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Cooperative Filters and Control for Cooperative

Exploration

Fumin Zhang and Naomi Ehrich Leonard

Abstract

Autonomous mobile sensor networks are employed to measure large-scale environmental fields.

Yet an optimal strategy for mission design addressing both the cooperative motion control and the

cooperative sensing is still an open problem. We develop strategies for multiple sensor platforms to

explore a noisy scalar field in the plane. Our method consists of three parts. First, we design provably

convergent cooperative Kalman filters that apply to general cooperative exploration missions. Second,

a novel method is established to determine the shape of the platform formation to minimize error in

the estimates and a cooperative formation control law is designed to asymptotically achieve the optimal

formation shape. Third, we use the cooperative filter estimates in a provably convergent motion control

law that drives the center of the platform formation to move along level curves of the field. This

control law can be replaced by control laws enabling other cooperative exploration motion, such as

gradient climbing, without changing the cooperative filters and the cooperative formation control laws.

Performance is demonstrated on simulated underwater platforms in simulated ocean fields.

I. INTRODUCTION

Missions that require measuring and exploring a scalar field such as a temperature or a salinity

field are encountered, for example, in ocean science and meteorology. Since the scalar field is
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often distributed across a large area, it takes too many sensors to obtain a snapshot of the

field if the sensors are installed at fixed locations. Mobile sensor networks are ideal candidates

for such missions: a small number of moving sensor platforms can patrol a large area, taking

measurements along their motion trajectories. Exploration activities of great interest include

climbing gradients of a scalar field [1], monitoring environmental boundaries [2]–[5], patroling

the perimeter of a region or a contour [6]–[12], and providing sampling coverage over a large

area [13]–[15]. Various methods are developed and demonstrated in the above references.

Mission design for a mobile sensor network requires a combination of cooperative control and

cooperative sensing. This is because the nature and quality of collected information are coupled

with the motion of the sensor platforms. Therefore, the challenges in developing successful

sensing algorithms are complementary to those addressed in earlier work on distributed but fixed

wireless sensor networks (c.f. review articles [16], [17]). Recent theoretical and experimental

developments suggest that a balance between data collection and feasible motion is key to mission

success [15], [18], [19]. Finding an optimal strategy is a challenging task.

In this paper, we present a general Kalman filter design for mobile sensor networks to

perform cooperative exploration missions. Exploration missions are frequently encountered in

environmental applications where the mobile sensor platforms are commanded to measure an

unknown scalar field corrupted by (correlated) noise. Since each platform can only take one

measurement at a time, the platforms should move in a formation or a cluster to estimate local

structures of the field.

The Kalman filter combines sensor readings from formation members to provide estimates

for the field value and the gradient. A separate cooperative filter is developed to estimate the

Hessian. We demonstrate that the formation shape can be made adaptive to minimize the error

covariance of the estimate produced by the cooperative Kalman filter. We prove a set of sufficient

conditions that the formation and its motion need to satisfy to achieve the convergence of the

Kalman filter. Derivation of these sufficient conditions is based on fundamental results connecting

controllability and observability of a (time-varying) filtering system to its convergence in [20]–

[22]. More recent developments in [23]–[25] have relaxed the conditions for convergence of

Kalman filters to stabilizability and detectability, with even weaker conditions for some special

cases. In this paper, we develop the sufficient conditions based on controllability and observability

conditions because the resulting constraints on formation design are already mild enough, hence
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are acceptable in typical applications.

Kalman filtering for mobile sensor network applications has received recent attention in the

literature. In [26], a distributed Kalman filter method was proposed to decompose a high-order

central Kalman filter into “micro” filters computable by each sensor node. The estimates made

by each node are then combined using consensus filters [27]. A similar approach is taken in

[28] to address target tracking and coverage problems. Another type of Kalman filter design is

proposed in [29] where the entire field is partitioned into cells and the movement of agents is

controlled to maximize collected information. The above contributions assume that a (dynamic)

model for a planar field is known to all nodes, hence each individual is able to compute a Kalman

filter. Accordingly, the goal there is to implement a distributed algorithm on many sensor nodes

to improve tracking or mapping precision.

For the cooperative exploration problem, on the other hand, the field is completely unknown;

a Kalman filter can only be computed by combining readings across platforms. The interest

here is to take advantage of the Kalman filter design in order to use a minimum number of

sensor platforms to navigate in the unknown scalar field and reveal its structure, e.g., to follow

level curves or gradients. In [30], an adaptive scheme using a Kalman filter is developed for

interpolating data to construct a scalar field. This contribution addresses different problems than

in this paper and is complementary to our results.

In concert with our cooperative filter development, we design provable cooperative control laws

to stabilize desired formation shape and motion. There exist many contributions on cooperative

formation control that are closely related to graph theory, c.f. [31]–[35], to name only a few. In

this paper, we employ a different approach based on geometric reductions. The Jacobi transform

[36]–[38] is applied to decouple the motion of the formation center from the motion of the

formation shape. Hence the control effort can also be decoupled into control for the formation

shape and control for the formation center. We design the shape control and the center control

separately and then combine them to get the overall control. The key benefit of this approach

is that it allows us to design formation shape control to improve performance of the Kalman

filter. The center of the formation can be controlled to perform gradient climbing, level curve

tracking, or other motions while the Kalman filter and formation control remains the same. For

this reason we name the Kalman filter associated with the formation control in this paper the

cooperative Kalman filter.
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In this paper we control the center of the formation to track level curves of a scalar field

corrupted by noise; this is a collaborative exploration behavior that reveals structure in the

unknown field. The tracking control method is developed to steer the center to follow its

projection on a curve. This strategy was first reported in [39], [40] and has been applied to curve

tracking for mobile robots, c.f. some recent developments in [41], [42]. A differential geometric

approach was developed in [6] which extended the tracking method to three-dimensional curves.

The tracking control law in the present paper is a generalization of the differential geometric

results to the case of two-dimensional level curve tracking. The control law allows a formation

to smoothly find and follow any desired regular level curve with proved convergence.

The organization of this paper is as follows. In Section II, we derive the information dynamics

of a typical platform formation that moves in a planar scalar field. In Section III, Kalman filtering

techniques are applied to the information dynamics. We establish sufficient conditions for the

cooperative Kalman filter to converge. We also show that the formation shape can be made

adaptive to minimize the error covariance of the estimates produced by the cooperative Kalman

filter. In Section IV, we provide a method to estimate the Hessian that is necessary for the

cooperative Kalman filter. Formation shape and orientation control laws are derived based on

the Jacobi transform in Section V. In Section VI, a steering control law is designed to control

the center of the formation to follow level curves of a planar scalar field. We demonstrate the

cooperative Kalman filter and the cooperative control law in a simulated ocean temperature field

in Section VII. A summary and discussion for future directions are presented in Section VIII.

II. INFORMATION DYNAMICS OF COOPERATIVE EXPLORATION

In this section, we define the cooperative exploration problem and introduce the corresponding

information dynamic model. Let z(r) where r ∈ R2 be a smooth scalar field in the plane that

is unknown. In most practical situations, since the field is corrupted by noise and the sensing

devices are imperfect, it is difficult to estimate the field value using a single sensor platform. The

key idea for mobile sensor networks is to employ multiple moving sensor platforms to obtain

the necessary estimates cooperatively and reduce noise. This requires the platforms to be in a

formation, moving and collecting information simultaneously.

In most applications, the sensor measurements are taken discretely over time. This is because

the spatial range of the scalar field is usually very large. Hence very small scale fluctuations in
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the field should be filtered out as noise. Let the moment when new measurements are available be

tk where k is an integer index. To simplify the derivation, we do not consider the asynchronicity

in the measurements; we assume that all platforms have new measurements at time tk. In reality,

when there exists asynchronicity, the technique we develop can still be applied with slight

modifications.

Let the positions of the sensor platforms at time tk be ri,k ∈ R2 where i = 1, 2, ..., N . We

assume that the measurement taken by the ith platform is modeled as

pi,k = z(ri,k) + w(ri,k) + ni,k (1)

where z(ri,k) is the value of the field at ri,k, ni,k ∼ N (0, σ2
i ) are i.i.d. Gaussian noise, and

w(ri,k) are spatially correlated Gaussian noise. We define the following N × 1 vectors:

pk = [pi,k] , zk = [z(ri,k)] , nk = [ni,k] , wk = [w(ri,k)] , (2)

and assume that nk and wk are stationary, i.e., their statistics are time invariant.

Remark 2.1: By convention in ocean and atmospheric sciences, modeling a physical field as a

smooth field z(r) plus a spatially correlated random field w(r) is often desired to separate larger

and smaller scale phenomena. The assumptions we impose here are idealizations for physical

scalar fields. In addition, the smoothness of field z(r) helps in developing Hessian filters and

motion control laws in later sections.

We define the problem of cooperative exploration, as a special class of mapping problems,

as follows:

Problem 2.2: Given the statistics of the noise nk and wk, co-design cooperative motion and

filtering that utilize collected measurements pk for mobile sensor platforms so that an estimate

for the field z(r) that minimizes an error metric J can be obtained.

The choice of the error metric J depends on application. In this paper, J is chosen to be the

mean square error over spatial domain.

To solve this problem, there is no need to take measurements at every point in the plane.

Sufficient knowledge of the field can be gained by measuring the field value z, the gradient

∇z, and Hessian ∇2z at locations well distributed across the plane and then interpolating the

field. Note that this problem can be defined for a time-varying field i.e. z(r, t). In this paper, we

address the time-invariant case.
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We address Problem 2.2 by deriving rigorous tools that are particularly useful when there

exist smaller regions within the global area with unknown features that require high resolution

sampling; we do not attempt to address Problem 2.2 globally in this paper. Our approach

includes one development that focuses on minimizing the local error collectively using the

cooperative Kalman filter and coordinated motion that controls the shape of the formation.

The other development focuses on a cooperative exploration behavior, namely formation motion

control for level curve tracking. This contributes to reducing error at a somewhat larger scale

than the filtering and even can contribute to global reduction in error if multiple formations

are distributed throughout the region. Central to our approach is the decoupling of the two

developments, i.e., formation motion control can be designed independently from formation shape

control and the cooperative Kalman filtering. Indeed the level curve tracking can be replaced

or augmented with one or more other collaborative exploration behaviors, such as wide-area

coverage and gradient climbing, to aid in global error minimization; further, because of the

decoupling these can be implemented without affecting the local error minimization.

The function z(ri,k) can be locally approximated by a Taylor series. Let rc,k be the center

of the platform formation at time tk, i.e., rc,k = 1
N

∑N
i=1 ri,k. If ri,k is close to rc,k, then it is

sufficient to use the Taylor series up to second order. Let zi,k = z(ri,k), then

zi,k ≈ z(rc,k) + (ri,k − rc,k)
T∇z(rc,k) +

1

2
(ri,k − rTc,k)∇2z(rc,k)(ri,k − rc,k) (3)

for i = 1, 2, ..., N . We are interested in estimates of z(rc,k), ∇z(rc,k), and ∇2z(rc,k). In addition

to providing insights on the structure of the scalar field, these estimates are also used in the

steering control for the center of the formation, as shown later in Section VI.

A. The Measurement Equations

Let sk = [z(rc,k),∇z(rc,k)
T ]T . Let Ck be the N × 3 matrix defined by

Ck =


1 (r1,k − rc,k)

T

...
...

1 (rN,k − rc,k)
T

 . (4)

Let Dk be the N × 4 matrix with its ith row vector defined by 1
2
((ri,k − rc,k) ⊗ (ri,k − rc,k))

T

where ⊗ is the Kronecker product. For any 2× 2 matrix H , we use the notation ~H to represent
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a column vector defined by rearranging the elements of H as follows

~H = [H11, H21, H12, H22]
T . (5)

Then the Taylor expansions (3) for all sensor platforms near rc,k can be re-written in a vector

form as

zk = Cksk +Dk
~∇2z(rc,k) (6)

where ~∇2z(rc,k) is a 4 × 1 column vector obtained by rearranging elements of the Hessian

∇2z(rc, k) as defined by (5).

Suppose that ~Hc,k is an estimate for the Hessian ~∇2z(rc,k) in vector form. Equation (1) can

now be written as

pk = Cksk +Dk
~Hc,k + wk +Dkek + nk (7)

where ek represents the error in the estimate of the Hessian. Let Wk = E[wkw
T
k ], Uk = E[eke

T
k ],

and Rk = E[nkn
T
k ]. The noise wk is “colored” because it originates from the spatial correlation

of w(r). Let E[wkw
T
k−1] = Vk. We suppose that Wk, Rk and Vk are known once the positions of

the platforms are known. This assumption is reasonable in ocean and meteorology applications

since the statistical properties of ocean fields and atmospheric fields are usually known from

accumulated observational data over a long period of time. We also assume that Uk determined

by the accuracy of the Hessian estimation algorithm is known.

B. The State Dynamics

As the center of the formation moves, the states sk = [z(rc,k),∇z(rc,k)
T ]T evolve according

to the following equations:

z(rc,k) = z(rc,k−1) + (rc,k − rc,k−1)
T∇z(rc,k−1)

∇z(rc,k) = ∇z(rc,k−1) +Hc,k−1(rc,k − rc,k−1). (8)

Let hk−1 = [0, E[Hc,k−1(rc,k− rc,k−1)]
T ]T and As

k−1 =

 1 (rc,k − rc,k−1)
T

0 I2×2

. We then rewrite

(8) as

sk = As
k−1sk−1 + hk−1 + εk−1 (9)

where we have introduced the N × 1 noise vector εk−1 which accounts for positioning errors,

estimation errors for the Hessians, and errors caused by higher order terms omitted from the

November 11, 2008 DRAFT



8

Taylor expansion. We assume that εk−1 are i.i.d Gaussian with zero mean and known covariance

matrix Mk−1 that is positive definite.

Remark 2.3: We note that the assumption that εk−1 is i.i.d Gaussian with zero mean may be

unrealistic. Simulation or physical data will help to validate the assumption.

C. The Noise Dynamics

The noise wk in the measurement equation (7) is colored. The standard technique (c.f. [43])

to handle this issue is to model wk as

wk = Aw
k−1wk−1 + ηk−1 (10)

where ηk−1 is white noise with positive definite correlation matrix Qk = E[ηkη
T
k ]. Because

Vk = E[wkw
T
k−1] = Aw

k−1E[wk−1w
T
k−1] = Aw

k−1Wk−1

Wk = E[wkw
T
k ] = Aw

k−1Wk−1(A
w
k−1)

T +Qk−1, (11)

we have

Aw
k−1 = VkW

−1
k−1

Qk−1 = Wk − Aw
k−1Wk−1(A

w
k−1)

T . (12)

Remark 2.4: State equation (9) reveals the major difference between the cooperative explo-

ration problem considered in this paper and the tracking/coverage problems considered in [26],

[28], [29]. Equation (9), fundamental to the cooperative exploration problem, is only valid for

the formation and does not make sense for each individual node, since As
k−1 and hk−1 depend on

the location of all platforms in the formation. Therefore, the distributed Kalman filter algorithms

for tracking and coverage in [26], [28], and [29], which achieve consensus between nodes and

increase computation efficiency, are not applicable here. The central problem here is to use the

minimum number of platforms with coordinated motion to estimate the field. For this purpose,

we design the cooperative Kalman filter in the next section.

III. THE COOPERATIVE KALMAN FILTER

We observe from the information dynamics modeled by (9), (10), and (7) that if the Hessian

related term hk−1 is known for all k, then the system belongs to the category for which Kalman
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filters can be constructed. In Section IV we show that hk−1 can be estimated. Thus standard

procedures can be followed to obtain a Kalman filter, which will be called the cooperative

Kalman filter because it can only be computed by a formation and its performance depends on

the configuration of the formation. Our main contribution in this section is to establish sufficient

conditions that a formation must satisfy for the cooperative Kalman filter to converge.

A. Cooperative Kalman Filter Equations

The equations for Kalman filters are obtained by canonical procedures, the formulas are derived

following textbooks [43]–[45]. For the sake of clarity and convenience for later references we

list those formulas for the case when wk = 0 as below:

(1) the one-step prediction,

sk(−) = As
k−1sk−1(+) + hk−1 ; (13)

(2) error covariance for the one-step prediction,

Pk(−) = As
k−1Pk−1(+)A

sT
k−1 +Mk−1 ; (14)

(3) optimal gain,

Kk = Pk(−)C
T
k [CkPk(−)C

T
k +DkUkD

T
k +Rk]

−1 ; (15)

(4) updated estimate,

sk(+) = sk(−) +Kk(pk − Cksk(−) −Dk
~Hc,k); (16)

(5) error covariance for the updated estimate,

P−1
k(+) = P−1

k(−) + CT
k [DkUkD

T
k +Rk]

−1Ck. (17)

Here we use subscript (−) to indicate predictions and (+) to indicate updated estimates.

In order to design a Kalman filter with colored measurement noise wk, a well-known method

devised in [46] can be applied by defining a new measurement p̃k as p̃k = pk−Awk−1pk−1. This

gives a new equation for measurements:

p̃k = (CkA
s
k−1 − Aw

k−1Ck−1)sk−1 + Ckhk−1 + (Dk
~Hc,k − Aw

k−1
~Hc,k−1)

+ Ckεk−1 +Dkek − Aw
k−1Dk−1ek−1 + nk − Aw

k−1nk−1. (18)
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The equations (9), (10), and (18) are now the state and the measurement equations for the

case when wk 6= 0. The states are [sTk ,w
T
k ]T , the output is p̃k, the state noise is εk−1, and the

observation noise is Ckεk−1 +Dkek−Aw
k−1Dk−1ek−1 +nk−Aw

k−1nk−1. The Kalman filter design

procedure for this case can be found in most textbooks and will not be repeated here.

B. Convergence of the Cooperative Kalman Filter

Kalman filters converge if the time-varying system dynamics are uniformly completely control-

lable and uniformly completely observable [22]. In our case, these conditions are determined by

the number of platforms employed, the geometric shape of the platform formation, and the speed

of each platform. We develop a set of constraints for these factors so that the uniformly complete

controllability and observability conditions are satisfied, which then guarantees convergence of

the cooperative Kalman filter.

Let Φ(k, j) be the state transition matrix from time tj to tk where k > j, then one must have

Φ(k, j) = As
k−1A

s
k−2 · · ·As

j and Φ(j, k) = Φ−1(k, j). The following lemma follows from direct

calculation.

Lemma 3.1: For Φ(k, j) as defined above and Ck as defined in (4), we have, for k 6= j,

Φ(k, j) =

 1 (rc,k − rc,j)
T

0 I2×2

 and CkΦ(k, j) =


1 (r1,k − rc,j)

T

...
...

1 (rN,k − rc,j)
T

.

Remark 3.2: Note that this lemma holds for both k > j and k < j. It applies to formations

with any shape and any motion.

For clarity, we restate the definitions for uniformly complete controllability and uniformly

complete observability in [22] using notations in this paper.

Definition 3.3: The state dynamics (9) are uniformly completely controllable if there exist

τ1 > 0, β1 > 0, and β2 > 0 (independent of k) such that the controllability Grammian C(k, k −

τ1) =
∑k

j=k−τ1 Φ(k, j)Mj−1Φ
T (k, j) satisfies β1I3×3 ≤ C(k, k − τ1) ≤ β2I3×3 for all k > τ1.

Here Mj−1 is the covariance matrix for state noise εj−1.

Definition 3.4: Suppose wk = 0 for all k. The state dynamics (9) together with the measure-

ment equation (7) is uniformly completely observable if there exist τ2 > 0, β3 > 0, and β4 > 0 (in-

dependent of k) such that the observability Grammian J (k, k−τ2) =
∑k

j=k−τ2 ΦT (j, k)CT
j [DjUjD

T
j +

Rj]
−1CjΦ(j, k) satisfies β3I3×3 ≤ J (k, k − τ2) ≤ β4I3×3 for all k > τ2. Here Uj and Rj are
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covariance matrices for noises ej and nj respectively.

Note that in these definitions, the “≤” is a relation between two symmetric matrices such that

A1 ≤ A2 if and only if xTA1x ≤ xTA2x for any vector x with compatible dimension.

If wk 6= 0, the measurement equation is (18) instead of (7). Then the observability Grammian

is J w(k, k − τ2) =
∑k

j=k−τ2 ΦT (j, k)C̃T
j R̃
−1
j C̃jΦ(j, k) where C̃j = CjA

s
j−1 − Aw

j−1Cj−1 and

R̃j = CjMj−1C
T
j +DjUjD

T
j + Aw

j−1Dj−1Uj−1Dj−1A
wT
j−1 +Rj + Aw

j−1Rj−1A
wT
j−1. (19)

The condition for uniformly complete observability is that for all k > τ2, β3I3×3 ≤ J w(k, k −

τ2) ≤ β4I3×3.

In the following discussions, we derive constraints on the formations so that the uniformly

complete controllability and observability conditions are satisfied by showing that there exist

positive real numbers β1, β2, ..., β28 that serve as time-independent bounds for various quantities.

The actual value for these bounds do not affect the correctness of our arguments.

For uniformly complete controllability the following lemma holds.

Lemma 3.5: The state dynamics (9) are uniformly completely controllable if the following

conditions are satisfied:

(Cd1) The symmetric matrix Mj−1 is uniformly bounded, i.e., β5I ≤ Mj−1 ≤ β6I for all j and

for some constants β5, β6 > 0.

(Cd2) The speed of each platform is uniformly bounded, i.e., ‖ ri,j − ri,j−1 ‖ ≤ β7 for all time

j, for i = 1, ..., N , and for some constant β7 > 0.

Proof: Due to condition (Cd1), the controllability Grammian satisfies β5

∑k
j=k−τ1 Φ(k, j)ΦT (k, j) ≤

C(k, k−τ1) and C(k, k−τ1) ≤ β6

∑k
j=k−τ1 Φ(k, j)ΦT (k, j) for any k and τ1 such that k > τ1. We

first observe that Φ(k, j)ΦT (k, j) is a positive semi-definite symmetric matrix for each j such that

k − τ1 ≤ j ≤ k. If we can find uniform bounds for each of these matrices i.e. Φ(k, j)ΦT (k, j),

we obtain an overall bound for the controllability Grammian.

We apply Lemma 3.1 to compute Φ(k, j)ΦT (k, j), i.e.,

Φ(k, j)ΦT (k, j) =

 1 + ‖ δr(k, j) ‖2 (δr(k, j))T

δr(k, j) I2×2

 (20)

where we define δr(k, j) = rc,k − rc,j . The minimum eigenvalue of matrix (20) is

λmin =
1

2

(
‖ δr(k, j) ‖2 + 2−

√
(‖ δr(k, j) ‖2 + 2)2 − 4

)
November 11, 2008 DRAFT



12

and the maximum eigenvalue is

λmax =
1

2

(
‖ δr(k, j) ‖2 + 2 +

√
(‖ δr(k, j) ‖2 + 2)2 − 4

)
.

Since (Cd2) is satisfied and δr(k, j) is the averaged movement over all platforms between

time j and k, we must have ‖ δr(k, j) ‖ ≤ (k − j)β7 ≤ τ1β7 for all j ∈ [k − τ1, k]. It is

straightforward to show that λmin assumes its minimum value when ‖ δr(k, j) ‖ = τ1β7. This

minimum value is β8 = 1
2

(
(τ1β7)

2 + 2−
√

(τ1β7)2 + 2)2 − 4
)

. We can see that β8 > 0. On

the other hand, λmax assumes its maximum value also when ‖ δr(k, j) ‖ = τ1β7. This maximum

value is β9 = 1
2

(
(τ1β7)

2 + 2 +
√

(τ1β7)2 + 2)2 − 4
)

, and β9 > 0. Therefore, we conclude that

β8I3×3 ≤ Φ(k, j)ΦT (k, j) ≤ β9I3×3 for all j ∈ [k − τ1, k]. Thus β5τ1β8I3×3 ≤ C(k, k − τ1) ≤

β6τ1β9I3×3. Let β1 = β5τ1β8 and β2 = β6τ1β9. Since β1 and β2 do not depend on k, we have

proved the uniformly complete controllability claim using Definition 3.3.

By the arguments for proving Lemma 3.5, we have also proved the following lemma.

Lemma 3.6: Suppose condition (Cd2) is satisfied. Then there exist constants τ1 > 0, β8 > 0,

and β9 > 0 such that the state transition matrices satisfy β8I3×3 ≤ Φ(i, j)ΦT (i, j) ≤ β9I3×3 for

all i, j ∈ [k − τ1, k] and for all k > τ1.

To prove uniformly complete observability, we also need an elementary lemma for which we

do not show the proof.

Lemma 3.7: Suppose two 2 × 1 vectors a1 and a2 form an angle γ such that 0 < γ < π.

Then the minimum eigenvalue λmin of the 2 × 2 matrix A = a1a
T
1 + a2a

T
2 is strictly positive,

i.e., λmin > 0.

We have the following lemma regarding uniformly complete observability of a moving for-

mation.

Lemma 3.8: Suppose wk = 0 for all k. The state dynamics (9) with the measurement equation

(7) are uniformly completely observable if (Cd2) and the following conditions are satisfied:

(Cd3) The symmetric matrices Rj and Uj are uniformly bounded, i.e., β10IN×N ≤ Rj ≤ β11IN×N

and 0 ≤ Uj ≤ β12IN×N for all j and for some constants β10, β11, β12 > 0.

(Cd4) The distance between each platform and the formation center is uniformly bounded from

both above and below, i.e., β13 ≤ ‖ ri,j − rc,j ‖ ≤ β14 for all j, for i = 1, 2, ..., N , and for

some constants β13, β14 > 0.
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(Cd5) There exists a constant time difference τ2 and for all k > τ2, there exist time instances

j1, j2 ∈ [k− τ2, k] where j1 < j2, as well as two platforms indexed by i1 and i2, such that

one of the following two conditions is satisfied:

(Cd5.1) The two vectors, ri1,j1 − rc,j1 and rc,j1 − rc,j2 form an angle γ1 that is uniformly

bounded away from 0 or π. In other words, there exists a positive constant β15 < 1

such that sin(γ1/2) ≥ β15.

(Cd5.2) The two vectors, ri1,j1 − rc,j1 and ri2,j2 − rc,j2 form an angle γ2 that is uniformly

bounded away from 0 or π. In other words, there exists a positive constant β15 < 1

such that sin(γ2/2) ≥ β15.

Proof: Condition (Cd3) implies that Uj is positive semi-definite, and condition (Cd4) implies

that every component of Dj is bounded above. Hence the matrix DjUjD
T
j is a positive semi-

definite matrix with its maximum eigenvalue bounded above. Also from (Cd3), Rj is a positive

definite symmetric matrix. Therefore, Weyl’s theorem (c.f. [47], Theorem 4.3.1) that states the

eigenvalues of the sum of two Hermitian matrices are bounded above by the sum of the two

maximum eigenvalues and bounded below by the sum of the two minimum eigenvalues can

be applied to Rj + DjUjD
T
j . This implies that there exist positive constants β16, β17 > 0 such

that β16IN×N ≤ (Rj + DjUjD
T
j ) ≤ β17IN×N where β16 ≥ β10 and β17 ≥ β11. Thus, one must

have β−1
17

∑k
j=k−τ2 ΦT (j, k)CT

j CjΦ(j, k) ≤ J (k, k − τ2) ≤ β−1
16

∑k
j=k−τ2 ΦT (j, k)CT

j CjΦ(j, k)

for all k > τ2. Next, we prove the existence of positive uniform upper and lower bounds for∑k
j=k−τ2 ΦT (j, k)CT

j CjΦ(j, k) for all k > τ2.

First for the upper bound, according to Lemma 3.1, we can compute

ΦT (j, k)CT
j CjΦ(j, k) =

 N (rc,j − rc,k)
T

(rc,j − rc,k)
∑N

i=1(ri,j − rc,k)(ri,j − rc,k)
T

 . (21)

The conditions (Cd2) and (Cd4) imply that each component of the above matrix is bounded

above. Hence there exists β18 > 0 such that ΦT (j, k)CT
j CjΦ(j, k) ≤ β18I3×3.

We now use condition (Cd5) to argue that there exists the lower bound β19 > 0 such that

β19I3×3 ≤
∑k

j=k−τ2 ΦT (j, k)CT
j CjΦ(j, k). Consider the two time instances indexed by j1 and

j2 as given by condition (Cd5). It is sufficient to show that the matrix I defined by I =

ΦT (j1, k)CT
j1
Cj1Φ(j1, k) + ΦT (j2, k)CT

j2
Cj2Φ(j2, k) satisfies I ≥ β19I3×3.
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Because Φ(j1, k) = Φ(j1, j2)Φ(j2, k), we have I = ΦT (j1, k)I1ΦT (j1, k) where

I1 = ΦT (j1, j2)C
T
j1
Cj1Φ(j1, j2) + CT

j2
Cj2 . (22)

By direct calculation one can verify that

CT
j2
Cj2 =

 N 0

0
∑N

i=1(ri,j2 − rc,j2)(ri,j2 − rc,j2)
T

 . (23)

Using Lemma 3.1 and the fact that
∑N

i=1(ri,j1 − rc,j1) = 0, we have

ΦT (j1, j2)C
T
j1
Cj1Φ(j1, j2) =

 1 (rc,j1 − rc,j2)
T

rc,j1 − rc,j2 (rc,j1 − rc,j2)(rc,j1 − rc,j2)
T


+

 N − 1 0

0
∑N

i=1(ri,j1 − rc,j1)(ri,j1 − rc,j1)
T


+

 0 0

0 (N − 1)(rc,j1 − rc,j2)(rc,j1 − rc,j2)
T

 . (24)

Then the matrix I1 can be obtained by adding (23) and (24) together. Considering the platforms

i1 and i2 in (Cd5.1) and (Cd5.2), we can further decompose I1 as the sum of two matrices:

I1 = I2 + I3 where I2 =

 1 0

0 I4

 with

I4 = (ri1,j1−rc,j1)(ri1,j1−rc,j1)
T +(ri1,j2−rc,j2)(ri1,j2−rc,j2)

T +(rc,j1−rc,j2)(rc,j1−rc,j2)
T , (25)

and I3 is a positive semi-definite matrix.

Because either condition (Cd5.1) or condition (Cd5.2) is satisfied, according to Lemma 3.7,

there exists β21 > 0 such that the matrix I4 ≥ β21I2×2. Therefore, using the Weyl’s theorem

(c.f. [47], Theorem 4.3.1) we conclude that there exists β20 > 0 such that I1 ≥ β20I3×3. Then

Lemma 3.6 guarantees the existence of β19 > 0 such that I ≥ β19I3×3, which further implies

that J (k, k − τ2) ≥ β19I3×3.

Because both the uniform upper and lower bounds for the observability Grammian J (k, k−τ2)

exist for all k > τ2, we have proved the uniformly complete observability claim.

Remark 3.9: We do not need to give formulas for all the βs in conditions (Cd1)-(Cd5). The

values for these βs will not change the fact that the filter converges, but only affect the speed

of convergence.
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We now consider the case when the colored noise wk 6= 0. The following lemma establishes

the sufficient conditions for uniformly complete observability.

Lemma 3.10: The state dynamics (9) and (10) with the measurement equation (18) are uni-

formly completely observable if (Cd2), (Cd4), and the following conditions are satisfied:

(Cd6) The symmetric matrix R̃j is uniformly bounded i.e. β22IN×N ≤ R̃j ≤ β23IN×N for all j

and some positive constants β22 and β23.

(Cd7) The matrix Aw
j−1 and the matrix Cj−1 satisfy β24IN×N ≤ (IN×N−Aw

j−1)
T (IN×N−Aw

j−1)
T ≤

β25IN×N and β26IN×N ≤ CT
j−1Cj−1 ≤ β27IN×N for some positive constants β24, β25, β26

and β27.

(Cd8) The constants β7 in (Cd2) and the constants β24, β26 in (Cd7) satisfy β7

√
N + β28 <

√
β24β26 for some positive constant β28.

Proof: Condition (Cd6) implies that β−1
23

∑k
j=k−τ2 ΦT (j, k)C̃T

j C̃jΦ
T (j, k) ≤ J w(k, k − τ2)

and J w(k, k − τ2) ≤ β−1
22

∑k
j=k−τ2 ΦT (j, k)C̃T

j C̃jΦ
T (j, k).

Consider C̃j = CjA
s
j−1−Aw

j−1Cj−1. Using Lemma 3.1 we have CjAs
j−1 = Cj−1 + δCj where

δCj =


0 (r1,j − rc,j−1)

T

...
...

0 (rN,j − rc,j−1)
T

. Therefore, C̃j = (IN×N − Aw
j−1)Cj−1 + δCj . Applying the

Hoffman-Wielandt theorem ( [47], Theorem 7.3.8), we have∣∣∣∣√λmin(C̃T
j C̃j)−

√
λmin(CT

j−1(IN×N − Aw
j−1)

T (IN×N − Aw
j−1)Cj−1)

∣∣∣∣ ≤√trace(δCjδCT
j ).

(26)

Thus using condition (Cd8), we have√
λmin(C̃T

j C̃j) ≥
√
λmin(CT

j−1(IN×N − Aw
j−1)

T (IN×N − Aw
j−1)Cj−1)− trace(δCjδC

T
j )

≥
√
β24β26 − β7

√
N > β28. (27)

Therefore
∑k

j=k−τ2 ΦT (j, k)C̃T
j C̃jΦ

T (j, k) is uniformly bounded below, away from singular

matrices. It is also uniformly bounded above by conditions (Cd2), (Cd4) and (Cd7). Hence

J w(k, k − τ2) is uniformly bounded below, away from singular matrices, and above.

With Lemmas 3.5, 3.8, and 3.10 justified, Theorem 7.4 in [22] can be applied to prove the

convergence of the cooperative Kalman filter.

Theorem 3.11: (Theorem 7.4 in [22]) Consider the time-varying linear system formed by the

state equation (9) and (10) with the measurement equation (18). If the system is uniformly
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completely controllable and uniformly completely observable, then the Kalman filter for this

system converges.

The following theorems can be viewed as corollaries of Theorem 3.11.

Theorem 3.12: Suppose wk = 0 for all k. Consider the state dynamics (9) with the measure-

ment equation (7). If the conditions (Cd1)-(Cd5) are satisfied, then the cooperative Kalman filter

given by (13)-(17) converges and the error covariance matrix Pk is bounded as k →∞.

Theorem 3.13: Consider the state dynamics (9) and (10) with the measurement equation (18).

If the conditions (Cd1)-(Cd2), (Cd4) and (Cd6)-(Cd8) are satisfied, then the cooperative Kalman

filter for this case converges and the error covariance matrix is bounded as k →∞.

C. Formation design principles

The conditions (Cd1)-(Cd8) have provided us the following intuitive guidelines for formation

design to yield successful cooperative Kalman filters.

1) If N ≥ 3, there is no penalty in fixing the orientation of the formation, as long as the

shape is nonsingular. A singular formation occurs when all platforms are on a straight line

or collapse to a point. In fact, if the formation is singular only occasionally, the Kalman

filter will still converge.

2) If N = 2 or a line formation is desired, then one should make the orientation of the line

change over time, such as in a rocking or rolling motion.

3) The speed of the platforms needs to be bounded from both above and below to guarantee

the controllability and observability conditions at the same time. Such bounds depend on

the strength of the error covariance matrices.

4) In case of a correlated field, the relation between the size of the formation and the speed

of the formation should satisfy (Cd8).

D. The cross formation and steady state error covariance

As an example, we select a fixed coordinate frame formed by unit vectors e1 and e2 and

arrange the four platforms in a symmetric formation as shown in Fig. 1 so that

1) r2,k − r1,k is perpendicular to r3,k − r4,k,

2) ‖ r2,k − rc,k ‖ = ‖ rc,k − r1,k ‖ = ak and ‖ r3,k − rc,k ‖ = ‖ rc,k − r4,k ‖ = bk and

3) the e1 vector is aligned with r2,k − r1,k and the e2 vector is aligned with r3,k − r4,k.
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Then, in the lab coordinate frame,

Ck =


1 −ak 0

1 ak 0

1 0 bk

1 0 −bk

 Dk =


a2
k 0 0 0

a2
k 0 0 0

0 0 0 b2k

0 0 0 b2k

 , (28)

which have very simple form because of the symmetry.

Fig. 1. A symmetric arrangement of a formation of four sensor platforms. We design ak and bk to minimize the mean square

error when constant Kalman gain is adopted.

We may design the steady state formation shape so that the steady state error covariance of the

cooperative Kalman filter is minimized. In the case when wk = 0 for all k, the error covariance

matrix satisfies the Riccati equation:

P−1
∞ = [As

∞P∞(As
∞)T +M∞]−1 + CT

∞[D∞U∞D
T
∞ +R∞]−1C∞. (29)

The mission goal at steady state is to move the formation along a level curve. Then consider

equation (8): as k → ∞, since (rc,k − rc,k−1)
T∇z(rc,k−1) = 0, we can replace As

∞ by I3×3 in

equation (29) as k →∞

We then determine the steady state values of ak and bk that minimize the error covariance.

Suppose ak → a and bk → b as k →∞. The following proposition holds.

Proposition 3.14: Suppose as k →∞, Mk → σ2
3I3×3, Rk → σ2

1I4×4, and Uk → σ2
2I4×4. Then

Pk(+) converges to a diagonal matrix P∞. The trace of P∞ is

tr(P∞) = −3

2
σ2

3 +
1

2

3∑
i=1

√
σ4

3 +
4σ2

3

ci
(30)

where

c1 =
2

2σ2
2a

4 + σ2
1

+
2

2σ2
2b

4 + σ2
1

, c2 =
2a2

σ2
1

, and c3 =
2b2

σ2
1

. (31)
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Proof: By direct calculation, one can verify that, as k →∞,

CT
k [DkUkD

T
k +Rk]

−1Ck → diag{ 2

2σ2
2a

4 + σ2
1

+
2

2σ2
2b

4 + σ2
1

,
2a2

σ2
1

,
2b2

σ2
1

} = diag{c1, c2, c3}. (32)

As k →∞, As
k−1 is replaced by I3×3. Therefore, P∞ solved from (29) is a diagonal matrix. By

direct calculation, one can verify that the trace of P∞ is given by (30).

Using the cross formation has simplified the procedure in solving the steady state Riccati

equation (29). The resulting P∞ satisfies tr(P∞) ≥ 0; a minimum of tr(P∞) can be found when

a and b assume value between (0,∞). Finding analytical solutions for the optimal values a and b

that minimize tr(P∞) requires solving a 4-th order algebraic equation, which is best solved using

numerical methods. Since there are only two variables to optimize, the problem is rudimentary

for most numeric packages.

We can then compute P∞, C∞, and D∞. In the case that the noise covariance Mk, Uk and Rk

are time-invariant, these computation can be performed “off-line”, i.e., before any observations

are made. Hence, a Kalman filter gain K∞ can be given beforehand as K∞ = P∞C
T
∞[C∞P∞C

T
∞+

D∞U∞D
T
∞ +R∞]−1.

E. Adaptive formation

The constant Kalman gain K∞ computed beforehand is based on the assumptions on the

steady state noise covariance. Therefore, the steady state gain may only be suboptimal if the

noise covariances are time varying. If the constant gain K∞ is used, the formation shape may

be adjusted to achieve optimal Kalman filtering. Furthermore, if the regular Kalman filter gain

Kk is used, we show the error covariance of the estimates can be minimized by adjusting the

shape of the platform formation e.g. changing a and b. Our method extends the adaptive scheme

previously developed in [1] to minimize estimation error based on instantaneous measurements.

It is well known that sub-optimal filters can be derived using K∞. For example, when wk = 0,

the update equation can be sk(+) = sk(−) + K∞(pk − Cksk(−) − Dk
~Hc,k). A unique property

of using multiple mobile sensor platforms is that we can adjust Ck and Dk, by adjusting the

geometric shape of the formation, to minimize estimation error for this sub-optimal filter. The

resulting formation is then adaptive and the resulting filter is optimal.

Another well-known result for Kalman filter design indicates that the error function to be

minimized at step k is Jk = 1
2
tr[(I3×3−KkCk)Pk(−)(I3×3−KkCk)

T +Kk(DkUkD
T
k +Rk)K

T
k ].
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In fact, if Ck and Dk are known, the gain Kk that minimizes Jk is exactly the Kalman filter

gain.

This formation can be made adaptive when the regular Kalman gain Kk is used. This is

because by equation (15), since Pk(−) is known, Kk is a function of Ck and Dk. The resulting

adaptive formation and the estimates will minimize the cost function Jk at each step k. Therefore,

we modify step (3) in Subsection III-A:

(3A) Let K̂k be a function of Ck and Dk i.e. K̂k(Ck, Dk) = Pk(−)C
T
k [CkPk(−)C

T
k +DkUkD

T
k +

Rk]
−1. Find C∗k and D∗k so that the function Jk = 1

2
tr[(I3×3−K̂kCk)Pk(−)(I3×3−K̂kCk)

T +

K̂k(DkUkD
T
k +Rk)K̂

T
k ] is minimized. Then let Kk = K̂k(C

∗
k , D

∗
k).

This new step is generally difficult to compute since Ck and Dk are matrices. But as we have

discussed, using symmetric formations will greatly reduce the complexity.

F. Section Summary

The convergence of the cooperative Kalman filter algorithms imposes constraints on feasible

platform formations, and the shape of the formation affects error in the filters. In order for

the cooperative Kalman filters to converge, formations should be designed to make the filter

systems uniformly completely controllable and uniformly completely observable. Formations

with N = 2 may need to rotate, but formations with N ≥ 3 can have fixed orientation if the

formation is not co-linear. We also note that the formations can be adaptively adjusted on-line

to minimize estimation error. Symmetric formations help to reduce complexity in theoretical

analysis, computation, and operation.

IV. COOPERATIVE ESTIMATION OF THE HESSIAN

An estimate of the Hessian, Hc,k, is needed to enable the Kalman filter. At the end of the

(k − 1)th time step, we have obtained an estimate sk−1(+) from the cooperative Kalman filter.

This includes an estimate zc,k−1 for z(rc,k−1) and an estimate dc,k−1 for ∇z(rc,k−1). We outline

the procedure to cooperatively compute Hc,k as follows:

1) Start with an estimate or an initial guess Hc,k−1.

2) Use a one-step filter to reduce noise in the new measurements.

3) Compute Hc,k.

November 11, 2008 DRAFT



20

A. A Cooperative One-step Filter to Reduce Noise

Using the computed estimates sk−1(+) and ~Hc,k−1, we can make predictions, before the arrival

of measurements at time step k, for the field value at the positions of the sensor platforms that

have moved from ri,k−1 to ri,k as zP
k = Cksk−1(+) + Dk

~Hc,k−1. The error of the prediction zP
k

compared to the true value zk is Gaussian i.e. zP
k = zk + ψk. From properties of the Kalman

filter, the covariance of ψk is Gk = CkP
s
k−1(+)C

T
k where P s

k−1(+) is the error covariance in the

estimate sk−1(+).

We then take new measurements at the kth step using all platforms. Let pk be the vector of

the measurements and zP
k be the vector of the predictions. Let the updated measurements ẑk be

ẑk = (I +Gk(Wk +Rk)
−1)−1zP

k + (I + (Rk +Wk)G
−1
k )−1pk . (33)

Such ẑk minimizes the cost function

Jk =
1

2

[
(ẑk − zP

k )TG−1
k (ẑk − zP

k ) + (pk − ẑk)(Wk +Rk)
−1(pk − ẑk)

]
.

As we can see, Gk serves as the weighting matrix that balances using the information from

previous estimates and from current measurements. The following proposition has been proved

in our previous work [48].

Proposition 4.1: The estimator given in equation (33) is unbiased with error covariance matrix

(I +Gk(Wk +Rk)
−1)−1Gk.

B. Cooperative Estimation of Hessian

Using the cooperative Kalman filter, we may obtain a prediction for the sk as

sk(−) = As
k−1sk−1(+) + hk−1. (34)

Using the one-step filter we also have the filtered measurements ẑk. If the number of the sensor

platforms N ≥ 3 and the formation is not co-linear, then since ẑk = Cksk(−) + Dk
~Hk, one

may conjecture that the Hessian estimate can be solved, using the least mean square method, as
~Hk = (DT

kDk)
−1DT

k (ẑk−Cksk(−)). However, it can be shown that for N ≤ 4, the matrix DT
kDk

is singular, hence the least mean square method will not work.

We now introduce an alternative method to estimate the Hessian that utilizes the relationship

between the Hessian and the curvature of level curves.
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1) Curvature and Hessian: The level curve passing through the center of the formation rc

can be parametrized by its arc-length s, hence z(r(s)) is constant for all values of s. Suppose the

gradient ∇z does not vanish along the curve. The unit normal vector to the level curve is defined

as y1(s) = ∇z(r(s))
‖∇z(r(s)) ‖ , and at any given point, the unit tangent vector to the curve, denoted by

x1(s), satisfies x1(s) · y1(s) = 0. Then we have the following Frenet-Serret equations [49]:

dx1(s)

ds
= κ(s)y1(s) and

dy1(s)

ds
= −κ(s)x1(s) , (35)

where κ(s) is defined as the Frenet-Serret curvature of the level curve.

With this configuration, because ∇z(rc) · x1 = 0 along the level curve, the derivative with

respect to s is d
ds
∇z(rc) · x1 +∇z(rc) · dx1

ds
= 0 which implies xT1∇2z(rc)x1 + ‖∇z(rc) ‖y1 ·

κ(s)y1 = 0 where ∇2z(rc) is the Hessian of z at rc. Because x1 is the unit vector along the

x1-axis, in the Frenet-Serret frame we have ∂xxz(rc) + ‖∇z(rc) ‖κ(s) = 0. This suggests that

we can obtain Hxx,k, the estimate for ∂xxz(rc,k), by

Hxx,k = −‖dc,k ‖κc,k (36)

where dc,k is the estimate for the gradient ∇z(rc,k) and κc,k is the estimate for the curvature

κ(rc,k).

On the other hand, we have ∇z(rc) · y1 = ‖∇z(rc) ‖ . Taking derivatives on both sides of

this equation with respect to s, we get xT1∇2z(rc)y1−‖∇z(rc) ‖y1 · κ(s)x1 = d
ds
‖∇zc ‖. This

implies that ∂xyz(rc) = d
ds
‖∇zc ‖. Therefore, the estimate Hxy,k for ∂xyz(rc,k) is

Hxy,k =
d

ds
‖dc,k ‖ . (37)

The estimates Hxx,k and Hxy,k are elements of Hc,k in the Frenet-Serret coordinate system.

Since the field z(·) is smooth, we require Hyx,k = Hxy,k. We also need to find out Hyy,k to

determine Hc,k.

2) Algorithm to estimate the Hessian: We show how to use four sensor platforms to estimate

the Hessian at rc,k. For N > 4, the algorithm can be used directly. For N < 4, the algorithm

can be extended by combining measurements from different time instances.

Since the procedure only involves information for step k, we drop the subscript k in this

section for simplicity.

With a formation of four moving sensor platforms, we are able to estimate κ(s) for the level

curve at the center of the formation by the following steps:
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Fig. 2. Detection of a level curve using four sensor platforms. rc denotes the center of the entire formation. rE denotes the

center of the formation formed by r1, r3 and r4. rF denotes the center of the formation formed by r2, r3 and r4. rJ and rK

are located on the same level curve as rc.

(s.1) Compute an estimate of the field value and gradient at the center rc using (34).

(s.2) Considering the formation defined by r1, r3 and r4, obtain the estimates zE and dE at the

center rE of this three platform formation (Fig. 2) by solving the following equations for

i = 1, 3, 4: ẑi = zE +dE ·(ri−rE)+ 1
2
(ri−rE)THP(ri−rE) where the ẑi are given by (33)

and HP is the estimate of Hessian taken from previous time step. Let ẑE = [ẑ1, ẑ3, ẑ4]
T ,

sE = [zE,d
T
E]T , and CE =


1 (r1 − rE)T

1 (r3 − rE)T

1 (r4 − rE)T

. Let DE be the 4× 3 matrix with its three

row vectors given by 1
2
((ri − rE)⊗ (ri − rE))T for i = 1, 3, 4. Then ẑE = CEsE +DE

~HP

which implies that sE = C−1
E (ẑE −DE

~HP).

(s.3) Along the positive or negative direction of dE, we may find the point rJ (Fig. 2) where

zJ = zc using rJ = rE + (zc − zE) dE

‖dE ‖
.

(s.4) Estimate dJ,k by solving the following equations for i = 1, 3, 4: ẑi = zJ + dJ · (ri − rJ) +

1
2
(ri − rJ)THP(ri − rJ).

(s.5) Repeat the steps (s.2), (s.3) and (s.4) for the formation consisting of r2, r3 and r4 with

appropriate changes in the subscripts for points rF and rK (Fig. 2).

(s.6) Let y1J, y1K and y1c denote the unit vectors along the directions of the gradient dJ, dK

and dc. Define δθL = arccos(y1J · y1c), δsL = ‖ rJ − rc ‖, δθR = arccos(y1K · y1c), and

δsR = ‖ rK − rc ‖. Obtain the estimate for κ(s) at rc as κc = 1
2

(
δθL
δsL

+ δθR
δsR

)
. Obtain the

estimate for Hxx according to (36).
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(s.7) Approximate d
ds
‖∇zc ‖ by d

ds
‖∇zc ‖ = ‖dK ‖−‖dJ ‖

δsL+δsR
. Then using (37), the estimate Hxy is

Hxy = ‖dK ‖−‖dJ ‖
δsL+δsR

.

(s.8) Solve ẑi = zc + dc · (ri − rc) + 1
2
(ri − rc)

THc(ri − rc) for Hyy where i = 1, 2, 3, 4.

The resulting matrix Hc,k can be used directly as the estimate for the Hessian at the kth step.

Or we may repeat steps (s.1)-(s.8) starting from Hc,k to get a new estimate for the curvature

and then to improve the estimate Hc,k. The procedure becomes an iterative numerical algorithm

that solves the set of nonlinear equations that zc, Hxx,k, Hxy,k and Hyy,k satisfy given ẑi,k for

i = 1, 2, 3, 4. The prediction from step k− 1 provides a reasonable initial value for this iterative

algorithm.

V. FORMATION SHAPE AND ORIENTATION CONTROL

In this section, we show that by using a powerful tool called the Jacobi transform, the

formation shape and orientation dynamics can be decoupled from the dynamics of the center (or

the centroid) of the formation. Therefore, a formation shape and orientation controller can be

designed without considering the motion of the formation center, and such a controller will not

affect the motion of the formation center. We can control the formation to have fixed orientation

or to rotate according to prescribed angular speed around the formation center.

A. Formation Control with Fixed Orientation

We view the entire formation as a deformable body. The shape and orientation of this de-

formable body can be described using a special set of Jacobi vectors, c.f. [37], [38], [50]–[52]

and the references therein. Here, assuming that all platforms have unit mass, we define the set

of Jacobi vectors as qj , j = 1, 2, ..., N − 1 satisfying [rc,q1, ...,qN−1] = [r1, r2, ..., rN ]Ψ where

Ψ defines a linear coordinate transform that decouples the kinetic energy of the entire system,

i.e., K = 1
2

∑N
i=1 ‖ ṙi ‖

2 = 1
2
(N ‖ ṙc ‖2 +

∑N−1
i=1 ‖ q̇i ‖

2). We call Ψ the Jacobi transform. This

allows us to separate motion of the center from shape and orientation changes. The transform

Ψ is guaranteed to exist. For example, when N = 4, the following definition of Jacobi vectors

may be used

q1 =
1√
2

(r2 − r1), q2 =
1√
2

(r3 − r4), and q3 =
1

2
(r4 + r3 − r2 − r1) . (38)
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Lagrange’s equations for the formation in the lab frame are simply the set of Newton’s

equations: r̈i = fi where fi is the control force for the ith platform for i = 1, ..., N . In terms of

the Jacobi vectors, these equations are equivalent to

q̈j = uj and N r̈c = fc (39)

where j = 1, ..., N − 1, and uj and fc are equivalent forces satisfying

[fc,u1, ...,uN−1] = [f1, f2, ..., fN ]Ψ−T . (40)

We design the control forces ui, j = 1, 2, ..., N − 1, so that as t→∞, qj → q0
j where q0

j are

desired vectors that define a constant formation. For example, when N = 4, we want

q1(t)→
a√
2
e1, q2(t)→ −

b√
2
e2, and q3(t)→ 0 (41)

where e1 and e2 are the two unit vectors defining the lab coordinate frame in Section III-D, and

a and b are the optimal values determined by methods in Section III-D to minimize the steady

state error covariance. Since the controlled dynamics for qj are linear, the following control laws

guarantee the goal (41) with an exponential rate of convergence: uj = −K2(qj − q0
j) −K3q̇j

where K2, K3 > 0 are constant gains. This control law design method can also by applied to

stabilize the adaptive formation obtained in Section III-E with the assumption that the optimal

formation will not change very fast over time.

Comparing to existing formation control and stability results for formation with fixed shape

and orientation (for example, [53], [54]), this controller is much simpler and its stability is easy

to prove. This is due to the fact that the reduced system is linear after the Jacobi transform.

B. Formation Control with Rotation

When only two sensor platforms are available, if we control the motion of the two platform

formation such that the formation is rotating periodically, then the system will satisfy the

observability condition and the Kalman filter will converge. The difference between controller

design in this section and in the previous section is that the orientation of the platform formation

will be changing.

The platform formation where there are N platforms can be described by the Jacobi vectors

qj where j = 1, 2, ..., N−1. The orientation of the collection of the Jacobi vectors in the inertial

frame can be described by an angle ψ which is the angle between a selected Jacobi vector and
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the horizontal axis of the lab fixed frame. It does not matter which Jacobi vector to select. Let

the matrix g be g =

 cosψ sinψ

− sinψ cosψ

. We define vectors ρj as ρj = g−1qj . Let Ω be the

angular velocity of the formation. Taking time derivatives on both sides of qj = gρj yields

q̇j = g(ρ̇j + Ω× ρj). Take time derivative again on both sides yields

uj = g(ρ̈j + 2Ω× ρ̇j + Ω× (Ω× ρj) + Ω̇× ρj). (42)

We then design ρ̈j and Ω̇ such that, for j = 1, 2, ..., N − 1,

ρ̈j = −K4(ρj − ρ0
j)−K5ρ̇j and Ω̇ = −K6(Ω− Ω0) + Ω̇0 (43)

where ρ0
j is a constant vector and Ω0 is a differentiable function of t. Then uj can be computed

using (42).

Once we have designed the combined force fc to control the center of the formation, then the

control forces fi, i = 1, 2, ..., N can be computed using (40). In Section VI, we design fc so that

the center of the formation tracks a level curve. We note that our results in controller design

for the platform formations pertain only to the deterministic formation dynamics; this certainty

equivalence approach does not produce optimal controllers with input noise.

VI. FORMATION MOTION CONTROL

In this section, we derive the equations governing a Newtonian particle moving in a scalar

field. Then we design tracking control laws so that a particle can be controlled to follow any

non-trivial level curve. The particle is identified with the center of the formation so that a level

curve tracking behavior is achieved. Such level curve tracking behaviors complement gradient

climbing behaviors in cooperative exploration strategies and help reveal structure in an unknown

field.

A. Particle Motion in a Scalar Field

The center of the platform formation is modeled as a unit mass Newtonian particle with its

position represented by rc. The system equation for such particle is the Newton’s equation r̈c = fc.

Such equation can be written in an equivalent Frenet-Serret form which is more convenient for

the tracking purpose [14], [15].
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We define the speed of the particle as α and the acceleration vc for α 6= 0 as

α = ‖ ṙc ‖ and vc = fc ·
ṙc

α
. (44)

Then the equation for speed control is

α̇ = vc . (45)

We let vc = −K1(α− 1). As time t→∞, α converges to unit speed exponentially with a rate

determined by K1 > 0.

We define a unit velocity vector x2 as x2 = ṙc

α
. We define a second unit vector y2 as the

vector perpendicular to x2 that forms a right handed frame with x2 so that x2 and y2 lie in the

plane of the page and the vector x2 × y2 points towards the reader. Then the steering control

can be defined as uc = 1
α2 fc · y2. Using the facts that

fc = (fc · y2)y2 + (fc · x2)x2 (46)

and x2 · y2 = 0, we have the following equations:

ẋ2 = ucαy2 and ẏ2 = −ucαx2 . (47)

The equations (45) and (47) describe the particle motion in the Frenet-Serret form. Equation

(46) shows the equivalence between Newton’s equation and the Frenet-Serret form when α 6= 0:

once the speed control vc and the steering control uc are determined, the total force fc can be

determined.

Consider the smooth scalar field z(r) in the plane. With the speed of the particle under

control, we design a steering control for the particle so that it will track a level curve of z(·).

The procedure can be found in our previous works [14], [15]. Here we briefly summarize and

explain the results.

At any time instant t, there is a level curve of z(·) passing through rc. At this position rc,

we let y1 be the unit vector in the direction of the gradient of the field z(·), and let x1 be the

unit tangent vector to the level curve. By convention, x1 and y1 form a right handed coordinate

frame with x1 × y1 pointing to the reader. This coordinate convention is identical to the one

used in Section IV-B to derive equation (35).

For convenience, we introduce a variable θ ∈ (−π, π] such that cos θ = x1 · x2 and sin θ =

−y1 ·x2. Along the trajectory of the center, it can be shown that θ̇ = α(κ1 cos θ+ κ2 sin θ− uc)
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where κ1 = −xT1 ∇2zx1

‖∇z ‖ , κ2 =
xT1 ∇2zy1

‖∇z ‖ , and ∇2z represents the Hessian of the scalar field z(·).

Meanwhile, along the trajectory of the center, the value of z satisfies ż = −α ‖∇z ‖ sin θ.

B. Steering Controller Design

Suppose the scalar field has extrema zmin < zmax which are allowed to be infinity. Let f̃(z)

be the derivative function of a function }(z) so that the following assumptions are satisfied:

(A1) d}/dz = f̃(z), where f̃(z) is a Lipschitz continuous function on (zmin, zmax), and }(z) is

continuously differentiable on (zmin, zmax);

(A2) f̃(C) = 0 and f̃(z) 6= 0 if z 6= C;

(A3) limz→zmin
}(z) =∞, limz→zmax }(z) =∞, and ∃z̃ such that }(z̃) = 0.

We design the control law to be

uc = κ1 cos θ + κ2 sin θ − 2f̃(z) ‖∇z ‖ cos2(
θ

2
) +K4 sin(

θ

2
) (48)

where K4 > 0 is a constant control gain. We now assume that the speed of the center α = 1 is

guaranteed by the speed controller vc. Then the following proposition can be proved.

Proposition 6.1: Consider a smooth scalar field with bounded Hessian and bounded gradient

that satisfies ‖∇z(r) ‖ 6= 0 except for a finite number of points rsup where z(rsup) = zmin or

z(rsup) = zmax. Under the steering control law given in equation (48), we have θ → 0 and

z → C asymptotically if the initial value θ(t0) 6= π and r(t0) 6= rsup.

Proof: Let a Lyapunov candidate function be V = − log cos2( θ
2
) + }(z). Then its derivative

can be shown as V̇ = −αK4
sin2 θ

2

cos θ
2

. Therefore, if α > 0 we have V̇ ≤ 0. The value of the

Lyapunov function does not increase. Because our initial condition is such that cos θ(t0)
2
6= 0, it

is impossible for cos θ(t)
2

= 0 at any time instant t since otherwise V goes to infinity.

By the invariance theorem for non-autonomous systems ( [55], Theorem 4.4), we conclude

that sin θ
2
→ 0 as t → ∞. θ(t) will not go to π because we have shown that cos θ(t)

2
6= 0. This

implies that θ(t)→ 0 as t→∞.

On the other hand, note that θ̇|sin θ
2
=0 = 2αf̃(z) ‖∇z ‖. The right hand side is a uniformly

continuous function of time since z is constant and ‖∇z ‖ is a smooth function with bounded

derivatives. Therefore, according to the Barbalat lemma, θ̇ must vanish as t→∞. This implies

that either f̃(z) = 0 or ‖∇z ‖ = 0. When ‖∇z ‖ = 0, we know r = rsup. According to our

assumption, V goes to infinity at r = rsup. Thus if we start with r(t0) 6= rsup, we must have
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‖∇z ‖ 6= 0 for all time t > t0. Therefore, the only possibility left is f̃(z) = 0 which implies

that z = C.

VII. SIMULATION RESULTS

We first demonstrate the cooperative Kalman filtering and level curve tracking control using

two sensor platforms. The potential field is generated by two identical positive charges in the

plane with added correlated noise. It is desired that the two sensor platforms keep a distance of 1

unit length and rotate with a constant angular speed. Fig. 3 shows the snapshots of both platforms

and the trajectory of the formation center when tracing a level curve. It can be observed that

the trajectory of the center of the formation is smoother than the actual level curve with spatial

noise.

Fig. 3. Using two sensor platforms to track a level curve. The formation rotates at constant angular speed.

The level curve tracking algorithm is applicable to adaptive sampling using a mobile sensor

network in the ocean. Adaptive ocean sampling is a central goal of our collaborative Adaptive

Sampling and Prediction (ASAP) project [56]. The latest ASAP field experiment took place

in August 2006 in Monterey Bay, California. Ten gliders were employed under continuous,

automated coordinated control to collect maximally information-rich data for oceanographic

research over the course of one month. The success of this field experiment sets a precedent for

the usefulness of the kind of cooperative exploration represented by level curve tracking. This

motivated our second illustration of level set tracking with four platforms in a model ocean field.
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Fig. 4. Tracking, in simulation, the temperature level curve of 13°C in an estimated temperature field near Monterey Bay,

CA on August 13, 2003. For visualization purposes, the level curve is accentuated. The trajectory of the center of formation

is plotted with snapshots of the formation shown along the trajectory. The horizontal axis corresponds to longitude and the

vertical axis to latitude.

In order to test our current algorithms on realistic ocean fields, we use a snapshot of the

temperature field near Monterey Bay produced by the Harvard Ocean Prediction System (HOPS)

[57]. This field reflects the temperature at 20 meters below sea surface on 00:00 GMT August

13th, 2003. This field was produced using remotely observed and in-situ data, including glider

measurements during the Autonomous Ocean Sampling Network (AOSN) field experiment [18].

Four platforms are employed to track a level curve with temperature 13°C. The trajectory of

the formation center and the snapshots of the formation are plotted in Fig. 4. The center of the

formation is controlled to travel at 1 km per hour. The orientation of the formation is adjusted so

that the line connecting platforms 1 and 2 is aligned with the desired level curve. The shape of

the formation is adjusted to minimize the Kalman filter error covariance. This can be observed

from Fig. 5 where we plot the half distance between vehicles 1 and 2, i.e. the shape variable a,

versus time. Fig. 6 shows the estimates of the temperature at the center of the formation versus

time. One can see that the estimates center around 13°C with small error.

VIII. SUMMARY AND FUTURE WORK

We have developed a cooperative Kalman filter that combines measurements from a small

number of mobile sensor platforms to cooperatively explore a static planar scalar field. We

show that the combined estimates satisfy an information dynamic model that does not depend

on motion models of the platforms. Based on this model, we have rigorously justified a set
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Fig. 5. The half distance between platforms 1 and 2, i.e. the shape variable a, versus time.

Fig. 6. The estimate zc (°C) versus time (hour).

of sufficient conditions that guarantee the convergence of the cooperative Kalman filter. These

sufficient conditions provide guidelines on mission design. We show how to adapt the formation

shape to minimize error in the estimates. An algorithm has also been designed to estimate the

local Hessian, which enables the Kalman filter and provides curvature estimates for steering

control.

We take a geometric approach in formation control where reduction is performed on the total

configuration space of the formation with the help of Jacobi vectors. The desired formation

shape, orientation and motion can be stabilized using simple controllers with the help of the

reduction method and the Jacobi transform. Both the filter and the formation shape controller

are general for any number of platforms and arbitrary formations as long as conditions for

uniform controllability and observability are satisfied. The filter and formation shape controller

are combined with a steering control law for the center of the formation to perform level curve

tracking behavior with provable convergence.
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There are open questions regarding the current results. The error covariance of Uk and Mk

are not theoretically characterized and rely on heuristics and simulations, and we have only

considered time-invariant fields in the plane. Hence, our ongoing work includes addressing the

limitations, extending these methods to fast, time-varying scalar fields in three-dimensional space,

and demonstrating the methods in experiments involving robotic mobile sensor platforms.
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