ERLANG

Compiler

Copyright © 1997-2025 Ericsson AB. All Rights Reserved.
Compiler 8.4.3.3

June 16, 2025

Copyright © 1997-2025 Ericsson AB. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance
with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless
required by applicable law or agreed to in writing, software distributed under the License is distributed on an
"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See

the License for the specific language governing permissions and limitations under the License. Ericsson AB. All
Rights Reserved..

June 16, 2025

1 Reference Manual

The Compiler application compiles Erlang code to byte-code. The highly compact byte-code is executed by the Erlang
emulator.

Ericsson AB. All Rights Reserved.: Compiler | 1

compile

compile

Erlang module

This module provides an interface to the standard Erlang compiler. It can generate either a new file, which contains
the object code, or return a binary, which can be loaded directly.

Data Types

option() = term()

Seefile/2 for detailed description

forms() = term()

List of Erlang abstract or Core Erlang format representations, as used by forms/2

Exports

env_compiler options()

Return compiler options given via the environment variable ERL_COWPI LER_OPTI ONS. If thevalueisaligt, itis
returned asis. If itisnot alist, itis put into alist.

file(File)
Isthesameasfil e(File, [verbose,report_errors,report_warnings]).

file(File, Options) -> CompRet
Types.
CompRet = ModRet | BinRet | ErrRet

ModRet = {ok, Mbdul eNane} | {ok, Modul eNane, War ni ngs}
Bi nRet = {ok, Mbdul eNan®e, Bi nary} | {ok, Modul eNane, Bi nary, War ni ngs}
ErrRet = error | {error, Errors, Warni ngs}

Compiles the code in the file Fi | e, which is an Erlang source code file without the . er | extension. Opt i ons
determine the behavior of the compiler.

Returns { ok, Mbdul eNane} if successful, or error if there are errors. An object code file is created if the
compilation succeeds without errors. It is considered to be an error if the module name in the source code is not the
same as the basename of the output file.

Available options:
bri ef

Restricts error and warning messages to a single line of output. As of OTP 24, the compiler will by default also
display the part of the source code that the message refersto.

basi c_val i dation

This option is afast way to test whether a module will compile successfully. Thisis useful for code generators
that want to verify the code that they emit. No code is generated. If warnings are enabled, warnings generated by
theer| _| i nt module (such aswarnings for unused variables and functions) are also returned.

Useoptionst rong_val i dat i on to generate all warnings that the compiler would generate.

2 | Ericsson AB. All Rights Reserved.: Compiler

compile

strong_val i dation

Similar to option basi c¢_val i dat i on. No code is generated, but more compiler passes are run to ensure that
warnings generated by the optimization passes are generated (such as clauses that will not match, or expressions
that are guaranteed to fail with an exception at runtime).

bi nary

The compiler returns the object code in a binary instead of creating an object file. If successful, the compiler
returns{ ok, Modul eName, Bi nary}.

bin_opt _info

The compiler will emit informational warnings about binary matching optimizations (both successful and
unsuccessful). For more information, see the section about bin_opt_info in the Efficiency Guide.

{conpile_info, [{atonm(), term()}]}

Allows compilers built on top of conpi | e to attach extra compilation metadatato the conpi | e_i nf o chunk
in the generated beam file.

It is advised for compilers to remove all non-deterministic information if the det er mi ni sti c option is
supported and it was supplied by the user.

conpr essed
The compiler will compress the generated object code, which can be useful for embedded systems.
debug info

Includes debug information in the form of Erlang Abstract Format in the debug_i nf o chunk of the compiled
beam module. Tools such as Debugger, Xref, and Cover require the debug information to be included.

Warning: Source code can be reconstructed from the debug information. Use encrypted debug information
(encrypt _debug_i nf 0) to prevent this.

For details, see beam_lib(3).
{debug_i nfo, {Backend, Data}}

Includes custom debug information in the form of a Backend module with custom Dat a in the compiled
beam module. The given module must implement adebug_i nf o/ 4 function and is responsible for generating
different code representations, as described in the debug_i nf o under beam_lib(3).

Warning: Source code can be reconstructed from the debug information. Use encrypted debug information
(encrypt _debug_i nf o) to prevent this.

{debug_i nf o_key, KeyStri ng}
{debug_i nf o_key, { Mode, KeySt ri ng}}

Includes debug information, but encrypts it so that it cannot be accessed without supplying the key. (To give
optiondebug_i nf o aswell isallowed, but not necessary.) Using this option is a good way to always have the
debug information available during testing, yet protecting the source code.

Mbde isthetype of crypto agorithm to be used for encrypting the debug information. The default (and currently
the only) typeisdes3_chbc.

For details, see beam _lib(3).

encrypt _debug info
Similar to thedebug_i nf o_key option, but the key isread froman . er | ang. crypt file.
For details, see beam_lib(3).

Ericsson AB. All Rights Reserved.: Compiler | 3

compile

determnistic

Omit the opt i ons and sour ce tuples in the list returned by Modul e: nodul e_i nf o(conpi | e), and
reduce the paths in stack tracesto the module name alone. This option will makeit easier to achieve reproducible
builds.

{feature, Feature, enable | disable}

Enable (disable) thefeature Feat ur e during compilation. Thespecia featureal | can beused to enable (disable)
all features.

This option has no effect when usedina- conpi | e(. .) attribute. Instead, the- f eat ure(. .) directive
(below) should be used.

A feature can aso be enabled (disabled) using the - f eat ure(Feature, enable | disable).
moduledirective. Note that this directive can only be present in aprefix of thefile, before exports and function
definitions. This is the preferred method of enabling and disabling features, since it is alocal property of a
module.

makedep
Produces a Makefile rule to track headers dependencies. No object file is produced.

By default, this rule is written to <Fi | e>. Pbeam However, if option bi nary is set, nothing is written and
theruleisreturnedin Bi nary.

The output will be encoded in UTF-8.
For example, if you have the following module:

-module(module).

-include lib("eunit/include/eunit.hrl").
-include("header.hrl").

The Makefile rule generated by this option looks as follows:

module.beam: module.erl \
/usr/local/lib/erlang/lib/eunit/include/eunit.hrl \
header.hrl

makedep_si de_ef fect

The dependencies are created as a side effect to the normal compilation process. This means that the object file
will also be produced. This option override the makedep option.

{makedep_out put, Qutput}

Writes generated rules to Qut put instead of the default <Fi | e>. Pheam Qut put can be a filename or an
i 0o_device(). To write to stdout, use st andar d_i 0. However, if bi nary is set, nothing is written to
Qut put and the result isreturned to the caller with { ok, Modul eNane, Bi nary}.

{makedep_t arget, Target}

Changes the name of the rule emitted to Tar get .
makedep_quot e_t ar get

Charactersin Tar get special to make(1) are quoted.

4 | Ericsson AB. All Rights Reserved.: Compiler

compile

makedep_add_m ssi ng
Considers missing headers as generated files and adds them to the dependencies.
makedep_phony
Adds a phony target for each dependency.
' p
Produces alisting of the parsed code, after preprocessing and parse transforms, inthefile<Fi | e>. P. No object
fileis produced.
e
Produces alisting of the code, after all source code transformations have been performed, inthefile<Fi | e>. E.
No object file is produced.
s
Produces alisting of the assembler code in the file<Fi | e>. S. No object file is produced.
recv_opt _info

The compiler will emit informational warnings about selective receive optimizations (both successful and
unsuccessful). For moreinformation, see the section about sel ective receive optimization in the Efficiency Guide.

report _errors/report_warni ngs

Causes errors/warnings to be printed as they occur.
report

A short form for bothr eport _errors andreport _war ni ngs.
return_errors

If thisflagisset,{ error, ErrorList, Warni ngLi st} isreturned when there are errors.
retur n_war ni ngs

If thisflag is set, an extrafield, containing War ni ngLi st , isadded to the tuples returned on success.
war ni ngs_as_errors

Causes warnings to be treated as errors. This option is supported since R13B04.
{error _location,line | colum}

If the value of thisflagisl i ne, thelocation Er r or Locat i on of warnings and errorsis aline number. If the
valueiscol um, Error Locat i on includes both a line number and a column number. Default is col umm.
This option is supported since Erlang/OTP 24.0.

If the value of thisflagiscol umm, debug information includes column information.
return

A short form for bothr et urn_errors andr et ur n_war ni ngs.
ver bose

Causes more verbose information from the compiler, describing what it is doing.
{sour ce, Fi | eNane}

Overrides the source file name as presented in nrodul e_i nf o(conpi | e) and stack traces.
absol ute_source

Turnsthe source file name (as presented in nodul e_i nf o(conpi | e) and stack traces) into an absolute path,
which helps external toolslike per f and gdb find Erlang source code.

Ericsson AB. All Rights Reserved.: Compiler | 5

compile

{outdir,Dir}

Sets a new directory for the object code. The current directory is used for output, except when a directory has
been specified with this option.

export _all
Causes all functions in the module to be exported.

{i,Dir}
AddsDi r tothelist of directoriesto be searched when including afile. When encountering an- i ncl ude or -
i ncl ude_lI i b directive, the compiler searches for header filesin the following directories:

e ".", thecurrent working directory of thefile server
e The base name of the compiled file
» Thedirectories specified using option i ; the directory specified last is searched first

{d, Macr o}
{d, Macr o, Val ue}

Defines a macro Macr o to have the value Val ue. Macr o is of type atom, and Val ue can be any term. The
default Val ue ist r ue.

{parse_transform Mdul e}

Causes the parse transformation function Mbdul e: par se_t r ansf or m 2 to be applied to the parsed code
before the code is checked for errors.

fromabstr

The input file is expected to contain Erlang terms representing forms in abstract format (default file suffix
".abstr"). Note that the format of such terms can change between releases.

Seeasotheno_| i nt option.
fromasm

Theinput file is expected to be assembler code (default file suffix *.S"). Notice that the format of assembler files
is not documented, and can change between releases.

fromcore

The input file is expected to be core code (default file suffix ".core"). Notice that the format of core filesis not
documented, and can change between releases.

no_spawn_conpi |l er _process

By default, all code is compiled in a separate process which is terminated at the end of compilation. However,
some tools, like Dialyzer or compilers for other BEAM languages, may aready manage their own worker
processes and spawning an extra process may slow the compilation down. In such scenarios, you can pass this
option to stop the compiler from spawning an additional process.

no_strict_record_tests
This option is not recommended.

By default, the generated code for operation Recor d#r ecor d_t ag. fi el d verifies that the tuple Recor d
has the correct size for the record, and that the first element is the tag r ecor d_t ag. Use this option to omit
the verification code.

no_error_nodul e_m snmat ch

Normally the compiler verifies that the module name given in the source code is the same as the base name of
the output file and refuses to generate an output file if there is a mismatch. If you have a good reason (or other

6 | Ericsson AB. All Rights Reserved.: Compiler

compile

reason) for having a module name unrelated to the name of the output file, this option disables that verification
(there will not even be awarning if thereis a mismatch).
{no_auto_inport,[{F, A}, ...]1}

Makes the function F/ A no longer being auto-imported from the er | ang module, which resolves BIF name
clashes. This option must be used to resolve name clashes with BIFs auto-imported before R14A, if it is needed
to call the local function with the same name as an auto-imported BIF without module prefix.

Asfrom R14A and forward, the compiler resolves calls without module prefix to local or imported functions
before trying with auto-imported BIFs. If the BIF isto be called, use the er | ang module prefix in the call,
not{no_auto_inport,[{F A}, ...]}.

If this option is written in the source code, as a - conpi | e directive, the syntax F/ A can be used instead of
{F, A}, for example:

-compile({no_auto import,[error/1]}).
no_aut o_i nport
Do not auto-import any functions from er | ang module.
no_line_info
Omits line number information to produce a slightly smaller output file.
no_lint

Skips the pass that checks for errors and warnings. Only applicable together withthef r om _abst r option. This
is mainly for implementations of other languages on top of Erlang, which have aready done their own checks
to guarantee correctness of the code.

Caveat: When this option is used, there are no guarantees that the code output by the compiler is correct and safe
to use. The responsibility for correctness lies on the code or person generating the abstract format. If the code
contains errors, the compiler may crash or produce unsafe code.

{extra_chunks, [{binary(), binary()}]}

Pass extrachunksto be stored in the . beamfile. The extra chunks must be alist of tupleswith afour byte binary
as chunk name followed by a binary with the chunk contents. See beam_lib for more information.

{check_ssa, Tag :: atom()}

Parse and check assertions on the structure and content of the BEAM SSA code produced by the compiler. The
Tag indicates the set of assertions to check and after which compiler pass the check is performed. Thisoptionis
internal to the compiler and can be changed or removed at any time without prior warning.

If warnings are turned on (optionr eport _war ni ngs described earlier), the following options control what type of
warnings that are generated. Except from { war n_f or mat , Ver bosi t y}, the following options have two forms:

* A war n_xxx form, to turn on the warning.
e A nowar n_xxx form, to turn off the warning.

In the descriptions that follow, the form that is used to change the default value are listed.

{warn_format, Verbosity}
Causes warningsto be emitted for malformed format stringsasargumentstoi o: f or mat and similar functions.
Ver bosi ty selectsthe number of warnings:

¢ 0 =Nowarnings

Ericsson AB. All Rights Reserved.: Compiler | 7

compile

e 1 =Warningsfor invalid format strings and incorrect number of arguments

e 2 =Warnings also when the validity cannot be checked, for example, when the format string argument isa
variable.

The default verbosity is 1. Verbosity 0 can aso be selected by option nowar n_f or mat .
nowar n_bi f _cl ash
This option isremoved, it generates afatal error if used.

Asfrom beginning with R14A, the compiler no longer calls the auto-imported BIF if the name clasheswith a
local or explicitly imported function, and a call without explicit module name is issued. Instead, the local or
imported function is called. Still accepting nowar n_bi f _cl ash would make a module calling functions
clashing with auto-imported BIFs compile with both the old and new compilers, but with completely different
semantics. Thisiswhy the option is removed.

The use of this option has always been discouraged. Asfrom R14A, itisan error to use it.
Toresolve BIF clashes, use explicit module namesor the{ no_aut o_i nport, [F/ A] } compiler directive.

{nowar n_bi f _cl ash, FAs}

This option isremoved, it generates afatal error if used.

The use of this option has always been discouraged. Asfrom R14A, it isan error to useit.
ToresolveBIF clashes, use explicit module namesor the{ no_aut o_i nport, [F/ A] } compiler directive.

nowar n_export _all

Turns off warnings for uses of theexport _al | option. Default is to emit awarning if option export _al |
isalso given.

war n_export_vars

Emitswarningsfor all implicitly exported variablesreferred to after the primitives where they were first defined.
By default, the compiler only emits warnings for exported variables referred to in a pattern.

nowar n_shadow vars

Turns off warningsfor "fresh" variablesin functional objects or list comprehensions with the same name as some
aready defined variable. Default isto emit warnings for such variables.

war n_keywor ds

Emits warnings when the code contains atoms that are used as keywords in some feature. When the feature is
enabled, any occurrences will lead to a syntax error. To prevent this, the atom has to be renamed or quoted.

nowar n_unused_function

Turns off warnings for unused local functions. Default is to emit warnings for al local functions that are not
called directly or indirectly by an exported function. The compiler does not include unused local functionsin the
generated beam file, but the warning is still useful to keep the source code cleaner.

{nowar n_unused_function, FAs}

Turns off warnings for unused local functions like nowar n_unused_f uncti on does, but only for the
mentioned local functions. FAs isatuple{ Nane, Ari ty} or alist of such tuples.

8 | Ericsson AB. All Rights Reserved.: Compiler

compile

nowar n_depr ecat ed_f uncti on

Turnsoff warningsfor callsto deprecated functions. Default isto emit warningsfor every call to afunction known
by the compiler to be deprecated. Notice that the compiler does not know about attribute - depr ecat ed() , but
uses an assembled list of deprecated functions in Erlang/OTP. To do a more general check, the Xref tool can be
used. See also xref(3) and the function xref:m/1, also accessible through the function c:xm/1.

{nowar n_deprecat ed_functi on, M-As}

Turns off warnings for calls to deprecated functions like nowar n_depr ecat ed_f uncti on does, but only
for the mentioned functions. MFAs isatuple{ Modul e, Nane, Ari t y} or alist of such tuples.

nowar n_depr ecat ed_t ype

Turns off warnings for use of deprecated types. Default is to emit warnings for every use of a type known by
the compiler to be deprecated.

nowar n_r emoved

Turns off warnings for calls to functions that have been removed. Default isto emit warnings for every call to a
function known by the compiler to have been recently removed from Erlang/OTP.

{nowar n_r enoved, Modul esOr MFAs}

Turns off warnings for calls to modules or functions that have been removed. Default is to emit warnings for
every call to afunction known by the compiler to have been recently removed from Erlang/OTP.

nowar n_obsol et e_guard

Turns off warnings for calls to old type testing BIFs, such aspi d/ 1 and | i st/ 1. See the Erlang Reference
Manual for a complete list of type testing BIFs and their old equivalents. Default is to emit warnings for calls
to old type testing BIFs.

war n_unused_i nport
Emits warnings for unused imported functions. Default is to emit no warnings for unused imported functions.
nowar n_under score_mat ch

By default, warnings are emitted when a variable that begins with an underscore is matched after being bound.
Use this option to turn off this kind of warning.

nowar n_unused_vars

By default, warnings are emitted for unused variables, except for variabl es beginning with an underscore (" Prolog
style warnings'). Use this option to turn off this kind of warning.

nowar n_unused_record

Turns off warnings for unused record definitions. Default isto emit warnings for unused locally defined records.
{nowar n_unused_record, RecordNanes}

Turns off warnings for unused record definitions. Default isto emit warnings for unused locally defined records.
nowar n_unused_t ype

Turns off warnings for unused type declarations. Default is to emit warnings for unused local type declarations.
nowar n_ni f_inline

By default, warnings are emitted when inlining is enabled in a module that may load NIFs, as the compiler may
inline NIF fallbacks by accident. Use this option to turn off this kind of warnings.

war n_m ssi ng_spec

By default, warnings are not emitted when a specification (or contract) for an exported function is not given. Use
this option to turn on this kind of warning.

Ericsson AB. All Rights Reserved.: Compiler | 9

compile

war n_mi ssi ng_spec_al |

By default, warnings are not emitted when a specification (or contract) for an exported or unexported function
isnot given. Use this option to turn on this kind of warning.

nowar n_r edefined_builtin_type

By default, a warning is emitted when a built-in type is locally redefined. Use this option to turn off this kind
of warning.

{nowarn_redefined builtin_type, Types}

By default, awarning is emitted when a built-in type is locally redefined. Use this option to turn off this kind of
warning for thetypesin Types, where Types isatuple{ TypeNamne, Ari t y} or alist of such tuples.

Other kinds of warnings are opportunistic warnings. They are generated when the compiler happens to notice
potential issues during optimization and code generation.

Note:

The compiler does not warn for expressionsthat it does not attempt to optimize. For example, the compiler will emit
awarning for 1/ 0 but not for X/ 0, because 1/ 0 isaconstant expression that the compiler will attempt to evaluate.

The absence of warnings does not mean that there are no remaining errorsin the code.

Opportunistic warnings can be disabled using the following options:
nowar n_opport uni stic
Disable all opportunistic warnings.
nowar n_f ai | ed
Disable warnings for expressions that will awaysfail (such asat om+42).
nowar n_i gnor ed
Disable warnings for expressions whose values are ignored.
nowar n_nomat ch

Disablewarnings for patternsthat will never match (such asa=b) and for guards that alwaysevaluatetof al se.

Note:

All options, except the include path ({i,Dir}), can aso be given in the file with attribute -
conpi l e([Option,...]).Attribute-conpi |l e() isalowed after the function definitions.

Note:

Before OTP 22, the option { nowar n_depr ecat ed_functi on, M-As} was only recognized when given
in the file with attribute - conpi | e() . (The option { nowar n_unused_f uncti on, FAs} was incorrectly
documented to only work in afile, but it also worked when given in the option list.) Starting from OTP 22, all
options that can be given in the file can also be given in the option list.

For debugging of the compiler, or for pure curiosity, the intermediate code generated by each compiler pass can be
inspected. To print acompletelist of the optionsto producelist files, typeconpi | e: opt i ons() at the Erlang shell
prompt. The options are printed in the order that the passes are executed. If more than one listing option is used, the
one representing the earliest pass takes effect.

Unrecognized options are ignored.

10 | Ericsson AB. All Rights Reserved.: Compiler

compile

Both War ni ngLi st and Er r or Li st havethe following format:
[{FileName, [ErrorInfo]l}].

Er ror I nf o is described later in this section. The filename is included here, as the compiler uses the Erlang pre-
processor epp, which allows the code to be included in other files. It is therefore important to know to which file the
location of an error or awarning refers.

forms (Forms)
Isthesameasf or ns(Forns, [verbose,report_errors, report_warnings]).

forms (Forms, Options) -> CompRet

Types:
Forns = forns()
forns() = [erl _parse:abstract_forn] | cerl:c_nodul e()
Options = [option()]
ConpRet = BinRet | ErrRet

Bi nRet = {ok, Mbdul eNan®e, Bi nar yOr Code} |
{ ok, Modul eNarme, Bi nar yOr Code, WAr ni ngs}

Modul eNane = nodul e()

Bi naryOr Code = binary() | tern()

ErrRet = error | {error, Errors, Wrni ngs}

Warnings = Errors = [{file:filename(), [{erl_anno:location() | 'none',

modul e(), term()}]}]

Analogoustofil e/ 1, but takes alist of forms (in either Erlang abstract or Core Erlang format representation) as
first argument. Option bi nar y isimplicit, that is, no object code fileis produced. For options that normally produce
alisting file, such as'E', the internal format for that compiler pass (an Erlang term, usually not a binary) is returned
instead of abinary.

format error(ErrorDescriptor) -> chars()
Types:
ErrorDescriptor = errordesc()

Usesan Error Descri pt or and returns a deep list of characters that describes the error. This function is usually
caled implicitly when an Er r or | nf o structure (described in section Error Information) is processed.

output generated(Options) -> true | false
Types.
Options = [term()]

Determines whether the compiler generates a beamfile with the given options. t r ue means that a beamfile is
generated. f al se means that the compiler generates some listing file, returns a binary, or merely checks the syntax
of the source code.

noenv_file(File, Options) -> CompRet
Works like file/2, except that the environment variable ERL_COVPI LER_OPTI ONS is not consulted.

Ericsson AB. All Rights Reserved.: Compiler | 11

compile

noenv_forms(Forms, Options) -> CompRet
Works like forms/2, except that the environment variable ERL_ COVPI LER _OPTI ONS is not consulted.

noenv output generated(Options) -> true | false
Types:
Options = [term)]
Works like output_generated/1, except that the environment variable ERL_COVPI LER_OPTI ONS is not consulted.

Default Compiler Options

The (host operating system) environment variable ERL_ COVPI LER_OPTI ONS can be used to give default compiler
options. Its value must be avalid Erlang term. If thevalueisalist, itisused asis. If itisnot alist, itisput into alist.

The list is appended to any options given to file/2, forms/2, and output_generated/2. Use the alternative functions
noenv_file/2, noenv_forms/2, or noenv_output_generated/2 if you do not want the environment variable to be
consulted, for example, if you are calling the compiler recursively from inside a parse transform.

Thelist can be retrieved with env_compiler_options/O.

Inlining

The compiler can do function inlining within an Erlang module. Inlining means that a call to a function is replaced
with the function body with the arguments replaced with the actual values. The semantics are preserved, except if
exceptions are generated in the inlined code. Exceptions are reported as occurring in the function the body wasinlined
into. Also, f unct i on_cl ause exceptions are converted to similar case_cl ause exceptions.

When afunction isinlined, the original function is kept if it is exported (either by an explicit export or if the option
export _al |l wasgiven) or if not al calsto the function areinlined.

Inlining does not necessarily improve running time. For example, inlining can increase Beam stack use, which probably
is detrimental to performance for recursive functions.

Inlining isnever default. It must be explicitly enabled with acompiler optionor a- conpi | e() attributeinthe source
module.

To enable inlining, either usethe optioni nl i ne tolet the compiler decide which functionstoinline, or {i nl i ne,
[{Nane, Arity},...]} tohavethecompilerinlineall calsto the given functions. If the option isgiven inside a
conpi | e directivein an Erlang module, { Nare, Ari ty} canbewrittenasNane/ Arity.

Example of explicit inlining:

-compile({inline, [pi/01}).

pi() -> 3.1416.
Example of implicit inlining:

-compile(inline).

The option {i nl i ne_si ze, Si ze} controls how large functions that are allowed to be inlined. Default is 24,
which keeps the size of the inlined code roughly the same as the un-inlined version (only relatively small functions
areinlined).

Example:

12 | Ericsson AB. All Rights Reserved.: Compiler

compile

%% Aggressive inlining - will increase code size.
-compile(inline).
-compile({inline size,100}).

Inlining of List Functions

The compiler can also inline various list manipulation functions from the modulel i st in STDLIB.

This feature must be explicitly enabled with acompiler option or a- conpi | e() attributein the source module.
To enableinlining of list functions, useoptioni nl i ne_l i st _funcs.

The following functions are inlined:

o ligtsal/2

o listsany/2

o listsforeach/2
e listsmap/2

o listsiflatmap/2
o ligtsfilter/2

o listsfoldl/3

o listsfoldr/3

* listsmapfoldl/3
e listssmapfoldr/3

Parse Transformations

Parse transformations are used when a programmer wants to use Erlang syntax but with different semantics. The
original Erlang code is then transformed into other Erlang code.

Seeerl_id_trang(3) for an example and an explanation of the function par se_t r ansf or m_i nf o/ 0.

Error Information

The Er r or | nf o mentioned earlier is the standard Er r or | nf o structure, which is returned from all 1/O modules.
It has the following format:

{ErrorLocation, Module, ErrorDescriptor}

Error Locat i on istheatom none if the error does not correspond to a specific location, for example, if the source
file does not exist.

A string describing the error is obtained with the following call:

Module:format error(ErrorDescriptor)

See Also
epp(3), erl_id_trans(3), erl_lint(3), beam_lib(3)

Ericsson AB. All Rights Reserved.: Compiler | 13

	Compiler
	Reference Manual
	compile
	env_compiler_options/0
	file/1
	file/2
	forms/1
	forms/2
	format_error/1
	output_generated/1
	noenv_file/2
	noenv_forms/2
	noenv_output_generated/1

