APPENDIX A. OPENFOAM SETUP 134

Appendix A - OpenFOAM Setup

The objective of this Appendix is to provide a guide to the meshing and execution
processes that were applied on the numerical investigation of clean and iced propeller

performance in this study.

The framework of the propeller simulation was based on the OpenFOAM pimpleFoam
propeller tutorial, Antham (2016), and Gagliarde (2020).

A.1 Meshing

The OpenFOAM package has an excellent tool for meshing complex geometries called
snappyHexMesh. It is very powerful to meshing a wide range of complex geometries.
However it lacks in mesh refinement quality when a fine refinement is desired at some

mesh regions such as an airfoil leading-edge.

Contrastingly, cfMesh is a much easier tool to handle and requires minimum user in-
puts. The software was designed to generate the mesh with just a few inputs, differently
than snappyHexMesh. cfMesh takes much less time to generate a mesh than snappy-

HexMesh and enables to address refinement to the desired regions more adequately.

A.1.1 Domain

The mesh domain consists in two regions: a rotating region, called rotor, which is a
small cylinder that contains the propeller geometry; and a static cylinder, called stator,
which enclosures the rotor region and represents the domain of the propeller flow, as
shown in Figure A.1. The Arbitrary Mesh Interface (AMI) was used to couple the rotor

and stator patches which share the same boundaries at their interface.

https://develop.openfoam.com/Development/openfoam/-/tree/master/tutorials/incompressible/pimpleFoam/RAS/propeller

APPENDIX A. OPENFOAM SETUP 135

inlet

rotor
region

propeller

AMI1/AMI2

stator
region

outlet

FIGURE A.1 — Propeller mesh domain.

A.1.2 Geometry

The geometry of the domain elements was generated with SALOME 9.6.0, which is a
free CAD and meshing software that allows creating the solids, defining the patches and

boundaries, as well as export them as STL files.

The mesh domain is composed by two solids: innerCylinderSmall and outerCylin-
der, which are shown in Figure A.2a. The cylinders were named after the OpenFOAM
propeller tutorial. The SALOME Cylinder feature was used to create them. According
to the geometry dependency tree in Figure A.2b, the cylinders were rotated and trans-
lated to be positioned along the y-axis, and such that innerCylinderSmall was inside
outerCylinder close to the inlet face. The origin of the domain lies in the center of the

propeller.

APPENDIX A. OPENFOAM SETUP

136

Y
innerCylinderSmall
&
@
e ¥
" b
7z ~ e §
@
@
"
K
outerCylinder @

(a) Domain cylinders.

FIGURE A.2 - SALOME cylinders generation.

v B3 Geometry

+ 0

A QX

0¥

s 0L

i@ Cylinder_1
i@ Rotation_1
@ Translation_1
i@ innerCylinderSmall
i@ Cylinder_2
i@ Rotation_2
@ Translation_2
i@ outerCylinder

(b) Geometry dependency tree.

The propeller solid can either be meshed as a single solid, as it can be divided in

regions of interest to which different levels of refinement can be attributed to. Both the

snappyHexMesh and cfMesh meshers showed limitations on the refinement of the propeller

leading-edge, trailing-edge and outboard blade sections using only one refinement level for

the whole propeller solid. Hence, in this study, the propeller was divided in 6 regions,

as shown in Figure A.3, to address a more adequate and dedicated refinement to regions

below:

e hub - The propeller hub.
e ibdLeadingEdge - The inboard blade leading-edge.
e obdLeadingEdge - The outboard blade leading-edge.

e ibdTrailingEdge - The inboard blade trailing-edge.

e obdTrailingEdge - The outboard blade trailing-edge.

e mainBox - The blades upper and lower surfaces.

APPENDIX A. OPENFOAM SETUP 137

railingEdge

FIGURE A.3 — Blade parts.

The stator and rotor meshes are created separately in two different folders and then

are combined, as discussed in the next sections.

A.1.3 Stator

The patch innerCylinderSmall must be present in both the stator and rotor re-

gions so they can be later combined to form the AMI1 and AMI2 interface patches.

In the stator region, the patch is a copy of innerCylinderSmall.stl and was named
as innerCylinderSmall_slave.stl. The solids innerCylinderSmall_slave.stl and
outerCylinder.stl must be placed in the simulation base directory and shall be com-
bined into one solid combined.stl. Feature edges are then extracted with surfaceFea-
tureEdges, and the mesh can be generated with cfMesh cartesianMesh mesher. The

stator mesh configurations are available at GitHub.

cat outerCylinder.stl innerCylinderSmall_slave.stl > combined.stl
surfaceFeatureEdges combined.stl combined.fms -angle b5

cartesianMesh

The advantage of cfMesh cartesianMesh is that it already runs in parallel and does

not need the user intervention to it.

A.1.4 Rotor

The propeller individual solids and innerCylinderSmall must be placed in the rotor
directory. The propeller parts are combined into a single prop.stl and then combined

to the innerCylinderSmall. The same procedure of stator for generating the mesh is

https://github.com/skfelix/propeller-OpenFOAM

APPENDIX A. OPENFOAM SETUP 138

repeated. The rotor mesh configurations are available at GitHub. Figure A.4a shows
how the different levels of refinement are distributed over the blade surface. The inboard
leading-edge and trailing-edge are more refined that the upper and lower blade surfaces,

as well as the outboard edges are further more refined than the inboard sections.

cat hub.STL ibdLeadingEdge.stl ibdTrailingEdge.stl obdLeadingEdge.stl ...
. obdTrailingEdge.stl mainBox.stl > prop.stl

cat prop.stl innerCylinderSmall.stl > combined.stl

surfaceFeatureEdges combined.stl combined.fms -angle 5

cartesianMesh

Ll

(a) Blade surface refinement.

1 }

1
-1 I —

\ |

H
N

H wa

11T

KX AA f

(b) Blade cross-section mesh.

T
w
H
<~
—_— /L._ .

https://github.com/skfelix/propeller-OpenFOAM

APPENDIX A. OPENFOAM SETUP 139

Tl
Il

(c¢) Volumetric mesh.

FIGURE A.4 — Mesh visualization.

A.1.5 Combining the Meshes

The separate meshes must be combined into a single domain with the mergeMeshes
application. The command shall be executed in the stator mesh directory so that it

becomes the region0 and rotor the regionl. The resulting mesh is shown in Figure A.4c.

cd stator

mergeMeshes . ../rotor -overwrite

A.1.6 Create patches

Some of the patches that are used in the simulation boundary conditions such as the
inlet and outlet, and the the AMI1 and AMI2, which are used in the MRF method, are cre-
ated here. system/createInletOutletSets.topoSetDict creates the inlet and outlet
patch faces. And the system/createPatchDict creates the inlet and outlet patch from
the faces, as well as creates the AMI1 and AMI2 patches from innerCylinderSmall and

innerCylinderSmall_slave, respectively. The files are available at GitHub.

https://github.com/skfelix/propeller-OpenFOAM

APPENDIX A. OPENFOAM SETUP 140

topoSet -dict system/createInletOutletSets.topoSetDict

createPatch -overwrite

A1.7 MRF

Although the AMI patches were created, it is still required to define the rotating cell
region that will be used by the MRF method in the constant/MRFProperties file. The
system/createAMIFaces.topoSetDict is used then to create the rotating cell zone from
the regionl cell set. checkMesh must be executed before in order to the mesh regions be
created properly within the mesh files. This process can be carried out either by using the
topoSet or the setSet applications. topoSet is preferred since it can be automatized.
The files are available at GitHub.

checkMesh
topoSet -dict system/createAMIFaces.topoSetDict

or
checkMesh

setSet

cellZoneSet rotor new setToCellZone regionl quit

The constant/MRFProperties file is where the rotating cell zone, and the simulation

propeller rotation speed, axis and origin are defined. The files are available at GitHub.

MRF1
{
cellZone rotor;

active yes;

// Fixed patches (by default they ’move’ with the MRF zone)
nonRotatingPatches (AMI1 AMI2);

origin (0 0 0);
axis (0 10);
omega 314.16; // [rad/s] 314.16 rad/s = 3000 rpm

https://github.com/skfelix/propeller-OpenFOAM
https://github.com/skfelix/propeller-OpenFOAM

APPENDIX A. OPENFOAM SETUP 141

A.2 Simulation

Given that the mesh was properly generated, the simulation boundary and initial
conditions, turbulence model, and simulation parameter must be configured first before

simulating the case.

A.2.1 Turbulence Model

The turbulence model that is applied in the simulation is configured in the constan-

t/turbulenceProperties. The spallartAllmaras model was used in this study.

simulationType RAS;

RAS

{
RASModel SpalartAllmaras;
//RASModel kEpsilon;
//RASModel kOmegaSST;
turbulence on;
printCoeffs on;

}

A.2.2 Boundary Conditions

The initial and boundary conditions of each simulation variable must be configured
in the files the 0/ directory. In each of these files the boundary conditions of each patch
must be configured. The flow velocity must be zero at the propeller in order to meet the
boundary-layer no slip condition at the surface. The inlet speed, pressure, and tempera-

ture of the inlet and volumetric domain is also configured.

The turbulence models are represented by a set of equations that are solved along
with the flow governing equations. New equations also increase the number of simulation
variables, and boundary conditions must also be configured for these variables. The NASA
Modeling Resource provides a good guide on how to set up the initial values boundary

condition for these variables.

https://turbmodels.larc.nasa.gov/
https://turbmodels.larc.nasa.gov/

APPENDIX A. OPENFOAM SETUP 142

A.2.3 Execution

The compressible steady-state rhoSimpleFoam solver was chosen for the propeller sim-
ulation. If the reader is interested in the propeller unsteady flow, an unsteady solver, such
as rhoPimpleFoam, should be applied along with the Dynamic Mesh approach, since the
MRF method can only be used in steady-state. The Dynamic Mesh approach is imple-
mented in the pimpleFoam propeller tutorial with the incompressible pimpleFoam solver.

The solver can be executed by simply typing:

rhoSimpleFoam

The simulation convergence criteria is achieved when both the residuals, and the forces

and moments converges simultaneously, as shown in Figure A.5.

Residual vs. Iteration Forces vs. Iteration

Residual Uy

Fx

T T T T
Residual Uy
Residual Uz Fz

Residual p 12 1

Residual nuTilda

0.8

0.01 ¢ 06

Residual
Forces [N]

0.4

0.001 | 0.2

L L L L L 02 L L L L
100 200 300 400 500 600 100 200 300 400 500 600

Iteration Iteration

0.0001
0

(a) Residuals. (b) Forces.

FIGURE A.5 — Simulation convergence.

A.2.3.1 Parallel Computation

However, serial computation takes quite a long time to run and parallel computation
is required to increase the simulation speed. Parallel computation requires the mesh to be
divided in multiple domains that each processor will execute separately. The system/de-
composeParDict is responsible for splitting the mesh. The solver can then be executed
in parallel with mpirun. The number of processors must be the same as configured in the

system/decomposeParDict.

decomposePar

mpirun -np <number-of-processors> rhoSimpleFoam -parallel

reconstructPar

https://develop.openfoam.com/Development/openfoam/-/tree/master/tutorials/incompressible/pimpleFoam/RAS/propeller

APPENDIX A. OPENFOAM SETUP 143

A.2.3.2 Batch Computation

This study was interested in the propeller dynamic performance. Thus, the propeller
simulation had to be carried out at multiple points so that a performance curve could be
obtained. The OpenFOAM simulation set up is very time-consuming and automation is

required improve simulation time.

This automation can be made with basically any programming language script. Never-
theless, the PyFoam Python library was developed exclusively to handle the OpenFOAM

environment and provides multiple tools and resources dedicated to its characteristics.

The paramVariation.py script, available at GitHub, enables the variation of the
propeller RPM, inlet speed, among other parameters. The script copies a base folder that
contains the mesh, initial and boundary conditions and simulation scripts, and renames
it according to the run number and velocity. Then, it changes the boundary conditions
and runs the case. It also uses the previous simulation point solution as initial condition
to next, which considerably saves simulation time, since the flowfield is already developed

and the solver has just to update it.

A.2.3.3 Post Processing

The post processing consists in reading the solver output files of each run and orga-
nizing the forces and moments, for each velocity and rotation speed, in output files. The

parseResults.py script was used on the post processing of the simulation data.

These output files are then used to plotting the results, as observed in Section 5.2
figures. Paraview software was also used on the flow visualization by plotting surface

shearlines and pressure flowfield.

https://openfoamwiki.net/index.php/Contrib/PyFoam
https://github.com/skfelix/propeller-OpenFOAM

	A OpenFOAM Setup
	A.1 Meshing
	A.1.1 Domain
	A.1.2 Geometry
	A.1.3 Stator
	A.1.4 Rotor
	A.1.5 Combining the Meshes
	A.1.6 Create patches
	A.1.7 MRF

	A.2 Simulation
	A.2.1 Turbulence Model
	A.2.2 Boundary Conditions
	A.2.3 Execution

