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Distributed Filter Design for Cooperative H∞-type Estimation

Jingbo Wu Li Li Valery Ugrinovskii Frank Allgöwer

Abstract— In this paper, we consider the distributed robust
filtering problem, where estimator design is based on a set
of coupled linear matrix inequalities (LMIs). We separate the
problem and show that the method of multipliers can be applied
to obtain a solution efficiently and in a decentralized fashion,
i.e. all local estimators can compute their filter gains locally,
with communications restricted to their neighbors.

I. I NTRODUCTION

Estimator design has been an essential part of controller
design ever since the development of state-space based
controllers. A milestone was laid by the Kalman Filter in
1960 [1].

While in the classical estimator design one estimator is
used for the entire system, distributed estimators have gained
attention since a distributed Kalman Filter was presented in
[2], [3]. In a distributed estimator setup, multiple estimators
create an estimate of the system’s state, either individually
[4] or cooperatively. In the latter case, even when every single
estimator may be able to obtain an estimate of the state
on its own, cooperation reduces the effects of model and
measurement disturbances [5]. Also, the situations are not
uncommon where individual estimators are unable to obtain
an estimate of the state on their own and cooperation be-
comes an essential prerequisite [6], [7]. The node estimators
may even not have a model of the full system, but only know
a part of the system [8].

However, even though the setup consists of distributed
estimation units without a central coordinator, in many
known approaches the design process itself requires a central
coordination unit. In some practical application examples,
where the design process can be done offline, this may
not be a significant drawback. On the other hand, in many
applications especially those involving distributed sensor net-
works with varying communication topology, a centralized
computation of observer parameters represents a severe lim-
itation. Practicality of a distributed system demands thatthe
estimator design process is to be carried out in a distributed
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manner as well. If network needs to adapt to some changes,
such as a change in the plant or change in the network
structure, this allows each node to reconfigure using only
local communications and computation only.

In this paper, we provide a complete analysis of one dis-
tributed estimation problem where such a distributed design
scheme is possible. Specifically, we adopt the setup from [6]
concerned with the problem of distributed estimation with
H∞ consensus performance. As a matter of fact, in [6] a
gradient-descent-type algorithm was proposed that can be
used to calculate the filter gains in a distributed manner.
Although the proposed gradient type algorithm demonstrated
a possibility of computing the estimator parameters in prin-
ciple, a practical application of that algorithm is hindered
due to slow convergence observed even in low dimensional
examples. Also, implementation of the decentralized design
scheme proposed in [6] requires bidirectional communica-
tions between the network nodes, which essentially requires
the communication graph to be undirected for the purpose
of the estimator design. In this paper, we address the prob-
lem of designing distributed estimators by using distributed
optimization methods presented in [9],[10]. Distributed opti-
mization methods are widely applied in networked systems,
see e.g. [11],[12],[13]. The contribution of this paper is to
show that the problem of designing distributed estimators is
amenable to the methodology of distributed optimization as
well. Although the design scheme is proposed for the specific
class of algorithms in [6], it illustrates all the steps neces-
sary to devise similar design schemes for other distributed
estimation algorithms and distributed optimization subject to
LMI-constraints in general.

The rest of the paper is organized as follows: We first
introduce the notation and some preliminaries on graph
theory. Then, we revisit some essential results published in
[6] and discuss there limitations with respect to numerical
optimization. Section III is dedicated for introducing the
proposed optimization scheme. In Section IV, we give a
mathematical example, and Section V concludes the paper.

II. PRELIMINARIES AND BACKGROUND

In this section, we introduce the basic definitions and
results which our main results will build on.

A. Notation

Let P be a symmetric matrix. IfP is positive definite, it is
denotedP> 0, and we writeP< 0, if P is negative definite.
0 denotes a matrix of suitable dimension, with all entries
equal 0. Moreover, for vectorsx∈ Rn we use the Euclidean
vector norm‖x‖ =

√
x⊤x and the weighted vector norm
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‖x‖P =
√

x⊤Px for symmetric matricesP> 0. For matrices
A∈Rn×m, we use the Frobenius norm‖A‖=

√
tr(A⊤A) and

the induced norm‖A‖2 = sup‖x‖6=0(‖Ax‖/‖x‖). L2 denotes
the Lebesgue space ofRn−valued vector-functionsz(·),
defined on the time interval[0,∞) with the norm‖z‖2 =√∫ ∞

0 ‖z(t)‖2dt. The vectorizationvec(·) maps any matrix
A∈ Rn×m to then·m-dimensional vectorvec(A) formed by
the stacked columns ofA.

B. Communication graphs

In this section we summarize some notation from the graph
theory. We use directed, unweighted graphsG = (V ,E ) to
describe the communication topology between the individual
agents.V = {v1, ...,vN} is the set of vertices, wherevk ∈ V

represents thek-th agent.E ⊆ V ×V are the sets of edges,
which model the information flow, i.e. thek-th agent receives
information from agentj if and only if (v j ,vk) ∈ E . The set
of vertices that agentk receives information from is called
the neighborhood of agentk, which is denoted byNk = { j :
(v j ,vk) ∈ E }. The set of vertices that receive information
from agentk is called the out-neighborhood of agentk, which
is denoted byMk = { j : (vk,vi) ∈ E }. The in-degreepk and
out-degreeqk of a vertexk is defined as the number of edges
in E , which havevk as their head and tail, respectively.

C. DistributedH∞ estimation and LMI conditions

We now present the underlying distributed estimation
problem from [6]. It involves LMI design conditions, which
are the main object of interest in the paper. Our main
objective is to show that these LMI design conditions are
amendable to a distributed solution by using the multiplier
method (c.f. [9]) .

The distributed estimation problem withH∞ consensus of
estimates posed in [6] involves estimation of the state of the
uncertain LTI system described by the differential equation

ẋ= Ax+Bξ (t), (1)

wherex∈R
n is the system state variable to be estimated and

ξ (t)∈L2 is a disturbance function.N estimators are applied,
each estimator receives ark-dimensional measurement

yk =Ckx+Dkξ +Dkηk(t). (2)

In (2), ηk(t)∈L2 represents the measurement uncertainty of
the local estimatork. In particular, it is assumed thatEk =

DkD⊤
k +DkD

⊤
k > 0.

Remark 1:The assumption thatEk > 0 is a standard tech-
nical assumption made in nonsingularH∞ control problems
[14]. It is obviously satisfied in the case when all mea-
surements are affected by disturbances, which is evidently
satisfied in practical applications. This assumption is later
used to guarantee boundedness of the solution set.

The estimators form a network of interconnectedH∞
filters of the form

˙̂xk =Ax̂k+Lk(yk−Ckx̂k)+Kk ∑
j∈Nk

(x̂ j − x̂k) (3)

with initial conditionx̂k(0) = 0. Here the matricesLk ∈R
n×rk

andKk ∈ R
n×n are the filter gains to be designed.

As it can be seen in (3), the estimators are distributed, i.e.
the local estimators create an estimation of the system’s state
x, solely based on the local outputyk and communication
with neighbouring estimators. The problem in [6] was to
determine estimator gainsLk, Kk in (3) to satisfy natural
internal stability andH∞ gain conditions. To introduce these
conditions, define the local estimator error asek = x− x̂k, and
the estimator disagreement function is defined as

Ψ(x̂) =
1
N

N

∑
k=1

∑
j∈Nk

‖x̂ j − x̂k‖2, (4)

where x̂= [x̂⊤1 , ..., x̂
⊤
N ]

⊤ and e= [e⊤1 , ...,e
⊤
N ]

⊤. The estimator
design problem is concerned with achieving the following
properties:

(i) In the absence of model and measurement disturbances
(i.e., whenξ , ηk = 0), the estimation errors decay so
that ek → 0 asymptotically for allk= 1, ...,N.

(ii) The estimators (3) provide guaranteedH∞ performance

sup
x0,(ξ ,ηk) 6=0

∫ ∞
0 Ψ(x̂(t))dt

‖x0‖2
P+(1/N)∑N

k=1‖ηk‖2
2+ ‖ξ‖2

2

≤ γ

1
N

N

∑
k=1

‖ek‖2
2 ≤ γ

(
‖x0‖2

P+
1
N

N

∑
k=1

‖ηk‖2
2+ ‖ξ‖2

2

)
,

(5)

for some positive definite matrixP, someγ > 0, and
performance indexγ > 0.

Property (ii) requires both the local estimation errors
and the estimator disagreement to be bounded with respect
to the disturbances in anH∞−sense. As shown in [6],
LMI-conditions can be found, where the solution delivers
estimator gains sufficient for solving the above problem. To
present these LMI conditions, define the matrices

Ãk =A+αkI −BD⊤
k E−1

k Ck,

Qk =XkÃk+ Ã⊤
k Xk−C⊤

k E−1
k Ck+β (pk+qk)I ,

B̃k =[B(I −D⊤
k E−1

k Dk) −BD⊤
k E−1

k Dk],

whereXk ∈R
n×n is a symmetric, positive definite matrix and

αk,β are positive parameters. For the remainder of this paper,
we will make two assumptions on the system class.

Assumption 1 The communication graphG is connected
and balanced, i.e.qk = pk for all k= 1, ...,N.

Assumption 2 For all k = 1, ...,N, the tuple (Ãk, B̃k) is
controllable.

The LMIs used for designing the estimator gains are



proposed as
[
Qk− pkFk− pkF⊤

k XkB̃k

∗ −I

]
< 0 (6)




− 2αk
qk+1Xk −β I +Fk . . . −β I +Fk

∗ −
2α

jk1
q

jk1
+1Xjk1

. . . 0

...
...

.. .
...

∗ 0 . . . −
2α

jkpk
q

jkpk
+1Xjkpk




< 0, (7)

[
−ρXk −F⊤

k
−Fk −Xk

]
< 0, (8)

where Xk,Fk, and β are the variables,ρ > 0 is a constant
parameter, andNk = { jk1, ..., jkpk

}. We can now formulate a
variation of the main result from [6].

Proposition 1: Suppose the interconnection graphG and
the parametersαk > 0, k= 1, ...,N, are such that the set

Γ = {β > 0 : (6)-(8) are feasible fork= 1, ...,N} (9)

is not empty. For anyβ ∈ Γ, one solution to the distributed
estimation problem under consideration, withγ = 1

β , is given
by the network of estimators (3) in which

Kk = X−1
k Fk and Lk = (X−1

k C⊤
k +BD⊤

k )E
−1
k , (10)

whereXk andFk,k= 1, ...,N, belong to the feasibility set of
(6) - (8), corresponding to this particular value ofβ . The
weighting matrixP in (5) is given byP= (1/N)∑N

k=1Xk.

Remark 2:Assumption 1 is a restriction toward the class
of communication graphs, which is made in order to ensure
that the well-known average consensus algorithm is appli-
cable. Assumption 2 is used to ensure boundedness of the
feasible sets. It is not restrictive, as it represents the worst
case of disturbance, and if not satisfied, small hypothetical
disturbances can be added to the system description, i.e.
additional columns toB,Dk and Dk. Furthermore, note that
the tuple(Ãk,Ck) is not required to be detectable.

Since the LMIs (6), (7), (8) are coupled, they may be
solved in a centralized manner as the optimization problem

min (−β )
subject to (6), (7), (8),k= 1, ...,N,

(11)

where the resulting matricesXk,Fk deliver the estimator gains
Lk,Kk according to (10). In the next section we will explore
the separation of the problem and parallel computation in
order to solve the problem in a distributed manner.

III. D ISTRIBUTED CALCULATION OF FILTER GAINS

Parallel and distributed computation is thoroughly dis-
cussed e.g. in [9], and in this section, we use some of
the methods presented in Section 3 in [9] to calculate
our estimator gains in a distributed fashion. Solving the
optimization problem (11) can be formulated as a separable
problem by defining local representations of the solution

variables,Xk
j , andβ k for all k= 1, . . . ,N and j = k, jk1, ..., jkpk

.
The tuple of local variables is denoted by

Yk = (Fk,β k,Xk
k ,X

k
jk1
, ...,Xk

jkpk
), (12)

where the upper indexk denotes the representation of a
variable used by estimatork and all Xk

j are symmetric,
positive definite matrices, andβ k ≥ 0.

Problem 1: Find an iterative algorithm, which creates a
sequenceYk(t), t ∈ N, such that local representations of the
variables converge in the sense that

lim
t→∞

(
β k1(t)−β k2(t)

)
= 0, (13)

for all k1,k2 = 1, ...,N and

lim
t→∞

(
Xk1

j (t)−Xk2
j (t)

)
= 0, (14)

for all j = 1, ...,N and k1,k2 ∈ M j ∪ j. All iterations Yk(t)
shall satisfy the LMIs (6)-(8) when settingβ = β k,Xk =
Xk

k ,Xjk1
= Xk

jk1
, ...,Xjkpk

=Xk
jkpk

. Furthermore, the iteration steps

of the local variablesYk(t + 1) shall be calculated in a
distributed fashion, i.e. interaction with the neighborsj ∈Nk

only.

As a first step, in order to ensure that both (11) and
Problem 1 are well-posed, we establish a statement about
the boundedness of the feasible set of the LMIs (6)-(8). The
proof of this theorem will later be used in order to ensure
that solutions of local optimizations are always attainable.

Theorem 1:Suppose the pairs(Ãk, B̃k) are controllable.
Then, for anyρ > 0, the feasible set

Ω = {(β ,Xk,Fk,k= 1, ...,N)|
(6), (7), (8) hold for k= 1, ...,N} (15)

is bounded.
Proof: Suppose(β ,Xk,Fk,k = 1, . . . ,N) ∈ Ω. Using

the Schur complement, it follows from (6), (8) that for an
arbitraryτk > 0,

XkÃk+ Ã⊤
k Xk−C⊤

k E−1
k Ck+β (pk+qk)I

−pkFk− pkF
⊤
k +XkB̃kB̃

⊤
k Xk

+τk(F
⊤
k X−1

k Fk−ρXk) < 0. (16)

Completing the squares on the left-hand side yields

XkÃk+ Ã⊤
k Xk−C⊤

k E−1
k Ck+β (pk+qk)I

+τk(Fk−
pk

τk
Xk)

⊤X−1
k (Fk−

pk

τk
Xk)

−τk(
p2

k

τ2
k

+ρ)Xk+XkB̃kB̃
⊤
k Xk < 0. (17)

Hence, we conclude that(β ,Xk) satisfy the Riccati inequality

Xk(Ãk−
p2

k + τ2
k ρ

2τk
I)+ (Ãk−

p2
k + τ2

k ρ
2τk

I)⊤Xk

−C⊤
k E−1

k Ck+β (pk+qk)I +XkB̃kB̃
⊤
k Xk < 0. (18)



After pre- and post-multiplying (18) byX−1
k , (18) reduces to

(Ãk−
p2

k + τ2
k ρ

2τk
I)X−1

k +X−1
k (Ãk−

p2
k + τ2

k ρ
2τk

I)⊤

−X−1
k (C⊤

k E−1
k Ck−β (pk+qk)I)X

−1
k + B̃kB̃

⊤
k < 0.(19)

Associated with this Riccati inequality, consider the Ric-
cati equation

(Ãk−
p2

k + τ2
k ρ

2τk
I)Zk+Zk(Ãk−

p2
k + τ2

k ρ
2τk

I)⊤

−Zk(C
⊤
k E−1

k Ck−
1
γ
(pk+qk)I)Zk+ B̃kB̃

⊤
k = 0 (20)

and define

γ◦ = inf

{
γ > 0: equation (20) has a nonnegative-

definite solution

}
.(21)

From theH∞ control theory [14, Theorems 4.8 and 9.7],
it is known that the set whose infimum determinesγ◦ is

nonempty if the pair(Ãk − p2
k+τ2

k ρ
2τk

I ,Ck) is detectable and

the pair(Ãk − p2
k+τ2

k ρ
2τk

I , B̃k) is stabilizable. Note that by the

condition of the theorem, the pair(Ãk, B̃k) is controllable; this

implies the stabilizability of(Ãk− p2
k+τ2

k ρ
2τk

I , B̃k). Now, let us
chooseτk > 0 such that all unstable unobservable modes of

the matrix pair(Ãk,Ck) lie in the region Res<
p2

k+τ2
k ρ

2τk
. This

will guarantee that the pair(Ã− p2
k+τ2

k ρ
2τk

I ,Ck) is detectable.
Thus, we conclude thatγ◦ < ∞.

The feasibility of the Riccati inequality (19) also implies
that the following state-feedbackH∞ control problem in-
volving the system

ẋ= (Ãk−
p2

k + τ2
k ρ

2τk
I)⊤x+C⊤

k u+(pk+qk)
1/2w, (22)

zk =

[
B̃⊤

k
0

]
+

[
0

E−1/2
k

]
u

and theH∞ performance criterion
∫ ∞

0
‖zk‖2dt <

1
β

∫ ∞

0
‖w‖2dt ∀w∈ L2, (x(0) = 0), (23)

has a solution. Indeed, it follows from (19) that

(Ãk−
p2

k + τ2
k ρ

2τk
I −X−1

k C⊤
k E−1

k Ck)X
−1
k

+X−1
k (Ãk−

p2
k + τ2

k ρ
2τk

I −X−1
k C⊤

k E−1
k Ck)

⊤

+X−1
k (C⊤

k E−1
k Ck+β (pk+qk)I)X

−1
k + B̃kB̃

⊤
k < 0. (24)

SinceX−1
k > 0 and (24) is a strict inequality, the matrix

Ã− p2
k + τ2

k ρ
2τk

I −C⊤
k E−1

k CkX
−1
k (25)

is Hurwitz. Thus, the closed loop system consisting of the
system (22) withw= 0 and the state-feedback controller

u=−E−1
k CkX

−1
k x

is exponentially stable. Also, using the completion of
squares, it is easy to show from (19) that the above controller

guarantees theH∞ attenuation property (23). Since the
pair (Ãk, B̃k) is controllable, these observations guarantee
that the Riccati equation (20) withγ = 1

β has a unique
nonnegative definite stabilizing solutionZk (e.g., see [15,
Theorem 3.2.2]). Thus,1β > γ◦. Furthermore, since(Ãk, B̃k)
is assumed to be controllable,Zk > 0 and is invertible.

From Theorem 4.8 in [14], we know thatγ◦ > 0. These
observations imply thatβ < γ◦−1. Also, using the relation-
ship between solutions to the Riccati equation (20) and the
corresponding Riccati inequality (19) [16, Lemma 8.1], it
follows thatXk < Z−1

k .
This discussion leads us to conclude that there exist upper

bounds on feasibleβ and‖Xk‖. Indeed,γ◦ andZk are defined
using the conditions involving the properties of the matrices
Ãk, Ck andBk and the constantsρ , pk. Hence, these constant
and the matrix are not dependent on the choice of the feasible
β andXk.

It remains to show that there is an upper bound on the
feasible Fk as well. Using the Schur complement, (8) is
equivalent toF⊤

k X−1
k Fk < ρXk. This further implies

X−1/2
k F⊤

k X−1
k FkX

−1/2
k < ρ I

tr
(

X−1/2
k F⊤

k X−1
k FkX

−1/2
k

)
< nρ

‖X−1/2
k FkX

−1/2
k ‖<√

nρ.

For the Frobenius-norm ofFk, we can now conclude

‖Fk‖=‖X1/2
k X−1/2

k FkX
−1/2
k X1/2

k ‖
≤‖X1/2

k ‖‖X−1/2
k FkX

−1/2
k ‖‖X1/2

k ‖
<
√

nρ‖X1/2
k ‖2,

which is bounded due to boundedness ofXk.

Now, the decoupled version of the LMI conditions (6), (7),
(8) is proposed as

[
Qk

k− pkFk− pkF⊤
k Xk

k B̃k

∗ −I

]
≤−

[
δXk

k 0
0 0

]
(26)




− 2αk
qk+1Xk

k −β kI +Fk . . . −β kI +Fk

∗ −
2α

jk1
q

jk1
+1Xk

jk1
. . . 0

...
...

.. .
...

∗ 0 . . . − 2α j pk
q j pk

+1Xk
jpk




≤−δ I (27)

[
−ρXk

k −F⊤
k

−Fk −Xk
k

]
≤ 0, (28)

with Qk
k = Xk

k Ãk + Ã⊤
k Xk

k −C⊤
k E−1

k Ck + β k(pk + qk)I . Note
that the LMI-conditions are formulated as non-strict inequal-
ities, but with additional parameterδ > 0. However, asδ can
be chosen arbitrarily small, it introduces no conservativeness.

We denote the feasible set of thek-th group of the LMIs
asΩk = {Yk | (26), (27), (28) hold true}. Then, the separable



convex program can be written as

minimize(−
N

∑
k=1

β k)

subject toYk ∈ Ωk, β k = β̃
Xk

k = X̃k, Xk
jk1
= X̃jk1

, ... ,Xk
jkpk

= X̃jkpk

(29)

for everyk= 1, ...,N. Here,β̃ , X̃j , j = 1, ...,N are additional
variables that are needed to make the problem separable.

Remark 3:The optimization problem (29) can be varied
in the way that for a given performance parameterβ > 0,
filter gains for (3) are to be found. Then, (29) turns to
a pure feasibility problem without optimization objective,
and therefore, the variablesβ k, β̃ and their iterations in the
following algorithm can be omitted.

The dual problem has the form

maximizeq(Λ̃1, ..., Λ̃N) (30)

where Λ̃k = (λ k,Λk
k,Λ

k
jk1
, ...,Λk

jkpk
) for k = 1, ...,N is the

suitable tuple of Lagrange multipliers and the dual function
q(·) is defined as

q(Λ̃1, ..., Λ̃N) = inf
Yk∈Ωk,k=1,...,N

L(Y1, ...,YN, Λ̃1, ..., Λ̃N). (31)

L(·) is the augmented Lagrangian function (cf. [9])

L(Yk, Λ̃k) =
N

∑
k=1

(
−β k+λ k(β̃ −β k)+

c
2
|β̃ −β k|2

)

+
N

∑
k=1

∑
j∈Nk∪k

(
tr
(

Λk⊤
j (X̃j −Xk

j )
)
+

c
2
‖X̃j −Xk

j ‖2
)

(32)
with design parameterc> 0. The optimization problem (30)
can now be solved iteratively with Algorithm 1, which is
initialized with Yk(0) ∈ Ωk, λ > 0 and symmetricΛk

j > 0.

Remark 4:Out of the three steps in Algorithm 1, clearly
2) and 3) can be run in parallel by the individual estimators
separately. Calculation of Step 1 of Algorithm 1 requires
the evaluation of the mean value, which can be done in a
distributed manner by applying a consensus algorithm. Under
Assumption 1, average consensus algorithms can be used to
calculateβ̃ (t+1). In particular, discrete time algorithms are
preferable to keep the concept of an iterative algorithm [17]
and algorithm which converge in finite-time are useful to
ensure exact convergence [18], [19].

For the calculation of̃Xk(t +1) in the case of undirected
graphs, only two steps are needed: All neighborsj ∈ Mk

pass theirX j
k (t) and Λ j

k(t) to estimatork. Then, estimator
k calculatesX̃k(t + 1) and passes it back to its neighbors.
The calculation of̃Xk(t+1) in the case of directed graphs is
more demanding with respect to the graph topology: Usual
average consensus algorithms can be applied when for every
k= 1, ...,N, the subgraphG̃k induced by nodek and its out-
neighborhoodMk, is a balanced graph. This however can be
relaxed by adding additional variablesXk

j , j 6∈ Nk, to Yk and

Algorithm 1: Calculation of iteration step t+1
1) Set the fusion variables forj = 1, ...,N

β̃ (t +1) =
1
N

N

∑
k=1

β k(t)− 1
Nc

N

∑
k=1

λ k(t)

X̃j(t +1) =
1
q j

∑
k∈M j

Xk
j (t)−

1
q jc

∑
k∈M j

Λk
j (t)

2) Calculate the new variables fork= 1, ...,N

Yk(t +1)

=argmin
Yk∈Ωk

(
−β k−λ k(t)β k+

c
2
|β̃ (t +1)−β k|2

+ ∑
j∈Nk∪k

(
−tr

(
Λk⊤

j (t)X
k
j

)
+

c
2
‖X̃j(t +1)−Xk

j ‖2
))

3) Set the Lagrange variables fork= 1, ...,N

λ k(t +1) = λ k(t)+ c(β̃(t +1)−β k(t +1))

and for allk= 1, ...,N, j ∈ Nk

Λk
j (t +1) = Λk

j (t)+ c(X̃j(t +1)−Xk
j (t +1))

adding Xk
j = X̃j as equality constraint. For instance, if for

all k = 1, ...,N Yk = (Fk,β k,Xk
1 , ...,X

k
N), then X̃k(t + 1),k =

1, ...,N can be calculated under Assumption 1 using average
consensus. This will later be demonstrated in the numerical
example.

In order to show the convergence of Algorithm 1, two
lemmas need to be introduced.

Lemma 1:The Lagrangian (32) can be written in terms
of the vectorized variables, i.e.

L(Yk, Λ̃k) =
N

∑
k=1

(
−β k+λ k(β̃ −β k)+

c
2
|β̃ −β k|2

)

+
N

∑
k=1

∑
j∈Nk∪k

(
vec(Λk

j )
⊤vec(X̃j −Xk

j )+
c
2
‖vec(X̃j −Xk

j )‖2
)

(33)
Proof: We have the equalities

tr(A⊤B) = ∑
i

∑
j

A ji B ji = vec(A)⊤vec(B)

‖A‖2 = tr(A⊤A) = ∑
i

∑
j

A2
ji = ‖vec(A)‖2.

This Lemma shows, that we can recast the problem into a
problem of a standard form defined on a finite dimensional
vector space.

Lemma 2:For fixedβ̃ , X̃k, X̃jk1
, ..., X̃jkpk

,λ k,Λk
jk1
, ...,Λk

pk
, the

minimization

arg min
Yk∈Ωk

(
−β k−λ kβ k+

c
2
|β̃ −β k|2

+ ∑
j∈Nk∪k

(
−tr

(
Λk⊤

j Xk
j

)
+

c
2
‖X̃j −Xk

j ‖2
)) (34)



is always attainable.
Proof: First, note that the LMI conditions (26)-(28) are

non-strict inequalities. The definition range of the solution
matricesXk

k > 0,Xk
j > 0, j ∈ Nk are strict inequalities, but

(26)-(28) imply that there exists aδ > 0 such thatXk
k ≥ δ I

andXk
j ≥ δ I for j ∈ Nk. Thus, the feasible setΩk is closed

and convex.
Following again the proof of Theorem 1, (26) and (28)

imply that Fk,β k,Xk
k are bounded for allk = 1, ...,N. In

constrast, the variablesXk
j for j ∈ Nk are not restricted to a

bounded set by the LMIs (26)-(28). However, note that the
cost function of (34) is quadratic in the variablesXk

j , j ∈Nk.
Thus, due to the boundedness ofFk,β k,Xk

k , we conclude that
the sub-level sets of (34)

{
Yk ∈ Ωk| −β k−λ kβ k+

c
2
|β̃ −β k|2

+ ∑
j∈Nk∪k

(
−tr

(
Λk⊤

j Xk
j

)
+

c
2
‖X̃j −Xk

j ‖2
)
< c

}
(35)

for c∈R are bounded. Following the argument in Proposition
4.1 in [9], Chapter 3, we can conclude that we can equiv-
alently search for the minimum of the cost function over a
non-empty sub-level set (35) instead ofΩk. Therefore, we
can conclude that (34) is always attainable.

Theorem 2:Algorithm 1 is a solution to Problem 1.
In particular, the iteration stepsYk(t),k = 1, ...,N, can be
calculated in parallel, and satisfy the convergence conditions
(13), (14).

Proof: Using Lemma 1 and 2, we can follow the steps
from [9], Section 3.3 and 3.4, in order to prove convergence
of the iterations.

IV. N UMERICAL EXAMPLE

Like in [6], we consider a system of the form (1), with

A=




0.3775 0 0 0 0 0
0.2959 0.3510 0 0 0 0
1.4751 0.6232 1.0078 0 0 0
0.2340 0 0 0.5596 0 0

0 0 0 0.4437 1.1878 0.0215
0 0 0 0 2.2023 1.0039



,

B=
[
0.1 I6 0

]
Dk = 0.01 I2 for all k= 1, ...,N

which is observed by six sensor nodes, sensing two coor-
dinates each. For every sensor an estimator is implemented,
where none of the estimators is able to estimate the complete
state vector without communication. The communication
topology is assumed to be a directed circulant graph and we
use Algorithm 1 to calculate the filter gains. For the numeri-
cal calculations we use YALMIP [20]. Since we are dealing
with a directed but balanced graph, we apply the method
described in Remark 4 and use complete local representations
of all variablesXj at every estimatork. The algorithm is
run with both fixed performance parameterβ const= 100 as
discussed in Remark 3, and also using optimization over
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Fig. 1. Evolution of the error during iteration for fixedβ .
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Fig. 2. Evolution of the error (blue dots) and performance index βave (red
line) in the algorithm involving optimisation over variables β k.

the variable performance parameterβ k(t),k = 1, ...,N, (29),
whereβ k(0) = 100 is set as initialization.

In the first case, whereβ is fixed, we evaluate the
matrix convergence condition (14) by calculating the aver-
age valueXave

j = 1
q j

∑k∈M j∪ j X
k
j and subsequently Error=

∑N
j=1 ∑N

k=1‖Xk
j −Xave

j ‖2.

In the second case, involving optimisation overβk, we
additionally calculateβ ave= 1

N ∑N
k=1 β k and subsequently we

have Error= ∑N
j=1∑N

k=1‖Xk
j −Xave

j ‖2+∑N
k=1 |β k−β ave|2.

The plots of the error evolution are shown in Figure 1 and
2. Figure 2 additionally shows the evolution ofβ ave. The
graph demonstrates thatβ ave is monotonically increasing,
and since it is bounded from above according to Theorem 1,
it must eventually converge to a limit. In fact, it eventually
converges to 2.3 ·103.

Better performanceβ however is achieved at the expense
of higher filter gains. For instance, after 70 iterations, the
consensus gainK1 is




21.1005 −0.0256 0.0196 −0.6018 0.0418 0.0117
−0.0215 73.3369 0.5599 0.0073 0.0025 0.0021
−0.0423−0.8806 99.8791 0.0617 0.0981 0.0536
−0.6033−0.0178 0.0618 70.6692 1.3701 2.8005
0.0415 −0.0054 0.0972 1.7726 20.7775 5.0466
0.0117 −0.0003 0.0554 2.7740 3.2740 17.7281






in the fixed-β case and



28.8328 −0.0572 0.0291 −0.0089 0.0333 0.0655
−0.0397 99.9887 0.8962 0.0198 0.0050 0.0044
−0.0222−0.8149 100.0003 0.2984 0.1414 0.0747
−1.7921−0.0044 0.3121 71.0412 1.4502 2.5260
0.0751 −0.0035 0.1384 1.8242 27.2461 6.2623
−0.0177 0.0016 0.0711 2.4613 4.4543 23.0606




in the variable-β case.

V. CONCLUSION

We have developed a method for distributed filter design
for cooperativeH∞-type estimation. In order to achieve
this we separated the centralized problem by introducing
additional variables and then applied an algorithm that works
locally and only needs communication for average consen-
sus.
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Boston, 2nd edition, 1995.

[15] Ian R. Petersen, Valery Ugrinovskii, and Andrey V. Savkin. Robust
Control Design UsingH∞ Methods. Springer Science & Business
Media, 2000.

[16] Pascal Gahinet and Pierre Apkarian. A linear matrix inequality
approach toH∞ control. Int. J. of Robust and Nonlinear Control,
4(4):421–448, 1994.

[17] Minghui Zhu and Sonia Martı́nez. Discrete-time dynamic average
consensus.Automatica, 46(2):322–329, 2010.

[18] Shreyas Sundaram and Christoforos N. Hadjicostis. Finite-time dis-
tributed consensus in graphs with time-invariant topologies. InProc.
American Control Conf., pages 711–716, 2007.

[19] Gang Chen, Frank L. Lewis, and Lihua Xie. Finite-time distributed
consensus via binary control protocols.Automatica, 47(9):1962–1968,
2011.
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