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Abstract

Fish in a school efficiently find the densest source
of food by individually responding not only to local en-
vironmental stimuli but also to the behavior of nearest
neighbors. It is of great interest to enable a network
of autonomous vehicles to function similarly as an in-
telligent senscr array capable of climbing or descending
gradients of some spatially distributed signal. We for-
mulate and study & coordinated control strategy for a
group of autonomous vehicles to descend or climb an
environmental gradient using measurements of the envi-
ronment together with relative position measurements
of nearest neighbors. Each vehicle is driven by an esti-
mate of the local environmental gradient together with
control forces, derived from artificial potentials, that
maintain uniformity in group geometry.

1 Introduction

We propose a coordinated control strategy for multi-
vehicle gradient descent (ascent) in a sampled environ-
ment. Vehicle networks that can efficiently climb gra-
dients are of great interest in missions such as search
and map where a spatially distributed environmental
signal is to be mapped or its source is to be found.
Applications exist from deep space to the deep sea.
For instance, vehicles that can climb mineral plumes
and/or temperature gradients would improve the suc-
cess of searches for hydrothermal vents deep in the sea.

In this context, a vehicle network has a number of
important advantages over a single large vehicle. The
large vehicle could be outfitted with distributed sen-
sors so that local gradients could be computed. How-
ever, the sensor array would then be rigid and therefore
there would be little ability to adapt the array con-
figuration to the environment. Further, failure of the
vehicle would mean failure of the entire mission.

1Research partially supported by the Office of Naval Research
under grants N00014-98-1-0649 and N60014-01-1-0526, by the
National Science Foundation under grant CCR—9980058 and by
the Air Force Office of Scientific Research under grant F49620-
01-1-0382.

0-7803-7516-5/02/$17.00 ©2002 |IEEE

A coordinated network of smaller and simpler indi-
vidual vehicles, on the other hand, could provide an
adaptive and reconfigurable distributed sensor array.
Further, robustness to a single vehicle failure would be
improved; in our approach we avoid assigning any or-
dering to the vehicles so the vehicles are interchangeable
and the importance of any single vehicle is minimized.

Qur goal is to design a coordinating control strategy
that achieves efficient and adaptive group capabilities
from simple rules at the individual vehicle level, much
like emergent intelligence in schools of fish. Schools
of fish and other animal aggregations forage and evade
predators with great skill [9, 10]. A key ingredient to
the success of these group behaviors is that each indi-
vidual responds to the behavior of its nearest neighbors.

Gradient following by autonomous vehicle systems
inspired by bacterial chemotaxis has been explored in
[2, 5]. In [4], an approach similar to ours is taken in
which individuals balance their own gradient descent
with inter-vehicle attraction and repulsion forces. The
approach in [4] differs from ours; for example, the au-
thors in [4] restrict to each vehicle knowing the full
gradient at its location and knowing the relative posi-
tion of each of the other vehicles. In {8} a virtual leader
approach to gradient climbing is taken and a rule is pro-

. posed for adapting the desired inter-vehicle distance as
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a function of the measured gradient field and a bound
on measurement error.

In [1] we first outlined our gradient climbing ap-
proach which uses controt forces that sum approxima-
tions of the local gradient with inter-vehicle control
forces derived from artificial potentials. The approx-
tmation of the local gradient is based on a single sensor
per vehicle; each vehicle is assumed to be able to mea-
sure the gradient only in the direction of motion. In
general, a vehicle that descends a gradient using only
this projected gradient information will not find the
global minimum of the gradient field but instead the
minimum along the line defined by the vehicle’s initial
velocity. However, the inter-vehicle forces that we in-
troduce provide the necessary implicit communication
to drive the group as a whole to the global minimum (or
maximum) of the sampled environmental gradient field.



In [1] we also described our 3D, multi-vehicle testbed.
In §2 we describe our vehicle model and the ap-
proach to coordination of vehicles using artificial po-
tentials. In §3 we present our coordinated strategy for
gradient descent (ascent) in the case that each indi-
vidual vehicle can measure the gradient at its current
position. In §4 we describe our approach for the more
compelling and more challenging problem of a vehicle
group in which each individual vehicle has only a single
sensor. We demonstrate our approach with simulations.

2 Coordinating Control with Interaction
Potentials

Each vehicle in the network is modelled as a point
mass with fully actuated dynamics. Extension to un-
deractuated systems is possible. For example, in [6],
the authors consider the dynamics of an off-axis point
on a nonholonomic robot and use feedback linearization
to transform the resulting system dynamics into fully
actuated double integrator equations of motion.

For our presentation of gradient descent we special-
ize to planar motions, and let the position of the ¢th
vehicle in a group of N vehicles be given by a vector
x;, € R?%, i = 1,...,N. The control force on the ith
vehicle is given by u; € R%. Since we assume full actu-
ation, the dynamics can be written fori=1,..., N

ﬂ'.'?‘; = Uu;.

To coordinate the motion of the vehicles we intro-
duce inter-vehicle artificial potentials, This follows the
general framework for using artificial potentials for co-
ordinated control described in [7]. For each pair of ve-
hicles i and j, we define a potential Vi(x;;) where

Tij = T — Tj.

The corresponding interaction force is derived from the
gradient of the artificial potential V;. The force applied
to the ith vehicle is

—Fi(zi;) = —VVi{®i;)

where the gradient is taken with respect to ;. Accord-
ingly, the forces on the vehicles, i and j, generated from
this potential are equal and opposite,

Fl(mij) = —FI(:L’J',;). (21)

The shape of the potential can be designed to re-
flect the behavior widely observed in animal groups:
individuals are attracted to each other if they are far
apart and repelled if they are very close. The simplest
model for this kind of behavior is a linear spring force
derived from a quadratic potential, with a relaxation
distance dy > 0 and spring constant kg > 0:

Vitay) = gh(logll = 4o (22)
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One major shortcoming of the spring force is the in-
creasing magnitude of the force of attraction with in-
creasing distance between vehicles . This is inconsis-
tent with observations of animal groups which suggest
each individual is only influenced by a set of nearest
neighbors. A second shortcoming of the linear spring
interaction model is a finite repulsive force when two
vehicles come arbitrarily close to each other. To avoid
collisions it is desirable instead to let the repelling force
get arbitrarily large.

The nonlinear spring potential used in [7] (and ones
like it) does not have these two shortcomings:

do )
Nzl )

The force of attraction goes to zero with increasing dis-
tance between vehicles and the force of repulsion goes
to infinity as this distance approaches zero. Further,
as presented in [7], this potential can be (smoothly or
non-smoothly) made constant above some prescribed
inter-vehicle distance dy so that the interaction force is
zero for ||zi;]| > d.

In this paper we will prove a number of results for
a general choice of potential, but for simplicity reasons,
we will draw some specific conclusions in the case of
inter-vehicle linear spring potentials.

We apply the identical control law to each vehicle
which yields a system of N identical vehicles with the
following dynamics for each vehicle i:

mwhm@mw+ 2.3)

N
#;=— Y Fr{wy)— k.
=L

(2.4)

Note that we have included a damping term dependent
only on absolute velocity with scalar coefficient &y >
0. One could also introduce a term that depends on
relative velocity between pairs of vehicles.

Let the Lyapunov function be the sum of the kinetic
and potential energies of the system:

N-1 N
Z Z V[(.’Eij).

=1 j=i+l

1
Vzizlii.ii+
i=

The time derivative of V is

N N-1 N
VZZ:i:i-fl':'{'l—Z Z F(xi;}- &:5. (2.5)
i=1 i=1 j=i+l ] )
If we substitute (2.4) for #; into (2.5), we get
N
V= —ke )l (2.6)
i=1

This result guarantees stability of the group of N-
vehicles in the absence of additional external forces.
The equilibria of the group have to satisfy

N .
Z F(xi;)=0

=k j#i



fori=1,...,N. For a further discussion of stability of
formation equilibria the reader is referred to [7}.

3 Gradient Descent with Local Gradient
Information

In this section we describe vehicle network gradient
descent (ascent) in an environmental field in the case
each vehicle has enough sensors to measure the gradi-
ent of the field at its current position. The gradient
descent control term is complemented with the inter-
vehicle forces described above to enforce coordinated
gradient descent.

For the single vehicle case, with & = u, we define
the control law to be

u = —kgd — VT(z)}, (3.1}

where T : R2 — R is the gradient field and kg > 0
and x are constant control parameters. In the case of a
gradient field T'(z) with a strict minimum at the origin,
asymptotic stability of the origin is easily proved using
the Lyapunov function

V(z, &) = %m & + «T(x)

with &« > 0. If the origin is a unique, global mini-
mum, then global asymptotic stability results are pos-
sible. Analogous results hold for gradient climbing in
the case that T has a strict maximum at the origin if
one takes K < 0. '

If we use the same control law for each vehicle plus
the interaction forces Fr(z;;) on a group of N vehicles
we obtain the following system of equations:

i

N
—kVT(xi) — kas — » Fr{zg).  (3.2)
i=Li#
As in the case of the /V-vehicle system without external
forcing, we let the Lyapunov function be the sum of
the kinetic and potential energies of the system. Here,
however, we include the field T in the potential energy:

N N-1 N

1 . .
V=35 _Z(xi &+ KT(xi)) + Z Z Vi(zs;).
i=1 i=1 =i+l
(3.3)
'The time derivative of V is
) N N
V= z:ﬁ:,‘-:ﬁ,'%—nZVT(wi)-ii
i=1 i1
N-1 N
+ Y > Fr(ws) @i (3.4)
i=1 j=i41
If we substitute (3.2) for &; into (3.4), we get
) N
V= ke Il (35)
i=1
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Proposition 3.1 Let T' be a gradient field and con-
sider a group of N wehicles with the control law spec-
ified in (3.2). Then, an egquilibrium corresponding
te a located formation that is a strict minimizer of
nzgil T(xi) + Zf\:ll Z;V:H_l Vi(xiz) will be a stable
equilibrium for the coupled dynamics.

Depending upon the extent of the symmetry in the
centrolled dynamics, application of LaSalle’s Invariance
principle may show convergence to a set of non-isolated
equilibria. In this case asymptotic stability results will
typically be proved modulo the symmetry directions.
We illustrate this with an example below (see also [7]).

The minimum of the sum of all inter-vehicle poten-
tials and the environmental potential can be found by
solving for the equilibria of (3.2). This gives

N
0=—skVT(z:)— Y. Flxy), i=1,..,N. (36)
=13
Since Fy(x;;) = —Fr(z;;) we obtain the following con-

dition for the equilibria by summing (3.6) over i:

N
S VT(z:)=0.

i=1

(3.7)

Proposition 3.2 Suppose that T is a radially symmet-
ric gradient field T = T(||z|) with strict global mini-
mum at © = 0. Suppose further that T(}|z||) is strictly
increasing, i.e., 3T{||z||}/3|=| > © for all x| > 0.
Then, the conver hull of any eguilibrium formation of
the controlled dynamics (3.2) for N vehicles contains
the minimum of the field © = 0.

Proof. For the given field T', the equilibrium condition
{3.7) implies

N
Zﬂ-i(“mi“)ﬂ:i =0
i=1
where a; > 0 for ||z;]] > 0. If ; = O for some i
then & = 0 is trivially in the convex hull of the ve-
hicle positions. So, consider the case in which x; # 0
vi. Let e = a1 +...+ an > 0 and b; = a;/a. Then,
bi+...+b,=1and so

N

3 bl = 0

i=1

which by definition implies that 0 is in the convex hull
of the equilibrium. O

We note that this result and similar results that fol-
low can be stated and proved analogously for the gradi-
ent climbing problem, i.e., where T'(z) has & maximum
at ® = 0. Some useful results are now proved in the
case of a quadratic gradient field. We note that a more
complicated gradient field can be approximated near a
minimum by such a quadratic field.



Corollary 3.3 Consider the assumptions of Proposi-
tion 3.2 and suppose that T(||z]]) = %:L' -Px, P >0
and symmetric. Then, £ = 0 is the center of mass of
any equilibrium formation.

Proof. The equilibrium condition (3.7) implies

N
PZQ!; =0,
=1

i.e., the origin is the center of mass of N vehicles of
identical mass, O

In this case, the dynamics of the center of mass are
decoupled from the rest of the dynamics. To see this
define a change of coordinates

(ml,mg,. "amN) = (m(:?ml?’m23:" '7E(N—1)N)=
where
1 N
o= — Y @
e N; :

Then, using (3.2) we get
1, -
Ep = 'jv ;wx = —KkPxc - kgie (3.8)

Proposition 3.4 Let T(jjz|) = = - P2, P > 0, and
consider the controlled group dynamics given by (3.2).
Then, for any initial condition, the center of mass of
the group converges exponentially to the origin.

Proof. The dynamics of the center of mass of the vehi-
cle group are given by (3.8) and x, = 0is a globally ex-
ponentially stable equilibrium for these dynamics. O.

In this case, the system’s center of mass behaves
like the single vehicle case independent of the relative
motion of the individual vehicles. It is of interest to
investigate the dynamics of the center of mass and the
relative motion of vehicles for more general gradient
fields. This is the subject of continuing work.

Next, we examine two special cases for illustration.
In both of these cases we take T'(||z[)) = 3 |j@|/* and we
take the inter-vehicle potential to be the linear spring
potential (2.2). We look at the multi-vehicle cases N =
2and N=3.

Proposition 3.5 Let N = 2, T{||lz]) = l{z|* end
Vi be given by (£.2). The controlled dynamics (3.2)
globally asymptotically converge to an egquilibrium in the
set that consists of the two vehicles at rest on antipodal
points of a circle cenfered ot the origin with radius

ksdo
T k42
Proof. The equiiibria for the closed-loop dynamics sat-
isfy
d,
0 = —rxy—kyx12 (1 - —+0—)
llz1z]]
0 = —xxg- ke (1 %o ) (3.9)
2~ KyT21 A .
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Summing these two equations gives &y = —xp. With-
out loss of generality let 1 = (r,0) and @z = (—r,0).
Then, plugging this into either of the equations {3.9)
gives

2kyr —kydp +6r =10

which can be solved for r as in the proposition. Any
equilibrium in this set minimizes the total potential
and therefore this is a set of stable equilibria follow-
ing Proposition 3.1. Note that this set constitutes the
only equilibria for this system. Since &; = 0 for all <
when V = 0 from (3.5), application of the LaSalle’s In-
variance principle guarantees convergence to one of the
equilibria from this set. (O

The case of N = 3 is similar to the N = 2 case.
However, in this case there is a family of unstable equi-
libria in addition to a family of stable equilibria.

Proposition 3.6 Let N = 3, T(|z|) = }|z||® and
Vi be given by (2.2). For every initial condition except
for a set of measure zero, the controlled dynamics (3.2)
asymptoticelly converge to en equilibrium in the set that
consists of the three vehicles at rest in an egquilateral tri-
angle centered af the origin. Fach vehicle is a distance
r from the origin where

. V3ksdo
kA 3ke

Proof. The proof begins similarly to the proof of
Proposition 3.5. Equilibria must satisfy the equations

X do ) ( d() )
—VT(z) = —x l—-—— -z I——
R V@) 12 ( 12| 13 [
X do ) ( do )
—VI{xy) = —x l—-—— -2z l1—
RV L(@a) = —om ( all) ="\ [zl
K do ) ( do
—VTI(xz) = —x l-—— -2 1-—+—
R, Vl(@a) = e ( zarll) ~ 22\ Tzaal]

These equations can be solved to find two families
of equilibria. One family of equilibria is the solution

consisting of each vehicle at a vertex of an equilateral
triangle inscribing a circle of radius

_ V3kedg

=Tk (3.10)
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centered at the origin. This type of equilibrium is
shown on the right side of Figure 3.1.
A second set of equilibria takes the form

2k, dg
£+ 3k’

llesl| = pp = T;=—xi, Tr=0 (3.11)
as illustrated on the left of Figure 3.1.

Linearizing the controlled dynamics (3.2} at the
equilibrium points reveals that the equilateral trian-

gle configuration is stable while the collinear solution
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Figure 3.1: Fixed poini solutions for the 3 vehicle problem.
Left the (unstable) collinear solution and right
the stable equilateral triangle solution.

is unstable with the following eigenvalues:

kg % /K3 — 12k, — 4% ]
ka + /K2 — 30k, — 10k

0
k,‘d + v kdz — 4K
2k

d
kq+ /K2 + 6k, + 25
| kg & /K2 — 24k, — 8k |

For ksx # 0, the eigenvalue X —1/2kq —
\/kdi + 6k, -+ 2k) has positive real part. The single zero
eigenvalue corresponds to the S! symmetry in the sys-
tem dynamics; both the triangle equilibrium and the
collinear equilibrium are hyperbolic for the reduced
(eleven) dynamical equations. Thus, for the reduced
equations the triangle equilibrium is almost globally
asymptotically stable. In the unreduced setting, all
trajectories, except for the family of collinear solutions,
converge to a triangle solution. [

(3.12)

4 Gradient Descent with Projected Gradient
Information

In §3 we assumed each wvehicle could measure the
local gradient of 7. In the remainder of this paper
we constrain the system to a single sensor per vehicle
and assume we can make use of the time history of the
measurement on each vehicle. The single point sen-
sor measurements do not allow for a full {2D) spatial
gradient measurement for a given vehicle. Instead, the
measurements provide information about the gradient
along the vehicle’s path. We assume we can use the
successive measurements taken along a vehicle's path
to compute the projection of the spatial gradient onto
the normalized vehicle velocity vector, e = ~E-, ie,,

&
Tar)
(4.1)

e’
Here, we investigate the same control law as de-
scribed in §3 except we replace the local gradient mea-
surement by the projected gradient. The dynamics of

i_

VTp(z, &) = (VT(::) B

(VT{z) ez) es.
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vehicle § are given by

N
&; = —KVTp(@i, &:) —kati — Y Fr(zy). (4.2)
F=1,%#4

Consider first the case of a single vehicle with po-
sition vector &. Note that for & = 0 the control law
is not defined because the projected gradient is not de-
fined. However, ir the single vehicle case, the control
law (defined for @& # 0) restricts the vehicle to 1D mo-
tion since every force term is parallel to the initial ve-
locity. Assuming no perturbations transverse to this
direction and a nontrivial initial condition, the limit

lim VTp(x, &} (4.3)
-0
exists. In particular, the limit of the projected gradient
will be in the direction parallel to the initial velocity.
In order to accommodate the discontinucus right
hand side of (4.2) for more general analysis, we replace
the dynamical system (4.2) with the following differen-
tial inclusion:

% e F(z, ) (4.4)
o [ —KVTp(x, &)~ ket ¥ &#0
Plod) = { IOTG eanens | 320 @9

with
e;:" € E={e; e R?| |lez]| =1}

A differential inclusion constructed in this way allows
us to determine the stability properties of the system
by examining the stability properties in the continuous
domain (see Filippov [3]).

For example, for the single vehicle case we construct
a Lyapunov function

1
V= ii‘:i:—l—nT(m)
Then,

V=i %+4+kVT(x) &= —~kg|&]|*> (4.6)
since
& VTp(x, &) = VI(x) - &.

This implies the veloeity of the vehicle goes asymptot-
ically to zero.
The fixed points of the system have to satisfy
—k(VT(x) ez)ez* = 0. (4.7)
In general there are many equilibria since eg* could be
any unit vector. However, if we choose ez* to be the
limit of eg (in the case of no transverse perturbations
and nontrivial initial condition), then the dynamics of
the single vehicle are restricted to a line. In this case,
x will converge to the (local) minimum of the gradient
field projected in the direction of initial velocity since
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X-axis
Figure 4.1: Simulation of single vehicle with single sensor.

VT(x) - e} = 0 at the minimum of the gradient field
projected along this line. Simulations support these
conclusions as shown in Figure 4.1. The figure shows
the vehicle converging to VTp(zx) = 0 along its initial
path. The gradient fleld is {lz|?.

In the case of N > 1 vehicles, the differential inclu-
sion can be constructed as

& € F(widi)
where

rhsof (4.2) V #; #0

Flas &) = —r(VT(2;) - eq," Jes,”
- Z?:l,j;éi Fy(zij)

Further, using the Lyapunov function defined by (3.3),
the derivative of V is given by (3.4). Substituting for &;
as given by (4.2) still gives the result (3.5), and we can
conclude that the velocity of each vehicle goes to zero
asymptotically. In a future work we wili present the sta-
ble equilibrium sclutions in the multi-vehicle case and
the details of the stability proof. It may not necessarily
be the case that for each vehicle in the multi-vehicle
case that the limit (4.3) exists. The plot of Figure 4.2

£ =0.

illustrates the convergence of a group of three vehicles

in a gradient field T(z) = 1/2||z||*> with linear spring
force between each pair of vehicles, The plot shows the
vehicles converging to the global minimum z = 0.

This and other simulations that we have run are
very encouraging. They suggest the power of the vehicle
network over the uncoordinated collection of individual
vehicles. With limited sensing the individual vehicles
won’t in general find the minimum of the field. On the
other hand, for the examples we have simulated, the
multi-vehicle system (with single sensors) can find the
global minimum.
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X-axiy
Figure 4.2: Simulation of three vehicles, each with single
Sensor.
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