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Scalar Field Estimation with Mobile Sensor
Networks
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Abstract—In this paper, we consider the problem of estimating
a scalar field using a network of mobile sensors which can
measure the value of the field at their instantaneous location.
The scalar field to be estimated is assumed to be represented by
positive definite radial basis kernels and we use techniques from
adaptive control and Lyapunov analysis to prove the stability
of the proposed estimation algorithm. The convergence of the
estimated parameter values to the true values is guaranteed by
planning the motion of the mobile sensors to satisfy persistence-
like conditions.

Index Terms—Estimation, Adaptive Control, Approximation,
Lyapunov Stability, Radial Basis Functions.

I. INTRODUCTION

Multi-robot systems consists of network of robots which
cooperate to perform tasks such as consensus, formation con-
trol etc. [1], [2], [3], [4]. Mobile sensor networks consists of
network of robots mounted with sensors deployed to perform
some distributed sensing task such as monitoring, coverage etc
[5]. In this paper, we consider the problem of estimation of
an unknown scalar field using mobile sensor networks. There
have been many works related to scalar field estimation in
literature. Several works have studied field estimation using
wireless sensor networks. See for example [6], [7]. In [8]
the scalar field is assumed to be modelled using a partial
differential equation and finite element methods are used for
estimating the field. In [9], [10], [11], [12], [13], [14] the field
is modelled as spatial random process and estimated using
samples from the sensor nodes. In [15] field reconstruction
is posed as an optimization problem constrained by linear
dynamics and a gradient-based method is used to solve the
problem. In [16], the scalar field is assumed to be linearly
parameterized in terms of Gaussian basis functions and the
measurements from the sensors are fused together to form an
estimate for the scalar field.

In most of these cases, the sensors are assumed to be fixed
and distributed over the region of interest. Usually a large
number of sensors are required to be installed for achieving
enough spatial resolution. Using mobile sensor networks can
be highly advantageous since they can move around the
region of interest and collect measurements adaptively, the
number of sensors required is greatly reduced. In [17], [18],
scalar field estimation is done with mobile sensor network by
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fusing sensor measurements using consensus filters. In [19],
information about a scalar field is obtained by exploring the
level surfaces of the field using a mobile sensor network. In
[20], a static sensor network is used along with a mobile robot
to estimate a scalar field by combining the robot measurements
with the sensor network measurements and planning the robot
trajectory to minimize some reconstruction error. However the
method we propose in the current work is motivated by the
coverage control problem [5], [21], [22], [23], [24].

In the coverage problem, we are interested in controlling
the robots so that the robots attain an optimal configuration
or a near optimal configuration with respect to a scalar field.
In [5], this is achieved by minimizing a cost function which
gives a measure of how good the coverage is. In [21], the
authors extended the coverage algorithm for the case where
the scalar field is unknown. The scalar field is assumed to be
linearly parameterized with unknown constant parameters. In
order to achieve the coverage goal, the robot needs to adapt the
unknown parameters so that the estimated scalar field is close
to the actual field. The exact estimation (asymptotically) of the
density function parameters require a time integral quantity to
be positive definite, which is a sufficient richness condition
for the robot trajectories. See [21] for more details. In general,
the robot trajectories need not meet this condition since the
trajectories of the robots are decided based on the gradient
of the coverage cost function, not on estimating the density
function parameters. However, it is crucial to estimate the true
values of those parameters since the estimation of the unknown
scalar field is often the primary objective for a robotic sensor
network and it may lead more efficient deployment of robots.
For example, in case of radiation spill, if we have a good
estimate of the radiation concentration, we may directly deploy
agents to regions of high concentration.

Thus in this work, we look at a slightly different problem
closely related to and motivated by the coverage problem
discussed above. Our primary aim in this paper is to accurately
estimate the scalar field not the coverage. The unknown
scalar field is approximated using positive definite radial basis
functions and we use a similar adaptive approach as that in
[21] for parameter estimation.

In Section II, we discuss the problem statement in detail. In
section III, we consider the single mobile sensor case, followed
by the mobile sensor network case in Section IV. In Section
V we discuss the case where the centres of the radial basis
functions are not known exactly, but only to within an ε-
accuracy. We present some simulations to verify the results
in section VI. We conclude the paper with Section VII.
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II. PRELIMINARIES AND PROBLEM STATEMENT

We denote the set of positive real numbers by R+. The
components of a vector v are denoted using superscripts vi.
Subscripts on vector quantities refer to the agent or mobile
sensor the quantity is associated to. For example, vi refers to
a quantity associated with agent i.

We consider a compact region Q ⊂ Rn with N mobile
sensors. The position of the sensors is denoted by xi; i =
1, 2, . . . , N . There also exists a continuous scalar field φ :
Q → R+ over Q which is unknown. The objective is to
estimate the unknown scalar field using N mobile sensors
assuming the sensors can measure the value of the scalar field
at their respective positions. We assume that the unknown
scalar field can be represented by positive definite radial
basis functions (RBF). In other words, we assume the density
function can be parameterized as

φ(q) = K(q)>a (1a)

=

p∑
i=1

Ki(q)ai (1b)

where a ∈ Rp is a constant vector, and K(q) =[
K1(q) K2(q) . . . Kp(q)

]>
with Ki : Q → R+ given by

Ki(q) = ϕ(‖ci − q‖) with ϕ : R+ → R+ are radial basis
functions for a set of points ci. This assumption is common
in neural networks and justified as follows:

Theorem 1 ([25], [26]). For any continuous function f :
Rn → R and any ε > 0, there is an RBF network with p
elements, a set of centers {ci}pi=1, such that we can define

f̂(q) =

p∑
i=1

aiKi(q) = a>K(q)

with ‖f − f̂‖2L2
≤ ε = O

(
p−

1
n

)
.

The theorem tells us that we can approximate a continuous
function to an arbitrary accuracy by using a network of RBF
elements. An example of positive definite radial kernel is the
Gaussian kernel,

Ki(q) = ϕ(‖ci − q‖) = exp

{
−‖ci − q‖

2

σ2
i

}
(2)

where ci are the centres of the Gaussian kernels. The main
problem studied in this work is to accurately determine the
parameters ai so that the scalar field φ(.) may be accurately
reconstructed. We make the following assumption:

Assumption 1. The centres ci of the radial functions are
known to all the mobile agents.

The strengths ai of individual radial functions are unknown
and need to be estimated. To proceed, we require the following
theorem:

Theorem 2 (Micchelli’s Theorem [27]). Given p distinct
points c1, c2, . . . , cp in Rq , the p×p matrix K, whose elements
are Kij = Ki(cj) = ϕ(‖ci − cj‖) is non-singular.

The theorem says that for positive definite radial kernels,
the p× p matrix formed by evaluating the radial functions at

each of the centres is non-singular. In what follows, we assume
that φ(.) can be exactly parameterized by the RBF kernels. A
consequence of theorem 2 is given below:

Lemma 1. The matrix S given by

S :=

∫
Q
K(q)K(q)>dq (3)

where K(q) =
[
K1(q) K2(q) . . . Kp(q)

]>
and φ is param-

eterized as in (1a), is positive definite.

Proof. From the definition of S, we know it is atleast positive
semi-definite. Therefore for any v 6= 0, v>Sv ≥ 0 or∫

Q
|K(q)>v|2dq ≥ 0

Now, since K(q) consists of positive definite radial kernels,
we have from theorem 2 that

K1(c1) K1(c2) . . . K1(cp)
K2(c1) K2(c2) . . . K2(cp)

. . .
. . . . . .

...
Kp(c1) Kp(c2) . . . Kp(cp)


is positive definite. This implies that the vectors K(cj); j =
1, 2, . . . , p are linearly independent. Thus, given any v 6=
0, v ∈ Rp, there exists some j ∈ {1, 2, . . . , p} such that
K(cj)

>v is non-zero. This along with the fact that K(·) is
continuous allows us to conclude that∫

Q

|K(q)>v|2dq > 0 for any v 6= 0

Hence, S is positive definite.

III. SINGLE MOBILE ROBOT SENSOR

In this section, we consider the case of a single mobile
sensor (N = 1) with position x(t) at time t deployed in the
region Q to estimate the scalar field parameter a (as given by
equation (1a)). The estimate of a is denoted by â. Then we
can state the following corollary to lemma 1.

Corollary 1. Suppose the mobile sensor moves continuously
within the domain Q, such that in time T , it passes through
each of the RBF centres ci ; i = 1, 2, . . . , p, then

ST :=

∫ T

0

K(x(t))K(x(t))>dt (4)

is positive definite.

Proof. The proof is essentially the same and follows from
lemma 1.

Now consider the following integrators running on the mobile
sensor:

Λ̇ = K(t)K(t)>

λ̇ = K(t)φ(t)
(5)

where K(t) := K(x(t)) denotes the value of function K(·) at
the point where the robot is at time t and φ(t) is the measured
value of the density function φ(·) by the robot at time t.
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Proposition 1. Suppose the mobile sensor moves such that it
passes through each of the centres ci; i = 1, 2, . . . , p in some
finite time T > 0, and during this motion updates its estimate
â of a by

˙̂a = −Γ (Λâ− λ) , (6)

where Γ is a positive definite gain matrix, then the estimate â
is bounded and converges asymtotically to the true value a.

Proof. Under the assumptions of the proposition 1 and corol-
lary 1,

S(T ) :=

∫ T

0

K(τ)K(τ)>dτ

is positive definite. This implies that

S(t) =

∫ t

0

K(τ)K(τ)>dτ

is positive definite for all t ≥ T .
Now consider the positive definite candidate Lyapunov func-
tion,

V =
1

2
ã>Γ−1ã (7)

where ã = â− a is the estimation error. Taking the derivative
of V , we obtain

V̇ = ã>Γ−1 ˙̂a

Substituting the update law from (6) and simplifying, we get

V̇ = −ã>S(t)ã

V̇ ≤
{

0 for t ∈ [0, T ]
−αV for t > T,

where α = λmin(S(T ))
λmax(Γ−1) > 0, λmin(·) and λmax(·) denoting the

minimum and maximum eigenvalues of their argument. Since
V is always non-increasing and bounded from below, ã(t) is
bounded for all t > 0. Since V̇ < 0 for all t ≥ T , then we have
V (t)→ 0 as t→∞. This implies that ã→ 0 as t→∞.

Remark 1. The matrix S(t) being positive definite for all
t ≥ T is a sufficient excitation condition, similar to (but
weaker than) the persistency of excitation condition, on the
robot trajectories which ensures parameter convergence. See
[21] for more information.

A. Relaxing the condition in corollary 1

In corollary 1, it was required that the mobile sensor passes
through the centres ci of the radial kernels. This can be relaxed
so that the mobile sensor need only move through a sufficiently
small neighbourhood of each of the centres ci, as described in
[28]. Consider the vector X (q) := K−1K(q) where K is the
matrix specified in theorem 2. Then X (q) has the property
that X j(ck) = δjk where δjk is the Kronecker delta function
and X j(ck) is the j-th component of X (ck). Now consider
the diagonal dominance sets defined by (0 < ε < 1)

Aεj :=

q ∈ Q : |X j(q)| −
p∑

i=1,i6=j

|X i(q)| > ε

 .

It can be easily seen that Aεj contains the centre cj and thus
Aεj is an open subset containing cj . The following lemma is
an adaptation of theorem 1 in [28]:

Lemma 2. Suppose that the mobile sensor moves continuously
throughout the domain Q such that in time T , the trajec-
tory traverses through each of the neighbourhoods Aεj , j =
1, 2, . . . , p, then the matrix ST given by equation (4) is positive
definite.

Proof. ST can be written as ST = KS̄TK> where

S̄T =

∫ T

0

X (x(t))X (x(t))>dt.

Since K is invertible, ST is positive definite iff S̄T is positive
definite. S̄T is positive definite iff there exists some δ > 0 such
that

¯
σ(S̄T ) ≥ δ where

¯
σ(A) denotes the minimum singular

value of A. Suppose S̄T is not positive definite under the
conditions of the theorem. Then there exists no δ > 0 such
that

¯
σ(S̄T ) ≥ δ. This implies that for any δ > 0, there exists

u 6= 0, ‖u‖ = 1 such that u>S̄Tu < δ, i.e.,∫ T

0

u>X (x(t))X (x(t))>u dt < δ

Let i be the index of the components of u which has the largest
absolute value. i.e., |ui| ≥ |uj | ∀j. Also let [ti1, ti2] ⊂ [0, T ]
be the subinterval during which the mobile sensor trajectory is
contained in the set Aεi . Clearly since the set Aεi is open and
the trajectory is continuous, [ti1, ti2] has finite positive length.
Then, ∫ T

0

u>X (x(t))X (x(t))>u dt =

∫ T

0

|X>u|2 dt (8)

≥
∫ ti2

ti1

|X>u|2 dt =

∫ ti2

ti1

|
p∑
j=1

X juj |2 dt (9)

≥
∫ ti2

ti1

(|X iui| − |
p∑

j=1,j 6=i

X juj |)2 dt (10)

≥
∫ ti2

ti1

(|X iui| −
p∑

j=1,j 6=i

|X juj |)2 dt (11)

≥
∫ ti2

ti1

((|X i| −
p∑

j=1,j 6=i

|X j |)|ui|)2 dt (12)

≥
∫ ti2

ti1

ε2|ui|2 dt = (ti2 − ti1)ε2|ui|2. (13)

Choosing δ < (ti2 − ti1)ε2|ui|2 leads to a contradiction.
Therefore, S̄T is positive definite and hence ST is positive
definite.

A sufficient condition for satisfaction of lemma 2’s assump-
tions:

Since checking the condition of the mobile sensor traversing
througn the sets Aεj in lemma 2 involves transforming the
vector K(q) at each instant which can be cumbersome if the
number of parameters are large, we present a simpler sufficient
condition which ensures that a given point q is inside the set
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Aεj . Note that the conditions derived are not equivalent to the
conditions of the lemma, but only sufficient and thus can be
conservative. However it is beneficial during implementations.

Lemma 3. Given the mobile sensor position x, if

‖K(x)−K(cj)‖∞ <
(1− ε)

2(p− 1)‖K−1‖∞
, (14)

then x ∈ Aεj .
Proof. We have the i-th component of X (x), X i(x) =[
K−1K(x)

]i
. Then

X i(x)−X i(cj) =
[
K−1(K(x)−K(cj))

]i
(15)

Now consider the mapping[
y1

y2

]
= Bj (X (x)−X (cj)) (16)

where
Bj =

[
0 . . . 0 1 0 . . . 0
1 . . . 1 0 1 . . . 1

]
(17)

The 1 in the first row and the 0 in the second row occurs at the
j-th column. If the infinity-norm of y = [y1, y2]>, ‖y‖∞ <
(1− ε)/2, then it is guaranteed that x ∈ Aεj . We also have

‖y‖∞ ≤ ‖B‖∞‖X (x)−X (cj)‖∞ (18)

≤ ‖B‖∞‖K−1‖∞‖K(x)−K(cj)‖∞ (19)

Requiring the above bound to be less than (1−ε)
2 and noting

that ‖B‖∞ = (p− 1) we have

‖K(x)−K(cj)‖∞ <
(1− ε)

2(p− 1)‖K−1‖∞
(20)

Any point p which satisfies the above condition will lie in
the set Aεj although all points in Aεj are not characterized by
the above condition.

IV. MOBILE SENSOR NETWORK

Suppose that we have N mobile sensors deployed in the re-
gion Q, with the position of the i-th mobile sensor denoted by
xi. We want to estimate the function φ : Q → R+ collectively.
We assume that equation (1a) holds so that we can linearly
parameterize φ(·) in terms of radial basis functions. We
partition the region into N components Qi (i = 1, 2, . . . , N).
Correspondingly we partition the basis function vector K(q)
and the parameter vector a as

K(q) =


K(1)(q)
K(2)(q)

...
K(N)(q)

 , a =


a(1)

a(2)

...
a(N)

 (21)

Each region Qi contains the centres of the basis functions in
the sub-vector K(i). We assign each region Qi to one of the
mobile sensors where the sensor operates. This assignment
is permanent and each mobile sensor starts within its region
Qi and moves in Qi. The algorithms presented below do not
depend on any particular partition or assignment of mobile

Q

1

2

3
4

Fig. 1: Illustration of four mobile sensors with a partition of
domain Q: A graph with mobile sensors as root nodes and
edge between neighbouring sensors is also depicted in the
figure.

sensors, and this can be done arbitrarily. One particular method
to divide the region and assign the sensors will be discussed
in section VI. Assuming the region Q is partitioned and the
mobile sensors are assigned to each partition, we consider the
graph G with the vertices representing the mobile sensors and
an edge existing between two sensors if they belong to adjacent
partitions. By adjacent partitions, we mean two partitions
which share a subset of their boundary with each other that
is of non-zero length. See figure 1 for an illustration. Now
we consider two cases: (1) each mobile sensor estimates the
entire parameter vector, and (2) each mobile sensor estimates
only part of the parameter vector.

A. Each mobile sensor estimates the full parameter vector

In this subsection, we consider the case where each mobile
sensor estimates the entire parameter vector, the estimate of
sensor i being denoted by âi. To proceed, we consider the
following integrators running on mobile sensor i:

Λ̇i = Ki(t)Ki(t)> (22)

λ̇i = Ki(t)φi(t) (23)

where Ki(t) = K(xi(t)) and φi(t) = φ(xi(t)) is the mea-
surement of φ(.) obtained by sensor i at its location at time
t.
We consider the following update law for the parameter
estimate of mobile sensor i:

˙̂ai = −Γ (Λiâi − λi)− Γζ

N∑
j=1

lij (âi − âj) (24)



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

with âi(0) being arbitrary; where ζ is a positive constant,
lij is the weight of the edge between sensors i and j. The
weight lij is zero if there is no edge between sensor i and
j and positive otherwise. The first term corresponds to the
measurement update of mobile sensor i and the second term
is a consensus term to ensure that the estimates of all the
mobile sensors asymptotically agree or come close to each
other. This is critical in establishing the convergence of the
estimation error as will be shown below.

Lemma 4. Suppose the mobile sensors translate continuously
such that in some time T > 0, each sensor i passes through
each of the centres in the region Qi so that

T∫
0

K(i)
i (t)K(i)

i (t)>dt > 0, for i = 1, 2, . . . , N.

where K(i)
i (t) denotes part of the vector Ki(t) corresponding

to the partition (21). Then, we have

N∑
i=1

T∫
0

Ki(t)Ki(t)>dt > 0.

Proof. Since each mobile sensor i passes through the centres
in the region Qi, the union of the trajectories of all mobile
sensors cover all the centres, which implies that the matrix

N∑
i=1

T∫
0

Ki(t)Ki(t)>dt (25)

is positive definite using the same arguments as in proof of
corrollary 1 and lemma 1.

Remark 2. Lemma 4 states that each agent passing through
the centres in its partition Qi is sufficient to ensure that the
total sum matrix (25) is positive definite.

Now we have the following result:

Theorem 3. Suppose the N mobile sensors adopt the param-
eter adaptation law (24). Further assume that each mobile
sensor i traverses a trajectory going through all the basis
function centres in Qi. Then

lim
t→∞

(âi − a) = 0, (26)

for each i ∈ {1, 2, . . . , N}, i.e. the mobile sensors arrive at
a common value for the parameters, the common value being
the true parameter value.

Proof. Consider the function

V =
1

2

N∑
i=1

ã>i Γ−1ãi. (27)

Taking the derivative of V ,

V̇ =

N∑
i=1

ã>i Γ−1 ˙̂ai

= −
N∑
i=1

ã>i (Λiâi − λi)− ζ
N∑
i=1

ã>i lij (âi − âj)

Substituting for the variables Λi, λi and rearranging the second
term,

V̇ = −
N∑
i=1

ã>i

t∫
0

Ki(τ)K>i (τ)dτ ãi − ζ
p∑

α=1

âα
>
Lâα (28)

≤ 0. (29)

where âα = [aα1 a
α
2 . . . aαN ]> is the vector of the estimate of

parameter α of all the sensors stacked together. The function
V is lower bounded and non-increasing, and therefore tends
to a limit. This implies that V̇ is integrable and also that the
estimates âi are bounded. V̇ is also uniformly continuous since
the derivative of each term in V̇ is bounded. Using Barbalat’s
lemma, we conclude that V̇ tends to zero as t→∞. From the
second term in V̇ , noting that L is the laplacian matrix of the
connected graph G with nullspace k1 where 1 is the vector of
ones and k ∈ R, we see that as t→∞, âα → kα1 for some
kα. Then,

lim
t→∞

(âi − âj) = 0.

since âi = [a1
i a

2
i . . . a

p
i ]
>. Now from the first term of V̇ we

have, as t→∞,

−ã>
N∑
i=1

t∫
0

Ki(τ)K>i (τ)dτ ã = 0

where ã is the common value to which the mobile sensor
parameter estimation errors ãi converge. Then using lemma
4, it follows that limt→∞ ã = 0 and the parameter estimates
converge to the true parameter values.

Remark 3. Although lemma 4 and theorem 3 requires that the
mobile sensors move through the centres, the relaxation given
in section III-A (requiring that the mobile sensors move only
through the neighbourhoods Aεj of the centres) also applies
here, as well as in all the following results which requires the
sensors to move through the centres.

B. Each mobile sensor estimates only part of the parameter
vector

If the number of parameters p is large as could be the
case when the density function is completely unknown, each
mobile sensor estimating the entire parameter vector could
be computationally intensive, as it would require computing(
p(p+1)

2 + p
)

filter variables in addition to the p parameter
estimates. In such cases it would be beneficial to have each
mobile sensor estimate only part of the parameters. Suppose
each mobile sensor i is to estimate only part of the a-vector
a(i) given by (21). Now we use âi to denote the estimate of
a(i) by sensor i. We write

φ(q) = K(q)>a (30)

= K(i)(q)>a(i) + K̄(i)> ā(i). (31)
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where K(q) and the parameter a are partitioned appropri-
ately. Since the mobile sensor i’s measurement is denoted by
φi(t) := φ(xi(t)), we have

φi(t) = K(i)
i (t)>a(i) + K̄(i)

i (t)>ā(i) (32)

= K(i)
i (t)>a(i) + ∆φi(t) (33)

where Ki(t) := K(xi(t)) and ∆φi(t) := K̄(i)
i (t)>ā(i). The

basis functions in K̄(i)
i (t) are centred outside the region Qi

and thus their values at the points pi(t) are assumed to be
small. Under this condition, we consider the contribution to
φ(.) from these terms as a disturbance ∆φi(t).
Let C = {c1, c2, . . . , cp} be the set of centres of the basis
functions, Ci ⊂ C be its subset which belongs to Qi. We can
then bound ∆φi(t) as follows:

Lemma 5. For each mobile sensor i, i ∈ {1, 2, . . . , N},

|∆φi(t)| ≤ pδiamax. (34)

where δi := max
j∈{1,...,p}

exp
{
− d2i
σ2
j

}
, di := dist(Ci, C \ Ci),

dist(A,B) = min
a∈A,b∈B

‖a − b‖, and amax is an upper bound

for the parameters, i.e., |ai| ≤ amax ∀i ∈ {1, 2, . . . , p}.
Further the bound can be made independent of i as follows,

|∆φi(t)| ≤ pδamax. (35)

where δ = max
j∈{1,...,N}

δi.

Proof. The lemma follows from the definition of ∆φi(t) using
Cauchy-Schwartz inequality.

We again define the following integrators:

Λ̇i = sK(i)
i K

(i)>

i (36)

λ̇i = sK(i)
i φi (37)

where s is a switching signal which takes values in the set
{0, 1}. Consider the following adaptation law:

˙̂ai = −Γ (Λiâi − λi) (38)

Then we have the following result:

Theorem 4. Suppose the N mobile sensors implement the
parameter adaptation law (38) with each sensor i only esti-
mating part of the full parameter vector a(i). Further assume
that each mobile sensor i produces a trajectory going through
all the basis function centres in Qi in time T > 0. Then

lim
t→∞

‖âi(t)− a(i)‖ ≤ ri,

where ri = Tpδiamax

αηi
, amax is the upper bound on the

parameter values in a(i), α ∈ (0, 1) and ηi is the smallest
eigen-vlaue of the matrix

∫ T
0
K(i)
i K

(i)>

i dτ .

Proof. Consider

V =
1

2

N∑
i=1

ã>i Γ−1ãi (39)

Taking derivative,

V̇ = −
N∑
i=1

ã>i (Λiâi − λi) (40)

= −
N∑
i=1

ã>i

t∫
0

sK(i)
i

(
K(i)
i

>
âi −K(i)

i

>
a(i) −∆φi

)
dτ

(41)

= −
N∑
i=1

ã>i

t∫
0

sK(i)
i

(
K(i)
i

>
ãi −∆φi

)
dτ (42)

= −
N∑
i=1

ã>i

t∫
0

sK(i)
i K

(i)
i

>
dτ ãi +

N∑
i=1

ã>i

t∫
0

sK(i)
i ∆φidτ

(43)

For t ≥ T , the first term becomes negative definite (assuming
s > 0). Setting s = 1 for t ≤ T and s = 0 for t > T , we have

V̇ = −
N∑
i=1

ã>i

T∫
0

K(i)
i K

(i)
i

>
dτ ãi +

N∑
i=1

ã>i

T∫
0

K(i)
i ∆φidτ

(44)
for t > T . Then

V̇ ≤ −
N∑
i=1

ηi‖ãi‖2 +

N∑
i=1

‖ãi‖Tpδiamax (45)

≤ −κV −
N∑
i=1

‖ãi‖ (αηi‖ãi‖ − Tpδiamax) (46)

where κ = ηmin

λmax(Γ−1) and α ∈ (0, 1). Thus for ‖ãi‖ > ri, we
have V̇ ≤ −κV and V decays exponentially. Therefore the
statement of the theorem holds.

C. Improving the steady state error

In this section, we propose a strategy to improve the steady
state error with the strategy in theorem 4. Note that the
strategy in theorem 4 is completely decentralized in that there
is no real-time communication required between the mobile
sensors to implement the estimation strategy. On the other
hand, we can get better parameter estimates at the cost of
exchanging information about parameter estimates with other
mobile sensors.

The term ∆φi(t) depends on the true value of parameters
corresponding to the other mobile sensors (denoted ā(i)). Since
we do not know the true values, we cannot cancel this term
and treat it as a disturbance. However we know that the other
mobile sensors have estimates for the true values of ā(i).
We can use these parameter estimates to reduce the effect
of the ∆φi(t) term on the estimation algorithm. Note that the
vector ā(i) consists of the sub-vectors a(j) for all j 6= i. Now,
corresponding to each a(i), we construct a directed graph with
a rooted outbranching (see [29]), denoted Gi which is a sub-
graph of the undirected graph G with mobile sensor i as the
root node. An illustration is shown in figure 2.
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Q

1

2

3
4

a(1)

a(2)

a(3)

a(4)

Fig. 2: Illustration of four mobile sensors with the directed
graphs corresponding to a(1) and a(4).

For each mobile sensor i, we introduce additional states bji
for each j ∈ {1, 2, . . . , N} and j 6= i, which evolves according
to the equation

ḃji = −
N∑
k=1

ldik

(
b̂ji − b̂jk

)
(47)

where we define bii := âi for ease of notation and ldik is zero
if there is no directed path from node i to k in graph Gj , and
non-zero constant value otherwise. This implements a directed
consensus protocol on the variables bji with i = 1, 2, . . . , N
(see [29]) converging to the root value bjj = âj for each j.
Thus bji is an estimator of âj by mobile sensor i. We now use
the modified integrators:

Λ̇i = sK(i)
i K

(i)>

i (48)

λ̇i = sK(i)
i

(
φi − K̄(i)>

i bi

)
(49)

where bi is the concatenated vector given by bi =[
b1
>

i . . . bj
>

i . . . bN
>

i

]>
(j = i not included). Using the adap-

tation law (38) we can see that the disturbance term now
becomes

∆φ′i(t) := K̄(i)
i (t)>(ā(i) − bi) (50)

which is expected to be smaller than ∆φi(t), although we
cannot put a theoretical bound better than ri in theorem 4. The
stability and convergence in case of the above modification is
not proved here as it is essentially a similar exercise to that
in the previous section. We will investigate the effect of the
above modification in section VI.

V. UNKNOWN CENTRES

In this section, we assume as before that the scalar field is a
finite linear combination of radial basis functions. We further

assume that the centres are not exactly known, but known to
within an accuracy of εc, i.e., ‖ĉi−ci‖ ≤ εc. We will evaluate
the quality of parameter estimates in this case. Define

K̃(q) = K̂(q)−K(q)

where K̂(q) is the RBF evaluated at the known values of the
centres and K(q) corresponds to the true values of the centres.

A. Each mobile sensor estimates only a part of the parameter
vector

As in section IV-A, we assume that each mobile sensor
estimates part of the parameter vector a(i) corresponding to the
partition Qi. In this case we propose the following modified
filters,

Λ̇i = sK̂(i)
i K̂

(i)>

i (51)

λ̇i = sK̂(i)
i φi (52)

with equation (38) as the adaptation law. Then we have the
following result.

Proposition 2. Assuming the centres are only known to within
an accuracy of εc (‖ĉi−ci < εc‖), let each mobile sensor pass
through the set of known (inaccurate) centres ĉi in Qi. If each
mobile sensor implements the adaptation law (38) along with
(51)- (52), the estimation error ãi converges to within a bound
ri of the origin, where ri =

Tpamax(
√
pkεc+δi)

αηi
.

Proof. Consider the same Lyapunov function as before,

V =

N∑
i=1

ã>i Γ−1ãi

Taking the time derivative,

V̇ = −
N∑
i=1

ã>i (Λiâi − λi)

= −
N∑
i=1

ã>i

t∫
0

sK̂(i)
i

(
K̂(i)
i

>
âi −K(i)

i

>
a(i) −∆φi

)
dτ

= −
N∑
i=1

ã>i

t∫
0

sK̂(i)
i K̂

(i)
i

>
dτ ãi −

N∑
i=1

ã>i

t∫
0

sK̂(i)
i K̃

(i)
i

>
dτ a(i)

+

N∑
i=1

ã>i

t∫
0

sK̂(i)
i ∆φidτ

Also note that |K̂i(q)| ≤ 1 =⇒ ‖K̂(q)‖ ≤ √p, and |K̃i(q)| ≤
kεc =⇒ ‖K̃(q)‖ ≤ √pkεc for some k (lipschitz constant),
Setting s = 1 for t ≤ T and s = 0 for t > T as before and,
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assuming the first term becomes negative definite at time T ,
we now have

V̇ ≤ −
N∑
i=1

ã>i

T∫
0

K̂(i)
i K̂

(i)
i

>
dτ ãi

+

N∑
i=1

‖ãi‖Tpamax(
√
pkεc + δi)

≤ −κV −
N∑
i=1

‖ãi‖ (αηi‖ãi‖ − Tpamax(
√
pkεc + δi))

for t ≥ T . Therefore, the statement of the theorem follows.

B. Each mobile sensor estimates the entire parameter vector
We define the following filter equations,

Λ̇i = sK̂iK̂>i (53)

λ̇i = sK̂iφi (54)

The adaptation law is given by equation (24). In this case, we
have the following proposition.

Proposition 3. Suppose the N mobile sensors adopt the
parameter adaptation law (24) with the integrators (53)-
(54). Also assume that each mobile sensor i produces a
trajectory going through all the approximate basis function
centres ĉi in Qi. Then the parameter estimation errors of the
mobile sensors converge to within a bound ri of origin, where
ri =

Tp
√
pkεcamax

αηmin
.

Proof. Consider the lyapunov function

V =

N∑
i=1

ã>i Γ−1ãi

Taking the derivative of V ,

V̇ =

N∑
i=1

ã>i Γ−1 ˙̂ai

= −
N∑
i=1

ã>i (Λiâi − λi)− ζ
N∑
i=1

ã>i lij (âi − âj)

Substituting for the variables Λi, λi and rearranging the second
term,

V̇ = −
N∑
i=1

ã>i

t∫
0

sK̂iK̂>i dτ ãi −
N∑
i=1

ã>i

t∫
0

sK̂iK̃i
>
dτ a(i)

− ζ
p∑

α=1

âα
>
Lâα

Simplifying,

V̇ = −
N∑
i=1

ã>i

T∫
0

K̂iK̂>i dτ ãi −
N∑
i=1

ã>i

T∫
0

K̂iK̃i
>
dτ a(i)

− ζ
p∑

α=1

ãα
>
Lãα

for t ≥ T . We can write the first and last terms in the above
equation in terms of stacked vectors as

V̇ = −ã>Qã− ζ ã>P>LP ã− ã>Ea
= −ã>

(
Q+ ζ P>LP

)
ã− ã>Ea

where ã = [ã>1 ã
>
2 . . . ã>N ]

>,

Q =


∫ T

0
K̂1K̂>1 dτ . . . 0

0 . . . 0
...

. . .
...

0 . . .
∫ T

0
K̂N K̂>Ndτ

 ,

L =


L 0 . . . 0
0 L . . . 0
...

...
. . .

...
0 0 . . . L

 ,

E =


∫ T

0
K̂1K̃>1 dτ . . . 0

0 . . . 0
...

. . .
...

0 . . .
∫ T

0
K̂N K̃>Ndτ


and P is the permutation matrix

P =



1 0 . . . 0 0 . . . 0
0 0 . . . 1 0 . . . 0
...

...
...

...
...

...
...

0 1 . . . 0 0 . . . 0
0 0 . . . 0 1 . . . 0
...

...
...

...
...

...
...


of dimension Np×Np. We show that the matrix

(
Q+ P>LP

)
is positive definite. Each of the terms are positive semi-
definite. The nullspace of matrix L contains elements of the
form

c1


1p
0
...
0

+ c2


0
1p
...
0

+ · · ·+ cN


0
0
...
1p

 .
Therefore P>LP has nullspace elements of the form

c1



1
0
...
0
1
0
...
0


+ c2



0
1
...
0
0
1
...
0


+ · · ·+ cN



0
0
...
1
0
0
...
1


,

i.e., elements of the form [ c1 c2 . . . cN c1 c2 . . . cN ]
>. Corre-

spondingly the Q term can be written as

c>
N∑
i=1

∫ T

0

K̂iK̂>i dt c
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ci,x 0.20 0.35 0.60 0.85 0.70 0.75 0.15 0.35
ci,y 0.25 0.26 0.18 0.30 0.75 0.90 0.75 0.60
ai 2.0 1.0 1.5 1.8 1.2 1.6 2.5 1.1

TABLE I: Parameters of the simulated scalar field

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

Fig. 3: The scalar field used for verifying the algorithms

where c = [ c1 c2 . . . cN ]
>. Under the assumptions of the

proposition, and lemma 4, the above term is strictly positive.
Hence

(
Q+ P>LP

)
is positive definite. Let ηmin be the

smallest eigen-value of
(
Q+ P>LP

)
. Then we have

V̇ ≤ −κV − αηmin‖ã‖2 +

N∑
i=1

‖ãi‖Tp
√
pkεcamax

= −κV − αηmin

N∑
i=1

‖ãi‖
(
‖ãi‖ −

Tp
√
pkεcamax

αηmin

)
for some κ > 0. Thus for ‖ãi‖ > Tp

√
pkεcamax

αηmin
, V decreases

exponentially and the result holds.

VI. SIMULATIONS

In this section, we verify the algorithms presented using
simulations. First we consider the exact parameterization case
where the true scalar field is a linear combination of RBFs
with the centres of the RBFs being known. This case allows
us to verify the correctness of the algorithms presented in the
paper. Next we consider a scalar field which is completely
unknown, and use the algorithms presented to reconstruct the
scalar field. The mobile sensors in the simulations are assumed
to be single integrators with dynamics given by ẋi = ui where
xi is the position of sensor i and ui is its control input. For ease
of comparing various algorithms, we refer to the algorithm
in section IV-A as Algorithm S1, the algorithm presented in
section IV-B as Algorithm S2, and the modified version of
algorithm S2 in section IV-C as Algorithm S3.

A. Exact parameterization

We consider the unit square region Q with four mobile sen-
sors. The scalar field to be estimated is exactly parameterized
in terms of Gaussian RBFs (given by equation (2)), the x and
y coordinates of the RBF centres ci being given in table I.
The standard deviation of each of the gaussians σi is chosen
to be 0.1. The true parameter values ai are also given in table
I. The scalar field is shown in figure 3. The initial positions
of the mobile sensors were chosen randomly and shown in
figure 4. The partition of the region was done by constructing
the voronoi cells for each mobile sensor. The Voronoi cell of

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

(a) Partitions

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

(b) Algorithm S1.

Fig. 4: Left: Initial positions (blue squares), corresponding par-
titions and centres of RBFs (red circles); Right: Reconstructed
field using algorithm S1.

0 5 10 15

time (sec)

0

0.5

1

1.5

2

2.5

Fig. 5: Algorithm S1: Average parameter estimation error with
time

mobile sensor i (denoted Qi) consists of those points which
are closer to sensor i as compared to all other sensors:

Qi = {q ∈ Q : ‖q − xi‖ ≤ ‖q − xj‖, j = 1, 2, . . . , N ; j 6= i}
(55)

For motion control of the sensors, we use a proportional
control law ui = k(xi − xgi) where xgi is made to switch
between all the centres in the region Qi making sure the
condition in lemma 2 is satisfied. The control gain k was
chosen to be 5. The simulation ran for 16.5 seconds. The
excitation condition was achieved in T = 1.5 seconds. The
reconstructed scalar field with algorithm S1 is shown in figure
4 on the right and the average (across all the mobile sensors)
parameter estimation error is shown in figure 5. It can be seen
that the parameters converge exactly to the true values and
exact reconstruction is achieved. The reconstructed field with
algorithm S2 and algorithm S3 are shown in figure 6. The
corresponding estimation errors are shown in figures 7 and 8
respectively. The maximum parameter estimation error using
algorithm S2 was found to be 0.030 and using the algorithm
S3 was found to be 0.017. Thus the algorithm S3 is seen to
give better parameter estimates in this case.

We also present simulation results where we do not know
the exact value of the centres of the RBFs (as in section V). We
assume we know the centres within an accuracy of εc = 0.05.
For this, we add a random perturbation (bounded by εc) to the
true centre coordinates and use the perturbed centres in the
estimation algorithm. The reconstructed fields with algorithms
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(a) Algorithm S2. (b) Algorithm S3.

Fig. 6: The reconstructed field using algorithm S2 and S3.
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Fig. 7: Algorithm S2: Average parameter estimation error with
time

S1, S2 and S3 are shown in figures 9 and 10 respectively. Table
9a also compares the maximum steady state parameter errors
in the three cases. As expected, algorithm S1 has much lower
steady state error compared to algorithm S2 and algorithm S3
performs better than algorithm S2. It should be noted that all
the algorithms identify the main features of the true field, as
seen from the reconstructed field plots.

B. Fully unknown scalar field

Now we test the estimation algorithms on a more general
scalar field which is not a linear combination of RBFs. For

0 5 10 15

time (sec)

0

0.5

1

1.5

2

2.5

Fig. 8: Algorithm S3: Average parameter estimation error with
time

Algorithm Max. est. error

S1 0.16
S2 0.62
S3 0.44

(a) Max. parameter estimation
errors.

(b) Algorithm S1.

Fig. 9: Unknown Centres: Max. parameter estimation errors
(left) and the reconstructed field using algorithm S1 (right).

(a) Algorithm S2. (b) Algorithm S3.

Fig. 10: Unknown Centres: Reconstructed field.

this we consider the continuous scalar field given by

φ(x, y) = 3x2e
−(x−0.7)2−(y−0.7)2

0.05 + e
−(x−0.4)2−(y−0.4)2

0.06

+
1

3
e
−(x−0.2)2−(y−0.2)2

0.08 .

over the unit square region Q. A plot of φ(·) is shown in
figure 11. We use N = 5 mobile sensors with the partitions
Qi determined as follows: We first run a uniform coverage
algorithm (coverage algorithm presented in [5] with a uniform
density function φ(q) ≡ 1). This makes the mobile sensors
uniformly spread out in the region Q. We then compute the
voronoi partition (55) of the sensors and use it as the required
partition Qi.

We first show the results for approximating the field φ(·)
with p = 100 Gaussian RBFs. The centres of the Gaussian
are arranged in a uniform grid over the region Q. The recon-
structed field plots for two values of σi (standard deviation of
the Gaussian RBFs) are shown in figures 12, 13 and 14 with
the three algorithms. To compare the various algorithms, we

0 0.2 0.4 0.6 0.8 1
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0.2

0.4

0.6

0.8

1

Fig. 11: The scalar field φ(x, y) used in the simulation
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(a) σi = 0.04.
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(b) σi = 0.05.

Fig. 12: Reconstructed field (p = 100) with algorithm S1.
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(a) σi = 0.04.
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(b) σi = 0.05.

Fig. 13: Reconstructed field (p = 100) with algorithm S2.

use the integral error (see theorem 1)

‖e‖2 =

∫
Q
|φ(q)−K(q)>â|dq

where â is the final parameter estimate obtained from the
given algorithm. The integral error for approximation of φ(·)
using p = 100 parameters is shown in table II. The table also
shows the time T in seconds at which the excitation (positive
definiteness) condition is achieved. The total runtime of the
estimation algorithms was T + 20 seconds.

The reconstructed field plots for p = 196 parameters is
shown in figures 15, 16 and 17 with the three algorithms. The
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(a) σi = 0.04.
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(b) σi = 0.05.

Fig. 14: Reconstructed field (p = 100) with algorithm S3.

σi = 0.04 T (sec) ‖e‖2 σi = 0.05 T (sec) ‖e‖2
Algorithm S1 3.1 0.045 Algorithm S1 3.9 0.012
Algorithm S2 3.1 0.054 Algorithm S2 3.7 0.053
Algorithm S3 3.1 0.048 Algorithm S3 3.7 0.028

TABLE II: Comparison of algorithms for p = 100 parameters.
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(a) σi = 0.03.
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(b) σi = 0.04.

Fig. 15: Reconstructed field (p = 196) with algorithm S1.
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(a) σi = 0.03.
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(b) σi = 0.04.

Fig. 16: Reconstructed field (p = 196) with algorithm S2.

comparison of various algorithms is given in table III.
We see that algorithm S1 gives better approximation com-

pared to the others as expected. Also the algorithm S3 per-
forms significantly better compared to algorithm S2. Increas-
ing the number of parameters gives better approximation as
expected for algorithm 1, though for the other algorithms
this is not guaranteed due to the extra error incurred (see
theorem 4) which may increase with larger p depending on
other variables such as the location of centres. σi also plays
an important role in the reconstruction of the original field. For
p = 100, σi = 0.05 seems to provide a better approximation
compared to σi = 0.04, and for p = 196, σi = 0.04 seems
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(a) σi = 0.03.
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(b) σi = 0.04.

Fig. 17: Reconstructed field (p = 196) with algorithm S3.

σi = 0.03 T (sec) ‖e‖2 σi = 0.04 T (sec) ‖e‖2
Algorithm S1 6.6 0.031 Algorithm S1 8.9 0.008
Algorithm S2 6.6 0.059 Algorithm S2 8.8 0.073
Algorithm S3 6.6 0.053 Algorithm S3 8.8 0.039

TABLE III: Comparison of algorithms for p = 196 parameters.
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to provide a better approximation compared to σi = 0.03. To
summarize, algorithm S1 gives better approximation compared
to the others though it is more computational and memory
intensive. The algorithm S3 also gives a good approximation
requiring much less memory. It may also be noted that in
many applications, we may only be interested in identifying
the main features of the original field which was successfully
done in most of the cases discussed.

VII. CONCLUSION

In this paper we consider the estimation of a scalar field
motivated by tools from adaptive control theory and lyapunov
analysis. We derived two estimation algorithms, one in which
each mobile sensor estimates the entire parameter vector, and
another in which each mobile sensor estimates only part of
the parameter vector. We verified and tested the algorithms
using simulations. Further work involves improving upon the
proposed algorithms, and possibility of estimation of time-
varying fields by persistent motion of the mobile sensors.
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