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Abstract

Autonomous mobile sensor networks are employed to measure large-scale environmental fields.
Yet an optimal strategy for mission design addressing both the cooperative motion control and the
cooperative sensing is still an open problem. We develop strategies for multiple sensor platforms to
explore a noisy scalar field in the plane. Our method consists of three parts. First, we design provably
convergent cooperative Kalman filters that apply to general cooperative exploration missions. Second,
a novel method is established to determine the shape of the platform formation to minimize error in
the estimates and a cooperative formation control law is designed to asymptotically achieve the optimal
formation shape. Third, we use the cooperative filter estimates in a provably convergent motion control
law that drives the center of the platform formation to move along level curves of the field. This
control law can be replaced by control laws enabling other cooperative exploration motion, such as
gradient climbing, without changing the cooperative filters and the cooperative formation control laws.

Performance is demonstrated on simulated underwater platforms in simulated ocean fields.

I. INTRODUCTION

Missions that require measuring and exploring a scalar field such as a temperature or a salinity

field are encountered, for example, in ocean science and meteorology. Since the scalar field is
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often distributed across a large area, it takes too many sensors to obtain a snapshot of the
field if the sensors are installed at fixed locations. Mobile sensor networks are ideal candidates
for such missions: a small number of moving sensor platforms can patrol a large area, taking
measurements along their motion trajectories. Exploration activities of great interest include
climbing gradients of a scalar field [1], monitoring environmental boundaries [2]-[5], patroling
the perimeter of a region or a contour [6]—[12], and providing sampling coverage over a large
area [13]-[15]. Various methods are developed and demonstrated in the above references.

Mission design for a mobile sensor network requires a combination of cooperative control and
cooperative sensing. This is because the nature and quality of collected information are coupled
with the motion of the sensor platforms. Therefore, the challenges in developing successful
sensing algorithms are complementary to those addressed in earlier work on distributed but fixed
wireless sensor networks (c.f. review articles [16], [17]). Recent theoretical and experimental
developments suggest that a balance between data collection and feasible motion is key to mission
success [15], [18], [19]. Finding an optimal strategy is a challenging task.

In this paper, we present a general Kalman filter design for mobile sensor networks to
perform cooperative exploration missions. Exploration missions are frequently encountered in
environmental applications where the mobile sensor platforms are commanded to measure an
unknown scalar field corrupted by (correlated) noise. Since each platform can only take one
measurement at a time, the platforms should move in a formation or a cluster to estimate local
structures of the field.

The Kalman filter combines sensor readings from formation members to provide estimates
for the field value and the gradient. A separate cooperative filter is developed to estimate the
Hessian. We demonstrate that the formation shape can be made adaptive to minimize the error
covariance of the estimate produced by the cooperative Kalman filter. We prove a set of sufficient
conditions that the formation and its motion need to satisfy to achieve the convergence of the
Kalman filter. Derivation of these sufficient conditions is based on fundamental results connecting
controllability and observability of a (time-varying) filtering system to its convergence in [20]—
[22]. More recent developments in [23]—-[25] have relaxed the conditions for convergence of
Kalman filters to stabilizability and detectability, with even weaker conditions for some special
cases. In this paper, we develop the sufficient conditions based on controllability and observability

conditions because the resulting constraints on formation design are already mild enough, hence
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are acceptable in typical applications.

Kalman filtering for mobile sensor network applications has received recent attention in the
literature. In [26], a distributed Kalman filter method was proposed to decompose a high-order
central Kalman filter into “micro” filters computable by each sensor node. The estimates made
by each node are then combined using consensus filters [27]. A similar approach is taken in
[28] to address target tracking and coverage problems. Another type of Kalman filter design is
proposed in [29] where the entire field is partitioned into cells and the movement of agents is
controlled to maximize collected information. The above contributions assume that a (dynamic)
model for a planar field is known to all nodes, hence each individual is able to compute a Kalman
filter. Accordingly, the goal there is to implement a distributed algorithm on many sensor nodes
to improve tracking or mapping precision.

For the cooperative exploration problem, on the other hand, the field is completely unknown;
a Kalman filter can only be computed by combining readings across platforms. The interest
here is to take advantage of the Kalman filter design in order to use a minimum number of
sensor platforms to navigate in the unknown scalar field and reveal its structure, e.g., to follow
level curves or gradients. In [30], an adaptive scheme using a Kalman filter is developed for
interpolating data to construct a scalar field. This contribution addresses different problems than
in this paper and is complementary to our results.

In concert with our cooperative filter development, we design provable cooperative control laws
to stabilize desired formation shape and motion. There exist many contributions on cooperative
formation control that are closely related to graph theory, c.f. [31]-[35], to name only a few. In
this paper, we employ a different approach based on geometric reductions. The Jacobi transform
[36]-[38] is applied to decouple the motion of the formation center from the motion of the
formation shape. Hence the control effort can also be decoupled into control for the formation
shape and control for the formation center. We design the shape control and the center control
separately and then combine them to get the overall control. The key benefit of this approach
is that it allows us to design formation shape control to improve performance of the Kalman
filter. The center of the formation can be controlled to perform gradient climbing, level curve
tracking, or other motions while the Kalman filter and formation control remains the same. For
this reason we name the Kalman filter associated with the formation control in this paper the

cooperative Kalman filter.
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In this paper we control the center of the formation to track level curves of a scalar field
corrupted by noise; this is a collaborative exploration behavior that reveals structure in the
unknown field. The tracking control method is developed to steer the center to follow its
projection on a curve. This strategy was first reported in [39], [40] and has been applied to curve
tracking for mobile robots, c.f. some recent developments in [41], [42]. A differential geometric
approach was developed in [6] which extended the tracking method to three-dimensional curves.
The tracking control law in the present paper is a generalization of the differential geometric
results to the case of two-dimensional level curve tracking. The control law allows a formation
to smoothly find and follow any desired regular level curve with proved convergence.

The organization of this paper is as follows. In Section II, we derive the information dynamics
of a typical platform formation that moves in a planar scalar field. In Section III, Kalman filtering
techniques are applied to the information dynamics. We establish sufficient conditions for the
cooperative Kalman filter to converge. We also show that the formation shape can be made
adaptive to minimize the error covariance of the estimates produced by the cooperative Kalman
filter. In Section IV, we provide a method to estimate the Hessian that is necessary for the
cooperative Kalman filter. Formation shape and orientation control laws are derived based on
the Jacobi transform in Section V. In Section VI, a steering control law is designed to control
the center of the formation to follow level curves of a planar scalar field. We demonstrate the
cooperative Kalman filter and the cooperative control law in a simulated ocean temperature field

in Section VII. A summary and discussion for future directions are presented in Section VIII.

II. INFORMATION DYNAMICS OF COOPERATIVE EXPLORATION

In this section, we define the cooperative exploration problem and introduce the corresponding
information dynamic model. Let z(r) where r € R? be a smooth scalar field in the plane that
is unknown. In most practical situations, since the field is corrupted by noise and the sensing
devices are imperfect, it is difficult to estimate the field value using a single sensor platform. The
key idea for mobile sensor networks is to employ multiple moving sensor platforms to obtain
the necessary estimates cooperatively and reduce noise. This requires the platforms to be in a
formation, moving and collecting information simultaneously.

In most applications, the sensor measurements are taken discretely over time. This is because

the spatial range of the scalar field is usually very large. Hence very small scale fluctuations in
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the field should be filtered out as noise. Let the moment when new measurements are available be
tr where k£ is an integer index. To simplify the derivation, we do not consider the asynchronicity
in the measurements; we assume that all platforms have new measurements at time . In reality,
when there exists asynchronicity, the technique we develop can still be applied with slight
modifications.

Let the positions of the sensor platforms at time t;, be r;; € R? where i = 1,2,..., N. We

assume that the measurement taken by the ¢th platform is modeled as

Pik = 2(Tig) +w(rig) + nik (1)

where z(r;;) is the value of the field at v, n;x ~ N(0,02) are i.i.d. Gaussian noise, and

w(r; ;) are spatially correlated Gaussian noise. We define the following N x 1 vectors:

Pr = [pzk] y Lk = [Z(rzk)] , N = [mk] , W = [w(rzk>] ) (2)

and assume that n; and wy, are stationary, i.e., their statistics are time invariant.

Remark 2.1: By convention in ocean and atmospheric sciences, modeling a physical field as a
smooth field z(r) plus a spatially correlated random field w(r) is often desired to separate larger
and smaller scale phenomena. The assumptions we impose here are idealizations for physical
scalar fields. In addition, the smoothness of field z(r) helps in developing Hessian filters and
motion control laws in later sections.

We define the problem of cooperative exploration, as a special class of mapping problems,
as follows:

Problem 2.2: Given the statistics of the noise n; and wy, co-design cooperative motion and
filtering that utilize collected measurements p; for mobile sensor platforms so that an estimate
for the field z(r) that minimizes an error metric J can be obtained.

The choice of the error metric ./ depends on application. In this paper, J is chosen to be the
mean square error over spatial domain.

To solve this problem, there is no need to take measurements at every point in the plane.
Sufficient knowledge of the field can be gained by measuring the field value z, the gradient
Vz, and Hessian V22 at locations well distributed across the plane and then interpolating the
field. Note that this problem can be defined for a time-varying field i.e. z(r, ). In this paper, we

address the time-invariant case.
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We address Problem 2.2 by deriving rigorous tools that are particularly useful when there
exist smaller regions within the global area with unknown features that require high resolution
sampling; we do not attempt to address Problem 2.2 globally in this paper. Our approach
includes one development that focuses on minimizing the local error collectively using the
cooperative Kalman filter and coordinated motion that controls the shape of the formation.
The other development focuses on a cooperative exploration behavior, namely formation motion
control for level curve tracking. This contributes to reducing error at a somewhat larger scale
than the filtering and even can contribute to global reduction in error if multiple formations
are distributed throughout the region. Central to our approach is the decoupling of the two
developments, i.e., formation motion control can be designed independently from formation shape
control and the cooperative Kalman filtering. Indeed the level curve tracking can be replaced
or augmented with one or more other collaborative exploration behaviors, such as wide-area
coverage and gradient climbing, to aid in global error minimization; further, because of the
decoupling these can be implemented without affecting the local error minimization.

The function z(r;j) can be locally approximated by a Taylor series. Let r.; be the center
of the platform formation at time {, i.e., rc = % Zf\il r; . If r;; is close to r.y, then it is

sufficient to use the Taylor series up to second order. Let z;; = z(r; ), then
T 1 T 2
Zig R 2(Tek) + (Tig — Yep) Va(rer) + §<ri,k — 1)V 2(rer)(Tik — Tep) (3)

fori =1,2,..., N. We are interested in estimates of 2(r. ), Vz(rcx), and V?2(r. ). In addition
to providing insights on the structure of the scalar field, these estimates are also used in the

steering control for the center of the formation, as shown later in Section VI.

A. The Measurement Equations
Let sp = [2(rcx), Vz(rex)T]". Let Ck be the N x 3 matrix defined by
1 (rip—rep)”
Crh=| : : 4)
1 (rygp—rer)”
Let Dy be the N x 4 matrix with its ith row vector defined by %((rlk —Tep) @ (vig —rep))”

where ® is the Kronecker product. For any 2 x 2 matrix , we use the notation H to represent
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a column vector defined by rearranging the elements of /I as follows
H = [Hy1, Hy1, Hiz, Haol " 5)

Then the Taylor expansions (3) for all sensor platforms near r.; can be re-written in a vector
form as

2, = Csi + DeV232(r ) (6)

where 62z(rc,k) is a 4 x 1 column vector obtained by rearranging elements of the Hessian
V2z(r., k) as defined by (5).

Suppose that ﬁc,k is an estimate for the Hessian 622(rc,k) in vector form. Equation (1) can
now be written as

pr = Cisi + Dkﬁc,k +wyi + Diep + ny, (7)

where ey, represents the error in the estimate of the Hessian. Let W), = E[wyw? ], Uy = Elepel],
and R;, = E[nknf]. The noise wy, is “colored” because it originates from the spatial correlation
of w(r). Let E[wiw! ;] = Vi. We suppose that W}, R, and V}, are known once the positions of
the platforms are known. This assumption is reasonable in ocean and meteorology applications
since the statistical properties of ocean fields and atmospheric fields are usually known from
accumulated observational data over a long period of time. We also assume that U, determined

by the accuracy of the Hessian estimation algorithm is known.

B. The State Dynamics

As the center of the formation moves, the states s;, = [2(r.1), Vz(r.x)"]" evolve according

to the following equations:
Z(qu) = Z(qu—l) + (rc,k - rc,k—l)Tvz(rc,k—l)
VZ(I'CJC) = vz<rc,k71) + Hc,kfl(rc,k - rc,k71>~ (8)

(rc,k’ - rc,kfl)T

0 ]2><2

Lethy, | = [0, E[Hej 1(rer —rep_1)]7]" and A5 | = . We then rewrite

(8) as
sk = Aj_1Sk—1 +hyp1 + €51 )

where we have introduced the N X 1 noise vector €;_; which accounts for positioning errors,

estimation errors for the Hessians, and errors caused by higher order terms omitted from the
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Taylor expansion. We assume that €;_; are i.1.d Gaussian with zero mean and known covariance
matrix Mj_; that is positive definite.
Remark 2.3: 'We note that the assumption that €;_; is i.i.d Gaussian with zero mean may be

unrealistic. Simulation or physical data will help to validate the assumption.

C. The Noise Dynamics

The noise w;, in the measurement equation (7) is colored. The standard technique (c.f. [43])

to handle this issue is to model w;, as
Wi = A Wi1 + M1 (10)

where 7;,_; is white noise with positive definite correlation matrix Qy = E[n;n}]. Because

Vi = E[Wkwg—ﬁ = ¥—1E[Wk—1w;€—1] = Ay Wi
Wi = Elwywi ] = A Wi 1 (A7 )" + Q1 (11)
we have
‘12—1 = Vle;Jl
Qo1 = Wi — A Wi (A )" (12)

Remark 2.4: State equation (9) reveals the major difference between the cooperative explo-
ration problem considered in this paper and the tracking/coverage problems considered in [26],
[28], [29]. Equation (9), fundamental to the cooperative exploration problem, is only valid for
the formation and does not make sense for each individual node, since Aj;_,; and hy_; depend on
the location of all platforms in the formation. Therefore, the distributed Kalman filter algorithms
for tracking and coverage in [26], [28], and [29], which achieve consensus between nodes and
increase computation efficiency, are not applicable here. The central problem here is to use the
minimum number of platforms with coordinated motion to estimate the field. For this purpose,

we design the cooperative Kalman filter in the next section.

III. THE COOPERATIVE KALMAN FILTER

We observe from the information dynamics modeled by (9), (10), and (7) that if the Hessian

related term h;_; is known for all k, then the system belongs to the category for which Kalman
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filters can be constructed. In Section IV we show that h,_; can be estimated. Thus standard
procedures can be followed to obtain a Kalman filter, which will be called the cooperative
Kalman filter because it can only be computed by a formation and its performance depends on
the configuration of the formation. Our main contribution in this section is to establish sufficient

conditions that a formation must satisfy for the cooperative Kalman filter to converge.

A. Cooperative Kalman Filter Equations

The equations for Kalman filters are obtained by canonical procedures, the formulas are derived
following textbooks [43]-[45]. For the sake of clarity and convenience for later references we
list those formulas for the case when w;, = 0 as below:

(1) the one-step prediction,

Sk(—) = Ay _1Sk—1(+) T he_1; (13)

(2) error covariance for the one-step prediction,

Py = A5 1 PooinAfL )+ My ; (14)
(3) optimal gain,
Ky, = Py\CLCy Py \CL + DLURD] + Ri| ™" ; (15)
(4) updated estimate,
Sk(+) = Sk(—) + Kip(Pr — CrSp(—) — DiH.p); (16)

(5) error covariance for the updated estimate,

Py = Poly + CrIDWULDY + Ry 7' C. (17)

Here we use subscript (—) to indicate predictions and (+) to indicate updated estimates.
In order to design a Kalman filter with colored measurement noise wy, a well-known method
devised in [46] can be applied by defining a new measurement pj, as py = px — A}’ Pr—1. This

gives a new equation for measurements:
Pr = (CvA}_y — A 1 Cr_1)sk—1 + Cihy1 + (DipHep — Ay He 1)

+ Cr€r_1 + Dypep — Avkv_le_lek—l + ng — A;;V_ll’lk_l. (18)
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10

The equations (9), (10), and (18) are now the state and the measurement equations for the
case when wy, # 0. The states are [s], w]]7, the output is Py, the state noise is €;_1, and the
observation noise is C€,_1+ Dyer — A} | Di_1e,_1 +n,— A} ;ni_;. The Kalman filter design

procedure for this case can be found in most textbooks and will not be repeated here.

B. Convergence of the Cooperative Kalman Filter

Kalman filters converge if the time-varying system dynamics are uniformly completely control-
lable and uniformly completely observable [22]. In our case, these conditions are determined by
the number of platforms employed, the geometric shape of the platform formation, and the speed
of each platform. We develop a set of constraints for these factors so that the uniformly complete
controllability and observability conditions are satisfied, which then guarantees convergence of
the cooperative Kalman filter.

Let ®(k, j) be the state transition matrix from time ¢; to t; where k > j, then one must have
O(k,j) = Ay A5_y--- A5 and ®(j,k) = ®'(k, ). The following lemma follows from direct
calculation.

Lemma 3.1: For ®(k,j) as defined above and C} as defined in (4), we have, for k # j,

1 (ryp—rey)t

and Cy®(k,j) =

1 (rep — rc,j)T

0 Iryo

®(k,j) =

1 (rN,k — I‘C,j)T
Remark 3.2: Note that this lemma holds for both £ > 7 and k£ < j. It applies to formations

with any shape and any motion.

For clarity, we restate the definitions for uniformly complete controllability and uniformly
complete observability in [22] using notations in this paper.

Definition 3.3: The state dynamics (9) are uniformly completely controllable if there exist
7 >0, f; >0, and 3, > 0 (independent of k) such that the controllability Grammian C(k, k —
) = Z?:k_n Ok, j)M;_1 DT (k, j) satisfies B113x3 < C(k,k — 1) < Bolzxs for all k& > 7.
Here M;_; is the covariance matrix for state noise €;_;.

Definition 3.4: Suppose wj = 0 for all k. The state dynamics (9) together with the measure-
ment equation (7) is uniformly completely observable if there exist 7o > 0, §3 > 0, and 3, > 0 (in-
dependent of k) such that the observability Grammian J (k, k—75) = Zf: ver, @1 (7, k)C][D;U; DT +
R;]71C;®(j, k) satisfies (31543 < J(k,k — 72) < B4l3x3 for all k > 7. Here U; and R; are
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covariance matrices for noises e; and n; respectively.

Note that in these definitions, the “<” is a relation between two symmetric matrices such that
A; < A, if and only if x7 A;x < xT Ayx for any vector x with compatible dimension.

If wy, # 0, the measurement equation is (18) instead of (7). Then the observability Grammian

is TV(k,k— 1) =, ®T(j,k)CTR;'C;®(j, k) where C; = CjAS_; — AY ,C;_, and

J=k—T2
R; = C;M;_1CT + D;U;DT + AY \D; U1 DAY, + Ry + AY Ry AV (19)

The condition for uniformly complete observability is that for all k > 7, B3l3x3 < TV (k, k —
72) < Balsxs.

In the following discussions, we derive constraints on the formations so that the uniformly
complete controllability and observability conditions are satisfied by showing that there exist
positive real numbers 31, (s, ..., (o5 that serve as time-independent bounds for various quantities.
The actual value for these bounds do not affect the correctness of our arguments.

For uniformly complete controllability the following lemma holds.

Lemma 3.5: The state dynamics (9) are uniformly completely controllable if the following

conditions are satisfied:
(Cd1) The symmetric matrix M;_; is uniformly bounded, i.e., 35/ < M;_; < 3¢/ for all j and
for some constants (5, Fg > 0.

(Cd2) The speed of each platform is uniformly bounded, i.e.,

r;; —1;—1| < (B for all time
j, for i =1,..., N, and for some constant 3; > 0.

Proof: Due to condition (Cd1), the controllability Grammian satisfies 35 Zf: pem Pk, )07 (K, j) <

Clk,k—m)and C(k,k—71) < (s Zf:kfn ®(k,j)®T (k, j) for any k and 7; such that & > 7. We
first observe that ®(k, j)®7 (k, j) is a positive semi-definite symmetric matrix for each j such that
k — 7 < j < k. If we can find uniform bounds for each of these matrices i.e. ®(k, j)®T (k, j),
we obtain an overall bound for the controllability Grammian.

We apply Lemma 3.1 to compute ®(k, )7 (k, 5), i.e.,
. . Lt [l ek, ) I1* (Er(k, )"
O(k, j)®" (k, j) = , (20)
or(k, j) Isyo

where we define dr(k, j) = r., — r.;. The minimum eigenvalue of matrix (20) is

oo = 5 (198 I 42 = /(v o+ 22— 1)
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and the maximum eigenvalue is

e =5 (119508 I+ 2 (1 0x(0,) [P+ 22 = 1)

Since (Cd2) is satisfied and or(k,j) is the averaged movement over all platforms between
time j and k, we must have ||or(k,j)|| < (kK —j)07 < mpf; for all j € [k — 7, k|. Tt is
straightforward to show that \A.;, assumes its minimum value when || dr(k, )| = 7137. This

minimum value is g = % ((7-157)2 +2—/(1Br)*+2)2 — 4). We can see that 33 > 0. On

the other hand, \,., assumes its maximum value also when || or(k, j) || = 71 57. This maximum
value is Gy = 3 ((7’167)2 + 2+ \/(T137)2 +2)2 — 4>, and (9 > 0. Therefore, we conclude that
Bslsxz < ®(k,7)PT(k,j) < Bolsxs for all j € [k — 71, k]. Thus Bs570sl3x3 < C(k,k — 1) <
BeT1Pol3x3. Let By = B85 and By = [¢7109. Since (3, and (3 do not depend on k, we have

proved the uniformly complete controllability claim using Definition 3.3. [ |

By the arguments for proving Lemma 3.5, we have also proved the following lemma.

Lemma 3.6: Suppose condition (Cd2) is satisfied. Then there exist constants 7; > 0, s > 0,
and 3y > 0 such that the state transition matrices satisfy [sl3x3 < ®(i, j)®T (i, j) < Bolsxs for
all i,j € [k — 7, k] and for all k > 7.

To prove uniformly complete observability, we also need an elementary lemma for which we
do not show the proof.

Lemma 3.7: Suppose two 2 X 1 vectors a; and a, form an angle ~ such that 0 < v < 7.
Then the minimum eigenvalue M, of the 2 x 2 matrix A = a;al + asal is strictly positive,
1.e., Amin > 0.

We have the following lemma regarding uniformly complete observability of a moving for-
mation.

Lemma 3.8: Suppose wy, = 0 for all k. The state dynamics (9) with the measurement equation
(7) are uniformly completely observable if (Cd2) and the following conditions are satisfied:

(Cd3) The symmetric matrices R; and U; are uniformly bounded, i.e., B19Inxn < R < Biilnxn
and 0 < U; < B1alyxn for all 5 and for some constants (319, 511, 312 > 0.

(Cd4) The distance between each platform and the formation center is uniformly bounded from
both above and below, i.e., 313 < ||r;; — .|| < fia for all 7, for i = 1,2, ..., N, and for

some constants (33, G154 > 0.
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(Cd5) There exists a constant time difference 7 and for all k¥ > 7, there exist time instances
J1,J2 € [k — 72, k] where j; < ja, as well as two platforms indexed by i; and is, such that

one of the following two conditions is satisfied:

(Cd5.1) The two vectors, r;, ;, — Icj;, and r.; — r.;, form an angle ~; that is uniformly
bounded away from 0 or 7. In other words, there exists a positive constant (315 < 1
such that sin(vy,/2) > fs.

(Cd5.2) The two vectors, r;, j, —r.; and r;, ;, — r.;, form an angle 7, that is uniformly
bounded away from 0 or 7. In other words, there exists a positive constant (315 < 1
such that sin(y2/2) > fis.

Proof: Condition (Cd3) implies that U; is positive semi-definite, and condition (Cd4) implies
that every component of D; is bounded above. Hence the matrix D;U; D} is a positive semi-
definite matrix with its maximum eigenvalue bounded above. Also from (Cd3), Rz; is a positive
definite symmetric matrix. Therefore, Weyl’s theorem (c.f. [47], Theorem 4.3.1) that states the
eigenvalues of the sum of two Hermitian matrices are bounded above by the sum of the two
maximum eigenvalues and bounded below by the sum of the two minimum eigenvalues can
be applied to R; + DjUjD;‘-F. This implies that there exist positive constants (4, 317 > 0 such
that 16Inxn < (R; + D;U;DT) < fBizlnxn where 16 > (1o and (17 > (1. Thus, one must
have B Y5, ®T(j,k)CTC;0(j,k) < T(k.k — 1) < B Yy, @7 (. k)CTC;®(j, k)

for all £ > 7. Next, we prove the existence of positive uniform upper and lower bounds for

Zk (I)T(ja k)C;TCj(I)(], k') for all k > To.

j=k—m72

First for the upper bound, according to Lemma 3.1, we can compute

N Tei—Tep)l
" (j, k)C5 C®(j, k) = (Feg = Feh) : 1)
N T
(Tej = Ter) Doimi(Tiy — Ter)(Tij — Tep)
The conditions (Cd2) and (Cd4) imply that each component of the above matrix is bounded
above. Hence there exists 315 > 0 such that ®7(j, k)C] C;®(j, k) < Bislsxs.

We now use condition (Cd5) to argue that there exists the lower bound (319 > 0 such that
Biglsxs < Zf:kfm T (4, k)CTC;®(34, k). Consider the two time instances indexed by j; and
jo as given by condition (CdS). It is sufficient to show that the matrix 7 defined by 7 =
q)T(jl, k)C};Cﬂ(I)(jl, k) + (I)T(jg, k)C£0]2®(]27 k) satisfies 7 Z 619[3><3.
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Because ®(jy, k) = ®(j1, jo)P(jo, k), we have T = ®T(j;, k)Z, DT (51, k) where
Ty = 7 (j1,j2)C},C;, ®(j1, 52) + C1,Cl- (22)
By direct calculation one can verify that

. N 0
crey, = . (23)

N
0 2iii(Tigy = Teyy) (Tig, — Teyp) "
Using Lemma 3.1 and the fact that 3>~ (r;;, —r.;,) = 0, we have

. . . . 1 (rc,. _ rc7. )T
@T(]15j2)050j1¢(j1’j2) = J1 J2

Teji = Tego (rc,jl - rCJz)(rC,jl - rCJ2)T
N -1 0
+ N T
0 i (i = re) (P — Te)
0 0
+ - | 24)
i 0 (N - 1)(rc,j1 - 1'07]'2)(1‘07]'1 - rC,jz)

Then the matrix Z; can be obtained by adding (23) and (24) together. Considering the platforms

71 and 75 in (Cd5.1) and (Cd5.2), we can further decompose Z; as the sum of two matrices:

1 0
Il = IQ + Ig where 2-2 = with
0 Zy

Ty = (Tiy i —Tey) (Tiy s —Teji) + (i jo—Ten) (Tir o —Teo) T+ (Tey —Tep) (Tegy —Tejn) 5 (25)

and Z3 is a positive semi-definite matrix.

Because either condition (Cd5.1) or condition (Cd5.2) is satisfied, according to Lemma 3.7,
there exists [J; > 0 such that the matrix Z, > [9;/5«5. Therefore, using the Weyl’s theorem
(c.f. [47], Theorem 4.3.1) we conclude that there exists o9 > 0 such that 7; > [(350/343. Then
Lemma 3.6 guarantees the existence of 19 > 0 such that Z > (319543, which further implies
that J(k,k — 12) > Brolsxs.

Because both the uniform upper and lower bounds for the observability Grammian 7 (k, k—T3)
exist for all £ > 75, we have proved the uniformly complete observability claim. [ ]

Remark 3.9: We do not need to give formulas for all the Js in conditions (Cd1)-(Cd5). The
values for these (s will not change the fact that the filter converges, but only affect the speed

of convergence.
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We now consider the case when the colored noise wy # 0. The following lemma establishes
the sufficient conditions for uniformly complete observability.
Lemma 3.10: The state dynamics (9) and (10) with the measurement equation (18) are uni-
formly completely observable if (Cd2), (Cd4), and the following conditions are satisfied:
(Cd6) The symmetric matrix éj is uniformly bounded i.e. Boolnxny < Ej < Pozlnyy for all j
and some positive constants a9 and o3.
(Cd7) The matrix AY | and the matrix C;_; satisfy oy Iy < (foN—Ay,l)T(INxN—A;’«V,l)T <
BasInxn and BogInyn < C]T_1Cj—1 < Barlnxy for some positive constants (a4, 325, B26
and (7.
(Cd8) The constants 3; in (Cd2) and the constants (a4, fa in (Cd7) satisfy B;v/N + fag <
\/B24326 for some positive constant [og.
Proof: Condition (Cd6) implies that 33" S>>0, ®T(j, k)CTC; 7 (j, k) < T (k,k — 72)
and T (k, k — ) < B S0 ®T(5,k)CTC;07 (4, k).
Consider éj = (A}, — A} 1Cj-1. Using Lemma 3.1 we have C;A]_; = Cj_; +6C; where
0 (ri;—rej—1)"

C; = | ¢ : . Therefore, C; = (Inun — AY )Cj-1 + 6C;. Applying the

0 (rng —Tej—1)"
Hoffman-Wielandt theorem ( [47], Theorem 7.3.8), we have

\ Auin(CTCy) — \/)‘min(C]T—l(INXN =AY ) (Inxnw — A7) Cj1)

Thus using condition (Cd8), we have

\ Auin(CTC) > \/Amm(cf_l(foN — AV )T (Iyen — AY1)Cjy) — trace(6C;0CT)
> \/ Baafas — BrV'N > fos. (27)

Therefore Z?Zk_ L T(7, kz)éjTéjCI)T(j, k) is uniformly bounded below, away from singular

< \/trace(éCjéCjT).
(26)

T

matrices. It is also uniformly bounded above by conditions (Cd2), (Cd4) and (Cd7). Hence
JV(k,k — 75) is uniformly bounded below, away from singular matrices, and above. [ ]
With Lemmas 3.5, 3.8, and 3.10 justified, Theorem 7.4 in [22] can be applied to prove the
convergence of the cooperative Kalman filter.
Theorem 3.11: (Theorem 7.4 in [22]) Consider the time-varying linear system formed by the

state equation (9) and (10) with the measurement equation (18). If the system is uniformly
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completely controllable and uniformly completely observable, then the Kalman filter for this
system converges.

The following theorems can be viewed as corollaries of Theorem 3.11.

Theorem 3.12: Suppose w; = 0 for all k. Consider the state dynamics (9) with the measure-
ment equation (7). If the conditions (Cd1)-(CdS) are satisfied, then the cooperative Kalman filter
given by (13)-(17) converges and the error covariance matrix Py is bounded as k£ — oo.

Theorem 3.13: Consider the state dynamics (9) and (10) with the measurement equation (18).
If the conditions (Cd1)-(Cd2), (Cd4) and (Cd6)-(Cd8) are satisfied, then the cooperative Kalman

filter for this case converges and the error covariance matrix is bounded as k£ — oo.

C. Formation design principles

The conditions (Cd1)-(Cd8) have provided us the following intuitive guidelines for formation

design to yield successful cooperative Kalman filters.

1) If N > 3, there is no penalty in fixing the orientation of the formation, as long as the
shape is nonsingular. A singular formation occurs when all platforms are on a straight line
or collapse to a point. In fact, if the formation is singular only occasionally, the Kalman
filter will still converge.

2) If N =2 or a line formation is desired, then one should make the orientation of the line
change over time, such as in a rocking or rolling motion.

3) The speed of the platforms needs to be bounded from both above and below to guarantee
the controllability and observability conditions at the same time. Such bounds depend on
the strength of the error covariance matrices.

4) In case of a correlated field, the relation between the size of the formation and the speed

of the formation should satisfy (Cd8).

D. The cross formation and steady state error covariance

As an example, we select a fixed coordinate frame formed by unit vectors e; and e, and
arrange the four platforms in a symmetric formation as shown in Fig. 1 so that

1) ryy — ry is perpendicular to r3j; — Ty,

2) ||ror —repll = Tep —Tinll =ar and ||r3p — e || = || rep — Tag || = by and

3) the e; vector is aligned with ry;, — r;; and the e, vector is aligned with r3;, — 1y .
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Then, in the lab coordinate frame,

1 —ax O ai 00 0
1 ag 0 ai 00 0
Cr = Dy = ; (28)
1 0 bi, 0 0 0 b
|1 0 =0 | | 0 0 0 b}
which have very simple form because of the symmetry.
e,
o
' b
_____________ Lid e
o

T,

Fig. 1. A symmetric arrangement of a formation of four sensor platforms. We design ay, and by, to minimize the mean square

error when constant Kalman gain is adopted.

We may design the steady state formation shape so that the steady state error covariance of the
cooperative Kalman filter is minimized. In the case when w; = 0 for all k, the error covariance

matrix satisfies the Riccati equation:
Pl =45 P (A )" + M)t + CL[DULDL + Ry 'Co. (29)

The mission goal at steady state is to move the formation along a level curve. Then consider
equation (8): as k — oo, since (re — rep—1)’ Vz(rer—1) = 0, we can replace A3 by I35 in
equation (29) as k — oo

We then determine the steady state values of a; and b, that minimize the error covariance.
Suppose ar — a and by, — b as k — oco. The following proposition holds.

Proposition 3.14: Suppose as k — 00, M, — 0513x3, Ry, — 031454, and Uy — 03145 4. Then

P4y converges to a diagonal matrix P,,. The trace of Py, is

3
3., 1 , | 403
tr(Pao) = =503 + 5 Zl of+ 2 (30)
where
2 2 2a? 20>
s e e s g L R D
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Proof: By direct calculation, one can verify that, as k — oo,

2 2 2(12 2(?2 '
—} = diag{c1, e, c3}. (32)
1

_.I_ -
o2at + o 202 +o0? oo

CrDwURDy + Ri]) ™ 'Cr — diag{2

As k — oo, Aj_, is replaced by I5,3. Therefore, P, solved from (29) is a diagonal matrix. By
direct calculation, one can verify that the trace of P, is given by (30). [ ]

Using the cross formation has simplified the procedure in solving the steady state Riccati
equation (29). The resulting P, satisfies tr(P.,) > 0; a minimum of tr(P,,) can be found when
a and b assume value between (0, co). Finding analytical solutions for the optimal values a and b
that minimize tr(P,,) requires solving a 4-th order algebraic equation, which is best solved using
numerical methods. Since there are only two variables to optimize, the problem is rudimentary
for most numeric packages.

We can then compute P,,, C, and D. In the case that the noise covariance My, Uy and Ry
are time-invariant, these computation can be performed “off-line”, i.e., before any observations
are made. Hence, a Kalman filter gain K, can be given beforehand as K., = P,,CL [C, P,oCL +

DooUse DT + Roo] .

E. Adaptive formation

The constant Kalman gain K., computed beforehand is based on the assumptions on the
steady state noise covariance. Therefore, the steady state gain may only be suboptimal if the
noise covariances are time varying. If the constant gain K, is used, the formation shape may
be adjusted to achieve optimal Kalman filtering. Furthermore, if the regular Kalman filter gain
K. is used, we show the error covariance of the estimates can be minimized by adjusting the
shape of the platform formation e.g. changing a and b. Our method extends the adaptive scheme
previously developed in [1] to minimize estimation error based on instantaneous measurements.

It is well known that sub-optimal filters can be derived using K .. For example, when w;, = 0,
the update equation can be sy = Sp—) + Koo(Pr — CiSp(—) — Dkﬁqk). A unique property
of using multiple mobile sensor platforms is that we can adjust C', and Dy, by adjusting the
geometric shape of the formation, to minimize estimation error for this sub-optimal filter. The
resulting formation is then adaptive and the resulting filter is optimal.

Another well-known result for Kalman filter design indicates that the error function to be

minimized at step k is Jk = %tr[(lgxg — chk)pk(f) ([3><3 — chk)T + Kk<DkUkDg + Rk>Kg]
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In fact, if Cy and D; are known, the gain K that minimizes J; is exactly the Kalman filter

gain.

This formation can be made adaptive when the regular Kalman gain K} is used. This is
because by equation (15), since P is known, K} is a function of C} and Djy. The resulting
adaptive formation and the estimates will minimize the cost function .J;, at each step k. Therefore,
we modify step (3) in Subsection III-A:

(3A) Let K}, be a function of C}, and Dy, i.e. [A(k(Ok, Dy) = Py \CL[CrPy—)CF + DyUp DL +
Ry]™!. Find C} and Dj so that the function J;, = %tr[(]3X3—}A(ka)Pk(_)(ngg—IA(kC’k)T—F
[/(\'k(DkUkaT + Rk)[?,?] is minimized. Then let K, = IA(;C(C,’;, Dy).

This new step is generally difficult to compute since C} and Dj are matrices. But as we have

discussed, using symmetric formations will greatly reduce the complexity.

F. Section Summary

The convergence of the cooperative Kalman filter algorithms imposes constraints on feasible
platform formations, and the shape of the formation affects error in the filters. In order for
the cooperative Kalman filters to converge, formations should be designed to make the filter
systems uniformly completely controllable and uniformly completely observable. Formations
with N = 2 may need to rotate, but formations with N > 3 can have fixed orientation if the
formation is not co-linear. We also note that the formations can be adaptively adjusted on-line
to minimize estimation error. Symmetric formations help to reduce complexity in theoretical

analysis, computation, and operation.

IV. COOPERATIVE ESTIMATION OF THE HESSIAN

An estimate of the Hessian, H.j, is needed to enable the Kalman filter. At the end of the
(k — 1)th time step, we have obtained an estimate s;_;(;) from the cooperative Kalman filter.
This includes an estimate z.y_; for z(r.;_;) and an estimate d.y_; for Vz(r.;_1). We outline
the procedure to cooperatively compute H. j as follows:

1) Start with an estimate or an initial guess Hj_;.

2) Use a one-step filter to reduce noise in the new measurements.

3) Compute H.j.
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A. A Cooperative One-step Filter to Reduce Noise

Using the computed estimates s;_;(4) and ﬁc,k—l: we can make predictions, before the arrival
of measurements at time step &, for the field value at the positions of the sensor platforms that
have moved from r;;_; to r;; as zg = CySp—1(+) + Dkﬁc,k,l. The error of the prediction ZE
compared to the true value z, is Gaussian i.e. z; = z; + 1. From properties of the Kalman
filter, the covariance of v, is G = C’kP,jfl( +)C’kT where P;Sq( ) is the error covariance in the
estimate Sj_1(4).

We then take new measurements at the kth step using all platforms. Let p; be the vector of

the measurements and z, be the vector of the predictions. Let the updated measurements Z;, be
Z, = (I + Gp(Wi + Ri) ™) "'z + (I + (R + Wi)G) ' - (33)

Such Zz;, minimizes the cost function

L. 1 ~ _ ~
T =5 (@ - 2,)" Gy (2 — 2;) + (P — Z) (Wi + Ri) (P — 21)] -

As we can see, (G serves as the weighting matrix that balances using the information from
previous estimates and from current measurements. The following proposition has been proved
in our previous work [48].

Proposition 4.1: The estimator given in equation (33) is unbiased with error covariance matrix

(I + Gp(Wi + R}C)fl)fle.

B. Cooperative Estimation of Hessian

Using the cooperative Kalman filter, we may obtain a prediction for the s; as
Sk(—) = Ai—lsk—l(-k) +hy_. (34)

Using the one-step filter we also have the filtered measurements zy. If the number of the sensor
platforms N > 3 and the formation is not co-linear, then since z, = CSi(—) + Dkﬁk, one
may conjecture that the Hessian estimate can be solved, using the least mean square method, as
Hy, = (DTDy) ' DT (7, — CySi(—))- However, it can be shown that for N < 4, the matrix D] D,
is singular, hence the least mean square method will not work.

We now introduce an alternative method to estimate the Hessian that utilizes the relationship

between the Hessian and the curvature of level curves.
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1) Curvature and Hessian: The level curve passing through the center of the formation r,.
can be parametrized by its arc-length s, hence z(r(s)) is constant for all values of s. Suppose the
gradient V2 does not vanish along the curve. The unit normal vector to the level curve is defined
as yi(s) = %, and at any given point, the unit tangent vector to the curve, denoted by

x1(s), satisfies x1(s) - y1(s) = 0. Then we have the following Frenet-Serret equations [49]:

dXC;ES) = r(s)y1(s) and dY1£5)

where k(s) is defined as the Frenet-Serret curvature of the level curve.

= —r(s)x1(s), (35)

With this configuration, because Vz(r.) - x; = 0 along the level curve, the derivative with

respect to s is £Vz(r.) - x; + Vz(r) - 21 = 0 which implies x} V2z(ro)x; + || Vz(re) || y1 -
k(s)y1 = 0 where V?2(r.) is the Hessian of z at r.. Because x; is the unit vector along the
x1-axis, in the Frenet-Serret frame we have Oy z2(r.) + || Vz(r.) || k(s) = 0. This suggests that

we can obtain Hyy , the estimate for 8xxz(rcyk), by
Hxx,k = - || dc,k || Re k (36)

where d.j is the estimate for the gradient Vz(r. ;) and k. is the estimate for the curvature
K(Te k).

On the other hand, we have Vz(r.) - y; = || Vz(r.)| . Taking derivatives on both sides of
this equation with respect to s, we get x] V2z(rc)y1 — || Vz(re) | y1 - £(s)x1 = £ || V2 ||. This

implies that Oyyz(r;) = < || Vz ||. Therefore, the estimate Hyy j, for Oxyz(rey) is
d
Hiyr = — || dek || - 37

The estimates Hyyj and H,y j are elements of H.; in the Frenet-Serret coordinate system.
Since the field z(-) is smooth, we require Hyy; = Hyy . We also need to find out Hy, ; to
determine H .

2) Algorithm to estimate the Hessian: We show how to use four sensor platforms to estimate
the Hessian at r. ;. For N > 4, the algorithm can be used directly. For N < 4, the algorithm
can be extended by combining measurements from different time instances.

Since the procedure only involves information for step k£, we drop the subscript £ in this
section for simplicity.

With a formation of four moving sensor platforms, we are able to estimate ~(s) for the level

curve at the center of the formation by the following steps:
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| ¥ ) o
o T b —
ae
I'E K < .I'4
dE :ﬁ/dj
r e

Fig. 2. Detection of a level curve using four sensor platforms. r. denotes the center of the entire formation. rg denotes the
center of the formation formed by r1, rs and r4. rr denotes the center of the formation formed by ra, r3 and r4. vy and rk

are located on the same level curve as rec.

(s.1) Compute an estimate of the field value and gradient at the center r. using (34).
(s.2) Considering the formation defined by ry, r3 and r,4, obtain the estimates zg and dg at the
center ry of this three platform formation (Fig. 2) by solving the following equations for

i=1,3,4: % = zp+dg- (r;—rg) +5(r; —rg)" H" (r; —rg) where the Z; are given by (33)

and H? is the estimate of Hessian taken from previous time step. Let 2 = [21, 23, 24) 7,
1 (rp—rg)?

sp = [2g,dg]", and Cg = | 1 (rs —rg)? |. Let Dg be the 4 x 3 matrix with its three
1 (ry—rp)?

row vectors given by 1 ((r; —rg) ® (r; —rg))” for i = 1,3,4. Then Zg = Cpsg + DpH?
which implies that sy = Cg'(zg — D HT).

(s.3) Along the positive or negative direction of dg, we may find the point r; (Fig. 2) where

zy=z.using ry =rg + (2. — zE)%.

(s.4) Estimate d;; by solving the following equations for i = 1,3,4: 2; = z;+d; - (r; —rj) +
%(I‘i — I‘J)THP(I'Z‘ — I'J).

(s.5) Repeat the steps (s.2), (s.3) and (s.4) for the formation consisting of ry, r3 and r, with
appropriate changes in the subscripts for points rr and rk (Fig. 2).

(s.6) Let yi1j5, yix and y;. denote the unit vectors along the directions of the gradient dj, dgk

and d.. Define 00, = arccos(y1j - yic), 0sL. = || vy —re ||, d0r = arccos(yik - yic), and
dsp = || Tk — rc||. Obtain the estimate for r(s) at ro as ko = 3 <% + gg—g). Obtain the

estimate for H,, according to (36).
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ldk [|=[lds |l

(s.7) Approximate & || Vz || by £ || Vz || = | 5s. a5 - Lhen using (37), the estimate Hyy is

_ Ik ll=lIdy |l
ny - 5SL+5SR :

(s.8) Solve Z; = z. + d. - (r; — rc) + 5(r; — re) " He(r; — r.) for Hyy where i = 1,2, 3, 4.

The resulting matrix H,j, can be used directly as the estimate for the Hessian at the kth step.
Or we may repeat steps (s.1)-(s.8) starting from H.; to get a new estimate for the curvature
and then to improve the estimate /. The procedure becomes an iterative numerical algorithm
that solves the set of nonlinear equations that z., Hyy, Hyy, and Hyy satisfy given Zz;, for

1 =1,2,3,4. The prediction from step £ — 1 provides a reasonable initial value for this iterative

algorithm.

V. FORMATION SHAPE AND ORIENTATION CONTROL

In this section, we show that by using a powerful tool called the Jacobi transform, the
formation shape and orientation dynamics can be decoupled from the dynamics of the center (or
the centroid) of the formation. Therefore, a formation shape and orientation controller can be
designed without considering the motion of the formation center, and such a controller will not
affect the motion of the formation center. We can control the formation to have fixed orientation

or to rotate according to prescribed angular speed around the formation center.

A. Formation Control with Fixed Orientation

We view the entire formation as a deformable body. The shape and orientation of this de-
formable body can be described using a special set of Jacobi vectors, c.f. [37], [38], [50]-[52]
and the references therein. Here, assuming that all platforms have unit mass, we define the set
of Jacobi vectors as q;, j = 1,2,..., N — 1 satisfying [rc,qi,...,qn_1] = [r1, T2, ..., Tx]V Where
U defines a linear coordinate transform that decouples the kinetic energy of the entire system,
e, K =13V i) = S(N i P + 50" a4 |1?). We call W the Jacobi transform. This
allows us to separate motion of the center from shape and orientation changes. The transform
WU is guaranteed to exist. For example, when N = 4, the following definition of Jacobi vectors

may be used

1
r3 — I'4), and qs = —(1‘4 + rs — Iy — I'1> . (38)
2

1 1
q1 = E(Q - 1'1), qQ2 = E(
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Lagrange’s equations for the formation in the lab frame are simply the set of Newton’s
equations: 1; = f; where f; is the control force for the ¢th platform for : = 1, ..., N. In terms of

the Jacobi vectors, these equations are equivalent to
d; = u; and N¥, = £, (39)
where j = 1,..., N — 1, and u; and f; are equivalent forces satisfying
[f.,uy,...,uy_1] = [f1, fo, .., fx] ¥ L. (40)

We design the control forces u;, j = 1,2,..., N —1, so that as t — oo, q; — q? where q? are

desired vectors that define a constant formation. For example, when N = 4, we want

b
a(t) — %el, Glt) = e, and dy(t) — 0 @1)

where e; and e, are the two unit vectors defining the lab coordinate frame in Section III-D, and
a and b are the optimal values determined by methods in Section III-D to minimize the steady
state error covariance. Since the controlled dynamics for q; are linear, the following control laws
guarantee the goal (41) with an exponential rate of convergence: u; = —Ks(q; — q?-) — K3q;
where K5, K3 > 0 are constant gains. This control law design method can also by applied to
stabilize the adaptive formation obtained in Section III-E with the assumption that the optimal
formation will not change very fast over time.

Comparing to existing formation control and stability results for formation with fixed shape
and orientation (for example, [53], [54]), this controller is much simpler and its stability is easy

to prove. This is due to the fact that the reduced system is linear after the Jacobi transform.

B. Formation Control with Rotation

When only two sensor platforms are available, if we control the motion of the two platform
formation such that the formation is rotating periodically, then the system will satisfy the
observability condition and the Kalman filter will converge. The difference between controller
design in this section and in the previous section is that the orientation of the platform formation
will be changing.

The platform formation where there are /N platforms can be described by the Jacobi vectors
q; where j = 1,2,..., N — 1. The orientation of the collection of the Jacobi vectors in the inertial

frame can be described by an angle ) which is the angle between a selected Jacobi vector and
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the horizontal axis of the lab fixed frame. It does not matter which Jacobi vector to select. Let

. costy  siny
the matrix g be g = . We define vectors p; as p; = g 'q;. Let 2 be the

—sinYy cosy

angular velocity of the formation. Taking time derivatives on both sides of q; = gp; yields

q; = g9(p; + Q2 x p;). Take time derivative again on both sides yields
w; = g(Bj + 290 X pj + 2 x (2% py) + Q2 x py). (42)
We then design p; and Q such that, for j = 1,2, .., N — 1,
p; = —Ki(p; — p}) — Ksp; and Q= —Ks(Q — Q) + Q (43)

where p? is a constant vector and () is a differentiable function of ¢. Then u; can be computed
using (42).

Once we have designed the combined force f. to control the center of the formation, then the
control forces f;, i = 1,2, ..., N can be computed using (40). In Section VI, we design f. so that
the center of the formation tracks a level curve. We note that our results in controller design
for the platform formations pertain only to the deterministic formation dynamics; this certainty

equivalence approach does not produce optimal controllers with input noise.

VI. FORMATION MOTION CONTROL

In this section, we derive the equations governing a Newtonian particle moving in a scalar
field. Then we design tracking control laws so that a particle can be controlled to follow any
non-trivial level curve. The particle is identified with the center of the formation so that a level
curve tracking behavior is achieved. Such level curve tracking behaviors complement gradient

climbing behaviors in cooperative exploration strategies and help reveal structure in an unknown

field.

A. Particle Motion in a Scalar Field

The center of the platform formation is modeled as a unit mass Newtonian particle with its
position represented by r.. The system equation for such particle is the Newton’s equation 1. = f..
Such equation can be written in an equivalent Frenet-Serret form which is more convenient for

the tracking purpose [14], [15].
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We define the speed of the particle as « and the acceleration v. for o # 0 as
) re
a=|1| and v. =f. - —. (44)
!

Then the equation for speed control is

o= . (45)

We let v. = —Kj(a — 1). As time ¢t — 0o, o converges to unit speed exponentially with a rate
determined by /; > 0.

We define a unit velocity vector x; as xo = % We define a second unit vector y; as the
vector perpendicular to x5 that forms a right handed frame with x, so that x; and ys lie in the
plane of the page and the vector x5 X yo points towards the reader. Then the steering control

can be defined as u. = %fc - yo. Using the facts that
fo=(fc - y2)y2 + (fc - x2)%2 (40)
and x5 -y, = 0, we have the following equations:
Xy = Ucyo and Yo = —U.aXs . @7

The equations (45) and (47) describe the particle motion in the Frenet-Serret form. Equation
(46) shows the equivalence between Newton’s equation and the Frenet-Serret form when « # 0:
once the speed control v. and the steering control u. are determined, the total force f. can be
determined.

Consider the smooth scalar field z(r) in the plane. With the speed of the particle under
control, we design a steering control for the particle so that it will track a level curve of z(-).
The procedure can be found in our previous works [14], [15]. Here we briefly summarize and
explain the results.

At any time instant ¢, there is a level curve of z(-) passing through r.. At this position re,
we let y; be the unit vector in the direction of the gradient of the field z(-), and let x; be the
unit tangent vector to the level curve. By convention, x; and y; form a right handed coordinate
frame with x; X y; pointing to the reader. This coordinate convention is identical to the one
used in Section IV-B to derive equation (35).

For convenience, we introduce a variable ¢ € (—m, 7] such that cos§ = x; - x5 and sinf =

—Yy1 - X2. Along the trajectory of the center, it can be shown that 0 = a(kycosf + kosin — u,)
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X’{V2ZX1 - X?V2zy1
V=] > ™2 vz -

where k; = — and V?z represents the Hessian of the scalar field z(-).

Meanwhile, along the trajectory of the center, the value of z satisfies 2 = —a|| Vz || sin 6.

B. Steering Controller Design

Suppose the scalar field has extrema zy;, < Zmax Which are allowed to be infinity. Let f(z2)

be the derivative function of a function A(z) so that the following assumptions are satisfied:

(A1) dh/dz = f(z), where f(z) is a Lipschitz continuous function on (Zuin, Zmax), and A(z) is

continuously differentiable on (zmin, Zmax);

(A2) f(C)=0and f(z) #0if z # C,
(A3) lim,_., , h(z) = oo, lim,_,, . ~(z) = oo, and 32 such that A(Z) = 0.

We design the control law to be

Ue = K1 cos 0 + rysind — 2f(2) || Vz || cos2(g) + K,y sin(g) (48)

where K, > 0 is a constant control gain. We now assume that the speed of the center o = 1 is
guaranteed by the speed controller v.. Then the following proposition can be proved.
Proposition 6.1: Consider a smooth scalar field with bounded Hessian and bounded gradient
that satisfies | Vz(r) || # 0 except for a finite number of points ry,, where z(rsy) = Zmin OF
z(rsup) = Zmax. Under the steering control law given in equation (48), we have § — 0 and
z — C asymptotically if the initial value 0(ty) # 7 and r(ty) # Tsp.
Proof: Let a Lyapunov candidate function be V' = —log cos?(%) + (). Then its derivative

. sin?
can be shown as V = —akKk,

o )
#. Therefore, if & > 0 we have V < (. The value of the
2

COs
. . .. .. . o(t .
Lyapunov function does not increase. Because our initial condition is such that cos % # 0, it

is impossible for cos @ = (0 at any time instant ¢ since otherwise V' goes to infinity.

By the invariance theorem for non-autonomous systems ( [55], Theorem 4.4), we conclude
that sin2 — 0 as ¢ — oco. 6(¢) will not go to 7 because we have shown that cos @ # 0. This
implies that 6(t) — 0 as t — oo.

On the other hand, note that 6| sy = 2af(2) || Vz||. The right hand side is a uniformly
continuous function of time since z is constant and || Vz || is a smooth function with bounded
derivatives. Therefore, according to the Barbalat lemma, ¢ must vanish as ¢ — oo. This implies

that either f(z) = 0 or || Vz| = 0. When || Vz| = 0, we know r = ry,,. According to our

assumption, V' goes to infinity at r = ry,,. Thus if we start with r(#y) # ry,,, we must have
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| Vz|| # 0 for all time ¢ > t,. Therefore, the only possibility left is f(z) = 0 which implies
that z =C.

VII. SIMULATION RESULTS

We first demonstrate the cooperative Kalman filtering and level curve tracking control using
two sensor platforms. The potential field is generated by two identical positive charges in the
plane with added correlated noise. It is desired that the two sensor platforms keep a distance of 1
unit length and rotate with a constant angular speed. Fig. 3 shows the snapshots of both platforms
and the trajectory of the formation center when tracing a level curve. It can be observed that
the trajectory of the center of the formation is smoother than the actual level curve with spatial

noise.

Vertical axis (length unit)
N =

. . . . . .
-10 -8 -6 -4 -2 0 2 4 6 8 10
Horizontal axis (length unit)

Fig. 3. Using two sensor platforms to track a level curve. The formation rotates at constant angular speed.

The level curve tracking algorithm is applicable to adaptive sampling using a mobile sensor
network in the ocean. Adaptive ocean sampling is a central goal of our collaborative Adaptive
Sampling and Prediction (ASAP) project [56]. The latest ASAP field experiment took place
in August 2006 in Monterey Bay, California. Ten gliders were employed under continuous,
automated coordinated control to collect maximally information-rich data for oceanographic
research over the course of one month. The success of this field experiment sets a precedent for
the usefulness of the kind of cooperative exploration represented by level curve tracking. This

motivated our second illustration of level set tracking with four platforms in a model ocean field.

November 11, 2008 DRAFT



29

37.00N
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36.90N
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Fig. 4.  Tracking, in simulation, the temperature level curve of 13°C in an estimated temperature field near Monterey Bay,
CA on August 13, 2003. For visualization purposes, the level curve is accentuated. The trajectory of the center of formation
is plotted with snapshots of the formation shown along the trajectory. The horizontal axis corresponds to longitude and the

vertical axis to latitude.

In order to test our current algorithms on realistic ocean fields, we use a snapshot of the
temperature field near Monterey Bay produced by the Harvard Ocean Prediction System (HOPS)
[57]. This field reflects the temperature at 20 meters below sea surface on 00:00 GMT August
13th, 2003. This field was produced using remotely observed and in-situ data, including glider
measurements during the Autonomous Ocean Sampling Network (AOSN) field experiment [18].

Four platforms are employed to track a level curve with temperature 13°C. The trajectory of
the formation center and the snapshots of the formation are plotted in Fig. 4. The center of the
formation is controlled to travel at 1 km per hour. The orientation of the formation is adjusted so
that the line connecting platforms 1 and 2 is aligned with the desired level curve. The shape of
the formation is adjusted to minimize the Kalman filter error covariance. This can be observed
from Fig. 5 where we plot the half distance between vehicles 1 and 2, i.e. the shape variable a,
versus time. Fig. 6 shows the estimates of the temperature at the center of the formation versus

time. One can see that the estimates center around 13°C with small error.

VIII. SUMMARY AND FUTURE WORK

We have developed a cooperative Kalman filter that combines measurements from a small
number of mobile sensor platforms to cooperatively explore a static planar scalar field. We
show that the combined estimates satisfy an information dynamic model that does not depend

on motion models of the platforms. Based on this model, we have rigorously justified a set
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vehicle 1 and 2 (km)
2

Half distance between

4 6 § 10 12 14 16 18 20
Time (hour)

Fig. 5. The half distance between platforms 1 and 2, i.e. the shape variable a, versus time.

Fig. 6. The estimate z. (°C) versus time (hour).

of sufficient conditions that guarantee the convergence of the cooperative Kalman filter. These
sufficient conditions provide guidelines on mission design. We show how to adapt the formation
shape to minimize error in the estimates. An algorithm has also been designed to estimate the
local Hessian, which enables the Kalman filter and provides curvature estimates for steering
control.

We take a geometric approach in formation control where reduction is performed on the total
configuration space of the formation with the help of Jacobi vectors. The desired formation
shape, orientation and motion can be stabilized using simple controllers with the help of the
reduction method and the Jacobi transform. Both the filter and the formation shape controller
are general for any number of platforms and arbitrary formations as long as conditions for
uniform controllability and observability are satisfied. The filter and formation shape controller
are combined with a steering control law for the center of the formation to perform level curve

tracking behavior with provable convergence.
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There are open questions regarding the current results. The error covariance of Uy, and My
are not theoretically characterized and rely on heuristics and simulations, and we have only
considered time-invariant fields in the plane. Hence, our ongoing work includes addressing the
limitations, extending these methods to fast, time-varying scalar fields in three-dimensional space,

and demonstrating the methods in experiments involving robotic mobile sensor platforms.
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