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Abstract
In this article we study the stability of the collective behav-
ior of social foraging swarms, i.e., swarms moving in a pro-
file of nutrient/toxic substances (an attractant/repellent pro-
file) and extend our results in [1]. In particular, we consider
a plane profile and also extend our results for the quadratic,
Gaussian, and multi-modal Gaussian profiles. Moreover,
we analyze the ultimate behavior of the individuals in the
social foraging swarm. The paper closes with new simula-
tion studies that give insights into swarm dynamics.

1 Introduction
Swarming, or aggregations of organisms in groups, can be
found in nature in many organisms ranging from simple
bacteria to mammals. Such behavior can result from sev-
eral different mechanisms. For example, individuals may
respond directly to local physical cues such as concentra-
tion of nutrients or distribution of some chemicals (which
may be laid by other individuals). This process is called
chemotaxis and is used by organisms such as bacteria or so-
cial insects (e.g., by ants in trail following or by honey bees
in cluster formation). As another example, individuals may
respond directly to other individuals (rather than the cues
they leave about their activities) as seen in some higher or-
ganisms such as fish, birds, and herds of mammals.

Evolution of swarming behavior is driven by the advantages
of such collective and coordinated behavior for avoiding
predators and increasing the chance of finding food. For ex-
ample, in [2, 3] Grünbaum explains how social foragers as
a group more successfully perform chemotaxis over noisy
gradients than individually. In other words, individuals do
much better collectively compared to the case when they
forage on their own. Operational principles from such bi-
ological systems can be used in engineering for develop-
ing distributed cooperative control, coordination, and learn-
ing strategies for autonomous multi-agent systems such as
autonomous multi-robot applications, unmanned undersea,
land, or air vehicles. The development of such highly au-
tomated systems is likely to benefit from biological prin-
ciples including modeling of biological swarms, coordina-
tion strategy specification, and analysis to show that group
dynamics achieve group goals. In [1] we developed a sim-
ple M-member “individual-based” continuous time model
of swarming in the presence of an attractant/repellent or nu-
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trient profile. In our model the motion of each individual
is determined by three factors: (i) attraction to the other
individuals on long distances, (ii) repulsion from the other
individuals on short distances, (iii) attraction to the more fa-
vorable regions (or repulsion from the unfavorable regions)
of the attractant/repellent profile. There we analyzed the
stability properties of the model for different profiles. How-
ever, there are some cases that were not considered there.
For example, there we did not consider a plane profile and
considered only valleys of the quadratic and the Gaussian
profiles. Here we consider the plane profile as well as pro-
files that consist of hills, and also extend the results for the
multimodal Gaussian profiles. Furthermore, we analyze the
ultimate behavior of the individuals in the swarm, which
was not done in [1]. We illustrate the theory with simula-
tion examples.

2 The Swarm Model
As in [1, 4, 5] we consider a swarm of M individuals (mem-
bers) in an n-dimensional Euclidean space. We model the
individuals as points and ignore their dimensions. The po-
sition of member i of the swarm is described by xi ∈ R

n.
We assume synchronous motion and no time delays, i.e.,
all the individuals move simultaneously and know the exact
position of all the other individuals. Let σ : R

n → R repre-
sent the attractant/repellent profile or the “σ-profile” which
can be a profile of nutrients or some attractant or repellent
substances (e.g., food/nutrients, pheromones laid by other
individual, or toxic chemicals). Assume that the areas that
are minimum points are favorable by the individuals in the
swarm. For example, assume that σ(y) < 0 represents at-
tractant or nutrient rich, σ(y) = 0 represents a neutral, and
σ(y) > 0 represents a noxious environment at y.

We consider the equation of motion of each individual i [1]

ẋi = −∇xiσ(xi)+
M

∑
j=1, j 6=i

g(xi − x j), i = 1, . . . ,M, (1)

where g(·) represents the function of mutual attraction and
repulsion between the individuals. In this article we will
consider the function considered in [4] which is a special
case of the functions considered in [5] and is given by

g(y) = −y

(

a−bexp

(

−
‖y‖2

c

))

, (2)

where a, b, and c are positive constants such that b > a, and
‖y‖ is the Euclidean norm ‖y‖=

√

y>y. Defining the center
of the swarm as x̄ = 1

M ∑M
i=1 xi it was shown in [1] that



˙̄x = −
1
M

M

∑
i=1

∇xi σ(xi). (3)

Remark: Note that the collective behavior in Eq. (3) has a
kind of averaging (filtering or smoothing) effect. This may
be important if the underlying profile function is a noisy
function (or there is a measurement error or noise in the
system as discussed in [2, 3]).

3 Motion Along a Plane Attractant/Repellent Profile
Assume that the profile is described by

σ(y) = a>σ y+bσ, (4)

where aσ ∈ R
n and bσ ∈ R. Then, we have ∇yσ(y) = aσ.

and ˙̄x = − 1
M ∑M

i=1 aσ = −aσ. This equation implies that the
center of the swarm will be moving with the constant veloc-
ity vector −aσ (and eventually will diverge towards infinity
where the minimum of the profile occurs). Note that the
above motion can be viewed as a model of a foraging herd
that moves in a constant direction with a constant speed such
as the one considered in [6] or it can be viewed as a model
of group of autonomous agents moving in a formation with
a constant speed. The only drawback of this view is that we
cannot a priori specify the formation to be established.

Next, we need to analyze the cohesiveness of the swarm
during its journey to infinity, which is done in the following
result.

Theorem 1 Consider the swarm described by the model in
Eq. (1) with an attraction/repulsion function g(·) as given
in Eq. (2). Assume that the σ-profile of the environment is
given by Eq. (4). Then, in a finite time bounded by

t̄ = max
i∈S

{

−
1
2a

ln

(

ε2
1

2Vi(0)

)}

,

where ε1 =
b
a

√

c
2

exp

(

−
1
2

)

.

all the members of the swarm will converge to (and will stay
within for all t ≥ t̄ ) the hyperball

Bε1(x̄) = {y : ‖y− x̄‖ ≤ ε1}.

Proof: Similar to the proof Theorem 1 in [4].

4 Quadratic Attractant/Repellent Profiles
Consider another simple profile,

σ(y) =
Aσ

2
‖y− cσ‖

2 +bσ, (5)

where Aσ ∈ R, bσ ∈ R, and cσ ∈ R
n. Note that this profile

has a global extremum (either a minimum or a maximum
depending on the sign of Aσ) at y = cσ. Defining the error
between the center x̄ and the extremum point cσ as eσ = x̄−
cσ it can be shown that [1] ėσ = ˙̄x =−Aσeσ. Note that in [1]
we considered the case in which Aσ > 0 and concluded that
as t → ∞ we have eσ → 0. If Aσ < 0 we will have two
different cases.

Case 1 x̄(0) 6= cσ: For this case from the above error equa-
tion we conclude that as t → ∞ we have x̄ → ∞ (i.e., the
center of the swarm diverges from the global maximum cσ
of the profile). In other words, for any D > 0 (no matter
how large) it can be shown that ‖x̄− cσ‖ > D is satisfied
in a finite time, implying that ‖x̄‖ leaves any bounded D-
neighborhood of cσ in a finite time.

Case 2 x̄(0) = cσ: If this is the case then we will have x̄ = cσ
for all t. In other words, for this case the swarm will be
either “trapped” around the maximum point because of the
interindividual attraction (i.e., desire of the individuals to be
close to each other) or will disperse in all directions if the
interindividual attraction is not strong enough. Note, how-
ever, that even if they disperse the center x̄ will not move
and stay at cσ.

Lemma 1 Consider the swarm described by the model in
Eq. (1) with interindividual attraction/repulsion function
g(·) as given in Eq. (2). Assume that the σ-profile of the
environment is given by Eq. (5). As t → ∞ we have

• If Aσ > 0, then x̄ → cσ [1].

• If Aσ < 0 and x̄(0) 6= cσ, then x̄ → ∞.

The above analysis concerns the motion of the center of the
swarm. However, it does not imply anything about the co-
hesiveness of the swarm. Considering the cohesiveness of
the swarm, we see that Lemma 2 in [1] holds also for the
case Aσ < 0 provided that Aσ > −aM. In other words, the
statement of the lemma can be modified as follows.

Lemma 2 Consider the swarm described by the model in
Eq. (1) with interindividual attraction/repulsion function
g(·) as given in Eq. (2). Assume that the σ-profile of the en-
vironment is given by Eq. (5) and that Aσ > −aM. Then, as
t → ∞ for all individuals i = 1, . . . ,M, we have xi → Bε2(x̄)
(i.e., all individuals converge to and stay within the hyper-
ball Bε2(x̄)), where

ε2 =
b(M−1)

aM +Aσ

√

c
2

exp

(

−
1
2

)

.

The above result implies that as t → ∞, asymptotically we
will have ‖ei‖≤ ε2. Note, however, that for any small λ > 0
and ε > ε2 defined as

ε =
b(M−1)

aM +Aσ−λ

√

c
2

exp

(

−
1
2

)

one can show that for all i = 1, . . . ,M, the individual position
xi will enter Bε(x̄) in a finite time. This observation, together
with Lemmas 1 and 2 lead us to the following result.

Theorem 2 Consider the swarm described by the model
in Eq. (1) with interindividual attraction/repulsion function
g(·) as given in Eq. (2). Assume that the σ-profile of the
environment is given by Eq. (5) and that Aσ > −aM. Then,
the following hold



• If Aσ > 0, then for any ε > ε2 all individuals i =
1, . . . ,M, will enter Bε(cσ) in a finite time [1],

• If Aσ < 0 and and x̄(0) 6= cσ, then for any D < ∞ all
individuals i = 1, . . . ,M, will exit BD(cσ) in a finite
time.

5 Gaussian Attractant/Repellent Profiles
Consider a profile given by

σ(y) = −
Aσ

2
exp

(

−
‖y− cσ‖

2

lσ

)

+bσ, (6)

where Aσ ∈ R, bσ ∈ R, lσ ∈ R
+, and cσ ∈ R

n.

For this case one can show that Lemma 3 in [1] holds (with
only a small modification due to the fact that Aσ can be neg-
ative). We repeat it here for conveniance of the reader.

Lemma 3 [1] Consider the swarm described by the model
in Eq. (1) with interindividual attraction/repulsion function
g(·) as given in Eq. (2). Assume that the σ-profile of the
environment is given by Eq. (6). Then, as t → ∞ for all
individuals i = 1, . . . ,M we have xi → Bε3(x̄), for

ε3 =
b(M−1)

aM

√

c
2

exp

(

−
1
2

)

+
|Aσ|

aM

√

2
lσ

exp

(

−
1
2

)

.

This result shows that as time progresses the individuals will
form a cohesive swarm around the center x̄ and will preserve
its cohesiveness during motion. Now, we have to analyze
the motion of x̄ in order to determine the overall behavior of
the swarm.

Lemma 4 Consider the swarm described by the model in
Eq. (1) with interindividual attraction/repulsion function
g(·) as given in Eq. (2). Assume that the σ-profile of the
environment is given by Eq. (6). Then, as t → ∞ we have

• If Aσ > 0, then ‖eσ‖ ≤ emax = maxi=1,...,M ‖ei‖, [1]

• If Aσ < 0 and ‖eσ(0)‖> emax(0) (here we assume that
xi(0) 6= x j(0) for at least one pair of individuals 1 ≤
i, j ≤ M and therefore emax(0) > 0), then ‖eσ(t)‖ →
∞.

Proof: Now, let Vσ = 1
2 e>σ eσ. Then, its derivative along the

motion of the swarm is given by

V̇σ = −
Aσ

Mlσ

M

∑
i=1

exp

(

−
‖xi − cσ‖

2

lσ

)

‖eσ‖
2

−
Aσ

Mlσ

M

∑
i=1

exp

(

−
‖xi − cσ‖

2

lσ

)

ei>eσ,

where we used the fact that xi − cσ = ei + eσ. The case in
which Aσ > 0 was proved in [1]. Here we will consider only
the Aσ < 0 case.

From the above equation it can be shown that

V̇σ ≥
|Aσ|

Mlσ

M

∑
i=1

exp

(

−
‖xi− cσ‖

2

lσ

)

‖eσ‖
[

‖eσ‖− emax

]

,

which implies that if ‖eσ‖> emax, we have V̇σ > 0. In other
words, ‖eσ‖ will increase. From Lemma 3 we have that emax

is decreasing. Therefore, since by hypothesis ‖eσ(0)‖ >

emax(0) we have that V̇σ > 0 holds for all t. Now, given any
large but fixed D > 0 and ‖eσ(t)‖ ≤ D we have

exp
(

− ‖xi−cσ‖2

lσ

)

‖eσ‖
[

‖eσ‖− emax

]

≥

exp
(

−
(D2+ε2

3)
lσ

)

D
[

D− ε3

]

> 0

implying that

V̇σ ≥
|Aσ|

lσ
exp

(

−
(D2 + ε2

3)

lσ

)

D
[

D− ε3

]

> 0

and using a corollary of the Chetaev Theorem [7] we con-
clude that ‖eσ‖ will exit the D-neighborhood of cσ.

Note that the result in Lemma 4 makes intuitive sense. If
we have a valley (i.e., a minimum) it guarantees that the
individuals will “gather” around it (as expected). If we have
a hill (i.e., a maximum) and all the individuals are located on
one side of the hill, it guarantees that the individuals diverge
from it (as expected). If there is a hill, but the individuals
are evenly spread around it, then we cannot conclude neither
convergence nor divergence. This is because it can happen
that the swarm may move to one side and diverge or the
interindividual attraction forces can be counterbalanced by
the interindividual repulsion combined with the repulsion
from the hill so that the swarm does not move away from
the hill.

Theorem 3 Consider the swarm described by the model
in Eq. (1) with interindividual attraction/repulsion function
g(·) as given in Eq. (2). Assume that the σ-profile of the
environment is given by Eq. (6). Then, as t → ∞ we have

• If Aσ > 0, then all individuals i = 1, . . . ,M, will enter
(and stay within) B2ε3(cσ), [1]

• If Aσ < 0 and ‖eσ(0)‖ ≥ emax(0), then all individuals
i = 1, . . . ,M, will exit BD(cσ) for any fixed D > 0.

For the case Aσ > 0 Lemma 3 states that the swarm will have
a maximum size of ε3, i.e., ‖eσ‖ ≤ ε3 for all i = 1, . . . ,M,
and Lemma 4 states that the swarm center will converge to
the emax and therefore to the ε3 neighborhood of cσ, i.e.,
‖eσ‖ ≤ emax ≤ ε3. Combining these two bounds we obtain
the 2ε3 in the first case in Theorem 3.

Theorem 3 is a parallel of Theorem 2. However, here we
have a weaker result since we cannot guarantee that x̄ → cσ
and we have a larger bound on the swarm size (2ε3 here
compared to ε2 in Theorem 2).



6 Multimodal Gaussian Attractant/Repellent Profiles
Now, we will consider a profile which is a combination of
Gaussian profiles. In other words, we consider the profile
given by

σ(y) = −
N

∑
i=1

Ai
σ

2
exp

(

−
‖y− ci

σ‖
2

li
σ

)

+bσ, (7)

where ci
σ ∈ R

n, li
σ ∈ R

+, Ai
σ ∈ R for all i = 1, . . . ,N, and

bσ ∈ R. Note that since the Ai
σ’s can be positive or negative

there can be both hills and valleys leading to a “more irreg-
ular” profile. In [8], where social foraging was considered
as an optimization process, a profile of this type was consid-
ered and convergence to minima of the profile was shown in
simulation. For this profile we have the following results.

Lemma 5 [1] Consider the swarm described by the model
in Eq. (1) with interindividual attraction/repulsion function
g(·) as given in Eq. (2). Assume that the σ-profile of the
environment is given by Eq. (7). Then, as t → ∞ for all
individuals i = 1, . . . ,M, we have xi → Bε4(x̄), for

ε4 =
b(M−1)

aM

√

c
2

exp

(

−
1
2

)

+
1

aM

N

∑
j=1

|A j
σ|

√

2

l j
σ

exp

(

−
1
2

)

.

Now, we have the following result, which is different
from [1].

Lemma 6 Consider the swarm described by the model in
Eq. (1) with interindividual attraction/repulsion function
g(·) as given in Eq. (2). Assume that the σ-profile of the
environment is given by Eq. (7). Moreover, assume that for
some k,1 ≤ k ≤ N, we have

‖xi(0)− ck
σ‖ ≤ hk

√

lk
σ

for some hk and for all i = 1, . . . ,M, and that for all j =
1, . . . ,N, j 6= k we have

‖xi(0)− c j
σ‖ ≥ h j

√

l j
σ

for some h j, j = 1, . . . ,N, j 6= k and for all i = 1, . . . ,M.
(This means that the swarm is near ck

σ and far from other
c j

σ, j 6= k.) Moreover, assume that

Ak
σ

√

lk
σ

hk exp
(

−h2
k

)

>
1
α

N

∑
j=1, j 6=k

|A j
σ|

√

l j
σ

h j exp
(

−h2
j

)

,

is satisfied for some 0 < α < 1. Then, for ek
σ = x̄− ck

σ as
t → ∞ we will have

• If Ak
σ > 0, then ‖ek

σ(t)‖ ≤ ε4 +αhk

√

lk
σ

• If Ak
σ < 0 and ‖ek

σ(0)‖ ≥ emax(0) + αhk

√

lk
σ,

then ‖ek
σ(t)‖ ≥ ε4 + αhk

√

lk
σ, where emax =

maxi=1,...,M{ei}.

Proof: Let V k
σ = 1

2 ek>
σ ek

σ be the Lyapunov function.

Case 1: Ak
σ > 0: Taking the derivative of V k

σ along the mo-
tion of the swarm one can show that

V̇ k
σ ≤ −

Ak
σ

Mlk
σ

M

∑
i=1

exp

(

−
‖xi − ck

σ‖
2

lk
σ

)

‖ek
σ‖×

[

‖ek
σ‖− emax −αhk

√

lk
σ

]

,

which implies that we have V̇ k
σ < 0 as long as ‖ek

σ‖> emax +

αhk

√

lk
σ, and from Lemma 5 we know that as t →∞ we have

emax(t) ≤ ε4.

Case 2: Ak
σ < 0: Similar to above, for this case it can be

shown that

V̇ k
σ ≥

|Ak
σ|

Mlk
σ

M

∑
i=1

exp

(

−
‖xi− ck

σ‖
2

lk
σ

)

‖ek
σ‖×

[

‖ek
σ‖− emax−αhk

√

lk
σ

]

,

which implies that if ‖ek
σ‖ > emax +αhk

√

lk
σ, we have V̇σ >

0. In other words, ‖ek
σ‖ will increase. From Lemma 5 we

have that emax is decreasing. Therefore, since by hypothesis
‖ek

σ(0)‖ > emax(0)+ αhk

√

lk
σ we have that V̇σ > 0 holds at

t = 0. Now, consider the boundary ‖ek
σ‖ = ε4 + hk

√

lk
σ. It

can be shown that on the boundary we have

V̇σ ≥
|Ak

σ|hk(1−α)
(

ε4 +hk

√

lk
σ

)

exp
(

−h2
k

)

√

lk
σ

> 0,

from which once again using (a corollary to) the Chetaev
Theorem we conclude that ‖ek

σ‖ will exit the ε4 + hk

√

lk
σ-

neighborhood of ck
σ.

Now, using the results of the above two lemmas, i.e., Lem-
mas 5 and 6, we can state the following theorem.

Theorem 4 Consider the swarm described by the model
in Eq. (1) with interindividual attraction/repulsion function
g(·) as given in Eq. (2) with linear attraction and bounded
repulsion. Assume that the σ-profile of the environment is
given by Eq. (7). Assume that the conditions of Lemma 6
hold. Then, as t → ∞ all individuals will

• Enter the hyperball Bε5(c
k
σ), where ε5 = 2ε4 +

αhk

√

lk
σ, if Ak

σ > 0, or

• Leave the hk

√

lk
σ-neighborhood of ck

σ, if Ak
σ < 0.

The only drawback of the above result is that we need

2ε4 +αhk

√

lk
σ < hk

√

lk
σ

in order for the result to make sense. This implies that we
need

ε4 <

(

1−α
2

)

hk

√

lk
σ

which sometimes may not be easy to satisfy. Note, how-
ever, that for swarms with a large number of individuals
(i.e., M → ∞) we have ε4 ≈ ε1 and this is easier to satisfy.
One issue to note is that ε4 (as well as the other bounds in-
cluding ε1 and ε2) is a very conservative bound. In reality,



the actual size of the swarm is typically much smaller than
the bound. Therefore, effectively, ε4 can be replaced with
emax(∞) < ε4 and the above condition may be satisfied more
easily.

7 Analysis of Individual Behavior in a Cohesive Swarm
The results in the previous sections specify whether the
swarm will diverge or converge, and if it converges they
specify in which regions of the profile it will converge, to-
gether with bounds on the swarm size. However, they do
not provide information about the ultimate behavior of the
individuals. In other words, they do not specify whether
the individuals will eventually stop moving or will end up
in oscillatory motions within the specified regions. In this
section, we will investigate this issue. In other words, we
will analyze the ultimate behavior of the individuals in a
quadratic profile with Aσ > 0, in a Gaussian profile with
Aσ > 0, and in multimodal Gaussian profile for Ak

σ > 0
and with initial conditions and profile characteristics as in
Lemma 6. Note that such analysis was not done in [1]. First,
we define the state x of the system as the vector of the po-
sitions of the swarm members x = [x1>, . . . ,xM>]>. Let the
invariant set of equilibrium points be

Ωe = {x : ẋ = 0}.

We will prove that for the above mentioned cases as t → ∞
the state x(t) converges to Ωe, i.e., eventually all the indi-
viduals stop moving.

Theorem 5 Consider the swarm described by the model in
Eq. (1) with an attraction/repulsion function g(·) as given
in Eq. (2). Assume that the σ-profile is one of the following

• A quadratic profile in Eq. (5) with Aσ > 0,

• A Gaussian profile in Eq. (6) with Aσ > 0, or

• A multimodal Gaussian profile in Eq. (7) with condi-
tions of Lemma 6 for the Ak

σ > 0 case satisfied.

Then, as t → ∞ we have the state x(t) → Ωe.

Proof: Choose the generalized Lyapunov function defined
as
J(x) =

M

∑
i=1

σ(xi)+
1
2

M−1

∑
i=1

M

∑
j=i+1

[

a‖xi − x j‖2 +bcexp

(

−
‖xi − x j‖2

c

)]

whose gradient at xi is easily shown to be given by

∇xi J(x) =−ẋi.

Now, taking the time derivative of the Lyapunov function
along the motion of the system we obtain

J̇(x) = [∇xJ(x)]> ẋ =
M

∑
i=1

[∇xi J(x)]> ẋi = −
M

∑
i=1

‖ẋi‖2 ≤ 0,

for all t. Now, note that for all the cases in the hypothesis
of the theorem, we have J(x) bounded from below and the
set defined as

Ωc = {x : J(x) ≤ J(x(0))}

is compact and positively invariant with respect to the mo-
tions of the system. Then, we can apply LaSalle’s Invari-
ance Principle from which we conclude that as t → ∞ the
state x converges to the largest invariant subset of the set
Ω ⊂ Ωc defined as

Ω = {x : J̇(x) = 0} = {x : ẋ = 0}= Ωe.

Since each point in Ωe is an equilibrium, Ωe is an invariant
set and this proves the result.

One issue to note here is that for the cases excluded in the
above theorem, i.e., for the plane profile, quadratic profile
with Aσ < 0, Gaussian profile with Aσ < 0, and the multi-
modal Gaussian profile for the Ak

σ < 0 case or Ak
σ > 0 case

not necessarily satisfying the conditions of Lemma 6, the
set Ωc may not be compact. Therefore, we cannot apply
LaSalle’s Invariance Principle. Moreover, since they are di-
verging, intuitively we do not expect them to stop their mo-
tion. Furthermore, note that for the plane profile we have
Ωc = /0. In other words, there is no equilibrium for the
swarm moving in a plane profile.

8 Simulation Examples

In this section we will provide some simulation examples
to illustrate the theory in the preceding sections. We chose
an n = 2 dimensional space for ease of visualization of the
results and used the region [0,30]× [0,30] in the space. In
all the simulations performed below we used M = 11 indi-
viduals. As parameters of the attraction/repulsion function
g(·) in Eq. (2) we used a = 0.01, b = 0.4, and c = 0.01 in
most of the simulations and a = 0.1 in one simulation. We
performed simulations for all the profiles discussed in this
article.

The upper left plot in Figure 2 is for a plane profile with
aσ = [0.1,0.2]>. One easily can see that, as expected, in-
dividuals move along the gradient aσ exiting the simulation
region toward unboundedness. Note that initially some of
the individuals move in a direction opposite to the negative
gradient. This is because the interindividual attraction is
much stronger than the intensity of the profile. In contrast, if
we had a profile with intensity high enough to dominate the
interindividual attraction, then we would not observe this
type of motion. This, of course, does not mean that the
swarm will not aggregate. As they move they will eventu-
ally aggregate as was shown in the preceding sections.

Next, consider a quadratic profile with extremum at cσ =
[20,20]> and magnitude Aσ = ±0.02 (see the upper two
plots in Figure 1). The upper left plot shows the paths of
the individuals for the case Aσ > 0, whereas the plot on the
upper right is for the Aσ < 0 case. Once more, we observe
that the results support the analysis of preceding sections.
Note also that the center x̄ of the swarm converges to the
minimum of the profile cσ for the Aσ > 0 case and diverges
from the maximum for the Aσ < 0 case (plots of which are
not shown here for space limitations).



Figure 1: The response for a multimodal Gaussian profile.

Results of a similar nature were obtained also for the Gaus-
sian profile as shown in the lower two plots in Figure 1.
Once more we chose cσ = [20,20]> as the extremum of the
profile. The other parameters of the profile were chosen to
be Aσ = ±2 and lσ = 20. Note that for the Aσ > 0 case,
even though in theory we could not prove that x̄ → cσ, in
simulations (not shown here) we observed that this is appar-
ently the case. This was happening systematically in all the
simulations that we performed.

In the simulation examples for the multimodal Gaussian
profile we used a profile which has several minima and max-
ima, and the global minimum is located at [15,5]> with a
magnitude of 4 and a spread of 10. The upper right plot
in Figure 2 shows an example run with initial member po-
sitions nearby a local minimum and shows convergence of
the entire swarm to that minimum. The attraction parameter
a was chosen to be a = 0.01 for this case. The lower left
plot, on the other hand, illustrates the case in which we in-
creased the attraction parameter to a = 0.1. You can see that
the attraction is so strong that the individuals climb gradi-
ents to form a cohesive swarm (the extremum at (15,10) is a
maximum). For this and similar cases, the manner in which
the overall swarm will behave (where it will move) depends
on the initial position of the center x̄(0) of the swarm. For
this run the center happened to be located on a region which
caused the swarm to diverge. For some other simulation
runs (not presented here) with different initial conditions the
entire swarm converges to either a local or global minima.
The lower left plot in Figure 2 shows a run for which we
decreased the attraction parameter again to a = 0.01. For
this case you can see that the swarm fails to form a cohesive
cluster since the initial positions of the individuals are such
that they move to a nearby local minima and the interindi-
vidual attraction is not strong enough to “pull them out” of
these valleys. This causes formation of several groups or
clusters of individuals at different locations of the space.
For these reasons, the center x̄ of the swarm does not con-

Figure 2: The response for a multimodal Gaussian profile.

verge to any minimum (as expected). Note, however, that
Lemma 5 still holds, but ε4 is large and includes all the re-
gion in which the individuals converge. Note also that dur-
ing their motion to the groups, the individuals try to avoid
climbing gradients and this results in motions resembling
the motion of individuals in real biological swarms.
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[2] D. Grünbaum, “Schooling as a strategy for taxis in
a noisy environment,” in Animal Groups in Three Dimen-
sions, J. K. Parrish and W. M. Hamner, Eds., pp. 257–281.
Cambridge Iniversity Press, 1997.
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