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Robust Cooperative Exploration with a Switching
Strategy

Wencen Wu, Student member, IEEE, Fumin Zhang, Member, IEEE,

Abstract—Biological inspirations lead us to develop a switching
strategy for a group of robotic sensing agents searching for
a local minimum of an unknown noisy scalar field. Starting
with individual exploration, the agents switch to cooperative
exploration only when they are not able to converge to a local
minimum at a satisfying rate. We derive a cooperative H∞

filter that provides estimates of field values and field gradients
during cooperative exploration, and give sufficient conditions
for the convergence and feasibility of the filter. The switched
behavior from individual exploration to cooperative exploration
results in faster convergence, which is rigorously justified by the
Razumikhin theorem, to a local minimum. We propose that the
switching condition from cooperative exploration to individual
exploration is triggered by a significantly improved signal-to-
noise ratio (SNR) during cooperative exploration. In addition to
theoretical and simulation studies, we develop a multi-agent test-
bed and implement the switching strategy in a lab environment.
We have observed consistency of theoretical predictions and
experimental results, which are robust to unknown noises and
communication delays.

Index Terms—Path Planning for Multiple Mobile Robot Sys-
tems, Sensor Networks, Motion Control, Cooperative Exploration

I. INTRODUCTION

The main goal of cooperative exploration is to deploy a
group of robotic sensing agents to explore an unknown scalar
field efficiently and adaptively [1]–[7]. In typical scenarios,
a cooperative group of agents are expected to perform better
than a single agent [8]–[10]. However, increasing the number
of agents results in rising cost, communication delay, and com-
putational complexity. Therefore, the exploration behavior of
each agent does not have to be fixed. Biologists have observed
switching between individual and cooperative behaviors in
certain species of fish [11]. It is conjectured that fish in a group
collaborate with each other when they are not confident with
the information gathered individually. A switching behavior
model based on the level of confidence of individual fish
has been studied. Simulation results in [11] show striking
similarities to real fish data.

Inspired by the results in [11], we consider an exploration
mission where multiple sensing agents search for a local
minimum of an unknown scalar field. The major difference
between our work and the biological results [11] is that we will
not use the “level of confidence” directly since it is difficult
to measure confidence of engineering systems. Instead, we

The research is supported by ONR grants N00014-08-1-1007 and N00014-
09-1-1074, and NSF grants ECCS-0841195, ECCS-0845333(CAREER) and
CNS-0931576. Wencen Wu and Fumin Zhang are with the School of Electrical
and Computer Engineering, Georgia Institute of Technology, Atlanta, GA
30332, USA wwencen3, fumin@gatech.edu

propose two switching conditions that are related to the
speed of convergence and the signal-to-noise ratio (SNR)
[12], [13]. In this paper, we provide detailed explanation
and proof for the strategy and additional experimental and
simulation results. We assume that each agent has a finite
memory length, and keeps exploring the field individually if
it is guaranteed to locate a local minimum at a convergence
rate that is compatible with its memory length. Based on
the Razumikhin theorem, which was originally developed for
verifying the stability of time-delay systems [14]–[16], we
introduce sufficient conditions for a sensing agent with a given
memory length to converge to a local minimum. The sufficient
conditions then serve as switching conditions from individual
exploration to cooperative exploration. If the sufficient condi-
tions are violated, the convergence rate will not be guaranteed,
then agents will start cooperative exploration. Shortly after
cooperative exploration is started, each agent will compute
a SNR and share it with all agents to compute an averaged
SNR, which will be memorized by each agent. During the
cooperative exploration, the averaged SNR will be updated and
compared to the memorized SNR. When the current averaged
SNR is significantly better than the memorized SNR, the
agents switch back to individual exploration.

There are several successful extremum seeking algorithms
in the literature [17]–[22]. Source seeking missions with one
vehicle [18], [23]–[27] and groups of vehicles [2], [10],
[20], [28]–[37] have been investigated. Compared to those
algorithms, our strategy offers a novel aspect that focuses on
the switching between individual and cooperative exploration.
The switching conditions can be combined with existing
exploration strategies to allow balanced performance between
individual and cooperative exploration.

We have also derived a cooperative H∞ filter that allows
the field being explored to be corrupted by unknown noises.
This is closer to real world applications than the Gaussian
noise assumption in most literature. The cooperative H∞ filter
is constructed in the cooperative exploration phase to give
estimated field values and gradients at the formation center.
The H∞ filter differs from the Kalman filter in that it does
not require the knowledge of noise properties except that the
noises are assumed to have bounded power, while the Kalman
filter assumes the noises to be Gaussian. Therefore, the H∞

filter is robust to possibly non-Gaussian noises [38]–[42]. An
important constraint of the H∞ filter is that the existence
of the filter requires the fulfillment of a set of feasibility
conditions, which further creates constraints on the exploration
behaviors for the cooperative agent formation. Convergence
analysis of H∞ filters has been performed in literature [43]–



[45]. Based on these work, we develop sufficient conditions
for the cooperative H∞ filter to admit feasible solutions and
convergence.

In addition to theoretical analysis and computer simula-
tions, experiments on real robots are necessary to verify our
algorithms in a realistic environment with the presence of
real-world uncertainties and variations that are not able to
be considered beforehand. More specifically, for our coop-
erative exploration behavior, a realistic noisy field that is
non-Gaussian is hard to be produced through simulation,
which makes the experimental effort necessary. In addition,
the theoretical bounds of the noise attenuation level of the
cooperative H∞ filter can be validated through experiments,
which can enhance our understandings of the conservativeness
of such bounds for real systems. Furthermore, the experiments
can test the robustness of our strategy to communication delays
in real life systems. Finally, experiments establish connections
between biological systems and engineering systems in that
the experimental data collected in both cases can be directly
compared.

Our experiments are performed on a test-bed that includes
a light field generated by an incandescent light bulb, a lo-
calization system, and several Khepera III robots [13]. The
set-up shares similarities with multi-agent experimental test-
beds documented in the literature [46]–[55]. The switching
strategy for seeking the light source is implemented on the test-
bed. In the experiments, we conduct several trials with respect
to different memory lengths assigned to the robots, different
formation sizes, and various noise attenuation levels for the
cooperative H∞ filter. We verify the influence of the memory
length to the exploration behavior of the robots and justify
the effects of different formation sizes and noise attenuation
levels to the performance of the cooperative H∞ filter.

Statement of contributions. In this paper, (1) we propose a
switching strategy for a group of sensing agents to switch
between individual exploration and cooperative exploration
when exploring an unknown field, (2) we derive a cooperative
H∞ filter to provide estimates of field values and field gradients
during cooperative exploration and prove sufficient conditions
for the convergence and feasibility of the filter, and (3) we
evaluate the strategy in realistic lab experiments.

The rest of the paper is organized as follows. Section
II introduces the information dynamics for both individual
exploration and cooperative exploration. Section III presents
the formation shape and motion control for the agents in
cooperative exploration. Section IV discusses the construction
of the cooperative H∞ filter and derives sufficient conditions
for the feasibility and convergence of the filter. Section V
proposes a switching strategy for a group of sensing agents
to locate a local minimum of an unknown scalar field and
introduces switching conditions from individual exploration to
cooperative exploration and vice versa. Section VI describes
the configuration of the multi-robot exploration test-bed and
presents the experimental results. Section VII presents con-
cluding remarks.

II. INFORMATION DYNAMICS

Let z(r) be an unknown smooth scalar field perturbed by
time-varying non-Gaussian noises where r ∈ R2. N sensing
agents are deployed in the field to perform an exploration
task of seeking a local minimum. We assume that each agent
can only take one measurement of the field at each time step
and the agents can communicate with a central controller. The
exploration behaviors of the group of sensing agents switch
between two phases: individual exploration and cooperative
exploration. In this section, we define the information dynam-
ics for both phases.

A. Information Dynamics for Individual Exploration

Denote the position of the ith agent at kth time step as ri,k,
the measurement taken by the ith agent as pi,k and the true
field value at position ri,k as zi,k, where i = 1, · · · ,N. Then the
measurement pi,k can be expressed as

pi,k = zi,k + vi,k, (1)

where vi,k represents the measurement noise whose statistical
properties are assumed to be unknown.

To search for a local minimum, each agent moves in
directions that may reduce the field value. For the sake of
simplicity, we assume that each agent moves in the opposite
direction of the gradient at its current position and the motion
of each agent obeys the first order dynamics,

ṙi,k =−∇ẑi,k, (2)

where ∇ẑi,k is the estimated gradient of the field at the
position ri,k. Note that equation (2) is not the only strategy
that may lead to a local minimum. It is well known that
biological entities such as the E. Coli switch between tumbling
motion and straight line motion for gradient climbing [56]. The
switching strategy developed in this paper does not depend on
specific searching behaviors.

In the following, we give a simple example of estimating the
gradient of the field ∇zi,k by an individual agent at each time
step k using the current and previous measurements. Note that
Dhzi,k = ∇zi,k · h, where Dhzi,k is the directional derivative of
the field at the position ri,k in the direction h. If the successive
positions of the agent are close enough, the gradient at the
position ri,k can be approximated by solving the following
two equations.

pi,k− pi,k−1 = ∇ẑi,k · (ri,k− ri,k−1), (3)
pi,k−1− pi,k−2 = ∇ẑi,k · (ri,k−1− ri,k−2). (4)

If we define a matrix R = [ri,k − ri,k−1,ri,k−1 − ri,k−2]
T ,

then the solution to the above two equations is ∇ẑi,k =

R−1
(

pi,k− pi,k−1
pi,k−1− pi,k−2

)
. If ri,k− ri,k−1 = ri,k−1− ri,k−2, then

R is singular and no valid estimates can be obtained by solving
the above two equations. In this case, we let

∇ẑi,k =
pi,k− pi,k−1

‖ri,k− ri,k−1‖2 (ri,k− ri,k−1)+δ , (5)

where δ is a small perturbation that prevents the agent from
moving along a straight line so that equation (3) and equation



(4) will produce unique estimates of the field gradient. In
the implementation of the algorithm, δ can be chosen as a
Gaussian distributed random vector with zero mean and small
variance.

B. Information Dynamics for Cooperative Exploration

In the cooperative exploration phase, the sensing agents
need to remain in a formation and move in the field simultane-
ously. Therefore, we can treat the formation as a “super-agent”
and consider its motion. Define the position of the formation
center at kth step as rc,k and the field value at the formation
center as zc,k. If ri,k is close to rc,k, then we can use Taylor’s
expansion to approximate zi,k. For i = 1, · · · ,N,

zi,k≈zc,k +(ri,k−rc,k)
T

∇zc,k +
1
2
(ri,k−rc,k)

T
∇

2zc,k(ri,k−rc,k),

(6)
where ∇zc,k is the gradient of the field and ∇2zc,k is the Hessian
of the field at rc,k. Choose the state to be sk = (zc,k,∇zT

c,k)
T .

When the center of the “super-agent” moves, the state evolves
according to

zc,k = zc,k−1 +(rc,k− rc,k−1)
T

∇zc,k−1,

∇zc,k = ∇zc,k−1 +Hc,k−1(rc,k− rc,k−1), (7)

where Hc,k−1 is the estimate of the field Hessian ∇2zc,k−1.
Define hk−1 = (0,E[Hc,k−1(rc,k − rc,k−1)]

T )T and Ak−1 =(
1 (rc,k− rc,k−1)

T

0 I3×3

)
, where E denotes the expectation

with respect to the measurement noise in the process of esti-
mating the field Hessian. We can see that Ak−1 is nonsingular.
Then the state equation can be expressed as

sk = Ak−1sk−1 +hk−1 +wk−1, (8)

where wk−1 is a 3×1 noise vector that accounts for the noise in
the field and the approximation error in the Taylor expansion.
We assume that the statistic properties of wk−1 are unknown.
Let Ck be a N×3 matrix with its ith row defined by [1,(ri,k−
rc,k)

T ] for i = 1,2, ...,N and Dk be a N×4 matrix with its ith
row vector defined by the Kronecker product 1

2 ((ri,k− rc,k)⊗
(ri,k−rc,k))

T . Define the N×1 measurement vector pk = [pi,k]
and the noise vector vk = [vi,k] for i = 1, · · · ,N. We can write
down the measurement equation as

pk =Cksk +Dk~Hc,k +vk, (9)

where ~Hc,k is the estimate of Hc,k in a vector form, i.e.,
~Hc,k = [Hc,k(11) Hc,k(12) Hc,k(21) Hc,k(22)]

T . The estimation of the
Hessian matrix Hc,k is discussed in [7].

III. FORMATION SHAPE AND MOTION CONTROL

In this section, we introduce the formation shape control
and motion control of a group of agents when they are in the
cooperative exploration phase.

We direct the center of the formation to follow the opposite
direction of the field gradient estimate

ṙc,k =−∇zc,k. (10)

Note that the gradient at any local minimum is zero. Therefore,
once the formation center reaches a local minimum by moving

along the opposite direction of the gradient, it will stay in
the area containing the local minimum. The size of the area
depends on the step size of movement.

The formation shape is described using Jacobi vectors
q j,k, j = 1, · · · ,N − 1 that satisfy [rc,k,q1,k, · · · ,qN−1,k] =
[r1,k,r2,k, · · · ,rN,k]Ψ where Ψ is the Jacobi transform. For
example, if we deploy three agents, the Jacobi vectors are

q1,k =

√
2

2
(r2,k− r3,k),

q2,k =

√
6

6
(2r1,k− r2,k− r3,k), (11)

and the Jacobi transform Ψ =


1
3

1
3

1
3

0
√

2
2 −

√
2

2√
6

3 −
√

6
6 −

√
6

6

 . The

Jacobi transform decouples the kinetic energy of the entire
system [7] [57], which enables us to design separate control
laws for the formation center motion and the formation shape.

At step k, we apply the control laws

u j,k =−K1(q j,k−q0
j)−K2q̇ j,k, j = 1, · · · ,N−1 (12)

to q̈ j,k = u j,k, where K1 and K2 are positive constant gains and
q0

j are designed vectors that define a desired formation. The
control laws have an exponential rate of convergence. If we
take the inverse Jacobi transform, then the new positions of
the agents ri,k+1, i = 1, · · · ,N can be obtained by

[r1,k+1,r2,k+1, · · · ,rN,k+1] = [rc,k+1,q1,k+1, · · · ,qN−1,k+1]Ψ
−T .
(13)

By applying the formation controller (12), the agents converge
to a desired formation so that the cooperative exploration is
achieved.

If there are obstacles presented in the field, obstacle avoid-
ance algorithms should be incorporated into the motion plan-
ning equation (10) or equation (2) in the individual exploration
phase. Since the formation motion control and formation shape
control are decoupled, the formation shape control laws remain
unchanged. In this paper, we focus on the switching behaviors
between individual exploration and cooperative exploration.
Therefore, we do not consider fields with obstacles. However,
the strategy based on Jacobi Transforms can be extended to
scenarios where there are obstacles [58].

IV. THE COOPERATIVE H∞ FILTER

In this section, we introduce the construction of the cooper-
ative H∞ filter that provides the estimates of field values and
field gradients at the formation center in the cooperative explo-
ration phase. Then we discuss the feasibility and convergence
of the filter.

A. Construction of the Cooperative H∞ Filter

Define a cost function J as the ratio between the energy of
the estimation error and the energy of the disturbances

J =
∑

M−1
k=0 ‖sk− ŝk‖2

Qk

‖s0− ŝ0‖2
P−1

0
+∑

M−1
k=0 (‖wk‖2

W−1
k

+‖vk‖2
V−1

k
)
, (14)



where ŝ0 is the initial estimate of s0, P0 > 0,Qk ≥ 0,Wk > 0
and Vk > 0 are the weighting matrices chosen by design, which
depend on the noise strengths. For example, we choose Wk >
Vk if we know that the sensor noise is stronger than the state
noise. The goal of the H∞ filter is to guarantee that the cost J
is less than a prescribed noise attenuation level γ that can be
expressed as J < γ2.

Given the state equation (8) and the measurement equation
(9), a cooperative H∞ filter can be designed. Following the
general steps of constructing the H∞ filter [42], the equations
of the cooperative H∞ filter are as follows.

Sk = P−1
k −

1
γ2 Qk +CT

k V−1
k Ck, (15)

Kk = S−1
k CT

k V−1
k , (16)

ŝk+1 = Ak ŝk +hk +AkKk(pk−Ck ŝk−Dk~Hc,k), (17)

Pk+1 = AkS−1
k AT

k +Wk. (18)

Note that the cooperative H∞ filter can only be computed
when the agents are in a formation and the performance of
the cooperative H∞ filter depends on the configurations of the
formation.

B. Convergence and Feasibility of the Cooperative H∞ Filter

The convergence of H∞ filtering has been investigated
for both continuous-time and discrete-time systems. Readers
can refer to [38]–[41] and the references therein. The main
feasibility results for discrete-time filtering are summarized in
Theorem 4.1.

Theorem 4.1: Consider the system (8), (9) and the cost
function (14). Under the condition that Ak is nonsingular for
each k, an H∞ filter guaranteeing an attenuation level γ exists
between time k = 0 and k = M if and only if there exist two
sequences of positive definite matrices {Sk}M−1

k=0 and {Pk}M−1
k=0

such that

Pk+1 = AkS−1
k AT

k +Wk, (19)

Sk = P−1
k −

1
γ2 Qk +CT

k V−1
k Ck, (20)

S0 = P−1
0 , (21)

Sk > 0,k = 0,1, · · · ,M−1. (22)

A feasible solution is defined as a positive definite solution Pk
of the equation (19) that satisfies the equation (20).

The difference Riccati equation (DRE) (19) can also be
written as

Pk+1 = Ak(P−1
k −

1
γ2 Qk +CT

k V−1
k Ck)

−1AT
k +Wk

= AkPkAT
k −AkPk[(CT

k V−1
k Ck−

1
γ2 Qk)

−1 +Pk]
−1PkAT

k +Wk.

(23)

As k→ ∞, if we drop the subscript ∞ for simplicity, then the
Riccati equation (23) becomes

P = APAT −AP[(CTV−1C− γ
−2Q)−1 +P]−1PAT +W. (24)

The finite-horizon H∞ problem becomes an infinite-horizon
problem. If the solution to the infinite-horizon H∞ filter exists,

then the equation (24) admits a positive definite stabilizing
solution Ps. In our case, since the noise properties of the field
are unknown, we can select Qk → σ2

1 I,Wk → σ2
2 I, and Vk →

σ2
3 I, where I is the identity matrix. When k→∞, the formation

is stabilized, then C goes to a constant matrix

C =

 1 (r1− rc)
T

...
...

1 (rN− rc)
T

=

 1 dT
1

...
...

1 dT
N

 , (25)

where in 2D, di = [di1 di2]
T .

We now apply the feasibility and convergence conditions to
the cooperative H∞ filter and derive the sufficient conditions
for the attenuation level and initial uncertainty that guarantee
the convergence and feasibility of the cooperative H∞ filter,
which can give us a guidance in choosing γ and P0 when
implementing the filter. We have the following proposition.

Proposition 4.2: Assume that equation (24) admits a pos-
itive definite solution Ps. Starting from initial condition 0 <
P0 < Ps, the solution Pk of the Riccati equation (23) at every
step k exists and converges when k→ ∞. Moreover, if

(1) rc,k+1− rc,k→ 0 as k→ ∞, and
(2) the attenuation level γ satisfies

γ
2 > max(0,

σ2
1 σ2

3

N−|∑N
i=1 di1|− |∑N

i=1 di2|
,

σ2
1 σ2

3

∑
N
i=1 d2

i1−|∑
N
i=1 di1|− |∑N

i=1 di1di2|
,

σ2
1 σ2

3

∑
N
i=1 d2

i2−|∑
N
i=1 di2|− |∑N

i=1 di1di2|
), (26)

we obtain the solution that Ps = 1
2 (σ

2
2 I+(σ4

2 I + 4σ2
2 X)

1
2 )

where X = (σ−2
3 CTC−σ2

1 γ−2I)−1.
Proof: Let’s first consider the solution Ps of the Riccati

equation (24). Given the condition (1), we can approximate Ak
by the identity matrix I. If we substitute A = I into equation
(24), then after rearranging terms, we can obtain

P2−σ
2
2 P−σ

2
2 (σ

−2
3 CTC−σ

2
1 γ
−2I)−1 = 0. (27)

Define X = (σ−2
3 CTC−σ2

1 γ−2I)−1. Then the above equation
can be written as P2−σ2

2 P−σ2
2 X = 0. For a quadratic matrix

equation of the form

Q(Z) = A′Z2 +B′Z +C′ = 0, A′, B′,C′ ∈ Rn×n, (28)

only when (1) A′ = I, (2) B′ and C′ commute, and (3) the
square root of B′2−4C′ exists, we can apply the formula for
the roots of a scalar quadratic equation and find a closed-
form solution to the equation (28) [59]. The solution is Z =
1
2 (−B′±(B′2−4C′)

1
2 ). By comparison, A′ = I,B′ =−σ2

2 I, and
C′ =−σ2

2 X satisfy the first two conditions. If the square root
of σ4

2 I + 4σ2
2 X exists, then we can get the solution as Ps =

1
2 (σ

2
2 I+(σ4

2 I +4σ2
2 X)

1
2 ).

To check whether the square root of σ4
2 I +4σ2

2 X exists or
not is equivalent to check whether σ4

2 I + 4σ2
2 X is positive

definite or not. From the facts that the identity matrix is
positive definite and the sum of two positive definite matrices
is positive definite, it is suffice to check the definiteness



of X−1 = σ
−2
3 CTC− σ2

1 γ−2I. We can compute that CTC =(
N ∑

N
i dT

i
∑

N
i di ∑

N
i didT

i

)
. Plug CTC into X−1, we have

X−1 =

(
σ
−2
3 N−σ2

1 γ−2 σ
−2
3 ∑

N
i dT

i
σ
−2
3 ∑

N
i di σ

−2
3 ∑

N
i=1 didT

i −σ2
1 γ−2I

)
.

(29)
We know that a symmetric matrix is positive definite if (1) all
the diagonal entries are positive and (2) each diagonal entry is
greater than the sum of the absolute values of all other entries
in the same row. Therefore, we should have

σ
−2
3

N

∑
i=1

d2
i j−σ

2
1 γ
−2 > σ

−2
3 |

N

∑
i=1

di j|+σ
−2
3 |

N

∑
i=1

di1di2|, j = 1,2.

(30)
and

σ
−2
3 N−σ

2
1 γ
−2 > σ

−2
3 |

N

∑
i=1

di1|+σ
−2
3 |

N

∑
i=1

di2|. (31)

which yield

γ
2 >

σ2
1 σ2

3

N−|∑N
i=1 di1|− |∑N

i=1 di2|
> 0, (32)

and

γ
2 >

σ2
1 σ2

3

∑
N
i=1 d2

i j−|∑
N
i=1 di j|− |∑N

i=1 di1di2|
> 0, j = 1,2. (33)

Therefore, the matrix X−1 is positive if equation (26) is
satisfied. This is the sufficient condition for our case so that
we can get the solution Ps.

From Theorem 2 in [43], for some constant ε > 0 and the
solution Y of a Lyapunov equation defined in [43], if 0 <
P0 < Ps +(Y + εI)−1, then the solution Pk of equation (19) is
feasible for all k > 0 and converges to the stabilizing solution
Ps as k→ ∞. Since the matrix Y is positive definite, we can
consider a stricter condition, which is 0 < P0 < Ps. Therefore,
if 0 < P0 < Ps, the solution Pk to the Riccati equation (23) is
feasible for all k and converges to the stabilizing solution Ps

as k→ ∞.
Now let’s consider a symmetric formation. Suppose the

N agents are arranged so that |di,k| = a, i = 1, · · · ,N, where
a is a constant. Denote the phase angle of the vector d1,k
in the inertial frame by θ , and the angle between di,k and
d1,k by θi =

2π

N (i−1). Then we can obtain di,k = a(cos(θi +
θ),sin(θi + θ))T . We have the following corollary for the
symmetric formation.

Corollary 4.3: Assume that equation (24) admits a positive
definite solution Ps. For a symmetric formation, starting from
initial condition 0 < P0 < Ps, the solution Pk of the Riccati
equation (23) at every step k exists and converges when k→∞.
Moreover, if

(1) rc,k+1− rc,k→ 0 as k→ ∞, and
(2) the attenuation level γ satisfies

γ
2 > max(

σ2
1 σ2

3
N

,
2σ2

1 σ2
3

aN
), (34)

we obtain the solution that

Ps =
1
2

diag(σ2(σ
2
2 +

4γ2

σ
−2
3 γ2N−σ2

1
)

1
2 +σ

2
2 ,

σ2(σ
2
2 +

8γ2

aσ
−2
3 γ2N−2σ2

1
)

1
2 +σ

2
2 ,

σ2(σ
2
2 +

8γ2

aσ
−2
3 γ2N−2σ2

1
)

1
2 +σ

2
2 ). (35)

Proof: When the formation is symmetric, we use the
following relationships,

N

∑
i=1

di = a
N

∑
i=1

(cos(θi +θ),sin(θi +θ))T = 0, (36)

N

∑
i=1

d2
i1 = a2

N

∑
i=1

cos2(θi +θ) =
1
2

a2N, (37)

N

∑
i=1

d2
i2 = a2

N

∑
i=1

sin2(θi +θ) =
1
2

a2N, (38)

N

∑
i=1

d2
i1d2

i2 = a2
N

∑
i=1

cos(θi +θ)sin(θi +θ) = 0. (39)

Therefore, we can obtain that X = diag(σ−2
3 N −

σ2
1 γ−2, 1

2 aσ
−2
3 N − σ2

1 γ−2, 1
2 aσ

−2
3 N − σ2

1 γ−2)−1. In order

to obtain X > 0, we should have γ2 > max(σ2
1 σ2

3
N ,

2σ2
1 σ2

3
aN ). If

we plug X into Ps = 1
2 (σ

2
2 I+(σ4

2 I + 4σ2
2 X)

1
2 ) obtained in

Proposition 4.2, we can obtain the equation (35). The rest of
the proof is similar to the proof of Proposition 4.2.

Remark: The condition (1) in Proposition 4.2 and Corollary
4.3 is satisfied if the formation center eventually stops moving.
If the source seeking strategy is successful, then this condition
will be satisfied since the formation center will stay near a
local minimum of the field.

Proposition 4.2 and Corollary 4.3 imply that a lower noise
attenuation level γ and a smaller error bound Ps can be
achieved as the number of agents increases and the formation
gets larger. The choices of γ and P0 also depend on the
noise strength, which requires users to have some preliminary
knowledge of the field before running the filter.

V. THE SWITCHING STRATEGY

Having obtained the information dynamics for both indi-
vidual exploration and cooperative exploration, we are in the
position of discussing the switching between these two phases.
In the individual exploration phase, if the switching conditions
are satisfied, the agents switch to cooperative exploration. In
the cooperative exploration phase, the agents send measure-
ments to a central controller that runs a cooperative H∞ filter
and provides the new positions of the agents. If the agents
detect that the noise level reduces to a certain extent, they
switch back to individual exploration. The flowchart of the
switching strategy is illustrated in Fig. 1.

A. Individual Exploration to Cooperative Exploration

In the individual exploration phase, the agents estimate the
field gradient utilizing the time-series measurements. If the



Fig. 1. The flowchart of the switching strategies.

noise level gets higher, the estimates of the gradient directions
will become more noisy, which may prevent the agents from
finding the right direction. Therefore, we propose a switching
condition based on the Razumikhin theorem for the agents to
check whether they can keep individual exploration and find
a local minimum.

We first restate the Razumikhin theorem for the asymptotic
stability of time-delay systems [16] without proof.

Theorem 5.1: (Razumikhin) Given a system ẋ(t) = f (t,xt)
where x ∈ Rn and xt ∈ C represents the delayed system
trajectory, suppose f :R×C →Rn takes bounded subsets of
C into bounded subsets of Rn. Suppose α1,α2,w :R+→R+

are continuous nondecreasing functions, α1(u)> 0, α2(u)> 0
and w(u) > 0 for u > 0, and α1(0) = α2(0) = 0, α2 strictly
increasing. Suppose there exists a continuous nondecreasing
function g(u) > u for u > 0. If there exists a continuous
differentiable function V :R×Rn→R such that

α1(‖x(t)‖)≤V (t,x(t))≤α2(‖x(t)‖),∀t ∈R,x ∈Rn, (40)

and the derivative of V along the solution x(t) satisfies

V̇ (t,x(t))≤−w(‖x(t)‖), (41)

whenever V ((t+θ),x(t+θ))≤g(V (t,x(t))) for all θ ∈ [−r,0],
then the equilibrium x(t) = 0 of the system is asymptotically
stable.

For discrete systems, condition (41) becomes [14]

V (k+1,x(k+1))−V (k,x(k))≤−w(‖x(k)‖), (42)

whenever V ((k + θ),x(k + θ))≤g(V (k,x(k))) for all θ ∈
[−r,0].

Now consider a single sensing agent. For simplicity, we
drop the subscript i used to index the agent in the following
arguments. We suppose that the agent has a memory with
finite length r, where r ∈Z+. The memory is used to store the
measurements pk+s where s is a non-positive integer such that
−r ≤ s≤ 0. Based on the discrete time Razumikhin theorem,
we have the following proposition.

Proposition 5.2: Suppose the field value zk satisfy
zmin≤zk ≤ zmax,∀k. Let p̄k = maxs∈[−r,0] pk+s where

r ∈ Z+ and pk is the measurement at time step k. If
pk+1− pk ≤ −ρ pk +ρzmin whenever (1+ ε)pk ≥ p̄k + εzmin,
where ρ,ε > 0 are infinitesimal constants, then pk will
converge to zmin as k→ ∞.

Proof: Define a new variable yk = pk− zmin ≥ 0 so that
ymax = zmax− zmin and 0≤yk≤ymax. Let V (yk) = yk ∈ [0,ymax].
Define ȳk = maxs∈[−r,0] yk+s. If we choose g(V (yk)) = (1 +
ε)yk, where ε > 0 is an infinitesimal constant, then the con-
dition V (ȳk)≤g(V (yk)) in the Razumikhin theorem becomes
maxs∈[−r,0] yk+s ≤ (1+ ε)yk. The condition can be rewritten
as maxs∈[−r,0](pk+s− zmin) ≤ (1+ ε)(pk− zmin). If we further
simplify the condition, we can obtain:

p̄k + εzmin ≤ (1+ ε)pk. (43)

On the other hand, we have V (yk+1)−V (yk) = pk+1 − pk.
Choose w(yk) = ρyk = ρ pk − ρzmin, where ρ is another in-
finitesimal constant. According to the Razumikhin theorem, if
for all k∈ [r,∞), the measurements satisfy pk+1− pk≤−ρ pk−
ρzmin whenever (1+ε)pk ≥ p̄k +εzmin, then yk converge to 0
as k→∞. This fact implies that pk converge to zmin as k→∞.

Given the above proposition, we propose the following
exploration algorithm for individual exploration.

Algorithm 5.3: Suppose an agent is searching for a local
minimum of an unknown field, where the field value satisfies
zmin≤zk ≤ zmax. Let p̄k = maxs∈[−r,0] pk+s, where r is the
memory length of the agent.

(1) At step k ≥ r, the agent takes a measurement of the
field pk. Then estimates the field gradient ∇zk by solving the
equations (3) and (4).

(2) The agent moves in the opposite direction of the esti-
mated gradient according to ṙk =−∇ẑk or uses other strategies
to reduce the measured field value. At step k+ 1, the agent
takes a new measurement pk+1.

(3) At step k + 1, the agent checks whether (1+ ε)pk ≥
p̄k+εzmin is satisfied or not. If yes, the agent checks the value
of pk+1− pk. If pk+1− pk ≤−ρ pk +ρzmin, it keeps individual
exploration. Otherwise, it requires to switch to cooperative
exploration. If for all k > 0, pk+1− pk≤−ρ pk +ρzmin when-
ever (1+ε)pk ≥ p̄k +εzmin, the agent will converge to a local
minimum zmin according to Proposition 5.2.

According to Proposition 5.2 and Algorithm 5.3, the switch-
ing conditions from individual exploration to cooperative
exploration can be stated as: (1) at time step k + 1, check
if (1+ ε)pk ≥ p̄k + εzmin. If (1) is satisfied, then (2) check
if pk+1− pk >−ρ pk +ρzmin. Once an agent detects that both
switching conditions are satisfied at step k+1, it notifies other
agents, then all agents switch to cooperative exploration upon
request. This ensures that all agents behave consistently in the
cooperative exploration phase.

B. Cooperative Exploration to Individual Exploration

According to the information dynamics for cooperative
exploration introduced in Section II-B, when all the agents
are moving in a formation, which is treated as a “super-agent”,
a cooperative H∞ filter is producing estimates of field values
and gradients at the formation center. Then the convergence



of the cooperative exploration algorithm is dictated by the
same sufficient conditions for convergence of the individual
exploration algorithm. Define z̄c,k = maxs∈[−rc,0] zc,k+s, where
rc is the memory length of the “super-agent” that can be
considered as the average of the memory lengths of all the
individual agents in the formation. For simplicity and without
loss of generality, we assume that all the agents have the
same memory lengths. As long as (1) (1+ε)zc,k ≥ z̄c,k +εzmin
and (2) zc,k+1 − zc,k > −ρzc,k +ρzmin are not satisfied, the
formation will converge to a local minimum of the field.
However, there exist fields that cooperative exploration will
fail. We find that the success of an exploration mission is
related to the noise level, the sensor resolution, and the step
size of the moving agents [60]. Further investigation of such
field will be performed in future works.

One reason that the collaborating sensing agents outperform
individual agents is that at each step, the H∞ filter provides
the filtered field value by combining measurements from N
agents, which serves as an effective way of noise reduction
while a single agent can only make use of the time-series
measurements with no reduction of noises. When the field is
time-varying and the noise level reduces to the extent that a
single agent is able to generate accurate gradient estimates,
the cooperative sensing agents should break out the formation
and start individual exploration again.

We utilize the signal-to-noise ratio (SNR) to serve as the
switching condition from cooperative exploration to individual
exploration. If we define the signal-to-noise ratio obtained by
the ith agent at the step k as

βi,k = 10log10

r

∑
ξ=0

p̂2
i,k−ξ

(pi,k−ξ − p̂i,k−ξ )
2 , i = 1, · · · ,N. (44)

where p̂i,k is the estimated field value obtained by

p̂i,k = zc,k +(ri,k− rc,k)
T

∇zc,k, (45)

then we have the following algorithm for the agents to
decide when to switch from cooperative exploration back to
individual exploration.

Algorithm 5.4: Define the average SNR at time step k as
β̄k = 1

N ∑
N
i=1 βi,k. Suppose that at time Ts, the agents have

switched to cooperative exploration. Then for k > Ts + rc,
where rc is the memory length of the super agent, the
cooperative agents switch back to individual exploration if
β̄k > µβ̄Ts+rc , where µ > 1 is a constant.

The constant µ is chosen by design. A larger µ tends to
prevent the agents from switching to individual exploration
since the SNR needs to increase by a large amount to satisfy
Algorithm 5.4. If µ is small, the agents switch to individual
exploration as soon as they detect the noise reduces by a small
amount. However, if the agents can not individually converge
to a field minimum, they have to switch back to cooperative
exploration again, which increases the exploration effort and
cost. If that happens, one may increase µ so that a larger
threshold can be set.

VI. EXPERIMENTS

To evaluate our switching strategy for exploration, we
design a multi-agent exploration test-bed consisting of a group

of mobile robots performing source seeking tasks. In this
section, we introduce the configuration of the test-bed and
discuss the experimental results.

A. Experimental test-bed

Fig. 2 shows the experimental test-bed that includes several
components:

1) Robots and sensors: We choose Khepera III robots from
K-Team to implement the switching strategy. Khepera III is a
round mobile robot running on two differential drive wheels
and a sliding support. Each Khepera III robot has nine infra-
red (IR) sensors placed around it and two infra-red ground
sensors placed on the bottom. We use the nine IR sensors
around the robot to measure the ambient light intensity. The
sensor readings are normalized to be within the range [0,5000].
The higher the light intensity is, the lower the sensor reading
is.

2) Localization system: As seen in Fig. 2, the localization
system consists of an overhead camera, a camera support and
the LabVIEW vision system for providing the positions and
orientations of the robots at each time step.

3) Central computer: A central controller is running on a
central computer in the cooperative exploration phase. At each
time step, the localization system obtains the new positions
and orientations of the robots and the robots collect new
measurements of the field. These information are sent to the
central computer. Then the central computer calculates the new
positions and orientations of the robots at the next step and
sends the corresponding moving distances and turning angles
back to the robots. All these communications are performed
wirelessly. In the individual exploration phase, since the robots
are searching the field on their own, the central computer does
nothing but receives the positions and orientations of the robots
from the localization system.

4) Light field: We use a standard 40W incandescent light
bulb to serve as a light source that generates a light field
unknown to the robots. The field is about 2.8 meters long
and 1.6 meters wide. The light intensity decreases when the
distance from the light source increases, which indicates that
the location of the light bulb hosts the maximum of the
intensity of the light field. Therefore, seeking for the maximum
of the light field corresponds to finding the minimum of the
measured field.

B. Experimental Results

Since the field minimum is unknown to the robots and
ρ > 0 and ε > 0 in Algorithm 5.3 are infinitesimal con-
stants, we approximate ρ and ε by 0 so that the condition
pk+1− pk ≤−ρ pk +ρzmin whenever (1+ε)pk ≥ p̄k +εzmin is
simplified to pk+1− pk<0 whenever pk > p̄k. If we consider
the derivation from the Razumikhin theorem to Proposition
4.2, the simplified condition corresponds to the Razumikhin
theorem on stability, not asymptotic stability. Therefore, under
the simplified condition, the agents can only be guaranteed to
stay near a local minimum, not converge to a local minimum.
In the experiments, because of the disturbances and noises
in the field and measuring process, we still observe the



Fig. 2. The experimental setting.

convergence to the field minimum, which is not surprising
since the conditions in the Razumkhin Theorem is sufficient
but not necessary.

We deploy three Khepera III robots in the light field, which
are labeled as “A”, “F” and “C”, respectively. Fig. 3 shows the
trajectories of the three robots searching for the light source
with the switching strategy from one trial with the memory
length r = 5. The information collected are plotted in Fig. 4,
in which the green (solid with dot marker), red (dashed with
dot marker), and yellow (dotted with dot marker) lines indicate
the measurements taken by robots A, F , and C, respectively
and the blue line (dashed with triangular marker) indicates
the filtered field values at the formation center after they
switched to cooperative exploration. At first few steps, each
robot explores the field independently. After several steps,
individual exploration is abandoned because of high noise
strength, then they switch to cooperative exploration and find
the light source.

In this experiment, at step k = 13, robot A detects that
p13 >maxs∈[−5,0] p13+s. According to the switching conditions
from individual exploration to cooperative exploration, the
robot needs to check if p14 > p13 at step 14. At step k = 14, the
robot takes a new measurement and detects that p14 > p13. In
this case, the switching conditions in Algorithm 5.3 are satis-
fied and robot A decides to switch to cooperative exploration.
It sends a switching signal to the central computer through
wireless connection and the central computer broadcasts a sig-
nal to all the robots once it received the switching signal from
robot A. Due to the communication delay, at step k= 16, all the
robots receive the signal from the central computer and start to
cooperate. Since we do not actively control the existing noises,
the robots never detect that the field noise level decreases to
the extent that they can switch back to individual exploration.

They keep exploring the field cooperatively and locate the
field minimum in around 50 steps. Other parameters in these
experiments are as follows: the formation size a = 0.2m, the
noise attenuation level γ = 3, the weighting matrices Q = I,
W = 0.01I, and V = 0.01I.

Fig. 3. Trajectories of three robots seeking for the light source with the
switching strategy.

Fig. 4. Measurements when memory length is 5. At step k = 16, the robots
switch to cooperation.

1) Effects of the memory length r: To illustrate the influ-
ence of the memory length on the exploration behavior of
the robots, we conduct other two experiments with different
memory lengths. Fig. 5 and Fig. 6 show the measurements
corresponding to the memory lengths 10 and 20. As seen
in Fig. 5, at step k = 27, robot F checks that the switching
conditions are satisfied and at the same step the robots switch
to cooperative exploration. In around 60 steps, the robots reach
the light source. In Fig. 6, the memory length r = 20. At step
k = 57, robot A sends out the switching signal to the central
computer and at step k = 58, the robots switch to cooperative
exploration. They take around 80 steps to find the light source.
The three trials with different memory lengths indicate that

the memory length r plays an important role in the switching
strategy. For a given field, if the noise level is high so that
it is hard for the robots to find the source by themselves, the
shorter the memory length is, the earlier the robots realize
the situation and switch to cooperative exploration. On the
other hand, a longer memory indicates higher noise tolerance.
In situations that the cooperative exploration cost is high so
that it is preferable for robots to explore the field individually,
longer memory lengths give more chances to the robots to
explore the field by their own.



Fig. 5. Measurements when memory length is 10. At step k = 27, the robots
switch to cooperation.

Fig. 6. Measurements when memory length is 20. At step k = 57, the robots
switch to cooperation.

Fig. 7 shows the measurements taken by one robot in
another experiment. In this trial, the memory length is set
to be 60, which is long enough for the robot not to switch
to cooperative exploration. We can see from the figure that
even though the measurements are noisy, since the switching
conditions are not satisfied with r = 60, the robot is able to
find the light source after around 100 steps, which verifies
the fact we discussed previously that as long as the switching
conditions are not satisfied, a robot moves towards a local
minimum of a field.

Fig. 7. Measurements taken by one robot with memory length r = 60 but
doesn’t switch.

2) Effects of the noise attenuation level γ: Fig. 8 illustrates
the traces of the error bound Pk of the H∞ filter associated
with different noise attenuation levels when the robots are in
the cooperative exploration phase. In these experiments, we
also set a = 0.2m, Q = I, W = 0.01I, and V = 0.01I. Given
the parameters and from the sufficient conditions (26), we can
calculate that if γ2 > max(σ2

1 σ2
3

N ,
2σ2

1 σ2
3

aN ) = max( 0.01
3 , 2×0.01

0.2×3 ) =
0.033, which implies γ > 0.1826, then the cooperative H∞ filter

will converge. In Fig. 8, we can see that, when γ > 0.1826, the
noise bound Pk converges to a steady state value Ps. Actually,
since (26) is only a sufficient condition for convergence, when
γ < 0.1826, the cooperative H∞ filter may converge as well.
We have tested that when γ > 0.045, the cooperative H∞ filter
converges. Only when γ < 0.045, the cooperative H∞ filter
becomes unstable.

Fig. 8. Trace(Pk) when the noise attenuation level of the H∞ filter γ varies.

3) Effects of the formation size a: Fig. 9 illustrates the trace
of the error bound Pk of the H∞ filter associated with different
formation sizes when the robots are in the cooperative explo-
ration phase. In these experiments, we set the noise attenuation
level γ = 3, the weighting matrices Q = I, W = 0.01I, and
V = 0.01I. Equation (35) also indicates that as the formation
size a increases, the trace of Ps decreases. We can clearly see
the tendency in Fig. 9.

Fig. 9. Trace(Pk) when the distance between each pair of the robots varies.

4) Comparison with purely individual exploration: As we
discussed before, Fig. 7 shows the measurements taken by
one robot without switching to cooperative exploration. We
can also consider this experiment as the robot exploring the
field with purely individual exploration strategy. As we can
see from the figure, the convergence rate is slower compared
to the experiment with switching strategy, as shown in Fig. 4,
Fig. 5, and Fig. 6. Therefore, with the switching strategy, we
can achieve a higher rate of convergence.

5) Comparison with purely cooperative exploration: Fig.
10 shows the measurements taken by three robots in an
experiment with purely cooperative exploration strategy. The
settings are the same as the experiments we introduced before
with the formation size a = 0.35m. As illustrated in the figure,
the formation formed by the robots converges to the light
source in fewer steps. However, since cooperative exploration
is associated with increased cost such as communication and



Fig. 10. Measurements taken by three robots with purely cooperative
exploration.

computation, in fields with lower noise levels, the switching
strategy can allow the agents to seek the source individually
without collaborating if the switching conditions are not
satisfied. Thus, the cost can be reduced.

C. Complementary Simulation Results

In the experiments, once the robots switch to cooperative
exploration, they do not switch back to individual exploration
because the noises are not under our control and remain
at a constant level. To justify our switching condition from
cooperative exploration to individual exploration, we simulate
three sensing agents searching for a minimum of a two
dimensional scalar field that is corrupted by time-varying
uniformly distributed noises. The field is generated according
to z = (x−10)2 +2(y−10)2. We assume that at step k = 80,
the noise level in the field increases from 5% to 30% and at
step k = 250, the noise level reduces from 30% to 5%. We
choose the memory length r = 20 in algorithm 1 and µ1 = 1.3
in algorithm 3.

Fig. 11. The trajectories of the sensing agents. The green, red, and yellow
lines indicate the trajectories of the agents in the individual exploration phase
and the black line indicates the trajectory of the formation center in the
cooperative exploration phase.

Fig. 11 illustrates the exploration process of the three
sensing agents. The agents form a symmetric formation. The
colored lines are trajectories of the three agents when they
are performing individual exploration. The black line is the
trajectory of the formation center when the agents are collabo-
rating. Fig. 12 shows the filtered field values measured by each
agent with different colored lines corresponding to different

Fig. 12. Measurements taken by the agents. The agents switch to cooperative
exploration at k = 81 and switch back to individual exploration at k = 259.

Fig. 13. The average signal-to-noise ratio. When k > 101 and k < 259, the
agents calculate the SNR. After k = 259, the agents switch back to individual
exploration.

agents in Fig. 11. Fig. 13 shows the estimated SNR when
the agents are performing cooperative exploration. The figures
indicate that the agents start from individual exploration. At
step k = 86, they switch to cooperative exploration. Thus,
Ts = 86. When k > Ts + r = 106, the SNR is computed and
at k = 259, the agents find that β̄k > 1.3β̄Ts+r, so they switch
back to individual exploration and succeed in locating the field
minimum in around 300 steps.

Fig. 14. Measurements taken by the agents. The agents switch to cooperative
exploration at k = 86,169, and 215 and switch back to individual exploration
at k = 146,198, and 260.

Fig. 15. The average signal-to-noise ratio.

If we set µ1 to be a smaller value and keep other settings the
same as the first simulation, we can observe from the simula-



tion results that the switchings between individual exploration
and cooperative exploration happen several times during one
trial. Fig. 14 indicates the measurements taken by the agents.
In this simulation, we choose µ1 = 1.1 and ε = 0.05. The
agents switch to cooperative exploration at k = 86,169, and
215 and switch back to individual exploration at k = 146,198,
and 260. Fig. 15 shows the corresponding SNR calculated in
this trial. In this simulation, the agents take around 400 steps
to converge to the field minimum. We can see that the larger
µ1 tends to keep the agents in the cooperative exploration
phase and increase the rate of convergence of the exploration
behavior.

VII. CONCLUSIONS

We develop a strategy for a group of agents that seek
for a local minimum in an unknown scalar field efficiently
by switching between individual exploration and cooperative
exploration. Based on the Razumikhin theorem, we propose al-
gorithms for each agent to decide whether to switch to cooper-
ative exploration. The switching from cooperative exploration
to individual exploration is based on the change of the signal-
to-noise (SNR) ratio. In the cooperative exploration phase,
a cooperative H∞ filter is constructed to produce estimates
of field values and field gradients. We rigorously justify the
convergence and feasibility of the cooperative H∞ filter.

A multi-agent test-bed is developed for testing cooperative
exploration tasks. We implement the switching strategy on the
test-bed and observe from the experiments that

1) Given a noisy field, robots with shorter memory lengths
switch to cooperative exploration earlier than robots with
longer memory lengths. Longer memory lengths have
higher tolerance to noises while shorter memory lengths
help the robots to start cooperation earlier.

2) Our switching strategy is robust to realistic communica-
tion delays.

3) The conservative theoretical bound of the noise attenu-
ation level γ is verified.

4) The error bound of the cooperative H∞ filter reduces
when the formation size increases.

In our future work, we will compare engineering data collected
from the robots with the biological data collected from fish
groups.
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