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‘H., control problem for general discrete—time systems*

Sebastian F. Tudéy Cristian Oard and Serban Sab4u

Abstract— This paper considers the# ., control problem for
a general discrete-time system, possibly improper or polys
mial. The parametrization of suboptimal H., output feedback
controllers is presented in a realization—based setting,ral it is
given in terms of two descriptor Riccati equations. Moreove
the solution features the same elegant simplicity of the per

transportation networks, power systems and advanced com-
munication systems can also be modeled as improper sys-
tems [15]. The wide range of applications of improper
systems spans topics from engineering, e.g. aerospacg-indu
try, robots, path prescribed control, mechanical multéybo
case. An interesting numerical example is also included. systems, network theory [16], [17], [18], to economics [19]
Motivated by this wide applicability and interest shown in

l. INTRODUCTION the literature for improper systems, we extend in this paper

Ever since it emerged in the 1980’s in the seminal papehe #{., control theory for generatliscrete—time systems
of Zames [1], theH, control problem (also known as the ysing a novel approach, based on Popov's theory [20] and on
disturbance attenuation problem) has drawn much attentioe results in [21]. A realization—based solution is predgd
mainly due to the wide range of control applications. Iysing a novel type of algebraic Riccati equation, investida
is one of the most celebrated problems in the control litn [22]. Our solution exhibits a numerical easiness similar
erature, since it can be approached from diverse techniagith the proper case and can be seen as a straightforward
backgrounds, each providing its own interpretation. generalization of [6].

The design problem is concerned with finding the class of The paper is organized as follows. In Section Il we give
controllers, for a given system, that stabilizes the clek®ab  some preliminary results. In Section Ill we state the subop-
system and makes its input—outfdt,—norm bounded by a timal #, output feedback control problem. We provide in
prescribed threshold. Various mathematical technique® wesection IV the main result, namely realzation-based formu-
used, e.g., Youla parametrization, Riccati-based approagas for the class of all stabilizing and contracting corén
linear matrix inequalities, to name just a few. for a general discrete—time transfer function matrix (TEM)

The original solution involved analytic functions (NP |n order to show the applicability of our results, we present
interpolation) or operator theory [2], [3]. For good surs@®n  in Section V an interesting numerical example. The paper

the classical topics we refer to [4], [5]. Notable contribas  ends with several conclusions. We defer all the proofs to the
to the state—space solution for ti#e,, control problem are Appendix.

due to [6], [7], [8]. An algebraic technique using a chain
scattering approach is presented in [9]. The solution of the Il. PRELIMINARIES
H control problem in discrete—time setting is given in [10]. We denote byC, D, anddD the complex plane, the open
More recently,H., controllers for general continuous—unit disk, and the unit circle, respectively. LEt= CU {occ}
time systems (possibly improper or polynomial) were obbe the one—point compactification of the complex plane. Let
tained. An extended model matching technique was em-< C be a complex variabled* stands for the conjugate
ployed in [11]. A solution expressed in terms of two genertranspose of a complex matrix € C™*"; A~! denotes
alized algebraic Riccati equations is given in [12]. A matri the inverse of4, and A'/2 is such that4'/2AY/2 = A, for
inequality approach was considered in [13]. Note that & square. The union of generalized eigenvalues (finite and
dicrete—timesolution is still missing. infinite, multiplicities counting) of the matrix pencil —
General systems cover a wide class of physical sys# is denoted withA(A — zFE), where A, E € C**". By
tems, e.g. non—dynamic algebraic constraints (diffea¢nti C?*™(z) we denote the set gf x m TFMs with complex
algebraical systems), impulsive behavior in circuits wittcoefficients.RH .. stands for the set of TFMs analytic in
inconsistent initial conditions [14], and hysteresis, ime C\D. The Redheffer product is denoted with
just a few. Cyber—physical systems under attack, mass/gaslo represent an improper or polynomial discrete—time
systemG € CP*™(z), we will use a general type of
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realization calleccentered

3

)
wherezy = /8 € C is fixed, n is called the order (or the
dimension) of the realizationd, £ € C"*", B € C"*™,
C e CP*n, D € CP*™, rank E < n, and the matrix pencil
A—zFE isregular, i.e.det(A—zE) # 0. Note that fora = 1

G(2) = D+C(:E—A) "' B(a—pz) =: { A—zE|B ]

C D
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and g = 0 we recover the well-known descriptor realizationLemma 1. Let G be a TFM without poles at,, having
[23] for an improper system, centered at = oo. We call a minimal realization as in(l). ThenG is unitary (inner)
the realization[{fL)ninimalif its order is as small as possible iff D*D = I,,, and there is an invertible (negative definite)

among all realizations of this type. Hermitian matrix X = X* such that
Centered realizations have some nice properties, due to E*XE - A*XA+C*C = 0,
the flexibility in choosingzy always disjoint from the set of D*C + B*X(aE — BA) = 0. ®)

poles ofG, e.g., the order of a centered minimal realization ]
always equals the McMillan degré€¥G) and G(z) equals LetG € REOO(BH_)), thg Banach space of geqeral discrete—
the matrixD in (@). We call the realizatiofi{ijroperif « E—  time TFMs (possibly improper or polynomial) that are
BA is invertible. Thus, by using centered realizations w&ounded ordD. Then the?{..—norm of G is defined as:
recover standard-like characterization of the TFM. Cestter 1G]l == SUP  Tymaz (G(e?)).

realizations have been widely used in the literature toesolv €0,2

problems for generalized systems whose TFM is improp% )

; ; : denote byB# !’ the set of all stable and bounded TFMs
24], [25], [26], [27]. Throughout th : Il congir **° © s ’
[24], (25, [26], [27]. Throughoutthis paper, we will comgir "~ S BHD TG € RhHo. |Gl < 1},

proper realizations centered on the unit circle, izg.€ oD ;
; — Consider now the structurg := (A — zE,B; Q,L,R)
not a pole ofG. Furthermore, we consider € 9D, S := @, 1wy T L
P fi=1a where A, E € C"*" B, L € C"™*" Q = Q* € C"*" R =

and thuszy = o/@ = a? € ID. _ .
0 =a/a=a e C™>*™ 3 can be seen as an abbreviated representation

Conversions between descriptor realizations and center%i trolled svster and drati ; d
realizations onxy € 9D can be done can be done by simple0 a controtied syster and a quadratic periormance index,

manipulations. Consider a descriptor realization see [21], [31]. We asgomate W'm two mathematical objects
of interest. The matrix equation

™)

G(2)=D+C(zE—-A)"'B=: { A_CZE g ] ) E*XE—-A*XA+Q— ((aE - BA)*XB+L)- ©)
oo ‘R7Y(L* + B*X (aE — BA)) =0
and fix zo € OD. Then there exist/ and V' two invertible g 5 jiedthe descriptor discrete—time algebraic Riccati equa-
(even unitary) matrices such that tion and it is denoted with DDTAREZ). Necessary and
U(A — 2BV — [ Ay — 2B, Ay — 2E19 } 3) sufficient existence conditions together with computabte f
0 Ao ) mulas are given in [22]. We say that the Hermitian square

matrix X = X* € C"*" is the uniquestabilizing solution

where A4, is nonsingular (contains the non—dynamic modes), DDTARE() if A(A — 2E+ BF(a — ﬂz)) c D. where
andrank | By Eip | = rank E, see [28] for proof and '

numerical algorithms. Let F:=-R'(B*X(aE — BA) + L*) 7)

is the stabilizing feedback. We define next a parahermitian
TFM IIy € C™*™(z), also known as the discrete—time
Popov function [21]:

[ By } =V*(A—2E)'B, [ (1 Cy ]:=0CV,
By

where the partitions are conformable with (3). A direct dhec

shows that the following realization @& is centered at, A—zE 0 B
and proper: Mx(z)=| Qla—Bz) E*—zA*|L (8)
L* B* |R ]

) It can be easily checked thdly is exactly the TFM of

, . ) the Hamiltonian system, see [31]. Moreover, the descriptor
We say that the systeriil(1) is stable if fisle pencilA —  gymjectic pencil, as defined in [22], is exactly the system

zE hasA(A - zE) C D, see e.g. [23]. Note that any stableyen; Smi,, associated with the realizatiofl (8) fs. We

system belongs t®H ... Thesystem pencis by definition 5.0 now ready to state two important results.

G(z) = Ay —zE | —E\B1 — E13By
o Cl | D — ClBl — CQBQ

So(z) = { A—2E Bla—fz) } , Proposition 2. Let & := (A — zE, B; Q,L,R). Assume
¢ D A(A — zE) c D. The following statements are equivalent.
The pair (A — zE,B) is called stabilizable if (i) (i) Ix(e’?) <0, for all 6 € [0,27).
rank [ A—zE B | = n, for all z € C\D, and (i) (i) R < 0 and DDTAREE) has a stabilizing hermitian
rank | E B | = n. We call the paifC, A— zE) detecta- solution X = X*.
ble if the pair(A* — 25", C*) is stabilizable. Proposition 3. Bounded-Real Lemma) Let G € CP*™(z)

We say that a square systane C™*™(2) is unitary on having a minimal proper realization as iffl) and consider
the unit circle if G*(2)G(z) = 1,V € OD\A(A — 2E), 5 s B oD DD _@? ) Then the
where (.3#(2) - G*(1/z"). If: N addition, G < RHOO_ following statements are equivalent.
thenG is calledinner. The following lemma will be used in

i () _
the sequel to characterize inner systems given by centere ) E*EDBHO; ' |.e.,OA(Ad Sg_)I_XRDﬁnﬂ”G”m t<;:l' .
realizations (see for example [29] and [30]). ) —dm < D an EE) has a stabilizing

hermitian solutionX = X* < 0.



I1l. PROBLEM FORMULATION IV. MAIN RESULT

Let T € CP*™(z) be a general discrete—time system, The following theorem is a crucial result i, control
possibly improper or polynomial, with input and output theory. In the literature, it is known as Redheffer theorem.

y, written in partitioned form: Theorem 7. Assume thaT in (1) is unitary, Dy, is square
| g wm |2 T Tio U ) and invertible,A(A — zE — B D5 Cy(a — B32)) C D, and
Y2 () Tor To ug |’ let K be a controller forT. ThenG € BH if and only if

i i ()
whereTy; € CP ™ () with 7,5 € {1,2}, m := m1 + ms, T is inner andK € BH)'.
p := p1 + p2. The suboptimalt ., control problemconsists Recall that we associate with = (A — zE, B; Q,L, R)
in finding all controllersK € C™2*P2(z), uy = Ky, for  the DDTAREE) in (6). We are ready to state the main resuilt.

which the closed-loop system Theorem 8. LetT € CP*™(z) having a minimal realization

G :=LFT(T,K) =Ty + T1oK(I — T2K) 'To; (10) as in (). Assume thafH;), (H:), and (Hs) hold. Supp-

. 5 : ) ose that DDTARE{.) and DDTAREE «) have stabilizing
is well-posed, stable anfG|| < 1, i.e.,G € BH' . solutionsX = X* < 0 and Z = Z* < 0, respectively,

We make a set of additional assumptionslowhich either : : .
L ) . where Y. and X are given in BoxX1l. Then there exists a
simplify the formulas with no loss of generality, or are of % .
) controller K € CP2*™2(z) that solves the suboptim&
technical nature. Let L
control problem. Moreover, the set of all sukhis given by
A—zFE | Bl BQ
Gy Dy 0 where Q € BH() is an arbitrary stable and bounded

20

be a minimal realization withy € OD\A(A — zE). parameter, andC is given in(14).

(Hy) The pair (A — zE, By) is stabilizable and the pair Theoreni8 provides sufficient conditions for the existence

(C2, A — zE) is detectable. of suboptimalt*, controllers. Further, we can easily obtain
(H2) For all 8 € [0,27), we have that the central controlley for which Q = 0, under the so called
o T normalizing conditions:
rank [ 4 C? E BQ(aD pe’”) } = n+msy. (12) By 0
! 12 D, [Cr Dz |=[0 IL{DQI}D%—[I]-

(Hs) For all g € [0,27), we have that )
Corollary 9. Take the same hypotheses as in Thedrém 8.

rank [ A—eE  Bi(a—Be?) } = n+ps. (13) Then the central controller under normalizing conditioss i
e Dy Ko(2) in (@5)

Remark 4. The hypothesigH;) is a necessary condition Remark 10. Consider a proper system centeredsat for
for the existence of stabilizing controllers, see [32] foet |\ hich £ = I, o = 1, and 8 = 0. It can be easily

standard case. We assume in the sequel(tia) is always checked that we recover the controller formulas from the
fulfilled. standard case, see e.g. [21] and [32] for the continuous—tim

Remark 5. The hypothesefH,) and(H3) areregularity as- counterpart.
sumptionssee [32], [21] for the standard case. In particular, V. A NUMERICAL EXAMPLE
it follows from (Hs) thatT1> has no zeros on the unit circle,
p1 > mg, and thatank Do = my (thusD7, D2 invertible).
Dual conclusions follow fronfH3): T2; has no zeros oaD,
mi > pa2, rank Doq = p2, andD21D§1 is invertible.
Furthermore, we note thgH,) and (Hs) are reminiscent _ _ N
from the generalH, problem [33] and are by no means zxi1 = Axp + Biuy, + Baug g, k>0, 39 =0. (21)
necessary conditions for the existence of a solution to th\ane system has three states, and — my — 1. The

generalH ., control problem. If either of these two assUMpP-yiscrete—time plant model, i.e., the matricEsEl, and Eg

tions does n_ot h.0|d' we getsingular o qptimal control in (21), was obtained in [34] with sampling tini& = 0.1s.
problem, which is beyond the scope of this paper. We consider here drajectory prescribed path control
Remark 6. We have implicitty assumed in[{iL1) that (TPPC) problemIn general, a vehicle flying in space con-
T11(20) = D11 = 0 and Taa(z9) = Da2 = 0, without strained by a set of path equations is modeled by a system of
restricting the generality. IK is a solution to the problem differential-algebraic equations, see e.g. [35], [36]otder

with Dyy = 0, thenK (I + DyK)~! is a solution to the to obtain a TPPC problem, we add a polecat (a non—
original problem. The extension fab;; # 0 follows by dynamic mode) by augmenting the systéml (21) as follows:
employing a techn_|que similar to the one in Chap_ter 14.7, [ A-z13 0 B B, B,

[32]. In particular, it also follows from this assumptiorath A-zE = 0 11 [ By B ] =11 1|

the closed-loop system is automatically well-posed. (22)

It is well-known that# ., controllers are highly effective
in designing robust feedback controllers with disturbance
rejection for F—16 aircraft autopilot design. The disaed
short period dynamics of the F-16 aircraft can be written as:



|-

—zE,[ Bi By ]; CiC1,[ 0 CiDyy },{

Bi X (aE — B8A)
—(D33D12) 1 (D1,C1 + B; X (aF — BA))

—Ip,
0

0
D1y D12

|\

)

I —(DiyD12)?Fy |7 * . —Ip, 0
Dy = (A 2E* + F{ Bf (a — Bz), { ) Do F, P BBL[ 0 BiDL ]| " e
Box 1
A~ 2E+ (BF + BzCr)(a - 52) | By —By(D3yD1y) "% + (aE — BA)ZF} (DiyD1s)?
C(z) = —F 1 0 1 (DiyD12)" 2 ,
(D21 D3)"2Cp (D21 D3y)~2 0 2
(14)
whereB := [ B1 By } , Cp:=0Cs+4+ Dy Fy, Bz:= _(BlDSI + (OéE — ﬂA)ZC;)(Dngsl)il.
Ko(z) = A—z2E + ((B1Bi X — B3B3 X)(aE — BA) — (aE — BA)ZC5Cy) (o — Bz) | —(aE — BA)ZC3 (15)
0=/ B; X (aE — BA) | 0 '
20
Box 2
[ 0.906488 — z  0.0816012 —0.0005 0| —0.0015; 0.0095 ]
0.0741349  0.90121 — 2z —0.000708383 0 | —0.0096 '  0.0004
0 0 0.132655—2 0| 0.8673, 0.0000
T(z) = 0 0 0 1| 1.0000 1 —1.0000 , (16)
1 0 0 1 0] —1
I L R I 0, 1
0 0 1 -5 1! 0], _,
L . 1=
[ 2% —2.93923 +2.98922 — 1.1582 + 0.1078  —23 + 1.79822 — 0.79282 — 0.008547 ]
23 —1.9422 + 1.051z — 0.1076 22 —1.8082 + 0.8109
T(2) = —24 429523 —3.0122+1.1682 — 0.1082 23 — 1.80822 + 0.8109z + 0.0003578 (17)
23 —1.9422 + 1.0512 — 0.1076 22 — 1.808z + 0.8109 ’
—522 4+ 5.796z + 0.07141
52—5
L 2 —0.1327 i
—13.6023 —13.7705  0.0187 —0.0025 —0.0002 —0.0004  0.0068 —0.0081
N _ | —13.7705 —13.9409  0.0189 —0.0025 7 _ | —0.0004 —0.0007  0.0143 —0.0171 (18)
- 0.0187 0.0189 —0.0000 —0.0000 | > “ — 0.0068  0.0143 —0.2753  0.3297 |’
—0.0025 —0.0025 —0.0000 —0.0000 —0.0081 —0.0171  0.3297 —0.3948
K(2) = —0.15612% + 0.45923 — 0.46722 + 0.1809z — 0.01679 (19)
- 24 —2.80823 + 2.72222 — 0.9979z + 0.08391
0.3(z + 0.0255)(z — 0.1313)(z — 0.8269)(z — 0.9794)(z — 0.9817)(z — 1)
—0.2988(z — 0.01409)(z — 0.1344)(z — 0.8269)(z — 0.9817)(z — 0.984)(z — 1)
G(z) = 5 (20)

(2 + 0.005487)(z — 0.1327)(z — 0.8269)(z — 0.8685)(z — 0.9817)

Box 3




Assume that all the dynamical states are available fdremma 11.Let(C, A—zF) be a detectable pair and assume
measurement. With this and the augmentafioh (22), we obtdinat there exists a matriX’ = X* such that the following
a minimal realization witheg = 1 for the systenT, see[([I1b), Stein equation holdsE*XE — A*X A + C*C = 0. Then
havingn =4, my =mgo =1, p1 =2, po=1. The TFMof X <0 if and only if A(A — 2F) C D.

T is given in [IT). Note that the system is improper, havm%roof. (Proposition @) (i) = (i1): If TIx(ei®) < 0,0 €

one pole abo, and thaté(T) = n. )
For this system, we want to find a stabilizing and conlo’zw)’ thenILy has no zeros odD. Thus Sy, I.e., the

. . . symplectic pencil, has no generalized eigenvaluesobn
tracting controller using the formulas in Theoréim 8. ST S .
It can be easily checked that the syst@nsatisfies(H,), which implies that DDTAREX)) has a stabilizing solution,

(Hz2), and (H3). Furthermore, the DDTARE..) and the see. .[22]' F'u.rther, sincey € oD, 1_.1.2.(20) =R <0. .
DDTARE(S.) have stabilizing solutionst — X* < 0 (11) = (i): Let F be the stabilizing feedback as il (7).

. . S . A-zFE | B
and Z = Z* < 0, given in [I8). Moreover, the stabilizing Consider thespectral factorS(z) := _; T
feedback forx. was computed to be: It can be easily checked that the factorization
Fo_ 0.0031  0.0031 —0.0000 0.0000 IIs(z) = S*(2)RS(z) holds. MoreoverS € RH., and
¢~ 1 05012 —0.4988 —0.0000 1.0000 | S € RHo, sinceA(A—zE+BF(a—f2)) C D. ThusSis
- : y
Therefore T satisfies the conditions in Theoréin 8. Taking® unity iNRHo.. Since R < 0, Tx(e™) < 0,v6 € [0’27T=
Q = 0, we obtain with Theoreni]8 the centrgkoper

controller given in[(IB). The closed—loop syst&@rnis given
in (20). Note thatG is proper and stable, having the polesProof. (Proposition[d) (i) = (ii): Note that

{0.0054,0.1327,0.8269,0.8685,0.0817} C D. Moreover, g 1 & G#*(e)G(e/?) — I < 0,%0 € [0, 27).
IG|lec = 0.4533 < 1. The singular value plots of and

G are shown in BoXH4. After manipulations we get thdﬁ#(z)G(z) — I =TIg(2).
ThusIIg(e’?) < 0,V4. Since A — zE is stable, it follows

Singular vlue plot for T and G:=LFT(T.K) with Proposition[2 thatD*D — I < 0 and DDTAREE)
20 : : has a stabilizing solutioX = X*. It remains to prove that
7 X < 0. It is easy to check that the DDTARE] has a

wl 1 || stabilizing solutionX = X* iff the following system of

matrix equations
i | D'D—1 = —V*V
(aF —BA*XB+C*D = -—-W*V (28)
— ExXE-A*XA+C*C = -W'W

Singular Values (dB)

has a solutioriX = X*, V, W), with F = —V~1W. Further,
note that the last equation ih_{28) can be written as

—10F

E*XE— A*XA+ { g/ ] [ VC[; ] =0. (29

20}

. ‘ : The pair W ,A—zE) is detectable, since the pair
o O eyt 1 (W, A — zE) is detectable, from the fact that — 2E —
Box 4 V~1W(a— Bz2) is stable. Using these conclusions, it follows

from Lemma[Ill thatX < 0.
(i) = (4): Following a similar reasoning as above, we
VI. CONCLUSIONS have from(ii) that

g/ ,A— zFE | is detectable. Since
We provided in this paper sufficient conditions for the ex-y < 0 and the equality({29) holds, we get from Lemmma 11
istence of suboptimait, controllers, considering a ge”eralthatA(A — 2E) C D. Using the implication(ii) = () in
discrete—time system. A realization—based charact@izat Proposition 2, we have thdils(e/®) < 0,v0. But this is
for the class of all stabilizing and contracting contraler equivalent with||G||.. < 1. Thusz e BHW). u
was given. Our formulas are simple and numerically reliable o
for real-time applications, as it was shown in Section \)_Droof. (Theorem[7) If: Let

Necessary conditions and the separation structure of{the K(s) — A — 2Bk | Bk
controller will be investigated in a future work. (2) = Ck | Dy
zZ0
APPENDIX

be a minimal realization. Sinck € B#’, we have from
In order to proceed with the proofs, we need an addition&roposition[B thatDj,Dx — I < 0 and DDTAREE k)
result, for which the proof is omitted (for brevity). has a stabilizing solutioXx = Xj < 0, whereXg :=



A —2E — (BaD1,'Cy + B1D3' Co)(a — Bz) | BiD3' BoDiy
Ci(z) = e 0 Diy (23)
—Dy'Cy Dyt 0 .
A— 2B+ (BoFy — B1D;'Co) (o — B2) | BiDy'  Ba(DjyDia) 3
Ca(2) = 23 0 (Di3D12)" 2 (24)
—D3'Cy — Bf X (aE — BA) Dy} 0 ,
A—z2E+ BsFo(a—B2) | Bi  Ba(DiyDis) ™2 A—z2E+BiFi(a=f2) | B B:
TI(Z) = C1 4+ D12 Fs 0 D12(DT2D12)7% ,To(z) = _(DT2D12)§F2 0 (-D>1K2D12)§ .
—F I 0 . Co + Do 1 Doy 0 0
’ (25)
Soi= (A =z [ Cf 5] BiBL[0 BDg ]| 0 ), (26)
A —2E + (HyCy — ByDi5' C1) (o — B2) | H, —ByDy, — (aE — BA)Y O
Ci(z) = ~D, Cy 0 Dy, , 27
(D21D3y)~2Cy (D21 D3) "2 0 o
where Hy = —(B1 D}, + (aFE — BA)Y C3) (D21 D3;) L.

(Ax — zEk,Bk; C5Ck,CxDgk,Dj Dk — I). Further, Proposition 12. For the one-block problem the class
from T inner we get from Lemmia 1 thd®* D = I and there of all controllers that solve the¥., control problem is
is X = X* < 0 such that[{b) holds. Compute now a minimalk = LFT (C;,Q), Q € B# is arbitrary andC; is in 23).

centered realization fo® := LFT (T,K), see Section 2.3.2

in [31]. After leghty but simple algebraic manipulations

we get that the realization d& satisfies condition (ii) in

g . X 0 .
Proposition[B, withXs := 0 Xx | = X& <0,
and Rg = D3 (D} Dk — I)Ds1 < 0. It follows that
G e BHY.

Only if: From (C2, A — zE) detectable,T unitary, and
Lemma[11, it follows that\(A — zE) C D, thusT is inner.
SinceG € BHY), |G|l < 1, which is equivalent with
G#(z)G(z) — 1 <0, for all z € dD. Using equation[{10)
and the fact thaff5; is a unity inRH., (unimodular), we
get after some manipulations tht” (2)K(z) — I < 0,
for all z € dD, which is equivalent with|K ||, < 1. The
stability of K is a direct consequence of the fact tifiit;)
is fulfilled, thatG is stable, and thaf is inner. |

Proof. Let T = T ® C;. With C; from (23) we get after

an equivalence transformation tha = 0 1 } Thus

G =LFT(Tx Q) =Qe BHY.

Conversely, letK be such thatG € BH(). Take
G=Q¢e B”H,@ be an arbitrary but fixed parameter. Then
LFT(C:,Q) = LFT(C4,G) LFT (Cy,LFT (T,K))
LFT(C; ® T,K). It can be checked that in this case
Ci®T =T®C; = Tg (this is not generally true). Thus
LFT (C1,Q) =K. |

I 0

Consider now théwo—block problemfor whichpy = my,
and the hypothesdsl;) and(A,) are fulfilled. Let>. be as
in Box[l.

Proposition 13. Assume that DDTAREY) has a stabilizing
solution X = X* < 0. Then the two-block problem

We proceed now with the proof of our main result (statethas a solution. Moreover, the class of all controllers is
in TheoremB), which is based on a successive reducti®q = LFT (C,,Q), withQ € BH(()Z), andC, is given in(24).

to simpler problems, called the one—block problem and thlg
€

two—block problem. We borrowed the terminology from th
model matching problem.

Consider theone—block problemfor which p; = mo,
p2 = my, i.e., D1 and Doy are square, an@l;o andTo; are
invertible, having only stable zeros, i.e.,

(A1) D1z € Cm™2*™2 is invertible and A(A — zE —
ByDi5' Ci(a — B2)) C D.

(Az) Dyy € C™>™ js invertible andA(A — zE —
B1D5'Cs(a — B2)) C D.

roof. Let F,. be the stabilizing feedback, see Bdx 1. Con-
sider the system3; and T, in (25). After manipulations,
we obtain thatT Tr ® To. Moreover, Ty is inner,
since the realization[(25) satisfies the equations given in
Lemmall, withX = X* < 0 the stabilizing solution of
the DDTAREE,). Also, it can be easily checked that
satisfies the hypotheses of Theorgm 7.

We claim thatLFT(T,K) € BH{) < LFT(To,K) €
BH{). Here follows the proofLFT(T,K) = LFT(T; ®
To,K) = LFT(T;,LFT(To,K)) € BHY. It follows



from Theoren(l7 thaLFT(To,K) € BH((;). Conversely, [12]
let LFT(To,K) € BH) be a controller for the in-
ner systemT;. Then, we have from Theorem] 7 thatj3
LFT(T;,LFT(To,K)) € BH). But this is equivalent
with LFT(T,K) € BH), sinceT; ® Tp = T. The claim
is completely proven.

Therefore, it is enough to find the the class of controllers
for To. Further, it is easy to show thaiy in (23) satisfies 1]
the assumptiongA;) and (A.) for the one—block problem.
ComputeC; in (23) for Tp to getCs in (24). |

[14]

[16]

The next result follows by duality from Propositién]13.

ConsiderX, given in [28). [17]

Proposition 14. Assumep; = ma, (A1), (Hs), and that [18]
DDTAREE,) has a stabilizing solutiory” = Y* < 0. Then
the dual two—block problem has a solution. Moreover, theo]

class of all controllers isK = LFT (C3,Q), where Q €

BH is arbitrary, andCs is given in (7). (0]
Proof. (Theorem[8) We assume thafH,), (Hs), and (Hs) [21]
hold. Suppose that DDTAREL.) has a stabilizing solution

X = X* < 0. Consider now the systenig; and Tp, [22

given in [2%). We have shown that it is enough to find
the the class of controllers fofo. It is easy to check [23]
that, in this caseTo satisfies(Az). Write now 3, in (26)

and DDTAREE,) for To to obtain X, in Box [I and [24]
DDTARE(X ). Further, assume that DDTARE() has a
stabilizing solutionZ = Z* < 0. Therefore,To satisfies [25]

the assumptions in Propositidn]14. The parametrization
of all controllers that solve thé{., control problem in [26]
Theorem[B is now a consequence of Proposifich 14 and
some straightforward manipulations. This completes wholg”!

the proof. |
[28]
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