
crypto
Copyright © 1999-2025 Ericsson AB. All Rights Reserved.

crypto 5.4.2.3
June 16, 2025

Copyright © 1999-2025 Ericsson AB. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance
with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless
required by applicable law or agreed to in writing, software distributed under the License is distributed on an
"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See
the License for the specific language governing permissions and limitations under the License. Ericsson AB. All
Rights Reserved..

June 16, 2025

1.1 Licenses

1 Crypto User's Guide

The Crypto application provides functions for computation of message digests, and functions for encryption and
decryption.

This product includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit (http://
www.openssl.org/).

This product includes cryptographic software written by Eric Young (eay@cryptsoft.com).

This product includes software written by Tim Hudson (tjh@cryptsoft.com).

For full OpenSSL and SSLeay license texts, see Licenses.

1.1 Licenses
This chapter contains in extenso versions of the OpenSSL and SSLeay licenses.

Ericsson AB. All Rights Reserved.: crypto | 1

1.1 Licenses

1.1.1 OpenSSL License
/* ==
 * Copyright (c) 1998-2011 The OpenSSL Project. All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * 1. Redistributions of source code must retain the above copyright
 * notice, this list of conditions and the following disclaimer.
 *
 * 2. Redistributions in binary form must reproduce the above copyright
 * notice, this list of conditions and the following disclaimer in
 * the documentation and/or other materials provided with the
 * distribution.
 *
 * 3. All advertising materials mentioning features or use of this
 * software must display the following acknowledgment:
 * "This product includes software developed by the OpenSSL Project
 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
 *
 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
 * endorse or promote products derived from this software without
 * prior written permission. For written permission, please contact
 * openssl-core@openssl.org.
 *
 * 5. Products derived from this software may not be called "OpenSSL"
 * nor may "OpenSSL" appear in their names without prior written
 * permission of the OpenSSL Project.
 *
 * 6. Redistributions of any form whatsoever must retain the following
 * acknowledgment:
 * "This product includes software developed by the OpenSSL Project
 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
 *
 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
 * OF THE POSSIBILITY OF SUCH DAMAGE.
 * ==
 *
 * This product includes cryptographic software written by Eric Young
 * (eay@cryptsoft.com). This product includes software written by Tim
 * Hudson (tjh@cryptsoft.com).
 *
 */

2 | Ericsson AB. All Rights Reserved.: crypto

1.2 FIPS mode

1.1.2 SSLeay License
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
 * All rights reserved.
 *
 * This package is an SSL implementation written
 * by Eric Young (eay@cryptsoft.com).
 * The implementation was written so as to conform with Netscapes SSL.
 *
 * This library is free for commercial and non-commercial use as long as
 * the following conditions are adhered to. The following conditions
 * apply to all code found in this distribution, be it the RC4, RSA,
 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
 * included with this distribution is covered by the same copyright terms
 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
 *
 * Copyright remains Eric Young's, and as such any Copyright notices in
 * the code are not to be removed.
 * If this package is used in a product, Eric Young should be given attribution
 * as the author of the parts of the library used.
 * This can be in the form of a textual message at program startup or
 * in documentation (online or textual) provided with the package.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the copyright
 * notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 * notice, this list of conditions and the following disclaimer in the
 * documentation and/or other materials provided with the distribution.
 * 3. All advertising materials mentioning features or use of this software
 * must display the following acknowledgement:
 * "This product includes cryptographic software written by
 * Eric Young (eay@cryptsoft.com)"
 * The word 'cryptographic' can be left out if the routines from the library
 * being used are not cryptographic related :-).
 * 4. If you include any Windows specific code (or a derivative thereof) from
 * the apps directory (application code) you must include an acknowledgement:
 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
 *
 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 *
 * The licence and distribution terms for any publicly available version or
 * derivative of this code cannot be changed. i.e. this code cannot simply be
 * copied and put under another distribution licence
 * [including the GNU Public Licence.]
 */

1.2 FIPS mode
This chapter describes FIPS mode support in the crypto application.

Ericsson AB. All Rights Reserved.: crypto | 3

1.2 FIPS mode

1.2.1 Background
OpenSSL can be built to provide FIPS 140-2 validated cryptographic services. It is not the OpenSSL application that
is validated, but a special software component called the OpenSSL FIPS Object Module. However applications do not
use this Object Module directly, but through the regular API of the OpenSSL library.

The crypto application supports using OpenSSL in FIPS mode. In this scenario only the validated algorithms provided
by the Object Module are accessible, other algorithms usually available in OpenSSL (like md5) or implemented in
the Erlang code (like SRP) are disabled.

1.2.2 Enabling FIPS mode
• Build or install the FIPS Object Module and a FIPS enabled OpenSSL library.

You should read and precisely follow the instructions of the Security Policy and User Guide.

Warning:

It is very easy to build a working OpenSSL FIPS Object Module and library from the source. However it
does not qualify as FIPS 140-2 validated if the numerous restrictions in the Security Policy are not properly
followed.

• Configure and build Erlang/OTP with FIPS support:

$ cd $ERL_TOP
$./otp_build configure --enable-fips
...
checking for FIPS_mode_set... yes
...
$ make

If FIPS_mode_set returns no the OpenSSL library is not FIPS enabled and crypto won't support FIPS mode
either.

• Set the fips_mode configuration setting of the crypto application to true before loading the crypto module.

The best place is in the sys.config system configuration file of the release.

• Start and use the crypto application as usual. However take care to avoid the non-FIPS validated algorithms,
they will all throw exception not_supported.

Entering and leaving FIPS mode on a node already running crypto is not supported. The reason is that OpenSSL is
designed to prevent an application requesting FIPS mode to end up accidentally running in non-FIPS mode. If entering
FIPS mode fails (e.g. the Object Module is not found or is compromised) any subsequent use of the OpenSSL API
would terminate the emulator.

An on-the-fly FIPS mode change would thus have to be performed in a critical section protected from any concurrently
running crypto operations. Furthermore in case of failure all crypto calls would have to be disabled from the Erlang
or nif code. This would be too much effort put into this not too important feature.

1.2.3 Incompatibilities with regular builds
The Erlang API of the crypto application is identical regardless of building with or without FIPS support. However
the nif code internally uses a different OpenSSL API.

This means that the context (an opaque type) returned from streaming crypto functions (hash_(init|
update|final), hmac_(init|update|final) and stream_(init|encrypt|decrypt)) is different
and incompatible with regular builds when compiling crypto with FIPS support.

4 | Ericsson AB. All Rights Reserved.: crypto

href
href

1.2 FIPS mode

1.2.4 Common caveats
In FIPS mode non-validated algorithms are disabled. This may cause some unexpected problems in application relying
on crypto.

Warning:

Do not try to work around these problems by using alternative implementations of the missing algorithms! An
application can only claim to be using a FIPS 140-2 validated cryptographic module if it uses it exclusively for
every cryptographic operation.

Restrictions on key sizes
Although public key algorithms are supported in FIPS mode they can only be used with secure key sizes. The Security
Policy requires the following minimum values:

RSA
1024 bit

DSS
1024 bit

EC algorithms
160 bit

Restrictions on elliptic curves
The Erlang API allows using arbitrary curve parameters, but in FIPS mode only those allowed by the Security Policy
shall be used.

Avoid md5 for hashing
Md5 is a popular choice as a hash function, but it is not secure enough to be validated. Try to use sha instead wherever
possible.

For exceptional, non-cryptographic use cases one may consider switching to erlang:md5/1 as well.

Certificates and encrypted keys
As md5 is not available in FIPS mode it is only possible to use certificates that were signed using sha hashing. When
validating an entire certificate chain all certificates (including the root CA's) must comply with this rule.

For similar dependency on the md5 and des algorithms most encrypted private keys in PEM format do not work
either. However, the PBES2 encryption scheme allows the use of stronger FIPS verified algorithms which is a viable
alternative.

SNMP v3 limitations
It is only possible to use usmHMACSHAAuthProtocol and usmAesCfb128Protocol for authentication and
privacy respectively in FIPS mode. The snmp application however won't restrict selecting disabled protocols in any
way, and using them would result in run time crashes.

TLS 1.2 is required
All SSL and TLS versions prior to TLS 1.2 use a combination of md5 and sha1 hashes in the handshake for various
purposes:

• Authenticating the integrity of the handshake messages.

• In the exchange of DH parameters in cipher suites providing non-anonymous PFS (perfect forward secrecy).

• In the PRF (pseud-random function) to generate keying materials in cipher suites not using PFS.

Ericsson AB. All Rights Reserved.: crypto | 5

1.3 Engine Load

OpenSSL handles these corner cases in FIPS mode, however the Erlang crypto and ssl applications are not prepared
for them and therefore you are limited to TLS 1.2 in FIPS mode.

On the other hand it worth mentioning that at least all cipher suites that would rely on non-validated algorithms are
automatically disabled in FIPS mode.

Note:

Certificates using weak (md5) digests may also cause problems in TLS. Although TLS 1.2 has an extension for
specifying which type of signatures are accepted, and in FIPS mode the ssl application will use it properly, most
TLS implementations ignore this extension and simply send whatever certificates they were configured with.

1.3 Engine Load
This chapter describes the support for loading encryption engines in the crypto application.

1.3.1 Background
OpenSSL exposes an Engine API, which makes it possible to plug in alternative implementations for some or all of
the cryptographic operations implemented by OpenSSL. When configured appropriately, OpenSSL calls the engine's
implementation of these operations instead of its own.

Typically, OpenSSL engines provide a hardware implementation of specific cryptographic operations. The hardware
implementation usually offers improved performance over its software-based counterpart, which is known as
cryptographic acceleration.

Note:

The file name requirement on the engine dynamic library can differ between SSL versions.

1.3.2 Use Cases
Dynamically load an engine from default directory
If the engine is located in the OpenSSL/LibreSSL installation engines directory.

1> {ok, Engine} = crypto:engine_load(<<"otp_test_engine">>, [], []).
 {ok, #Ref}

Load an engine with the dynamic engine
Load an engine with the help of the dynamic engine by giving the path to the library.

 2> {ok, Engine} = crypto:engine_load(<<"dynamic">>,
 [{<<"SO_PATH">>,
 <<"/some/path/otp_test_engine.so">>},
 {<<"ID">>, <<"MD5">>},
 <<"LOAD">>],
 []).
 {ok, #Ref}

Load an engine and replace some methods
Load an engine with the help of the dynamic engine and just replace some engine methods.

6 | Ericsson AB. All Rights Reserved.: crypto

1.4 Engine Stored Keys

 3> {ok, Engine} = crypto:engine_load(<<"dynamic">>,
 [{<<"SO_PATH">>,
 <<"/some/path/otp_test_engine.so">>},
 {<<"ID">>, <<"MD5">>},
 <<"LOAD">>],
 []).
{ok, #Ref}
4> ok = crypto:engine_register(Engine, [engine_method_digests]).
ok

Load with the ensure loaded function
This function makes sure the engine is loaded just once and the ID is added to the internal engine list of OpenSSL.
The following calls to the function will check if the ID is loaded and then just get a new reference to the engine.

 5> {ok, Engine} = crypto:ensure_engine_loaded(<<"MD5">>,
 <<"/some/path/otp_test_engine.so">>).
 {ok, #Ref}

To remove the tag from the OpenSSL engine list use crypto:engine_remove/1.

 6> crypto:engine_remove(Engine).
 ok

To unload it use crypto:engine_unload/1 which removes the references to the engine.

 6> crypto:engine_unload(Engine).
 ok

List all engines currently loaded
 8> crypto:engine_list().
[<<"dynamic">>, <<"MD5">>]

1.4 Engine Stored Keys
This chapter describes the support in the crypto application for using public and private keys stored in encryption
engines.

1.4.1 Background
OpenSSL exposes an Engine API, which makes it possible to plug in alternative implementations for some of the
cryptographic operations implemented by OpenSSL. See the chapter Engine Load for details and how to load an
Engine.

An engine could among other tasks provide a storage for private or public keys. Such a storage could be made safer
than the normal file system. Those techniques are not described in this User's Guide. Here we concentrate on how to
use private or public keys stored in such an engine.

The storage engine must call ENGINE_set_load_privkey_function and
ENGINE_set_load_pubkey_function. See the OpenSSL cryptolib's manpages.

OTP/Crypto requires that the user provides two or three items of information about the key. The application used by
the user is usually on a higher level, for example in SSL. If using the crypto application directly, it is required that:

• an Engine is loaded, see the chapter on Engine Load or the Reference Manual

• a reference to a key in the Engine is available. This should be an Erlang string or binary and depends on the
Engine loaded

Ericsson AB. All Rights Reserved.: crypto | 7

href
href

1.5 Algorithm Details

• an Erlang map is constructed with the Engine reference, the key reference and possibly a key passphrase if
needed by the Engine. See the Reference Manual for details of the map.

1.4.2 Use Cases
Sign with an engine stored private key
This example shows how to construct a key reference that is used in a sign operation. The actual key is stored in the
engine that is loaded at prompt 1.

1> {ok, EngineRef} = crypto:engine_load(....).
...
{ok,#Ref<0.2399045421.3028942852.173962>}
2> PrivKey = #{engine => EngineRef,
 key_id => "id of the private key in Engine"}.
...
3> Signature = crypto:sign(rsa, sha, <<"The message">>, PrivKey).
<<65,6,125,254,54,233,84,77,83,63,168,28,169,214,121,76,
 207,177,124,183,156,185,160,243,36,79,125,230,231,...>>

Verify with an engine stored public key
Here the signature and message in the last example is verifyed using the public key. The public key is stored in an
engine, only to exemplify that it is possible. The public key could of course be handled openly as usual.

4> PublicKey = #{engine => EngineRef,
 key_id => "id of the public key in Engine"}.
...
5> crypto:verify(rsa, sha, <<"The message">>, Signature, PublicKey).
true
6>

Using a password protected private key
The same example as the first sign example, except that a password protects the key down in the Engine.

6> PrivKeyPwd = #{engine => EngineRef,
 key_id => "id of the pwd protected private key in Engine",
 password => "password"}.
...
7> crypto:sign(rsa, sha, <<"The message">>, PrivKeyPwd).
<<140,80,168,101,234,211,146,183,231,190,160,82,85,163,
 175,106,77,241,141,120,72,149,181,181,194,154,175,76,
 223,...>>
8>

1.5 Algorithm Details
This chapter describes details of algorithms in the crypto application.

The tables only documents the supported cryptos and key lengths. The user should not draw any conclusion on security
from the supplied tables.

1.5.1 Ciphers
A cipher in the new api is categorized as either cipher_no_iv(), cipher_iv() or cipher_aead(). The letters IV are short
for Initialization Vector and AEAD is an abbreviation of Authenticated Encryption with Associated Data.

Due to irregular naming conventions, some cipher names in the old api are substituted by new names in the new api.
For a list of retired names, see Retired cipher names.

8 | Ericsson AB. All Rights Reserved.: crypto

1.5 Algorithm Details

To dynamically check availability, check that the name in the Cipher and Mode column is present in the list returned
by crypto:supports(ciphers).

Ciphers without an IV - cipher_no_iv()
To be used with:

• crypto_one_time/4

• crypto_init/3

The ciphers are:

Cipher and Mode
Key length
[bytes]

Block size
[bytes]

aes_128_ecb 16 16

aes_192_ecb 24 16

aes_256_ecb 32 16

blowfish_ecb 16 8

des_ecb 8 8

rc4 16 1

Table 5.1: Ciphers without IV

Ciphers with an IV - cipher_iv()
To be used with:

• crypto_one_time/5

• crypto_init/4

• crypto_dyn_iv_init/3

The ciphers are:

Cipher and Mode
Key length
[bytes]

IV length
[bytes]

Block size
[bytes]

Limited to
OpenSSL versions

aes_128_cbc 16 16 16

aes_192_cbc 24 16 16

aes_256_cbc 32 16 16

aes_128_cfb8 16 16 1

aes_192_cfb8 24 16 1

aes_256_cfb8 32 16 1

Ericsson AB. All Rights Reserved.: crypto | 9

1.5 Algorithm Details

aes_128_cfb128 16 16 1

aes_192_cfb128 24 16 1

aes_256_cfb128 32 16 1

aes_128_ctr 16 16 1

aes_192_ctr 24 16 1

aes_256_ctr 32 16 1

aes_128_ofb 16 16 1

aes_192_ofb 24 16 1

aes_256_ofb 32 16 1

blowfish_cbc 16 8 8

blowfish_cfb64 16 8 1

blowfish_ofb64 16 8 1

chacha20 32 16 1 #1.1.0d

des_cbc 8 8 8

des_ede3_cbc 24 8 8

des_cfb 8 8 1

des_ede3_cfb 24 8 1

rc2_cbc 16 8 8

Table 5.2: Ciphers with IV

Ciphers with AEAD - cipher_aead()
To be used with:

• crypto_one_time_aead/6

• crypto_one_time_aead/7

The ciphers are:

Cipher and
Mode

Key length
[bytes]

IV length
[bytes]

AAD length
[bytes]

Tag length
[bytes]

Block size
[bytes]

Limited to
OpenSSL
versions

aes_128_ccm16 7-13 any
even 4-16
default: 12

any #1.0.1

10 | Ericsson AB. All Rights Reserved.: crypto

1.5 Algorithm Details

aes_192_ccm24 7-13 any
even 4-16
default: 12

any #1.0.1

aes_256_ccm32 7-13 any
even 4-16
default: 12

any #1.0.1

aes_128_gcm16 #1 any
1-16
default: 16

any #1.0.1

aes_192_gcm24 #1 any
1-16
default: 16

any #1.0.1

aes_256_gcm32 #1 any
1-16
default: 16

any #1.0.1

chacha20_poly130532 1-16 any 16 any #1.1.0

Table 5.3: AEAD ciphers

1.5.2 Message Authentication Codes (MACs)
To be used in mac/4 and related functions.

CMAC
CMAC with the following ciphers are available with OpenSSL 1.0.1 or later if not disabled by configuration.

To dynamically check availability, check that the name cmac is present in the list returned by crypto:supports(macs).
Also check that the name in the Cipher and Mode column is present in the list returned by crypto:supports(ciphers).

Cipher and Mode
Key length
[bytes]

Max Mac Length
(= default length)
[bytes]

aes_128_cbc 16 16

aes_192_cbc 24 16

aes_256_cbc 32 16

aes_128_ecb 16 16

aes_192_ecb 24 16

aes_256_ecb 32 16

blowfish_cbc 16 8

blowfish_ecb 16 8

des_cbc 8 8

des_ecb 8 8

Ericsson AB. All Rights Reserved.: crypto | 11

1.5 Algorithm Details

des_ede3_cbc 24 8

rc2_cbc 16 8

Table 5.4: CMAC cipher key lengths

HMAC
Available in all OpenSSL compatible with Erlang CRYPTO if not disabled by configuration.

To dynamically check availability, check that the name hmac is present in the list returned by crypto:supports(macs)
and that the hash name is present in the list returned by crypto:supports(hashs).

Hash
Max Mac Length
(= default length)
[bytes]

sha 20

sha224 28

sha256 32

sha384 48

sha512 64

sha3_224 28

sha3_256 32

sha3_384 48

sha3_512 64

shake128 64

shake256 64

blake2b 64

blake2s 32

md4 16

md5 16

ripemd160 20

Table 5.5: HMAC output sizes

12 | Ericsson AB. All Rights Reserved.: crypto

1.5 Algorithm Details

POLY1305
POLY1305 is available with OpenSSL 1.1.1 or later if not disabled by configuration.

To dynamically check availability, check that the name poly1305 is present in the list returned by
crypto:supports(macs).

The poly1305 mac wants an 32 bytes key and produces a 16 byte MAC by default.

1.5.3 Hash
To dynamically check availability, check that the wanted name in the Names column is present in the list returned
by crypto:supports(hashs).

Type Names
Limited to
OpenSSL versions

SHA1 sha

SHA2 sha224, sha256, sha384, sha512

SHA3
sha3_224, sha3_256, sha3_384,
sha3_512, shake128, shake256

#1.1.1

MD4 md4

MD5 md5

RIPEMD ripemd160

Table 5.6:

1.5.4 Public Key Cryptography
RSA
RSA is available with all OpenSSL versions compatible with Erlang CRYPTO if not disabled by configuration. To
dynamically check availability, check that the atom rsa is present in the list returned by crypto:supports(public_keys).

Warning:

The RSA options are experimental.

The exact set of options and there syntax may be changed without prior notice.

Option sign/verify
public encrypt
private decrypt

private encrypt
public decrypt

{rsa_padding,rsa_x931_padding}x x

{rsa_padding,rsa_pkcs1_padding}x x x

{rsa_padding,rsa_pkcs1_pss_padding}
{rsa_pss_saltlen, -2..}

x (2)
x (2)

Ericsson AB. All Rights Reserved.: crypto | 13

1.6 New and Old API

{rsa_mgf1_md, atom()} x (2)

{rsa_padding,rsa_pkcs1_oaep_padding}
{rsa_mgf1_md, atom()}
{rsa_oaep_label,
binary()}}
{rsa_oaep_md, atom()}

x (2)
x (2)
x (3)
x (3)

{rsa_padding,rsa_no_padding}x (1)

Table 5.7:

Notes:

• (1) OpenSSL # 1.0.0

• (2) OpenSSL # 1.0.1

• (3) OpenSSL # 1.1.0

DSS
DSS is available with OpenSSL versions compatible with Erlang CRYPTO if not disabled by configuration. To
dynamically check availability, check that the atom dss is present in the list returned by crypto:supports(public_keys).

ECDSA
ECDSA is available with OpenSSL 0.9.8o or later if not disabled by configuration. To dynamically check availability,
check that the atom ecdsa is present in the list returned by crypto:supports(public_keys). If the atom ec_gf2m also
is present, the characteristic two field curves are available.

The actual supported named curves could be checked by examining the list returned by crypto:supports(curves).

EdDSA
EdDSA is available with OpenSSL 1.1.1 or later if not disabled by configuration. To dynamically check availability,
check that the atom eddsa is present in the list returned by crypto:supports(public_keys).

Support for the curves ed25519 and ed448 is implemented. The actual supported named curves could be checked by
examining the list with the list returned by crypto:supports(curves).

Diffie-Hellman
Diffie-Hellman computations are available with OpenSSL versions compatible with Erlang CRYPTO if not disabled
by configuration. To dynamically check availability, check that the atom dh is present in the list returned by
crypto:supports(public_keys).

Elliptic Curve Diffie-Hellman
Elliptic Curve Diffie-Hellman is available with OpenSSL 0.9.8o or later if not disabled by configuration.
To dynamically check availability, check that the atom ecdh is present in the list returned by
crypto:supports(public_keys).

The Edward curves x25519 and x448 are supported with OpenSSL 1.1.1 or later if not disabled by configuration.

The actual supported named curves could be checked by examining the list returned by crypto:supports(curves).

1.6 New and Old API
This chapter describes the new api to encryption and decryption.

14 | Ericsson AB. All Rights Reserved.: crypto

1.6 New and Old API

1.6.1 Background
The CRYPTO app has evolved during its lifetime. Since also the OpenSSL cryptolib has changed the API several
times, there are parts of the CRYPTO app that uses a very old one internally and other parts that uses the latest one.
The internal definitions of e.g cipher names was a bit hard to maintain.

It turned out that using the old api in the new way (more about that later), and still keep it backwards compatible, was
not possible. Specially as more precision in the error messages is desired it could not be combined with the old standard.

Therefore the old api (see next section) is kept for now but internally implemented with new primitives.

1.6.2 The old API
The old functions - deprecated from 23.0 and removed from OTP 24.0 - are for ciphers:

• block_encrypt/3

• block_encrypt/4

• block_decrypt/3

• block_decrypt/4

• stream_init/2

• stream_init/3

• stream_encrypt/2

• stream_decrypt/2

• next_iv/2

• next_iv/3

for lists of supported algorithms:

• supports/0

and for MACs (Message Authentication Codes):

• cmac/3

• cmac/4

• hmac/3

• hmac/4

• hmac_init/2

• hmac_update/2

• hmac_final/1

• hmac_final_n/2

• poly1305/2

1.6.3 The new API
Encryption and decryption
The new functions for encrypting or decrypting one single binary are:

• crypto_one_time/4

• crypto_one_time/5

• crypto_one_time_aead/6

• crypto_one_time_aead/7

Ericsson AB. All Rights Reserved.: crypto | 15

1.6 New and Old API

In those functions the internal crypto state is first created and initialized with the cipher type, the key and possibly
other data. Then the single binary is encrypted or decrypted, the crypto state is de-allocated and the result of the crypto
operation is returned.

The crypto_one_time_aead functions are for the ciphers of mode ccm or gcm, and for the cipher chacha20-
poly1305.

For repeated encryption or decryption of a text divided in parts, where the internal crypto state is initialized once, and
then many binaries are encrypted or decrypted with the same state, the functions are:

• crypto_init/4

• crypto_init/3

• crypto_update/2

• crypto_final/1

The crypto_init initialies an internal cipher state, and one or more calls of crypto_update does the actual
encryption or decryption. Note that AEAD ciphers can't be handled this way due to their nature.

For repeated encryption or decryption of a text divided in parts where the same cipher and same key is used, but a new
initialization vector (nounce) should be applied for each part, the functions are:

• crypto_dyn_iv_init/3

• crypto_dyn_iv_update/3

An example of where those functions are needed, is when handling the TLS protocol.

If padding was not enabled, the call to crypto_final/1 may be excluded.

For information about available algorithms, use:

• supports/1

• hash_info/1

• cipher_info/1

The next_iv/2 and next_iv/3 are not needed since the crypto_init and crypto_update includes this
functionality.

MACs (Message Authentication Codes)
The new functions for calculating a MAC of a single piece of text are:

• mac/3

• mac/4

• macN/4

• macN/5

For calculating a MAC of a text divided in parts use:

• mac_init/2

• mac_init/3

• mac_update/2

• mac_final/1

• mac_finalN/2

16 | Ericsson AB. All Rights Reserved.: crypto

1.6 New and Old API

1.6.4 Examples of the new api
Examples of crypto_init/4 and crypto_update/2
The functions crypto_init/4 and crypto_update/2 are intended to be used for encrypting or decrypting a sequence of
blocks. First one call of crypto_init/4 initialises the crypto context. One or more calls crypto_update/2
does the actual encryption or decryption for each block.

This example shows first the encryption of two blocks and then decryptions of the cipher text, but divided into three
blocks just to show that it is possible to divide the plain text and cipher text differently for some ciphers:

 1> crypto:start().
 ok
 2> Key = <<1:128>>.
 <<0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1>>
 3> IV = <<0:128>>.
 <<0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0>>
 4> StateEnc = crypto:crypto_init(aes_128_ctr, Key, IV, true). % encrypt -> true
 #Ref<0.3768901617.1128660993.124047>
 5> crypto:crypto_update(StateEnc, <<"First bytes">>).
 <<67,44,216,166,25,130,203,5,66,6,162>>
 6> crypto:crypto_update(StateEnc, <<"Second bytes">>).
 <<16,79,94,115,234,197,94,253,16,144,151,41>>
 7>
 7> StateDec = crypto:crypto_init(aes_128_ctr, Key, IV, false). % decrypt -> false
 #Ref<0.3768901617.1128660994.124255>
 8> crypto:crypto_update(StateDec, <<67,44,216,166,25,130,203>>).
 <<"First b">>
 9> crypto:crypto_update(StateDec, <<5,66,6,162,16,79,94,115,234,197,
 94,253,16,144,151>>).
 <<"ytesSecond byte">>
 10> crypto:crypto_update(StateDec, <<41>>).
 <<"s">>
 11>

Note that the internal data that the StateEnc and StateDec references are destructivly updated by the calls to
crypto_update/2. This is to gain time in the calls of the nifs interfacing the cryptolib. In a loop where the state is saved
in the loop's state, it also saves one update of the loop state per crypto operation.

For example, a simple server receiving text parts to encrypt and send the result back to the one who sent them (the
Requester):

 encode(Crypto, Key, IV) ->
 crypto_loop(crypto:crypto_init(Crypto, Key, IV, true)).

 crypto_loop(State) ->
 receive
 {Text, Requester} ->
 Requester ! crypto:crypto_update(State, Text),
 loop(State)
 end.

Example of crypto_one_time/5
The same example as in the previous section, but now with one call to crypto_one_time/5:

Ericsson AB. All Rights Reserved.: crypto | 17

1.6 New and Old API

 1> Key = <<1:128>>.
 <<0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1>>
 2> IV = <<0:128>>.
 <<0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0>>
 3> Txt = [<<"First bytes">>,<<"Second bytes">>].
 [<<"First bytes">>,<<"Second bytes">>]
 4> crypto:crypto_one_time(aes_128_ctr, Key, IV, Txt, true).
 <<67,44,216,166,25,130,203,5,66,6,162,16,79,94,115,234,
 197,94,253,16,144,151,41>>
 5>

The [<<"First bytes">>,<<"Second bytes">>] could of course have been one single binary: <<"First
bytesSecond bytes">>.

Example of crypto_one_time_aead/6
The same example as in the previous section, but now with one call to crypto_one_time_aead/6:

 1> Key = <<1:128>>.
 <<0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1>>
 2> IV = <<0:128>>.
 <<0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0>>
 3> Txt = [<<"First bytes">>,<<"Second bytes">>].
 [<<"First bytes">>,<<"Second bytes">>]
 4> AAD = <<"Some bytes">>.
 <<"Some bytes">>
 5> crypto:crypto_one_time_aead(aes_128_gcm, Key, IV, Txt, AAD, true).
 {<<240,130,38,96,130,241,189,52,3,190,179,213,132,1,72,
 192,103,176,90,104,15,71,158>>,
 <<131,47,45,91,142,85,9,244,21,141,214,71,31,135,2,155>>}
 6>

The [<<"First bytes">>,<<"Second bytes">>] could of course have been one single binary: <<"First
bytesSecond bytes">>.

Example of mac_init mac_update and mac_final
 1> Key = <<1:128>>.
 <<0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1>>
 2> StateMac = crypto:mac_init(cmac, aes_128_cbc, Key).
 #Ref<0.2424664121.2781478916.232610>
 3> crypto:mac_update(StateMac, <<"First bytes">>).
 #Ref<0.2424664121.2781478916.232610>
 4> crypto:mac_update(StateMac, " ").
 #Ref<0.2424664121.2781478916.232610>
 5> crypto:mac_update(StateMac, <<"last bytes">>).
 #Ref<0.2424664121.2781478916.232610>
 6> crypto:mac_final(StateMac).
 <<68,191,219,128,84,77,11,193,197,238,107,6,214,141,160,
 249>>
 7>

and compare the result with a single calculation just for this example:

 7> crypto:mac(cmac, aes_128_cbc, Key, "First bytes last bytes").
 <<68,191,219,128,84,77,11,193,197,238,107,6,214,141,160,
 249>>
 8> v(7) == v(6).
 true
 9>

18 | Ericsson AB. All Rights Reserved.: crypto

1.6 New and Old API

1.6.5 Retired cipher names
This table lists the retired cipher names in the first column and suggests names to replace them with in the second
column.

The new names follows the OpenSSL libcrypto names. The format is ALGORITM_KEYSIZE_MODE.

Examples of algorithms are aes, chacha20 and des. The keysize is the number of bits and examples of the mode are
cbc, ctr and gcm. The mode may be followed by a number depending on the mode. An example is the ccm mode which
has a variant called ccm8 where the so called tag has a length of eight bits.

The old names had by time lost any common naming convention which the new names now introduces. The new
names include the key length which improves the error checking in the lower levels of the crypto application.

Instead of: Use:

aes_cbc128 aes_128_cbc

aes_cbc256 aes_256_cbc

aes_cbc aes_128_cbc, aes_192_cbc, aes_256_cbc

aes_ccm aes_128_ccm, aes_192_ccm, aes_256_ccm

aes_cfb128
aes_128_cfb128, aes_192_cfb128,
aes_256_cfb128

aes_cfb8
aes_128_cfb8, aes_192_cfb8,
aes_256_cfb8

aes_ctr aes_128_ctr, aes_192_ctr, aes_256_ctr

aes_gcm aes_128_gcm, aes_192_gcm, aes_256_gcm

des3_cbc des_ede3_cbc

des3_cbf des_ede3_cfb

des3_cfb des_ede3_cfb

des_ede3 des_ede3_cbc

des_ede3_cbf des_ede3_cfb

Table 6.1:

Ericsson AB. All Rights Reserved.: crypto | 19

1.6 New and Old API

2 Reference Manual

The Crypto Application provides functions for computation of message digests, and encryption and decryption
functions.

This product includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit (http://
www.openssl.org/).

This product includes cryptographic software written by Eric Young (eay@cryptsoft.com).

This product includes software written by Tim Hudson (tjh@cryptsoft.com).

For full OpenSSL and SSLeay license texts, see Licenses.

20 | Ericsson AB. All Rights Reserved.: crypto

crypto

crypto
Application

The purpose of the Crypto application is to provide an Erlang API to cryptographic functions, see crypto(3). Note that
the API is on a fairly low level and there are some corresponding API functions available in public_key(3), on a higher
abstraction level, that uses the crypto application in its implementation.

DEPENDENCIES
The current crypto implementation uses nifs to interface OpenSSLs crypto library and may work with limited
functionality with as old versions as OpenSSL 0.9.8c. FIPS mode support requires at least version 1.0.1 and a FIPS
capable OpenSSL installation. We recommend using a version that is officially supported by the OpenSSL project.
API compatible backends like LibreSSL should also work.

The crypto app is tested daily with at least one version of each of the OpenSSL 1.0.1, 1.0.2, 1.1.0, 1.1.1 and 3.0. FIPS
mode is also tested for 1.0.1, 1.0.2 and 3.0.

Using OpenSSL 3.0 with Engines is supported since OTP 26.2.

Source releases of OpenSSL can be downloaded from the OpenSSL project home page, or mirror sites listed there.

CONFIGURATION
The following configuration parameters are defined for the crypto application. See app(3) for more information
about configuration parameters.

fips_mode = boolean()

Specifies whether to run crypto in FIPS mode. This setting will take effect when the nif module is loaded. If FIPS
mode is requested but not available at run time the nif module and thus the crypto module will fail to load. This
mechanism prevents the accidental use of non-validated algorithms.

rand_cache_size = integer()

Sets the cache size in bytes to use by crypto:rand_seed_alg(crypto_cache) and
crypto:rand_seed_alg_s(crypto_cache) . This parameter is read when a seed function is called, and
then kept in generators state object. It has a rather small default value that causes reads of strong random bytes
about once per hundred calls for a random value. The set value is rounded up to an integral number of words
of the size these seed functions use.

SEE ALSO
application(3)

Ericsson AB. All Rights Reserved.: crypto | 21

href

crypto

crypto
Erlang module

This module provides a set of cryptographic functions.

Hash functions

SHA1, SHA2
Secure Hash Standard [FIPS PUB 180-4]

SHA3
SHA-3 Standard: Permutation-Based Hash and Extendable-Output Functions [FIPS PUB 202]

BLAKE2
BLAKE2 — fast secure hashing

MD5
The MD5 Message Digest Algorithm [RFC 1321]

MD4
The MD4 Message Digest Algorithm [RFC 1320]

MACs - Message Authentication Codes

Hmac functions
Keyed-Hashing for Message Authentication [RFC 2104]

Cmac functions
The AES-CMAC Algorithm [RFC 4493]

POLY1305
ChaCha20 and Poly1305 for IETF Protocols [RFC 7539]

Symmetric Ciphers

DES, 3DES and AES
Block Cipher Techniques [NIST]

Blowfish
Fast Software Encryption, Cambridge Security Workshop Proceedings (December 1993), Springer-
Verlag, 1994, pp. 191-204.

Chacha20
ChaCha20 and Poly1305 for IETF Protocols [RFC 7539]

Chacha20_poly1305
ChaCha20 and Poly1305 for IETF Protocols [RFC 7539]

Modes

ECB, CBC, CFB, OFB and CTR
Recommendation for Block Cipher Modes of Operation: Methods and Techniques [NIST SP
800-38A]

GCM
Recommendation for Block Cipher Modes of Operation: Galois/Counter Mode (GCM) and GMAC
[NIST SP 800-38D]

CCM
Recommendation for Block Cipher Modes of Operation: The CCM Mode for Authentication and
Confidentiality [NIST SP 800-38C]

22 | Ericsson AB. All Rights Reserved.: crypto

href
href
href
href
href
href
href
href
href
href
href
href
href
href
href
href
href
href
href

crypto

Asymmetric Ciphers - Public Key Techniques

RSA
PKCS #1: RSA Cryptography Specifications [RFC 3447]

DSS
Digital Signature Standard (DSS) [FIPS 186-4]

ECDSA
Elliptic Curve Digital Signature Algorithm [ECDSA]

SRP
The SRP Authentication and Key Exchange System [RFC 2945]

Note:

The actual supported algorithms and features depends on their availability in the actual libcrypto used. See the
crypto (App) about dependencies.

Enabling FIPS mode will also disable algorithms and features.

The CRYPTO User's Guide has more information on FIPS, Engines and Algorithm Details like key lengths.

Data Types
Ciphers
cipher() = cipher_no_iv() | cipher_iv() | cipher_aead()
cipher_no_iv() =
 aes_128_ecb | aes_192_ecb | aes_256_ecb | aes_ecb |
 blowfish_ecb | des_ecb | rc4
cipher_iv() =
 aes_128_cbc | aes_192_cbc | aes_256_cbc | aes_cbc |
 aes_128_ofb | aes_192_ofb | aes_256_ofb | aes_128_cfb128 |
 aes_192_cfb128 | aes_256_cfb128 | aes_cfb128 | aes_128_cfb8 |
 aes_192_cfb8 | aes_256_cfb8 | aes_cfb8 | aes_128_ctr |
 aes_192_ctr | aes_256_ctr | aes_ctr | blowfish_cbc |
 blowfish_cfb64 | blowfish_ofb64 | chacha20 | des_ede3_cbc |
 des_ede3_cfb | des_cbc | des_cfb | rc2_cbc
cipher_aead() =
 aes_128_ccm | aes_192_ccm | aes_256_ccm | aes_ccm |
 aes_128_gcm | aes_192_gcm | aes_256_gcm | aes_gcm |
 chacha20_poly1305
Ciphers known by the CRYPTO application.

Note that this list might be reduced if the underlying libcrypto does not support all of them.

crypto_opts() = boolean() | [crypto_opt()]
crypto_opt() = {encrypt, boolean()} | {padding, padding()}
Selects encryption ({encrypt,true}) or decryption ({encrypt,false}).

padding() = cryptolib_padding() | otp_padding()
This option handles padding in the last block. If not set, no padding is done and any bytes in the last unfilled block
is silently discarded.

Ericsson AB. All Rights Reserved.: crypto | 23

href
href
href
href

crypto

cryptolib_padding() = none | pkcs_padding
The cryptolib_padding are paddings that may be present in the underlying cryptolib linked to the Erlang/OTP
crypto app.

For OpenSSL, see the OpenSSL documentation. and find EVP_CIPHER_CTX_set_padding() in cryptolib for
your linked version.

otp_padding() = zero | random
Erlang/OTP adds a either padding of zeroes or padding with random bytes.

Data Types
Digests and hash
hash_algorithm() =
 sha1() |
 sha2() |
 sha3() |
 sha3_xof() |
 blake2() |
 ripemd160 |
 compatibility_only_hash()
hash_xof_algorithm() = sha3_xof()
hmac_hash_algorithm() =
 sha1() | sha2() | sha3() | compatibility_only_hash()
cmac_cipher_algorithm() =
 aes_128_cbc | aes_192_cbc | aes_256_cbc | aes_cbc |
 blowfish_cbc | des_cbc | des_ede3_cbc | rc2_cbc
rsa_digest_type() = sha1() | sha2() | md5 | ripemd160
dss_digest_type() = sha1() | sha2()
ecdsa_digest_type() = sha1() | sha2()
sha1() = sha
sha2() = sha224 | sha256 | sha384 | sha512
sha3() = sha3_224 | sha3_256 | sha3_384 | sha3_512
sha3_xof() = shake128 | shake256
blake2() = blake2b | blake2s
compatibility_only_hash() = md5 | md4
The compatibility_only_hash() algorithms are recommended only for compatibility with existing
applications.

Data Types
Elliptic Curves
ec_named_curve() =
 brainpoolP160r1 | brainpoolP160t1 | brainpoolP192r1 |
 brainpoolP192t1 | brainpoolP224r1 | brainpoolP224t1 |
 brainpoolP256r1 | brainpoolP256t1 | brainpoolP320r1 |
 brainpoolP320t1 | brainpoolP384r1 | brainpoolP384t1 |
 brainpoolP512r1 | brainpoolP512t1 | c2pnb163v1 | c2pnb163v2 |
 c2pnb163v3 | c2pnb176v1 | c2pnb208w1 | c2pnb272w1 |

24 | Ericsson AB. All Rights Reserved.: crypto

href

crypto

 c2pnb304w1 | c2pnb368w1 | c2tnb191v1 | c2tnb191v2 |
 c2tnb191v3 | c2tnb239v1 | c2tnb239v2 | c2tnb239v3 |
 c2tnb359v1 | c2tnb431r1 | ipsec3 | ipsec4 | prime192v1 |
 prime192v2 | prime192v3 | prime239v1 | prime239v2 |
 prime239v3 | prime256v1 | secp112r1 | secp112r2 | secp128r1 |
 secp128r2 | secp160k1 | secp160r1 | secp160r2 | secp192k1 |
 secp192r1 | secp224k1 | secp224r1 | secp256k1 | secp256r1 |
 secp384r1 | secp521r1 | sect113r1 | sect113r2 | sect131r1 |
 sect131r2 | sect163k1 | sect163r1 | sect163r2 | sect193r1 |
 sect193r2 | sect233k1 | sect233r1 | sect239k1 | sect283k1 |
 sect283r1 | sect409k1 | sect409r1 | sect571k1 | sect571r1 |
 wtls1 | wtls10 | wtls11 | wtls12 | wtls3 | wtls4 | wtls5 |
 wtls6 | wtls7 | wtls8 | wtls9
edwards_curve_dh() = x25519 | x448
edwards_curve_ed() = ed25519 | ed448
Note that some curves are disabled if FIPS is enabled.

ec_explicit_curve() =
 {Field :: ec_field(),
 Curve :: ec_curve(),
 BasePoint :: binary(),
 Order :: binary(),
 CoFactor :: none | binary()}
ec_field() = ec_prime_field() | ec_characteristic_two_field()
ec_curve() =
 {A :: binary(), B :: binary(), Seed :: none | binary()}
Parametric curve definition.

ec_prime_field() = {prime_field, Prime :: integer()}
ec_characteristic_two_field() =
 {characteristic_two_field,
 M :: integer(),
 Basis :: ec_basis()}
ec_basis() =
 {tpbasis, K :: integer() >= 0} |
 {ppbasis,
 K1 :: integer() >= 0,
 K2 :: integer() >= 0,
 K3 :: integer() >= 0} |
 onbasis
Curve definition details.

Data Types
Keys
key_integer() = integer() | binary()
Always binary() when used as return value

Ericsson AB. All Rights Reserved.: crypto | 25

crypto

Data Types
Public/Private Keys
rsa_public() = [key_integer()]
rsa_private() = [key_integer()]
rsa_params() =
 {ModulusSizeInBits :: integer(),
 PublicExponent :: key_integer()}

rsa_public() = [E, N]

rsa_private() = [E, N, D] | [E, N, D, P1, P2, E1, E2, C]

Where E is the public exponent, N is public modulus and D is the private exponent. The longer key format contains
redundant information that will make the calculation faster. P1 and P2 are first and second prime factors. E1 and E2
are first and second exponents. C is the CRT coefficient. The terminology is taken from RFC 3447.

dss_public() = [key_integer()]
dss_private() = [key_integer()]

dss_public() = [P, Q, G, Y]

Where P, Q and G are the dss parameters and Y is the public key.

dss_private() = [P, Q, G, X]

Where P, Q and G are the dss parameters and X is the private key.

ecdsa_public() = key_integer()
ecdsa_private() = key_integer()
ecdsa_params() = ec_named_curve() | ec_explicit_curve()
eddsa_public() = key_integer()
eddsa_private() = key_integer()
eddsa_params() = edwards_curve_ed()
srp_public() = key_integer()
srp_private() = key_integer()

srp_public() = key_integer()

Where is A or B from SRP design

srp_private() = key_integer()

Where is a or b from SRP design

srp_gen_params() =
 {user, srp_user_gen_params()} | {host, srp_host_gen_params()}
srp_comp_params() =
 {user, srp_user_comp_params()} |
 {host, srp_host_comp_params()}
srp_user_gen_params() = [DerivedKey::binary(), Prime::binary(),
Generator::binary(), Version::atom()]srp_host_gen_params() =
[Verifier::binary(), Prime::binary(), Version::atom()]srp_user_comp_params()
= [DerivedKey::binary(), Prime::binary(), Generator::binary(),

26 | Ericsson AB. All Rights Reserved.: crypto

href
href
href

crypto

Version::atom() | ScramblerArg::list()]srp_host_comp_params() =
[Verifier::binary(), Prime::binary(), Version::atom() | ScramblerArg::list()]
Where Verifier is v, Generator is g and Prime is N, DerivedKey is X, and Scrambler is u (optional will be generated
if not provided) from SRP design Version = '3' | '6' | '6a'

Data Types
Public Key Ciphers
pk_encrypt_decrypt_algs() = rsa
Algorithms for public key encrypt/decrypt. Only RSA is supported.

pk_encrypt_decrypt_opts() = [rsa_opt()] | rsa_compat_opts()
rsa_opt() =
 {rsa_padding, rsa_padding()} |
 {signature_md, atom()} |
 {rsa_mgf1_md, sha} |
 {rsa_oaep_label, binary()} |
 {rsa_oaep_md, sha}
rsa_padding() =
 rsa_pkcs1_padding | rsa_pkcs1_oaep_padding |
 rsa_sslv23_padding | rsa_x931_padding | rsa_no_padding
Options for public key encrypt/decrypt. Only RSA is supported.

Warning:

The RSA options are experimental.

The exact set of options and there syntax may be changed without prior notice.

rsa_compat_opts() = [{rsa_pad, rsa_padding()}] | rsa_padding()
Those option forms are kept only for compatibility and should not be used in new code.

Data Types
Public Key Sign and Verify
pk_sign_verify_algs() = rsa | dss | ecdsa | eddsa
Algorithms for sign and verify.

pk_sign_verify_opts() = [rsa_sign_verify_opt()]
rsa_sign_verify_opt() =
 {rsa_padding, rsa_sign_verify_padding()} |
 {rsa_pss_saltlen, integer()} |
 {rsa_mgf1_md, sha2()}
rsa_sign_verify_padding() =
 rsa_pkcs1_padding | rsa_pkcs1_pss_padding | rsa_x931_padding |
 rsa_no_padding
Options for sign and verify.

Ericsson AB. All Rights Reserved.: crypto | 27

href

crypto

Warning:

The RSA options are experimental.

The exact set of options and there syntax may be changed without prior notice.

Data Types
Diffie-Hellman Keys and parameters
dh_public() = key_integer()
dh_private() = key_integer()
dh_params() = [key_integer()]

dh_params() = [P, G] | [P, G, PrivateKeyBitLength]

ecdh_public() = key_integer()
ecdh_private() = key_integer()
ecdh_params() =
 ec_named_curve() | edwards_curve_dh() | ec_explicit_curve()

Data Types
Types for Engines
engine_key_ref() =
 #{engine := engine_ref(),
 key_id := key_id(),
 password => password(),
 term() => term()}
engine_ref() = term()
The result of a call to engine_load/3.

key_id() = string() | binary()
Identifies the key to be used. The format depends on the loaded engine. It is passed to the
ENGINE_load_(private|public)_key functions in libcrypto.

password() = string() | binary()
The password of the key stored in an engine.

engine_method_type() =
 engine_method_rsa | engine_method_dsa | engine_method_dh |
 engine_method_rand | engine_method_ecdh |
 engine_method_ecdsa | engine_method_ciphers |
 engine_method_digests | engine_method_store |
 engine_method_pkey_meths | engine_method_pkey_asn1_meths |
 engine_method_ec
engine_cmnd() = {unicode:chardata(), unicode:chardata()}
Pre and Post commands for engine_load/3 and /4.

28 | Ericsson AB. All Rights Reserved.: crypto

crypto

Data Types
Internal data types
crypto_state()
hash_state()
mac_state()
Contexts with an internal state that should not be manipulated but passed between function calls.

Exceptions
Atoms - the older style
The exception error:badarg signifies that one or more arguments are of wrong data type, or are otherwise badly
formed.

The exception error:notsup signifies that the algorithm is known but is not supported by current underlying
libcrypto or explicitly disabled when building that.

For a list of supported algorithms, see supports(ciphers).

3-tuples - the new style
The exception is:

error:{Tag, C_FileInfo, Description}

Tag = badarg | notsup | error
C_FileInfo = term() % Usually only useful for the OTP maintainer
Description = string() % Clear text, sometimes only useful for the OTP maintainer

The exception tags are:

badarg

Signifies that one or more arguments are of wrong data type or are otherwise badly formed.

notsup

Signifies that the algorithm is known but is not supported by current underlying libcrypto or explicitly disabled
when building that one.

error

An error condition that should not occur, for example a memory allocation failed or the underlying cryptolib
returned an error code, for example "Can't initialize context, step 1". Those text usually needs
searching the C-code to be understood.

Usually there are more information in the call stack about which argument caused the exception and what the values
where.

To catch the exception, use for example:

try crypto:crypto_init(Ciph, Key, IV, true)
 catch
 error:{Tag, _C_FileInfo, Description} ->
 do_something(......)

end

Ericsson AB. All Rights Reserved.: crypto | 29

crypto

Exports

crypto_init(Cipher, Key, FlagOrOptions) -> State
Types:

Cipher = cipher_no_iv()
Key = iodata()
FlagOrOptions = crypto_opts() | boolean()
State = crypto_state()

Uses the 3-tuple style for error handling.

Equivalent to the call crypto_init(Cipher, Key, <<>>, FlagOrOptions). It is intended for ciphers
without an IV (nounce).

crypto_init(Cipher, Key, IV, FlagOrOptions) -> State
Types:

Cipher = cipher_iv()
Key = IV = iodata()
FlagOrOptions = crypto_opts()
State = crypto_state()

Uses the 3-tuple style for error handling.

Initializes a series of encryptions or decryptions and creates an internal state with a reference that is returned.

If IV = <<>>, no IV is used. This is intended for ciphers without an IV (nounce). See crypto_init/3.

If IV = undefined, the IV must be added by calls to crypto_dyn_iv_update/3. This is intended for cases where
the IV (nounce) need to be changed for each encryption and decryption. See crypto_dyn_iv_init/3.

The actual encryption or decryption is done by crypto_update/2 (or crypto_dyn_iv_update/3).

For encryption, set the FlagOrOptions to true or [{encrypt,true}]. For decryption, set it to false or
[{encrypt,false}].

Padding could be enabled with the option {padding,Padding}. The cryptolib_padding enables pkcs_padding or no
padding (none). The paddings zero or random fills the last part of the last block with zeroes or random bytes. If
the last block is already full, nothing is added.

In decryption, the cryptolib_padding removes such padding, if present. The otp_padding is not removed - it has to
be done elsewhere.

If padding is {padding,none} or not specified and the total data from all subsequent crypto_updates does not fill
the last block fully, that last data is lost. In case of {padding,none} there will be an error in this case. If padding
is not specified, the bytes of the unfilled block is silently discarded.

The actual padding is performed by crypto_final/1.

For blocksizes call cipher_info/1.

See examples in the User's Guide.

crypto_update(State, Data) -> Result
Types:

30 | Ericsson AB. All Rights Reserved.: crypto

crypto

State = crypto_state()
Data = iodata()
Result = binary()

Uses the 3-tuple style for error handling.

It does an actual crypto operation on a part of the full text. If the part is less than a number of full blocks, only the full
blocks (possibly none) are encrypted or decrypted and the remaining bytes are saved to the next crypto_update
operation. The State should be created with crypto_init/3 or crypto_init/4.

See examples in the User's Guide.

crypto_dyn_iv_init(Cipher, Key, FlagOrOptions) -> State
Types:

Cipher = cipher_iv()
Key = iodata()
FlagOrOptions = crypto_opts() | boolean()
State = crypto_state()

Uses the 3-tuple style for error handling.

Initializes a series of encryptions or decryptions where the IV is provided later. The actual encryption or decryption
is done by crypto_dyn_iv_update/3.

The function is equivalent to crypto_init(Cipher, Key, undefined, FlagOrOptions).

crypto_final(State) -> FinalResult
Types:

State = crypto_state()
FinalResult = binary()

Uses the 3-tuple style for error handling.

Finalizes a series of encryptions or decryptions and delivers the final bytes of the final block. The data returned from
this function may be empty if no padding was enabled in crypto_init/3,4 or crypto_dyn_iv_init/3.

crypto_get_data(State) -> Result
Types:

State = crypto_state()
Result = map()

Uses the 3-tuple style for error handling.

Returns information about the State in the argument. The information is the form of a map, which currently contains
at least:

size
The number of bytes encrypted or decrypted so far.

padding_size
After a call to crypto_final/1 it contains the number of bytes padded. Otherwise 0.

padding_type
The type of the padding as provided in the call to crypto_init/3,4.

encrypt
Is true if encryption is performed. It is false otherwise.

Ericsson AB. All Rights Reserved.: crypto | 31

crypto

crypto_dyn_iv_update(State, Data, IV) -> Result
Types:

State = crypto_state()
Data = IV = iodata()
Result = binary()

Uses the 3-tuple style for error handling.

Do an actual crypto operation on a part of the full text and the IV is supplied for each part. The State should be
created with crypto_dyn_iv_init/3.

crypto_one_time(Cipher, Key, Data, FlagOrOptions) -> Result
Types:

Cipher = cipher_no_iv()
Key = Data = iodata()
FlagOrOptions = crypto_opts() | boolean()
Result = binary()

Uses the 3-tuple style for error handling.

As crypto_one_time/5 but for ciphers without IVs.

crypto_one_time(Cipher, Key, IV, Data, FlagOrOptions) -> Result
Types:

Cipher = cipher_iv()
Key = IV = Data = iodata()
FlagOrOptions = crypto_opts() | boolean()
Result = binary()

Uses the 3-tuple style for error handling.

Do a complete encrypt or decrypt of the full text in the argument Data.

For encryption, set the FlagOrOptions to true. For decryption, set it to false. For setting other options, see
crypto_init/4.

See examples in the User's Guide.

crypto_one_time_aead(Cipher, Key, IV, InText, AAD,
 EncFlag :: true) ->
 Result
crypto_one_time_aead(Cipher, Key, IV, InText, AAD, TagOrTagLength,
 EncFlag) ->
 Result
Types:

32 | Ericsson AB. All Rights Reserved.: crypto

crypto

Cipher = cipher_aead()
Key = IV = InText = AAD = iodata()
TagOrTagLength = EncryptTagLength | DecryptTag
EncryptTagLength = integer() >= 0
DecryptTag = iodata()
EncFlag = boolean()
Result = EncryptResult | DecryptResult
EncryptResult = {OutCryptoText, OutTag}
DecryptResult = OutPlainText | error
OutCryptoText = OutTag = OutPlainText = binary()

Uses the 3-tuple style for error handling.

Do a complete encrypt or decrypt with an AEAD cipher of the full text.

For encryption, set the EncryptFlag to true and set the TagOrTagLength to the wanted size (in bytes) of the
tag, that is, the tag length. If the default length is wanted, the crypto_aead/6 form may be used.

For decryption, set the EncryptFlag to false and put the tag to be checked in the argument TagOrTagLength.

See examples in the User's Guide.

supports(Type) -> Support
Types:

Type = hashs | ciphers | public_keys | macs | curves | rsa_opts
Support = Hashs | Ciphers | PKs | Macs | Curves | RSAopts
Hashs =
 [sha1() |
 sha2() |
 sha3() |
 sha3_xof() |
 blake2() |
 ripemd160 |
 compatibility_only_hash()]
Ciphers = [cipher()]
PKs = [rsa | dss | ecdsa | dh | ecdh | eddh | ec_gf2m]
Macs = [hmac | cmac | poly1305]
Curves =
 [ec_named_curve() | edwards_curve_dh() | edwards_curve_ed()]
RSAopts = [rsa_sign_verify_opt() | rsa_opt()]

Can be used to determine which crypto algorithms that are supported by the underlying libcrypto library

See hash_info/1 and cipher_info/1 for information about the hash and cipher algorithms.

mac(Type :: poly1305, Key, Data) -> Mac
Types:

Key = Data = iodata()
Mac = binary()

Uses the 3-tuple style for error handling.

Ericsson AB. All Rights Reserved.: crypto | 33

crypto

Short for mac(Type, undefined, Key, Data).

mac(Type, SubType, Key, Data) -> Mac
Types:

Type = hmac | cmac | poly1305
SubType =
 hmac_hash_algorithm() | cmac_cipher_algorithm() | undefined
Key = Data = iodata()
Mac = binary()

Uses the 3-tuple style for error handling.

Computes a MAC (Message Authentication Code) of type Type from Data.

SubType depends on the MAC Type:

• For hmac it is a hash algorithm, see Algorithm Details in the User's Guide.

• For cmac it is a cipher suitable for cmac, see Algorithm Details in the User's Guide.

• For poly1305 it should be set to undefined or the mac/2 function could be used instead, see Algorithm
Details in the User's Guide.

Key is the authentication key with a length according to the Type and SubType. The key length could be found with
the hash_info/1 (hmac) for and cipher_info/1 (cmac) functions. For poly1305 the key length is 32 bytes. Note that
the cryptographic quality of the key is not checked.

The Mac result will have a default length depending on the Type and SubType. To set a shorter length, use macN/4
or macN/5 instead. The default length is documented in Algorithm Details in the User's Guide.

macN(Type :: poly1305, Key, Data, MacLength) -> Mac
Types:

Key = Data = iodata()
Mac = binary()
MacLength = integer() >= 1

Uses the 3-tuple style for error handling.

Short for macN(Type, undefined, Key, Data, MacLength).

macN(Type, SubType, Key, Data, MacLength) -> Mac
Types:

Type = hmac | cmac | poly1305
SubType =
 hmac_hash_algorithm() | cmac_cipher_algorithm() | undefined
Key = Data = iodata()
Mac = binary()
MacLength = integer() >= 1

Computes a MAC (Message Authentication Code) as mac/3 and mac/4 but MacLength will limit the size of the
resultant Mac to at most MacLength bytes. Note that if MacLength is greater than the actual number of bytes
returned from the underlying hash, the returned hash will have that shorter length instead.

The max MacLength is documented in Algorithm Details in the User's Guide.

34 | Ericsson AB. All Rights Reserved.: crypto

crypto

mac_init(Type :: poly1305, Key) -> State
Types:

Key = iodata()
State = mac_state()

Uses the 3-tuple style for error handling.

Short for mac_init(Type, undefined, Key).

mac_init(Type, SubType, Key) -> State
Types:

Type = hmac | cmac | poly1305
SubType =
 hmac_hash_algorithm() | cmac_cipher_algorithm() | undefined
Key = iodata()
State = mac_state()

Uses the 3-tuple style for error handling.

Initializes the context for streaming MAC operations.

Type determines which mac algorithm to use in the MAC operation.

SubType depends on the MAC Type:

• For hmac it is a hash algorithm, see Algorithm Details in the User's Guide.

• For cmac it is a cipher suitable for cmac, see Algorithm Details in the User's Guide.

• For poly1305 it should be set to undefined or the mac/2 function could be used instead, see Algorithm
Details in the User's Guide.

Key is the authentication key with a length according to the Type and SubType. The key length could be found with
the hash_info/1 (hmac) for and cipher_info/1 (cmac) functions. For poly1305 the key length is 32 bytes. Note that
the cryptographic quality of the key is not checked.

The returned State should be used in one or more subsequent calls to mac_update/2. The MAC value is finally
returned by calling mac_final/1 or mac_finalN/2.

See examples in the User's Guide.

mac_update(State0, Data) -> State
Types:

Data = iodata()
State0 = State = mac_state()

Uses the 3-tuple style for error handling.

Updates the MAC represented by State0 using the given Data which could be of any length.

The State0 is the State value originally from a MAC init function, that is mac_init/2, mac_init/3 or a previous call
of mac_update/2. The value State0 is returned unchanged by the function as State.

mac_final(State) -> Mac
Types:

Ericsson AB. All Rights Reserved.: crypto | 35

crypto

State = mac_state()
Mac = binary()

Uses the 3-tuple style for error handling.

Finalizes the MAC operation referenced by State. The Mac result will have a default length depending on the
Type and SubType in the mac_init/2,3 call. To set a shorter length, use mac_finalN/2 instead. The default length
is documented in Algorithm Details in the User's Guide.

mac_finalN(State, MacLength) -> Mac
Types:

State = mac_state()
MacLength = integer() >= 1
Mac = binary()

Uses the 3-tuple style for error handling.

Finalizes the MAC operation referenced by State.

Mac will be a binary with at most MacLength bytes. Note that if MacLength is greater than the actual number of
bytes returned from the underlying hash, the returned hash will have that shorter length instead.

The max MacLength is documented in Algorithm Details in the User's Guide.

bytes_to_integer(Bin :: binary()) -> integer()
Convert binary representation, of an integer, to an Erlang integer.

compute_key(Type, OthersPublicKey, MyPrivateKey, Params) ->
 SharedSecret
Types:

Type = dh | ecdh | eddh | srp
SharedSecret = binary()
OthersPublicKey = dh_public() | ecdh_public() | srp_public()
MyPrivateKey =
 dh_private() | ecdh_private() | {srp_public(), srp_private()}
Params = dh_params() | ecdh_params() | srp_comp_params()

Uses the 3-tuple style for error handling.

Computes the shared secret from the private key and the other party's public key. See also public_key:compute_key/2

exor(Bin1 :: iodata(), Bin2 :: iodata()) -> binary()
Performs bit-wise XOR (exclusive or) on the data supplied.

generate_key(Type, Params) -> {PublicKey, PrivKeyOut}
generate_key(Type, Params, PrivKeyIn) -> {PublicKey, PrivKeyOut}
Types:

36 | Ericsson AB. All Rights Reserved.: crypto

crypto

Type = dh | ecdh | eddh | eddsa | rsa | srp
PublicKey =
 dh_public() | ecdh_public() | rsa_public() | srp_public()
PrivKeyIn =
 undefined |
 dh_private() |
 ecdh_private() |
 rsa_private() |
 {srp_public(), srp_private()}
PrivKeyOut =
 dh_private() |
 ecdh_private() |
 rsa_private() |
 {srp_public(), srp_private()}
Params =
 dh_params() |
 ecdh_params() |
 eddsa_params() |
 rsa_params() |
 srp_comp_params()

Uses the 3-tuple style for error handling.

Generates a public key of type Type. See also public_key:generate_key/1.

Note:

If the linked version of cryptolib is OpenSSL 3.0

• and the Type is dh (diffie-hellman)

• and the parameter P (in dh_params()) is one of the MODP groups (see RFC 3526)

• and the optional PrivateKeyBitLength parameter (in dh_params()) is present,

then the optional key length parameter must be at least 224, 256, 302, 352 and 400 for group sizes of 2048, 3072,
4096, 6144 and 8192, respectively.

Note:

RSA key generation is only available if the runtime was built with dirty scheduler support. Otherwise, attempting
to generate an RSA key will raise the exception error:notsup.

hash(Type, Data) -> Digest
Types:

Type = hash_algorithm()
Data = iodata()
Digest = binary()

Uses the 3-tuple style for error handling.

Computes a message digest of type Type from Data.

Ericsson AB. All Rights Reserved.: crypto | 37

href

crypto

hash_xof(Type, Data, Length) -> Digest
Types:

Type = hash_xof_algorithm()
Data = iodata()
Length = integer() >= 0
Digest = binary()

Uses the 3-tuple style for error handling.

Computes a message digest of type Type from Data of Length for the chosen xof_algorithm.

May raise exception error:notsup in case the chosen Type is not supported by the underlying libcrypto
implementation.

hash_init(Type) -> State
Types:

Type = hash_algorithm()
State = hash_state()

Uses the 3-tuple style for error handling.

Initializes the context for streaming hash operations. Type determines which digest to use. The returned context should
be used as argument to hash_update.

hash_update(State, Data) -> NewState
Types:

State = NewState = hash_state()
Data = iodata()

Uses the 3-tuple style for error handling.

Updates the digest represented by Context using the given Data. Context must have been generated using
hash_init or a previous call to this function. Data can be any length. NewContext must be passed into the next call
to hash_update or hash_final.

hash_final(State) -> Digest
Types:

State = hash_state()
Digest = binary()

Uses the 3-tuple style for error handling.

Finalizes the hash operation referenced by Context returned from a previous call to hash_update. The size of
Digest is determined by the type of hash function used to generate it.

info_fips() -> not_supported | not_enabled | enabled
Provides information about the FIPS operating status of crypto and the underlying libcrypto library. If crypto was built
with FIPS support this can be either enabled (when running in FIPS mode) or not_enabled. For other builds
this value is always not_supported.

See enable_fips_mode/1 about how to enable FIPS mode.

38 | Ericsson AB. All Rights Reserved.: crypto

crypto

Warning:

In FIPS mode all non-FIPS compliant algorithms are disabled and raise exception error:notsup. Check
supports(ciphers) that in FIPS mode returns the restricted list of available algorithms.

enable_fips_mode(Enable) -> Result
Types:

Enable = Result = boolean()

Enables (Enable = true) or disables (Enable = false) FIPS mode. Returns true if the operation was
successful or false otherwise.

Note that to enable FIPS mode successfully, OTP must be built with the configure option --enable-fips, and the
underlying libcrypto must also support FIPS.

See also info_fips/0.

info() ->
 #{compile_type := normal | debug | valgrind | asan,
 cryptolib_version_compiled => string() | undefined,
 cryptolib_version_linked := string(),
 link_type := dynamic | static,
 otp_crypto_version := string()}
Provides a map with information about the compilation and linking of crypto.

Example:

1> crypto:info().
#{compile_type => normal,
 cryptolib_version_compiled => "OpenSSL 3.0.0 7 sep 2021",
 cryptolib_version_linked => "OpenSSL 3.0.0 7 sep 2021",
 link_type => dynamic,
 otp_crypto_version => "5.0.2"}
2>

More association types than documented may be present in the map.

info_lib() -> [{Name, VerNum, VerStr}]
Types:

Name = binary()
VerNum = integer()
VerStr = binary()

Provides the name and version of the libraries used by crypto.

Name is the name of the library. VerNum is the numeric version according to the library's own versioning scheme.
VerStr contains a text variant of the version.

> info_lib().
[{<<"OpenSSL">>,269484095,<<"OpenSSL 1.1.0c 10 Nov 2016"">>}]

Ericsson AB. All Rights Reserved.: crypto | 39

crypto

Note:

From OTP R16 the numeric version represents the version of the OpenSSL header files (openssl/
opensslv.h) used when crypto was compiled. The text variant represents the libcrypto library used at runtime.
In earlier OTP versions both numeric and text was taken from the library.

hash_info(Type) -> Result
Types:

Type = hash_algorithm()
Result =
 #{size := integer(),
 block_size := integer(),
 type := integer()}

Provides a map with information about block_size, size and possibly other properties of the hash algorithm in question.

For a list of supported hash algorithms, see supports(hashs).

cipher_info(Type) -> Result
Types:

Type = cipher()
Result =
 #{key_length := integer(),
 iv_length := integer(),
 block_size := integer(),
 mode := CipherModes,
 type := undefined | integer(),
 prop_aead := boolean()}
CipherModes =
 undefined | cbc_mode | ccm_mode | cfb_mode | ctr_mode |
 ecb_mode | gcm_mode | ige_mode | ocb_mode | ofb_mode |
 wrap_mode | xts_mode

Provides a map with information about block_size, key_length, iv_length, aead support and possibly other properties
of the cipher algorithm in question.

Note:

The ciphers aes_cbc, aes_cfb8, aes_cfb128, aes_ctr, aes_ecb, aes_gcm and aes_ccm has no
keylength in the Type as opposed to for example aes_128_ctr. They adapt to the length of the key provided
in the encrypt and decrypt function. Therefore it is impossible to return a valid keylength in the map.

Always use a Type with an explicit key length,

For a list of supported cipher algorithms, see supports(ciphers).

mod_pow(N, P, M) -> Result
Types:

40 | Ericsson AB. All Rights Reserved.: crypto

crypto

N = P = M = binary() | integer()
Result = binary() | error

Computes the function N^P mod M.

private_decrypt(Algorithm, CipherText, PrivateKey, Options) ->
 PlainText
Types:

Algorithm = pk_encrypt_decrypt_algs()
CipherText = binary()
PrivateKey = rsa_private() | engine_key_ref()
Options = pk_encrypt_decrypt_opts()
PlainText = binary()

Uses the 3-tuple style for error handling.

Decrypts the CipherText, encrypted with public_encrypt/4 (or equivalent function) using the PrivateKey, and
returns the plaintext (message digest). This is a low level signature verification operation used for instance by older
versions of the SSL protocol. See also public_key:decrypt_private/[2,3]

private_encrypt(Algorithm, PlainText, PrivateKey, Options) ->
 CipherText
Types:

Algorithm = pk_encrypt_decrypt_algs()
PlainText = binary()
PrivateKey = rsa_private() | engine_key_ref()
Options = pk_encrypt_decrypt_opts()
CipherText = binary()

Uses the 3-tuple style for error handling.

Encrypts the PlainText using the PrivateKey and returns the ciphertext. This is a low level signature operation
used for instance by older versions of the SSL protocol. See also public_key:encrypt_private/[2,3]

public_decrypt(Algorithm, CipherText, PublicKey, Options) ->
 PlainText
Types:

Algorithm = pk_encrypt_decrypt_algs()
CipherText = binary()
PublicKey = rsa_public() | engine_key_ref()
Options = pk_encrypt_decrypt_opts()
PlainText = binary()

Uses the 3-tuple style for error handling.

Decrypts the CipherText, encrypted with private_encrypt/4(or equivalent function) using the PrivateKey, and
returns the plaintext (message digest). This is a low level signature verification operation used for instance by older
versions of the SSL protocol. See also public_key:decrypt_public/[2,3]

public_encrypt(Algorithm, PlainText, PublicKey, Options) ->

Ericsson AB. All Rights Reserved.: crypto | 41

crypto

 CipherText
Types:

Algorithm = pk_encrypt_decrypt_algs()
PlainText = binary()
PublicKey = rsa_public() | engine_key_ref()
Options = pk_encrypt_decrypt_opts()
CipherText = binary()

Uses the 3-tuple style for error handling.

Encrypts the PlainText (message digest) using the PublicKey and returns the CipherText. This is a low level
signature operation used for instance by older versions of the SSL protocol. See also public_key:encrypt_public/[2,3]

rand_seed(Seed :: binary()) -> ok
Set the seed for PRNG to the given binary. This calls the RAND_seed function from openssl. Only use this if the
system you are running on does not have enough "randomness" built in. Normally this is when strong_rand_bytes/1
raises error:low_entropy

rand_uniform(Lo, Hi) -> N
Types:

Lo, Hi, N = integer()

Generate a random number N, Lo =< N < Hi. Uses the crypto library pseudo-random number generator.
Hi must be larger than Lo.

start() -> ok | {error, Reason :: term()}
Use application:start(crypto) instead.

Warning:

This function does not work if FIPS mode is to be enabled. FIPS mode will be disabled even if configuration
parameter fips_mode is set to true. Use application:start(crypto) instead.

stop() -> ok | {error, Reason :: term()}
Use application:stop(crypto) instead.

strong_rand_bytes(N :: integer() >= 0) -> binary()
Generates N bytes randomly uniform 0..255, and returns the result in a binary. Uses a cryptographically secure prng
seeded and periodically mixed with operating system provided entropy. By default this is the RAND_bytes method
from OpenSSL.

May raise exception error:low_entropy in case the random generator failed due to lack of secure "randomness".

rand_seed() -> rand:state()
Creates state object for random number generation, in order to generate cryptographically strong random numbers
(based on OpenSSL's BN_rand_range), and saves it in the process dictionary before returning it as well. See also
rand:seed/1 and rand_seed_s/0.

42 | Ericsson AB. All Rights Reserved.: crypto

crypto

When using the state object from this function the rand functions using it may raise exception error:low_entropy
in case the random generator failed due to lack of secure "randomness".

Example

_ = crypto:rand_seed(),
_IntegerValue = rand:uniform(42), % [1; 42]
_FloatValue = rand:uniform(). % [0.0; 1.0[

rand_seed_s() -> rand:state()
Creates state object for random number generation, in order to generate cryptographically strongly random numbers
(based on OpenSSL's BN_rand_range). See also rand:seed_s/1.

When using the state object from this function the rand functions using it may raise exception error:low_entropy
in case the random generator failed due to lack of secure "randomness".

Note:

The state returned from this function cannot be used to get a reproducible random sequence as from the other rand
functions, since reproducibility does not match cryptographically safe.

The only supported usage is to generate one distinct random sequence from this start state.

rand_seed_alg(Alg) -> rand:state()
Types:

Alg = crypto | crypto_cache

Creates state object for random number generation, in order to generate cryptographically strong random numbers,
and saves it in the process dictionary before returning it as well. See also rand:seed/1 and rand_seed_alg_s/1.

When using the state object from this function the rand functions using it may raise exception error:low_entropy
in case the random generator failed due to lack of secure "randomness".

Example

_ = crypto:rand_seed_alg(crypto_cache),
_IntegerValue = rand:uniform(42), % [1; 42]
_FloatValue = rand:uniform(). % [0.0; 1.0[

rand_seed_alg(Alg, Seed) -> rand:state()
Types:

Alg = crypto_aes

Creates a state object for random number generation, in order to generate cryptographically unpredictable random
numbers, and saves it in the process dictionary before returning it as well. See also rand_seed_alg_s/2.

Example

Ericsson AB. All Rights Reserved.: crypto | 43

crypto

_ = crypto:rand_seed_alg(crypto_aes, "my seed"),
IntegerValue = rand:uniform(42), % [1; 42]
FloatValue = rand:uniform(), % [0.0; 1.0[
_ = crypto:rand_seed_alg(crypto_aes, "my seed"),
IntegerValue = rand:uniform(42), % Same values
FloatValue = rand:uniform(). % again

rand_seed_alg_s(Alg) -> rand:state()
Types:

Alg = crypto | crypto_cache

Creates state object for random number generation, in order to generate cryptographically strongly random numbers.
See also rand:seed_s/1.

If Alg is crypto this function behaves exactly like rand_seed_s/0.

If Alg is crypto_cache this function fetches random data with OpenSSL's RAND_bytes and caches it for speed
using an internal word size of 56 bits that makes calculations fast on 64 bit machines.

When using the state object from this function the rand functions using it may raise exception error:low_entropy
in case the random generator failed due to lack of secure "randomness".

The cache size can be changed from its default value using the crypto app's configuration parameter
rand_cache_size.

When using the state object from this function the rand functions using it may throw exception low_entropy in
case the random generator failed due to lack of secure "randomness".

Note:

The state returned from this function cannot be used to get a reproducible random sequence as from the other rand
functions, since reproducibility does not match cryptographically safe.

In fact since random data is cached some numbers may get reproduced if you try, but this is unpredictable.

The only supported usage is to generate one distinct random sequence from this start state.

rand_seed_alg_s(Alg, Seed) -> rand:state()
Types:

Alg = crypto_aes

Creates a state object for random number generation, in order to generate cryptographically unpredictable random
numbers. See also rand_seed_alg/1.

To get a long period the Xoroshiro928 generator from the rand module is used as a counter (with period 2^928 - 1)
and the generator states are scrambled through AES to create 58-bit pseudo random values.

The result should be statistically completely unpredictable random values, since the scrambling is cryptographically
strong and the period is ridiculously long. But the generated numbers are not to be regarded as cryptographically strong
since there is no re-keying schedule.

• If you need cryptographically strong random numbers use rand_seed_alg_s/1 with Alg =:= crypto or Alg
=:= crypto_cache.

• If you need to be able to repeat the sequence use this function.

• If you do not need the statistical quality of this function, there are faster algorithms in the rand module.

44 | Ericsson AB. All Rights Reserved.: crypto

crypto

Thanks to the used generator the state object supports the rand:jump/0,1 function with distance 2^512.

Numbers are generated in batches and cached for speed reasons. The cache size can be changed from its default value
using the crypto app's configuration parameter rand_cache_size.

ec_curves() -> [EllipticCurve]
Types:

EllipticCurve =
 ec_named_curve() | edwards_curve_dh() | edwards_curve_ed()

Can be used to determine which named elliptic curves are supported.

ec_curve(CurveName) -> ExplicitCurve
Types:

CurveName = ec_named_curve()
ExplicitCurve = ec_explicit_curve()

Return the defining parameters of a elliptic curve.

sign(Algorithm, DigestType, Msg, Key) -> Signature
sign(Algorithm, DigestType, Msg, Key, Options) -> Signature
Types:

Algorithm = pk_sign_verify_algs()
DigestType =
 rsa_digest_type() |
 dss_digest_type() |
 ecdsa_digest_type() |
 none
Msg = iodata() | {digest, iodata()}
Key =
 rsa_private() |
 dss_private() |
 [ecdsa_private() | ecdsa_params()] |
 [eddsa_private() | eddsa_params()] |
 engine_key_ref()
Options = pk_sign_verify_opts()
Signature = binary()

Uses the 3-tuple style for error handling.

Creates a digital signature.

The msg is either the binary "cleartext" data to be signed or it is the hashed value of "cleartext" i.e. the digest (plaintext).

Algorithm dss can only be used together with digest type sha.

See also public_key:sign/3.

verify(Algorithm, DigestType, Msg, Signature, Key) -> Result
verify(Algorithm, DigestType, Msg, Signature, Key, Options) ->
 Result
Types:

Ericsson AB. All Rights Reserved.: crypto | 45

crypto

Algorithm = pk_sign_verify_algs()
DigestType =
 rsa_digest_type() |
 dss_digest_type() |
 ecdsa_digest_type() |
 none
Msg = iodata() | {digest, iodata()}
Signature = binary()
Key =
 rsa_public() |
 dss_public() |
 [ecdsa_public() | ecdsa_params()] |
 [eddsa_public() | eddsa_params()] |
 engine_key_ref()
Options = pk_sign_verify_opts()
Result = boolean()

Uses the 3-tuple style for error handling.

Verifies a digital signature

The msg is either the binary "cleartext" data to be signed or it is the hashed value of "cleartext" i.e. the digest (plaintext).

Algorithm dss can only be used together with digest type sha.

See also public_key:verify/4.

Exports

privkey_to_pubkey(Type, EnginePrivateKeyRef) -> PublicKey
Types:

Type = rsa | dss
EnginePrivateKeyRef = engine_key_ref()
PublicKey = rsa_public() | dss_public()

Fetches the corresponding public key from a private key stored in an Engine. The key must be of the type indicated
by the Type parameter.

engine_get_all_methods() -> Result
Types:

Result = [engine_method_type()]
Returns a list of all possible engine methods.

May raise exception error:notsup in case there is no engine support in the underlying OpenSSL implementation.

See also the chapter Engine Load in the User's Guide.

engine_load(EngineId, PreCmds, PostCmds) -> Result
Types:

46 | Ericsson AB. All Rights Reserved.: crypto

crypto

EngineId = unicode:chardata()
PreCmds = PostCmds = [engine_cmnd()]
Result =
 {ok, Engine :: engine_ref()} | {error, Reason :: term()}

Loads the OpenSSL engine given by EngineId if it is available and intialize it. Returns ok and an engine handle,
if the engine can't be loaded an error tuple is returned.

The function raises a error:badarg if the parameters are in wrong format. It may also raise the exception
error:notsup in case there is no engine support in the underlying OpenSSL implementation.

See also the chapter Engine Load in the User's Guide.

engine_unload(Engine) -> Result
Types:

Engine = engine_ref()
Result = ok | {error, Reason :: term()}

Unloads the OpenSSL engine given by Engine. An error tuple is returned if the engine can't be unloaded.

The function raises a error:badarg if the parameter is in wrong format. It may also raise the exception
error:notsup in case there is no engine support in the underlying OpenSSL implementation.

See also the chapter Engine Load in the User's Guide.

engine_by_id(EngineId) -> Result
Types:

EngineId = unicode:chardata()
Result =
 {ok, Engine :: engine_ref()} | {error, Reason :: term()}

Get a reference to an already loaded engine with EngineId. An error tuple is returned if the engine can't be unloaded.

The function raises a error:badarg if the parameter is in wrong format. It may also raise the exception
error:notsup in case there is no engine support in the underlying OpenSSL implementation.

See also the chapter Engine Load in the User's Guide.

engine_ctrl_cmd_string(Engine, CmdName, CmdArg) -> Result
Types:

Engine = term()
CmdName = CmdArg = unicode:chardata()
Result = ok | {error, Reason :: term()}

Sends ctrl commands to the OpenSSL engine given by Engine. This function is the same as calling
engine_ctrl_cmd_string/4 with Optional set to false.

The function raises a error:badarg if the parameters are in wrong format. It may also raise the exception
error:notsup in case there is no engine support in the underlying OpenSSL implementation.

engine_ctrl_cmd_string(Engine, CmdName, CmdArg, Optional) ->
 Result
Types:

Ericsson AB. All Rights Reserved.: crypto | 47

crypto

Engine = term()
CmdName = CmdArg = unicode:chardata()
Optional = boolean()
Result = ok | {error, Reason :: term()}

Sends ctrl commands to the OpenSSL engine given by Engine. Optional is a boolean argument that can relax
the semantics of the function. If set to true it will only return failure if the ENGINE supported the given command
name but failed while executing it, if the ENGINE doesn't support the command name it will simply return success
without doing anything. In this case we assume the user is only supplying commands specific to the given ENGINE
so we set this to false.

The function raises a error:badarg if the parameters are in wrong format. It may also raise the exception
error:notsup in case there is no engine support in the underlying OpenSSL implementation.

engine_add(Engine) -> Result
Types:

Engine = engine_ref()
Result = ok | {error, Reason :: term()}

Add the engine to OpenSSL's internal list.

The function raises a error:badarg if the parameters are in wrong format. It may also raise the exception
error:notsup in case there is no engine support in the underlying OpenSSL implementation.

engine_remove(Engine) -> Result
Types:

Engine = engine_ref()
Result = ok | {error, Reason :: term()}

Remove the engine from OpenSSL's internal list.

The function raises a error:badarg if the parameters are in wrong format. It may also raise the exception
error:notsup in case there is no engine support in the underlying OpenSSL implementation.

engine_register(Engine, EngineMethods) -> Result
Types:

Engine = engine_ref()
EngineMethods = [engine_method_type()]
Result = ok | {error, Reason :: term()}

Register engine to handle some type of methods, for example engine_method_digests.

The function raises a error:badarg if the parameters are in wrong format. It may also raise the exception
error:notsup in case there is no engine support in the underlying OpenSSL implementation.

engine_unregister(Engine, EngineMethods) -> Result
Types:

Engine = engine_ref()
EngineMethods = [engine_method_type()]
Result = ok | {error, Reason :: term()}

Unregister engine so it don't handle some type of methods.

48 | Ericsson AB. All Rights Reserved.: crypto

crypto

The function raises a error:badarg if the parameters are in wrong format. It may also raise the exception
error:notsup in case there is no engine support in the underlying OpenSSL implementation.

engine_get_id(Engine) -> EngineId
Types:

Engine = engine_ref()
EngineId = unicode:chardata()

Return the ID for the engine, or an empty binary if there is no id set.

The function raises a error:badarg if the parameters are in wrong format. It may also raise the exception
error:notsup in case there is no engine support in the underlying OpenSSL implementation.

engine_get_name(Engine) -> EngineName
Types:

Engine = engine_ref()
EngineName = unicode:chardata()

Return the name (eg a description) for the engine, or an empty binary if there is no name set.

The function raises a error:badarg if the parameters are in wrong format. It may also raise the exception
error:notsup in case there is no engine support in the underlying OpenSSL implementation.

engine_list() -> Result
Types:

Result = [EngineId :: unicode:chardata()]
List the id's of all engines in OpenSSL's internal list.

It may also raise the exception error:notsup in case there is no engine support in the underlying OpenSSL
implementation.

See also the chapter Engine Load in the User's Guide.

May raise exception error:notsup in case engine functionality is not supported by the underlying OpenSSL
implementation.

ensure_engine_loaded(EngineId, LibPath) -> Result
Types:

EngineId = LibPath = unicode:chardata()
Result =
 {ok, Engine :: engine_ref()} | {error, Reason :: term()}

Loads an engine given by EngineId and the path to the dynamic library implementing the engine. An error tuple
is returned if the engine can't be loaded.

This function differs from the normal engine_load in the sense that it also add the engine id to OpenSSL's internal
engine list. The difference between the first call and the following is that the first loads the engine with the dynamical
engine and the following calls fetch it from the OpenSSL's engine list. All references that is returned are equal.

Use engine_unload/1 function to remove the references. But remember that engine_unload/1 just removes
the references to the engine and not the tag in OpenSSL's engine list. That has to be done with the engine_remove/1
function when needed (just called once, from any of the references you got).

The function raises a error:badarg if the parameters are in wrong format. It may also raise the exception
error:notsup in case there is no engine support in the underlying OpenSSL implementation.

Ericsson AB. All Rights Reserved.: crypto | 49

crypto

See also the chapter Engine Load in the User's Guide.

hash_equals(BinA, BinB) -> Result
Types:

BinA = BinB = binary()
Result = boolean()

Constant time memory comparison for fixed length binaries, such as results of HMAC computations.

Returns true if the binaries are identical, false if they are of the same length but not identical. The function raises an
error:badarg exception if the binaries are of different size.

pbkdf2_hmac(Digest, Pass, Salt, Iter, KeyLen) -> Result
Types:

Digest = sha | sha224 | sha256 | sha384 | sha512
Pass = Salt = binary()
Iter = KeyLen = integer() >= 1
Result = binary()

Uses the 3-tuple style for error handling.

PKCS #5 PBKDF2 (Password-Based Key Derivation Function 2) in combination with HMAC.

50 | Ericsson AB. All Rights Reserved.: crypto

	crypto
	Crypto User's Guide
	Licenses
	OpenSSL License
	SSLeay License

	FIPS mode
	Background
	Enabling FIPS mode
	Incompatibilities with regular builds
	Common caveats
	Restrictions on key sizes
	Restrictions on elliptic curves
	Avoid md5 for hashing
	Certificates and encrypted keys
	SNMP v3 limitations
	TLS 1.2 is required

	Engine Load
	Background
	Use Cases
	Dynamically load an engine from default directory
	Load an engine with the dynamic engine
	Load an engine and replace some methods
	Load with the ensure loaded function
	List all engines currently loaded

	Engine Stored Keys
	Background
	Use Cases
	Sign with an engine stored private key
	Verify with an engine stored public key
	Using a password protected private key

	Algorithm Details
	Ciphers
	Ciphers without an IV - cipher_no_iv()
	Ciphers with an IV - cipher_iv()
	Ciphers with AEAD - cipher_aead()

	Message Authentication Codes (MACs)
	CMAC
	HMAC
	POLY1305

	Hash
	Public Key Cryptography
	RSA
	DSS
	ECDSA
	EdDSA
	Diffie-Hellman
	Elliptic Curve Diffie-Hellman

	New and Old API
	Background
	The old API
	The new API
	Encryption and decryption
	MACs (Message Authentication Codes)

	Examples of the new api
	Examples of crypto_init/4 and crypto_update/2
	Example of crypto_one_time/5
	Example of crypto_one_time_aead/6
	Example of mac_init mac_update and mac_final

	Retired cipher names

	Reference Manual
	crypto
	crypto
	crypto_init/3
	crypto_init/4
	crypto_update/2
	crypto_dyn_iv_init/3
	crypto_final/1
	crypto_get_data/1
	crypto_dyn_iv_update/3
	crypto_one_time/4
	crypto_one_time/5
	crypto_one_time_aead/6
	crypto_one_time_aead/7
	supports/1
	mac/3
	mac/4
	macN/4
	macN/5
	mac_init/2
	mac_init/3
	mac_update/2
	mac_final/1
	mac_finalN/2
	bytes_to_integer/1
	compute_key/4
	exor/2
	generate_key/2
	generate_key/3
	hash/2
	hash_xof/3
	hash_init/1
	hash_update/2
	hash_final/1
	info_fips/0
	enable_fips_mode/1
	info/0
	info_lib/0
	hash_info/1
	cipher_info/1
	mod_pow/3
	private_decrypt/4
	private_encrypt/4
	public_decrypt/4
	public_encrypt/4
	rand_seed/1
	rand_uniform/2
	start/0
	stop/0
	strong_rand_bytes/1
	rand_seed/0
	rand_seed_s/0
	rand_seed_alg/1
	rand_seed_alg/2
	rand_seed_alg_s/1
	rand_seed_alg_s/2
	ec_curves/0
	ec_curve/1
	sign/4
	sign/5
	verify/5
	verify/6
	privkey_to_pubkey/2
	engine_get_all_methods/0
	engine_load/3
	engine_unload/1
	engine_by_id/1
	engine_ctrl_cmd_string/3
	engine_ctrl_cmd_string/4
	engine_add/1
	engine_remove/1
	engine_register/2
	engine_unregister/2
	engine_get_id/1
	engine_get_name/1
	engine_list/0
	ensure_engine_loaded/2
	hash_equals/2
	pbkdf2_hmac/5

