ERLANG

Debugger

Copyright © 1997-2025 Ericsson AB. All Rights Reserved.
Debugger 5.3.4
June 16, 2025

Copyright © 1997-2025 Ericsson AB. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance
with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless
required by applicable law or agreed to in writing, software distributed under the License is distributed on an
"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See

the License for the specific language governing permissions and limitations under the License. Ericsson AB. All
Rights Reserved..

June 16, 2025

1.1 Introduction

1 Debugger User's Guide

1.1 Introduction

1.1.1 Scope

Debugger isagraphical user interface for the Erlang interpreter, which can be used for debugging and testing of Erlang
programs. For example, breakpoints can be set, code can be single-stepped and variable values can be displayed and
changed.

The Erlang interpreter can also be accessed through the interface modulei nt (3) .

Debugger might at some point start tracing on the processes that execute the interpreted code. This means that a
conflict occurs if tracing by other meansis started on any of these processes.

1.1.2 Prerequisites
It is assumed that the reader is familiar with the Erlang programming language.
Modules to be debugged must include debug information, for example, er | ¢ +debug_i nf o MODULE. er | .

1.2 Debugger
1.2.1 Getting Started

To use Debugger, the basic steps are as follows:
Step 1. Start Debugger by calling debugger : start ().

The Monitor window is displayed with information about all debugged processes, interpreted modules, and selected
options. Initially there are normally no debugged processes. First, it must be specified which modules that are to be
debugged (also called inter preted). Proceed as follows:

Step 2. Select Module > Interpret... in the Monitor window.
The Interpret Modules window is displayed.
Step 3. Select the appropriate modules from the Interpret Dialog window.

Only modules compiled withoptiondebug_i nf o set can beinterpreted. Non-interpretable modul es are displayed
within parenthesis in the Interpret M odules window.

Step 4. In the Monitor window, select M odule > the module to be interpreted > View.
The contents of the sourcefile is displayed in the View Module window.

Step 5. Set the breakpoints, if any.

Step 6. Start the program to be debugged. Thisis done the normal way from the Erlang shell.

Ericsson AB. All Rights Reserved.: Debugger | 1

1.2 Debugger

All processes executing code in interpreted modules are displayed in the Monitor window.

Step 7. To attach to one of these processes, double-click it, or select the process and then choose Process > Attach.
Attaching to a process opens an Attach Process window for this process.

Step 8. From the Attach Process window, you can control the process execution, inspect variable values, set
breakpoints, and so on.

1.2.2 Breakpoints and Break Dialog Windows

Once the appropriate modules are interpreted, breakpoints can be set at relevant locations in the source code.
Breakpoints are specified on aline basis. When aprocess reaches a breakpoint, it stops and waits for commands (Step,
Skip, Continue ...) from the user.

When a process reaches a breakpoint, only that processis stopped. Other processes are not affected.

Breakpoints are created and deleted using the Break menu of either the Monitor window, View Module window, or
Attach Process window.

Executable Lines

To have an effect, a breakpoint must be set at an executable line, which is aline of code containing an executable
expression such asamatching or afunction call. A blank line or aline containing acomment, function head, or pattern
inacase statement or r ecei ve statement is not executable.

In the following example, lines 2, 4, 6, 8, and 11 are executable lines:

1: is loaded(Module,Compiled) ->

2 case get file(Module,Compiled) of
3 {ok,File} ->

4: case code:which(Module) of
5: ?TAG ->

6 {loaded,File};

7 >

8: unloaded

9: end;

10: false ->

11: false

12: end.

Status and Trigger Action
A breakpoint can be either active or inactive. Inactive breakpoints are ignored.
Each breakpoint has atrigger action that specifies what is to happen when a process has reached it (and stopped):

* Enable- Breakpoint is to remain active (default).
» Disable- Breakpoint isto be made inactive.
» Delete - Breakpoint is to be deleted.

Line Breakpoints

A line breakpoint is created at a certain linein amodule.

2 | Ericsson AB. All Rights Reserved.: Debugger

1.2 Debugger

Line Break

Module: lfa-:l
Line: [5

Trigger Action:
® Enable
) Disable
_ Delete

xgancelll &P oK \

Figure 2.1: Line Break Dialog Window

Right-click the M odule entry to open a popup menu from which the appropriate module can be sel ected.

A line breakpoint can also be created (and deleted) by double-clicking the line when the module is displayed in the
View Module window or Attach Process window.

Conditional Breakpoints

A conditional breakpoint is created at a certain line in the module, but a process reaching the breakpoint stops only
if aspecified condition istrue.

The condition is specified by the user asamodule name CMbdul e and afunction name CFunct i on. When aprocess
reaches the breakpoint, CModul e: CFunct i on(Bi ndi ngs) isevaluated. If and only if this function call returns
t r ue, the process stops. If the function call returnsf al se, the breakpoint is silently ignored.

Bi ndi ngs is a list of variable bindings. To retrieve the value of Vari abl e (given as an atom), use function
i nt:get_bindi ng(Variabl e, Bi ndi ngs) . Thefunction returnsunbound or { val ue, Val ue}.

Conditional Break

Line: [6
C-Module: {c_test

C-Function: [-:_break

Trigger Action:
® Enable

) Disable
) Delete

[XQancelH oK]

Figure 2.2: Conditional Break Dialog Window

Right-click the M odule entry to open a popup menu from which the appropriate module can be sel ected.
Example:

A conditional breakpoint callingc_t est: ¢c_break/ 1 isaddedatline6in modulef act . Each time the breakpoint
isreached, the function is called. When Nis equal to 3, the function returnst r ue and the process stops.

Ericsson AB. All Rights Reserved.: Debugger | 3

1.2 Debugger

Extract fromf act . er| :

5. fac(0) -> 1;
6. fac(N) when N > 0, is integer(N) -> N * fac(N-1).

Definition of c_t est : c_br eak/ 1:

-module(c_test).
-export([c_break/1]).

c_break(Bindings) ->
case int:get binding('N', Bindings) of
{value, 3} ->
true;
7->
false
end.

Function Breakpoints

A function breakpoint is a set of line breakpoints, one at the first line of each clause in the specified function.

|'-u Function Break
l\jogule:

{fact

Function:
fac/1

X ganceIJ

Figure 2.3: Function Break Dialog Window

To open a popup menu from which the appropriate module can be selected, right-click the M odule entry.

To bring up al functions of the module in the listbox, click the OK button (or press the Return or Tab key) when
amodule name has been specified,.

1.2.3 Stack Trace

The Erlang emulator keeps track of a stack trace, information about recent function calls. This information is used
if an error occurs, for example:

4 | Ericsson AB. All Rights Reserved.: Debugger

1.2 Debugger

1> catch a+l.

{'EXIT', {badarith, [{erlang, '+',[a,1],[]},
{erl eval,do apply,6,[{file,"erl eval.erl"},{line,573}1},
{erl _eval,expr,5,[{file,"erl eval.erl"},{line,357}1},
{shell,exprs,7,[{file,"shell.erl"},{line,674}1},
{shell,eval exprs,7,[{file,"shell.erl"},{line,629}1},
{shell,eval loop,3,[{file,"shell.erl"},{line,614}]1}1}}

For details about the stack trace, see section Errors and Error Handling in the Erlang Reference Manual.

Debugger emulatesthe stack trace by keeping track of recently called interpreted functions. (Thereal stack trace cannot
be used, as it shows which functions of Debugger have been called, rather than which interpreted functions.)

This information can be used to traverse the chain of function calls, using the Up and Down buttons in the Attach
Process window.

By default, Debugger only saves information about recursive function calls, that is, function calls that have not yet
returned avalue (option Stack On, No Tail).

Sometimes, however, it can be useful to save all calls, even tail-recursive cals. Thisis done with option Stack On,
Tail. Notice that this option consumes more memory and slows down execution of interpreted functions when there
are many tail-recursive calls.

To turn off the Debugger stack trace facility, select option Stack Off.

| If an error occurs, the stack trace becomes empty in this case. |

For information about how to change the stack trace option, see section Monitor Window.

1.2.4 Monitor Window
The Monitor window is the main window of Debugger and displays the following:
e A listbox containing the names of all interpreted modules

Double-clicking a module brings up the View Module window.
e Which options are selected

» Information about all debugged processes, that is, all processesthat have been or are executing codein interpreted
modules

Ericsson AB. All Rights Reserved.: Debugger | 5

1.2 Debugger

Monitor
File Edit Module Process Break Options Windows Help

fact Pid Initial Call Name Status Information
1<0.32.0> factfac/1 break {fact.6}

Auto Attach:

[I First Call

'] On Break

[1 On Exit

Stack Trace:

On (no tail)
Back Trace Size:

100

Strings:

l¥] Use range of +pc flag

Figure 2.4: Monitor Window

The Auto Attach boxes, Stack Trace label, Back Trace Size label, and Strings box display some options set. For
details about these options, see section Options Menu.

Process Grid
Pid
The process identifier.
Initial Call
Thefirst call to an interpreted function by this process. (Modul e: Functi on/ Arity)

Name

The registered name, if any. If aregistered name is not displayed, it can be that Debugger received information
about the process before the name was registered. Try selecting Edit > Refresh.

Status
The current status, one of the following:
idle
Theinterpreted function call has returned a value, and the process is no longer executing interpreted code.
running
The processis running.
waiting

The processiswaitinginar ecei ve statement.

6 | Ericsson AB. All Rights Reserved.: Debugger

1.2 Debugger

break
The process is stopped at a breakpoint.
exit
The process has terminated.
no_conn
There is no connection to the node where the processis located.
I nformation

Moreinformation, if any. If the processis stopped at abreakpoint, thefield containsinformation about thelocation
{Modul e, Li ne}. If the process has terminated, the field contains the exit reason.

File Menu
Load Settings...

Triesto load and restore Debugger settings from afile previously saved using Save Settings... (see below). Any
errors are silently ignored.

Notice that settings saved by Erlang/OTP R16B01 or later cannot be read by Erlang/OTP R16B or earlier.
Save Settings...

Saves Debugger settings to afile. The settings include the set of interpreted files, breakpoints, and the selected
options. The settings can be restored in alater Debugger session using L oad Settings... (see above). Any errors
are silently ignored.

Exit
Stops Debugger.

Edit Menu
Refresh

Updates information about debugged processes. Information about all terminated processes are removed from
the window. All Attach Process windows for terminated processes are closed.

Kill All

Terminates all processes listed in thewindow usingexi t (Pid, kill).

Module Menu
Interpret...
Opens the Interpret Modules window, where new modules to be interpreted can be specified.
Delete All
Stops interpreting all modules. Processes executing in interpreted modules terminate.
For each interpreted module, a corresponding entry is added to the M odule menu, with the following submenu:
Delete
Stops interpreting the selected module. Processes executing in this module terminate.
View
Opens aView Module window, displaying the contents of the selected module.

Ericsson AB. All Rights Reserved.: Debugger | 7

1.2 Debugger

Process Menu

The following menu items apply to the currently selected process, provided it is stopped at a breakpoint (for details,
see section Attach Process window):

Step
Next
Continue
Finish
The following menu items apply to the currently selected process:
Attach
Attaches to the process and open an Attach Process window.
Kill
Terminatesthe processusingexit (Pid, kil l).
Break Menu
Theitemsin this menu are used to create and del ete breakpoints. For details, see section Breakpoints.
LineBreak...
Sets aline breakpoint.
Conditional Break...
Sets a conditional breakpoint.
Function Break...
Sets a function breakpoint.
Enable All
Enables all breakpoints.
Disable All
Disables all breakpoints.
Delete All
Removes all breakpoints.
For each breakpoint, a corresponding entry is added to the Break menu, from which it is possible to disable, enable,
or delete the breakpoint, and to change its trigger action.
Options Menu
Trace Window
Sets the areas to be visible in an Attach Process window. Does not affect existing Attach Process windows.
Auto Attach
Sets the events a debugged process is to be attached to automatically. Affects existing debugged processes.

e First Call - Thefirst time aprocess calls afunction in an interpreted module.
e On Exit - At process termination.
e On Break - When a process reaches a breakpoint.

Stack Trace

Sets the stack trace option, see section Stack Trace. Does not affect existing debugged processes.

8 | Ericsson AB. All Rights Reserved.: Debugger

1.2 Debugger

* Stack On, Tail - Saves information about all current calls.

e Stack On, No Tail - Saves information about current calls, discarding previous information when a tall
recursive cal is made.

« Stack Off - Does not save any information about current calls.
Strings
Setsthe integer lists to be printed as strings. Does not affect existing debugged processes.
e Userangeof +pc flag - Uses the printable character range set by theer | (1) flag +pc.
Back Trace Size...
Sets how many call frames to be fetched when inspecting the call stack from the Attach Process window. Does
not affect existing Attach Process windows.
Windows Menu
Contains amenu item for each open Debugger window. Selecting one of the items rai ses the corresponding window.

Help Menu
Help
Shows the Debugger documentation. This function requires aweb browser.

1.2.5 Interpret Modules Window

The Interpret Modules window is used for selecting which modules to interpret. Initially, the window displays the
modules (er | files) and subdirectories of the current working directory.

I nterpretable modules are modules for which a. beamfile, compiled with option debug_i nf o set, islocated in the
same directory as the source code, or in an ebi n directory next to it.

Modules for which these requirements are not fulfilled are not interpretable and are therefore displayed within
parentheses.

Option debug_i nf o causes debug information or abstract code to be added to the . beamfile. This increases
the file size and makes it possible to reconstruct the source code. It is therefore recommended not to include debug
information in code aimed for target systems.

An example of how to compile code with debug information usinger | c:

% erlc +debug info module.erl

An example of how to compile code with debug information from the Erlang shell:

4> c(module, debug info).

Ericsson AB. All Rights Reserved.: Debugger | 9

1.2 Debugger

A Interpret Modules X

l!tmprebuggen’]
Name Type Modified
B . directory 2013-03-06 12:41:40

® factbeam erl bin 2013-03-04 13:41:36
= facterl erl src 2013-02-28 14:11:33

Figure 2.5: Interpret Modules Window

To browse the file hierarchy and interpret the appropriate modules, either select amodule name and click Choose (or
press carriage return), or double-click the module name. Interpreted modules have thetypeer| src.

To interpret al displayed modules in the chosen directory, click All.

To close the window, click Done.

When Debugger is started in global mode (which is the default, see debugger:start/0), modules added (or deleted)
for interpretation are added (or deleted) on all known Erlang nodes.

1.2.6 Attach Process Window

From an Attach Process window, you can interact with a debugged process. One window is opened for each process
that has been attached to. Notice that when attaching to a process, its execution is automatically stopped.

10 | Ericsson AB. All Rights Reserved.: Debugger

1.2 Debugger

R Attach Process <0.32.0> _ox
File Edit Process Break Options Windows Help

1 %% http://en.wikipedia.org/wiki/Erlang (programming language)
2 -module (fact) .

3 —export ([fac/1]).

4

5 fac) -> 1;

Eolfac (M) when N > 0, is integer (N) -> N * fac (N-1).

7
[| [+)
Find:l:l-i- Next _ Previous [| Match Case Goto Line::|
[Step " Next " Continue " Finish l
Evaluator:l] Name Value

N 3

‘State: break [fact.erl/6]
Figure 2.6: Attach Process Window

The window is divided into the following five parts:

e The Code area, displaying the code being executed. The code is indented and each line is prefixed with its line
number. If the process execution is stopped, the current lineis marked with - - >. An existing break point at aline

Ericsson AB. All Rights Reserved.: Debugger | 11

1.2 Debugger

is marked with a stop symbol. In the example shown in the illustration, the execution stopped at line 6, before
the execution of f ac/ 1.

Active breakpoints are displayed in red and inactive breakpointsin blue.
« The Button area, with buttons for quick access to frequently used functions in the Process menu.

* TheEvauator area, where you can evaluate functions within the context of the debugged process, if that process
execution is stopped.

* TheBindings area, displaying al variables bindings. If you click a variable name, the value is displayed in the
Evaluator area. Double-click a variable name to open a window where the variable value can be edited. Notice
however that pid, port, reference, or fun values cannot be edited unless they can be represented in the running
system.

e The Trace area, which displays a trace output for the process.
++ (N) <L>
Function call, where Nisthe cal level and L the line number.

-- (N

Function return value

::>.Pi d : Mg
The message Msg is sent to process Pi d.
<== Msg
The message Ms g isreceived.
++ (N) receive
Waitinginar ecei ve.
++ (N) receive with tineout
Waitinginar ecei ve. .. after.

The Trace area a so displays Back Trace, asummary of the current function calls on the stack.
Using the Options menu, you can set which areas to be displayed. By default, al areas except the Trace area are
displayed.

File Menu
Close

Closes this window and detach from the process.
Edit Menu
Gotoline...

Goes to a specified line number.

Search...
Searches for a specified string.

Process Menu
Step
Executes the current code line, stepping into any (interpreted) function calls.

12 | Ericsson AB. All Rights Reserved.: Debugger

1.2 Debugger

Next
Executes the current code line and stop at the next line.
Continue
Continues the execution.
Finish
Continues the execution until the current function returns.
Skip
Skips the current code line and stop at the next line. If used on the last line in a function body, the function
returns ski pped.
Time Out
Simulates atime-out when executing ar ecei ve. . . af t er statement.
Stop

Stopsthe execution of arunning process, that is, make the process stop at abreakpoint. The command takes effect
(visibly) the next time the process receives a message.

Where

Verifiesthat the current location of the execution is visible in the code area.

Kill

Terminatesthe processusingexit (Pid, kil l).
M essages

I nspects the message queue of the process. The queue is displayed in the Evaluator area.
Back Trace

Displays the back trace of the process, a summary of the current function calls on the stack, in the Trace area.
Requires that the Trace areais visible and that the Stack Trace option is Stack On, Tail or Stack On, No Tail.

Up

Inspects the previous function call on the stack, showing the location and variable bindings.
Down

Inspects the next function call on the stack, showing the location and variable bindings.

Options Menu
Trace Window

Sets which areas are to be visible. Does not affect other Attach Process windows.
Stack Trace

Same as in the Monitor window, but only affects the debugged process the window is attached to.
Strings

Same as in the Monitor window, but only affects the debugged process the window is attached to.
Back Trace Size...

Sets how many call frames are to be fetched when inspecting the call stack. Does not affect other Attach Process
windows.

Ericsson AB. All Rights Reserved.: Debugger | 13

1.2 Debugger

Break, Windows, and Help Menus

The Break, Windows, and Help menus are the same asin the Monitor Window, except that the Breaks menu applies
only to local breakpoints.

1.2.7 View Module Window
The View Module window displays the contents of an interpreted module and makes it possible to set breakpoints.

View Module fact

File Edit Break Windows Help

1 |‘%‘.’»:a http://en.wikipedia.org/wiki/Erlang (programming language)

2 -module (fact) .

3 —export([fac/1]).

4

5 fac(0) -= 1;

E.fac (M) when N > 0, is_integer (M) -> N * fac(N-1).

7

[4] I 1
Find: @ Next ' Previous [| Match Case Goto Line: J

Figure 2.7: View Module Window

The source code isindented and each line is prefixed with its line number.

Clicking aline highlights it and selectsiit to be the target of the breakpoint functions available from the Break menu.
To set aline breakpoint on aline, double-click it. To remove the breakpoint, double-click the line with an existing
breakpoint.

Breakpoints are marked with a stop symbol.
File and Edit Menus

The File and Edit menus are the same as in the Attach Process Window.

Break, Windows, and Help Menus

The Break, Windows, and Help menus are the same as in the Monitor Window, except that the Break menu applies
only to local breakpoints.

14 | Ericsson AB. All Rights Reserved.: Debugger

1.2 Debugger

1.2.8 Performance

Execution of interpreted code is naturally slower than for regularly compiled modules. Using Debugger aso increases
the number of processes in the system, as for each debugged process another process (the meta process) is created.

It isalsoworth to keep in mind that programswith timers can behave differently when debugged. Thisisespecialy true
when stopping the execution of a process (for example, at a breakpoint). Time-outs can then occur in other processes
that continue execution as normal.

1.2.9 Code Loading Mechanism

Code loading works almost as usual, except that interpreted modules are also stored in a database and debugged
processes use only this stored code. Reinterpreting an interpreted module results in the new version being stored as
well, but does not affect existing processes executing an older version of the code. This meansthat the code replacement
mechanism of Erlang does not work for debugged processes.

1.2.10 Debugging Remote Nodes
By using debugger:start/1, you can specify if Debugger isto be started in local or global mode:

debugger:start(local | global)

If no argument is provided, Debugger starts in global mode.

In local mode, code is interpreted only at the current node. In global mode, code is interpreted at al known nodes.
Processes at other nodes executing interpreted code are automatically displayed in the Monitor window and can be
attached to like any other debugged process.

Itis possible, but definitely not recommended, to start Debugger in global mode on more than one node in a network,
as the nodes interfere with each other, leading to inconsistent behavior.

Ericsson AB. All Rights Reserved.: Debugger | 15

1.2 Debugger

2 Reference Manual

16 | Ericsson AB. All Rights Reserved.: Debugger

debugger

debugger

Erlang module

Erlang Debugger for debugging and testing of Erlang programs.

Exports

start()

start(File)

start(Mode)

start(Mode, File)

Types:
Mode | ocal | gl obal
File string()

Starts Debugger.

If afilename is specified as argument, Debugger tries to load its settings from this file. For details about settings, see
the User's Guide.

If | ocal is specified as argument, Debugger interprets code only at the current node. If gl obal is specified as
argument, Debugger interprets code at all known nodes, thisis the default.

quick(Module, Name, Args)
Types.
Modul e = Nane = aton()
Args = [term()]

Debugs a single process. The module Modul e is interpreted and appl y(Modul e, Nane, Ar gs) iscaled. This
opens an Attach Process window. For details, see the User's Guide.

Ericsson AB. All Rights Reserved.: Debugger | 17

Erlang module

Thei module provides short formsfor some of the functions used by the graphical Debugger and some of the functions
inmodulei nt , the Erlang interpreter.

This module also provides facilities for displaying status information about interpreted processes and break points.

It is possible to attach to interpreted processes by giving the corresponding process identity only. By default, an
attachment window is displayed. Processes at other Erlang nodes can be attached manually or automatically.

By preference, these functions can be included in module shel | _def aul t . By default, they are included in that
module.

Exports

im() -> pid()

Starts a new graphical monitor. This is the Monitor window, the main window of Debugger. All the Debugger and
interpreter functionality is accessed from the Monitor window. This window displays the status of all processes that
have been or are executing interpreted modul es.

ii(AbsModules) -> ok
ii(AbsModule) -> {module, Module} | error
ini(AbsModules) -> ok
ini(AbsModule) -> {module, Module} | error
Types:
AbsMbdul es = [AbsModul e]
AbsMbdul e = Module | File
Modul e = atom()
File = string()
Interpretsthe specified module(s). i i / 1 interpretsthe module(s) only at the current node, seeint:i/1.i ni / 1 interprets
the module(s) at all known nodes, seeint:ni/1.

ig(AbsModule) -> ok
inq(AbsModule) -> ok
Types:
AbsModul e = Module | File

Modul e = atom()

File = string()
Stops interpreting the specified module. i g/ 1 stops interpreting the module only at the current node. i nq/ 1 stops
interpreting the module at all known nodes.

il() -> ok

Makes a printout of al interpreted modules. Modules are printed together with the full path name of the corresponding
source codefile.

18 | Ericsson AB. All Rights Reserved.: Debugger

ip() -> ok

Prints the current status of all interpreted processes.

ic() -> ok
Clearsinformation about processes executing interpreted code by removing all information about terminated processes.

iaa(Flags) -> true
iaa(Flags, Function) -> true
Types.

Flags = [init | break | exit]

Functi on = {Modul e, Nane, Ar gs}

Modul e = Nane = aton()

Args = [tern()]
Sets when and how to attach to a debugged process automatically, see int:auto_attach/2. Funct i on defaults to the
standard function used by Debugger.

ist(Flag) -> true
Types:
Flag = all | no_tail | false
Sets how to save call framesin the stack, seeint:stack_trace/1.

ia(Pid) -> ok | no_proc
Types:
Pid = pid()
Attaches to the debugged process Pi d. An Attach Process window is opened for the process.

ia(X,Y,Z) -> ok | no _proc
Types:
X=Y=2Z=int()
Sameasi a(Pi d) , where Pi d istheresult of calling the shell functionpi d(X, Y, Z) .

ia(Pid, Function) -> ok | no _proc
Types.
Pid = pid()
Function = {Modul e, Nane}
Modul e = Nane = aton()

Attaches to the debugged process Pi d. The interpreter callsspawn(Modul e, Nane, [Pi d]) (andignoresthe
result).

ia(X,Y,Z, Function) -> ok | no _proc
Types.

X=Y=2Z=int()

Function = {Modul e, Nane}

Ericsson AB. All Rights Reserved.: Debugger | 19

Modul e = Nane = aton()

Sameasi a(Pi d, Functi on), wherePi d istheresult of calling the shell function pi d(X, Y, Z) . An attached
process is expected to call the unofficia functioni nt : at t ached(Pi d) and to be able to handle messages from
the interpreter. For an example, seedbg_wx_trace. erl .

ib(Module, Line) -> ok | {error, break exists}
Types:

Modul e = atom()

Line = int()
Creates abreakpoint at Li ne in Modul e.

ib(Module, Name, Arity) -> ok | {error, function not found}
Types:

Modul e = Nane = aton()

Arity = int()
Creates breakpoints at the first line of every clause of function Modul e: Nane/ Arity.

ir() -> ok
Deletes al breakpoaints.

ir(Module) -> ok
Types:

Modul e = atom()
Deletes all breakpointsin Mbdul e.

ir(Module, Line) -> ok
Types.
Modul e = atom()
Line = int()
Deletes the breakpoint at Li ne in Mbdul e.

ir(Module, Name, Arity) -> ok | {error, function not found}
Types:

Modul e = Nane = aton()

Arity = int()
Deletes the breakpoints at the first line of every clause of function Modul e: Nane/ Arity.

ibd(Module, Line) -> ok
Types:
Modul e = atom()
Line = int()
Makes the breakpoint at Li ne in Modul e inactive.

20 | Ericsson AB. All Rights Reserved.: Debugger

ibe(Module, Line) -> ok
Types:
Modul e = atom()
Line = int()
Makes the breakpoint at Li ne in Modul e active.

iba(Module, Line, Action) -> ok
Types:
Modul e = atom()
Line = int()
Action = enable | disable | delete
Setsthe trigger action of the breakpoint at Li ne in Modul e to Act i on.

ibc(Module, Line, Function) -> ok
Types:

Modul e = atom()

Line = int()

Function = {Modul e, Nane}

Name = atom()

Sets the conditional test of the breakpoint at Li ne in Modul e to Functi on.

The conditional test is performed by calling Modul e: Name(Bi ndi ngs) , whereBi ndi ngs isthecurrent variable
bindings. The function must returnt r ue (break) or f al se (do not break). To retrieve the value of avariable Var ,
useint:get_binding(Var, Bindings).

ipb() -> ok

Prints all existing breakpoints.

ipb(Module) -> ok
Types:
Modul e = atom()
Prints all existing breakpointsin Modul e.

iv() -> atom()
Returns the current version number of the interpreter. Same as the version number of the Debugger application.

help() -> ok
Prints help text.

See Also
int(3)

Ericsson AB. All Rights Reserved.: Debugger | 21

int

int

Erlang module

The Erlang interpreter provides mechanisms for breakpoints and stepwise execution of code. It is primarily intended
to be used by Debugger, see the User's Guide and debugger (3) .

The following can be done from the shell:

* Specify the modulesto beinterpreted.

» Specify breakpoints.

e Monitor the current status of all processes executing code in interpreted modules, also processes at other Erlang
nodes.

By attaching to a process executing interpreted code, it is possible to examine variable bindings and order stepwise
execution. This is done by sending and receiving information to/from the process through a third process, called
the meta process. You can implement your own attached process. See i nt. er| for available functions and
dbg wx_trace. erl for possible messages.

The interpreter depends on the Kernel, STDLIB, and GS applications. This means that modules belonging to any of
these applications are not allowed to be interpreted, asit could lead to a deadlock or emulator crash. This also applies
to modules belonging to the Debugger application.

Breakpoints

Breakpoints are specified on aline basis. When aprocess executing codein aninterpreted modul e reaches abreakpoint,
it stops. This means that a breakpoint must be set at an executable line, that is, a code line containing an executable
expression.

A breakpoint has the following:

e A datus, which isactive or inactive. An inactive breakpoint isignored.

» A trigger action. When a breakpoint is reached, the trigger action specifiesif the breakpoint isto continue as
active (enable), or to become inactive (disable), or to be removed (delete).

e Optionally an associated condition. A condition isatuple{ Modul e, Nane} . When the breakpoint is reached,
Modul e: Nanme(Bi ndi ngs) iscaled. If it evaluatestot r ue, execution stops. If it evaluatesto f al se, the
breakpoint isignored. Bi ndi ngs contains the current variable bindings. To retrieve the value for a specified
variable, useget _bi ndi ng.

By default, a breakpoint is active, has trigger action enabl e, and has no associated condition. For details about
breakpoints, see the User's Guide.

Exports

i(AbsModule) -> {module,Module} | error
i(AbsModules) -> ok
ni(AbsModule) -> {module,Module} | error
ni(AbsModules) -> ok
Types:

AbsMbdul es = [AbsModul e]

AbsModul e = Module | File | [Module | File]

Modul e = atom()

22 | Ericsson AB. All Rights Reserved.: Debugger

int

File = string()
Interprets the specified module(s). i / 1 interprets the module only at the current node. ni / 1 interprets the module
at all known nodes.
A module can be specified by its module name (atom) or filename.

If specified by its module name, the object code Mbdul e. beamis searched for in the current path. The source code
Modul e. er | issearched for first in the same directory as the object code, thenin an sr ¢ directory next to it.

If specified by its filename, the filename can include a path and the . er | extension can be omitted. The object code
Modul e. beamis searched for first in the same directory as the source code, then in an ebi n directory next to it,
and then in the current path.

Theinterpreter requires both the source code and the object code. The object code must include debug information,
that is, only modules compiled with option debug_i nf o set can beinterpreted.

The functionsreturns { modul e, Modul e} if the module was interpreted, otherwise er r or isreturned.

The argument can also be alist of modules or filenames, in which case the function tries to interpret each module as
specified earlier. The function then always returns ok, but prints some information to st dout if a module cannot
be interpreted.

n(AbsModule) -> ok
nn(AbsModule) -> ok
Types:
AbsMbdul e = Mbdule | File | [Module | File]
Modul e = atom()
File = string()

Stops interpreting the specified module. n/ 1 stops interpreting the module only at the current node. nn/ 1 stops
interpreting the module at all known nodes.

Asfori/ 1 andni/ 1, amodule can be specified by its module name or filename.

interpreted() -> [Modulel
Types:

Modul e = atom()
Returns alist with all interpreted modules.

file(Module) -> File | {error,not loaded}
Types:
Modul e = atom()
File = string()
Returns the source code filename Fi | e for an interpreted module Modul e.

interpretable(AbsModule) -> true | {error,Reason}

Types:
AbsMbdul e = Module | File

Ericsson AB. All Rights Reserved.: Debugger | 23

int

Modul e = atom()
File = string()
Reason = no_src | no_beam | no_debug info | badarg | {app, App}
App = aton()
Checksif amodule can beinterpreted. The modul e can be specified by itsmodule name Mbdul e or itssource filename
Fi | e. If specified by amodule name, the module is searched for in the code path.
Thefunction returnst r ue if all of the following apply:
* Both source code and abject code for the moduleis found.
* The module has been compiled with option debug_i nf o set.
e The module does not belong to any of the applications Kernel, STDLIB, GS, or Debugger.
Thefunctionreturns{ er r or , Reason} if themodulecannot beinterpreted. Reason can havethefollowing values:
no_src
No source codeisfound. It isassumed that the source code and object code arelocated either in the samedirectory,
orinsrc and ebi n directories next to each other.
no_beam
No object codeisfound. It isassumed that the source code and object code arelocated either in the samedirectory,
orinsrc and ebi n directories next to each other.
no_debug info
The module has not been compiled with option debug_i nf o set.
badar g

AbsMdul e isnot found. This could be because the specified file does not exist, or because code: whi ch/ 1
does not return aBEAM filename, which is the case not only for non-existing modules but also for modules that
are preloaded or cover-compiled.

{app, App}
App iskernel ,stdl i b, gs, ordebugger if AbsModul e belongs to one of these applications.
Notice that the function can return t r ue for amodule that in fact is not interpretable in the case where the module is

marked as sticky or residesin adirectory marked as sticky. The reason isthat thisis not discovered until the interpreter
triesto load the module.

auto attach() -> false | {Flags,Function}
auto attach(false)
auto attach(Flags, Function)
Types.
Flags = [init | break | exit]
Functi on = {Modul e, Nane, Ar gs}
Modul e = Nane = aton()
Args = [tern()]
Getsand setswhen and how to attach automatically to a process executing code in interpreted modules. f al se means
never attach automatically, this is the default. Otherwise automatic attach is defined by alist of flags and a function.
The following flags can be specified:
e init - Attach when aprocessfor thefirst time calls an interpreted function.
* break - Attach whenever a process reaches a breakpoint.

24 | Ericsson AB. All Rights Reserved.: Debugger

int

e exit - Attach when aprocess terminates.

When the specified event occurs, the function Funct i on iscalled as:

spawn(Module, Name, [Pid | Args])

Pi d isthe pid of the process executing interpreted code.

stack trace() -> Flag
stack trace(Flag)
Types:
Flag = all | no_tail | false
Gets and sets how to save call frames in the stack. Saving call frames makes it possible to inspect the call chain of

a process, and is also used to emulate the stack trace if an error (an exception of class error) occurs. The following
flags can be specified:

al |
Save information about all current calls, that is, function calls that have not yet returned a value.

no_tail
Save information about current calls, but discard previous information when atail recursive call is made. This
option consumeslessmemory and can be necessary to usefor processeswith long lifetimesand many tail recursive
calls. Thisisthe default.

fal se

Save no information about current calls.

break (Module, Line) -> ok | {error,break exists}
Types.

Modul e = atom()

Line = int()
Creates abreakpoint at Li ne in Modul e.

delete break(Module, Line) -> ok
Types:

Modul e = atom()

Line = int()
Deletes the breakpoint at Li ne in Mbdul e.

break in(Module, Name, Arity) -> ok | {error,function not found}
Types:

Modul e = Nane = aton()

Arity = int()
Creates a breakpoint at the first line of every clause of function Modul e: Name/ Arity.

del break in(Module, Name, Arity) -> ok | {error,function not found}
Types.

Ericsson AB. All Rights Reserved.: Debugger | 25

int

Modul e = Nane = aton()
Arity = int()
Deletes the breakpoints at the first line of every clause of function Modul e: Nane/ Arity.

no break() -> ok
no break(Module) -> ok

Deletes al breakpoints, or all breakpointsin Mbdul e.

disable break(Module, Line) -> ok
Types:

Modul e = atom()

Line = int()
Makes the breakpoint at Li ne in Modul e inactive.

enable break(Module, Line) -> ok
Types:

Modul e = atom()

Line = int()
Makes the breakpoint at Li ne in Modul e active.

action at break(Module, Line, Action) -> ok

Types:
Modul e = atom()
Line = int()

Action = enable | disable | delete
Setsthe trigger action of the breakpoint at Li ne in Modul e to Act i on.

test at break(Module, Line, Function) -> ok

Types:
Modul e = atom()
Line = int()

Functi on = {Modul e, Nane}
Name = atom()

Sets the conditional test of the breakpoint at Li ne in Mbdul e to Functi on. The function must fulfill the
reguirements specified in section Breakpoints.

get binding(Var, Bindings) -> {value,Value} | unbound
Types.
Var = aton()
Bi ndings = term()
Value = term)
Retrieves the binding of Var . Thisfunction is intended to be used by the conditional function of a breakpoint.

26 | Ericsson AB. All Rights Reserved.: Debugger

int

all breaks() -> [Break]
all breaks(Module) -> [Break]
Types:
Break = {Point, Options}
Poi nt = {Modul e, Li ne}
Modul e = atom()

Line = int()

Options = [Status, Trigger, null, Cond|]
Status = active | inactive

Trigger = enable | disable | delete
Cond = null | Function

Functi on = {Modul e, Nane}
Name = atom()
Gets all breakpoints, or all breakpointsin Modul e.

snapshot() -> [Snapshot]

Types:
Snapshot = {Pid, Function, Status, I|nfo}
Pid = pid()

Function = {Modul e, Nane, Ar gs}
Modul e = Nane = aton()
Args = [tern()]
Status = idle | running | waiting | break | exit | no_conn
Info = {} | {Mddule,Line} | ExitReason
Line = int()
Exi t Reason = tern()
Gets information about all processes executing interpreted code.
e Pid - Processidentifier.
e Functi on - First interpreted function called by the process.
e St at us - Current status of the process.
e I nfo-Moreinformation.

St at us isone of the following:

e idl e-Theprocessisnolonger executing interpreted code. | nf 0={}.

e runni ng - Theprocessisrunning. | nf o={}.

* waiting-Theprocessiswaitingat ar ecei ve. | nf o={}.

e break - Process execution is stopped, normally at abreakpoint. | nf o={ Modul e, Li ne}.
e exit -Theprocessisterminated. | nf o=Exi t Reason.

* no_conn - The connection is down to the node where the processis running. | nf o={} .

clear() -> ok
Clearsinformation about processes executing interpreted code by removing all information about terminated processes.

Ericsson AB. All Rights Reserved.: Debugger | 27

int

continue(Pid) -> ok | {error,not interpreted}
continue(X,Y,Z) -> ok | {error,not interpreted}
Types:

Pid = pid()

X=Y=2Z=int()
Resumes process execution for Pi d or c: pi d(X, Y, Z2).

28 | Ericsson AB. All Rights Reserved.: Debugger

	Debugger
	Debugger User's Guide
	Introduction
	Scope
	Prerequisites

	Debugger
	Getting Started
	Breakpoints and Break Dialog Windows
	Executable Lines
	Status and Trigger Action
	Line Breakpoints
	Conditional Breakpoints
	Function Breakpoints

	Stack Trace
	Monitor Window
	Process Grid
	File Menu
	Edit Menu
	Module Menu
	Process Menu
	Break Menu
	Options Menu
	Windows Menu
	Help Menu

	Interpret Modules Window
	Attach Process Window
	File Menu
	Edit Menu
	Process Menu
	Options Menu
	Break, Windows, and Help Menus

	View Module Window
	File and Edit Menus
	Break, Windows, and Help Menus

	Performance
	Code Loading Mechanism
	Debugging Remote Nodes

	Reference Manual
	debugger
	start/0
	start/1
	start/1
	start/2
	quick/3

	i
	im/0
	ii/1
	ii/1
	ini/1
	ini/1
	iq/1
	inq/1
	il/0
	ip/0
	ic/0
	iaa/1
	iaa/2
	ist/1
	ia/1
	ia/3
	ia/2
	ia/4
	ib/2
	ib/3
	ir/0
	ir/1
	ir/2
	ir/3
	ibd/2
	ibe/2
	iba/3
	ibc/3
	ipb/0
	ipb/1
	iv/0
	help/0

	int
	i/1
	i/1
	ni/1
	ni/1
	n/1
	nn/1
	interpreted/0
	file/1
	interpretable/1
	auto_attach/0
	auto_attach/1
	auto_attach/2
	stack_trace/0
	stack_trace/1
	break/2
	delete_break/2
	break_in/3
	del_break_in/3
	no_break/0
	no_break/1
	disable_break/2
	enable_break/2
	action_at_break/3
	test_at_break/3
	get_binding/2
	all_breaks/0
	all_breaks/1
	snapshot/0
	clear/0
	continue/1
	continue/3

