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Distributed Filter Design for Cooperative .77,-type Estimation

Jingbo Wu Li Li

Abstract— In this paper, we consider the distributed robust
filtering problem, where estimator design is based on a set
of coupled linear matrix inequalities (LMIs). We separate the
problem and show that the method of multipliers can be applid
to obtain a solution efficiently and in a decentralized faston,
i.e. all local estimators can compute their filter gains lochy,
with communications restricted to their neighbors.

I. INTRODUCTION

Valery Ugrinovskii
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manner as well. If network needs to adapt to some changes,
such as a change in the plant or change in the network
structure, this allows each node to reconfigure using only
local communications and computation only.

In this paper, we provide a complete analysis of one dis-
tributed estimation problem where such a distributed desig
scheme is possible. Specifically, we adopt the setup from [6]
concerned with the problem of distributed estimation with

Estimator design has been an essential part of controlle#;, consensus performance. As a matter of fact, in [6] a
design ever since the development of state-space basgdient-descent-type algorithm was proposed that can be
controllers. A milestone was laid by the Kalman Filter inused to calculate the filter gains in a distributed manner.

1960 [1].

Although the proposed gradient type algorithm demonsirate

While in the classical estimator design one estimator ig possibility of computing the estimator parameters in rin
used for the entire system, distributed estimators haveegai ciple, a practical application of that algorithm is hindire
attention since a distributed Kalman Filter was presemed Hue to slow convergence observed even in low dimensional

[2], [3]. In a distributed estimator setup, multiple estiors

examples. Also, implementation of the decentralized desig

create an estimate of the system’s state, either indiiglualscheme proposed in [6] requires bidirectional communica-
[4] or cooperatively. In the latter case, even when everglsin tions between the network nodes, which essentially reguire
estimator may be able to obtain an estimate of the stafge communication graph to be undirected for the purpose
on its own, cooperation reduces the effects of model anst the estimator design. In this paper, we address the prob-
measurement disturbances [5]. Also, the situations are niein of designing distributed estimators by using disteiolt
uncommon where individual estimators are unable to obtaiptimization methods presented in [9],[10]. Distributgatio

an estimate of the state on their own and cooperation bgization methods are widely applied in networked systems,
comes an essential prerequisite [6], [7]. The node estirmatosee e.g. [11],[12],[13]. The contribution of this paper s t
may even not have a model of the full system, but only knowhow that the problem of designing distributed estimatsrs i

a part of the system [8].

amenable to the methodology of distributed optimization as

However, even though the setup consists of distributeglell. Although the design scheme is proposed for the specific
estimation units without a central coordinator, in manylass of algorithms in [6], it illustrates all the steps rece
known approaches the design process itself requires aatentary to devise similar design schemes for other distributed
coordination unit. In some practical application examplesstimation algorithms and distributed optimization subje
where the design process can be done offline, this mawil-constraints in general.
not be a significant drawback. On the other hand, in many The rest of the paper is organized as follows: We first

applications especially those involving distributed semeet-

introduce the notation and some preliminaries on graph

works with varying communication topology, a centralizedheory. Then, we revisit some essential results published i
computation of observer parameters represents a severe lfg] and discuss there limitations with respect to numerical

itation. Practicality of a distributed system demands that

optimization. Section Ill is dedicated for introducing the

estimator design process is to be carried out in a distributeroposed optimization scheme. In Section IV, we give a
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mathematical example, and Section V concludes the paper.

Il. PRELIMINARIES AND BACKGROUND

In this section, we introduce the basic definitions and
results which our main results will build on.

A. Notation

Let P be a symmetric matrix. IP is positive definite, it is
denotedP > 0, and we writeP < 0, if P is negative definite.
0 denotes a matrix of suitable dimension, with all entries
equal 0. Moreover, for vectorse #" we use the Euclidean
vector norm||x|| = vxTx and the weighted vector norm
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IX|lp = VxTPx for symmetric matrice$® > 0. For matrices with initial conditionx(0) = 0. Here the matricels, € R™'k
A€ #"™™, we use the Frobenius nord\|| = \/tr(ATA) and andKy € R™" are the filter gains to be designed.

the induced norm|A|[2 = sup .o([[AX]/[X[]). £2 denotes  As it can be seen if13), the estimators are distributed, i.e.
the Lebesgue space dk"-—valued vector-functionsz(-),  the local estimators create an estimation of the systemts st
defined on the time intervaD, ) with the norm||z]2 =  x solely based on the local outpyt and communication

Jo [[z(t)[[?dt. The vectorizatiorveq-) maps any matrix with neighbouring estimators. The problem in [6] was to
A€ ™™ to then-mrdimensional vectovedA) formed by  getermine estimator gains,, K¢ in (3) to satisfy natural
the stacked columns k. internal stability and#% gain conditions. To introduce these
conditions, define the local estimator erroreps- x— X, and

the estimator disagreement function is defined as
In this section we summarize some notation from the graph

theory. We use directed, unweighted graghs- (¥,&) to
describe the communication topology between the individua
agents.¥ = {v1,...,un} is the set of vertices, wherg € ¥
represents th&-th agent.& C ¥ x ¥ are the sets of edges,
which model the information flow, i.e. tHeth agent receives .
information from ageni if and only if (vj,v) € &. The set Wherex= [X{,...%]" ande=le[,...,e(]". The estimator

of vertices that agerk receives information from is called design problem is concerned with ach|eV|ng the following
the neighborhood of ageft which is denoted by ={j: Properties:

(vj,w) € &}. The set of vertices that receive information (i) In the absence of model and measurement disturbances
from agenk is called the out-neighborhood of agdéntvhich (i.e., whené, nx = 0), the estimation errors decay so

is denoted by = {j: (w,Vi) € &£}. The in-degregy and that e — 0 asymptotically for alk=1,...,N.

out-degree of a vertexk is defined as the number of edges (ii) The estimatord(3) provide guaranteed, performance

in &, which havevy as their head and tail, respectively.

B. Communication graphs

z

1) — 1%, 4)
1jeM

Z||—\
Py

C. Distributed.”%, estimation and LMI conditions su Jo WR(t))dt <
ing distr imat ol + (/N I, 3+ 1ETE

We now present the underlying distributed estimation ff?k #0 11%0 Zkfl Nkl 2
problem from [6]. It involves LMI design conditions, which
are the main object of interest in the paper. Our main Z lex3 < ¥ ||X0HP+ Z Inel5+11€13 |
objective is to show that these LMI design conditions are
amendable to a distributed solution by using the multiplier
method (c.f. [9]) . for some positive definite matri, somey > 0, and

The distributed estimation problem wit##, consensus of performance indey > O.
estimates posed in [6] involves estimation of the state ef th
uncertain LTI system described by the differential equatio  property (i) requires both the local estimation errors
%= Ax+ BE (1), Q) and the _estimator disggreement to be bounded Wi_th respect
to the disturbances in awZ,—sense. As shown in [6],
wherex € R" is the system state variable to be estimated arldMI-conditions can be found, where the solution delivers
&(t) € #is adisturbance functioiN estimators are applied, estimator gains sufficient for solving the above problem. To

each estimator receivesrgdimensional measurement present these LMI conditions, define the matrices
= Cx+ Dié + D/ (1) (2) ~
_ A=A+ ayl —BD{ E Gy,
In @), nk(t) € % represents the measurement uncertainty of ~ S
the local estimatok. In particular, it is assumed th& = (3" =XAc+ AKX G B Ck+B(pS’ Gl
DDy + DDy > 0. Bk =[B(I - D{E 'D) —BDyE, "Dy,

Remark 1: The assumption tha&f, > 0 is a standard tech-
nical assumption made in nonsingul#t, control problems whereX, € R™" is a symmetric, positive definite matrix and
[14]. It is obviously satisfied in the case when all mea«y, are positive parameters. For the remainder of this paper,
surements are affected by disturbances, which is evidentiye will make two assumptions on the system class.

satisfied in practical applications. This assumption igrlat Assumption 1 The communication grapt is connected

used to guarantee boundedness of the solution set. and balanced, i.eg = px for all k=1, ...,N.
The estimators form a network of interconnectetf, Assumption 2 For all k = 1,..,,N, the tuple (Ac,By) is
filters of the form controllable.
X =A%+ Li(Yk — Gk +Ki 5 (% — %) 3)

e The LMiIs used for designing the estimator gains are



proposed as variablesX¥, andg* forallk=1,...,N andj =k, j§,..., jj,.
~ The tuple of local variables is denoted b
Qx— PP — PR XiB <0 ) P Y

* _I Yk: (FkaBkaxifaxJkka“'axJkk )a (12)
[~ 20 % —Bl+F ... —Bl+F ] ' "
QK”Xk fa_k P P+ where the upper indek denotes the representation of a
* —T'jlxj; 0 variable used by estimatdk and all Xjk are symmetric,
11 <0, (7) positive definite matrices, angk > 0.
20,_k' Problem 1: Find an iterative algorithm, which creates a
* 0 —T“}lxj% sequencé(t),t € N, such that local representations of the
L TPk ¥ variables converge in the sense that
[—ka _FkT:| <0, (8) . K K
“Fe X Jim (8(t) - (1)) =0, (13)

where X, R, and B are the variablesp > 0 is a constant fqor || k; ko = 1,...,N and
parameter, and# = {j%,..., j¥, }. We can now formulate a

variation of the main result from [6]. tlm (Xjkl(t) - Xjkz(t)) =0, (14)

Proposition 1: Suppose the interconnection graghand

forall j=1,....N andkq, ko € .Z; U j. All iterations Y(t
the parametersy > 0, k=1,...,N, are such that the set J b2 i) K(t)

shall satisfy the LMIs[{B)E[8) when settinf = B¥ X, =
r={B>0:(@)-(@) are feasible fok=1,...N}  (9) X‘f,in = Xjkli’ o X = X}"k) . Furthermore, the iteration steps
of the local variablesYk(t + 1) shall be calculated in a
distributed fashion, i.e. interaction with the neighbpes. 4
only.

is not empty. For any3 € I, one solution to the distributed
estimation problem under consideration, wjth: % is given

by the network of estimator§](3) in which
_ _ _ As a first step, in order to ensure that bofh](11) and
_ 1 _ 1~T T 1 ’

Ke=X"hc and L =X "G +BDE,  (10) Problem 1 are well-posed, we establish a statement about
whereX, andF. k= 1,...,N, belong to the feasibility set of the boundedness of the feasible set of the LMIs [(6)-(8). The
@) - (@), corresponding to this particular value Bf The proof of this theorem will later be used in order to ensure
weighting matrixP in (B) is given byP = (1/N)ZE:1Xk- that solutions of local optimizations are always attaieabl

Remark 2: Assumption 1 is a restriction toward the class Theorem 1:Suppose the pairgAy,By) are controllable.
of communication graphs, which is made in order to ensurhen, for anyp > 0, the feasible set
that the well-known average consensus algorithm is appli-
cable. Assumption 2 is used to ensure boundedness of the Q={(B,XFRok=1,..N)|
feasible sets. It is not restrictive, as it represents theswo @©). (@), @) hold fork=1,...,N}
case of disturbance, and if not satisfied, small hypothleticg pounded.
disturbances can be added to the system description, i.e. pryof: Suppose(B, X, Fik = 1,...,N) € Q. Using

additionalgolumns td, Dy a_ndﬁk. Furthermore, note that {ne schur complement, it follows froril(6[] (8) that for an
the tuple(A,Cy) is not required to be detectable. arbitrary ¢ > 0

Since the LMIs [(B), [{I7),[(8) are coupled, they may be X ATy ~TE-1
solved in a centralized manner as the optimization problem X+ A X = G By ijﬁ(p‘itik)l
—PxFc— Pk + XiBiBy X

min (—f3) L
subject to [(B)(D), @), k=1,....N, (11) (RO~ pX) <0, (16)

where the resulting matrice, R deliver the estimator gains

(15)

Completing the squares on the left-hand side yields

Lk, Kk according to[(I0). In the next section we will explore XA + A X —CkTEiflck-i-B(pk-i-Qk)'
the separation of the problem and parallel computation in Pky \Tou_1 P«
order to solve the problem in a distributed manner. (R T—ka) X (R r_kxk)
2
[1l. DISTRIBUTED CALCULATION OF FILTER GAINS _Tk(p_i2< +P) X+ XB Bl X« <0. (17)
T

Parallel and distributed computation is thoroughly dis-
cussed e.g. in [9], and in this section, we use some ®fence, we conclude thgB,Xy) satisfy the Riccati inequality
the methods presented in Section 3 in [9] to calculate > o 5 o
i ing i iatri i i ~ P+ TP ~ PR+ TEp
our estimator gains in a distributed fashion. Solving the X (A — kT k 1)+ (Ac— k™ k 1) X
optimization problem[{111) can be formulated as a separable 21 21y _
problem by defining local representations of the solution —CkTEgleJrB(kaqu)l +XkBkl§—erk < 0. (18)



After pre- and post-multiplyind (18) byk (18) reduces to guarantees thes, attenuation property[ (23). Since the
pair (Ax, Byx) is controllable, these observations guarantee
(Ac— pk+ kp )X L+ X (A pk+Tkp N’ that the Riccati equatio (R0) witly = [13 has a unique
21k nonnegative definite stablllzmg solutiak (e.g., see [15,
=X (Ck Ec"C—B(pc+a))X T +BB{ <0(19) Theorem 3.2.2)). ThusB > y°. Furthermore, sincéA, By)

Associated with this Riccati inequality, consider the Ric!S @ssumed to be controllablg, > 0 and is invertible.

cati equation From Theorem 4.8 in [14], we know thg > 0. These
2. 2 observations imply thaB < y°~. Also, using the relation-
(Aq— Pic+ Tka)ZkJer(,&k— pk+rkp nr ship between solutions to the Riccati equationl (20) and the
21y 21y corresponding Riccati inequality {19) [16, Lemma 8.1], it

_ 1 —1
~ZW(C{ E MG~ St a)Ze+ BBy =0 (20) follows thatXe < 2~ _
y This discussion leads us to conclude that there exist upper
and define bounds on feasiblg and||X||. Indeedy° andZ, are defined

V° = inf y>0: equation[(20) has a nonnegati 021 using the conditions involving the properties of the maisic
= definite solution Ay, G andBy and the constants, px. Hence, these constant

and the matrix are not dependent on the choice of the feasible
From the 7%, control theory [14, Theorems 4.8 and 9.7], '8 and Xe.

it is known that the set wrr)l(isrepmflmum determingsis It remains to show that there is an upper bound on the
nonempty if the palr(Ak ‘2 1,C) is detectable and feasible R, as well. Using the Schur complemeni] (8) is

the pair (A — pk+ kpl By) is stab|I|zabIe Note that by the equivalent toR" X *F < pXc. This further implies
condition of the theorem the pe(lAk Bkz} is controllable; this

“1/2- Ty -1 y—1/2
implies the stabilizability of( A, — kaerpl ,By). Now, let us K TRATRAT <Pl
choosery > 0 such that all unstable unobservable modes of tr (kal/zFJkalekal/z) <np

the matrix pair lie in the region Res < pk”kp . This _ _
pair(A,C) b Ejr o X 2R 2| < y/p.
will guarantee that the paifA — ks " [,Cy) is detectable.

Thus, we conclude thgt® < co. For the Frobenius-norm df, we can now conclude
The feasibility of the Riccati inequality_ (19) also implies
that the following state-feedback#, control problem in- IR = ||)<k/2)<k l/2|:k><k l/Zxk/ZH
volving the system 2 1/2 1/2 2
% ito S [l Mo

= (A SN T Glu (Pt a0 w (22) <vmpl|x¢%12

2= {Bcﬂ i {Eol/z] u which is bounded due to boundedness<pf [ |
and the . performance criterion Now, the decoupled version of the LMI conditiofs$ (&), (7),

(@) is proposed as

[ ladide< 5 [T iwipde vwe s, (40)=0),(23
0 B.Jo

QK- kak PR thBk] {5)(15 8] (26)

has a solution. Indeed, it follows frorh {|19) that I 0
~ p+rp [— 2% xk kH— e
(Ak K k xk CKE lck)xk k+1xk Za.k F B I:k
R e 0
X LA M Xl E )T _ e | <51 ()
X Eglck+ﬁ<pk+qk> 1% '+ BB <0.(24) ) 0 2
T 1
SinceXgl > 0 and [[24) is a strict inequality, the matrix - qlpkk Fp_kr-_
. et AT A
A-Ho S -GEOX (25) %

is Hurwitz. Thus, the closed loop system consisting of thwith QF = XA+ Al XK — CE, "C + B(pk + ak)I. Note
system[(2R) withw = 0 and the state-feedback controller that the LMI-conditions are formulated as non-strict inggu

[P ities, but with additional parametér> 0. However, a® can

U= —B G X be chosen arbitrarily small, it introduces no conservageas.

is exponentially stable. Also, using the completion of We denote the feasible set of thkeh group of the LMIs
squares, it is easy to show from119) that the above controllasQy = {Y« | ([28),(24),28) hold trug. Then, the separable



convex program can be written as Algorlthm 1: Calculation of iteration Step t+1
1) Set the fusion variables fgr=1,...,N

minimize(— % B
k=1

Brrn=1ypn- LAk
subject toY € Q,, BX=p (29) Nl k=1 NC;_:l
k < k V2 2 a _ k k
X =R X=Xy, ka i i(t+1) J kez% (t) QJ’CKEZ//] (t)
for everyk = 1,...,N. Here,3,X;, j = 1,...,N are additional 2) Calculate the new variables far=1,...,N
variables that are needed to make the problem separable. Yelt +1)
k

Remark 3:The optimization problen{{29) can be varied , K K )
in the way that for a given performance paramgier O, =ar :le{l]((_ﬁ —A%(H)B §|B( )—BY|
filter gains for [B) are to be found. Ther,_{29) turns to c
a pure feasibility problem without optimization objective +y (—tr (/\ij(T(t)Xjk)+§HXj (t+1)—Xjk|2)>
and therefore, the variablgg, 8 and their iterations in the je TRuK

following algorithm can be omitted. 3) Set the Lagrange variables fioe=1,...,N

ARt +1) = AK) +c(B(t+1) — BX(t+1))
FE el AN
maximizeq(A~, ..., A™) (30) and for allk=1,....N, j €
where AK = ()\k,AE,/\%,...,A% ) for k=1,..,N is the AS(t+1) = AS() + (X (t+ 1) — XKt + 1))

suitable tuple of Lagrange muﬁtipliers and the dual funttio
q(-) is defined as

The dual problem has the form

q(/~\1,...,/~\N) veo |L1j NL(Yl,...,YN,/N\l,...,/N\N). (31) addmng XJ as equality constraint. For instance, if for
_ KRR _ all k=1,....N Y = (Fe, B, XK, ..., XK), then X(t + 1),k =
L(-) is the augmented Lagrangian function (cf. [9]) 1,...,N can ) be calculated under Assumption 1 using average
B consensus. This will later be demonstrated in the numerical
L(Y, A¥) = z (—B+AK(B - B+ 518 - B?) example.
k:lN c In order to show the convergence of Algorithm 1, two
n ; (tr (/\‘J‘T(Xj _ Xjk)) +2I1% - xijZ) lemmas need to be introduced.
k=1je Mk (32) Lemma 1:The Lagrangian[{32) can be written in terms

with design parameter> 0. The optimization probleni_(80) of the vectorized variables, i.e.

can now be solved iteratively with Algorithid 1, which is Ky K K K K2
initialized with Y(0) € Q, A > 0 and symmetrid\ > 0. L(Yo ") = k; (_B +A5(B—B°) + E'B - B )
Remark 4:0Out of the three steps in Algorithm 1, clearly N TS K C o 2
2) and 3) can be run in parallel by the individual estimators ™ 2 _G;W vedAj) veaX; — +§||Ve((Xj = XP )
separately. Calculation of Step 1 of Algorithm 1 requires Ik (33)

the evaluation of the mean value, which can be done in a pygof: We have the equalities
distributed manner by applying a consensus algorithm. Unde
Assumption 1, average consensus algorithms can be used to ~ tF (A'B) = Z ZAJIBJI = vedA) 'vedB)
calculateB(t+1). In particular, discrete time algorithms are
preferable to keep the concept of an iterative algorithnj [17 A =tr ATA Z ZA = |[veqA)||.
and algorithm which converge in finite-time are useful to
ensure exact convergence [18], [19]. ) u

For the calculation oi(t+ 1) in the case of undirected ~ This Lemma shows, that we can recast the problem into a
graphs, only two steps are needed: All neighbprs . problem of a standard form defined on a finite dimensional
pass theirX/(t) and A}(t) to estimatork. Then, estimator vector space.
k calculatesxk( +1) and passes it back to its neighbors. Lemma 2:For f|xedB xk,xk, )?J.k AR AR Nv(nk* the
The calculation ofX(t + 1) in the case of directed graphs i IS minimization Pk It
more demanding with respect to the graph topology: Usual
average consensus algorithms can be applied when for everfd, min ( BX— AkpX 5IB—B 2
k=1,...,N, the subgraplj induced by nodé and its out- (34)
nelghborhood//{k, isa pglanced graph Thls however can be + (—tr (/\IJ{FXJ!() + C ”)zj _ Xjk|2)>
relaxed by adding additional vanablE#,J Z M, to Yg and e Tk 2



is always attainable.
Proof: First, note that the LMI condition§ (R6)-(28) are 40 8

non-strict inequalities. The definition range of the salnti

matrices X > 0,X¥ > 0, ] € ./ are strict inequalities, but

(26)-(28) imply that there exists & > 0 such thaiXxX > o | 20} |

andXk> 31 for j € . Thus, the feasible s&; is closed o®

and convex. ° %

Following again the proof of Theorem 1,{26) arid1(28) OM——-—-—-—
imply that R, 8%, XX are bounded for alk = 1,...,N. In 10 20 30 40 50 60 70
constrast, the variabI@sjk for j € Ak are not restricted to a Iteration
bounded set by the LMIS_(26)-(28). However, note that the
cost function of[(34) is quadratic in the variabbéjﬁ j € M.
Thus, due to the boundednessRef ¥, XX, we conclude that
the sub-level sets of (84)

C =~ | 1
{Yee Qul - B —A"g + Z|B - BP 200

+ (—tr (/\JKijk) +§||>”<J- —x,-knz) <c} 49

je MUk

Error

Fig. 1. Evolution of the error during iteration for fixe@8l

100{~—" 1

Error andf
‘\
‘\
‘\
|

for ¢ R are bounded. Following the argument in Proposition °
4.1 in [9], Chapter 3, we can conclude that we can equiv- e

alently search for the minimum of the cost function over a % 10 20 30 0 mmo s
non-empty sub-level sef (B5) instead @f. Therefore, we
can conclude thaf (84) is always attainable.

Iteration

B Fig. 2. Evolution of the error (blue dots) and performanaein8a"e (red

Theorem 2:Algorithm 1 is a solution to Problem 1. line) in the algorithm involving optimisation over variasl g.
In particular, the iteration step¥(t),k =1,...,N, can be
calculated in parallel, and satisfy the convergence candit
(13), (19). the variable performance paramef(t),k = 1,...,N, (29),
Proof: Using Lemmdll anfll2, we can follow the stepsyhere 8¥(0) = 100 is set as initialization.
from [9], Section 3.3 and 3.4, in order to prove convergence

: . In the first case, wherg3 is fixed, we evaluate the
of the iterations.

matrix convergence conditiof (14) by calculating the aver-

" age valueX@ve — q_lJ-Zke///jijjk and subsequently Erref
IV. NUMERICAL EXAMPLE EENzle:lejk_vaeHZ_

Like in [6], we consider a system of the forfl (1), with | the second case, involving optimisation ov&; we
03775 0 0 0 0 0 additionally calculatg8®e= L y¥ | B¥ and subsequently we
0.2959 03510 0 0 0 0 have Error= 3L, SR, XK — X824 53, |BX— pava2,

A 1475106232 10078 0 0 0 The plots of the error evolution are shown in Figie 1 and
02340 0 0 05596 O 0 |’ 2. Figure[2 additionally shows the evolution Bf'S. The

0 0 0 04437 11878 00215 graph demonstrates th@® is monotonically increasing,
0 0 0 0 22023 10039 and since it is bounded from above according to Theorem 1,

B= [0_1 lg o} Dy=0.011, forall k=1,....N it must eventually converge to a limit. In fact, it eventyall

_ . . converges to 3-10°.
which is observed by six sensor nodes, sensing two coor- g

dinates each. For every sensor an estimator is implementedBetter performanc@ however is achieved at the expense
where none of the estimators is able to estimate the complétk higher filter gains. For instance, after 70 iterations th
state vector without communication. The communicatio§ONSensus gaiKy is

topology is assumed to be a directed circulant graph and we

use Algorithm 1 to calculate the filter gains. For the numeri- _ _
cal calculations we use YALMIP [20]. Since we are dealing 21.1005 —0.0256 00196 —0.6018 00418 00117
with a directed but balanced graph, we apply the method —0.0215 733369 05599 00073 00025 00021
described in Remark 4 and use complete local represengation —0.0423 -0.8806 998791 00617 00981 00536
of all variablesX; at every estimatok. The algorithm is —0.6033-0.0178 00618 706692 13701 28005
run with both fixed performance paramef@#°"s'= 100 as 0.0415 —0.0054 00972 17726 207775 50466
discussed in Remark 3, and also using optimization overn 0.0117 —0.0003 Q0554 27740 32740 177281




in the fixedf case and

28.8328 —0.0572 00291 —-0.0089 Q0333 Q0655
—0.0397 999887 08962 00198 Q0050 00044
—0.0222 -0.8149 1000003 02984 01414 Q0747
—1.7921-0.0044 03121 710412 14502 25260
0.0751 —0.0035 01384 18242 272461 62623

—0.0177 Q0016 00711 24613 44543 230606

in the variableg case.

We have developed a method for distributed filter design

for

this we separated the centralized problem by introducing

V. CONCLUSION

cooperative 7% -type estimation. In order to achieve

additional variables and then applied an algorithm thatkaor

locally and only needs communication for average consen-
sus.
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