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Cooperative Exploration of Level Surfaces of Three Dimensional
Scalar Fields ?

Wencen Wu aand Fumin Zhang a

aElectrical and Computer Engineering, Georgia Institute of Technology,
Atlanta, GA, 30332

Abstract

We develop strategies for a group of mobile sensing agents to cooperatively explore level surfaces of an unknown 3D scalar field. A
cooperative Kalman filter is constructed to combine sensor readings from all agents and give estimates of the field value and gradient at
the center of the formation formed by the sensing agents. The formation formed by the agents is controlled to track curves on a level
surface in the field under steering control laws. We prove that the formation center can move to a desired level surface and can follow a
curve with known frame and curvatures. In particular, we present results on tracking lines of curvature on a desired level surface, revealing
the 3D geometry of the scalar field. Taubin’s algorithm is modified and applied to detect and estimate principal curvatures and principal
directions for lines of curvature. We prove the sufficient and necessary conditions that ensure reliable estimates using Taubin’s algorithm.
We also theoretically justify the minimum number of agents that can be utilized to accomplish the exploration tasks. Simulation results
demonstrate that a line of curvature on a desired level surface can be detected and traced successfully.

Key words: Cooperative exploration; Curvature estimation; Cooperative filtering.

1 Introduction

The problem of cooperative exploration investigates how to
deploy a group of collaborative mobile agents to explore an
unknown scalar field efficiently and adaptively [3] [6]. Co-
operative exploration missions in the literature include, but
are not limited to, climbing gradients [15], cooperative path
following [7], and monitoring environmental boundaries [9]
[10]. Most existing results are for exploring two dimensional
(2D) scalar fields. In this paper, we focus on the problem
of exploring three dimensional (3D) scalar fields. This work
significantly extends the earlier results on 2D cooperative
exploration introduced by Zhang and Leonard [21].

We control a group of agents to move in a formation so
that the local structure of the field can be estimated from
the measurements taken by all the agents. To combine the
measurements from the agents, a cooperative Kalman filter is
constructed to give estimates of the field value and gradient
at the formation center. We estimate the Hessian matrix that

? The research work is supported by ONR grants N00014-08-1-
1007, N00014-09-1-1074, and N00014-10-10712 (YIP), and NSF
grants ECCS- 0841195 (CAREER), CNS-0931576, and ECCS-
1056253.

Email addresses: wwencen3@gatech.edu (Wencen Wu),
fumin@gatech.edu (Fumin Zhang).

is used in the implementation of the cooperative Kalman
filter by relating each of its elements to the curvatures of
the local level surfaces of the field in a neighborhood of the
formation center.

The desired formation is maintained by the formation shape
control law described in [19–21], which is based on Jacobi
transform. The Jacobi transform decouples the dynamics of
the formation center from the dynamics of the formation
shape, which allows us to develop separate control laws.
Following a differential geometric approach [16] [12] [11],
we develop steering control laws that control the formation
center to detect and move to a desired level surface and track
a curve on the surface with known frame and curvatures.
Once the formation shape control and the formation center
motion control are combined, the formation can be viewed
as a “super-agent” that is able to accomplish curve tracking
tasks.

Among all possible curves that the formation may detect
and follow, we study the problem of controlling the for-
mation to detect and track one of the lines of curvature on
a desired level surface. Lines of curvature are curves that
are associated with principal directions and principal cur-
vatures [5] [14], which measure how the surface bends. To
implement the tracking control, we apply Taubin’s algo-
rithm [17], which is modified to generate estimates of prin-
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cipal directions and principal curvatures with a small num-
ber of agents in a formation at each time instant. An impor-
tant concern here is the quantity of agents required to ob-
tain valid estimates. However, Taubin’s algorithm and other
related works [4] [8] were developed for computer vision
applications and do not contain conditions about the mini-
mum number of agents and their arrangements to generate
valid estimates. We establish sufficient and necessary con-
ditions for Taulin’s algorithm to provide non-singular es-
timates. The conditions theoretically justify the minimum
number of agents required and constraints on the formation
shape. Our results have not been reported in literature on
Taubin’s algorithm.

We have found that some techniques developed for the 2D
exploration in earlier works [21] can be applied to the 3D
case with only slight extension. These include the cooper-
ative Kalman filtering algorithm and the formation control
law based on Jacobi transform. Such techniques are only
briefly reviewed in this paper. On the other hand, we have
discovered that the 3D exploration offers significantly more
difficult challenges to curvature estimation, Hessian estima-
tion, and tracking control, which are the main topics of this
paper.

This paper is organized as follows. In Section 2, we review
the information dynamics and the formation shape control
for the cooperative exploration problems. In Section 3, we
develop control laws to control the formation center to track
a curve on a level surface. In Section 4, the principal curva-
ture estimation algorithm and the constraints on agent quan-
tity are discussed. Estimation of the Hessian matrix is per-
formed in Section 5. Simulation results are shown in Section
6, and concluding remarks are presented in Section 7.

2 Extension of the Information Dynamics and the For-
mation Control to 3D

Assume that z(r) is an unknown smooth scalar field where
r∈R3. The field consists of level surfaces Γ(r) = {r|z(r) =
Ci, i = 1, · · ·}, where Ci are constants that correspond to
different field values. The scalar field z(r) is perturbed by
noises. We consider the problem of estimating the local geo-
metric structure of the field by deploying a group of sensing
agents in the field. In this section, we review the informa-
tion dynamic model and the cooperative control for the co-
operative exploration problem discussed in [21] and make
extensions to 3D space.

2.1 Information Dynamics

Suppose N sensing agents are deployed to explore an un-
known field. In most applications, the measurements are
taken discretely over time. We assume that each agent can
only take one measurement of the field at each time instant
k where k is an integer. At time instant k, the position of the
ith agent is denoted by ri,k and the field value at the position

ri,k is denoted as zi,k, where i = 1,2, · · · ,N. The measure-
ment taken by the ith agent can be written as

pi,k = zi,k +wi,k +ni,k, (1)

where ni,k is i.i.d Gaussian noise and wi,k is spatially corre-
lated Gaussian noise.

Since the group of agents can be considered as a “super-
agent” when exploring the field, we are interested in the
estimates of the field value and gradient at the formation
center rc,k at each time instant, where rc,k is defined as the
average of the positions of all the agents in the form of
1
N ∑

N
i=1ri,k. Therefore, the state is chosen as sk = (zc,k,∇zT

c,k)
T

where zc,k is the field value and ∇zc,k is the field gradient at
rc,k. Using Taylor’s expansion to approximate zi,k, we can
get

zi,k≈zc,k +(ri,k−rc,k)T
∇zc,k +

1
2
(ri,k−rc,k)T

∇
2zc,k(ri,k−rc,k).

(2)
where ∇2zc,k is the Hessian of the field at rc,k. Let
Ck be a N × 4 matrix with the ith row defined by
[1,(ri,k−rc,k)T ] for i = 1,2, ...,N. Let Dk be a N×9 matrix
with its ith row defined by 1

2 ((ri,k − rc,k)⊗ (ri,k − rc,k))T

where ⊗ is the Kronecker product. Define Hc,k as the
estimate of the Hessian ∇2zc,k. Suppose ~Hc,k is de-
fined by rearranging the elements of Hc,k as ~Hc,k =
[Hc,k(11),Hc,k(21),Hc,k(31),Hc,k(12),Hc,k(22),Hc,k(32),Hc,k(13)
,Hc,k(23),Hc,k(33)]. Now the measurement equation can be
written as

pk = Cksk +Dk~Hc,k +wk +Dkek +nk, (3)

where ek is the error vector associated with estimating the
Hessian. The variables pk, wk and nk are N×1 vectors, i.e.
pk = [pi,k], wk = [wi,k] and nk = [ni,k] where i = 1, · · · ,N.
When the formation center moves, the state sk evolves ac-
cording to

zc,k = zc,k−1 +(rc,k− rc,k−1)T
∇zc,k−1,

∇zc,k = ∇zc,k−1 +Hc,k−1(rc,k− rc,k−1). (4)

Define hk−1 = (0,E[Hc,k(rc,k−rc,k−1)]T )T , I3×3 as the 3×3

identity matrix, and As
k−1 =

(
1 (rc,k− rc,k−1)T

0 I3×3

)
. Then

the state equation can be expressed as

sk = As
k−1sk−1 +hk−1 + εk−1, (5)

where εk−1 is a N×1 noise vector that is independent of the
measurement noise nk.

2.2 Cooperative Kalman Filter

Once the state equation (5) and measurement equation (3)
are known, a cooperative Kalman filter is constructed to re-
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duce the measurement noise. Denote Uk = E[ekeT
k ], Rk =

E[nknT
k ] and Mk = E[εkεT

k ] where ek, nk and εk are intro-
duced in section 2.1. The cooperative Kalman filter equa-
tions are as follows

sk(−) = As
k−1sk−1(+) +hk−1,

Pk(−) = As
k−1Pk−1(+)AsT

k−1 +Mk−1,

Kk = Pk(−)C
T
k [CkPk(−)C

T
k +DkUkDT

k +Rk]−1,

sk(+) = sk(−) +Kk(pk−Cksk(−)−Dk~Hc,k),

P−k(+) = P−1
k(−) +CT

k [DkUkDT
k +Rk]−1Ck. (6)

The subscript (−) and (+) indicate the predictions and the
updated estimates, respectively. The convergence of the co-
operative Kalman filter can be proved in a similar way as the
proof in [21]. We will discuss the estimates of the Hessian
term Hc,k in Section 5.

Note: For the rest of the paper, we drop the subscript k for
simplicity whenever only the kth step is concerned.

2.3 Formation Shape Control

We use Jacobi vectors to describe the formation of the
agents: [rc,q1, · · · ,qN−1] = [r1,r2, · · · ,rN ]Ψ, where Ψ is the
Jacobi transform [20]. For example, if N = 3, we can define
the Jacobi vectors to be q1 =

√
2

2 (r2− r3),q2 =
√

6
6 (2r1−

r2−r3). Assume that each agent has unit mass. The dynam-
ics of the agents are described by Newton’s equations: r̈i =
fi, i = 1, · · · ,N, where fi is the control force to the ith agent.
Given the Jacobi vectors and the dynamics of the agents,
the following relationships hold: q̈ j = u j, j = 1, · · · ,N− 1
and Nr̈c = fc, where u j are the formation control forces that
need to be designed and fc is the force applied to the forma-
tion center. The forces u j that use q j as feedback, the force
fc that uses rc as feedback, and the forces fi are related by
the Jacobi transform:

[fc,u1, · · · ,uN−1] = [f1, f2, · · · , fN ]Ψ. (7)

The control of the formation shape and the control of the
formation center motion are decoupled via the Jacobi trans-
form Ψ.

Let q0
j , j = 1, · · · ,N− 1 be the desired Jacobi vectors that

define a certain formation. For example, if N = 3 and the
agents form an equilateral triangle with side length a, then
q0

1 =
√

2
2 ae1 and q0

2 =
√

2
2 ae2 where e1 and e2 are two desired

directions with unit length. In order to keep all the sensing
agents in the desired formation so that the q j’s converge to
q0

j , we use the control laws in the form of: u j =−K1(q j−
q0

j)−K2q̇ j for j = 1, · · · ,N−1, where K1 and K2 are positive
gains. It can be proved that under this control law, the sensing
agents converge to the desired formation with an exponential
rate of convergence [21].

3 Curve Tracking on a Level Surface

In this section, we design 3D steering control laws that con-
trol the formation center to move to a desired level surface
and track a curve with known curvatures and frame on the
level surface.

3.1 Curve Tracking Dynamics

At each time instant, for a 3D scalar field, consider a level
surface with the level value zc passing through the formation
center rc. The gradients of the 3D scalar field are perpen-
dicular to the level surfaces. At the formation center rc, a
unit normal vector n, which is perpendicular to the surface
can be defined as n = ∇zc

‖∇zc‖ . When the formation is moving
in the field at unit speed, its velocity vector is a unit vector
X1. The field value zc, which is estimated by the cooperative
Kalman filter, is changing with respect to time:

żc = ∇zc ·
drc

dt
= ∇zc ·X1 = ‖∇zc‖n ·X1. (8)

Suppose γ(s) is a curve passing through the formation center
rc that lies on the level surface, where s is the arc-length pa-
rameter. Then a right-handed orthonormal frame (x1,x2,n)
for the curve is established where x1 is the unit tangent vec-
tor to the curve and x2 is defined by n× x1. To describe
the trajectory traced by the formation center moving with
unit speed, a natural frame [2] can be established. Let X1
be the unit tangent vector to the trajectory of the forma-
tion center, and let Nc and X2 be unit normal vectors to the
trajectory that are parallel transported along the trajectory
from an arbitrarily chosen initial configuration so that X1,
X2, and Nc always form an orthornormal basis of R3. Fig.
1 illustrates the frame [x1,x2,n] of the curve γ(s) on a level
surface that passing through the formation center and the
frame [X1,X2,N] of the formation center trajectory.

Fig. 1. The frame [x1,x2,n] of a curve γ(s) on a level surface
that is passing through the formation center and the natural frame
[X1,X2,N] of the trajectory of the formation center.

There are two sets of dynamic equations that are similar
to the well-known Frenet-Serret equations that describe the
changes of the two frames, one set for the curve γ(s) on the
level surface, and the other for the trajectory of the formation
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center. We list the two sets of equations side by side as
follows.

γ̇ = αx1 ṙc = X1

ẋ1 = ακnn+ακgx2 Ẋ1 = uNc + vX2

ẋ2 =−ακgx1 +ατgn Ẋ2 =−vX1

ṅ =−ακnx1−ατgx2 Ṅc =−uX1. (9)

The term α = ds/dt is the instantaneous rate of change for
the curve length of γ(s) when the formation center moves.
The terms κn, κg and τg are the normal curvature, the
geodesic curvature, and the geodesic torsion of the curve
γ(s) on the level surface. We will discuss their geometric
meaning in more detail in Section 4.1. The terms u and v
are the steering controls for the formation center moving at
the unit speed.

3.2 Steering Control Law Design

We define the steering control problem for the formation
center as follows:

Problem 3.1 Consider the motion of the formation center
rc moving at unit speed and the following assumptions about
the 3D scalar field:

A1 Suppose there exists a unique level surface Γ(rc) passing
through rc along the trajectory of rc.

A2 Suppose a unit tangent vector to a curve γ(s) ∈ Γ(rc)
passing through rc is well defined at rc and known as x1.
This implies that x1 is known or accurately measured at
every point of the trajectory of rc.

A3 Suppose the curvatures (κn(s), κg(s), τg(s)) are bounded
and known at rc for the curve γ(s) . This implies that the
curvatures are known or accurately measured at every
point of the trajectory of rc.

Given a desired field value C, design the steering control
laws u and v so that the formation center converges to the
level surface with value C and moves along the curve γ(s)
with the tangent direction x1. In other words, as t→ ∞, the
goal is to achieve zc→C and X1→ x1.

Remark 3.2 Assumptions (A2) and (A3) usually do not
specify a unique curve on a level surface to track. Instead,
we aim to track one out of a class of curves with desired
curvatures and tangent directions. We will use the formation
to estimate the tangent x1 and the curvatures. In Section 4,
we will show that the lines of curvature of a surface can be
traced in this setting.

The relative displacement between the two frames at the for-
mation center can be described by a set of “shape variables”
[12] [20] as ((x1 ·X1),(x2 ·X1),(n ·X1),zc). Define two 3×3
matrices g1 = (x1,x2,n) and g2 = (X1,X2,Nc). From the fact
that g1,g2 ∈ SO(3), we have the orthonormality conditions
that gT

1 g1 = I3×3, gT
2 g2 = I3×3 and (gT

1 g2)(gT
1 g2)T = I3×3

[1]. Hence, the last equation and the orthonomality of the
frames give

(x2 ·Nc)(x1 ·Nc)+(x2 ·X2)(x1 ·X2) =−(x2 ·X1)(x1 ·X1),
(x1 ·Nc)(n ·Nc)+(x1 ·X2)(n ·X2) =−(x1 ·X1)(n ·X1),

(x1 ·X2)2 +(x1 ·Nc)2 = 1− (x1 ·X1)2. (10)

These identities will be used to simplify the dynamics of the
shape variables.

From the equation Ẋ1 = uNc + vX2, we can derive that u =
Ẋ1 ·Nc and v = Ẋ1 ·X2. Since x1,x2 and n form an orthogonal
basis of R3, Ẋ1 can be expressed by the linear combination
of x1,x2 and n as Ẋ1 = a1x1 +a2x2 +a3n, where a1, a2 and
a3 are scalars that depend on the dynamics of the formation
center and the curve. Hence, u and v can be represented as

u = a1(x1 ·Nc)+a2(x2 ·Nc)+a3(n ·Nc),
v = a1(x1 ·X2)+a2(x2 ·X2)+a3(n ·X2). (11)

The design of u and v becomes finding the parameters
(a1,a2,a3). With u and v as in (11), we can obtain that

d(x1 ·X1)
dt

= ẋ1 ·X1 +x1 · Ẋ1

= (ακnn+ακgx2) ·X1 +x1 · (uNc + vX2)

= ακn(n ·X1)+ακg(x2 ·X1)+a1((x1 ·Nc)2 +(x1 ·X2)2)
+a2((x2 ·Nc)(x1 ·Nc)+(x2 ·X2)(x1 ·X2))
+a3((n ·Nc)(x1 ·Nc)+(n ·X2)(x1 ·X2)). (12)

Applying the identities in (10), d(x1·X1)
dt becomes

d(x1 ·X1)
dt

= ακn(n ·X1)+ακg(x2 ·X1)+a1(1− (x1 ·X1)2)

−a2(x2 ·X1)(x1 ·X1)−a3(x1 ·X1)(n ·X1) (13)

which only depends on the shape variables. Applying similar
calculations to d(x2·X1)

dt and d(n·X1)
dt gives us

d(x2 ·X1)
dt

=−ακg(x1 ·X1)+ατg(n ·X1)−a1(x1 ·X1)(x2 ·X1)

+a2(1− (x2 ·X1)2)−a3(x2 ·X1)(n ·X1), (14)
d(n ·X1)

dt
=−ακn(x1 ·X1)−ατg(x2 ·X1)−a1(x1 ·X1)(n ·X1)

−a2(x2 ·X1)(n ·X1)+a3(1− (n ·X1)2). (15)

If the control laws u and v (e.g. a1, a2, and a3) are designed
as feedback laws using only the shape variables, we can
then focus on analyzing the closed-loop dynamics of the
shape variables described by the equations (8), (13)-(15) as
a time-varying nonlinear system. We want to stabilize the
equilibrium of the closed-loop dynamics that corresponds to
the desired tracking behavior.
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Suppose the scalar field has extrema zmin < zmax. Consider
a Lyapunov candidate function that is analogous to the one
chosen in [12]:

V =− ln(x1 ·X1)+h(zc), (16)

where h(zc) satisfies the following assumptions:

B1 h(zc) is continuously differentiable on (zmin,zmax) and
f (zc) = dh

dzc
is a Lipschitz continuous function.

B2 f (C) = 0, and f (z) 6= 0 if z 6= C where C is the desired
level surface value.

B3 limz→zmin h(z) = ∞, limz→zmax h(z) = ∞ and ∃z̃ such that
h(z̃) = 0.

The term ln(x1 ·X1) in the Lyapunov function aims to align
the moving direction of the formation center with the tangent
direction of the curve on the level surface. We will prove that
as long as we set x1 ·X1 > 0 initially, 0 < x1 ·X1 ≤ 1 all the
time, which makes the term− ln(x1 ·X1)≥ 0. The other term
h(zc) serves to control the agent to stay on a desired level
surface. The derivative of the Lyapunov candidate function
can be calculated as

V̇ =− 1
x1 ·X1

d(x1 ·X1)
dt

+ f (zc)żc (17)

If we choose a1 = µ,a2 = ακg
x1·X1

, and a3 = ακn
x1·X1

−
f (zc)‖∇zc‖, where µ is a positive constant and plug
(a1,a2,a3) into u and v in equation (11), we get

u = µ(x1 ·Nc)+
ακg

x1 ·X1
(x2 ·Nc)+

ακn

x1 ·X1
(n ·Nc)

− f (zc)‖∇zc‖(n ·Nc),

v = µ(x1 ·X2)+
ακg

x1 ·X1
(x2 ·X2)+

ακn

x1 ·X1
(n ·X2)

− f (zc)‖∇zc‖(n ·X2). (18)

If we plug a1, a2 and a3 into (13) and then use (8), we can
calculate that

V̇ =− µ

x1 ·X1
(1− (x1 ·X1)2)≤ 0. (19)

We have the following proposition.

Proposition 3.3 Consider a smooth scalar field and the for-
mation center satisfying assumptions (A1-A3) and the fol-
lowing additional assumptions:

A4 All level surfaces are compact.
A5 The field has isolated extrema at a finite set of points

Rsup. Suppose the infimums are all equal to zmin and the
supremums are all equal to zmax.

Let the desired level value C ∈ (zmin,zmax) be given. Then
under the control laws u and v in equations (18) with as-
sumptions (B1-B3), as t→∞, we have X1→ x1 and zc→C
from all initial states satisfying x1 ·X1 > 0 and rc(t0) /∈Rsup.

Proof Consider the Lyapunov candidate function V in (16)
and V̇ in (19). Since V → ∞ as x1 ·X1 → 0, zc → zmax, or
zc→ zmin, if the trajectory of the formation center initially
satisfies x1 ·X1 > 0 and zc ∈ (zmin,zmax), then the trajectory
will stay in a compact sub-level set of the Lyapunov function
V . Let E be the following set within the sub-level set where
V̇ = 0:

E ={((x1 ·X1),(x2 ·X1),(n ·X1),zc)|
(x1 ·X1) = 1,(x2 ·X1) = 0,(n ·X1) = 0}. (20)

Because the closed-loop system is time-varying, we can not
apply the classical LaSalle’s Invariance Principle. Instead, a
more advanced invariance theorem can be applied (Theorem
8.4 in [13]) to claim that the trajectory will converge to the
set E when t → ∞. At points in E, the closed loop system
becomes

żc = 0,
d(x1 ·X1)

dt
= 0,

d(x2 ·X1)
dt

= 0,

d(n ·X1)
dt

=− f (zc)‖∇zc‖. (21)

In the current context, n ·X1 = 0 on set E and we have
shown that the dynamics will converge to set E, hence n ·
X1 → 0. According to the Barbalat Lemma (Lemma 8.2
in [13]), if f (zc)‖∇zc‖ is uniformly continuous and n ·X1→
0, then d(n·X1)

dt → 0 must hold. Since all level surfaces are
compact and the field is smooth, it is straightforward to show
that ‖∇zc‖ is uniformly continuous along smooth curves
with bounded curvatures on the level surfaces. Therefore, we
conclude that f (zc)‖∇zc‖= 0, which implies that f (zc) = 0
on E. This means the tangent vector X1 to the trajectory of
the formation center will be aligned with the known tangent
vector x1 along the curve and the field value at the formation
center will converge to the desired constant value C.

4 Curvature Estimation Using Formations

For exploration problems, the field that is going to be ex-
plored is unknown. Assumptions (A2) and (A3) can only
be satisfied based on estimates made by sensing agents. We
consider a special case, which is to detect and track one of
the lines of curvature on a desired level surface [18]. We de-
sign a formation formed by N agents so that by combining
the measurements taken by all of the agents, the curvatures
and the directions of a line of curvature can be estimated.

4.1 Principal Curvatures and Directions

We start with reviewing the definition of the lines of cur-
vature briefly [14]. As shown in Fig. 2, γ(s) is a curve that
lies on a smooth surface Γ, which can be described by the
equations (9) (left). γ1(s1) is another curve which also lies
on Γ and intersects with γ(s) at the point rc. As introduced
in Section 3.1, the frame (x1,x2,n) is used to describe the
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Fig. 2. Two curves on a level surface Γ. x1 and x2 are the tangent
vectors of γ(s) and γ1(s1). n is the normal vector to Γ at rc.

curve γ(s). If the curve γ1(s1) has x2 as its unit tangent vec-
tor at rc, then at the same point rc, the frame for γ1(s1) is
(x2,−x1,n).

Suppose κn and κ1n are the normal curvatures of γ(s) and
γ1(s1) at the point rc, which are also known as the directional
curvatures of the surface Γ at rc in the directions x1 and x2.
Among all possible directional curvatures of the surface Γ at
rc, if κn takes the maximum value along x1, then κn is one of
the principal curvatures and x1 is the corresponding principal
direction of Γ at rc. Since x1 and x2 are perpendicular to
each other, then x2 is another principal direction and κ1n
is the corresponding principal curvature with the minimum
value among all directional curvatures of Γ at rc. Note that
the principal directions may not be unique for some smooth
surfaces such as a sphere. If the tangent direction x1 of γ(s)
at each point is a principal direction at that point, then γ(s)
is a line of curvature of the surface Γ. Another important
property of lines of curvature is that the geodesic torsion τg
is zero. Examples of the lines of curvature are the meridians
and circles of latitude of a surface of revolution, such as a
cylinder.

Fig. 3. T1 and T2 are the two principal directions of the surface at
rc. T and Tθ are two arbitrarily chosen tangent vectors that form
certain angles with T1. n is the normal vector to the surface at rc.

4.2 Taubin’s Algorithm

To estimate the principal directions and the principal cur-
vatures of a line of curvature on a level surface, we intro-
duce the curvature estimation algorithm described by Taubin
in [17]. As shown in Fig. 3, let T1 and T2 denote the two
principal directions of the surface Γ at the point rc with cor-
responding principal curvatures κ1 and κ2 where κ1 > κ2.
Choose an arbitrary unit tangent vector T to the surface at
rc that forms an angle θ̂ with T1 where θ̂ is unknown. For
−π < θ < π , define another unit tangent vector Tθ to the
surface at rc that forms an angle θ with T. Let κp(Tθ ) be

the directional curvature associated with the direction Tθ .
Then a symmetric matrix Mp can be constructed by an in-
tegral formula as

Mp =
1

2π

∫ +π

−π

κp(Tθ )Tθ TT
θ dθ . (22)

It can be shown that the principal directions and the unit
normal vector are the eigenvectors of Mp, which can be
computed by diagonalizing Mp as

Mp =
(

T1 T2 n
)

λ1 0 0

0 λ2 0

0 0 0

(T1 T2 n
)T

, (23)

where λ1 and λ2 are the two non-zero eigenvalues of Mp. It
is further shown in [17] that the principal curvatures can be
calculated as κ1 = 3λ1−λ2 and κ2 = 3λ2−λ1.

Fig. 4. rc is the center of the formation. r′i, i = 1, · · · ,N− 3 are
points on the level surface obtained by searching along either the
negative or positive direction of the normal vector n starting from
ri, i = 1, · · · ,N− 3. Ti, i = 1, · · · ,N− 3 are projections of r′i− rc
to the tangent plane of Γ at rc.

We introduce a discretized Taubin’s algorithm for estimating
curvatures using formations. We arrange a formation formed
by N agents as illustrated in Fig 4. We allocate N−3 agents
on a plane in a circular fashion, among which we arbitrarily
select one as r1 and label the others r2, · · · ,rN−3 counter-
clockwisely. The remaining three agents are allocated along
a line perpendicular to the plane with the Nth agent located
at the center of the formation formed by the N− 3 agents
and the agents N− 1 and N− 2 located symmetrically on
the opposite sides of the plane. The position of the Nth
agent rN overlaps with the formation center rc. Note that
this configuration requires N > 4. If N = 5, the first two
agents only form a line instead of a plane. The formation
can be stabilized with the cooperative control laws based on
the Jacobi vectors. With the formation control law described
in Section 2.3, the N−3 agents can be controlled to lie on
the tangent plane of Γ(rc) and agents rN−2,rN−1, and rN
can be controlled to be aligned with the direction of n by
correctly selecting q0

i , i = 1, · · · ,N− 1. We assume that all
such formation control goals have been achieved.

The discretized Taubin’s algorithm is as follows.
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Algorithm 4.1 Denote n̂ as the estimate of n. Starting from
r1,...,rN−3 and searching along the positive or negative di-
rections of n̂ obtained at the previous time instant, we can
find r′1, ...,r

′
N−3, which lie on the level surface Γ(rc) and

divide Γ(rc) into N−3 triangular faces. We label the trian-
gular faces as fi, i = 1, · · · ,N− 3. The unit vectors Ti, i =
1, ...,N− 3 represent the projections of the vectors r′i− rc
to the tangent plane of the surface Γ(rc). With this setting,
the steps to estimate the principal curvatures and principal
directions with N agents are as follows:

(1) estimate the unit normal vector n at rc. Let n fi be the
unit normal vector to the face fi. For i = 1, · · · ,N−4,
n fi = ri−rc

‖ri−rc‖ ×
ri+1−rc
‖ri+1−rc‖ . For the face fN−3, n fN−3 =

rN−3−rc
‖rN−3−rc‖ ×

r1−rc
‖r1−rc‖ . Then n can be estimated by n̂ =

∑
N−3
i=1 | fk|n fi

‖∑N−3
i=1 | fi|n fi‖

, where | fi| are the areas of the faces fi.

(2) compute the projections Ti. Since the tangent plane of
Γ(rc) at rc is perpendicular to n̂, Ti can be estimated

using Ti = (r′i−rc)−((r′i−rc)·n̂)n̂
‖(r′i−rc)−((r′i−rc)·n̂)n̂‖ .

(3) approximate the matrix Mp in (22) as

Mv =
N−3

∑
i=1

ωiκiTiTT
i , (24)

where ωi are the weights that depend on | fi| and satisfy
∑ωi = 1. κi are the directional curvatures associated
with Ti and are approximated by κi = 2n̂T (r′i−rc)

‖r′i−rc‖2
.

(4) diagonalize Mv to obtain the estimated principal di-
rections T̂1 and T̂2, as well as the estimated principal
curvatures κ̂1 and κ̂2. Therefore, the frame of a line of
curvature that is associated with the larger principal
curvature can be estimated by x̂1 = T̂1, x̂2 = T̂2 and
κ̂n = κ̂1.

Remark 4.2 In the step (2), the projections Ti can be ap-
proximated by ri−rc when the formation converges and the
agents 1, · · · ,N−3 stay in the tangent plane of the surface
at the position rc.

4.3 Geodesic Curvature Estimation

The geodesic curvature measures how a curve is curving
in the surface M. The geodesic curvature κg, the normal
curvature κn, and the Frenet-Serret curvature κ of a curve
are related by κ2 = κ2

n +κ2
g .

Algorithm 4.3 Knowing the consecutive positions of the
formation center rc,k−2,rc,k−1,rc,k and rc,k+1,

(1) compute the unit tangent vector to the trajectory of γ(s)
at time instant k, which should be aligned with x1 that
can be approximated by T̂k = rc,k+1−rc,k−1

‖rc,k+1−rc,k−1‖
.

(2) compute the Frenet-Serret curvature. With the esti-
mated tangent vectors T̂k and T̂k−1, the Frenet-Serrat

curvature κ can be estimated as κ̂ = arccos(T̂k·T̂k−1)
‖rc,k−rc,k−1‖

.
(3) estimate the geodesic curvature. Since we have ob-

tained κ̂n, the geodesic curvature κg can be calculated
by κ̂g =

√
κ̂2− κ̂2

n .

Until now, we have estimated all the information needed by
assumptions (A2) and (A3) for tracking a line of curvature
with τ̂g = 0.

4.4 Constraints on Agent Quantity and Formation Design

The discretized Taubin’s algorithm approximates the integral
formula for Mp with a finite sum that computes Mv. The
number of agents and the formation will affect the estimation
accuracy. Under this concern, we discuss the constraints on
the agent quantity. For Γ(rc), assume that there exist two
unique principal directions T1 ∈ TcΓ and T2 ∈ TcΓ where
TcΓ is the tangent plane of Γ(rc) at rc. With the configuration
shown in Fig. 4, denote the angle from the vector T1 to
Ti, i = 1, · · · ,N−3 as θi ∈ (−π,π]. Under this setting, θ1 =
0. Define a set Ω = {T|T∈TcΓ,T 6= T1,T 6= T2,‖T‖ = 1}.
We assume that the tangent vector T1 is selected so that
T1 ∈ Ω. With this configuration, we propose the following
proposition.

Proposition 4.4 Consider a formation with N agents as il-
lustrated in Fig. 4 with the assumptions that T1 ∈ Ω and
that the surface Γ(rc) has two unique principal directions
at rc. Then the following statements hold for the discretized
Taubin’s algorithm 4.1;

(1) the algorithm provide nonsingular estimates of princi-
pal curvatures and principal directions if and only if

N−3

∑
i=1

ωiκi sin2θi 6= 0, (25)

where θi is the angle between Ti and T1, and θ1 = 0.
(2) N ≥ 6 must be satisfied to avoid singularity in the es-

timates. If the formation is symmetric, then N 6= 7.

Proof for Statement (1). Choose T1 and the corresponding
orthonormal vector T⊥1 as the basis of the tangent plane,
then Ti can be written as: Ti = T1 cosθi + T⊥1 sinθi, i =
1,2, ...,N−3. Substitute Ti into equation (24), we can obtain

Mv =
N−3

∑
i=1

ωiκi(T1TT
1 cos2

θi +T1(T⊥1 )T cosθi sinθi

+T⊥1 TT
1 cosθi sinθi +T⊥1 (T⊥1 )T sin2

θi). (26)

Suppose T̂1 is one of the estimated principal directions
that can be expressed as T̂1 = T1 cos θ̂ + T⊥1 sin θ̂ where
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θ̂ ∈ (−π

2 , π

2 ] is the angle between T̂1 and T1. Then accord-
ing to Taubin’s algorithm, we can write down the following
relationship:

MvT̂1 = λ̂1T̂1 = T1λ̂1 cos θ̂ +T⊥1 λ̂1 sin θ̂ , (27)

where λ̂1 is the eigenvalue corresponding to T̂1. On the
other hand, MvT̂1 = Mv(T1 cos θ̂ +T⊥1 sin θ̂). Substitute Mv
in equation (26) into the above equation and use the rela-
tionship TT

1 T1 = (T⊥1 )T T⊥1 = 1 and (T⊥1 )T T1 = TT
1 T⊥1 = 0,

MvT̂1 can be calculated as

MvT̂1 = T1[
N−3

∑
i=1

ωiκi(cos2
θi cos θ̂ +

1
2

sin2θi sin θ̂)]

+T⊥1 [
N−3

∑
i=1

ωiκi(sin2
θi sin θ̂ +

1
2

sin2θi cos θ̂)]. (28)

Hence, comparing with equation (27), we have

λ̂1 =
N−3

∑
i=1

ωiκi cos2
θi +

1
2

N−3

∑
i=1

ωiκi sin2θi tan θ̂

=
N−3

∑
i=1

ωiκi sin2
θi +

1
2

N−3

∑
i=1

ωiκi sin2θi cot θ̂ . (29)

Suppose ∑
N−2
i=1 ωiκi sin2θi 6= 0, then the above two equations

give well defined solutions for θ̂ that satisfy:

tan2
θ̂ +

2∑
N−3
i=1 ωiκi cos2θi

∑
N−3
i=1 ωiκi sin2θi

tan θ̂ −1 = 0. (30)

For each solution θ̂ , the estimated eigenvector T̂1 has the
form of T1 cos θ̂ + T⊥1 sin θ̂ . This finishes the proof for the
sufficient condition. From the relationship TT

1 T1 = 1 and
(T⊥1 )T T1 = 0, we also have

MvT1 = T1

N−3

∑
i=1

ωiκi cos2
θi +

1
2

T⊥1
N−3

∑
i=1

ωiκi sin2θi. (31)

We now use proof by contradiction to show the neces-
sity. Suppose the term ∑

N−3
i=1 ωiκi sin2θi sums to zero, then

MvT1 = T1 ∑
N−3
i=1 ωiκi cos2 θi = λ1T1, where λ1 is a scalar.

From equation (31), we can see that T1 is one of the eigen-
vectors of Mv and λ1 is the corresponding eigenvalue. Ac-
cording to Taubin’s algorithm, this results in T1 being one of
the principal directions. However, T1 is not aligned with any
principal directions since T1 ∈Ω. This contradiction means
that Taubin’s algorithm can produce estimates of principal
directions only if ∑

N−3
i=1 ωiκi sin2θi 6= 0.

Proof for Statement (2). Consider a symmetric formation
where the angles between T1 and Ti, i = 1, · · · ,N− 3 can
be expressed as θi = 2π

N−3 (i− 1). When N = 5, according

to our formation design, agents 1 and 2 form a line and
the agent 5 is located at the center of the line, which al-
ways gives us a symmetric formation. From the relationship
∑

N−3
i=1 ωiκi sin2θi = ∑

N−3
i=1 ωiκi sin( 4π

N−3 (i− 1)), we can ob-
tain that for N = 5, ω1κ1 sin0+ω2κ2 sin2π = 0. In addition,
when N = 7, we have ω1κ1 sin0+ω2κ2 sinπ +ω3κ3 sin2π +
ω4κ4 sin3π = 0. The summations will be zero regardless of
the labeling of the sensor platforms and the values of ωiκi,
which violates the condition (25). This fact indicates that
we can not deploy five or seven agents arranged in the sym-
metric formation to implement Taubin’s algorithm.

When N = 6, if the assumptions of the proposition are sat-
isfied, the estimated θ̂ can be solved from

tan2
θ̂ +

2(ω1κ1 +ω2κ2 cos(2θ2)+ω3κ3 cos(2θ3))
ω2κ2 sin(2θ2)+ω3κ3 sin(2θ3)

tan θ̂

−1 = 0. (32)

Therefore, the minimum number of agents that can be uti-
lized without producing singular estimates is six.

Notice that for the symmetric formation, because of the re-
lationship: ∑

N−3
i=1 sin 4π

N−3 (i−1) = 0,∀N ≥ 6, the condition
(25) in Proposition 4.4 is violated if the term ωiκi are iden-
tical. Since we assume that for the smooth surface Γ(rc),
there exist two unique principal directions T1 and T2, we
can select ωi so that ωiκi are not identical. For example,
ωi = 1, i = 1, · · · ,N−3.

Remark 4.5 Proposition 4.4 suggests that when we design
a formation using N agents as illustrated in Fig. 4 to imple-
ment the discretized Taubin’s algorithm to provide estimates
of the principal directions and principal curvatures on a
level surface, more than six agents should be used. In addi-
tion, we can not use seven agents in a symmetric formation
to implement Taubin’s algorithm.

5 Cooperative Hessian Estimation

As seen in the state equation (5) and the measurement equa-
tion (3) of the Kalman filter, the Hessian matrix of the field
at the formation center needs to be estimated in order to en-
able the Kalman filter. As shown in Fig. 2, γ(s) and γ1(s1)
are two intersecting curves on a level surface Γ. We can
write down the dynamic equations for γ(s) and γ1(s1) side
by side,

x′1 = κnn+κgx2 x′2 = κ1nn−κ1gx1

x′2 =−κgx1 + τgn x′1 = κ1gx2− τ1gn,

n′ =−κnx1− τgx2 n′ =−κ1nx2 + τ1gx1. (33)

where ′ represents the derivative with respect to the arc-
length parameter s or s1 and κ1n, κ1g and τ1g are the normal
curvature, the geodesic curvature and geodesic torsion of
α1(s1), respectively.
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From the fact that the gradients of the surface are always
perpendicular to the tangent plane, we have the following
relationships: ∇z(rc) ·x1 = 0,∇z(rc) ·x2 = 0 and ∇z(rc) ·n =
‖∇z(rc)‖. If we take derivatives on both sides of ∇z(rc) ·
x1 = 0 with respect to s and use the relationship d

ds ∇z(rc) =
xT

1 ∇2z(rc), we can obtain

xT
1 ∇

2z(rc)x1 +‖∇z(rc)‖n · (κnn+κgx2) = 0. (34)

In the frame described in equation (33) (left) for the
curve γ(s), since x1 is a unit vector along the x1 axis,
and x1,x2 are perpendicular to each other, from the equa-
tion (34), we have ∂x1x1z(rc) = −‖∇z(rc)‖κn. Therefore,
the estimate of the first element of Hessian matrix is
given by Hc(11) = ∂x1x1z(rc) = −‖∇z(rc)‖κn. Also, if
we take derivatives on both sides of ∇z(rc) · x2 = 0 and
∇z(rc) · n = ‖∇z(rc)‖, similar calculations can be con-
ducted, which give us the estimates of Hc(12) and Hc(13):
Hc(12) = −‖∇z(rc)‖τg,Hc(13) = d

ds‖∇z(rc)‖. Use the sim-
ilar steps to analyze the curve α1(s1), we can estimate
Hc(22), Hc(21) and Hc(23) by Hc(22) =−‖∇z(rc)‖κ1n,Hc(21) =
−‖∇z(rc)‖τ1g and Hc(23) = d

ds1
‖∇z(rc)‖. Since the field

is considered to be smooth, the Hessian matrix is sym-
metric. Therefore, Hc(13) = Hc(31) = d

ds‖∇z(rc)‖ and
Hc(23) = Hc(32) = d

ds1
‖∇z(rc)‖. In addition, from the re-

lationship Hc(12) = Hc(21), we have τg = τ1g. Note again
that if γ(s) and γ1(s1) are lines of curvature on a sur-
face, the geodesic torsion τg = τ1g = 0, which means
Hc(12) = Hc(21) = 0. Note that κn = κ̂1 and κ1n = κ̂2. With
the formation designed in the previous section, the last
element of the Hessian Hc(33) can be approximated by

H33 =
zN−1−zN
‖rN−1−rN‖

− zN−zN−2
‖rN−rN−2‖

‖rN−1−rN−2‖
.

6 Simulation Results

We demonstrate the cooperative exploration algorithm uti-
lizing six agents. We assume that the measurements taken
and the positions are shared among all the agents. At each
time instant, the agents take new measurements of the field,
then the cooperative Kalman filter, the curvature estimation
and the Hessian estimation are computed to find the steering
control forces u and v as described in Section 3. Meanwhile,
the formation shape control forces are also calculated.

In the simulation illustrated in Fig. 5 and Fig. 6, three of the
six agents (two are plotted as triangles and one is plotted as
a circle) lie in the tangent plane of a level surface passing
through the formation center and form a symmetric triangu-
lar formation. The distance between each pair of the three
agents in the plane is 0.6. The other three agents (rectangu-
lar markers) are lying in a line perpendicular to the tangent
plane with the sixth agent sitting in the formation center. To
satisfy the constraints discussed in Section 4.4, we control
the orientation of the formation so that none of the vectors

connecting an agent to the formation center aligns with any
principal directions of the level surface. This is accomplished
by selecting the Jacobi vectors qi and q0

i , i = 1, · · · ,N−1 so
that the vector connecting the agent one (the circle) and the
formation center forms an angle π

8 with the estimated princi-
pal direction associated with the larger principal curvature.

The goal is to detect and track one of the lines of curvature
on a desired level surface in an unknown 3D scalar field with
5% i.i.d. Gaussian noise. The unknown fields are composed
of cylindrical level surfaces and ellipsoidal level surfaces.
We only plot one of the level surfaces on each figure with the
level value C = 20 and set it as the desired level value that the
formation center should converge to. The lines of curvature
with the larger principal curvatures for both level surfaces are
shown by the circles on the level surfaces in the figure. The
thick lines are the trajectories of the formation center. The
initial positions of the formation center are at the position
(4.3,0,0), which are −0.2 off the desired level surfaces.
The six agents converge to a constant formation while the
formation center moves to the desired level surfaces, and
track one of the lines of curvature.

Fig. 5. Detecting and tracking a line of curvature on a cylinder by
six agents. The desired level value C = 20.

Fig. 6. Detecting and tracking a line of curvature on a ellipsoid
by six agents. The desired level value C = 20.

Denote the angle between T1 and the inertial frame as β

and the angle between T̂1 and the inertial frame as β̂ . To
compare the estimated principal directions with the actual
principal directions, we plot β − β̂ in Fig. 7. We can tell
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that with three agents estimating the principal directions, the
error is within ±20 degree.

Fig. 7. Estimation error between β̂ and β .

7 Conclusions

The steering control laws are able to control a formation
formed by N agents to move to a desired level surface and
track a class of curves in a 3D scalar field. We have shown
that a discretized Taubin’s algorithm, the Hessian estimation
and the cooperative Kalman filter can be combined to allow
a group of agents to perform cooperative exploration of 3D
level surfaces by tracking lines of curvature.
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