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Abstract 

This article proposes a numerically efficient approach for computing the maximal (or minimal) im- 
pact one agent has on the cooperative system it belongs to. For example, if one is able to disturb/bolster 
merely one agent in order to maximally disturb/bolster the entire team, which agent to choose? We 
quantify the agent-to-system impact in terms of H ∞ 

norm whereas output synchronization is taken as 
the underlying cooperative control scheme. The agent dynamics are homogeneous, second order and 
linear whilst communication graphs are weighted and undirected. We devise simple sufficient conditions 
on agent dynamics, topology and output synchronization parameters rendering all agent-to-system H ∞ 

norms to attain their maxima in the origin (that is, when constant disturbances are applied). Essentially, 
we quickly identify bottlenecks and weak/strong spots in multi-agent systems without resorting to in- 
tense computations, which becomes even more important as the number of agents grows. Our analyses 
also provide directions towards improving communication graph design and tuning/selecting coopera- 
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tive control mechanisms. Lastly, numerical examples with a large number of agents and experimental 
verification employing off-the-shelf nano quadrotors are provided. 
© 2022 The Authors. Published by Elsevier Ltd on behalf of The Franklin Institute. 
This is an open access article under the CC BY-NC-ND license 
( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

The network topology and agent dynamics play crucial roles in Multi-Agent System (MAS)
tability and performance [1,2] . Even in networks of homogeneous agents, not all agents have
he same impact on other agents or joint performance depending on their location within the
nderlying topology. Taking this observation into account, we tackle the following question:
iven some topology, if one is to disturb (or bolster) one or more agents in order to undermine

or enhance) the performance of the entire team, which agent(s) to choose? Similarly, various
opologies interconnecting the same group of agents typically result in strikingly different
ollective behaviors and even in the lack thereof. Consequently, the system designer might
ant to modify the graph edge weights, remove or add communication/sensing links in an

ffort to preclude unfavorable cooperative behaviors . Over last decades, similar analyses
re routinely carried out for vibrational systems (e.g., buildings, bridges, etc.), which can
e modeled as MASs [3–5] . Vibrations are typical and mostly unwanted phenomenon in
echanical systems, since resonance and sustained oscillations can have undesired effects

uch as energy waste, noise creation and even structural damage. Similar ideas are also
ound in social networks, economics, political and health care systems (e.g., sociometric
tars, invisible colleges, outsiders or cliques [6–9] ) as well as in smart grids [10,11] . In
ther words, the aforementioned communication, sensing and social networks, vibrational,
echanical, economic, political and health care systems as well as smart grids are examples

f application domains for this work. 
In this work, we investigate how to efficiently calculate the H ∞ 

norm of MASs when
ne agent is disturbed. The main idea is to reduce the problem from the order 2n×2n to
he order (n−1)×(n−1) and to cast the problem of H ∞ 

norm calculation into solving a
equence of linear systems. Then we show that, for a large class of MASs, the transfer function
ttains its maximum at the origin (that is, when the disturbance is constant), thus reducing
he computation of H ∞ 

norm to solving just a single linear system. These two components
reatly reduce the computation time enabling efficient investigations of very large MASs.
omputational costs behind finding H ∞ 

norms are at times quite high even for systems of
oderate sizes, not to mention when various system parameters or input-output pairs need to

e considered. Therefore, efficient calculations of the H ∞ 

norm are intensively investigated,
specially when a large number of agents/states is encountered [12–18] . 

Topology discovery is often the first step in bottleneck and failure identification of MASs.
arly decentralized topology discovery algorithms are reported in [19,20] whereas there are
any commercial solutions available nowadays (which will not be advertise here). Owing to

he availability of such algorithms, this work supposes that the topology is provided a priori.
Works relating the H ∞ 

norm and MASs typically focus on syntheses (see [21–25] and
eferences therein) whilst our article is primarily concerned with analyses. For exam-
9111 
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le, [21,22] boil down to Linear Matrix Inequalities (LMIs) whereas [23] builds upon game
heory and dynamic programming to provide sufficient conditions for controller design yield-
ng MAS synchronization with a prescribed L 2 -gain. The authors in [24] provide sufficient
nd necessary conditions for decentralized H ∞ 

and H 2 control design over directed graphs
mploying the algebraic Riccati equation (ARE) or direct eigenstructure assignment. Even
hough it also focuses on syntheses, the most similar article to ours is [25] as it performs sys-
em reduction to mitigate the H ∞ 

-related computational burden and searches for performance
ottlenecks on the individual agent level. Therefore, unlike in the present work, the team
erformance improvement guidelines in [25] boil down merely to individual agent modifica-
ions via pinning control (i.e., via adding self-loops) irrespective of the topology. In addition,
25] considers merely stability around the origin (not around the equilibrium manifold as done
erein) and does not tackle H ∞ 

norm computations. The H 2 norm as the MAS performance
easure will be treated in a subsequent publication. 
Other related cooperative control problems, other than the output synchronization consid-

red herein, are found in [26–32] . The work in [26] synthesizes a control mechanism to attain
AS consensus about the origin in the presence of additive perturbations with a known H ∞

ound when modelling agent uncertainties. The authors in [27] synthesize observer-based
ontrollers to track a leader, which leads to the absence of non-trivial consensus manifold
ncountered herein. The problem in [28] exploits the Lyapunov characterization of H ∞ 

control
o synthesize controllers with precompensators resulting in a MAS with the sole equilibrium
oint in the origin. A containment problem is investigated in [29] , finite-horizon problem in
30] , event-based leader-follower MASs in [31] whilst event-triggered sliding mode scaled
onsensus control is investigated in [32] . Lastly, owing to the employment of the bounded
eal lemma, Lyapunov and dissipative H ∞ 

characterizations, none of the above works conveys
nformation regarding which input to which agent yields the maximum/minimum MAS H ∞
orm. On the other hand, our work explicitly provides these information. 

The principal contributions of this article are threefold: a) numerically efficient calculations
f H ∞ 

norms in MASs by reducing the original 2n×2n-dimensional problem into an (n−1)×
(n−1) -dimensional one; b) sufficient conditions for attaining the H ∞ 

norm in zero, thus
urther reducing the computational costs; and c) an experimental verification employing an
ffordable off-the-shelf localization system and nano quadrotors as MAS agents. 

Since many MASs are designed to achieve asymptotic (i.e., steady-state) goals (e.g., output
ynchronization), it is not surprising they behave like low-pass filters so that the moduli of
ssociated transfer functions attain their maxima at the zero frequency corresponding to the
 ∞ 

norms. If one is also interested in the transient behavior (in addition to the steady-state
erformance), our analyses can be combined with [33] during the control design phase. 

The remainder of the article is organized as follows. Section 2 introduces the notation and
asic definitions. In Section 3 , we set the agent-to-system impact problem up and propose
he methodology to solve this problem in Section 4 . Section 4 also contains the main result.
n Section 5 , we provide numerical examples. Section 6 presents experimental results whilst
onclusions and future work are in Section 7 . 
9112 
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. Preliminaries 

.1. Notation 

We often use the shorthand notation (x, y) := [ x � y � ] � . The dimension of a vector x is
 x whereas ‖ · ‖ denotes the Euclidean norm of a vector. If the argument of ‖ · ‖ is a matrix,
hen it denotes the induced matrix 2-norm. The kernel of a matrix A is Ker (A ) . The set
ardinality is denoted by | · | . An n-dimensional vector with all entries 0 is denoted by 0 n .
he n × n identity matrix is I n . For i ∈ N , by e i we denote the i th canonical vector, i.e., the
ector of the form (0, . . . , 0, 1 , 0, . . . , 0) , where the only non-zero element is the i th one.
or brevity, we use “w.r.t.” instead of “with respect to”. 

.2. Graph theory 

An undirected weighted graph is a triple G = (V, E, { w jk } N j,k=1 ) , where V = { v 1 , . . . , v N }
s a nonempty set of nodes , E ⊂ V × V is the set of edges and w jk ≥ 0 are edge weights,
here we assume that w jk = w k j for all j, k and that w jk > 0 if and only if ( j, k) ∈ E . When

he edge (i, j ) , i 	 = j belongs to E , it means that there are information flows from the node i
o the node j. The set of indices of neighbors of the node v i is N i = { j : (v j , v i ) ∈ E} . The
orresponding graph Laplacian matrix L ∈ R 

|V |×|V | is defined as 

 = [ l i j ] , l i j = 

⎧ ⎨ ⎩ 

−w i j , j ∈ N i , ∑ 

k∈N i 
w ik , j = i, 

0, otherwise. 

ote that the matrix L is symmetric and positive semi-definite. 

.3. H ∞ 

norm 

We define the function space H ∞ 

, see, e.g., [34] , by 

 ∞ 

= 

{
F : C 

+ → C 

m×� 

∣∣∣∣ F is analytic and sup 

λ∈ C + 
σ (F (λ)) < ∞ 

}
. 

ere, C 

+ = { λ ∈ C | � (λ) > 0} and σ (T ) is the largest singular value of the matrix T . The
 ∞ 

norm for the functions in H ∞ 

is defined as [12] , Chap. 3 

 F 

‖ ∞ 

= sup 

λ∈ C + 
σ (F (λ)) = sup 

ω∈ R 
σ (F (iω)) . 

. Problem statement 

Consider MAS consisting of n linear agents given by 

¨k = −T s ˙ χk + K s u k + ω k , T s , K s > 0, (1)

here χk is the state, u k is the control input, and ω k is the exogenous disturbance of the k th
gent, k ∈ { 1 , . . . , n} . 

Let G be an undirected weighted graph which describes the underlying communication
tructure of the MAS. A widely utilized decentralized output-feedback policy to achieve
9113 
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etwork synchronization [1,35] is 

 k = −K 

ˆ C 

∑ 

j∈N i 

w k j 

([
χk 

˙ χk 

]
−
[
χ j 

˙ χ j 

])
, (2)

here K > 0 and 

ˆ C = [ c 1 c 2 ] with c 1 , c 2 > 0. According to Ren and Beard [1] , if c 1 = 0 or
 2 = 0, the output synchronization is not obtainable. Utilizing the Laplacian matrix L of the
nderlying communication graph G, the closed-loop dynamics are 

¨ + 

⎛ ⎝ T s ︸︷︷︸ 
:= β

I N + L K s K c 2 ︸ ︷︷ ︸ 
:= α

⎞ ⎠ ˙ χ + L K s K c 1 ︸ ︷︷ ︸ 
:= γ

χ = ω, (3)

here χ := (χ1 , . . . , χn ) and ω := (ω 1 , . . . , ω n ) . 
Clearly, the agent dynamics Eq. (1) represent a realistic double integrator. These dynamics

llow for more specific results in the upcoming sections while still being general enough
wing to the following well-known fact: for fully actuated mechanical systems a simple
hange of control variable transforms their dynamics into a double integrator [1] . Similarly,
any systems with low-level controllers can be approximated with second order dynamics

refer to Section 6 below). 

ssumption 1. We assume that the graph G is connected. 

If the graph of the system is not connected, with k > 1 number of components, then the
orresponding MAS can be split into k MASs that can be analyzed independently. 

The control law Eq. (2) primarily seeks for agreement/consensus, irrespective where that
greement is obtained. Consequently, the closed-loop system Eq. (3) is characterized with the
quilibrium manifold χ1 = . . . = χn , ˙ χ1 = . . . = ˙ χn = 0, rather than with a sole equilibrium
oint (in the origin, for instance). Hence, attention needs to be paid to the existence of the
onsensus manifold as shown in [36] and the remainder of this article. In a nutshell, the
output) norms need to be taken w.r.t. sets, rather than w.r.t. points as is typically done.
n addition, the only natural way of stating our main problem of interest is in terms of
orms w.r.t. sets, which is also corroborated by Section 6 in light of the problem built-in
obustness. Throughout this article, the w.r.t. set notion is noticeable whenever handling the
ero eigenvalue of L and associated eigenspace. 

We are now ready to state the main problem solved herein. 

roblem 1. Efficiently calculate the H ∞ 

norm of system Eq. (3) from ω i to χ w.r.t. consensus
anifold for any i ∈ { 1 , . . . , n} of interest. 

. Methodology 

.1. Closed-Loop dynamics reduction and transfer function formula 

Let us tackle Problem 1 , i.e., let us efficiently calculate the H ∞ 

norm of the system
q. (3) when all ω k , k = 1 , . . . , n are zero except the i th one. This problem boils down to,
ee [37,38] , the calculation of H ∞ 

norm of the following linear time-invariant system 

˙  = Ax + B i ω i , 

y = Cx, 
9114 
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here x := (χ, ˙ χ) while the system matrices A ∈ R 

2n×2n , B i ∈ R 

2n×1 and C ∈ R 

n×2n are given
y 

A = 

[
0 n×n I n 
−γ L −βI n − αL 

]
, α, β, γ > 0, 

 i = 

[
0 n×1 

e i 

]
, C = 

[
I n 0 n 

]
. (4)

rom the construction of L and Assumption 1 , one knows that the algebraic multiplicity of
ts zero eigenvalue is one. As discussed in [35] and [1] , the corresponding eigenvector is
1 , 1 , . . . , 1] � . However, the corresponding transfer function 

(is − A ) −1 B i 

oes not belong to the space H ∞ 

. The issue is that the transfer function is not defined in
ero owing to the eigenvalue placed in the origin. This property is found in many control
ystems, especially in consensus-based cooperative systems [36] . Namely, such control sys-
ems primarily aim for relative (not absolute) agreement/alignment giving rise to a consensus

anifold, rather than to a sole equilibrium point. For instance, formation control is concerned
ith formation attainment irrespective of the formation absolute location. 
To remove the absolute values of consensus/agreement points and concentrate on relative

iscrepancies among agents’ outputs, let us define the following truncation matrix 

 

� = 

[
V 

� 0 

0 I 

]
∈ R 

(2n−1) ×2n (5)

ith orthonormal columns, where the columns of matrix V ∈ R 

n×(n−1) span the subspace { 1 } ⊥
here 1 = [ 1 . . . 1 ] � and such that V 

� V = I . 
Now, by using the substitution x = W ˜ x , the reduced system is given by 

˙ ˜  = 

˜ A ̃  x + 

˜ B i ω i , 

y = 

˜ C ̃  x , 

ith 

˜ A = W 

� AW , ˜ B i = W 

� B i and 

˜ C = CW . Moreover, using the block structure of matrices
iven by Eq. (5) and Eq. (4) , we have that 

˜ A = 

[
0 V 

� 

−γ LV −βI − αL 

]
, 

˜ 
 i = 

[
0 

e i 

]
, ˜ C = 

[
V 0 

]
. 

The obtained reduced system has the property that the state matrix 

˜ A is Hurwitz and
oreover models the dynamic of MAS with respect to the relative distance between the agents.
n alternative (and more common) approach is to consider all the differences between the

tates of neighbors as the MAS state (see [1,39] or practically any of the references herein).
ote that our approach yields a much smaller dimension of the system since the approach

rom Ren and Beard [1] , Kingston et al. [39] potentially yields the dimension 4n 

2 − 2n of
he state vector whilst the dimension of the state vector is 2n − 1 in our approach. 

In order to obtain an explicit formula for the transfer function F i (s) = 

˜ C (sI − ˜ A ) −1 ˜ B i of
he reduced system, we first obtain for s 	 = 0 that 

(is − ˜ A ) −1 = 

[
V 

� 
(s) −1 ( isI + βI + αL ) V V 

� 
( s) −1 

−γ
( s) −1 LV i s
( s) −1 

]
, (6)
9115 
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γ  
here 

(s) = −s 2 I + is(βI + αL) + γ LV V 

� . (7)

ence, the transfer function of the reduced system is given by 

 i (s) = 

˜ C 

(
isI − ˜ A 

)−1 ˜ B i 

= V V 

� 
(s) −1 e i for s 	 = 0. 

ere, by using the index i, we emphasize that it is the transfer function from agent i to
AS according to Problem 1 . From the definition of the function 
 given by Eq. (7) and

V V 

� = L, for s 	 = 0 we obtain that 

(s) = −s 2 I + is(βI + αL) + γ L. 

ote that 
(0) = γ L is not invertible. In order to obtain a formula for the transfer function
n zero, we will additionally analyze this case. 

In order to determine F i (0) = 

˜ C (− ˜ A ) −1 ˜ B i , we first calculate the inverse of matrix − ˜ A . We

alculate blocks of the matrix (− ˜ A ) −1 = 

[
A 11 A 12 

A 21 A 22 

]
using the equations: 

A 11 A 12 

A 21 A 22 

][
0 −V 

T 

γ LV βI + αL 

]
= I , 

0 −V 

T 

γ LV βI + αL 

][
A 11 A 12 

A 21 A 22 

]
= I . 

onsidering the corresponding blocks, we obtain the following equations: 

A 12 LV = I , (8)

A 11 V 

T + A 12 (βI + αL) = 0, (9)

A 22 LV = 0, (10)

A 21 V 

T + A 22 (βI + αL) = I , (11)

V 

T A 21 = I , (12)

V 

T A 22 = 0, (13)

LV A 11 + (βI + αL) A 21 = 0, (14)

LV A 12 + (βI + αL) A 22 = I . (15)
9116 
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qs. (10) and (13) are satisfied when A 22 = 0. Now, from Eq. (11) using that V 

� V = I , we
btain −A 21 V 

� = I ⇒ A 21 = −V and the Eq. (12) is immediately satisfied. 
Now, from Eqs. (8) and (15) we have conditions for A 12 : 

A 12 LV = I , 

γ LV A 12 = I . 

rom the latter equation, we have γV 

� LV A 12 = V 

� ⇒ A 12 = 

1 
γ
(V 

� LV ) −1 V 

� , which satisfies
he first equation as well. 

Now, using the obtained formula for A 12 and Eq. (9) , it follows that 

 11 = 

1 

γ
(V 

� LV ) −1 V 

� (βI + αL) V. 

rom L = LV V 

� , we obtain that the Eq. (14) is also satisfied. Finally, we reach 

 i (0) = 

[
V 0 

][ 1 
γ
(V 

� LV ) −1 V 

� (βI + αL) V 

1 
γ
(V 

� LV ) −1 V 

� 

−V 0 

][
0 

e i 

]
= 

1 

γ
V (V 

� LV ) −1 V 

� e i . (16)

ote that 

 i (0) = 

1 

γ
L 

+ e i , (17)

here L 

+ is the Moore-Penrose pseudoinverse of L. 
Recall that the H ∞ 

norms of F i ’s are what we are interested in as they measure the i th
gent disturbance impact on the entire system. To harmonize the F i (s) expressions for all s,
ote that we can write 

(s) = (isα + γ ) 

(−s 2 + isβ

γ + isα
I + L 

)
. 

ence, we have 

 i (s) = 

1 

γ + isα
V V 

T (L − μ(s) I ) −1 e i , (18)

ith 

(s) = 

s 2 − isβ

γ + isα
. 

ince V V 

� is the orthogonal projection to the orthogonal complement of the subspace spanned
y the vector 1 , we know that V V 

� = I − n 

−1 11 

� and hence V V 

� L 

+ = L 

+ . This implies that
or all s we can write 

 i (s) = 

1 

γ + isα
V V 

T (L − μ(s) I ) + e i . 

Observe that the H ∞ 

norm of the transfer function F i is 

 F i ‖ 2 ∞ 

= sup 

s 
‖ F i (s) ‖ 2 2 = sup 

s 

1 

γ 2 + s 2 α2 
‖ V V 

� (L − μ(s) I ) + e i ‖ 2 2 . 
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ence, the calculation of ‖ F i ‖ ∞ 

boils down to finding the maximum of the function R � s �→
1 √ 

γ 2 + s 2 α2 
‖ V V 

� (L − μ(s) I ) + e i ‖ . To achieve this, the main computation cost is solving linear

ystems (L − μ(s) I ) x = e i for a sequence of choices of s given by the optimization method
n use. 

Before moving to the main result of this article, let us point out the following (minor)
ontribution of the present work. Namely, in comparison with the model reduction from Tolić
36] , which leverages the Real Jordan Form, the aforestated MAS model reduction is more
calable and numerically stable. For example, the methodology from Tolić [36] is struggling
umerically even with MASs containing about 20 agents (i.e., the model reduction takes
everal hours to complete). 

.2. Main result 

In the proof of Theorem 1 , we use the following result 

emma 1 ( [40] , Corollary 4.5.11) . Let A, S ∈ R 

n×n and let A be a Hermitian matrix. Let the
igenvalues of A and S S 

∗ be arranged in increasing order. For each k = 1 , . . . , n there exists
 nonnegative real number θk such that λ1 (S S 

∗) ≤ θk ≤ λn (S S 

∗) and λk (S AS 

∗) = θk λk (A ) . 

heorem 1. Suppose that ( γ ≤ αβ) or ( γ > αβ and ‖ L‖ ≤ β2 

2(γ−αβ) 
). Then for all i ∈

 1 , . . . , n 

} we have 

 F i ‖ ∞ 

= ‖ F i (0) ‖ 2 . 

roof. We assume that columns of V are eigenvectors of L that correspond to the non-
ero eigenvalues. Let ˆ V = [ 1 V ] ∈ R 

n×n . Then L = 

ˆ V � ˆ V 

� , where � = diag (λ1 , λ2 , . . . , λn ) =
iag (0, λ2 , . . . , λn ) . Note that V 

� ˆ V = [0 I n−1 ] . We denote �2 = diag (λ2 , . . . , λn ) . Using
q. (18) , from 

 i j (s) : = e � 

j F i (s) = e � 

j V V 

� 
(s) −1 e i = 

1 

γ + isα
e � 

j V V 

� (L − μ(s)) −1 e i 

= 

1 

γ + isα
e � 

j [0 V ] ( � − μ(s) ) −1 ˆ V 

� e i = 

1 

γ + isα
e � 

j V ( �2 − μ(s) ) −1 V 

� e i (19)

e obtain 

 F i j (s) | 2 = 

1 

γ 2 + s 2 α2 
e � 

j V ( �2 − μ(s) ) −1 V 

� e i e 
� 

i V 

(
�2 − μ(s) 

)−1 
V 

� e j 

= 

1 

γ 2 + s 2 α2 
e � 

j V 

(
I − μ(s)�−1 

2 

)−1 
�−1 

2 V 

� e i e 
� 

i V �−1 
2 

(
I − μ(s) �−1 

2 

)−1 
V 

� e j 

= 

1 

γ 2 + s 2 α2 
e � 

j V (s) QV (s) ∗e j , 

ith V (s) = V (I − μ(s)�−1 
2 ) −1 ∈ C 

n×(n−1) and Q = �−1 
2 V 

� e i e � 

i V �−1 
2 ∈ R 

(n−1) ×(n−1) . 
Note that from Eq. (19) we obtain 

 i j (0) = 

1 

γ
e � 

j V �−1 
2 V 

� e i = 

1 

γ
e � 

j 
ˆ V 

[
0 0 

0 �−1 
2 

]
ˆ V 

� e i = 

1 

γ
e � 

j L 

+ e i . 
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et ˆ V (s) = [0 V (s)] ∈ C 

n×n and 

ˆ Q = 

[
0 0 

0 Q 

]
∈ R 

n×n . Then V (s) QV (s) ∗ = 

ˆ V (s) ˆ Q ̂

 V (s) ∗.

ext, we calculate 

ˆ 
 (s) ̂  V (s) ∗ = V (s) V (s) ∗ = V 

(
I − μ(s)�−1 

2 

)−1 
(

I − μ(s) �−1 
2 

)−1 
V 

� 

= V diag 

( 

1 

(1 − � μ(s) λ−1 
k ) 2 + (� μ(s)) 2 λ−2 

k 

: k = 2, . . . , n 

) 

V 

� 

= V diag 

(
λ2 

k 

λ2 
k − 2λk � (μ(s)) + | μ(s) | 2 : k = 2, . . . , n 

)
V 

� . 

his implies that the singular values of ˆ V (s) are given by 

k (s) = 

λ2 
k 

λ2 
k − 2λk � (μ(s)) + | μ(s) | 2 

or k = 2, . . . , n. To be able to apply Lemma 1 and obtain the desired inequality
n ( ̂  V (s) ˆ Q ̂

 V (s) ∗) ≤ λn ( ˆ Q ) , we need to ensure that 0 ≤ σk (s) ≤ 1 . Thus, we need to ensure
 μ(s) | 2 − 2λk � (μ(s)) ≥ 0 for all k = 2, . . . , n. Taking into account the definition of μ(s) ,
e obtain the following inequality 

λk (γ − αβ) ≤ s 2 + β2 . 

f γ ≤ αβ, this inequality is obviously always satisfied. If, on the other hand, γ > αβ, we
btain λk ≤ s 2 + β2 

2(γ−αβ) 
. To ensure that this inequality is satisfied for all s > 0 and k = 2, . . . , n,

e arrive at the assumption ‖ L‖ ≤ β2 

2(γ−αβ) 
. 

We now apply Lemma 1 with S = 

ˆ V (s) and A = 

ˆ Q and obtain that for all s > 0 there
xist numbers θ (s) such that 0 ≤ θ (s) ≤ 1 and λn (V (s) QV (s) ∗) = θ (s) λn ( ˆ Q ) , where λn (M)

enotes the largest eigenvalue of the matrix M. As V (s) QV (s) ∗ is a rank one matrix, we
btain 

n (V (s) QV (s) ∗) = ‖ V (�2 − μ(s) I ) −1 V 

� e i ‖ 2 = 

n ∑ 

j=1 

| e � 

j V ( �2 − μ(s) I ) −1 V 

� e i | 2 

= 

(
γ 2 + s 2 α2 

)‖ F i (s) ‖ 2 

nd λn ( ˆ Q ) = ‖ �−1 
2 V 

� e i ‖ 2 . As F i (s) = 0 would imply (L − μ(s) I ) 1 = e i , which is not true,
t follows that θ (s) > 0 for all s > 0. Since 

 �−1 
2 V 

� e i ‖ 2 = ‖ V 

� V �−1 
2 V 

� e i ‖ 2 ≤ ‖ V �−1 
2 V 

� e i ‖ 2 = λn 
(
V (0) QV (0) � 

)
nd 

 (0) QV (0) � = V �−1 
2 V 

� e i e 
� 

i V �−1 
2 V 

� = ‖ L 

+ e i ‖ 2 , 
e finally obtain 

 F i (s) ‖ 2 ≤ γ 2 

γ 2 + s 2 α2 
θ (s) ‖ F i (0) ‖ 2 . 

rom 0 < 

γ 2 

γ 2 + s 2 α2 θ (s) < 1 for all s > 0, the statement of the theorem follows. �
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emark 1. The first condition of the above theorem boils down to c 1 ≤ T s c 2 , which is some-
hat concerning as it requires the position feedback gain c 1 to be typically smaller than

he velocity feedback gain c 2 , which is often undesirable in practice owing to velocity mea-
urements being more noisy than position measurements, especially at high frequency ranges
37,38] . Namely, being velocity integrals, positions smooth out velocity noise making them
ess wiggly. On the other hand, since our problem settings do not involve modeling un-
ertainties nor noisy measurements, the obtained theoretical result is not surprising in light
f the low-pass filter discussion from the introductory section as confirmed by Section 5 .
evertheless, this real-life applicability observation warrants the experimental verification of
ection 6 to examine robustness of Problem 1 and Theorem 1 . 

emark 2. From Theorem 1 it follows that under its assumptions, one can calculate the H ∞
orm of agent-to-system using 

 F i ‖ 2 ∞ 

= 

1 

γ 2 

n ∑ 

j=1 

(L 

+ 

i j ) 
2 = 

1 

γ 2 
‖ L 

+ e i ‖ 2 . (20)

ence, under the assumptions of Theorem 1 , the main computational cost in calculating
 F i ‖ ∞ 

for all agents i is to calculate the pseudoinverse of the matrix L. As illustrated in
ection 5 , this is obviously several orders of magnitude faster then calculating ‖ F i ‖ ∞ 

by a
eneral algorithm for the H ∞ 

norm. This allows us to efficiently rank all agents of the system
ccording to their corresponding H ∞ 

norm. 
Also note that we have ‖ F i ‖ ∞ 

≥ √ 

2 L 

+ 

ii ; hence, from the diagonal of L 

+ one can estimate
he H ∞ 

norm of systems. Since the pseudoinverse of a graph Laplacian and its diagonal are
mportant objects of study in various disciplines, there is a wealth of literature covering their
fficient computation and/or approximation schemes (see, for example, [41,42] and [43] ). In
his article, we do not pursue this line of research, but it is clear that the use of such methods
ould further increase the efficiency of our method. 

emark 3. The efficient calculation of the H ∞ 

norm allows one to calculate the impact of
ll the agents on the system. This can be used to provide directions towards improving com-
unication graph design and tuning/selecting cooperative control mechanisms. For example,

rom Fig. 2 one can see that if one wants to improve the spread of information, the existence
f large clusters of agents is not desirable. 

From the proof of Theorem 1 it follows that for systems which do not attain the H ∞
orm in zero, one must have λ2 > 

β2 

2(γ−αβ) 
, i.e., the Fiedler value (also called the algebraic

onnectivity) has to be larger than a certain constant, which only depends on the parameters
f the system and not the geometry of MAS. Obviously, this is only a necessary condition.
n Example 3 , we give a MAS that violates the assumptions of Theorem 1 and for which
he H ∞ 

norm is not attained at zero. Also, from Example 2 it is clear that the statement of
heorem 1 does not hold when calculating the H ∞ 

norm of the influence between two agents.

emark 4. The property ‖ G ‖ ∞ 

= σ (G (0)) is well-known to hold for positive systems [44] ,
ut the systems we are studying, in general, do not satisfy this property. 
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I. Nakić, D. Tolić, Z. Tomljanović et al. Journal of the Franklin Institute 359 (2022) 9110–9128 

Fig. 1. Transfer functions for Example 1 . 
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. Numerical examples 

xample 1. First we illustrate our main result given by Theorem 1 . The matrix L is the graph
aplacian illustrated in Fig. 2 and the matrix L itself can be downloaded at [45] . For the il-

ustration purposes, we consider here just dimension n = 20, while later in this section we
how computational benefits of our result. Following the notation from Section 3 , we select
he following system parameters K s = 5 . 2, T s = 0. 38 , K = 0. 5 , c 1 = 0. 05 and c 2 = 0. 5 moti-
ated by the MAS experiments in [37] . Since γ − αβ = −0. 364 < 0, the first assumption of
heorem 1 is satisfied. In Fig. 1 we show transfer functions defined by Eq. (18) for several
ifferent agents i that determine the input matrix B i from Eq. (4) . In particular, on the x-axis
e have the frequency s −1 , while the y-axis shows the magnitude of F i (s) for four different

gents i. Employing Eq. (20) , this figure illustrates the influence of different agents i on the
 ∞ 

norm of the system, but it also shows that the H ∞ 

norm is attained at zero frequency. 
Fig. 2 illustrates the relative importance of agents; the radius of the ith node is proportional

o ‖ F i ‖ ∞ 

. Also the thickness of each edge is proportional to the corresponding edge weight.
s can be seen, the ”hubs” of the MAS aren’t the most influential agents. The ordering seems

o be related to the ordering obtained by using the so-called topological centrality of nodes
46] , which can also be calculated using the pseudoinverse of the graph Laplacian, but it does
ot coincide with it. It seems that the most influential nodes are those which belong to the
argest number of spanning trees. 

xample 2. This example considers the same configuration presented in the previous example,
ut here we consider the impact of the ith agent to the jth agent. This means that the output
atrix is given by C j = 

[
e i 0 

� 

n 

]� 

. Here we would like to illustrate that in this case the H ∞
orm is not attained at zero, even though the assumptions of Theorem 1 hold. Hence, the
heorem cannot be extended to cover the agent-to-agent influence. In particular, this implies
hat the systems ( ̃  C , ˜ A , [0 I ] � ) are, in general, not positively dominated [44] . Fig. 3 shows
he transfer function for different pairs (i, j) . The y-axis shows the magnitude of the transfer
unction ‖ F i j (s) ‖ ∞ 

for four different pairs of (i, j) , where the index i determines the input
atrix B i and the index j determines the output matrix C j . 
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Fig. 2. Agents’ importance in Example 1 . The radius of the ith node is proportional to ‖ F i ‖ ∞ 

and the thickness of 
each edge is proportional to the corresponding edge weight. 

Fig. 3. Transfer functions in Example 2 . 
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Fig. 4. Graph associated with Example 3 . 

Fig. 5. Transfer functions for Example 3 in which the conditions of the main theorem are not met. 
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g  

i  

E  

i  

0  

w  
xample 3. Let us consider the ‘lollipop’ graph with n = 20 (for more about the ‘lollipop’
raphs, see [47] ). The utilized matrix L can be downloaded at [45] . Here we show that
f the assumptions of Theorem 1 do not hold, then the maximum of our transfer function
q. (18) need not be attained at zero. The Laplacian matrix L (that is, the underlying graph) is

llustrated in Fig. 4 . We consider the following system parameters: K s = 5 . 2, T s = 0. 38 , K =
. 5 , c 1 = 2. 5 and c 2 = 0. 005 . Now, γ − αβ = 6 . 4951 > 0 and ‖ L‖ − β2 

2(γ−αβ) 
= 16 . 993 > 0,

hich means that the assumptions of Theorem 1 are not satisfied. From the Fig. 5 , it is
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Table 1 
Runtime comparison. 

n using formula Eq. (20) MATLAB function hinfnorm 

250 0.007 s 7.806 min 
10,000 5.55 min n/a 
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bvious that the maximum is not attained at zero and this additionally testifies sharpness of
he bounds in our main result. 

xample 4. The last example is similar to Example 3 , but here c 1 = 0. 05 , c 2 = 0. 5 and
ow we consider a significantly larger number of agents n to illustrate the computational
enefits of our approach. In particular, two different dimensions n are considered. Table 1
hows the total time needed for calculation of ‖ F i ‖ ∞ 

, ∀ i = 1 , 2, . . . , n. In our case, we use
he formula Eq. (20) whilst the standard approach in MATLAB is to use the function hinfnorm
with tolerance 0.001). Since that standard calculation of the H ∞ 

norm is demanding even for
oderate dimensions, calculations with MATLAB ’s function hinfnorm for n = 10000 are not

easible. Note the huge difference in the calculation time for n = 250 of our approach and
f the standard approach via the MATLAB ’s function. Furthermore, our formula for n = 10000
s even faster than the MATLAB ’s for n = 250. The graph Laplacians used in the example can
e downloaded at [45] . 

These computations were carried out on a machine with an Intel® Core TM processor
 7 − 1165 G CPUs and 16 GB RAM. The MATLAB results are calculated by the MATLAB
ersion 9.8.0.1323502 (R2020a) on a 64-bit Windows operating system. 

. Experimental results 

An in-detail description of our testbed comprised of low-cost components including HTC
ive Lighthouse stations and Bitcraze Lighthouse positioning decks mounted on four Crazyflie
ano quadrotors can be found in [38] . The system identification performed in [38] yields
arameters K s = 0. 95 and T s = 0. 45 in (1) . Notice that the time delay (that is, dead time)
f 0. 45s from [38] is approximated by T s owing to the first-order Padé approximation. In
ddition, the output feedback constants in Eq. (2) are selected as c 1 = 0. 1 and c 2 = 1 whereas
he controller gain is K = 0. 45 . Clearly, the γ ≤ αβ condition of Theorem 1 is fulfilled.
urthermore, the control loop sampling frequency is 40 Hz whilst the topology is given by 

 = 

⎡ ⎢ ⎢ ⎣ 

1 0 − 1 0 

0 2 − 1 − 1 

− 1 − 1 3 − 1 

0 − 1 − 1 2 

⎤ ⎥ ⎥ ⎦ 

. (21)

he team is disturbed through the first agent with the sinusoidal signal of amplitude 0. 1m
nd period 1 . 5 rad/ s . Subsequently, the constant disturbance value −0. 02 m/ s 2 is applied at
he first agent as well. The obtained signals are provided in Fig. 6 whereas their spectra are
n Fig. 7 . 

The first plot in Fig. 6 illustrates the existence of unaccounted for disturbances (e.g.,
odeling uncertainties, inter-agent interference, coupling among agents’ control loops, etc.)

nd noisy measurements. We measure the impact of these unaccounted for phenomena using
he L 2 -norm of ‖ χ‖ w.r.t. consensus manifold normalized over time and obtain 0.0096. Since
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Fig. 6. Experimentally obtained signals. 
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e cannot measure the L 2 -norm of the inherent disturbances, we cannot infer much about
he associated H ∞ 

-norm. In what follows, we assume that the level of inherent disturbances
s negligible in comparison with the user-imposed disturbances. Since in the remaining two
lots of Fig. 6 , where the disturbances are imposed onto the first agent, it is straightforward
o estimate the corresponding H ∞ 

norm as the ratio of the L 2 -norms of outputs and applied
nputs. This way of obtaining/estimating the H ∞ 

norm comes from nonlinear systems [36] ,
here the modes of input signals do not necessarily excite only the same modes in the outputs

as seen from the second plot in Fig. 7 ). The obtained H ∞ 

norm for the sinusoidal input is
.2043 while for the constant input is 25.9579. Clearly, the impact of the constant disturbance
s much greater than the impact of the sinusoidal disturbance, which verifies Theorem 1 . 

The first plot in Fig. 7 presents the spectrum of ‖ χ(t ) ‖ w.r.t. consensus manifold obtained
hen the MAS is “at rest”. Of course, the system is not really at rest owing to the inherent

ealistic phenomena, but that is as close as we can get to the no-disturbance settings. It is
orth mentioning that all spectra are obtained using the Fast Fourier Transformation (FFT).
he second plot shows several low-frequency harmonics excited by the sinusoidal input (since

he MAS is in fact nonlinear). It is to be pointed out that sines with various frequencies and
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Fig. 7. Amplitude spectra of signals of interest obtained via FFT. 
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mplitudes were applied all with similar outcomes and hence are not enclosed herein for
revity. The last plot in Fig. 7 provides a clear evidence that constant inputs affect our MAS
ore than signals at other frequencies and that the greatest impact is on the zero frequency

omponent of output. All plots in Fig. 7 show that our concerns regarding the high-frequency
oises potentially present in experiments were not justified. We presume that the relatively
igh sampling rate of 40 Hz , as opposed to the intermittent data exchange from [38] , is
ehind this reassuring observation. Altogether, these experiments attest a certain robustness
evel present in our problem setting and conditions of Theorem 1 . 

. Conclusions 

This article presents sufficient conditions that greatly improve agent-to-system H ∞ 

norm
omputations in MASs. Undirected weighted topologies and second-order linear homogeneous
gent dynamics are considered. The presented theoretical results are successfully verified
xperimentally in a rather challenging disturbance and noise setting. 

The future research avenues include H 2 norm analyses, directed and time-varying topologies
s well as more general MASs including heterogeneous agents with higher order dynamics.
astly, a more formal and theoretical investigation of realistic phenomena present in MASs

s in order. 
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Ivica Nakić: Conceptualization, Methodology, Formal analysis, Validation, Writing – orig-
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23] F.A. Yaghmaie, K.H. Movrić, F.L. Lewis, R. Su, Differential graphical games for H ∞ 

control of linear hetero-
geneous multiagent systems, Int. J. Robust Nonlinear Control 29 (10) (2019) 2995–3013 . 

24] A.A. Stoorvogel, A. Saberi, M. Zhang, Z. Liu, Solvability conditions and design for H ∞ 

& H 2 almost state
synchronization of homogeneous multi-agent systems, Eur. J. Control 46 (2019) 36–48 . 

25] Z. Li, Z. Duan, L. Huang, H ∞ 

control of networked multi-agent systems, J. Syst. Sci. Complexity 29 (1) (2009)
35–48 . 

26] X. Li, Y.-C. Soh, L. Xie, Robust consensus of uncertain linear multi-agent systems via dynamic output feedback,
Automatica 98 (2018) 114–123 . 

27] G. Wen, T. Huang, W. Yu, Y. Xia, Z.-W. Liu, Cooperative tracking of networked agents with a high-dimensional
leader: qualitative analysis and performance evaluation, IEEE Trans. Cybern. 48 (7) (2018) 2060–2073 . 

28] D. Nojavanzadeh, Z. Liu, A. Saberi, A.A. Stoorvogel, H ∞ 

and H 2 almost output and regulated output synchro-
nization of heterogeneous multi-agent systems: ascale-free protocol design, J. Franklin Inst. 358 (18) (2021)
9841–9866 . 

29] Y. Chengzhi, I. Shahab, Z. Wei, H ∞ 

output containment control of heterogeneous multi-agent systems via
distributed dynamic output feedback, J. Franklin Inst. 355 (12) (2018) 5058–5081 . 

30] H. Fei, W. Guoliang, D. Dedui, S. Yan, Finite-horizon H ∞ 

-consensus control for multi-agent systems with
random parameters: the local condition case, J. Franklin Inst. 354 (14) (2017) 6078–6097 . 

31] J. Han, H. Zhang, H. Jiang, Event-based H ∞ 

consensus control for second-order leader-following multi-agent
systems, J. Franklin Inst. 353 (18) (2016) 5081–5098 . 

32] Y. Sun, P. Shi, C.-C. Lim, Event-triggered sliding mode scaled consensus control for multi-agent systems, J.
Franklin Inst. 359 (2) (2022) 981–998 . 

33] J. Wang, Z. Duan, Y. Zhao, G. Qin, Y. Yan, H ∞ 

and H 2 control of multi-agent systems with transient performance
improvement, Int. J. Control 86 (12) (2013) 2131–2145 . 

34] G.E. Dullerud, F. Paganini, A Course in Robust Control Theory: A Convex Approach, Vol. 36, Springer Science
& Business Media, 2013 . 

35] R. Olfati-Saber, R.M. Murray, Consensus problems in networks of agents with switching topology and time-de-
lays, IEEE Trans. Autom. Control 49 (9) (2004) 1520–1533 . 
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