formation center r.. Note that
this configuration requires N > 4. If N =5, the first two
agents only form a line instead of a plane. The formation
can be stabilized with the cooperative control laws based on
the Jacobi vectors. With the formation control law described
in Section 2.3, the N — 3 agents can be controlled to lie on
the tangent plane of I'(r.) and agents ry_»,ry—1, and ry
can be controlled to be aligned with the direction of n by
correctly selecting q?,i =1,---,N—1. We assume that all
such formation control goals have been achieved.

The discretized Taubin’s algorithm is as follows.



Algorithm 4.1 Denote hi as the estimate of n. Starting from
ri,....I'y—3 and searching along the positive or negative di-
rections of fi obtained at the previous time instant, we can
find x,...,¥\_5, which lie on the level surface T'(r.) and
divide I'(x.) into N —3 triangular faces. We label the trian-
gular faces as f;,i=1,--- ;N — 3. The unit vectors T;,i =
1,...,N — 3 represent the projections of the vectors ¥, —r,
to the tangent plane of the surface I'(x.). With this setting,
the steps to estimate the principal curvatures and principal
directions with N agents are as follows:

(1) estimate the unit normal vector n at x.. Let ny. be the
unit normal vector to the face f;. Fori=1,--- ,N—4,

_ _Iri—re riy1—re _
ne=7w—ua X 7. F r _ n =
fi = il ¥ Treoi e FOT the face fn—3, myy

IN—3—Tc ry —re Th H R
. Then n can be estimated by h =
Ten—3—rell * Ter—rc] Y

YV | filny,
I3 iy 17
(2) compute the projections T;. Since the tangent plane of
['(r.) at . is perpendicular to 1, T; can be estimated
(ri—rc)—((rl—rc)-h)h
(r;*rr)*((r;*rC)'ﬁ)ﬁH ’

(3) approximate the matrix M, in (22) as

where |f;| are the areas of the faces f;.

using T; = i

N-3
M, =Y oxTI], (24)
i=1

where @; are the weights that depend on |f;| and satisfy

Y @; = 1. K; are the directional curvatures associated

247 (r}—r.)

[

(4) diagonalize M,, to obtain the estimated principal di-
rections T' and T2, as well as the estimated principal
curvatures &' and K*. Therefore, the frame of a line of
curvature that is associated with the larger principal
curvatulre can be estimated by X| = T % =12 and
&, = kL

with T; and are approximated by K; =

Remark 4.2 In the step (2), the projections T; can be ap-
proximated by r; —x. when the formation converges and the
agents 1,--- N —3 stay in the tangent plane of the surface
at the position r..

4.3 Geodesic Curvature Estimation

The geodesic curvature measures how a curve is curving
in the surface M. The geodesic curvature K, the normal
curvature k;,, and the Frenet-Serret curvature k¥ of a curve
are related by k* = K, + K;.

Algorithm 4.3 Knowing the consecutive positions of the
formation center Y¢j_o,¥cj_1,¥c i and Tejiq,

(1) compute the unit tangent vector to the trajectory of y(s)

at time instant k, which should be aligned with x; that

. 2. r. b O
can be approximated by T} = M
c,k+ c,k—

(2) compute the Frenet-Serret curvature. With the esti-
mated tangent vectors Tj and Ty_, the Frenet-Serrat
arccos(Ty-Ty_1)
”rc.k_rc.kle '
(3) estimate the geodesic curvature. Since we have ob-
tained &, the geodesic curvature kg can be calculated

A, _ A2 A2
by K, = \/ K= — K.

curvature K can be estimated as kK =

Until now, we have estimated all the information needed by
assumptions (A2) and (A3) for tracking a line of curvature
with §, = 0.

4.4  Constraints on Agent Quantity and Formation Design

The discretized Taubin’s algorithm approximates the integral
formula for M, with a finite sum that computes M,. The
number of agents and the formation will affect the estimation
accuracy. Under this concern, we discuss the constraints on
the agent quantity. For I'(r.), assume that there exist two
unique principal directions T! € T.T" and T? € T.I" where
T.I is the tangent plane of ['(r.) at r.. With the configuration
shown in Fig. 4, denote the angle from the vector T; to
T;,i=1,---,N—3as 6; € (—m, x]. Under this setting, 6; =
0. Define a set Q = {T|T€T.I, T # T', T # T2, ||T|| = 1}.
We assume that the tangent vector T is selected so that
T € Q. With this configuration, we propose the following
proposition.

Proposition 4.4 Consider a formation with N agents as il-
lustrated in Fig. 4 with the assumptions that T| € Q and
that the surface T'(r.) has two unique principal directions
at x.. Then the following statements hold for the discretized
Taubin’s algorithm 4.1;

(1) the algorithm provide nonsingular estimates of princi-
pal curvatures and principal directions if and only if

N-3
Y wik;sin26; #0, (25)
i=1

where 0; is the angle between T; and Ty, and 6; = 0.
(2) N > 6 must be satisfied to avoid singularity in the es-
timates. If the formation is symmetric, then N # 7.

Proof for Statement (1). Choose T; and the corresponding
orthonormal vector Tf‘ as the basis of the tangent plane,

then T; can be written as: T; = Ticos6; + Tll sin@;, i =
1,2,...,N — 3. Substitute T; into equation (24), we can obtain

N-3
M, = Z a),'K,-(TlTchos2 9i+T1(T1L)Tcos 0;sin 6;
i=1

+T1TT cos 6;sin6; + T (Ti)7 sin’ 6;). (26)

Suppose T! is one of the estimated principal directions
that can be expressed as T! = T;cos 6 +T1L sin6 where



6 € (—Z, %] is the angle between T! and T;. Then accord-
ing to Taubin’s algorithm, we can write down the following
relationship:

MVT1 :ilTl :T]il cosé+T,LjL] siné, 27
where 1, is the eigenvalue corresponding to T!. On the
other hand, M, T! = M, (T cos 6 + T sin 0). Substitute M,
in equation (26) into the above equation and use the rela-
tionship TI'T; = (T{)TT{ =1 and (TH)TT) =TI T{ =0,
M, T! can be calculated as

N-3
1
M T =T} ok( cos” 6; cosB+fsm26 sin 9)]
i=1
N-3
+ T Z w;k;(sin’ 6; sm9+fs1n29 cos0)]. (28)
i=1

Hence, comparing with equation (27), we have

R N-3 ) 1N—3 R
M= W;K; COS GH_E Z ;K; sin20;tan 0

> -
Tl
o~ =

N 3
= o;K; sin” 6; + — Z ®;%;sin26; cot §. 29)

Il
-

Suppose Zf': ]2 W;K; sin26; # 0, tlAlen the above two equations
give well defined solutions for O that satisfy:

225\/:_13 ;K;Cc0s206;

tan” O + N3 -
Zi:l (Dl'KiSIHZQ,'

tanh—1=0.  (30)

For each solution é, the estimated eigenvector T! has the
form of T cos 6 + TlL sin@. This finishes the proof for the
sufficient condition. From the relationship T/ T = 1 and
(T{)TT) =0, we also have

N-3 N-3
1
M/Ti =T ) okicos” 6+ STy ), wik;sin26;. (31)
i=1 i=1

We now use proof by contradiction to show the neces-
sity. Suppose the term Z?’: j3 w;K; sin26; sums to zero, then
MT, =T, Zf\’:_f w;k;cos? 6; = A, T, where A; is a scalar.
From equation (31), we can see that T; is one of the eigen-
vectors of M,, and A, is the corresponding eigenvalue. Ac-
cording to Taubin’s algorithm, this results in T being one of
the principal directions. However, T is not aligned with any
principal directions since T € Q. This contradiction means
that Taubin’s algorithm can produce estimates of principal
directions only if Zﬁi 713 w;k;sin26; # 0.

Proof for Statement (2). Consider a symmetric formation
where the angles between T, and T;,i=1,---,N—3 can
be expressed as 6; = 5 (i —1). When N =5, according

to our formation design, agents 1 and 2 form a line and
the agent 5 is located at the center of the line, which al-
ways gives us a symmetric formation. From the relationship

5\7:13 W;K; sin20; = Z 1 3wk s1n(1\f‘”3(i— 1)), we can ob-
tain that for N =5, w; k7 sin0+ a» k> sin 27 = 0. In addition,
when N =7, we have @; k1 sSinQ+ a» K Sin T+ 03 K3 Sin 27w +
w4 x4 sin37 = 0. The summations will be zero regardless of
the labeling of the sensor platforms and the values of w;k;,
which violates the condition (25). This fact indicates that
we can not deploy five or seven agents arranged in the sym-
metric formation to implement Taubin’s algorithm.

When N = 6, if the assumptions of the proposition are sat-
isfied, the estimated 6 can be solved from

2(m K1 + Ky cos(262) + w33 cos(263))
0K 8in(26,) + w3 K sin(265)
—1=0. (32)

tan2 é + tan é

Therefore, the minimum number of agents that can be uti-
lized without producing singular estimates is six. [

Notice that for the symmetric formation, because of the re-
lationship: Z?’: | sin N (i —1) =0,¥YN > 6, the condition
(25) in Proposition 4.4 1 1s violated if the term w;x; are iden-
tical. Since we assume that for the smooth surface I'(r,),
there exist two unique principal directions T! and T?, we
can select w; so that w;k; are not identical. For example,
w=1i=1,- ,N-3.

Remark 4.5 Proposition 4.4 suggests that when we design
a formation using N agents as illustrated in Fig. 4 to imple-
ment the discretized Taubin’s algorithm to provide estimates
of the principal directions and principal curvatures on a
level surface, more than six agents should be used. In addi-
tion, we can not use seven agents in a symmetric formation
to implement Taubin’s algorithm.

5 Cooperative Hessian Estimation

As seen in the state equation (5) and the measurement equa-
tion (3) of the Kalman filter, the Hessian matrix of the field
at the formation center needs to be estimated in order to en-
able the Kalman filter. As shown in Fig. 2, y(s) and ¥ (s)
are two intersecting curves on a level surface I. We can
write down the dynamic equations for y(s) and ¥; (s;) side
by side,

/ /
X| = Ky + KgXo Xy = Kix — KigX|

Xh = —KgX| + Tgh X| = KigXp — Tign,
n = —KnX| — TgXo n = —K1,X2 + T1gX1. (33)
where ' represents the derivative with respect to the arc-

length parameter s or s1 and Ki,, Ki, and Tj, are the normal
curvature, the geodesic curvature and geodesic torsion of
o (s1), respectively.



From the fact that the gradients of the surface are always
perpendicular to the tangent plane, we have the following
relationships: Vz(r.)-x; =0,Vz(r.) -x, =0and Vz(r;) -n=
[IVz(re)||. If we take derivatives on both sides of Vz(r,)-
x; = 0 with respect to s and use the relationship %Vz(rc) =

xI'V2z(r,), we can obtain
X{ V22(r)x1 + | Vz(re) [n- (Kn+ Kgxa) = 0. (34)

In the frame described in equation (33) (left) for the
curve Y(s), since x; is a unit vector along the x; axis,
and x;,x, are perpendicular to each other, from the equa-
tion (34), we have 0y z(rc) = —||Vz(re)| ;. Therefore,
the estimate of the first element of Hessian matrix is
given by H.j) = dyxz(re) = —||Vz(re)| K. Also, if
we take derivatives on both sides of Vz(r.) -x, =0 and
Vz(re) -n = ||Vz(r.)||, similar calculations can be con-
ducted, which give us the estimates of H_(12) and H_(13):
Hy(12) = —[|Va(re) || %, Hei3) = 5 11V2(xe)|l. Use the sim-
ilar steps to analyze the curve a;(s;), we can estimate
H,(22)> He(21) and H(23) by H(20) = —|Vz(xe) (| K1y Hea1) =
—[IVz(re)l|T1g and H(p3) = %HVZ(I‘C)H. Since the field
is considered to be smooth, the Hessian matrix is sym-
metric. Therefore, H.3 = He31) = %HVz(rc)H and
H,23) = He(3) = ddTlHVz(rc)H. In addition, from the re-
lationship H,(j2) = H(31), we have 7, = 7j,. Note again
that if y(s) and 7%,(s;) are lines of curvature on a sur-
face, the geodesic torsion T, = Ti, = 0, which means
H,(12) = H,(21) = 0. Note that &, = &1 and x;, = &2. With
the formation designed in the previous section, the last
element of the Hessian H33) can be approximated by

IN—1"%, IN TIN—

2
Iey—1 =Nl ey =ty —all
Hsy = .
33 ry—1—ry—2ll

6 Simulation Results

We demonstrate the cooperative exploration algorithm uti-
lizing six agents. We assume that the measurements taken
and the positions are shared among all the agents. At each
time instant, the agents take new measurements of the field,
then the cooperative Kalman filter, the curvature estimation
and the Hessian estimation are computed to find the steering
control forces u and v as described in Section 3. Meanwhile,
the formation shape control forces are also calculated.

In the simulation illustrated in Fig. 5 and Fig. 6, three of the
six agents (two are plotted as triangles and one is plotted as
a circle) lie in the tangent plane of a level surface passing
through the formation center and form a symmetric triangu-
lar formation. The distance between each pair of the three
agents in the plane is 0.6. The other three agents (rectangu-
lar markers) are lying in a line perpendicular to the tangent
plane with the sixth agent sitting in the formation center. To
satisfy the constraints discussed in Section 4.4, we control
the orientation of the formation so that none of the vectors

connecting an agent to the formation center aligns with any
principal directions of the level surface. This is accomplished
by selecting the Jacobi vectors q; and q?,i =1,---,N—1so0
that the vector connecting the agent one (the circle) and the
formation center forms an angle § with the estimated princi-
pal direction associated with the larger principal curvature.

The goal is to detect and track one of the lines of curvature
on a desired level surface in an unknown 3D scalar field with
5% i.i.d. Gaussian noise. The unknown fields are composed
of cylindrical level surfaces and ellipsoidal level surfaces.
We only plot one of the level surfaces on each figure with the
level value C = 20 and set it as the desired level value that the
formation center should converge to. The lines of curvature
with the larger principal curvatures for both level surfaces are
shown by the circles on the level surfaces in the figure. The
thick lines are the trajectories of the formation center. The
initial positions of the formation center are at the position
(4.3,0,0), which are —0.2 off the desired level surfaces.
The six agents converge to a constant formation while the
formation center moves to the desired level surfaces, and
track one of the lines of curvature.

Fig. 5. Detecting and tracking a line of curvature on a cylinder by
six agents. The desired level value C = 20.

Fig. 6. Detecting and tracking a line of curvature on a ellipsoid
by six agents. The desired level value C = 20.

Denote the angle between T! and the inertial frame as 8

and the angle between Tl and the inertial frame as ﬁ' To
compare the estimated principal directions with the actual

principal directions, we plot ,B in Fig. 7. We can tell



that with three agents estimating the principal directions, the
error is within £20 degree.

55
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Fig. 7. Estimation error between 3 and .

7 Conclusions

The steering control laws are able to control a formation
formed by N agents to move to a desired level surface and
track a class of curves in a 3D scalar field. We have shown
that a discretized Taubin’s algorithm, the Hessian estimation
and the cooperative Kalman filter can be combined to allow
a group of agents to perform cooperative exploration of 3D
level surfaces by tracking lines of curvature.
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