ERLANG

Dialyzer

Copyright © 2006-2025 Ericsson AB. All Rights Reserved.
Dialyzer 5.1.3.1

June 16, 2025

Copyright © 2006-2025 Ericsson AB. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance
with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless
required by applicable law or agreed to in writing, software distributed under the License is distributed on an
"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See

the License for the specific language governing permissions and limitations under the License. Ericsson AB. All
Rights Reserved..

June 16, 2025

1.1 Dialyzer

1 Dialyzer User's Guide

1.1 Dialyzer
1.1.1 Introduction

Scope

Dialyzer isastatic analysistool that i dentifies software discrepancies, such as definitetype errors, code that hasbecome
dead or unreachable because of programming error, and unnecessary tests, in single Erlang modules or entire (sets
of) applications.

Dialyzer can be called from the command line, from Erlang, and from a GUI.

Prerequisites
It is assumed that the reader is familiar with the Erlang programming language.

1.1.2 The Persistent Lookup Table

Dialyzer stores the result of an analysisin a Persistent Lookup Table (PLT). The PLT can then be used as a starting
point for later analyses. It is recommended to build a PLT with the Erlang/OTP applications that you are using, but
also to include your own applications that you are using frequently.

ThePLT isbuilt using option - - bui | d_pl t to Dialyzer. The following command builds the recommended minimal
PLT for Erlang/OTP:

dialyzer --build plt --apps erts kernel stdlib mnesia

Didyzer looks if there is an environment variable called DI ALYZER PLT and places the PLT at this
location. If no such variable is set, Dialyzer places the PLT in a file caled .diadyzer_plt in the
fil enane: basedi r (user_cache, "erl ang") folder. The placement can also be specified using the options
--plt or--output_plt.

Information can be added to an existing PLT using option - - add_t o_pl t . If you also want to include the Erlang
compilerinthe PLT and placeit in anew PLT, then use the following command:

dialyzer --add to plt --apps compiler --output plt my.plt

Then you can add your favorite application my_app to the new PLT:
dialyzer --add to plt --plt my.plt -r my app/ebin

But you realize that it is unnecessary to have the Erlang compiler in this one:

dialyzer --remove from plt --plt my.plt --apps compiler

Later, when you have fixed a bug in your application my_app, you want to update the PLT so that it becomes fresh
the next time you run Dialyzer. In this case, run the following command:

dialyzer --check plt --plt my.plt

Ericsson AB. All Rights Reserved.: Dialyzer | 1

1.1 Dialyzer

Dialyzer then reanalyzes the changed files and the files that depend on these files. Notice that this consistency check
is performed automatically the next time you run Dialyzer with this PLT. Option - - check_pl t isonly for doing
so without doing any other analysis.

To get information about a PLT, use the following option:
dialyzer --plt info
To specify which PLT, use option - - pl t .
To get the output printed to afile, use option - - out put _fil e.
Notice that when manipulating the PLT, no warnings are emitted. To turn on warnings during (re)analysis of the PLT,
useoption - - get _war ni ngs.
1.1.3 Using Dialyzer from the Command Line

Diayzer has acommand-line version for automated use. Seedi al yzer (3) .

1.1.4 Using Dialyzer from Erlang
Diayzer can aso be used directly from Erlang. Seedi al yzer (3).

1.1.5 Using Dialyzer from the GUI

Choosing the Applications or Modules

The File window displays a listing of the current directory. Click your way to the directoriesymodules you want to
add or type the correct path in the entry.

Mark the directoriesymodules you want to analyze for discrepancies and click Add. You can either add the . beam
and . er| filesdirectly, or add directories that contain these kind of files. Notice that you are only allowed to add
the type of files that can be analyzed in the current mode of operation (see below), and that you cannot mix . beam
and. erl files.

Analysis Modes

Dialyzer has two analysis modes: "Byte Code" and "Source Code". They are controlled by the buttons in the top-
middle part of the main window, under Analysis Options.

Controlling the Discrepancies Reported by Dialyzer

Under the War nings pull-down menu, there are buttons that control which discrepancies are reported to the user in the
War nings window. By clicking these buttons, you can enable/disable a whole class of warnings. Information about
the classes of warningsis found on the "Warnings' item under the Help menu (in the rightmost top corner).

If modulesare compiled with inlining, spuriouswarnings can be emitted. Inthe Options menu you can choosetoignore
inline-compiled modules when analyzing byte code. When starting from source code, this is not a problem because
inlining isexplicitly turned off by Dialyzer. The option causes Dialyzer to suppress all warnings from inline-compiled
modules, asthereis currently no way for Dialyzer to find what parts of the code have been produced by inlining.
Running the Analysis

Once you have chosen the modules or directories you want to analyze, click the Run button to start the analysis. If
you for some reason want to stop the analysis while it is running, click the Stop button.

Theinformation from the analysisis displayed in the L og window and the War nings window.

2 | Ericsson AB. All Rights Reserved.: Dialyzer

1.1 Dialyzer

Include Directories and Macro Definitions

When analyzing from source, you might haveto supply Dialyzer with alist of include directories and macro definitions
(as you can do withtheer | ¢ flags- 1 and - D). This can be done either by starting Dialyzer with these flags from
the command line asin:

dialyzer -I my includes -DDEBUG -Dvsn=42 -I one more dir

or by adding these explicitly using submenu Manage Macro Definitions or Manage Include Directories in the
Options menu.

Saving the Information on the Log and Warnings Windows

The File menu includes options to save the contents of the L og window and the War nings window. Simply choose
the options and enter the file to save the contentsin.

There are also buttons to clear the contents of each window.

Inspecting the Inferred Types of the Analyzed Functions

Diayzer storestheinformation of the analyzed functionsin aPersistent Lookup Table (PLT), see section The Persistent
Lookup Table.

After an analysis, you can inspect this information. In the PLT menu you can choose to either search the PLT or
inspect the contents of the whole PLT. The information is presented in EDoc format.

1.1.6 Dialyzer's Model of Analysis

Diayzer operates somewhere between a classical type checker and a more genera static-analysis tool: It checks and
consumes function specs, yet doesn't require them, and it can find bugs across modules which consider the dataflow
of the programs under analysis. This means Diayzer can find genuine bugs in complex code, and is pragmatic in the
face of missing specs or limited information about the codebase, only reporting issues which it can prove have the
potential to cause agenuineissue at runtime. This means Dialyzer will sometimes not report every bug, sinceit cannot
always find this proof.

How Dialyzer Utilises Function Specifications

Dialyzer infers types for all top-level functionsin a module. If the module also has a spec given in the source-code,
Diayzer will comparethe inferred type to the spec. The comparison checks, for each argument and the return, that the
inferred and specified types overlap - which is to say, the types have at least one possible runtime value in common.
Notice that Dialyzer does not check that one type contains a subset of values of the other, or that they're precisely
equal: This allows Diayzer to make simplifying assumptions to preserve performance and avoid reporting program
flows which could potentially succeed at runtime.

If the inferred and specified types do not overlap, Dialyzer will warn that the spec is invalid with respect to the
implementation. If they do overlap, however, Dialyzer will proceed under the assumption that the correct type for the
given function istheintersection of theinferred type and the specified type (the rational e being that the user may know
something that Dialyzer itself cannot deduce). One implication of thisisthat if the user gives a spec for a function
which overlaps with Dialyzer's inferred type, but is more restrictive, Dialyzer will trust those restrictions. This may
then generate an error elsewhere which follows from the erroneously restricted spec.

Examples:
Non-overlapping argument:

-spec foo(boolean()) -> string().
%% Dialyzer will infer: foo(integer()) -> string().
foo(N) ->

integer to list(N).

Ericsson AB. All Rights Reserved.: Dialyzer | 3

1.1 Dialyzer

Since the type of the argument in the spec is different from the type that Dialyzer inferred, Dialyzer will generate
the following warning:

some_module.erl:7:2: Invalid type specification for function some module:foo/1.
The success typing is t:foo
(integer()) -> string()
But the spec is t:foo
(boolean()) -> string()
They do not overlap in the 1st argument

Non-overlapping return:

-spec bar(a | b) -> atom().

%% Dialyzer will infer: bar(a | b) -> binary().
bar(a) -> <<"a">>;

bar(b) -> <<"b">>.

Since the return value in the spec and the return value inferred by Dialyzer are different, Dialyzer will generate the
following warning:

some module.erl:11:2: Invalid type specification for function some module:bar/1.
The success typing is t:bar

(‘a' | 'b'") -> << :8>>
But the spec is t:bar
(‘a' | 'b'") -> atom()

The return types do not overlap
Overlapping spec and inferred type:

-spec baz(a | b) -> non_neg integer().

%% Dialyzer will infer: baz(b | ¢ | d) -> -1 | 0 | 1.
baz(b) -> -1;

baz(c) -> 0;

baz(d) -> 1.

Diayzer will "trust”" the spec and using the intersection of the spec and inferred type:

baz(b) -> 0 | 1.

Notice how the ¢ and d from the argument to baz/ 1 and the - 1 in the return from the inferred type were dropped
once the spec and inferred type were intersected. This could result in warnings being emitted for later functions.

For example, if baz/ 1 iscalled like this:

call bazl(A) ->
case baz(A) of
-1 -> negative;
0 -> zero;
1 -> positive
end.

Diayzer will generate the following warning:
some module.erl:25:9: The pattern
-1 can never match the type
01

If baz/ 1 iscdled likethis:

4 | Ericsson AB. All Rights Reserved.: Dialyzer

1.1 Dialyzer

call baz2() ->
baz(a).

Diayzer will generate the following warnings.

some module.erl:30:1: Function call baz2/0 has no local return
some module.erl:31:9: The call t:baz
('a') will never return since it differs in the 1st argument
from the success typing arguments:
("b" | 'c' | 'd")

1.1.7 Feedback and Bug Reports

Wevery much welcome user feedback - even wishlists! If you notice anything weird, especialy if Dialyzer reportsany
discrepancy that is afalse positive, please send an error report describing the symptoms and how to reproduce them.

Ericsson AB. All Rights Reserved.: Dialyzer | 5

1.1 Dialyzer

2 Reference Manual

6 | Ericsson AB. All Rights Reserved.: Dialyzer

dialyzer

dialyzer

Erlang module

Didyzer isastatic analysistool that i dentifies software discrepancies, such as definitetype errors, code that hasbecome
dead or unreachable because of programming errors, and unnecessary tests, in single Erlang modules or entire (sets
of) applications.

Dialyzer starts its analysis from either debug-compiled BEAM bytecode or from Erlang source code. The file and
line number of adiscrepancy is reported along with an indication of what the discrepancy is about. Dialyzer bases its
analysis on the concept of success typings, which alows for sound warnings (no false positives).

Using Dialyzer from the Command Line
Diayzer has acommand-line version for automated use. This section provides a brief description of the options. The
same information can be obtained by writing the following in a shell:

dialyzer --help

For more details about the operation of Dialyzer, see section Using Dialyzer from the GUI in the User's Guide.
Exit status of the command-lineversion:
0

No problems were found during the analysis and no warnings were emitted.

Problems were found during the analysis.

No problems were found during the analysis, but warnings were emitted.

Usage:
dialyzer [--add to plt] [--apps applications] [--build plt]

[--check plt] [-Ddefinel* [-Dname]* [--dump callgraph filel

[--error location flag] [files or dirs] [--fullpath]

[--get warnings] [--gui] [--help] [-I include dir]*

[--incremental] [--metrics file] [--no check plt] [--no indentation]

[--no spec] [-o0 outfile] [--output plt file] [-pa dir]* [--plt plt]

[--plt info] [--plts plt*] [--quiet] [-r dirs] [--raw]

[--remove from plt] [--shell] [--src] [--statistics] [--verbose]

[--version] [--warning apps applications] [-Wwarn]*

* denotes that multiple occurrences of the option are possible. ‘

Options of the command-line version:
--add to_plt

ThePLT isextended to also include thefiles specified with- ¢ and - r . Use- - pl t to specify which PLT to start
from, and - - out put _pl t to specify whereto put the PLT. Notice that the analysis possibly can include files
from the PLT if they depend on the new files. This option only works for BEAM files.

Ericsson AB. All Rights Reserved.: Dialyzer | 7

dialyzer

--apps applications

By default, warnings will be reported to all applications given by - - apps. However, if - - war ni ng_apps is
used, only those applications given to - - war ni ng_apps will have warnings reported. All applications given
by - - apps, but not - - war ni ng_apps, will be analysed to provide context to the analysis, but warnings will
not be reported for them. For example, you may want to include libraries you depend on in the analysis with - -

apps so discrepancies in their usage can be found, but only include your own code with - - war ni ng_apps
so that discrepancies are only reported in code that you own.

--war ni ng_apps applications
This option istypically used when building or modifyingaPLT asin:

dialyzer --build plt --apps erts kernel stdlib mnesia ...

to refer conveniently to library applications corresponding to the Erlang/OTP installation. However, this option
is general and can also be used during analysisto refer to Erlang/OTP applications. File or directory names can
also beincluded, asin:

dialyzer --apps inets ssl ./ebin ../other lib/ebin/my module.beam

--build_plt

Theanalysisstartsfrom an empty PLT and creates anew one from thefiles specified with - ¢ and - r . Thisoption
only works for BEAM files. To override the default PLT location, use- - pl t or - - out put _plt.

--check_plt

Check the PLT for consistency and rebuild it if it is not up-to-date.
- Dnan®e (or - Dnane=val ue)

When analyzing from source, passthe defineto Diayzer. (**)
--dunp_cal I graph file

Dump the call graph into the specified file whose format is determined by the filename extension. Supported
extensionsare: r aw, dot , and ps. If something elseis used as filename extension, default format . r awis used.

--error_location colum | line

Useapair { Li ne, Col um} or aninteger Li ne to pinpoint the location of warnings. The default isto use a
pair { Li ne, Col um} . When formatted, the line and the column are separated by a colon.

files_or_dirs (for backward compatibility alsoas-c files_or_dirs)

Use Dialyzer from the command line to detect defects in the specified files or directories containing . er| or
. beamfiles, depending on the type of the analysis.

--fullpath
Display the full path names of files for which warnings are emitted.
--get _warni ngs

Make Dialyzer emit warnings even when manipulating the PLT. Warnings are only emitted for files that are
analyzed.

- - gui
Use the GUI.
--hel p (or-h)
Print this message and exit.

8 | Ericsson AB. All Rights Reserved.: Dialyzer

dialyzer

-1 include_dir
When analyzing from source, passthei ncl ude_di r to Dialyzer. (**)
--input _list file file
Analyze the file names that are listed in the specified file (one file name per line).
--no_check _plt
Skip the PLT check when running Dialyzer. Thisis useful when working with installed PLTs that never change.
--increnental

The analysis starts from an existing incremental PLT, or builds one from scratch if one does not exist, and runs
the minimal amount of additional analysisto report all issuesin the given set of apps. Notably, incremental PLT
files are not compatible with "classic* PLT files, and vice versa. The initial incremental PLT will be updated
unless an alternative output incremental PLT is given.

--no_i ndentation

Do not insert line breaks in types, contracts, and Erlang Code when formatting warnings.
--no_spec

Ignore functions specs. Thisis useful for debugging when one suspects that some specs are incorrect.
-o outfile(or--output outfile)

When using Dialyzer from the command line, send the analysis results to the specified outfile rather than to
st dout .

--metrics _file file

Write metrics about Dialyzer's incrementality (for example, total number of modules considered, how many
modules were changed since the PLT was last updated, how many modul es needed to be analyzed) to afile. This
can be useful for tracking and debugging Diayzer's incrementality.

--output_plt file

Storethe PLT at the specified file after building it.
-pa dir

Includedi r inthe path for Erlang. Thisis useful when analyzing filesthat have- i ncl ude_I i b() directives.
--plt plt

Usethe specified PLT astheinitial PLT. If the PLT was built during setup, the files are checked for consistency.
--plt_info

Make Diayzer print information about the PLT and then quit. The PLT can be specified with - - pl t (S) .
--plts plt*

Merge the specified PLTs to create theinitial PLT. This requires that the PLTs are digoint (that is, do not have
any module appearing in more than one PLT). The PLTs are created in the usual way:

dialyzer --build plt --output plt plt 1 files to_include

c.iia.ﬂyzer --build plt --output plt plt n files to_include
They can then be used in either of the following ways:

dialyzer files to analyze --plts plt 1 ... plt n

or

Ericsson AB. All Rights Reserved.: Dialyzer | 9

dialyzer

dialyzer --plts plt 1 ... plt n -- files to analyze
Noticethe - - delimiter in the second case.
--quiet (or-q)
Make Dialyzer abit more quiet.
-r dirs

Sameasfil es_or_dirs, but the specified directories are searched recursively for subdirectories containing
. erl or. beamfilesinthem, depending on the type of analysis.

--raw

When using Dialyzer from the command line, output the raw analysis results (Erlang terms) instead of the
formatted result. The raw format is easier to post-process (for example, to filter warnings or to output HTML
pages).

--renove_fromplt

The information from the files specified with - ¢ and - r isremoved from the PLT. Notice that this can cause a
reanalysis of the remaining dependent files.

--shel |

Do not disable the Erlang shell while running the GUI.
--src

Override the default, which isto analyze BEAM files, and analyze starting from Erlang source code instead.
--statistics

Print information about the progress of execution (anaysis phases, time spent in each, and size of the relative
input).

--verbose

Make Dialyzer a bit more verbose.
--version (or-v)

Print the Dialyzer version and some more information and exit.
- Whar n

A family of options that selectively turn on/off warnings. (For help on the names of warnings, use di al yzer
- Whel p.) Notice that the options can aso be specified in the file with a- di al yzer () attribute. For details,
see section Requesting or Suppressing Warnings in Source Files.

** options- Dand - | work both from the command line and in the Dialyzer GUI; the syntax of definesand includes
isthe same as that used by erlc(1).

War ning options:
-Werror _handl i ng (***)

Include warnings for functions that only return by an exception.
-Wextra_return (***)

Warn about functions whose specification includes types that the function cannot return.

10 | Ericsson AB. All Rights Reserved.: Dialyzer

dialyzer

- Whi ssi ng_return (***)

Warn about functions that return values that are not part of the specification.
-Who_behavi our s

Suppress warnings about behavior callbacks that drift from the published recommended interfaces.
-Who_contracts

Suppress warnings about invalid contracts.
-Who_fail _call

Suppress warnings for failing calls.
-Who_fun_app

Suppress warnings for fun applications that will fail.
-Who_i nproper _lists

Suppress warnings for construction of improper lists.
-Who_nmat ch

Suppress warnings for patterns that are unused or cannot match.
-Who_mi ssing_calls

Suppress warnings about calls to missing functions.
- Who_opaque

Suppress warnings for violations of opacity of datatypes.
-Who_return

Suppress warnings for functions that will never return avalue.
-Who_undefined_cal | backs

Suppress warnings about behaviors that have no - cal | back attributes for their callbacks.
-Who_unused

Suppress warnings for unused functions.
- Who_unknown

Suppress warnings about unknown functions and types. The default is to warn about unknown functions and
types when setting the exit status. When using Dialyzer from Erlang, warnings about unknown functions and
types are returned.

- Winder specs (***)
Warn about underspecified functions (the specification is strictly more allowing than the success typing).
-Winmat ched_r et ur ns (***)

Include warnings for function calls that ignore a structured return value or do not match against one of many
possible return values. However, no warnings are included if the possible return values are a union of atoms or
aunion of numbers.

The following options are also available, but their use is not recommended (they are mostly for Dialyzer developers
and internal debugging):

-Wiver specs (***)

Warn about overspecified functions (the specification is strictly less allowing than the success typing).

Ericsson AB. All Rights Reserved.: Dialyzer | 11

dialyzer

-Wspecdi ffs (***)

Warn when the specification is different than the success typing.

*** denotes options that turn on warnings rather than turning them off. ‘

The following option is not strictly needed as it specifies the default. It is primarily intended to be used with the -
di al yzer attribute. For an example see section Requesting or Suppressing Warnings in Source Files.

-Who_under specs
Suppress warnings about underspecified functions (the specification is strictly more allowing than the success
typing).
-Who_extra_return
Suppress warnings about functions whose specification includes types that the function cannot return.
-Who_missing_return
Suppress warnings about functions that return values that are not part of the specification.

Using Dialyzer from Erlang

Dialyzer can be used directly from Erlang. Both the GUI and the command-line versions are also available. The options
are similar to the ones given from the command line, see section Using Dialyzer from the Command Line.

Default Dialyzer Options

The (host operating system) environment variable ERL_COMPI LER_OPTI ONS can be used to give default Dialyzer
options. Its value must be avalid Erlang term. If thevalueisalist, itisused asis. If itisnot alist, itisput into alist.

Thelist is appended to any options given to run/1 or on the command line.
Thelist can be retrieved with compile:env_compiler_options/0.

Currently the only option used istheer r or _| ocat i on option.
Dialyzer configuration file:

Dialyzer's configuration file may also be used to augment the default options and those given directly to the Dialyzer
command. It is commonly used to avoid repeating options which would otherwise need to be given explicitly to
Diayzer on every invocation.

The location of the configuration file can be set viathe DI ALYZER CONFI Genvironment variable, and defaults to
withintheuser _confi g fromfi | enane: basedi r/ 3.

An exampl e configuration file's contents might be;

{incremental,
{default apps,[stdlib,kernel,erts]},
{default warning apps,[stdlib]}
}.
{warnings, [no improper lists]}.
{add pathsa,["/users/samwise/potatoes/ebin"]1}.
{add pathsz,["/users/smeagol/fish/ebin"1}.

12 | Ericsson AB. All Rights Reserved.: Dialyzer

dialyzer

Requesting or Suppressing Warnings in Source Files

Attribute- di al yzer () canbeusedfor turning off warningsin amodul e by specifying functions or warning options.
For example, to turn off al warnings for the function f / 0, include the following line;

-dialyzer({nowarn function, f/0}).
To turn off warnings for improper lists, add the following line to the source file:
-dialyzer(no improper lists).
Attribute - di al yzer () isallowed after function declarations. Lists of warning options or functions are allowed:
-dialyzer([{nowarn_function, [f/0]1}, no_improper lists]).
Warning options can be restricted to functions:
-dialyzer({no_improper lists, g/0}).

-dialyzer({[no_return, no match], [g/0, h/01}).

Thewarning option for underspecified functions, - Winder specs, can result in useful warnings, but often functions
with specificationsthat are strictly more allowing than the success typing cannot easily be modified to belessallowing.
To turn off the warning for underspecified function f / 0, include the following line:

-dialyzer({no_underspecs, f/0}).

For help on the warning options, use di al yzer -Whel p. The options are aso enumerated, see type
war n_option().

Attribute- di al yzer () canalso beused for turning on warnings. For example, if amodule has been fixed regarding
unmatched returns, adding the following line can help in assuring that no new unmatched return warnings are
introduced:

-dialyzer(unmatched returns).

Data Types

dial option() =
{files, [FileName :: file:filename()]} |
{files rec, [DirName :: file:filename()]} |
{defines, [{Macro :: atom(), Value :: term()}1} |
{from, src _code | byte code} |
{init plt, FileName :: file:filename()} |
{plts, [FileName :: file:filename()]} |

{include dirs, [DirName :: file:filename()1} |
{output file, FileName :: file:filename()} |
{metrics file, FileName :: file:filename()} |
{module lookup file, FileName :: file:filename()} |

{output plt, FileName :: file:filename()} |

{check plt, boolean()} |

{analysis type,

succ_typings | plt_add | plt build | plt _check | plt_remove |
incremental} |

{warnings, [warn_option()]} |

{get warnings, boolean()} |

{use_spec, boolean()} |

Ericsson AB. All Rights Reserved.: Dialyzer | 13

dialyzer

{filename opt, filename opt()} |

{callgraph file, file:filename()} |

{mod deps file, file:filename()} |

{warning files rec, [DirName :: file:filename()]} |
{error_location, error location()}

Option f r omdefaultsto byt e_code. Optionsi nit _pl t and pl t s change the default.

dial warn tag() =
warn_behaviour | warn_bin construction | warn_callgraph |
warn_contract _extra return | warn_contract missing return |
warn_contract not equal | warn _contract range |
warn_contract subtype | warn _contract supertype |
warn_contract syntax | warn_contract types |
warn_failing call | warn_fun _app | warn_map_construction |
warn_matching | warn_non_proper list | warn_not called |
warn_opaque | warn_overlapping contract |
warn_return_no _exit | warn_return_only exit |
warn_undefined callbacks | warn_unknown | warn_umatched return
dial warning() =
{Tag :: dial warn tag(),
Id :: file location(),
Msg :: {atom(), [term()]}}

error_location() = column | line

If the value of thisoptionis| i ne, aninteger Li ne isused as Locat i on in messages. If the valueis col um, a
pair { Li ne, Col um} isused asLocati on. Thedefaultiscol um.
file location() =
{File :: file:filename(), Location :: erl anno:location()}
filename opt() = basename | fullpath
format _option() =
{indent opt, boolean()} |
{filename opt, filename opt()} |
{error_location, error location()}
warn_option() =
error_handling | no_behaviours | no_contracts | no fail call |
no_fun app | no _improper lists | no _match | no missing calls |
no_opaque | no_return | no undefined callbacks |
no_underspecs | no_unknown | no _unused | underspecs |
unknown | unmatched returns | overspecs | specdiffs |
extra return | no _extra return | missing return |
no missing return

See section Warning options for a description of the warning options.

Exports

format warning(Warnings) -> string()
Types:

Warnings = dial warning()
Get astring from warnings as returned by r un/ 1.

14 | Ericsson AB. All Rights Reserved.: Dialyzer

dialyzer

format warning(Warnings, Options) -> string()
Types:
Warnings = dial warning()
Options = filename opt() | [format option()]
format_option() =
{indent opt, boolean()} |
{filename opt, filename opt()} |
{error_location, error_location()}

filename opt() = basename | fullpath
Get astring from warnings as returned by r un/ 1.

If i ndent _opt issettotrue (default), line breaks are inserted in types, contracts, and Erlang code to improve
readability.

Iferror_| ocationissettocol um (default), locations are formatted as Li ne: Col umm if the column number
is available, otherwise locations are formatted as Li ne even if the column number is available.

gui() -> ok
gui(Options) -> ok
Types:

Options = [dial option()]
Dialyzer GUI version.

plt_info(Plt) ->
{ok, ClassicResult | IncrementalResult} |
{error, Reason}

Types:
Plt = file:filename()
ClassicResult = [{files, [file:filename()]}]
IncrementalResult = {incremental, [{modules, [module()]1}1}
Reason = not valid | no such file | read error

Returns information about the specified PLT.

run(Options) -> Warnings

Types.
Options = [dial option()]
Warnings = [dial warning()]

Dialyzer command-line version.

Ericsson AB. All Rights Reserved.: Dialyzer | 15

typer

typer

Command

TypEr showstypeinformation for Erlang modules to the user. Additionally, it can annotate the code of fileswith such
type information.
Using TypEr from the Command Line

TypEr isused from the command-line. This section provides a brief description of the options. The same information
can be obtained by writing the following in a shell:

typer --help
Usage:
typer [--help] [--version] [--plt PLT] [--edoc]
[--show | --show-exported | --annotate | --annotate-inc-files | --annotate-in-place]

[-Ddefine]* [-I include dir]* [-pa dir]* [-pz dir]*
[-T application]* file* [-r directory*]

* denotes that multiple occurrences of the option are possible.

Options:
-r
Search directories recursively for .erl files below them. If alist of filesis given, this must be after them.
- - show
Print type specificationsfor all functionson stdout. (Thisisthe default behaviour; thisoptionisnot really needed.)
- -show export ed (or show_export ed)

Same as - - show, but print specifications for exported functions only. Specs are displayed sorted alphabetically
on the function's name.

--annot ate
Annotate the specified files with type specifications.
--annotate-inc-files

Sameas- - annot at e but annotatesall - i ncl ude() filesaswell asall .erl files. (Usethisoption with caution
- it has not been tested much).

--annot ate-in-pl ace

Annotate directly on the source codefiles, instead of dumping the annotated filesin adifferent directory (usethis
option with caution - has not been tested much)

- -edoc
Print type information as Edoc @ pec comments, not as type specs.

--plt
Use the specified dialyzer PLT file rather than the default one.

16 | Ericsson AB. All Rights Reserved.: Dialyzer

typer

-T file*

The specified file(s) already contain type specifications and these are to be trusted in order to print specs for the
rest of thefiles. (Multiplefiles or dirs, separated by spaces, can be specified.)

- Dnane (or - Dname=val ue)

Pass the defined name(s) to TypEr. (**)
-

Pass the include _dir to TypEr. (**)
-pa dir

Includedi r inthe path for Erlang. Thisis useful when analyzing filesthat have-i ncl ude_I i b() directives
or use parse transforms.

-pz dir

Includedi r inthe path for Erlang. Thisis useful when analyzing filesthat have-i ncl ude_1i b() directives
or use parse transforms.

--version (or-v)
Print the TypEr version and some more information and exit.

** options- Dand - | work both from the command line and in the TypEr GUI; the syntax of defines and includes
is the same as that used by erlc(1).

Ericsson AB. All Rights Reserved.: Dialyzer | 17

	Dialyzer
	Dialyzer User's Guide
	Dialyzer
	Introduction
	Scope
	Prerequisites

	The Persistent Lookup Table
	Using Dialyzer from the Command Line
	Using Dialyzer from Erlang
	Using Dialyzer from the GUI
	Choosing the Applications or Modules
	Analysis Modes
	Controlling the Discrepancies Reported by Dialyzer
	Running the Analysis
	Include Directories and Macro Definitions
	Saving the Information on the Log and Warnings Windows
	Inspecting the Inferred Types of the Analyzed Functions

	Dialyzer's Model of Analysis
	How Dialyzer Utilises Function Specifications

	Feedback and Bug Reports

	Reference Manual
	dialyzer
	format_warning/1
	format_warning/2
	gui/0
	gui/1
	plt_info/1
	run/1

	typer

