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H∞ control problem for general discrete–time systems*

Sebastian F. Tudor1, Cristian Oară2 and Şerban Sabău1

Abstract— This paper considers theH∞ control problem for
a general discrete–time system, possibly improper or polyno-
mial. The parametrization of suboptimal H∞ output feedback
controllers is presented in a realization–based setting, and it is
given in terms of two descriptor Riccati equations. Moreover,
the solution features the same elegant simplicity of the proper
case. An interesting numerical example is also included.

I. INTRODUCTION

Ever since it emerged in the 1980’s in the seminal paper
of Zames [1], theH∞ control problem (also known as the
disturbance attenuation problem) has drawn much attention,
mainly due to the wide range of control applications. It
is one of the most celebrated problems in the control lit-
erature, since it can be approached from diverse technical
backgrounds, each providing its own interpretation.

The design problem is concerned with finding the class of
controllers, for a given system, that stabilizes the closed–loop
system and makes its input–outputH∞–norm bounded by a
prescribed threshold. Various mathematical techniques were
used, e.g., Youla parametrization, Riccati–based approach,
linear matrix inequalities, to name just a few.

The original solution involved analytic functions (NP
interpolation) or operator theory [2], [3]. For good surveys on
the classical topics we refer to [4], [5]. Notable contributions
to the state–space solution for theH∞ control problem are
due to [6], [7], [8]. An algebraic technique using a chain
scattering approach is presented in [9]. The solution of the
H∞ control problem in discrete–time setting is given in [10].

More recently,H∞ controllers for general continuous–
time systems (possibly improper or polynomial) were ob-
tained. An extended model matching technique was em-
ployed in [11]. A solution expressed in terms of two gener-
alized algebraic Riccati equations is given in [12]. A matrix
inequality approach was considered in [13]. Note that a
dicrete–timesolution is still missing.

General systems cover a wide class of physical sys-
tems, e.g. non–dynamic algebraic constraints (differential–
algebraical systems), impulsive behavior in circuits with
inconsistent initial conditions [14], and hysteresis, to name
just a few. Cyber–physical systems under attack, mass/gas
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transportation networks, power systems and advanced com-
munication systems can also be modeled as improper sys-
tems [15]. The wide range of applications of improper
systems spans topics from engineering, e.g. aerospace indus-
try, robots, path prescribed control, mechanical multi–body
systems, network theory [16], [17], [18], to economics [19].

Motivated by this wide applicability and interest shown in
the literature for improper systems, we extend in this paper
the H∞ control theory for generaldiscrete–time systems
using a novel approach, based on Popov’s theory [20] and on
the results in [21]. A realization–based solution is provided,
using a novel type of algebraic Riccati equation, investigated
in [22]. Our solution exhibits a numerical easiness similar
with the proper case and can be seen as a straightforward
generalization of [6].

The paper is organized as follows. In Section II we give
some preliminary results. In Section III we state the subop-
timal H∞ output feedback control problem. We provide in
Section IV the main result, namely realzation–based formu-
las for the class of all stabilizing and contracting controllers
for a general discrete–time transfer function matrix (TFM).
In order to show the applicability of our results, we present
in Section V an interesting numerical example. The paper
ends with several conclusions. We defer all the proofs to the
Appendix.

II. PRELIMINARIES

We denote byC, D, and∂D the complex plane, the open
unit disk, and the unit circle, respectively. LetC = C∪{∞}
be the one–point compactification of the complex plane. Let
z ∈ C be a complex variable.A∗ stands for the conjugate
transpose of a complex matrixA ∈ Cm×n; A−1 denotes
the inverse ofA, andA1/2 is such thatA1/2A1/2 = A, for
A square. The union of generalized eigenvalues (finite and
infinite, multiplicities counting) of the matrix pencilA −
zE is denoted withΛ(A − zE), whereA,E ∈ Cn×n. By
Cp×m(z) we denote the set ofp ×m TFMs with complex
coefficients.RH∞ stands for the set of TFMs analytic in
C\D. The Redheffer product is denoted with⊗.

To represent an improper or polynomial discrete–time
system G ∈ Cp×m(z), we will use a general type of
realization calledcentered:

G(z) = D+C(zE−A)−1B(α−βz) =:

[
A− zE B

C D

]

z0

,

(1)
wherez0 = α/β ∈ C is fixed,n is called the order (or the
dimension) of the realization,A,E ∈ Cn×n, B ∈ Cn×m,
C ∈ Cp×n, D ∈ Cp×m, rankE ≤ n, and the matrix pencil
A−zE is regular, i.e.,det(A−zE) 6≡ 0. Note that forα = 1
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andβ = 0 we recover the well–known descriptor realization
[23] for an improper system, centered atz0 = ∞. We call
the realization (1)minimal if its order is as small as possible
among all realizations of this type.

Centered realizations have some nice properties, due to
the flexibility in choosingz0 always disjoint from the set of
poles ofG, e.g., the order of a centered minimal realization
always equals the McMillan degreeδ(G) andG(z0) equals
the matrixD in (1). We call the realization (1)properif αE−
βA is invertible. Thus, by using centered realizations we
recover standard-like characterization of the TFM. Centered
realizations have been widely used in the literature to solve
problems for generalized systems whose TFM is improper
[24], [25], [26], [27]. Throughout this paper, we will consider
proper realizations centered on the unit circle, i.e.,z0 ∈ ∂D
not a pole ofG. Furthermore, we considerα ∈ ∂D, β := α,
and thusz0 = α/α = α2 ∈ ∂D.

Conversions between descriptor realizations and centered
realizations onz0 ∈ ∂D can be done can be done by simple
manipulations. Consider a descriptor realization

G(z) = D + C(zE −A)−1B =:

[
A− zE B

C D

]

∞

(2)

and fix z0 ∈ ∂D. Then there existU andV two invertible
(even unitary) matrices such that

U(A− zE)V =

[
A1 − zE1 A12 − zE12

0 A2

]
, (3)

whereA2 is nonsingular (contains the non–dynamic modes)
and rank

[
E1 E12

]
= rankE, see [28] for proof and

numerical algorithms. Let
[

B1

B2

]
:= V ∗(A− z0E)−1B,

[
C1 C2

]
:= CV,

where the partitions are conformable with (3). A direct check
shows that the following realization ofG is centered atz0
and proper:

G(z) =

[
A1 − zE1 −E1B1 − E12B2

C1 D − C1B1 − C2B2

]

z0

. (4)

We say that the system (1) is stable if itspole pencilA−
zE hasΛ(A− zE) ⊂ D, see e.g. [23]. Note that any stable
system belongs toRH∞. Thesystem pencilis by definition

SG(z) :=

[
A− zE B(α− βz)

C D

]
.

The pair (A − zE,B) is called stabilizable if (i)
rank

[
A− zE B

]
= n, for all z ∈ C\D, and (ii)

rank
[
E B

]
= n. We call the pair(C,A− zE) detecta-

ble if the pair(A∗ − zE∗, C∗) is stabilizable.
We say that a square systemG ∈ Cm×m(z) is unitary on

the unit circle if G#(z)G(z) = I, ∀z ∈ ∂D\Λ(A − zE),
where G#(z) := G∗(1/z∗). If, in addition, G ∈ RH∞

thenG is calledinner. The following lemma will be used in
the sequel to characterize inner systems given by centered
realizations (see for example [29] and [30]).

Lemma 1. Let G be a TFM without poles atz0, having
a minimal realization as in(1). Then G is unitary (inner)
iff D∗D = Im and there is an invertible (negative definite)
Hermitian matrixX = X∗ such that

E∗XE −A∗XA+ C∗C = 0,
D∗C + B∗X(αE − βA) = 0.

(5)

Let G ∈ RL∞(∂D), the Banach space of general discrete–
time TFMs (possibly improper or polynomial) that are
bounded on∂D. Then theH∞–norm ofG is defined as:

‖G‖∞ := sup
θ∈[0,2π)

σmax

(
G(ejθ)

)
.

We denote byBH(γ)
∞

the set of all stable and bounded TFMs,
that is,BH(γ)

∞
:= {G ∈ RH∞ : ‖G‖∞ < 1}.

Consider now the structureΣ := (A − zE,B; Q,L,R),
whereA,E ∈ Cn×n, B, L ∈ Cm×n, Q = Q∗ ∈ Cn×n, R =
R∗ ∈ Cm×m. Σ can be seen as an abbreviated representation
of a controlled systemG and a quadratic performance index,
see [21], [31]. We associate withΣ two mathematical objects
of interest. The matrix equation

E∗XE −A∗XA+Q−
(
(αE − βA)∗XB + L

)
·

·R−1
(
L∗ +B∗X(αE − βA)

)
= 0

(6)

is calledthe descriptor discrete–time algebraic Riccati equa-
tion and it is denoted with DDTARE(Σ). Necessary and
sufficient existence conditions together with computable for-
mulas are given in [22]. We say that the Hermitian square
matrix X = X∗ ∈ Cn×n is the uniquestabilizing solution
to DDTARE(Σ) if Λ

(
A− zE +BF (α− βz)

)
⊂ D, where

F := −R1
(
B∗X(αE − βA) + L∗

)
(7)

is the stabilizing feedback. We define next a parahermitian
TFM ΠΣ ∈ C

m×m(z), also known as the discrete–time
Popov function [21]:

ΠΣ(z) =




A− zE 0 B
Q(α− βz) E∗ − zA∗ L

L∗ B∗ R




z0

. (8)

It can be easily checked thatΠΣ is exactly the TFM of
the Hamiltonian system, see [31]. Moreover, the descriptor
symplectic pencil, as defined in [22], is exactly the system
pencil SΠΣ

associated with the realization (8) ofΠΣ. We
are now ready to state two important results.

Proposition 2. Let Σ := (A − zE,B; Q,L,R). Assume
Λ(A− zE) ⊂ D. The following statements are equivalent.

(i) ΠΣ(e
jθ) < 0, for all θ ∈ [0, 2π).

(ii) R < 0 and DDTARE(Σ) has a stabilizing hermitian
solutionX = X∗.

Proposition 3. (Bounded-Real Lemma) Let G ∈ Cp×m(z)
having a minimal proper realization as in(1) and consider
Σ̃ := (A − zE,B; C∗C,C∗D,D∗D − Im). Then the
following statements are equivalent.

(i) G ∈ BH(γ)
∞

, i.e.,Λ(A− zE) ⊂ D and ‖G‖∞ < 1.
(ii) D∗D − Im < 0 and DDTARE(̃Σ) has a stabilizing

hermitian solutionX = X∗ ≤ 0.



III. PROBLEM FORMULATION

Let T ∈ Cp×m(z) be a general discrete–time system,
possibly improper or polynomial, with inputu and output
y, written in partitioned form:

[
y1
y2

]
= T

[
u1

u2

]
=

[
T11 T12

T21 T22

] [
u1

u2

]
, (9)

whereTij ∈ Cpi×mj (z) with i, j ∈ {1, 2}, m := m1 +m2,
p := p1 + p2. The suboptimalH∞ control problemconsists
in finding all controllersK ∈ Cm2×p2(z), u2 = Ky2, for
which the closed–loop system

G := LFT (T,K) := T11 + T12K(I − T22K)−1T21 (10)

is well–posed, stable and‖G‖∞ < 1, i.e., G ∈ BH(γ)
∞

.
We make a set of additional assumptions onT which either

simplify the formulas with no loss of generality, or are of
technical nature. Let

T(z) =




A− zE B1 B2

C1 0 D12

C2 D21 0




z0

(11)

be a minimal realization withz0 ∈ ∂D\Λ(A− zE).
(H1) The pair (A − zE,B2) is stabilizable and the pair

(C2, A− zE) is detectable.
(H2) For all θ ∈ [0, 2π), we have that

rank

[
A− ejθE B2(α− βejθ)

C1 D12

]
= n+m2. (12)

(H3) For all θ ∈ [0, 2π), we have that

rank

[
A− ejθE B1(α− βejθ)

C2 D21

]
= n+ p2. (13)

Remark 4. The hypothesis(H1) is a necessary condition
for the existence of stabilizing controllers, see [32] for the
standard case. We assume in the sequel that(H1) is always
fulfilled.

Remark 5. The hypotheses(H2) and(H3) areregularity as-
sumptions, see [32], [21] for the standard case. In particular,
it follows from (H2) thatT12 has no zeros on the unit circle,
p1 ≥ m2, and thatrankD12 = m2 (thusD∗

12D12 invertible).
Dual conclusions follow from(H3): T21 has no zeros on∂D,
m1 ≥ p2, rankD21 = p2, andD21D

∗

21 is invertible.
Furthermore, we note that(H2) and (H3) are reminiscent

from the generalH2 problem [33] and are by no means
necessary conditions for the existence of a solution to the
generalH∞ control problem. If either of these two assump-
tions does not hold, we get asingularH∞ optimal control
problem, which is beyond the scope of this paper.

Remark 6. We have implicitly assumed in (11) that
T11(z0) = D11 = 0 and T22(z0) = D22 = 0, without
restricting the generality. IfK is a solution to the problem
with D22 = 0, then K(I + D22K)−1 is a solution to the
original problem. The extension forD11 6= 0 follows by
employing a technique similar to the one in Chapter 14.7,
[32]. In particular, it also follows from this assumption that
the closed–loop system is automatically well–posed.

IV. MAIN RESULT

The following theorem is a crucial result inH∞ control
theory. In the literature, it is known as Redheffer theorem.

Theorem 7. Assume thatT in (11) is unitary,D21 is square
and invertible,Λ(A− zE − B1D

−1
21 C2(α − βz)) ⊂ D, and

let K be a controller forT. ThenG ∈ BH(γ)
∞

if and only if
T is inner andK ∈ BH(γ)

∞
.

Recall that we associate withΣ = (A− zE,B; Q,L,R)
the DDTARE(Σ) in (6). We are ready to state the main result.

Theorem 8. Let T ∈ Cp×m(z) having a minimal realization
as in (11). Assume that(H1), (H2), and (H3) hold. Supp-
ose that DDTARE(Σc) and DDTARE(Σ×) have stabilizing
solutionsX = X∗ ≤ 0 and Z = Z∗ ≤ 0, respectively,
whereΣc and Σ× are given in Box 1. Then there exists a
controller K ∈ Cp2×m2(z) that solves the suboptimalH∞

control problem. Moreover, the set of all suchK is given by

K = LFT (C,Q),

where Q ∈ BH(γ)
∞

is an arbitrary stable and bounded
parameter, andC is given in(14).

Theorem 8 provides sufficient conditions for the existence
of suboptimalH∞ controllers. Further, we can easily obtain
the central controller, for which Q = 0, under the so called
normalizing conditions:

D∗

12

[
C1 D12

]
=

[
0 I

]
,

[
B1

D21

]
D∗

21 =

[
0
I

]
.

Corollary 9. Take the same hypotheses as in Theorem 8.
Then the central controller under normalizing conditions is
K0(z) in (15).

Remark 10. Consider a proper system centered at∞, for
which E = In, α = 1, and β = 0. It can be easily
checked that we recover the controller formulas from the
standard case, see e.g. [21] and [32] for the continuous–time
counterpart.

V. A NUMERICAL EXAMPLE

It is well–known thatH∞ controllers are highly effective
in designing robust feedback controllers with disturbance
rejection for F–16 aircraft autopilot design. The discretized
short period dynamics of the F–16 aircraft can be written as:

xk+1 = Ãxk + B̃1u1,k + B̃2u2,k, k ≥ 0, x0 = 0. (21)

The system has three states, andm1 = m2 = 1. The
discrete–time plant model, i.e., the matricesÃ, B̃1, and B̃2

in (21), was obtained in [34] with sampling timeT = 0.1s.
We consider here atrajectory prescribed path control

(TPPC) problem. In general, a vehicle flying in space con-
strained by a set of path equations is modeled by a system of
differential–algebraic equations, see e.g. [35], [36]. Inorder
to obtain a TPPC problem, we add a pole at∞ (a non–
dynamic mode) by augmenting the system (21) as follows:

A− zE =

[
Ã− zI3 0

0 1

]
,
[
B1 B2

]
=

[
B̃1 B̃2

1 −1

]
.

(22)



Σc :=

(
A− zE,

[
B1 B2

]
; C∗

1C1,
[
0 C∗

1D12

]
,

[
−Im1

0
0 D∗

12D12

])
,

Fc :=

[
F1

F2

]
=

[
B∗

1X(αE − βA)
−(D∗

12D12)
−1

(
D∗

12C1 +B∗

2X(αE − βA)
)
]
,

Σ× :=

(
A∗ − zE∗ + F ∗

1B
∗

1 (α− βz),

[
−(D∗

12D12)
1/2F2

C2 +D21F1

]∗
; B1B

∗

1 ,
[
0 B1D

∗

21

]
,

[
−Ip1

0
0 D21D

∗

21

])

Box 1

C(z) =




A− zE + (BF +BZCF )(α− βz) BZ −B2(D
∗

12D12)
−

1

2 + (αE − βA)ZF ∗

2 (D
∗

12D12)
1

2

−F2 0 (D∗

12D12)
−

1

2

(D21D
∗

21)
−

1

2CF (D21D
∗

21)
−

1

2 0




z0

,

(14)
whereB :=

[
B1 B2

]
, CF := C2 +D21F1, BZ := −

(
B1D

∗

21 + (αE − βA)ZC∗

F

)
(D21D

∗

21)
−1.

K0(z) =

[
A− zE +

(
(B1B

∗

1X −B2B
∗

2X)(αE − βA)− (αE − βA)ZC∗

2C2

)
(α− βz) −(αE − βA)ZC∗

2

B∗

2X(αE − βA) 0

]

z0

. (15)

Box 2

T(z) =




0.906488− z 0.0816012 −0.0005 0 −0.0015 0.0095
0.0741349 0.90121− z −0.000708383 0 −0.0096 0.0004

0 0 0.132655− z 0 0.8673 0.0000
0 0 0 1 1.0000 −1.0000
1 0 0 1 0 −1
0 1 0 −1 0 1
0 0 1 −5 1 0




z0=1

, (16)

T(z) =




z4 − 2.939z3 + 2.989z2 − 1.158z + 0.1078

z3 − 1.94z2 + 1.051z − 0.1076

−z3 + 1.798z2 − 0.7928z − 0.008547

z2 − 1.808z + 0.8109

−z4 + 2.95z3 − 3.01z2 + 1.168z − 0.1082

z3 − 1.94z2 + 1.051z − 0.1076

z3 − 1.808z2 + 0.8109z + 0.0003578

z2 − 1.808z + 0.8109

−5z2 + 5.796z + 0.07141

z − 0.1327
5z − 5




, (17)

X =




−13.6023 −13.7705 0.0187 −0.0025
−13.7705 −13.9409 0.0189 −0.0025

0.0187 0.0189 −0.0000 −0.0000
−0.0025 −0.0025 −0.0000 −0.0000


 , Z =




−0.0002 −0.0004 0.0068 −0.0081
−0.0004 −0.0007 0.0143 −0.0171
0.0068 0.0143 −0.2753 0.3297

−0.0081 −0.0171 0.3297 −0.3948


 , (18)

K(z) =
−0.1561z4 + 0.459z3 − 0.467z2 + 0.1809z − 0.01679

z4 − 2.808z3 + 2.722z2 − 0.9979z + 0.08391
, (19)

G(z) =




0.3(z + 0.0255)(z − 0.1313)(z − 0.8269)(z − 0.9794)(z − 0.9817)(z − 1)

−0.2988(z − 0.01409)(z − 0.1344)(z − 0.8269)(z − 0.9817)(z − 0.984)(z − 1)




(z + 0.005487)(z − 0.1327)(z − 0.8269)(z − 0.8685)(z − 0.9817)2
. (20)

Box 3



Assume that all the dynamical states are available for
measurement. With this and the augmentation (22), we obtain
a minimal realization withz0 = 1 for the systemT, see (16),
havingn = 4, m1 = m2 = 1, p1 = 2, p2 = 1. The TFM of
T is given in (17). Note that the system is improper, having
one pole at∞, and thatδ(T) = n.

For this system, we want to find a stabilizing and con-
tracting controller using the formulas in Theorem 8.

It can be easily checked that the systemT satisfies(H1),
(H2), and (H3). Furthermore, the DDTARE(Σc) and the
DDTARE(Σ×) have stabilizing solutionsX = X∗ ≤ 0
andZ = Z∗ ≤ 0, given in (18). Moreover, the stabilizing
feedback forΣc was computed to be:

Fc =

[
0.0031 0.0031 −0.0000 0.0000
0.5012 −0.4988 −0.0000 1.0000

]
.

Therefore,T satisfies the conditions in Theorem 8. Taking
Q = 0, we obtain with Theorem 8 the centralproper
controller given in (19). The closed–loop systemG is given
in (20). Note thatG is proper and stable, having the poles
{0.0054, 0.1327, 0.8269, 0.8685, 0.9817} ⊂ D. Moreover,
‖G‖∞ = 0.4533 < 1. The singular value plots ofT and
G are shown in Box 4.
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VI. CONCLUSIONS

We provided in this paper sufficient conditions for the ex-
istence of suboptimalH∞ controllers, considering a general
discrete–time system. A realization–based characterization
for the class of all stabilizing and contracting controllers
was given. Our formulas are simple and numerically reliable
for real–time applications, as it was shown in Section V.
Necessary conditions and the separation structure of theH∞

controller will be investigated in a future work.

APPENDIX

In order to proceed with the proofs, we need an additional
result, for which the proof is omitted (for brevity).

Lemma 11. Let (C,A−zE) be a detectable pair and assume
that there exists a matrixX = X∗ such that the following
Stein equation holds:E∗XE − A∗XA + C∗C = 0. Then
X ≤ 0 if and only ifΛ(A− zE) ⊂ D.

Proof. (Proposition 2) (i) ⇒ (ii): If ΠΣ(e
jθ) < 0, ∀θ ∈

[0, 2π), thenΠΣ has no zeros on∂D. ThusSΠΣ
, i.e., the

symplectic pencil, has no generalized eigenvalues on∂D,
which implies that DDTARE(Σ) has a stabilizing solution,
see [22]. Further, sincez0 ∈ ∂D, ΠΣ(z0) = R < 0.
(ii) ⇒ (i): Let F be the stabilizing feedback as in (7).

Consider thespectral factorS(z) :=

[
A− zE B
−F I

]

z0

.

It can be easily checked that the factorization
ΠΣ(z) = S#(z)RS(z) holds. Moreover,S ∈ RH∞ and
S−1 ∈ RH∞, sinceΛ(A−zE+BF (α−βz)) ⊂ D. ThusS is
a unity inRH∞. SinceR < 0, ΠΣ(e

jθ) < 0, ∀θ ∈ [0, 2π).

Proof. (Proposition 3) (i) ⇒ (ii): Note that

‖G‖∞ < 1 ⇔ G#(ejθ)G(ejθ)− I < 0, ∀θ ∈ [0, 2π).

After manipulations we get thatG#(z)G(z)− I = Π
Σ̃
(z).

ThusΠ
Σ̃
(ejθ) < 0, ∀θ. SinceA − zE is stable, it follows

with Proposition 2 thatD∗D − I < 0 and DDTARE(̃Σ)
has a stabilizing solutionX = X∗. It remains to prove that
X ≤ 0. It is easy to check that the DDTARE(Σ̃) has a
stabilizing solutionX = X∗ iff the following system of
matrix equations

D∗D − I = −V ∗V
(αE − βA)∗XB + C∗D = −W ∗V
E ∗XE −A∗XA+ C∗C = −W ∗W

(28)

has a solution(X = X∗, V,W ), with F = −V −1W. Further,
note that the last equation in (28) can be written as

E∗XE −A∗XA+

[
C
W

]∗ [
C
W

]
= 0. (29)

The pair

([
C
W

]
, A− zE

)
is detectable, since the pair

(W,A − zE) is detectable, from the fact thatA − zE −
V −1W (α−βz) is stable. Using these conclusions, it follows
from Lemma 11 thatX ≤ 0.
(ii) ⇒ (i): Following a similar reasoning as above, we

have from(ii) that

([
C
W

]
, A− zE

)
is detectable. Since

X ≤ 0 and the equality (29) holds, we get from Lemma 11
that Λ(A − zE) ⊂ D. Using the implication(ii) ⇒ (i) in
Proposition 2, we have thatΠ

Σ̃
(ejθ) < 0, ∀θ. But this is

equivalent with‖G‖∞ < 1. ThusG ∈ BH(γ)
∞

.

Proof. (Theorem 7) If: Let

K(z) =

[
AK − zEK BK

CK DK

]

z0

be a minimal realization. SinceK ∈ BH(γ)
∞

, we have from
Proposition 3 thatD∗

KDK − I < 0 and DDTARE(ΣK)
has a stabilizing solutionXK = X∗

K ≤ 0, whereΣK :=



C1(z) =




A− zE − (B2D

−1
12 C1 +B1D

−1
21 C2)(α − βz) B1D

−1
21 B2D

−1
12

−D−1
12 C1 0 D−1

12

−D−1
21 C2 D−1

21 0





z0

. (23)

C2(z) =




A− zE + (B2F2 −B1D
−1
21 C2)(α− βz) B1D

−1
21 B2(D

∗

12D12)
−

1

2

F2 0 (D∗

12D12)
−

1

2

−D−1
21 C2 − B∗

1X(αE − βA) D−1
21 0




z0

. (24)

TI(z) =





A− zE +B2F2(α− βz) B1 B2(D
∗

12D12)
−

1

2

C1 +D12F2 0 D12(D
∗

12D12)
−

1

2

−F1 I 0





z0

,TO(z) =





A− zE +B1F1(α− βz) B1 B2

−(D∗

12D12)
1

2F2 0 (D∗

12D12)
1

2

C2 +D21F1 D21 0





z0

.

(25)

Σo :=

(
A∗ − zE∗,

[
C∗

1 C∗

2

]
; B1B

∗

1 ,
[
0 B1D

∗

21

]
,

[
−Ip1

0
0 D21D

∗

21

])
, (26)

C3(z) =




A− zE + (H2C2 −B2D

−1
12 C1)(α − βz) H2 −B2D

−1
12 − (αE − βA)Y C∗

1

−D−1
12 C1 0 D−1

12

(D21D
∗

21)
−

1

2C2 (D21D
∗

21)
−

1

2 0





z0

, (27)

whereH2 = −(B1D
∗

21 + (αE − βA)Y C∗

2 )(D21D
∗

21)
−1.

(AK − zEK , BK ; C∗

KCK , C∗

KDK , D∗

KDK − I). Further,
from T inner we get from Lemma 1 thatD∗D = I and there
is X = X∗ ≤ 0 such that (5) holds. Compute now a minimal
centered realization forG := LFT (T,K), see Section 2.3.2
in [31]. After leghty but simple algebraic manipulations
we get that the realization ofG satisfies condition (ii) in

Proposition 3, withXG :=

[
X 0
0 XK

]
= X∗

G ≤ 0,

and RG := D∗

21(D
∗

KDK − I)D21 < 0. It follows that
G ∈ BH(γ)

∞
.

Only if: From (C2, A − zE) detectable,T unitary, and
Lemma 11, it follows thatΛ(A− zE) ⊂ D, thusT is inner.
Since G ∈ BH(γ)

∞
, ‖G‖∞ < 1, which is equivalent with

G#(z)G(z) − I < 0, for all z ∈ ∂D. Using equation (10)
and the fact thatT21 is a unity inRH∞ (unimodular), we
get after some manipulations thatK#(z)K(z) − I < 0,
for all z ∈ ∂D, which is equivalent with‖K‖∞ < 1. The
stability of K is a direct consequence of the fact that(H1)
is fulfilled, that G is stable, and thatT is inner.

We proceed now with the proof of our main result (stated
in Theorem 8), which is based on a successive reduction
to simpler problems, called the one–block problem and the
two–block problem. We borrowed the terminology from the
model matching problem.

Consider theone–block problem, for which p1 = m2,
p2 = m1, i.e.,D12 andD21 are square, andT12 andT21 are
invertible, having only stable zeros, i.e.,

(A1) D12 ∈ Cm2×m2 is invertible and Λ
(
A − zE −

B2D
−1
12 C1(α− βz)

)
⊂ D.

(A2) D21 ∈ Cm1×m1 is invertible and Λ
(
A − zE −

B1D
−1
21 C2(α− βz)

)
⊂ D.

Proposition 12. For the one–block problem the class
of all controllers that solve theH∞ control problem is
K = LFT (C1,Q), Q ∈ BH(γ)

∞
is arbitrary andC1 is in (23).

Proof. Let TR = T ⊗ C1. With C1 from (23) we get after

an equivalence transformation thatTR =

[
0 I
I 0

]
. Thus

G = LFT(TR,Q) = Q ∈ BH(γ)
∞

.
Conversely, let K be such thatG ∈ BH(γ)

∞
. Take

G ≡ Q ∈ BH(γ)
∞

be an arbitrary but fixed parameter. Then
LFT (C1,Q) = LFT (C1,G) = LFT (C1, LFT (T,K)) =
LFT (C1 ⊗ T,K). It can be checked that in this case
C1 ⊗ T = T ⊗ C1 = TR (this is not generally true). Thus
LFT (C1,Q) = K .

Consider now thetwo–block problem, for whichp2 = m1,
and the hypotheses(H2) and(A2) are fulfilled. LetΣc be as
in Box 1.

Proposition 13. Assume that DDTARE(Σc) has a stabilizing
solution X = X∗ ≤ 0. Then the two–block problem
has a solution. Moreover, the class of all controllers is
K = LFT (C2,Q), with Q ∈ BH(γ)

∞
, andC2 is given in(24).

Proof. Let Fc be the stabilizing feedback, see Box 1. Con-
sider the systemsTI and TO in (25). After manipulations,
we obtain thatT = TI ⊗ TO. Moreover, TI is inner,
since the realization (25) satisfies the equations given in
Lemma 1, withX = X∗ ≤ 0 the stabilizing solution of
the DDTARE(Σc). Also, it can be easily checked thatTI

satisfies the hypotheses of Theorem 7.
We claim thatLFT(T,K) ∈ BH(γ)

∞
⇔ LFT(TO,K) ∈

BH(γ)
∞

. Here follows the proof.LFT(T,K) = LFT(TI ⊗
TO,K) = LFT(TI ,LFT(TO,K)) ∈ BH(γ)

∞
. It follows



from Theorem 7 thatLFT(TO,K) ∈ BH(γ)
∞

. Conversely,
let LFT(TO,K) ∈ BH(γ)

∞
be a controller for the in-

ner systemTI . Then, we have from Theorem 7 that
LFT(TI ,LFT(TO,K)) ∈ BH(γ)

∞
. But this is equivalent

with LFT(T,K) ∈ BH(γ)
∞

, sinceTI ⊗ TO = T. The claim
is completely proven.

Therefore, it is enough to find the the class of controllers
for TO. Further, it is easy to show thatTO in (25) satisfies
the assumptions(A1) and (A2) for the one–block problem.
ComputeC1 in (23) for TO to getC2 in (24).

The next result follows by duality from Proposition 13.
ConsiderΣo given in (26).

Proposition 14. Assumep1 = m2, (A1), (H3), and that
DDTARE(Σo) has a stabilizing solutionY = Y ∗ ≤ 0. Then
the dual two–block problem has a solution. Moreover, the
class of all controllers isK = LFT (C3,Q), where Q ∈
BH(γ)

∞
is arbitrary, andC3 is given in(27).

Proof. (Theorem 8) We assume that(H1), (H2), and (H3)
hold. Suppose that DDTARE(Σc) has a stabilizing solution
X = X∗ ≤ 0. Consider now the systemsTI and TO,
given in (25). We have shown that it is enough to find
the the class of controllers forTO. It is easy to check
that, in this case,TO satisfies(A2). Write nowΣo in (26)
and DDTARE(Σo) for TO to obtain Σ× in Box 1 and
DDTARE(Σ×). Further, assume that DDTARE(Σ×) has a
stabilizing solutionZ = Z∗ ≤ 0. Therefore,TO satisfies
the assumptions in Proposition 14. The parametrization
of all controllers that solve theH∞ control problem in
Theorem 8 is now a consequence of Proposition 14 and
some straightforward manipulations. This completes whole
the proof.
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[27] C. Oară and Ş. Sabău, “Parametrization ofΩ−stabilizing controllers
and closed-loop transfer matrices of a singular system,”System and
Control Letters, vol. 60, no. 2, pp. 87–92, 2011.

[28] ——, “Minimal indices cancellation and rank revealing factorizations
for rational matrix functions,”Linear Algebra and its Applications,
vol. 431, pp. 1785–1814, 2009.

[29] I. Gohberg, M. A. Kaashoek, and A. C. M. Ran, “Factorizations of and
extensions to J–unitary rational matrix functions on the unit circle,”
Integral Equations Operator Theory, vol. 15, no. 2, p. 262300, 1992.
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