ERLANG

Runtime_Tools

Copyright © 1999-2025 Ericsson AB. All Rights Reserved.
Runtime_Tools 2.0.1
June 16, 2025

Copyright © 1999-2025 Ericsson AB. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance
with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless
required by applicable law or agreed to in writing, software distributed under the License is distributed on an
"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See

the License for the specific language governing permissions and limitations under the License. Ericsson AB. All
Rights Reserved..

June 16, 2025

1.1 LTTng and Erlang/OTP

1 Runtime Tools User's Guide

Runtime Tools

1.1 LTTng and Erlang/OTP

1.1.1 Introduction

The Linux Trace Toolkit: next generation is an open source system software package for correlated tracing of the
Linux kernel, user applications and libraries.

For more information, please visit http://Ittng.org

1.1.2 Building Erlang/OTP with LTTng support

Configure and build Erlang with LTTng support:

For LTTng to work properly with Erlang/OTP you need the following packages installed:
e LTTng-tools: acommand line interface to control tracing sessions.

e LTTng-UST: user space tracing library.

On Ubuntu this can beinstalled viaapt i t ude:

$ sudo aptitude install lttng-tools liblttng-ust-dev

See Installing L TTng for more information on how to install LTTng on your system.
After LTTng is properly installed on the system Erlang/OTP can be built with LTTng support.

$./configure --with-dynamic-trace=1lttng
$ make

1.1.3 Dyntrace Tracepoints

All tracepoints arein the domain of or g_er | ang_dynt race
All Erlang types are the string equivalent in LTTng.

process _spawn

e pid : string:ProcessID. Ex."<0.131. 0>"
e parent : string: ProcessID. Ex."<0.131. 0>"
e entry : string: Codelocation.Ex."|ists:sort/1"

Availablethrough er | ang: t race/ 3 withtraceflagprocs and{tracer, dyntrace, []} astracer module.
Example:
process spawn: { cpu id = 3 }, { pid = "<0.131.0>", parent = "<0.130.0>", entry = "erlang:apply/2" }

process _link

e to : string: ProcessIDorPortID. Ex."<0.131. 0>"
e from: string: ProcessID or Port ID. Ex." <0. 131. 0>"

Ericsson AB. All Rights Reserved.: Runtime_Tools | 1

href
href

1.1 LTTng and Erlang/OTP

e type : string:"link" | "unlink"
Availablethrough er | ang: t r ace/ 3 with traceflag pr ocs and{tr acer, dyntrace, []} astracer module.

Example:
process link: { cpu id = 3 }, { from = "<0.130.0>", to = "<0.131.0>", type = "link" }

process_exit
e pid : string:ProcessID. Ex."<0.131. 0>"
* reason : string: Exitreason. Ex." nor mal "

Availablethrough er | ang: t r ace/ 3 withtraceflagprocs and{tracer, dyntrace, []} astracer module.
Example:
process exit: { cpu id = 3 }, { pid = "<0.130.0>", reason = "normal" }
process register
e pid: string: ProcessID. Ex."<0.131. 0>"
e nane : string:: Registered name. Ex." | ogger "
e type : string:"register" | "unregister”
Example:
process_register: { cpu_id = 0 }, { pid = "<0.128.0>", name = "dyntrace_lttng SUITE" type = "register" }

process_scheduled

e pid : string:ProcessID. Ex."<0.131. 0>"

e entry : string: Codelocation.Ex."|ists:sort/1"

e type : string:z"in" | "out" | "in_exiting" | "out_exiting" | "out_exited"
Availablethrougher | ang: t r ace/ 3 withtraceflagr unni ngand{tracer, dyntrace, []} astracer module.
Example:

process scheduled: { cpu id =0 }, { pid = "<0.136.0>", entry = "erlang:apply/2", type = "in" }

port_open

e pid : string: ProcessID. Ex."<0.131. 0>"

e driver : string: Drivername.Ex."tcp_i net"
e port : string:PortlID.Ex. "#Port<0.1031>"

Availablethrough er | ang: t r ace/ 3 withtraceflagports and{tracer, dyntrace, []} astracer module.
Example:
port open: { cpu id =5 }, { pid = "<0.131.0>", driver = "'/bin/sh -s unix:cmd'", port = "#Port<0.1887>" }

port_exit
e port : string:PortID.Ex."#Port<0.1031>"
e reason : string:: Exitreason. Ex." nor mal "

Availablethrough er | ang: t race/ 3 withtraceflagports and{tracer, dyntrace, []} astracer module.

Example:

port exit: { cpu id =5 }, { port = "#Port<0.1887>", reason = "normal" }

2 | Ericsson AB. All Rights Reserved.: Runtime_Tools

1.1 LTTng and Erlang/OTP

port_link

e to : string: ProcessID. Ex."<0.131. 0>"

e from: string: ProcessID. Ex."<0.131. 0>"

e type : string:"link" | "unlink"

Availablethrough er | ang: t race/ 3 withtraceflagports and{tracer, dyntrace, []} astracer module.
Example:

port link: { cpu id =5 }, { from = "#Port<0.1887>", to = "<0.131.0>", type = "unlink" }

port_scheduled
Availablethrougher | ang: t r ace/ 3 withtraceflagr unni ngand{tracer, dyntrace, []} astracer module.

e port : string:PortID.Ex. "#Port<0.1031>"

e entry : string: Calback. Ex." open”

e type : string:"in" | "out" | "in_exiting" | "out_exiting" | "out_exited"
Example:

port scheduled: { cpu id =5 }, { pid = "#Port<0.1905>", entry = "close", type = "out" }

Availablethrougher | ang: t r ace/ 3 withtraceflagr unni ngand{tracer, dyntrace, []} astracer module.
function_call

e pid : string:ProcessID. Ex."<0.131. 0>"
e entry : string: Codelocation.Ex."|ists:sort/1"
e depth : integer :: Stack depth. Ex. 0

Availablethrough er | ang: t race/ 3 withtraceflagcal | and{tracer, dyntrace, []} astracer module.
Example:

function call: { cpu id =5 }, { pid = "<0.145.0>", entry = "dyntrace lttng SUITE:'-t call/1l-fun-1-'/0", dej

function_return

e pid : string: ProcessID. Ex."<0.131. 0>"
e entry : string: Codelocation. Ex."lists:sort/1"
e depth : integer :: Stack depth. Ex. 0

Available through er | ang: t race/ 3 withtraceflagcal | orreturn_toand{tracer,dyntrace,[]} as
tracer module.

Example:
function return: { cpu id =5 }, { pid = "<0.145.0>", entry = "dyntrace lttng SUITE:waiter/0", depth = 0 }

function_exception

e pid: string: ProcessID. Ex."<0.131. 0>"
e entry : string: Codelocation.Ex."|ists:sort/1"
e class : string:: Errorreason. Ex."error"

Availablethrough er | ang: t r ace/ 3 withtraceflagcal | and{tracer, dyntrace, []} astracer module.
Example:

function exception: { cpu id =5 }, { pid = "<0.144.0>", entry = "t:call exc/1", class = "error" }

Ericsson AB. All Rights Reserved.: Runtime_Tools | 3

1.1 LTTng and Erlang/OTP

message send

e from: string: ProcessID or Port ID. Ex." <0. 131. 0>"

e to : string: ProcessID or Port ID. Ex. " <0. 131. 0>"

e nmessage : string: Messagesent. Ex."{<0. 162. 0>, ok} "

Availablethrough er | ang: t race/ 3 withtraceflagsend and{tracer, dyntrace, []} astracer module.

Example:
message _send: { cpu id = 3 }, { from = "#Port<0.1938>", to = "<0.160.0>", message = "{#Port<0.1938>,eo0f}" }

message receive
e to : string: ProcessIDor PortID. Ex."<0. 131. 0>"
e nmessage : string: Messagereceived. Ex."{<0. 162. 0>, ok} "

Available through er | ang: t race/ 3 with trace flag ' recei ve' and {tracer, dyntrace,[]} as tracer
module.

Example:
message receive: { cpu id =7 }, { to = "<0.167.0>", message = "{<0.165.0>,0k}" }
gc_minor_start
e pid : string:: ProcessID.Ex."<0.131. 0>"
* need : integer ::Heapneed. Ex.2

e heap : integer :: Youngheapwordsize. Ex. 233
e old_heap : integer ::Oldheapwordsize. Ex. 233

Availablethrougher | ang: t r ace/ 3 withtraceflaggar bage_col | ecti onand{tracer, dyntrace,[]}
as tracer module.

Example:
gc_minor start: { cpu id = 0 }, { pid = "<0.172.0>", need = 0, heap = 610, old heap = 0 }
gc_minor_end
e pid : string:ProcessID. Ex."<0.131. 0>"
* reclaimed : integer ::Heapreclamed. Ex. 2

e heap : integer :: Youngheapwordsize. Ex.233
e old_heap : integer ::Oldheapwordsize. Ex. 233

Availablethrougher | ang: t r ace/ 3 withtraceflaggar bage_col | ecti onand{tracer, dyntrace,[]}
as tracer module.

Example:
gc_minor end: { cpu id = 0 }, { pid = "<0.172.0>", reclaimed = 120, heap = 1598, old heap = 1598 }
gc_major_start
e pid : string:ProcessID. Ex."<0.131. 0>"
* need : integer ::Heapneed. Ex.2

e heap : integer ::Youngheapwordsize. Ex.233
e old_heap : integer ::Oldheapwordsize. Ex. 233

4 | Ericsson AB. All Rights Reserved.: Runtime_Tools

1.1 LTTng and Erlang/OTP

Availablethrougher | ang: t r ace/ 3 withtraceflaggar bage_col | ecti onand{tracer, dyntrace, []}
as tracer module.

Example:
gc_major start: { cpu id =0 }, { pid = "<0.172.0>", need = 8, heap = 2586, old heap = 1598 }
gc_major_end
e pid: string: ProcessID. Ex."<0.131. 0>"
e reclained : integer :: Heapreclaimed. EX. 2

« heap : integer ::Youngheapwordsize Ex.233
e old_heap : integer :: Oldheapwordsize. EX. 233

Availablethrougher | ang: t r ace/ 3 withtraceflaggar bage_col | ecti onand{tracer, dyntrace, []}
as tracer module.

Example:

gc_major end: { cpu id = 0 }, { pid = "<0.172.0>", reclaimed = 240, heap = 4185, old heap = 0 }

1.1.4 BEAM Tracepoints

All tracepoints arein the domain of or g_er | ang_ot p
All Erlang types are the string equivalent in LTTng.
driver_init

e driver : string:: Drivername. EX."tcp_i net

e mmjor : integer ::Mgorversion Ex.3
e mnor : integer ::Minorversion. Ex.1
« flags : integer :Flags Ex.1
Example:
driver init: { cpu id = 2 }, { driver = "caller drv", major = 3, minor = 3, flags =1 }
driver_start

e pid : string:ProcessID. Ex."<0.131. 0>"
e driver : string:: Drivername. Ex."tcp_i net
e port : string: PortID.EX. "#Port<0.1031>"

Example:

driver start: { cpu id =2 }, { pid = "<0.198.0>", driver = "caller drv", port = "#Port<0.3676>" }

driver_output

e pid : string: ProcessID. Ex."<0.131. 0>"

e port : string: PortID.Ex. "#Port<0.1031>"
e driver : string:: Drivername Ex."tcp_i net"
e bytes : integer :: Sizeof datareturned. Ex. 82

Example:
driver output: { cpu id = 2 }, { pid = "<0.198.0>", port = "#Port<0.3677>", driver = "/bin/sh -s unix:cmd",

driver_outputv

Ericsson AB. All Rights Reserved.: Runtime_Tools | 5

1.1 LTTng and Erlang/OTP

e pid: string: ProcessID. Ex."<0.131. 0>"

e port : string: PortID.EX. "#Port<0.1031>"
e driver : string: Drivername.Ex."tcp_i net"
e bytes : integer :: Sizeof datareturned. Ex. 82

Example:
driver outputv: { cpu id =5 }, { pid = "<0.194.0>", port = "#Port<0.3663>", driver = "tcp inet", bytes = 3 }

driver_ready_input

e pid: string: ProcessID. Ex."<0.131. 0>"

e port : string: PortlID.EX. "#Port<0.1031>"
e driver : string: Drivername. Ex."tcp_i net"

Example:
driver ready input: { cpu id =5 }, { pid = "<0.189.0>", port = "#Port<0.3637>", driver = "inet gethost 4 " }

driver_ready output

e pid: string:ProcessID. Ex."<0.131. 0>"
e port : string: PortID.EX. "#Port<0.1031>"
e driver : string: Drivername.Ex."tcp_i net"

Example:
driver ready output: { cpu id =5 }, { pid = "<0.194.0>", port = "#Port<0.3663>", driver = "tcp inet" }

driver_timeout

e pid : string:ProcessID. Ex."<0.131. 0>"
e port : string:PortlD.Ex. "#Port<0.1031>"
e driver : string:: Drivername.Ex."tcp_i net"

Example:
driver timeout: { cpu id =5 }, { pid = "<0.196.0>", port = "#Port<0.3664>", driver = "tcp inet" }
driver_stop_select
e driver : string:: Drivername. Ex."tcp_i net"
Example:

driver stop select: { cpu id =5 }, { driver = "unknown" }

driver_flush

e pid : string: ProcessID. Ex."<0.131. 0>"
e port : string: PortID.Ex. "#Port<0.1031>"
e driver : string:: Drivername. Ex."tcp_i net"

Example:
driver flush: { cpu id =7 }, { pid = "<0.204.0>", port = "#Port<0.3686>", driver = "tcp inet" }

driver_stop
e pid: string: ProcessID. Ex."<0.131. 0>"

6 | Ericsson AB. All Rights Reserved.: Runtime_Tools

1.1 LTTng and Erlang/OTP

e port : string:PortlD.Ex."#Port<0.1031>"
e driver : string:: Drivername. Ex."tcp_i net"

Example:

driver stop: { cpu id =5 }, { pid = "[]", port = "#Port<0.3673>", driver = "tcp inet" }
driver_process exit
e pid : string: ProcessID. Ex."<0.131. 0>"

e port : string: PortID.Ex. "#Port<0.1031>"
e driver : string:: Drivername Ex."tcp_i net"

driver_ready_async

e pid : string:ProcessID. Ex."<0.131. 0>"
e port : string:PortID.Ex. "#Port<0.1031>"
e driver : string: Drivername.Ex."tcp_i net"

Example:

driver ready async: { cpu id = 3 }, { pid = "<0.181.0>", port = "#Port<0.3622>", driver = "tcp inet" }

driver_call

e pid : string:: ProcessID.Ex."<0.131.0>"

e port : string:PortlID.Ex. "#Port<0.1031>"
e driver : string:: Drivername. Ex."tcp_i net"
e comand : integer :: Command integer. Ex. 1

e bytes : integer :: Sizeof datareturned. Ex. 82

Example:
driver call: { cpu id =2 }, { pid = "<0.202.0>", port = "#Port<0.3676>", driver = "caller drv", command = (

driver_control

e pid: string: ProcessID. Ex."<0.131. 0>"
e port : string: PortID.Ex. "#Port<0.1031>"
e driver : string:: Drivername Ex."tcp_i net"

e command : integer :: Command integer. Ex. 1
* bytes : integer :: Sizeof datareturned. Ex. 82
Example:

driver control: { cpu id = 3 }, { pid = "<0.32767.8191>", port = "#Port<0.0>", driver = "forker", command =

carrier_create

e type : string: Cariertype. Ex."ets_al |l oc"

* instance : integer :: Allocator instance. Ex. 1

e size : integer : Carriersize Ex. 262144

e nbc_carriers : integer :: Number of multiblock carriersin instance. Ex. 3

e nbc_carriers_size : integer : Tota size of multiblock blocks carriersin instance. Ex. 1343488
« nbc_bl ocks : integer :: Number of multiblock blocksin instance. Ex. 122

e nbc_bl ocks_size : integer :: Total sizeof all multiblock blocksin instance. Ex. 285296

Ericsson AB. All Rights Reserved.: Runtime_Tools | 7

1.1 LTTng and Erlang/OTP

* shc_carriers : integer :: Number of singleblock carriersin instance. Ex. 1
e sbc_carriers_size : integer :: Tota size of singleblock blocks carriersin instance. Ex. 1343488
« sbc_bl ocks : integer :: Number of singleblocksin instance. Ex. 1

e sbc_bl ocks_size : integer :: Tota sizeof all singleblock blocksin instance. Ex. 285296
Example:

carrier create: { cpu id = 2 }, { type = "ets alloc", instance = 7, size = 2097152, mbc carriers = 4, mbc_carr:
carrier_destroy

e type : string: Cariertype. Ex."ets_al |l oc"

e instance : integer :: Allocator instance. Ex. 1
e size : integer :: Carrier size. Ex. 262144
e nbc_carriers : integer :: Number of multiblock carriersininstance. Ex. 3
e nbc_carriers_size : integer :: Tota size of multiblock blocks carriersin instance. Ex. 1343488
e nbc_bl ocks : integer :: Number of multiblock blocksin instance. Ex. 122
e nbc_bl ocks_size : integer :: Total sizeof all multiblock blocksin instance. Ex. 285296
e sbc_carriers : integer :: Number of singleblock carriersin instance. Ex. 1
e sbc_carriers_size : integer :: Tota size of singleblock blocks carriersin instance. Ex. 1343488
* shc_bl ocks : integer :: Number of singleblocksin instance. Ex. 1
« sbc_bl ocks_size : integer :: Tota sizeof all singleblock blocksin instance. Ex. 285296
Example:
carrier destroy: { cpu id = 6 }, { type = "ets alloc", instance = 7, size = 262144, mbc _carriers = 3, mbc_carr:

carrier_pool_put

e type : string: Cariertype. Ex."ets_al | oc"
« instance : integer :: Allocator instance. Ex. 1
* size : integer :: Carriersize. Ex. 262144

Example:

carrier pool put: { cpu id = 3 }, { type = "ets alloc", instance = 5, size

1048576 }
carrier_pool_get

e type : string: Cariertype. Ex."ets_al |l oc"

e instance : integer :: Allocator instance. Ex. 1

e size : integer : Carriersize Ex. 262144

Example:

carrier pool get: { cpu id =7 }, { type = "ets alloc", instance = 4, size = 3208 }

1.1.5 Example of process tracing
An example of processtracing of os_non and friends.
Clean start of Ittng in a bash shell.

8 | Ericsson AB. All Rights Reserved.: Runtime_Tools

1.1 LTTng and Erlang/OTP

$ lttng create erlang-demo

Spawning a session daemon

Session erlang-demo created.

Traces will be written in /home/egil/lttng-traces/erlang-demo-20160526-165920

Start an Erlang node with Ittng enabled.

$ erl
Erlang/0TP 19 [erts-8.0] [source-4d7b24d] [64-bit] [smp:8:8] [async-threads:10] [hipe] [kernel-poll:false] |

Eshell V8.0 (abort with "G)
1>

Load thedynt r ace module.

1> 1(dyntrace).
{module,dyntrace}

All tracepoints via dyntrace are now visible and can belisted throughl ttng i st -u.
Enable the process register LTTng tracepoint for Erlang.

$ lttng enable-event -u org erlang dyntrace:process register
UST event org erlang dyntrace:process register created in channel channel0

Enable process tracing for new processes and use dynt r ace astracer backend.

2> erlang:trace(new, true, [procs, {tracer,dyntrace,[]1}1]).
0

Start LTTng tracing.

$ lttng start
Tracing started for session erlang-demo

Start the os_non application in Erlang.

3> application:ensure all started(os mon).
{ok, [sasl,0s mon]}

Stop LTTng tracing and view the result.

$ lttng stop

Tracing stopped for session erlang-demo

$ lttng view

[17:20:42.561168759] (+7.7??2?2?7?7?7) elxd11681x9 org erlang dyntrace:process register: \
{ cpu id =5}, { pid = "<0.66.0>", name = "sasl sup", type = "register" }

[17:20:42.561215519] (+0.000046760) elxd11681x9 org erlang dyntrace:process register: \
{ cpu id =5 }, { pid = "<0.67.0>", name = "sasl safe sup", type = "register" }

[17:20:42.562149024] (+0.000933505) elxd11681x9 org erlang dyntrace:process register: \
{ cpu id =5 }, { pid = "<0.68.0>", name = "alarm handler", type = "register" }

[17:20:42.571035803] (+0.008886779) elxd11681x9 org erlang dyntrace:process register: \
{ cpu id =5 }, { pid = "<0.69.0>", name = "release handler", type = "register" }

[17:20:42.574939868] (+0.003904065) elxd11681x9 org erlang dyntrace:process register: \
{ cpu id =5 }, { pid = "<0.74.0>", name = "os mon_sup", type = "register" }

[17:20:42.576818712] (+0.001878844) elxd11681x9 org erlang dyntrace:process register: \
{ cpu id =5 }, { pid = "<0.75.0>", name = "disksup", type = "register" }

[17:20:42.580032013] (+0.003213301) elxd11681x9 org erlang dyntrace:process register: \
{ cpu id =5}, { pid = "<0.76.0>", name = "memsup", type = "register" }

[17:20:42.583046339] (+0.003014326) elxd11681x9 org erlang dyntrace:process register: \
{ cpu id =5}, { pid = "<0.78.0>", name = "cpu sup", type = "register" }

[17:20:42.586206242] (+0.003159903) elxd11681x9 org erlang dyntrace:process register: \
{ cpu id =5 }, { pid = "<0.82.0>", name = "timer server", type = "register" }

Ericsson AB. All Rights Reserved.: Runtime_Tools | 9

1.2 DTrace and Erlang/OTP

1.2 DTrace and Erlang/OTP
1.2.1 History

The first implementation of DTrace probes for the Erlang virtual machine was presented at the 2008 Erlang
User Conference. That work, based on the Erlang/OTP R12 release, was discontinued due to what appears to be
miscommuni cation with the original developers.

Several users have created Erlang port drivers, linked-in drivers, or NIFs that allow Erlang code to try to activate a
probe, e.g.f oo_nodul e: dtrace_probe("nmessage goes here!").

1.2.2 Goals

* Annotate as much of the Erlang VM asis practical.

e Theinitia goal isto tracefile 1/O operations.

e Support al platformsthat implement DTrace: OS X, Solaris, and (I hope) FreeBSD and NetBSD.
» Totheextent that it's practical, support SystemTap on Linux via DTrace provider compatibility.

« Allow Erlang code to supply annotations.

1.2.3 Supported platforms

* 0OSX 10.6.x / Snow Leopard, OS X 10.7.x / Lion and probably newer versions.

e Solaris 10. | have done limited testing on Solaris 11 and Openlndiana release 151a, and both appear to work.
e FreeBSD 9.0 and 10.0.

* Linux viaSystemTap compatibility. Please see $SERL_TOP/HOWTO/SY STEMTAP.md for more details.

Just addthe- - wi t h- dynanmi c-t r ace=dt r ace option to your command when you run the conf i gur e script.
If you are using systemtap, the configure optionis- - wi t h- dynani c-t r ace=syst ent ap

1.2.4 Status

Asof R15B01, thedynamictrace codeisincluded inthe OTP sourcedistribution, althoughit's considered experimental .
The main development of the dtrace code still happens outside of Ericsson, but there is no need to fetch a patched
version of the OTP source to get the basic functionality.

1.2.5 DTrace probe specifications

Probe specifications can be found in ert s/ ermul at or/ beam er |l ang_dtrace. d, and afew example scripts
canbefoundunder | i b/ runti nme_t ool s/ exanpl es/ .

1.3 SystemTap and Erlang/OTP

1.3.1 Introduction

SystemTapisDTracefor Linux. Infact Erlang's SystemTap support is built using SystemTap's DTrace compatibility's
layer. For an introduction to Erlang DTrace support read $ERL_TOP/HOWTO/DTRACE.md.

10 | Ericsson AB. All Rights Reserved.: Runtime_Tools

href
href

1.3 SystemTap and Erlang/OTP

1.3.2 Requisites
e Linux Kernel with UTRACE support
check for UTRACE support in your current kernel:

grep CONFIG_UTRACE /boot/config- uname -r’
CONFIG_UTRACE=y

Fedora 16 isknown to contain UTRACE, for most other Linux distributions acustom build kernel will berequired.
Check Fedora's SystemTap documentation for additional required packages (e.g. Kernel Debug Symbols)

e SystemTap>1.6

A thetimeof writing this, the latest rel eased version of SystemTapisversion 1.6. Erlang's DTrace support requires
a MACRO that was introduced after that release. So either get a newer release or build SystemTap from git
yourself (see: http://sourceware.org/systemtap/getinvol ved.html)

1.3.3 Building Erlang
Configure and build Erlang with SystemTap support:

./configure --with-dynamic-trace=systemtap + whatever args you need
make

1.3.4 Testing

SystemTap, unlike DTrace, needs to know what binary it is tracing and has to be able to read that binary before it
starts tracing. Y our probe script therefore has to reference the correct beam emulator and stap needs to be able to find
that binary. The examples are written for "beam", but other versions such as "beam.smp" or "beam.debug.smp" might
exist (depending on your configuration). Make sure you either specify the full the path of the binary in the probe or
your "beam" binary isin the search path.

All available probes can be listed like this:

stap -L 'process("beam").mark("*")"
or:

PATH=/path/to/beam:$PATH stap -L 'process("beam").mark("*")'
Probesin the dtrace.so NIF library like this:

PATH=/path/to/dtrace/priv/1lib:$PATH stap -L 'process("dtrace.so").mark("*")'

1.3.5 Running SystemTap scripts

Adjust the process("beam™) reference to your beam version and attach the script to arunning "beam" instance:

stap /path/to/probe/script/portl.systemtap -x <pid of beam>

Ericsson AB. All Rights Reserved.: Runtime_Tools | 11

1.4 erts_alloc_config

1.4 erts_alloc_config
1.4.1 Module Removed

This (experimental) tool no longer produced good configurations and cannot be fixed in a reasonably backwards
compatible manner. It has therefore as of OTP 26.0 been removed.

12 | Ericsson AB. All Rights Reserved.: Runtime_Tools

1.4 erts_alloc_config

2 Reference Manual

Runtime_Tools provides low footprint tracing/debugging tools suitable for inclusion in a production system.

Ericsson AB. All Rights Reserved.: Runtime_Tools | 13

runtime_tools

runtime_tools
Application

This chapter describes the Runtime_Tools application in OTP, which provides low footprint tracing/debugging tools
suitable for inclusion in a production system.

Configuration

There are currently no configuration parameters available for this application.

SEE ALSO
application(3)

14 | Ericsson AB. All Rights Reserved.: Runtime_Tools

dbg

dbg

Erlang module

This module implements a text based interface to thet race/ 3 and thet race_pattern/ 2 BIFs. It makes it
possible to trace functions, processes, ports and messages.

To quickly get started on tracing function calls you can use the following code in the Erlang shell:

1> dbg:tracer(). %% Start the default trace message receiver

{ok,<0.36.0>}

2> dbg:p(all, c). %% Setup call (c) tracing on all processes

{ok, [{matched, nonode@nohost,26}]1}

3> dbg:tp(lists, seq, Xx). %% Setup an exception return trace (x) on lists:seq
{ok, [{matched, nonode@nohost, 2}, {saved, x}]}

4> lists:seq(1l,10).

(<0.34.0>) call lists:seq(1,10)

(<0.34.0>) returned from lists:seq/2 -> [1,2,3,4,5,6,7,8,9,10]
[1,2,3,4,5,6,7,8,9,10]

For more examples of how to use dbg from the Erlang shell, see the simple example section.

The utilities are also suitable to usein system testing on large systems, where other tools have too much impact on the
system performance. Some primitive support for sequential tracing is also included, see the advanced topics section.

Exports

fun2ms(LiteralFun) -> MatchSpec
Types:
Literal Fun = fun() literal
Mat chSpec = term)
Pseudo function that by means of a par se_t r ansf or mtrandates the literal f un() typed as parameter in the
function call to a match specification as described in the mat ch_spec manua of ERTS users guide. (With literal

| mean that the f un() needs to textually be written as the parameter of the function, it cannot be held in a variable
which in turn is passed to the function).

The parse transform is implemented in the module nms_t r ansf or m and the source must include the file
ms_transform hrl in STDLIB for this pseudo function to work. Failing to include the hrl file in the source
will result in a runtime error, not a compile time ditto. The include file is easiest included by adding the line -
include_lib("stdlib/include/ns_transformhrl"). tothesourcefile.

Thef un() isvery restricted, it can take only a single parameter (the parameter list to match), a sole variable or a
list. It needsto use thei s_ XXX guard tests and one cannot use language constructs that have no representation in
amatch_spec (likei f, case, r ecei ve etc). The return value from the fun will be the return value of the resulting
match_spec.

Example:
1> dbg: fun2ms(fun([M,N]) when N > 3 -> return trace() end).
[{l'$1",'$2'],[{'>","$2",3}],[{return_trace}]}]

Variables from the environment can be imported, so that this works:

Ericsson AB. All Rights Reserved.: Runtime_Tools | 15

dbg

2> X=3.

3

3> dbg:fun2ms(fun([M,N]) when N > X -> return_trace() end).
[{C'$1",'$2"]1,[{'>","$2",{const,3}}], [{return_trace}]}]

Theimported variableswill be replaced by match_specconst expressions, which is consistent with the static scoping
for Erlang f un() s. Local or global function calls cannot be in the guard or body of the fun however. Calls to builtin
match_spec functions of courseis allowed:

4> dbg:fun2ms(fun([M,N]) when N > X, is atomm(M) -> return trace() end).

Error: fun containing local erlang function calls ('is atomm' called in guard)\
cannot be translated into match spec

{error,transform error}

5> dbg:fun2ms(fun([M,N]) when N > X, is atom(M) -> return trace() end).
[{['$1","'$2"'],[{'>","'$2",{const,3}},{is atom, '$1'}]1, [{return trace}]}]

As you can see by the example, the function can be called from the shell too. Thef un() needsto be literally in the
call when used from the shell as well. Other means than the parse_transform are used in the shell case, but more or
less the same restrictions apply (the exception being records, as they are not handled by the shell).

If the parse_transform is not applied to a module which calls this pseudo function, the call will fail in runtime
(withabadar g). The module dbg actually exports a function with this name, but it should never really be called
except for when using the function in the shell. If the par se_t r ansf or mis properly applied by including the
ns_transform hrl header file, compiled code will never cal the function, but the function call is replaced
by aliteral match_spec.

Moreinformation is provided by the ms_t r ansf or mmanual pagein STDLIB.

h() -> ok
h stands for help. Gives alist of itemsfor brief online help.

h(Item) -> ok
Types.
Item = atom)

h stands for help. Gives a brief help text for functions in the dbg module. The available items can be listed with
dbg: h/ 0.

p(Item) -> {ok, MatchDesc} | {error, term()}
Equivalenttop(ltem [n]).

p(Item, Flags) -> {ok, MatchDesc} | {error, term()}

Types:
Mat chDesc = [Mat chNum
Mat chNum = {rmat ched, node(), integer()} | {rmatched, node(), 0, RPCError}
RPCEr r or term))

p stands for process. Traces | t emin accordance to the value specified by Fl ags. The variation of | t emislisted
below:

16 | Ericsson AB. All Rights Reserved.: Runtime_Tools

dbg

pid() orport()
The corresponding process or port istraced. The process or port may be a remote process or port (on another
Erlang node). The node must bein thelist of traced nodes (seen/ 1 andt r acer/ 3).
al |
All processes and portsin the system as well as all processes and ports created hereafter are to be traced.
processes
All processesin the system aswell as all processes created hereafter are to be traced.
ports
All portsin the system aswell as all ports created hereafter are to be traced.
new
All processes and ports created after the call is are to be traced.
new_processes
All processes created after the call is are to be traced.
new_ports
All ports created after the call is are to be traced.
exi sting
All existing processes and ports are traced.
exi sting_processes
All existing processes are traced.
exi sting_ports
All existing ports are traced.
atom)
The process or port with the corresponding registered name is traced. The process or port may be aremote
process (on another Erlang node). The node must be added withthen/ 1 ort r acer / 3 function.
i nteger ()
The process<0. | t em 0> istraced.

{X, Y, Z}
The process <X. Y. Z> istraced.
string()

If thel t emisastring "<X.Y.Z>" asreturned frompi d_to_li st/ 1, theprocess<X. Y. Z> istraced.

When enabling an | t emthat represents a group of processes, the | t emis enabled on all nodes added with then/ 1
ortracer/ 3 function.

FI ags can beasingle atom, or alist of flags. The available flags are:
s (send)
Traces the messages the process or port sends.
r (receive)
Traces the messages the process or port receives.
m (messages)
Traces the messages the process or port receives and sends.
c (call)
Traces global function calls for the process according to the trace patterns set in the system (see tp/2).
p (procs)
Traces process related events to the process.
ports

Traces port related events to the port.

Ericsson AB. All Rights Reserved.: Runtime_Tools | 17

dbg

sos (set on spawn)

Letsal processes created by the traced process inherit the trace flags of the traced process.
sol (set on I|ink)

L ets another process, P2, inherit the trace flags of the traced process whenever the traced process links to P2.
sofs (set on first spawn)

Thisisthe same assos, but only for the first process spawned by the traced process.
sof | (set on first link)

Thisisthesameassol , but only for thefirst call tol i nk/ 1 by the traced process.
al |

Setsal flagsexcept si | ent .
cl ear

Clearsal flags.
Thelist can adso include any of theflagsallowediner | ang: trace/ 3

The function returns either an error tuple or atuple{ ok, Li st}.TheLi st consistsof specifications of how many
processes and ports that matched (in the case of a pure pid() exactly 1). The specification of matched processes is
{mat ched, Node, N}.Iftheremoteprocessorcal,r pc,toaremotenodefails,ther pc error messageisdelivered
as a fourth argument and the number of matched processes are 0. Note that the result {ok, List} may contain alist
wherer pc callsto one, several or even all nodes failed.

c(Mod, Fun, Args)
Equivalenttoc(Mod, Fun, Args, all).

c(Mod, Fun, Args, Flags)

¢ standsfor call. Evaluates the expression appl y(Mod, Fun, Args) withthetraceflagsin Fl ags set. Thisis
aconvenient way to trace processes from the Erlang shell.

i() -> ok

i stands for information. Displays information about all traced processes and ports.

tp(Module,MatchSpec)
Same astp({Module,' ',' '}, MatchSpec)

tp(Module, Function,MatchSpec)
Same as tp({ Module, Function, ' '}, MatchSpec)

tp(Module, Function, Arity, MatchSpec)
Same as tp({ Module, Function, Arity}, MatchSpec)

tp({Module, Function, Arity}, MatchSpec) -> {ok, MatchDesc} | {error, term()}
Types:
Module = atom() | '_
Function = atom() | '_'

18 | Ericsson AB. All Rights Reserved.: Runtime_Tools

dbg

Arity = integer() |'_'
Mat chSpec = integer() | Built-inAlias | [] | match_spec()
Built-inAlias = x| ¢ | cx
Mat chDesc = [Mat chl nf 0]
Mat chinfo = {saved, integer()} | MatchNum
Mat chNum = {mat ched, node(), integer()} | {matched, node(), 0, RPCError}
t p standsfor trace pattern. Thisfunction enables call trace for one or more functions. All exported functions matching

the{ Modul e, Function, Arity} argumentwill be concerned, but the mat ch_spec() may further narrow
down the set of function calls generating trace messages.

For a description of the mat ch_spec() syntax, please turn to the User's guide part of the online documentation
for the runtime system (erts). The chapter Match Specificationsin Erlang explains the general match specification
"language". The most common generic match specifications used can be found as Bui | t -i nAl i as’, seeltp/ 0
below for details.

TheModule, Function and/or Arity partsof thetuple may be specified astheatom' ' whichisa"wild-card" matching
all modules/functiong/arities. Note, if theModuleisspecifiedas' ' , the Function and Arity parts have to be specified
as' 'too. The same holds for the Functions relation to the Arity.

All nodes added withn/ 1 or t r acer / 3 will be affected by this call, and if Moduleisnot' ' the module will be
loaded on all nodes.

The function returns either an error tuple or atuple{ ok, Li st}.TheLi st consistsof specifications of how many
functions that matched, in the same way as the processes and ports are presented in the return value of p/ 2.

Theremay beatuple{ saved, N} inthereturnvalue, if the MatchSpec is other than []. The integer N may then be
used in subsequent calls to this function and will stand as an "alias" for the given expression. There are also a couple
of built-in aliases for common expressions, seel t p/ 0 below for details.

If an error is returned, it can be due to errorsin compilation of the match specification. Such errors are presented as a
listof tuples{error, string()} wherethestringisatextua explanation of the compilation error. An example:

(x@y)4> dbg:tp({dbg,ltp,0},[{[]1,[]1,[{message, two, arguments}, {noexist}1}]).
{error,
[{error,"Special form 'message' called with wrong number of
arguments in {message,two,arguments}."},
{error, "Function noexist/1 does not_exist."}]}

tpl(Module,MatchSpec)
Same astpl({Module, ' ', " "}, MatchSpec)

tpl(Module, Function,MatchSpec)
Same as tpl({ Module, Function, ' '}, MatchSpec)

tpl(Module, Function, Arity, MatchSpec)
Same as tpl({ Module, Function, Arity}, MatchSpec)

tpl({Module, Function, Arity}, MatchSpec) -> {ok, MatchDesc} | {error,
term()}

t pl standsfor trace patternlocal. Thisfunctionworksast p/ 2, but enablestracing for local calls(and local functions)
aswell asfor global calls (and functions).

Ericsson AB. All Rights Reserved.: Runtime_Tools | 19

dbg

tpe(Event, MatchSpec) -> {ok, MatchDesc} | {error, term()}
Types.
Event = send | 'receive'
Mat chSpec = integer() | Built-inAlias | [] | match_spec()
Built-inAlias = x| ¢ | cx
Mat chDesc = [Mat chl nf 0]
Mat chlnfo = {saved, integer()} | MatchNum
Mat chNum = {nmat ched, node(), 1} | {matched, node(), 0O, RPCError}
t pe stands for trace pattern event. This function associates a match specification with trace event send or

'recei ve' . By default all executed send and ' recei ve' events are traced if enabled for a process. A match
specification can be used to filter traced events based on sender, receiver and/or message content.

For a description of the mat ch_spec() syntax, please turn to the User's guide part of the online documentation
for the runtime system (erts). The chapter Match Specifications in Erlang explains the general match specification
"language”.

For send, the matching is done on the list [Recei ver, Msg] . Recei ver isthe process or port identity of the
receiver and Ms g isthe messageterm. The pid of the sending process can be accessed with theguard functionsel f / 0.

For' recei ve',thematchingisdoneonthelist| Node, Sender, Msg].Node isthe node name of the sender.
Sender isthe process or port identity of the sender, or the atom undef i ned if the sender is not known (which may
be the case for remote senders). Ms g is the message term. The pid of the receiving process can be accessed with the
guard functionsel f/ 0.

All nodes added withn/ 1 ort r acer / 3 will be affected by this call.

Thereturn value isthe same asfor t p/ 2. The number of matched events are never larger than 1 ast pe/ 2 does not
accept any form of wildcards for argument Event .

ctp()

ctp(Module)
Same as ctp({ Module, ' ' '})

ctp(Module, Function)
Same as ctp({ Module, Function, ' })

ctp(Module, Function, Arity)
Same as ctp({ Module, Function, Arity})

ctp({Module, Function, Arity}) -> {ok, MatchDesc} | {error, term()}
Types:
Modul e = atom() | ' _'
Function = atom() |
Arity = integer() |
Mat chDesc = [Mat chNum
Mat chNum = {rmat ched, node(), integer()} | {rmatched, node(), 0, RPCError}

20 | Ericsson AB. All Rights Reserved.: Runtime_Tools

dbg

ct p stands for clear trace pattern. This function disables call tracing on the specified functions. The semantics of
the parameter is the same as for the corresponding function specificationint p/ 2 or t pl / 2. Both local and global
cal traceis disabled.

The return value reflects how many functions that matched, and is constructed as described in t p/ 2. No tuple
{saved, N} ishowever ever returned (for obvious reasons).

ctpl()

ctpl(Module)
Same as ctpl({Module, ' ', '})

ctpl(Module, Function)
Same as ctpl({ Module, Function, ' '})

ctpl(Module, Function, Arity)
Same as ctpl({ Module, Function, Arity})

ctpl({Module, Function, Arity}) -> {ok, MatchDesc} | {error, term()}

ct pl standsfor clear trace pattern local. Thisfunctionworksasct p/ 1, but only disablestracing set up witht pl / 2
(not with t p/ 2).

ctpg()

ctpg(Module)
Same as ctpg({Module, ' ',' '})

ctpg(Module, Function)
Same as ctpg({ Module, Function, *_'})

ctpg(Module, Function, Arity)
Same as ctpg({ Module, Function, Arity})

ctpg({Module, Function, Arity}) -> {ok, MatchDesc} | {error, term()}

ct pg standsfor clear trace pattern global. Thisfunctionworksasct p/ 1, but only disablestracing set up witht p/ 2
(not with t pl / 2).

ctpe(Event) -> {ok, MatchDesc} | {error, term()}
Types:
Event = send | 'receive'
Mat chDesc = [Mat chNum
Mat chNum = {rmat ched, node(), 1} | {matched, node(), 0O, RPCError}

Ericsson AB. All Rights Reserved.: Runtime_Tools | 21

dbg

ct pe standsfor clear trace pattern event. Thisfunction clears match specificationsfor the specified trace event (send
or' receive'). It will revert back to the default behavior of tracing all triggered events.

The return value follow the same style asfor ct p/ 1.

1tp() -> ok

| t p stands for list trace patterns. Use this function to recall al match specifications previously used in the session
(i. e. previously saved during callsto t p/ 2, and built-in match specifications. Thisis very useful, as a complicated
match_spec can be quite awkward to write. Note that the match specifications are lost if st op/ 0 iscalled.

Match specifications used can be saved in afile (if a read-write file system is present) for use in later debugging
sessions, seewt p/ L andrtp/ 1

Therearethreebuilt-intrace patterns: except i on_trace,cal | er _traceandcal | er _excepti on_trace
(or x, ¢ and cx respectively). Exception trace sets a trace which will show function names, parameters, return values
and exceptions thrown from functions. Caller traces display function names, parameters and information about which
function called it. An example using a built-in alias:

(x@y)4> dbg:tp(lists,sort,cx).

{ok, [{matched, nonode@nohost, 2}, {saved,cx}]}

(x@y)4> lists:sort([2,1]).

(<0.32.0>) call lists:sort([2,1]) ({erl eval,do apply,5})
(<0.32.0>) returned from lists:sort/1 -> [1,2]

[1,2]

dtp() -> ok

dt p standsfor delete trace patterns. Use thisfunction to "forget”" all match specifications saved during callstot p/ 2.
This is useful when one wants to restore other match specifications from afile withrt p/ 1. Use dt p/ 1 to delete
specific saved match specifications.

dtp(N) -> ok
Types:
N = i nteger()

dt p stands for delete trace pattern. Use this function to "forget" a specific match specification saved during calls
tot p/ 2.

wtp(Name) -> ok | {error, IOError}
Types:
Name = string()
|CError = term)
wt p stands for write trace patterns. This function will save all match specifications saved during the session (during

calstot p/ 2) and built-in match specifications in atext file with the name designated by Nane. The format of the
fileistextual, why it can be edited with an ordinary text editor, and then restored withr t p/ 1.

Each match spec in the file ends with afull stop (.) and new (syntactically correct) match specifications can be added
to the file manually.

The function returns ok or an error tuple where the second element contains the 1/O error that made the writing
impossible.

22 | Ericsson AB. All Rights Reserved.: Runtime_Tools

dbg

rtp(Name) -> ok | {error, Error}
Types:
Name = string()
Error = term()
rt p stands for read trace patterns. This function reads match specifications from a file (possibly) generated by the
wt p/ 1 function. It checksthe syntax of all match specifications and verifies that they are correct. The error handling

principleis"al or nothing", i. e. if some of the match specifications are wrong, none of the specifications are added
to the list of saved match specifications for the running system.

The match specifications in the file are merged with the current match specifications, so that no duplicates are
generated. Usel t p/ O to see what numbers were assigned to the specifications from the file.

The function will return an error, either due to 1/0 problems (like a non existing or non readable file) or due to file
format problems. The errorsfrom abad format file arein amore or lesstextual format, which will give ahint to what's
causing the problem.

n(Nodename) -> {ok, Nodename} | {error, Reason}
Types:
Nodenanme = atom()
Reason = term()
n stands for node. The dbg server keeps alist of nodes where tracing should be performed. Whenever at p/ 2 call
orap/ 2 call ismade, it is executed for al nodes in thislist including the local node (except for p/ 2 with a specific

pi d() orport () asfirstargument, in which case the command is executed only on the node where the designated
process or port resides).

This function adds a remote node (Nodenan®) to the list of nodes where tracing is performed. It starts a tracer
process on the remote node, which will send all trace messages to the tracer process on the local node (viathe Erlang
distribution). If no tracer processis running on the local node, the error reasonno_I| ocal _t r acer isreturned. The
tracer process on the local node must be started with thet r acer / 0/ 2 function.

If Nodenane isthelocal node, the error reasoncant _add | ocal _node isreturned.

If atraceport (seet r ace_por t / 2) isrunning on thelocal node, remote nodes cannot be traced with atracer process.
Theerrorreasoncant _trace_renote_pid_to_| ocal _port isreturned. A trace port can however be started
on the remote node with thet r acer / 3 function.

The function will also return an error if the node Nodenane is not reachable.

cn(Nodename) -> ok
Types.
Nodenanme = atom()

cn stands for clear node. Clears a node from the list of traced nodes. Subsequent callsto t p/ 2 and p/ 2 will not
consider that node, but tracing already activated on the node will continue to bein effect.

Returns ok, cannot fail.

In() -> ok
| n stands for list nodes. Shows the list of traced nodes on the console.

Ericsson AB. All Rights Reserved.: Runtime_Tools | 23

dbg

tracer() -> {ok, pid()} | {error, already started}

This function starts a server on the local node that will be the recipient of all trace messages. All subsequent callsto
p/ 2 will result in messages sent to the newly started trace server.

A trace server started in this way will simply display the trace messages in a formatted way in the Erlang shell (i. e.
useio:format). Seet r acer/ 2 for adescription of how the trace message handler can be customized.

To start asimilar tracer on aremote node, usen/ 1.

tracer(Type, Data) -> {ok, pid()} | {error, Error}
Types.
Type = port | process | nodule | file
Data = PortGenerator | Handl er Spec | Mdul eSpec
Port Generator = fun() (no argunents)
Error = tern()
Handl er Spec = {Handl er Fun, I niti al Dat a}
Handl er Fun = fun() (two arguments)
Modul eSpec = fun() (no arguments) | {TracerMdul e, Tracer State}
Tracer Modul e = atom()
Initial Data = TracerState = term)
Thisfunction startsatracer server with additional parametersontheloca node. Thefirst parameter, the Ty pe, indicates

if trace messages should be handled by areceiving process (pr ocess), by atracer port (por t) or by atracer module
(modul e). For adescription about tracer portsseet r ace_port/ 2 and for atracer modulesseeer| _tracer.

If Type ispr ocess, amessage handler function can be specified (Handl er Spec). The handler function, which
should be af un taking two arguments, will be called for each trace message, with the first argument containing the
message as it is and the second argument containing the return value from the last invocation of the fun. The initial
value of the second parameter is specified in the | ni ti al Dat a part of the Hand| er Spec. The Handl er Fun
may choose any appropriate action to take when invoked, and can save a state for the next invocation by returning it.

If Type isport, then the second parameter should be a fun which takes no arguments and returns a newly opened
trace port when called. Such afun is preferably generated by callingt r ace_port/ 2.

if Type isnodul e, then the second parameter should be either atuple describing theer | _t racer module to be
used for tracing and the state to be used for that tracer module or afun returning the same tuple.

if Type isfi | e, then the second parameter should be a filename specifying afile where al the traces are printed.

If an error is returned, it can either be due to a tracer server already running ({ err or, al ready_started}) or
dueto the Handl er Fun throwing an exception.

To start asimilar tracer on aremote node, uset r acer/ 3.

tracer(Nodename, Type, Data) -> {ok, Nodename} | {error, Reason}
Types:
Nodename = atom()

This function isequivalent to t r acer / 2, but acts on the given node. A tracer is started on the node (Nodenan®)
and the node is added to the list of traced nodes.

24 | Ericsson AB. All Rights Reserved.: Runtime_Tools

dbg

This function is not equivalent to n/ 1. While n/ 1 starts a process tracer which redirects al trace information
to a process tracer on the local node (i.e. the trace control node), t r acer / 3 starts atracer of any type which is
independent of the tracer on the trace control node.

For details, seetr acer/ 2.

trace port(Type, Parameters) -> fun()

Types:
Type = ip | file
Paranmeters = Filename | WapFil esSpec | | PPort Spec
Filename = string() | [string()] | atom()

W apFi | esSpec = {Fil enane, wap, Suffix} | {Filenane, wap, Suffix,
W apSi ze} | {Filenane, wap, Suffix, WapSize, WapCnt}

Suffix = string()

WapSize = integer() >= 0 | {time, WapTine}

W apTi me integer() >=1

WapCnt = integer() >=1

| pPort Spec = Port Nunmber | {PortNumber, QueSize}
Port Nunmber = integer()

QueSi ze = integer()

This function creates a trace port generating fun. The fun takes no arguments and returns a newly opened trace
port. The return value from this function is suitable as a second parameter to tracer/2, i.e. dbg: t racer (port,
dbg:trace_port(ip, 4711)).

A trace port is an Erlang port to a dynamically linked in driver that handles trace messages directly, without the
overhead of sending them as messages in the Erlang virtual machine.

Twotracedriversare currently implemented, thef i | e andthei p tracedrivers. Thefiledriver sendsall trace messages
into one or severa binary files, from where they later can be fetched and processed with thetrace_client/ 2
function. The ip driver opens a TCP/IP port where it listens for connections. When a client (preferably started by
calingtrace_client/ 2 on another Erlang node) connects, all trace messages are sent over the IP network for
further processing by the remote client.

Using atrace port significantly lowers the overhead imposed by using tracing.

Thefiletrace driver expects afilename or awrap files specification as parameter. A file is written with a high degree
of buffering, why all trace messages are not guaranteed to be saved in the file in case of a system crash. That is the
priceto pay for low tracing overhead.

A wrap files specification isused to limit the disk space consumed by thetrace. Thetraceiswritten to alimited number
of files each with alimited size. The actual filenamesare Fi | enanme ++ SeqCnt ++ Suffi x, where SeqCnt
countsasadecimal string from 0 to W apCnt and then around again from 0. When atrace term written to the current
filemakesit longer than W apSi ze, that fileisclosed, if the number of filesin thiswrap traceisasmany asW apCnt
the oldest file is deleted then a new file is opened to become the current. Thus, when a wrap trace has been stopped,
there are at most W apCnt trace files saved with asize of at least W apSi ze (but not much bigger), except for the
last file that might even be empty. The default valuesare W apSi ze = 128*1024 and W apCnt = 8.

The SeqCnt vauesin the filenames are dl in the range O through W apCnt with a gap in the circular sequence.
The gap is needed to find the end of the trace.

Ericsson AB. All Rights Reserved.: Runtime_Tools | 25

dbg

If theW apSi ze isspecifiedas{ti me, WapTi ne}, the current fileis closed when it has been open more than
W apTi me milliseconds, regardless of it being empty or not.

Theip trace driver has a queue of QueSi ze messages waiting to be delivered. If the driver cannot deliver messages
asfast asthey are produced by the runtime system, a special message is sent, which indicates how many messages that
are dropped. That message will arrive at the handler function specifiedint race_cl i ent / 3 asthetuple{ dr op,
N} where Nisthe number of consecutive messages dropped. In case of heavy tracing, drop's are likely to occur, and
they surely occur if no client is reading the trace messages. The default value of QueSi ze is 200.

flush trace port()
Equivalenttof | ush_trace_port (node()).

flush trace port(Nodename) -> ok | {error, Reason}
Equivalenttotrace_port _control (Nodenane, fl ush).

trace port control(Operation)

Equivalenttot race_port _control (node(), Operati on).

trace port control(Nodename,Operation) -> ok | {ok, Result} | {error, Reason}
Types:
Nodenanme = atom()

Thisfunction is used to do a control operation on the active trace port driver on the given node (Nodenane). Which
operations are allowed as well as their return values depend on which trace driver is used.

Returns either ok or { ok, Resul t} if the operation was successful, or { error, Reason} if the current tracer
isaprocess or if it isaport not supporting the operation.

The allowed valuesfor Oper at i on are:
flush

This function is used to flush the internal buffers held by atrace port driver. Currently only the file trace driver
supports this operation. Returns ok .

get |isten_port

Returns{ ok, | pPort} wherel pPort isthe IP port number used by the driver listen socket. Only the ip
trace driver supports this operation.

trace client(Type, Parameters) -> pid()

Types:
Type =ip | file | followfile
Paraneters = Filename | WapFil esSpec | | PCientPort Spec

Filename = string() | [string()] | atom()

W apFi | esSpec = see trace_port/2

Suffix = string()

| plientPort Spec = PortNunber | {Hostnane, PortNunber}
Port Nunber = integer()

Host nane = string()

26 | Ericsson AB. All Rights Reserved.: Runtime_Tools

dbg

This function starts atrace client that reads the output created by atrace port driver and handlesit in mostly the same
way as atracer process created by thet r acer / O function.

If Type isfile, the client reads al trace messages stored in the file named Fi | enane or specified by
W apFi | esSpec (must be the same as used when creating the trace, see trace port/2) and let's the default handler
function format the messages on the console. This is one way to interpret the data stored in a file by the file trace
port driver.

If Typeisfoll ow fil e, theclient behavesasinthefi | e case, but keepstrying to read (and process) more data
from the file until stopped by st op_trace_cl i ent/ 1. WapFi | esSpec isnot allowed as second argument for
thisType.

If Typeisi p, theclient connectsto the TCP/IP port Por t Nunber onthehost Host nane, from whereit readstrace
messages until the TCP/IP connection is closed. If no Host nane is specified, the local host is assumed.

Asan example, one can | et trace messages be sent over the network to another Erlang node (preferably not distributed),
where the formatting occurs:

Onthenodest ack there'san Erlang node ant @t ack, in the shell, type the following:

ant@stack> dbg:tracer(port, dbg:trace port(ip,4711)).
<0.17.0>

ant@stack> dbg:p(self(), send).

{ok, 1}

All trace messages are now sent to the trace port driver, which in turn listensfor connections on the TCP/IP port 4711.
If we want to see the messages on another node, preferably on another host, we do like this:

-> dbg:trace client(ip, {"stack", 4711}).
<0.42.0>

If we now send a message from the shell on the node ant @t ack, where all sends from the shell are traced:

ant@stack> self() ! hello.
hello

The following will appear at the console on the node that started the trace client:

(<0.23.0>) <0.23.0> ! hello
(<0.23.0>) <0.22.0> ! {shell rep,<0.23.0>,{value,hello,[],[]1}}

The last lineis generated due to internal message passing in the Erlang shell. The processid's will vary.

trace client(Type, Parameters, HandlerSpec) -> pid()

Types:
Type =ip | file | followfile
Paraneters = Filename | WapFilesSpec | | PCientPort Spec

Filename = string() | [string()] | atom()

W apFi | esSpec = see trace_port/2

Suffix = string()

| pdientPort Spec = PortNunber | {Hostnane, PortNunber}
Port Nunber = integer()

Host name = string()

Ericsson AB. All Rights Reserved.: Runtime_Tools | 27

dbg

Handl er Spec = {Handl er Fun, | niti al Data}

Handl er Fun = fun() (two argunents)

InitialData = term)
This function works exactly ast r ace_cl i ent/ 2, but allows you to write your own handler function. The handler
function works mostly asthe one described int r acer / 2, but will also have to be prepared to handle trace messages

of theform { dr op, N}, where Nis the number of dropped messages. This pseudo trace message will only occur
if theip trace driver is used.

For tracetypef i | e, the pseudo trace messageend_of _t r ace will appear at the end of the trace. The return value
from the handler function isin this case ignored.

stop trace client(Pid) -> ok
Types:
Pid = pid()
This function shuts down a previously started trace client. The Pi d argument is the process id returned from the
trace_client/2ortrace_client/3cal.

get tracer()
Equivalenttoget _tracer (node()).

get tracer(Nodename) -> {ok, Tracer}
Types:
Nodename = atom()
Tracer = port() | pid() | {nmodule(), term()}

Returns the process, port or tracer module to which all trace messages are sent.

stop() -> ok

Stops the dbg server, clears al trace flags for al processes, clears al trace patterns for al functions, clears trace
patterns for send/receive, shuts down all trace clients, and closes all trace ports.

Simple examples - tracing from the shell

The simplest way of tracing from the Erlang shell is to use dbg: ¢/ 3 or dbg: ¢/ 4, eg. tracing the function
dbg: get _tracer/O0:

(tiger@durin)84> dbg:c(dbg,get tracer,[]).

(<0.154.0>) <0.152.0> ! {<0.154.0>,{get tracer,tiger@durin}}
(<0.154.0>) out {dbg,req,1}

(<0.154.0>) << {dbg,{ok,<0.153.0>}}

(<0.154.0>) in {dbg,req,1}

(<0.154.0>) << timeout

{ok,<0.153.0>}

(tiger@durin)85>

Another way of tracing from the shell isto explicitly start atracer and then set the trace flags of your choice on the
processes you want to trace, e.g. trace messages and process events:

28 | Ericsson AB. All Rights Reserved.: Runtime_Tools

dbg

(tiger@durin)66> Pid = spawn(fun() -> receive {From,Msg} -> From ! Msg end end).
<0.126.0>

(tiger@durin)67> dbg:tracer().
{ok,<0.128.0>}

(tiger@durin)68> dbg:p(Pid, [m,procs]).
{ok, [{matched, tiger@durin,1}]1}
(tiger@durin)69> Pid ! {self(),hello}.
(<0.126.0>) << {<0.116.0>,hello}
{<0.116.0>,hello}

(<0.126.0>) << timeout

(<0.126.0>) <0.116.0> ! hello
(<0.126.0>) exit normal
(tiger@durin) 70> flush().

Shell got hello

ok

(tiger@durin)71>

If yousetthecal | traceflag, you also haveto set atrace pattern for the functions you want to trace:

(tiger@durin)77> dbg:tracer().

{ok,<0.142.0>}

(tiger@durin)78> dbg:p(all,call).

{ok, [{matched, tiger@durin,3}1}

(tiger@durin)79> dbg:tp(dbg,get tracer,0,[]).

{ok, [{matched, tiger@durin,1}1}

(tiger@durin)80> dbg:get tracer().

(<0.116.0>) call dbg:get tracer()

{ok,<0.143.0>}

(tiger@durin)81> dbg:tp(dbg,get tracer,0,[{' ',[],[{return trace}1}]).
{ok, [{matched, tiger@durin, 1}, {saved,1}]}

(tiger@durin)82> dbg:get tracer().

(<0.116.0>) call dbg:get tracer()

(<0.116.0>) returned from dbg:get tracer/0 -> {ok,<0.143.0>}
{ok,<0.143.0>}

(tiger@durin)83>

Advanced topics - combining with seq_trace

The dbg module is primarily targeted towards tracing through the er | ang: t r ace/ 3 function. It is sometimes
desired to trace messages in amore delicate way, which can be done with the help of theseq_t r ace module.

seq_t r ace implements sequential tracing (known in the AXE10 world, and sometimes called "forlopp tracing").
dbg can interpret messages generated from seq_t r ace and the same tracer function for both types of tracing can
be used. Theseq_t r ace messages can even be sent to atrace port for further analysis.

As a match specification can turn on sequential tracing, the combination of dbg and seq_t r ace can be quite
powerful. This brief example shows a session where sequential tracing is used:

Ericsson AB. All Rights Reserved.: Runtime_Tools | 29

dbg

1> dbg:tracer().

{ok,<0.30.0>}

2> {ok, Tracer} = dbg:get tracer().

{ok,<0.31.0>}

3> seq_trace:set system tracer(Tracer).

false

4> dbg:tp(dbg, get tracer, 0, [{[],[],[{set seq token, send, true}]}l]).
{ok, [{matched, nonode@nohost, 1}, {saved,1}]}

5> dbg:p(all,call).

{ok, [{matched, nonode@nohost,22}1}

6> dbg:get tracer(), seq trace:set token([]).

(<0.25.0>) call dbg:get tracer()

SeqTrace [0]: (<0.25.0>) <0.30.0> ! {<0.25.0>,get tracer} [Serial: {2,4}]
SeqTrace [0]: (<0.30.0>) <0.25.0> ! {dbg,{ok,<0.31.0>}} [Serial: {4,5}]
{1,0,5,<0.30.0>,4}

This session setsthe system_tracer to the same process as the ordinary tracer process (i. e. <0.31.0>) and setsthetrace
pattern for thefunctiondbg: get _tracer toonethat hasthe action of setting a sequential token. When the function
iscaled by atraced process (all processes are traced in this case), the process gets "contaminated" by the token and
seq_t r ace messages are sent both for the server request and the response. Theseq_trace: set _token([])
after the call clearstheseq_t r ace token, why no messages are sent when the answer propagates via the shell to the
console port. The output would otherwise have been more noisy.

Note of caution

When tracing function calls on a group leader process (an 10 process), there is risk of causing a deadlock. This will
happen if agroup leader process generates atrace message and the tracer process, by calling the trace handler function,
sends an 10 request to the same group leader. The problem can only occur if the trace handler prints to tty using an
i o functionsuchasf or mat / 2. Notethat whendbg: p(al |, cal |) iscalled, IO processes are also traced. Here's
an example:

%% Using a default line editing shell

1> dbg:tracer(process, {fun(Msg,) -> io:format("~p~n", [Msgl), 0 end, 0}).
{ok,<0.37.0>}

2> dbg:p(all, [calll]).

{ok, [{matched, nonode@nohost,25}1}

3> dbg:tp(mymod, [{'_*,[1,[1}]).

{ok, [{matched, nonode@nohost, 0}, {saved,1}]}

4> mymod: % TAB pressed here

%% -- Deadlock --

Here's another example:

%% Using a shell without line editing (oldshell)
1> dbg:tracer(process).

{0k, <0.31.0>}

2> dbg:p(all, [calll).

{ok, [{matched, nonode@nohost,25}1}

3> dbg:tp(lists, [{" ', [1,[1}]).

{ok, [{matched, nonode@nohost, 0}, {saved, 1}]}

% -- Deadlock --

The reason we get a deadlock in the first example is because when TAB is pressed to expand the function name,
the group leader (which handles character input) calls mynod: nodul e_i nf o() . This generates a trace message
which, in turn, causes the tracer process to send an 10 request to the group leader (by callingi o: f or mat / 2). We
end up in adeadlock.

30 | Ericsson AB. All Rights Reserved.: Runtime_Tools

dbg

In the second example we use the default trace handler function. This handler prints to tty by sending 10 requests to
theuser process. When Erlang is started in oldshell mode, the shell process will have user asits group leader and
so will the tracer process in this example. Since user calsfunctionsinl i st s we end up in adeadlock as soon as
thefirst 10 request is sent.

Here are afew suggestions for how to avoid deadlock:

« Don't trace the group leader of the tracer process. If tracing has been switched on for all processes,
cal dbg: p(Tracer GLPi d, cl ear) to stop tracing the group leader (Tr acer GLPi d).
process_i nfo(TracerPi d, group_| eader) tellsyou which processthisis (Tr acer Pi d isreturned
fromdbg: get _tracer/0).
» Don'ttracetheuser processif using the default trace handler function.
e Inyour own trace handler function, call er | ang: di spl ay/ 1 instead of ani o function or, if
user isnot used as group leader, print to user instead of the default group leader. Example:
i o:format (user, Str, Args).

Ericsson AB. All Rights Reserved.: Runtime_Tools | 31

dyntrace

dyntrace

Erlang module

This module implements interfaces to dynamic tracing, should such be compiled into the virtual machine. For a
standard and/or commercial build, no dynamic tracing is available, in which case none of the functionsin this module
isusable or give any effect.

Should dynamic tracing be enabled in the current build, either by configuring with . / confi gure --with-
dynami c-trace=dt raceorwith./configure --wth-dynam c-trace=systent ap, themodulecan
be used for two things:

e Trigger theuser-probeuser _trace_i 4s4 intheNIF library dynt r ace. so by callingdynt r ace: p/
{1,2,3,4,5,6,7,8}.

e Set auser specified tag that will be present in the trace messages of both theef i | e_dr v and the user-probe
mentioned above.

Both building with dynamic trace probes and using them isexperimental and unsupported by Erlang/OTP. Itisincluded
as an option for the devel oper to trace and debug performance issuesin their systems.

Theoriginal implementation ismostly done by Scott Lystiger Fritchie asan Open Source Contribution and it should be
viewed as such even though the source for dynamic tracing as well as this module isincluded in the main distribution.
However, the ability to use dynamic tracing of the virtual machine is a very valuable contribution which OTP has
every intention to maintain as atool for the developer.

How to writed programs or syst ent ap scripts can be learned from books and from alot of pages on the Internet.
This manual page does not include any documentation about using the dynamic trace tools of respective platform.
The exanpl es directory of ther unt i ne_t ool s application however contains comprehensive examples of both
d andsyst ent ap programsthat will help you get started. Another source of information isthe dtrace and systemtap
chapters in the Runtime Tools Users Guide.

Exports

available() -> boolean()

This function uses the NIF library to determine if dynamic tracing is available. Usually calling erlang:system _info/1
isabetter indicator of the availability of dynamic tracing.

The function will throw an exception if the dynt r ace NIF library could not be loaded by the on_load function of
this module.

p() -> true | false | error | badarg

Calling this function will trigger the "user" trace probe user_trace i4s4 in the dyntrace NIF module, sending a trace
message only containing the user tag and zeroes/empty stringsin all other fields.

p(integer() | string()) -> true | false | error | badarg

Calling this function will trigger the "user" trace probe user_trace i4s4 in the dyntrace NIF module, sending a trace
message containing the user tag and the integer or string parameter in the first integer/string field.

32 | Ericsson AB. All Rights Reserved.: Runtime_Tools

dyntrace

p(integer() | string(), integer() | string()) -> true | false | error |
badarg

Calling this function will trigger the "user" trace probe user_trace i4s4 in the dyntrace NIF module, sending a
trace message containing the user tag and the integer() or string() parameters as the first fields of respective type.
integer() parameters should be put before any string() parameters. I.e. p(1, "Hel | 0") isok, asisp(1, 1) and
p("Hello","Again"),butnotp("Hello",1).

p(integer() | string(), integer() | string(), integer() | string()) -> true |
false | error | badarg

Calling this function will trigger the "user" trace probe user_trace i4s4 in the dyntrace NIF module, sending a trace
message containing the user tag and the integer() or string() parameters as the first fields of respective type. integer()
parameters should be put before any string() parameters, asin p/2.

p(integer() | string(), integer() | string(), integer() | string(), integer()
| string()) -> true | false | error | badarg

Calling this function will trigger the "user" trace probe user_trace i4s4 in the dyntrace NIF module, sending a trace
message containing the user tag and the integer() or string() parameters as the first fields of respective type. integer()
parameters should be put before any string() parameters, asin p/2.

p(integer(), integer() | string(), integer() | string(), integer() |
string(), string()) -> true | false | error | badarg

Calling this function will trigger the "user" trace probe user_trace i4s4 in the dyntrace NIF module, sending a trace
message containing the user tag and the integer() or string() parameters as the first fields of respective type. integer()
parameters should be put before any string() parameters, asin p/2.

There can be no more than four parameters of any type (integer() or string()), so the first parameter has to be an
integer() and the last a string().

p(integer(), integer(), integer() | string(), integer() | string(), string(),
string()) -> true | false | error | badarg

Calling this function will trigger the "user" trace probe user_trace i4s4 in the dyntrace NIF module, sending atrace
message containing the user tag and the integer() or string() parameters as the first fields of respective type. integer()
parameters should be put before any string() parameters, asin p/2.

There can be no more than four parameters of any type (integer() or string()), so the first two parameters has to be
integer()'s and the last two string()'s.

p(integer(), integer(), integer(), integer() | string(), string(), string(),
string()) -> true | false | error | badarg

Calling this function will trigger the "user" trace probe user_trace i4s4 in the dyntrace NIF module, sending a trace
message containing the user tag and the integer() or string() parameters as the first fields of respective type. integer()
parameters should be put before any string() parameters, asin p/2.

There can be no more than four parameters of any type (integer() or string()), so the first three parameters has to be
integer()'s and the last three string()'s.

Ericsson AB. All Rights Reserved.: Runtime_Tools | 33

dyntrace

p(integer(), integer(), integer(), integer(), string(), string(), string(),
string()) -> true | false | error | badarg

Calling this function will trigger the "user" trace probe user_trace i4s4 in the dyntrace NIF module, sending a trace
message containing all the integer()'s and string()'s provided, as well as any user tag set in the current process.

get tag() -> binary() | undefined

This function returns the user tag set in the current process. If no tag is set or dynamic tracing is not available, it
returnsundef i ned

get tag() -> binary() | undefined

This function returns the user tag set in the current process or, if no user tag is present, the last user tag sent to the
process together with a message (in the same way as sequential trace tokens are spread to other processes together
with messages. For an explanation of how user tags can be spread together with messages, see spread_tag/1. If no tag
isfound or dynamic tracing is not available, it returnsundef i ned

put tag(Item) -> binary() | undefined
Types.
Item = iodata()

This function sets the user tag of the current process. The user tag is a binary(), but can be specified as any iodata(),
which is automatically converted to a binary by this function.

The user tag is provided to the user probestriggered by callstopdynt race: p/ {1, 2, 3, 4,5, 6, 7, 8} aswell as
probesin the efile_driver. In the future, user tags might be added to more probes.

The old user tag (if any) isreturned, or undef i ned if no user tag was present or dynamic tracing is not enabled.

spread_tag(boolean()) -> TagData
Types:
TagDat a = opaque data that can be used as paraneter to restore_tag/1

This function controls if user tags are to be spread to other processes with the next message. Spreading of user tags
work like spreading of sequential trace tokens, so that a received user tag will be active in the process until the next
message arrives (if that message does not also contain the user tag.

This functionality is used when a client process communicates with a file i/o-server to spread the user tag to the I/
O-server and then down to the efile_drv driver. By using spread_t ag/ 1 andr est ore_t ag/ 1, one can enable
or disable spreading of user tags to other processes and then restore the previous state of the user tag. The TagData
returned from this call contains al previous information so the state (including any previously spread user tags) will
be completely restored by alater call tor est ore_t ag/ 1.

The file module already spread's tags, so there is no need to manually call these function to get user tags spread to
the efile driver through that module.

The most use of this function would be if one for example uses the io module to communicate with an 1/0-server for
aregular file, like in the following example:

f() ->
{ok, F} = file:open("test.tst", [write]),
Saved = dyntrace:spread tag(true),
io:format(F, "Hello world!",[]),
dyntrace:restore tag(Saved),
file:close(F).

34 | Ericsson AB. All Rights Reserved.: Runtime_Tools

dyntrace

In this example, any user tag set in the calling process will be spread to the 1/0O-server when the io:format call is done.

restore tag(TagData) -> true
Types:
TagDat a = opaque data returned by spread_tag/1l

Restoresthe previous state of user tagsand their spreading asit wasbeforeacall to spread_tag/1. Notethat therestoring
is not limited to the same process, one can utilize this to turn off spreding in one process and restore it in a newly
created, the one that actually is going to send messages.

f() ->
TagData=dyntrace:spread tag(false),
spawn(fun() ->
dyntrace:restore tag(TagData),
do_something()
end),
do_something else(),
dyntrace:restore tag(TagData).

Correctly handling user tags and their spreading might take some effort, as Erlang programs tend to send and receive
messages so that sometimes the user tag gets lost due to various things, like double receives or communication with a
port (ports do not handle user tags, in the same way as they do not handle regular sequential trace tokens).

Ericsson AB. All Rights Reserved.: Runtime_Tools | 35

instrument

instrument

Erlang module

Themodulei nst r unent contains support for studying the resource usage in an Erlang runtime system. Currently,
only the allocation of memory can be studied.

Since this module inspectsinternal details of the runtime system it may differ greatly from one version to another.
We make no compatibility guaranteesin this module.

Data Types
block histogram() = tuple()
A histogram of block sizes where each interval's upper bound is twice as high as the one before it.

The upper bound of thefirst interval is provided by the function that returned the histogram, and the last interval has
no upper bound.

For example, the histogram below has 40 (message) blocks between 256-512 bytes in size, 78 blocks between
512-1024 bytes,2 blocks between 1-2KB, and 2 blocks between 2-4KB.

> instrument:allocations (#{ histogram start => 128, histogram width => 15 }).
{ok, {128, 0, #{ message => {0,40,78,2,2,0,0,0,0,0,0,0,0,0,0}, ... } }}

allocation summary() =
{HistogramStart :: integer() >= 0,
UnscannedSize :: integer() >= 0,
Allocations ::
#{0rigin :: atom() =>
#{Type :: atom() => block histogram()}}}

A summary of alocated block sizes (including their headers) grouped by their Ori gi n and Ty pe.
O i gi nisgeneraly which NIF or driver that allocated the blocks, or 'system' if it could not be determined.

Type is the dlocation category that the blocks belong to, e.g. db_t er m message or bi nary. The categories
correspond to thosein erl_alloc.types.

If one or more carriers could not be scanned in full without harming the responsiveness of the system,
UnscannedSi ze isthe number of bytesthat had to be skipped.

carrier_info list() =
{HistogramStart :: integer() >= 0,
Carriers
[{AllocatorType :: atom(),
InPool :: boolean(),
TotalSize :: integer() >= 0,
UnscannedSize :: integer() >= 0,
Allocations ::
[{Type :: atom(),
Count :: integer() >= 0,
Size :: integer() >= 0}],

36 | Ericsson AB. All Rights Reserved.: Runtime_Tools

href

instrument

FreeBlocks :: block histogram()}]}
Al | ocat or Type isthetype of the allocator that employsthis carrier.
I nPool iswhether the carrier isin the migration pool.
Tot al Si ze isthetotal size of the carrier, including its header.

Al 'l ocat i ons isasummary of the allocated blocks in the carrier. Note that carriers may contain multiple different
block types when carrier pools are shared between different allocator types (seethe ert s_al | oc documentation
for more details).

Fr eeBl ocks isahistogram of the free block sizesin the carrier.

If the carrier could not be scanned in full without harming the responsiveness of the system, UnscannedSi ze is
the number of bytes that had to be skipped.

Exports

allocations() -> {ok, Result} | {error, Reason}

Types:
Result = allocation summary()
Reason = not enabled

Shorthand for al | ocati ons(#{}).

allocations(Options) -> {ok, Result} | {error, Reason}

Types.
Result = allocation summary()
Reason = not enabled
Options =

#{scheduler ids => [integer() >= 0],
allocator types => [atom()],
histogram start => integer() >= 1,
histogram width => integer() >= 1}

Returns a summary of all tagged allocationsin the system, optionally filtered by allocator type and scheduler id.

Only binaries and allocations made by NIFs and drivers are tagged by default, but this can be configured an a per-
allocator basis with the +M<S>at ags emulator option.

If the specified allocator types are not enabled, the call will fail with{error, not_enabl ed}.
The following options can be used:
al | ocat or _types

The alocator types that will be searched.

Specifying a specific allocator type may lead to strange results when carrier migration between different allocator
types has been enabled: you may see unexpected types (e.g. process heaps when searching binary_alloc), or fewer
blocks than expected if the carriers the blocks are on have been migrated out to an allocator of a different type.

Defaultstoal al | oc_uti | alocators.
schedul er _i ds

The scheduler ids whose allocator instances will be searched. A scheduler id of O will refer to the global instance
that is not tied to any particular scheduler. Defaults to al schedulers and the global instance.

Ericsson AB. All Rights Reserved.: Runtime_Tools | 37

instrument

hi st ogram start

The upper bound of the first interval in the allocated block size histograms. Defaults to 128.
hi st ogram wi dt h

The number of intervalsin the allocated block size histograms. Defaults to 18.

Example:

> instrument:allocations(#{ histogram start => 128, histogram width => 15 }).
{ok,{128,0,
#{udp _inet =>
#{driver event state => {0,0,0,0,0,0,0,0,0,1,0,0,0,0,0}},
system =>

#{heap => {0,0,0,0,20,4,2,2,2,3,0,1,0,0,1},
db term => {271,3,1,52,80,1,0,0,0,0,0,0,0,0,0},
code => {0,0,0,5,3,6,11,22,19,20,10,2,1,0,0},
binary => {18,0,0,0,7,0,0,1,0,0,0,0,0,0,0},
message => {0,40,78,2,2,0,0,0,0,0,0,0,0,0,0},

o)
spawn_forker =>
#{driver select data state =>
{1,0,0,0,0,0,0,0,0,0,0,0,0,0,0}},
ram file drv => #{drv_bipnary => {0,0,0,0,0,0,1,0,0,0,0,0,0,0,0}},
prim file =>

#{process specific data => {2,0,0,0,0,0,0,0,0,0,0,0,0,0,0},
nif trap export entry => {0,4,0,0,0,0,0,0,0,0,0,0,0,0,0},
monitor extended => {0,1,0,0,0,0,0,0,0,0,0,0,0,0,0},
drv_binary => {0,0,0,0,0,0,1,0,3,5,0,0,0,1,0},
binary => {0,4,0,0,0,0,0,0,0,0,0,0,0,0,0}},

prim buffer =>

#{nif internal => {0,4,0,0,0,0,0,0,0,0,0,0,0,0,0},

binary => {0,4,0,0,0,0,0,0,0,0,0,0,0,0,0}}}}}

carriers() -> {ok, Result} | {error, Reason}

Types:
Result = carrier info list()
Reason = not enabled

Shorthand for carri ers(#{}).

carriers(Options) -> {ok, Result} | {error, Reason}

Types:
Result = carrier_info_list()
Reason = not enabled
Options =

#{scheduler ids => [integer() >= 0],
allocator types => [atom()],
histogram start => integer() >= 1,
histogram width => integer() >= 1}

Returns asummary of al carriersin the system, optionally filtered by allocator type and scheduler id.
If the specified allocator types are not enabled, the call will fail with{error, not_enabl ed}.
The following options can be used:

38 | Ericsson AB. All Rights Reserved.: Runtime_Tools

instrument

al | ocat or _types
The alocator types that will be searched. Defaultsto al al | oc_ut i | allocators.
schedul er _ids

The scheduler ids whose allocator instances will be searched. A scheduler id of O will refer to the global instance
that is not tied to any particular scheduler. Defaults to all schedulers and the global instance.

hi st ogram st art

The upper bound of the first interval in the free block size histograms. Defaults to 512.
hi st ogram wi dt h

The number of intervalsin the free block size histograms. Defaults to 14.
Example:

> instrument:carriers(#{ histogram start => 512, histogram width => 8 }).
{ok, {512,
[{driver alloc, false,262144,0,
[{driver alloc,1,32784}],
{0,0,0,0,0,0,0,1}},
{binary alloc, false,32768,0,
[{binary alloc,15,4304}],
{3,0,0,0,1,0,0,0}},
L.

See Also
erts_aloc(3), erl(1)

Ericsson AB. All Rights Reserved.: Runtime_Tools | 39

msacc

MSaccC

Erlang module

This module implements some convenience functions for analyzing microstate accounting data
For details about how to use the basic api and what the different states represent see
erlang: statistics(mcrostate_accounting).

Basic Scenario

1> msacc:start(1000).

ok

2> msacc:print().

Average thread real-time : 1000513 us
Accumulated system run-time : 2213 us
Average scheduler run-time : 1076 us

Thread aux check io emulator gc other port sleep

Stats per thread:

async(0) 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 100.00%

async(1) 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 100.00%

aux(1) 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 99.99%

scheduler(1) 0.00% 0.03% 0.13% 0.00% 0.01% 0.00% 99.82%

scheduler(2) 0.00% 0.00% 0.00% 0.00% 0.03% 0.00% 99.97%
Stats per type:

async 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 100.00%

aux 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 99.99%

scheduler 0.00% 0.02% 0.06% 0.00% 0.02% 0.00% 99.89%

ok

This first command enables microstate accounting for 1000 milliseconds. See st art/ 0, st op/ 0, reset/ 0 and
start/ 1 for more details. The second command prints the statistics gathered during that time. First three general
statistics are printed.

Average real-time
The average time spent collecting data in the threads. This should be close to the time which data was
collected.
System run-time
The total run-time of all threads in the system. Thisiswhat you get if you call
nmsacc: stats(total _runtine, Stats).
Average scheduler run-time
The average run-time for the schedulers. Thisis the average amount of time the schedulers did not sleep.

Then one column per state is printed with a the percentage of time this thread spent in the state out of it's own real-
time. After the thread specific time, the accumulated time for each type of thread is printed in a similar format.

Since we have the average rea-time and the percentage spent in each state we can easily calculate the time spent in
each state by multiplying Aver age t hread real -ti me withThread st ate %i.e. to get thetime Scheduler
1 spent in the emulator state we do 1000513us * 0. 13% = 1300us.

Data Types

msacc_data() = [msacc data thread()]

msacc_data thread() =
#{'$type' := msacc data,
type := msacc_type(),

40 | Ericsson AB. All Rights Reserved.: Runtime_Tools

msacc

id := msacc_id(),
counters := msacc data counters()}
msacc_data counters() = #{msacc state() => integer() >= 0}

A map containing the different microstate accounting states and the number of microseconds spent in it.

msacc_stats() = [msacc stats thread()]

msacc_stats thread() =
#{'$type' := msacc stats,
type := msacc type(),
id := msacc_id(),
system := float(),
counters := msacc_stats counters()}

A map containing information about a specific thread. The percentages in the map can be either run-time or real-time
dependingonif runti me orr eal ti nme wasrequested from stats/2. sy st emisthe percentage of total system time
for this specific thread.

msacc_stats counters() =
#{msacc state() => #{thread := float(), system := float()}}

A map containing the different microstate accounting states. Each value in the map contains another map with the
percentage of time that this thread has spent in the specific state. Both the percentage of syst emtime and the time
for that specifict hr ead is part of the map.

msacc_type() =
aux | async | dirty cpu scheduler | dirty io scheduler |
poll | scheduler

msacc _id() = integer() >= 0
msacc_state() =

alloc | aux | bif | busy wait | check io | emulator | ets |
gc | gc_fullsweep | nif | other | port | send | sleep | timers

The different states that athread can be in. See erlang: statistics(microstate_accounting) for details.
msacc _print options() = #{system => boolean()}
The different options that can be giventopri nt/ 2.

Exports

available() -> boolean()
This function checks whether microstate accounting is available or not.

start() -> boolean()
Start microstate accounting. Returns whether it was previously enabled or disabled.

start(Time) -> true
Types.
Time = timeout()

Resets all counters and then starts microstate accounting for the given milliseconds.

Ericsson AB. All Rights Reserved.: Runtime_Tools | 41

msacc

stop() -> boolean()
Stop microstate accounting. Returns whether iswas previously enabled or disabled.

reset() -> boolean()
Reset microstate accounting counters. Returns whether is was enabled or disabled.

print() -> ok
Prints the current microstate accounting to standard out. Sameasnsacc: pri nt (nsacc: stats(), #{}).

print(DataOrStats) -> ok
Types:
DataOrStats = msacc data() | msacc_stats()
Print the given microstate statistics values to stdout. Sameasnsacc: pri nt (DataOr Stat s, #{}) .

print(DataOrStats, Options) -> ok

Types.
DataOrStats = msacc data() | msacc _stats()
Options = msacc _print options()

Print the given microstate statistics values to standard out. With many states this can be quite verbose. See the top of
this reference manual for abrief description of what the fields mean.

Itis possible to print more specific types of statistics by first manipulating the Dat aOr St at s using st at s/ 2. For

instance if you want to print the percentage of run-time for each thread you can do:
msacc:print(msacc:stats(runtime,msacc:stats())).

If you want to only print run-time per thread type you can do:
msacc:print(msacc:stats(type,msacc:stats(runtime,msacc:stats()))).

Options

system
Print percentage of time spent in each state out of system time as well asthread time. Default: false.

print(FileOrDevice, DataOrStats, Options) -> ok
Types.
FileOrDevice = file:filename() | io:device()
DataOrStats = msacc data() | msacc stats()
Options = msacc print options()
Print the given microstate statistics values to the given file or device. The other arguments behave the same way as
forprint/2.

stats() -> msacc _data()

Returns a runtime system independent version of the microstate statistics data presented by
erlang: statistics(m crostate_accounti ng).All counters have been normalized to bein microsecond
resolution.

42 | Ericsson AB. All Rights Reserved.: Runtime_Tools

msacc

stats(Analysis, Stats) -> integer() >= 0
Types:
Analysis = system realtime | system runtime
Stats = msacc data()
Returns the system time for the given microstate statistics values. System time is the accumulated time of all threads.

realtine
Returns all time recorded for all threads.
runtime
Returns all time spent doing work for all threads, i.e. all time not spent inthe sl eep state.

stats(Analysis, Stats) -> msacc stats()
Types:

Analysis = realtime | runtime

Stats = msacc data()

Returns fractions of real-time or run-time spent in the various threads from the given microstate statistics values.

stats(Analysis, StatsOrData) -> msacc data() | msacc stats()
Types:
Analysis = type
StatsOrData = msacc data() | msacc stats()
Returns alist of microstate statistics values where the values for all threads of the same type has been merged.

to file(Filename) -> ok | {error, file:posix()}
Types:
Filename = file:name all()
Dumps the current microstate statistics counters to afile that can be parsed with file:consult/1.

from file(Filename) -> msacc data()
Types:

Filename = file:name all()
Read a file dump produced by to_file(Filename).

Ericsson AB. All Rights Reserved.: Runtime_Tools | 43

scheduler

scheduler

Erlang module

Thismodule contains utility functionsfor easy measurement and cal cul ation of scheduler utilization. It act asawrapper
around the more primitive APl er | ang: st ati stics(schedul er _wall _tinme).

The simplest usageisto call the blocking schedul er: utilizati on(Seconds).

For non blocking and/or continuous calculation of scheduler utilization, the recommended usage is:

e First cdl erlang: systemflag(scheduler wall _tinme,true) to enable scheduler wall time
measurements.

« Cdl get _sanpl e/ 0 to collect samples with some time in between.

e Cdlutilization/2 tocalculatethe scheduler utilization in the interval between two samples.

* When done cal erl ang: system fl ag(schedul er_wal | _tinme, fal se) to disable scheduler wall
time measurements and avoid unecessary cpu overhead.

To get correct values from utilization/2, it is important that schedul er_wal | _tinme is kept
enabled during the entire interval between the two samples. To ensure this, the process that called
erl ang: system fl ag(schedul er _wal | _time,true) mustbekeptalive asschedul er_wall _tine
will automatically be disabled if it terminates.

Data Types

sched sample()

sched type() = normal | cpu | io

sched id() = integer()

sched util result() =
[{sched type(), sched id(), float(), string()} |
{total, float(), string()} |
{weighted, float(), string()}]

A list of tuples containing results for individual schedulers as well as aggregated averages. Ut i | is the scheduler
utilization as a floating point value between 0.0 and 1.0. Per cent isthe same utilization as a more human readable
string expressed in percent.

{normal, Schedulerld, Util, Percent}
Scheduler utilization of a normal scheduler with number Schedul er | d. Schedulers that are not online will
also be included. Online schedulers have the lowest Schedul er | d.

{cpu, Schedulerld, Uil, Percent}
Scheduler utilization of a dirty-cpu scheduler with number Schedul er | d.
{io, Schedulerld, Uil, Percent}

Scheduler utilization of a dirty-io scheduler with number Schedul er | d. Thistuple will only exist if both
samples were taken with sanpl e_al 1 / 0.

{total, Util, Percent}
Total utilization of all normal and dirty-cpu schedulers.

{wei ghted, Util, Percent}
Tota utilization of all normal and dirty-cpu schedulers, weighted against maximum amount of available CPU
time.

44 | Ericsson AB. All Rights Reserved.: Runtime_Tools

scheduler

Exports

get sample() -> sched sample() | undefined

Returns a scheduler utilization sample for normal and dirty-cpu schedulers. Returns undef i ned if system flag
schedul er _wal | _ti me has not been enabled.

get sample all() -> sched sample() | undefined

Return ascheduler utilization samplefor all schedulers, including dirty-io schedulers. Returnsundef i ned if system
flagschedul er _wal | _t i me has not been enabled.

sample() -> sched sample()

Return a scheduler utilization sample for norma and dirty-cpu schedulers. Will call
erl ang: system fl ag(schedul er _wal | _time, true) firstif not already already enabled.

Thisfunctionisnot recommended asthereisnoway to detect if schedul er _wal | _t i nme aready wasenabled
ornot. If schedul er _wal | _ti me hasbeen disabled between two samples, passingthemtouti | i zati on/ 2
will yield invalid results.

Instead use get _sanpl e/ O together wither | ang: system fl ag(schedul er_wall _tinme,).

sample all() -> sched sample()

Return a scheduler utilization sample for all schedulers, including dirty-io schedulers. Will call
erl ang: system fl ag(schedul er _wal | _time, true) firstif not already already enabled.

This function is not recommended for same reason assanpl e/ 0. Instead use get _sanpl e_al | / O together
wither| ang: system fl ag(schedul er_wall _tinme,).

utilization(Seconds) -> sched util result()
Types:
Seconds = integer() >=1
Measure utilization for normal and dirty-cpu schedulers during Seconds seconds, and then return the result.

Will automatically first enable and then disableschedul er _wal | _ti ne.

utilization(Sample) -> sched util result()
Types:
Sample = sched sample()

Calculate scheduler utilizations for the time interval from when Sanpl e was taken and "now". The same as calling
schedul er:utilization(Sanple, scheduler:sanple_all()).

Ericsson AB. All Rights Reserved.: Runtime_Tools | 45

scheduler

Thisfunctionisnot recommended asit's so easy to get invalid resultswithout noticing. In particular do not do this:

scheduler:utilization(scheduler:sample()). % DO NOT DO THIS!

The above example takes two samples in rapid succession and calculates the scheduler utilization between them.
The resulting values will probably be more mideading than informative.

Instead use schedul er: utilization/2 and cal get _sanpl e/ 0 to get samples with some time in
between.

utilization(Samplel, Sample2) -> sched util result()
Types:
Samplel = Sample2 = sched sample()
Calculates scheduler utilizationsfor thetimeinterval between thetwo samplesobtained fromcallingget _sanpl e/ 0
orget _sanple_all/O0.

This function itself, does not need schedul er _wal | _ti ne to be enabled. However, for a correct result,
schedul er _wal | _ti nme must have been enabled during the entire interval between the two samples.

46 | Ericsson AB. All Rights Reserved.: Runtime_Tools

system_information

system_information

Erlang module

Exports

sanity check() -> ok | {failed, Failures}
Types:
Application = atom()
ApplicationVersion = string()
MissingRuntimeDependencies =
{missing runtime dependencies, ApplicationVersion,
[ApplicationVersion]}
InvalidApplicationVersion =
{invalid application version, ApplicationVersion}
InvalidAppFile = {invalid app file, Application}
Failure =
MissingRuntimeDependencies | InvalidApplicationVersion |
InvalidAppFile

Failures = [Failure]
Performs a sanity check on the system. If no issues were found, ok is returned. If issues were found, {f ai | ed,

Fai | ur es} isreturned. All failuresfound will be part of the Fai | ur es list. Currently defined Fai | ur e elements
intheFai | ur es list:

I nval i dAppFil e

An application has an invalid . app file. The second element identifies the application which has the invalid
. app file

I nval i dAppl i cati onVersi on
An application has an invalid application version. The second element identifies the application version that is
invalid.

M ssi ngRunt i nreDependenci es

An application is missing runtime dependencies. The second €lement identifies the application (with version) that
has missing dependencies. The third element contains the missing dependencies.

Note that this check use application versions that are loaded, or will be loaded when used. You might have
application versions that satisfies all dependenciesinstalled in the system, but if those are not loaded this check
will fail. The system will of course also fail when used like this. This may happen when you have multiple
branched versions of the same application installed in the system, but you do not use a boot script identifying
the correct application version.

Currently the sanity check is limited to verifying runtime dependencies found in the . app files of all applications.
More checks will be introduced in the future. Thisimpliesthat the return type will change in the future.

An ok return value only meansthat sani ty_check/ 0 did not find any issues, not that no issues exist.

Ericsson AB. All Rights Reserved.: Runtime_Tools | 47

system_information

to file(FileName) -> ok | {error, Reason}
Types.
FileName = file:name all()
Reason = file:posix() | badarg | terminated | system limit

Writes miscellaneous system information to file. Thisinformation will typically be requested by the Erlang/OTP team
at Ericsson AB when reporting an issue.

48 | Ericsson AB. All Rights Reserved.: Runtime_Tools

	Runtime_Tools
	Runtime Tools User's Guide
	LTTng and Erlang/OTP
	Introduction
	Building Erlang/OTP with LTTng support
	Dyntrace Tracepoints
	BEAM Tracepoints
	Example of process tracing

	DTrace and Erlang/OTP
	History
	Goals
	Supported platforms
	Status
	DTrace probe specifications

	SystemTap and Erlang/OTP
	Introduction
	Requisites
	Building Erlang
	Testing
	Running SystemTap scripts

	erts_alloc_config
	Module Removed

	Reference Manual
	runtime_tools
	dbg
	fun2ms/1
	h/0
	h/1
	p/1
	p/2
	c/3
	c/4
	i/0
	tp/2
	tp/3
	tp/4
	tp/2
	tpl/2
	tpl/3
	tpl/4
	tpl/2
	tpe/2
	ctp/0
	ctp/1
	ctp/2
	ctp/3
	ctp/1
	ctpl/0
	ctpl/1
	ctpl/2
	ctpl/3
	ctpl/1
	ctpg/0
	ctpg/1
	ctpg/2
	ctpg/3
	ctpg/1
	ctpe/1
	ltp/0
	dtp/0
	dtp/1
	wtp/1
	rtp/1
	n/1
	cn/1
	ln/0
	tracer/0
	tracer/2
	tracer/3
	trace_port/2
	flush_trace_port/0
	flush_trace_port/1
	trace_port_control/1
	trace_port_control/2
	trace_client/2
	trace_client/3
	stop_trace_client/1
	get_tracer/0
	get_tracer/1
	stop/0

	dyntrace
	available/0
	p/0
	p/1
	p/2
	p/3
	p/4
	p/5
	p/6
	p/7
	p/8
	get_tag/0
	get_tag/0
	put_tag/1
	spread_tag/1
	restore_tag/1

	instrument
	allocations/0
	allocations/1
	carriers/0
	carriers/1

	msacc
	available/0
	start/0
	start/1
	stop/0
	reset/0
	print/0
	print/1
	print/2
	print/3
	stats/0
	stats/2
	stats/2
	stats/2
	to_file/1
	from_file/1

	scheduler
	get_sample/0
	get_sample_all/0
	sample/0
	sample_all/0
	utilization/1
	utilization/1
	utilization/2

	system_information
	sanity_check/0
	to_file/1

