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Abstract

This article proposes a numerically efficient approach for computing the maximal (or minimal) im-
pact one agent has on the cooperative system it belongs to. For example, if one is able to disturb/bolster
merely one agent in order to maximally disturb/bolster the entire team, which agent to choose? We
quantify the agent-to-system impact in terms of H, norm whereas output synchronization is taken as
the underlying cooperative control scheme. The agent dynamics are homogeneous, second order and
linear whilst communication graphs are weighted and undirected. We devise simple sufficient conditions
on agent dynamics, topology and output synchronization parameters rendering all agent-to-system Ho,
norms to attain their maxima in the origin (that is, when constant disturbances are applied). Essentially,
we quickly identify bottlenecks and weak/strong spots in multi-agent systems without resorting to in-
tense computations, which becomes even more important as the number of agents grows. Our analyses
also provide directions towards improving communication graph design and tuning/selecting coopera-
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tive control mechanisms. Lastly, numerical examples with a large number of agents and experimental
verification employing off-the-shelf nano quadrotors are provided.

© 2022 The Authors. Published by Elsevier Ltd on behalf of The Franklin Institute.
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1. Introduction

The network topology and agent dynamics play crucial roles in Multi-Agent System (MAS)
stability and performance [1,2]. Even in networks of homogeneous agents, not all agents have
the same impact on other agents or joint performance depending on their location within the
underlying topology. Taking this observation into account, we tackle the following question:
Given some topology, if one is to disturb (or bolster) one or more agents in order to undermine
(or enhance) the performance of the entire team, which agent(s) to choose? Similarly, various
topologies interconnecting the same group of agents typically result in strikingly different
collective behaviors and even in the lack thereof. Consequently, the system designer might
want to modify the graph edge weights, remove or add communication/sensing links in an
effort to preclude unfavorable cooperative behaviors. Over last decades, similar analyses
are routinely carried out for vibrational systems (e.g., buildings, bridges, etc.), which can
be modeled as MASs [3-5]. Vibrations are typical and mostly unwanted phenomenon in
mechanical systems, since resonance and sustained oscillations can have undesired effects
such as energy waste, noise creation and even structural damage. Similar ideas are also
found in social networks, economics, political and health care systems (e.g., sociometric
stars, invisible colleges, outsiders or cliques [6-9]) as well as in smart grids [10,11]. In
other words, the aforementioned communication, sensing and social networks, vibrational,
mechanical, economic, political and health care systems as well as smart grids are examples
of application domains for this work.

In this work, we investigate how to efficiently calculate the H,, norm of MASs when
one agent is disturbed. The main idea is to reduce the problem from the order 2nx2n to
the order (n—1)x(n—1) and to cast the problem of H,, norm calculation into solving a
sequence of linear systems. Then we show that, for a large class of MASs, the transfer function
attains its maximum at the origin (that is, when the disturbance is constant), thus reducing
the computation of H,, norm to solving just a single linear system. These two components
greatly reduce the computation time enabling efficient investigations of very large MASs.
Computational costs behind finding Hy, norms are at times quite high even for systems of
moderate sizes, not to mention when various system parameters or input-output pairs need to
be considered. Therefore, efficient calculations of the H,, norm are intensively investigated,
especially when a large number of agents/states is encountered [12—18].

Topology discovery is often the first step in bottleneck and failure identification of MASs.
Early decentralized topology discovery algorithms are reported in [19,20] whereas there are
many commercial solutions available nowadays (which will not be advertise here). Owing to
the availability of such algorithms, this work supposes that the topology is provided a priori.

Works relating the Hy, norm and MASs typically focus on syntheses (see [21-25] and
references therein) whilst our article is primarily concerned with analyses. For exam-
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ple, [21,22] boil down to Linear Matrix Inequalities (LMIs) whereas [23] builds upon game
theory and dynamic programming to provide sufficient conditions for controller design yield-
ing MAS synchronization with a prescribed £,-gain. The authors in [24] provide sufficient
and necessary conditions for decentralized H., and H, control design over directed graphs
employing the algebraic Riccati equation (ARE) or direct eigenstructure assignment. Even
though it also focuses on syntheses, the most similar article to ours is [25] as it performs sys-
tem reduction to mitigate the H,,-related computational burden and searches for performance
bottlenecks on the individual agent level. Therefore, unlike in the present work, the team
performance improvement guidelines in [25] boil down merely to individual agent modifica-
tions via pinning control (i.e., via adding self-loops) irrespective of the topology. In addition,
[25] considers merely stability around the origin (not around the equilibrium manifold as done
herein) and does not tackle H,, norm computations. The H, norm as the MAS performance
measure will be treated in a subsequent publication.

Other related cooperative control problems, other than the output synchronization consid-
ered herein, are found in [26-32]. The work in [26] synthesizes a control mechanism to attain
MAS consensus about the origin in the presence of additive perturbations with a known Hy,
bound when modelling agent uncertainties. The authors in [27] synthesize observer-based
controllers to track a leader, which leads to the absence of non-trivial consensus manifold
encountered herein. The problem in [28] exploits the Lyapunov characterization of H,, control
to synthesize controllers with precompensators resulting in a MAS with the sole equilibrium
point in the origin. A containment problem is investigated in [29], finite-horizon problem in
[30], event-based leader-follower MASs in [31] whilst event-triggered sliding mode scaled
consensus control is investigated in [32]. Lastly, owing to the employment of the bounded
real lemma, Lyapunov and dissipative H,, characterizations, none of the above works conveys
information regarding which input to which agent yields the maximum/minimum MAS H,,
norm. On the other hand, our work explicitly provides these information.

The principal contributions of this article are threefold: a) numerically efficient calculations
of Hy norms in MASs by reducing the original 2nx2n-dimensional problem into an (n—1)x
(n—1)-dimensional one; b) sufficient conditions for attaining the H,, norm in zero, thus
further reducing the computational costs; and c) an experimental verification employing an
affordable off-the-shelf localization system and nano quadrotors as MAS agents.

Since many MASs are designed to achieve asymptotic (i.e., steady-state) goals (e.g., output
synchronization), it is not surprising they behave like low-pass filters so that the moduli of
associated transfer functions attain their maxima at the zero frequency corresponding to the
H,, norms. If one is also interested in the transient behavior (in addition to the steady-state
performance), our analyses can be combined with [33] during the control design phase.

The remainder of the article is organized as follows. Section 2 introduces the notation and
basic definitions. In Section 3, we set the agent-to-system impact problem up and propose
the methodology to solve this problem in Section 4. Section 4 also contains the main result.
In Section 5, we provide numerical examples. Section 6 presents experimental results whilst
conclusions and future work are in Section 7.
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2. Preliminaries
2.1. Notation

We often use the shorthand notation (x,y) := [x' y']". The dimension of a vector x is
n, whereas || - || denotes the Euclidean norm of a vector. If the argument of | - || is a matrix,
then it denotes the induced matrix 2-norm. The kernel of a matrix A is Ker(A). The set
cardinality is denoted by |-|. An n-dimensional vector with all entries O is denoted by 0,.
The n x n identity matrix is I,. For i € N, by ¢; we denote the ith canonical vector, i.e., the
vector of the form (0,...,0,1,0,...,0), where the only non-zero element is the ith one.
For brevity, we use “w.r.t.” instead of “with respect to”.

2.2. Graph theory

An undirected weighted graph is a triple G = (V, £, {wjk}?szl), where V = {vi, ..., vy}
is a nonempty set of nodes, £ CV x V is the set of edges and wj > 0 are edge weights,
where we assume that wj;, = wy; for all j, k and that wj; > 0 if and only if (j, k) € £. When
the edge (i, j), i # j belongs to &, it means that there are information flows from the node i
to the node j. The set of indices of neighbors of the node v; is N; = {j : (v;,v;) € £}. The
corresponding graph Laplacian matrix L € RY*Vl is defined as

—Wij, jeN,
L=1[l;l, Lj= {2 ien Wiks Jj=1i
0, otherwise.

Note that the matrix L is symmetric and positive semi-definite.
2.3. Hy, norm
We define the function space H.., see, e.g., [34], by

Hoo = {F :CT — C™* | F is analytic and sup o (F (X)) < oo}
reCH

Here, Ct = {A € C | R(A) > 0} and o (T) is the largest singular value of the matrix 7. The
Ho, norm for the functions in H is defined as [12], Chap. 3

[Fllc = sup (F (%)) = supo (F(iw)).

reCH welR

3. Problem statement

Consider MAS consisting of n linear agents given by
Xk = - SX/( +Kfuk + Wi, T;'? KS > O’ (1)

where x; is the state, u; is the control input, and wy is the exogenous disturbance of the kth
agent, k € {1, ..., n}.

Let G be an undirected weighted graph which describes the underlying communication
structure of the MAS. A widely utilized decentralized output-feedback policy to achieve
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network synchronization [1,35] is
A Xk Xij
u, = —KC Wi i N I , 2
=-re s [5]-[2]) ®
JeN;

where K > 0 and € = [c1 ¢2] with ¢q, ¢ > 0. According to Ren and Beard [1], if ¢; =0 or
¢, = 0, the output synchronization is not obtainable. Utilizing the Laplacian matrix L of the
underlying communication graph G, the closed-loop dynamics are

X+ | Ty Iv+LKKe, | x +LKKcy x = w, 3)
~—~— ——— ——
=B =a =y

where x := (x1,..., x») and w = (w1, ..., ®,).

Clearly, the agent dynamics Eq. (1) represent a realistic double integrator. These dynamics
allow for more specific results in the upcoming sections while still being general enough
owing to the following well-known fact: for fully actuated mechanical systems a simple
change of control variable transforms their dynamics into a double integrator [1]. Similarly,
many systems with low-level controllers can be approximated with second order dynamics
(refer to Section 6 below).

Assumption 1. We assume that the graph G is connected.

If the graph of the system is not connected, with k > 1 number of components, then the
corresponding MAS can be split into k¥ MASs that can be analyzed independently.

The control law Eq. (2) primarily seeks for agreement/consensus, irrespective where that
agreement is obtained. Consequently, the closed-loop system Eq. (3) is characterized with the
equilibrium manifold x; = ... = x,, X1 = ... = X, = 0, rather than with a sole equilibrium
point (in the origin, for instance). Hence, attention needs to be paid to the existence of the
consensus manifold as shown in [36] and the remainder of this article. In a nutshell, the
(output) norms need to be taken w.r.t. sets, rather than w.r.t. points as is typically done.
In addition, the only natural way of stating our main problem of interest is in terms of
norms w.r.t. sets, which is also corroborated by Section 6 in light of the problem built-in
robustness. Throughout this article, the w.r.t. set notion is noticeable whenever handling the
zero eigenvalue of L and associated eigenspace.

We are now ready to state the main problem solved herein.

Problem 1. Efficiently calculate the H,, norm of system Eq. (3) from w; to x w.r.t. consensus
manifold for any i € {1, ..., n} of interest.

4. Methodology
4.1. Closed-Loop dynamics reduction and transfer function formula

Let us tackle Problem 1, i.e., let us efficiently calculate the H,, norm of the system
Eq. (3) when all wy, k =1,...,n are zero except the ith one. This problem boils down to,
see [37,38], the calculation of H,, norm of the following linear time-invariant system

X =Ax + B,‘a),‘,
y = Cux,
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where x := (x, x) while the system matrices A € R>>?", B; ¢ R*"*! and C € R"*" are given
by

_ 0n><n In
A_[_yL _ﬁ[n_aL]a a7ﬁ7y>07

_ Onxl _
B,-_|: " ] C=[L 0, “4)

1

From the construction of L and Assumption I, one knows that the algebraic multiplicity of
its zero eigenvalue is one. As discussed in [35] and [1], the corresponding eigenvector is
[1,1,...,1]T. However, the corresponding transfer function

C(is —A)~'B;

does not belong to the space Ho. The issue is that the transfer function is not defined in
zero owing to the eigenvalue placed in the origin. This property is found in many control
systems, especially in consensus-based cooperative systems [36]. Namely, such control sys-
tems primarily aim for relative (not absolute) agreement/alignment giving rise to a consensus
manifold, rather than to a sole equilibrium point. For instance, formation control is concerned
with formation attainment irrespective of the formation absolute location.

To remove the absolute values of consensus/agreement points and concentrate on relative
discrepancies among agents’ outputs, let us define the following truncation matrix

vl 0
T _ 2n—1)x2n
W' = |: 0 I} eR 5)
with orthonormal columns, where the columns of matrix V € R"™""~1 span the subspace {1}*
where 1 =[1 ... 1]7 and such that V'V =[.

Now, by using the substitution x = WX, the reduced system is given by

)é = A)? + gia)i,

y= C+,

with A = WTAW, é,- =WTB, and C = CW. Moreover, using the block structure of matrices
given by Eq. (5) and Eq. (4), we have that

: 0 a

A= |:—yLV —BI — ozL:|’
- 0 ~

B; = Li], c=[v o]

The obtained reduced system has the property that the state matrix A is Hurwitz and
moreover models the dynamic of MAS with respect to the relative distance between the agents.
An alternative (and more common) approach is to consider all the differences between the
states of neighbors as the MAS state (see [1,39] or practically any of the references herein).
Note that our approach yields a much smaller dimension of the system since the approach
from Ren and Beard [1], Kingston et al. [39] potentially yields the dimension 4n> — 2n of
the state vector whilst the dimension of the state vector is 2n — 1 in our approach.

In order to obtain an explicit formula for the transfer function F;(s) = C (sl — A)’léi of
the reduced system, we first obtain for s % O that
(s — ) = [vch(s)l(isl + BI +aL)V VTCID(S)I]’

—y®(s)"ILV is®(s)”! ©)
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where
O(s) = —s* T +is(BI +aL) + yLVV . (7

Hence, the transfer function of the reduced system is given by
~ S
Fi(s) = C(isl —A) B,
=VVTd(@s) e for s#0.

Here, by using the index i, we emphasize that it is the transfer function from agent i to
MAS according to Problem 1. From the definition of the function ® given by Eq. (7) and
LVVT =L, for s # 0 we obtain that

&(s) = —s*1 +is(BI + aL) + yL.

Note that ®(0) = yL is not invertible. In order to obtain a formula for the transfer function
in zero, we will additionally analzze tpis case. ~
In order to determine F;(0) = C(—A)~!B;, we first calculate the inverse of matrix —A. We

calculate blocks of the matrix (—A)’1 = |:A“ An

T An Ax
A Al O -vr 1 I
Ay Axp||yLV Bl+oaL| 7

0 V' A An] _,
)/LV /31+OZL A21 A22 -

Considering the corresponding blocks, we obtain the following equations:

i| using the equations:

yApLV =1, (8)
—AnV" +Ap(BI +al) =0, C))
yApLV =0, (10)
—Ap VT +Ap(Bl +al) =1, an
VA, =1, (12)
~VTAp =0, (13)
yLVA + (BI + aL)As =0, (14)
YLVA» + (BI +aL)Ay = 1. (15)
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Egs. (10) and (13) are satisfied when A, = 0. Now, from Eq. (11) using that VTV =1, we
obtain —A» V' =1 = Ay; = —V and the Eq. (12) is immediately satisfied.
Now, from Egs. (8) and (15) we have conditions for Aj,:

YARLV =1,
]/LVA]2 =1.

From the latter equation, we have yV 'LVA|, =V = A}, = %(VTLV)”VT, which satisfies
the first equation as well.
Now, using the obtained formula for A, and Eq. (9), it follows that
1 T —1y,T
Ay =—V ' LV)" V' (BI +aL)V.
14

From L = LVVT, we obtain that the Eq. (14) is also satisfied. Finally, we reach

LTy WTBI +aL)V  L(vTLV)"'VT][0
E@O) =[v 0][y _y "0 ]H
= lV(VTLV)*IVTe,-. 16)
Y
Note that
1
F0) = —L%e;, (17
Y

where L% is the Moore-Penrose pseudoinverse of L.

Recall that the H,, norms of F;’s are what we are interested in as they measure the ith
agent disturbance impact on the entire system. To harmonize the F;(s) expressions for all s,
note that we can write

T
®(s) = (iser + y)<ﬂ]+L>.
Y + 1sa

Hence, we have

1
Fi(s) = ———VV (L — u()I) e, (18)
Y + 1s¢
with
s* —isp
wis) = y +isa’

Since VV'T is the orthogonal projection to the orthogonal complement of the subspace spanned
by the vector 1, we know that VV'T =71 —n~'117 and hence VV TL* = L*. This implies that
for all s we can write

—VVT(L - pns)De.
+ 15

Fi(s) =
14
Observe that the H,, norm of the transfer function F; is

IF 1% = sup [|F;(s)[13 = sup IVVT(L — n(s)DFell3

y2 + s2a2
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Hence, the calculation of || F;||« boils down to finding the maximum of the function R > s
\/%HVVT(L — u(s)I)"e;||. To achieve this, the main computation cost is solving linear
y2+sia?

systems (L — u(s)I)x = e; for a sequence of choices of s given by the optimization method
in use.

Before moving to the main result of this article, let us point out the following (minor)
contribution of the present work. Namely, in comparison with the model reduction from Toli¢
[36], which leverages the Real Jordan Form, the aforestated MAS model reduction is more
scalable and numerically stable. For example, the methodology from Toli¢ [36] is struggling
numerically even with MASs containing about 20 agents (i.e., the model reduction takes
several hours to complete).

4.2. Main result

In the proof of Theorem 1, we use the following result

Lemma 1 ([40], Corollary 4.5.11). Let A, S € R™" and let A be a Hermitian matrix. Let the
eigenvalues of A and SS* be arranged in increasing order. For each k = 1, ..., n there exists
a nonnegative real number 0y such that 1 (SS*) < 6, < 1, (SS*) and A, (SAS*) = 6 hi (A).

Theorem 1. Suppose that (y <ap) or (y >af and ||L| < %zaﬁ)). Then for all i€
{1,...,n} we have

[Filloo = 1£5(0)l2-

Proof. We assume that columns of V are eigenvectors of L that correspond to the non-
zero eigenvalues. Let V= [1V]eR"™ . Then L = VAVT, where A = diag(Ay, Ao, ..., Ap) =
diag(0, A2, ..., A,;). Note that VTy = [01,-1]. We denote A, = diag(Ay,...,A,). Using
Eq. (18), from

Fj(s) : = e}—F,-(s) = e;VVTCD(s)_lei = —e}rVVT(L — u(s))_lei

y + isa
1 1A 1 _
= ¢/ [0VI(A — () VTei= ———e[V(Ar — u(s)"'V'e (19)
Y + 1sa Y + 1sa
we obtain
1 N\
EOF = o aege]V(ha = w) ™V eV (A2 = @) Ve,
1 IR _ — !
_ mejvu — A A ‘VTe,-e,TVAzl(I — L®)A,; 1) Ve,

1 *
= me}V(s)QV(s) ej,

with V(s) = V(I — u(s)A;H)1 e C™@=D and Q = A;'VTee] VA, € Ro-Dx(=D),
Note that from Eq. (19) we obtain

1 1 . . 1
Fj(0)=—e]VA;'VTe, = —e]V [O OI}VTe,- = —ejL%e;.
v Y 0 A Y
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0 0

Let V(s)=[0V(s)] € C"™" and O = [o 0

] € R™", Then V (s)QV (s)* =V (s)QV (s)*.

Next, we calculate

~ N _ . -1
VSV =VEVE)* =V(I— pns)A;") ‘(1 - /L(s)Az_l) ’al

1
=V diag — —k=2,....n|VT
(1= Rp(s)A )? + (Sp(s))*2

. A7 .
=V diag 5 - 2:k:2,...,nV.
Ay = 20N (u(s)) + | (s)]

This implies that the singular values of V(s) are given by

)\2
ox(s) = -
A= 20 (i (9)) + () [?
for k=2,...,n. To be able to apply Lemma | and obtain the desired inequality

)»n(\A/(s)QA\A/(s)*) < An(Q), we need to ensure that 0 < oy (s) < 1. Thus, we need to ensure
| (s)|> — 20N (u(s)) > 0 for all k =2, ...,n. Taking into account the definition of s (s),
we obtain the following inequality

2y —af) <s° + B

If y < ap, this inequality is obviously always satisfied. If, on the other hand, y > a8, we

obtain A; < Lﬂzﬂ) To ensure that this inequality is satisfied for all s > 0 and k =2,...,n,

)
2(y—«a
. . 2
we arrive at the assumption ||L| < ﬁ

We now apply Lemma 1 with § = V(s) and A = Q and obtain that for all s > 0 there
exist numbers 6 (s) such that 0 < 0(s) <1 and A,(V(s)QV (5)*) = 0(s)1,(Q), where X\, (M)
denotes the largest eigenvalue of the matrix M. As V(s)QV (s)* is a rank one matrix, we
obtain

dn(V($)QV () = V(A = D'V el =D le]V(Ay — (D' el

j=1
= (y* + ) IE)I?
and 1,(Q) = [|A;'V el As Fi(s) = 0 would imply (L — u(s)I)1 = e;, which is not true,
it follows that 0(s) > O for all s > 0. Since
1A'V el = IVIVATV e|> < VATV Tell” = 2 (VO)QV () )
and
VOOV =VA;'V e VAT'VT = |LTe?,

we finally obtain

2
2 4 2
IE)I7 < me(S)IIFi(O)II :
From 0 < yzl—;aze(s) < 1 for all s > 0, the statement of the theorem follows. [l
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Remark 1. The first condition of the above theorem boils down to ¢; < Tycp, which is some-
what concerning as it requires the position feedback gain c¢; to be typically smaller than
the velocity feedback gain ¢,, which is often undesirable in practice owing to velocity mea-
surements being more noisy than position measurements, especially at high frequency ranges
[37,38]. Namely, being velocity integrals, positions smooth out velocity noise making them
less wiggly. On the other hand, since our problem settings do not involve modeling un-
certainties nor noisy measurements, the obtained theoretical result is not surprising in light
of the low-pass filter discussion from the introductory section as confirmed by Section 5.
Nevertheless, this real-life applicability observation warrants the experimental verification of
Section 6 to examine robustness of Problem 1 and Theorem 1.

Remark 2. From Theorem 1 it follows that under its assumptions, one can calculate the Hy
norm of agent-to-system using

1 & 1
IF1%, = " > oW = ;nL*e,-nz. (20)
j=1

Hence, under the assumptions of Theorem 1, the main computational cost in calculating
|Fillo for all agents i is to calculate the pseudoinverse of the matrix L. As illustrated in
Section 5, this is obviously several orders of magnitude faster then calculating ||F;|| by a
general algorithm for the Hy, norm. This allows us to efficiently rank all agents of the system
according to their corresponding H., norm.

Also note that we have ||F;|loo > ﬁL;{ ; hence, from the diagonal of LT one can estimate
the Ho, norm of systems. Since the pseudoinverse of a graph Laplacian and its diagonal are
important objects of study in various disciplines, there is a wealth of literature covering their
efficient computation and/or approximation schemes (see, for example, [41,42] and [43]). In
this article, we do not pursue this line of research, but it is clear that the use of such methods
would further increase the efficiency of our method.

Remark 3. The efficient calculation of the H,, norm allows one to calculate the impact of
all the agents on the system. This can be used to provide directions towards improving com-
munication graph design and tuning/selecting cooperative control mechanisms. For example,
from Fig. 2 one can see that if one wants to improve the spread of information, the existence
of large clusters of agents is not desirable.

From the proof of Theorem 1 it follows that for systems which do not attain the H

norm in zero, one must have A, > %ﬁxﬁ), i.e., the Fiedler value (also called the algebraic
connectivity) has to be larger than a certain constant, which only depends on the parameters
of the system and not the geometry of MAS. Obviously, this is only a necessary condition.
In Example 3, we give a MAS that violates the assumptions of Theorem 1 and for which
the H,, norm is not attained at zero. Also, from Example 2 it is clear that the statement of

Theorem | does not hold when calculating the H,, norm of the influence between two agents.

Remark 4. The property |G|l = 0 (G(0)) is well-known to hold for positive systems [44],
but the systems we are studying, in general, do not satisfy this property.
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Fig. 1. Transfer functions for Example 1.
5. Numerical examples

Example 1. First we illustrate our main result given by Theorem 1. The matrix L is the graph
Laplacian illustrated in Fig. 2 and the matrix L itself can be downloaded at [45]. For the il-
lustration purposes, we consider here just dimension n = 20, while later in this section we
show computational benefits of our result. Following the notation from Section 3, we select
the following system parameters K; = 5.2, Ty = 0.38, K = 0.5, ¢; = 0.05 and ¢; = 0.5 moti-
vated by the MAS experiments in [37]. Since y — af = —0.364 < 0, the first assumption of
Theorem 1 is satisfied. In Fig. 1 we show transfer functions defined by Eq. (18) for several
different agents i that determine the input matrix B; from Eq. (4). In particular, on the x-axis
we have the frequency s~!, while the y-axis shows the magnitude of F;(s) for four different
agents i. Employing Eq. (20), this figure illustrates the influence of different agents i on the
Ho, norm of the system, but it also shows that the H,, norm is attained at zero frequency.

Fig. 2 illustrates the relative importance of agents; the radius of the ith node is proportional
to ||Fi|leo- Also the thickness of each edge is proportional to the corresponding edge weight.
As can be seen, the “hubs” of the MAS aren’t the most influential agents. The ordering seems
to be related to the ordering obtained by using the so-called topological centrality of nodes
[46], which can also be calculated using the pseudoinverse of the graph Laplacian, but it does
not coincide with it. It seems that the most influential nodes are those which belong to the
largest number of spanning trees.

Example 2. This example considers the same configuration presented in the previous example,
but here we consider the impact of the ith agent to the jth agent. This means that the output
matrix is given by C; = [e,- OZ]T. Here we would like to illustrate that in this case the Hy
norm is not attained at zero, even though the assumptions of Theorem 1 hold. Hence, the
theorem cannot be extended to cover the agent-to-agent influence. In particular, this implies
that the systems (C,A, [0117) are, in general, not positively dominated [44]. Fig. 3 shows
the transfer function for different pairs (i, j). The y-axis shows the magnitude of the transfer
function ||Fj;(s)|lo for four different pairs of (i, j), where the index i determines the input
matrix B; and the index j determines the output matrix C;.
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Fig. 2. Agents’ importance in Example 1. The radius of the ith node is proportional to ||F;|l« and the thickness of
each edge is proportional to the corresponding edge weight.
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Fig. 3. Transfer functions in Example 2.
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Fig. 4. Graph associated with Example 3.
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Fig. 5. Transfer functions for Example 3 in which the conditions of the main theorem are not met.

Example 3. Let us consider the ‘lollipop’ graph with n = 20 (for more about the ‘lollipop’
graphs, see [47]). The utilized matrix L can be downloaded at [45]. Here we show that
if the assumptions of Theorem | do not hold, then the maximum of our transfer function
Eq. (18) need not be attained at zero. The Laplacian matrix L (that is, the underlying graph) is
illustrated in Fig. 4. We consider the following system parameters: K, = 5.2, T, = 0.38, K =
0.5, ¢; = 2.5 and ¢, = 0.005. Now, y — o = 6.4951 > 0 and ||L| — %2&}3) =16.993 > 0,
which means that the assumptions of Theorem 1| are not satisfied. From the Fig. 5, it is
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Table 1

Runtime comparison.

n using formula Eq. (20) MATLAB function hinfnorm
250 0.007 s 7.806 min

10,000 5.55 min n/a

obvious that the maximum is not attained at zero and this additionally testifies sharpness of
the bounds in our main result.

Example 4. The last example is similar to Example 3, but here ¢; = 0.05, ¢; = 0.5 and
now we consider a significantly larger number of agents n to illustrate the computational
benefits of our approach. In particular, two different dimensions n are considered. Table 1
shows the total time needed for calculation of ||F|ls, Vi=1,2,...,n. In our case, we use
the formula Eq. (20) whilst the standard approach in MATLAB is to use the function hinfnorm
(with tolerance 0.001). Since that standard calculation of the H,, norm is demanding even for
moderate dimensions, calculations with MATLAB’s function hinfnorm for n = 10000 are not
feasible. Note the huge difference in the calculation time for n = 250 of our approach and
of the standard approach via the MATLAB’s function. Furthermore, our formula for n = 10000
is even faster than the MATLAB’s for n = 250. The graph Laplacians used in the example can
be downloaded at [45].

These computations were carried out on a machine with an Intel® Core™ processor
i7 — 1165G CPUs and 16 GB RAM. The MATLAB results are calculated by the MATLAB
version 9.8.0.1323502 (R2020a) on a 64-bit Windows operating system.

6. Experimental results

An in-detail description of our testbed comprised of low-cost components including HTC
Vive Lighthouse stations and Bitcraze Lighthouse positioning decks mounted on four Crazyflie
nano quadrotors can be found in [38]. The system identification performed in [38] yields
parameters K; = 0.95 and 7; = 0.45 in (1). Notice that the time delay (that is, dead time)
of 0.45s from [38] is approximated by 7; owing to the first-order Padé approximation. In
addition, the output feedback constants in Eq. (2) are selected as ¢; = 0.1 and ¢, = 1 whereas
the controller gain is K = 0.45. Clearly, the y < af condition of Theorem 1 is fulfilled.
Furthermore, the control loop sampling frequency is 40Hz whilst the topology is given by

1 0o — 1 0
0 2 — 1 = 1

L=|_ |~ 1 3 21
o — 1 — 1 2

The team is disturbed through the first agent with the sinusoidal signal of amplitude 0.1m
and period 1.5rad/s. Subsequently, the constant disturbance value —0.02m/s? is applied at
the first agent as well. The obtained signals are provided in Fig. 6 whereas their spectra are
in Fig. 7.

The first plot in Fig. 6 illustrates the existence of unaccounted for disturbances (e.g.,
modeling uncertainties, inter-agent interference, coupling among agents’ control loops, etc.)
and noisy measurements. We measure the impact of these unaccounted for phenomena using
the £,-norm of || x| w.r.t. consensus manifold normalized over time and obtain 0.0096. Since
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no disturbance
T

constant disturbance

x[m]

t[s]

Fig. 6. Experimentally obtained signals.

we cannot measure the L£,-norm of the inherent disturbances, we cannot infer much about
the associated H,.-norm. In what follows, we assume that the level of inherent disturbances
is negligible in comparison with the user-imposed disturbances. Since in the remaining two
plots of Fig. 6, where the disturbances are imposed onto the first agent, it is straightforward
to estimate the corresponding H, norm as the ratio of the £,-norms of outputs and applied
inputs. This way of obtaining/estimating the H,, norm comes from nonlinear systems [36],
where the modes of input signals do not necessarily excite only the same modes in the outputs
(as seen from the second plot in Fig. 7). The obtained H, norm for the sinusoidal input is
2.2043 while for the constant input is 25.9579. Clearly, the impact of the constant disturbance
is much greater than the impact of the sinusoidal disturbance, which verifies Theorem 1.
The first plot in Fig. 7 presents the spectrum of || x (f)|| w.r.t. consensus manifold obtained
when the MAS is “at rest”. Of course, the system is not really at rest owing to the inherent
realistic phenomena, but that is as close as we can get to the no-disturbance settings. It is
worth mentioning that all spectra are obtained using the Fast Fourier Transformation (FFT).
The second plot shows several low-frequency harmonics excited by the sinusoidal input (since
the MAS is in fact nonlinear). It is to be pointed out that sines with various frequencies and
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Fig. 7. Amplitude spectra of signals of interest obtained via FFT.

amplitudes were applied all with similar outcomes and hence are not enclosed herein for
brevity. The last plot in Fig. 7 provides a clear evidence that constant inputs affect our MAS
more than signals at other frequencies and that the greatest impact is on the zero frequency
component of output. All plots in Fig. 7 show that our concerns regarding the high-frequency
noises potentially present in experiments were not justified. We presume that the relatively
high sampling rate of 40Hz, as opposed to the intermittent data exchange from [38], is
behind this reassuring observation. Altogether, these experiments attest a certain robustness
level present in our problem setting and conditions of Theorem 1.

7. Conclusions

This article presents sufficient conditions that greatly improve agent-to-system Hy, norm
computations in MASs. Undirected weighted topologies and second-order linear homogeneous
agent dynamics are considered. The presented theoretical results are successfully verified
experimentally in a rather challenging disturbance and noise setting.

The future research avenues include A, norm analyses, directed and time-varying topologies
as well as more general MASs including heterogeneous agents with higher order dynamics.
Lastly, a more formal and theoretical investigation of realistic phenomena present in MASs
is in order.
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