ERLANG

Tools

Copyright © 1997-2025 Ericsson AB. All Rights Reserved.
Tools 3.6

June 16, 2025

Copyright © 1997-2025 Ericsson AB. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance
with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless
required by applicable law or agreed to in writing, software distributed under the License is distributed on an
"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See

the License for the specific language governing permissions and limitations under the License. Ericsson AB. All
Rights Reserved..

June 16, 2025

1.1 cover

1 Tools User's Guide

The Tools application contains a number of stand-alone tools, which are useful when developing Erlang programs.

cover
A coverage analysistool for Erlang.

cprof
A profiling tool that shows how many times each function is called. Uses akind of local call trace breakpoints
containing counters to achieve very low runtime performance degradation.

emacs - (erlang.el and erlang-start.el)
This package provides support for the programming language Erlang in Emacs. The package provides an
editing mode with lots of bells and whistles, compilation support, and it makesit possible for the user to start
Erlang shells that run inside Emacs.

epr of
A time profiling tool; measure how timeis used in Erlang programs. Erlang programs. Predecessor of fpr of
(see below).

fprof

Another Erlang profiler; measure how timeis used in your Erlang programs. Uses trace to file to minimize
runtime performance impact, and displays time for calling and called functions.

lent
A lock profiling tool for the Erlang runtime system.
make
A make utility for Erlang similar to UNIX make.
tags
A tool for generating Emacs TAGS files from Erlang sourcefiles.
xr ef
A cross reference tool. Can be used to check dependencies between functions, modules, applications and
releases.
1.1 cover

1.1.1 Introduction

The module cover provides a set of functions for coverage analysis of Erlang programs, counting how many times
each executable line is executed.

Coverage analysis can be used to verify test cases, making sure all relevant code is covered, and may be helpful when
looking for bottlenecks in the code.

1.1.2 Getting Started With Cover

Example
Assume that atest case for the following program should be verified:

Ericsson AB. All Rights Reserved.: Tools | 1

1.1 cover

-module(channel).
-behaviour(gen server).

-export([start link/0,stop/0]).
-export([alloc/0,free/l]). % client interface
-export([init/1,handle call/3,terminate/2]). % callback functions

start _link() ->
gen_server:start link({local,channel},channel, [],[]).

stop() ->
gen_server:call(channel,stop).

%%%-Client interface functions-------------oommmmm o

alloc() ->
gen_server:call(channel,alloc).

free(Channel) ->
gen_server:call(channel, {free,Channel}).

%%%-gen_server callback functions------------mommmmmmm

init(_Arg) ->
{ok,channels()}.

handle call(stop,Client,Channels) ->
{stop,normal, ok,Channels};

handle call(alloc,Client,Channels) ->
{Ch,Channels2} = alloc(Channels),
{reply, {ok,Ch},Channels2};

handle call({free,Channel},Client,Channels) ->
Channels2 = free(Channel, Channels),
{reply,ok,Channels2}.

terminate(Reason,Channels) ->
ok.

%%%-Internal funNCtionS------ - oo oo o

channels() ->
[chl,ch2,ch3].

alloc([Channel|Channels]) ->
{Channel, Channels};
alloc([]) ->
false.

free(Channel, Channels) ->
[Channel]|Channels].

The test case isimplemented as follows;

-module(test).
-export([s/0]1).

s() ->
{ok,Pid} = channel:start link(),
{ok,Ch1l} = channel:alloc(),
ok channel:free(Chl),
ok = channel:stop().

2 | Ericsson AB. All Rights Reserved.: Tools

1.1 cover

Preparation

First of all, Cover must be started. This spawns a process which owns the Cover database where all coverage data
will be stored.

1> cover:start().
{0k, <0.30.0>}

To include other nodes in the coverage analysis, use st art / 1. All cover compiled modules will then be loaded on
all nodes, and data from all nodes will be summed up when analysing. For simplicity this example only involves the
current node.

Before any analysis can take place, the involved modules must be Cover compiled. This means that some extra
information is added to the module before it is compiled into a binary which then is loaded. The source file of the
moduleis not affected and no . beamfileis created.

2> cover:compile module(channel).
{ok, channel}

Each time a function in the Cover compiled module channel iscalled, information about the call will be added to
the Cover database. Run the test case:

3> test:s().
ok

Cover analysis is performed by examining the contents of the Cover database. The output is determined by two
parameters, Level and Anal ysi s. Anal ysi s is either cover age or cal | s and determines the type of the
analysis. Level iseither nodul e, functi on, cl ause, or| i ne and determines the level of the analysis.

Coverage Analysis

Analysis of type cover age isused to find out how much of the code has been executed and how much has not been
executed. Coverageisrepresented by atuple{ Cov, Not Cov}, where Cov isthe number of executablelinesthat have
been executed at least once and Not Cov isthe number of executable lines that have not been executed.

If the analysis is made on module level, the result is given for the entire module as a tuple { Modul e,
{ Cov, Not Cov}}:

4> cover:analyse(channel, coverage,module).
{ok, {channel, {14,1}}}

For channel , the result shows that 14 lines in the module are covered but one line is not covered.

If the analysisis made on function level, the result is given as alist of tuples{ Funct i on, { Cov, Not Cov}}, one
for each function in the module. A function is specified by its module name, function name and arity:

Ericsson AB. All Rights Reserved.: Tools | 3

1.1 cover

5> cover:analyse(channel, coverage, function).

{ok, [{{channel,start link,0},{1,0}},
{{channel, stop,0},{1,0}},
{{channel,alloc,0},{1,0}},
{{channel, free,1},{1,0}},
{{channel,init,1},{1,0}},
{{channel, handle call,3},{5,0}},
{{channel, terminate,2},{1,0}},
{{channel, channels,0},{1,0}},
{{channel,alloc,1},{1,1}},
{{channel, free,2},{1,0}}1}

For channel , the result shows that the uncovered lineisin the function channel : al | oc/ 1.

If the analysis is made on clause level, the result is given as alist of tuples{ Cl ause, { Cov, Not Cov}}, onefor
each function clause in the module. A clauseis specified by its module name, function name, arity and position within

the function definition:

6> cover:analyse(channel, coverage,clause).

{ok, [{{channel,start link,0,1},{1,0}},
{{channel,stop,0,1},{1,0}},
{{channel,alloc,0,1},{1,0}},
{{channel, free,1,1},{1,0}},
{{channel,init,1,1},{1,0}},
{{channel,handle call,3,1},{1,0}},
{{channel,handle call,3,2},{2,0}},
{{channel,handle call,3,3},{2,0}},
{{channel, terminate,2,1},{1,0}},
{{channel, channels,0,1},{1,0}},
{{channel,alloc,1,1},{1,0}},
{{channel,alloc,1,2},{0,1}},
{{channel, free,2,1},{1,0}}1}

For channel , the result shows that the uncovered lineisin the second clause of channel : al | oc/ 1.

Finaly, if theanalysisis made on linelevel, theresult isgiven asalist of tuples{ Li ne, { Cov, Not Cov}}, onefor

each executable line in the source code. A lineis specified by its module name and line number.

7> cover:analyse(channel, coverage,line).

{ok, [{{channel, 9}, {1,0}},
{{channel,12},{1,0}},
{{channel,17},{1,0}},
{{channel,20},{1,0}},
{{channel,25},{1,0}},
{{channel,28},{1,0}},
{{channel,31},{1,0}},
{{channel,32},{1,0}},
{{channel,35},{1,0}},
{{channel,36},{1,0}},
{{channel,39},{1,0}},
{{channel, 44},{1,0}},
{{channel,47},{1,0}},
{{channel,49},{0,1}},
{{channel,52},{1,03}}1}

For channel , the result shows that the uncovered line is line number 49.

4 | Ericsson AB. All Rights Reserved.: Tools

1.1 cover

Call Statistics

Analysis of type cal | s is used to find out how many times something has been called and is represented by an
integer Cal | s.

If the analysis is made on module level, the result is given as atuple { Modul e, Cal | s} . Here Cal | s isthe total
number of callsto functionsin the module:

8> cover:analyse(channel,calls,module).
{ok, {channel, 12}}

For channel , the result shows that atotal of twelve calls have been made to functions in the module.

If the analysis is made on function level, the result is given as alist of tuples { Functi on, Cal | s} . HereCal | s
isthe number of calls to each function:

9> cover:analyse(channel,calls, function).

{ok, [{{channel,start link,0},1},
{{channel,stop,0},1},
{{channel,alloc,0},1},
{{channel, free, 1},1},
{{channel,init,1},1},
{{channel,handle call,3},3},
{{channel, terminate,2},1},
{{channel, channels,0},1},
{{channel,alloc,1},1},
{{channel, free,2},1}1}

For channel , the result shows that handl e_cal | / 3 is the most called function in the module (three calls). All
other functions have been called once.

If the analysisis made on clause level, the result is given as alist of tuples{ Cl ause, Cal | s} . HereCal | s isthe
number of callsto each function clause:

10> cover:analyse(channel,calls,clause).

{ok, [{{channel,start link,0,1},1},
{{channel,stop,0,1},1},
{{channel,alloc,0,1},1},
{{channel, free,1,1},1},
{{channel,init,1,1},1},
{{channel,handle call,3,1},1},
{{channel,handle call,3,2},1},
{{channel,handle call,3,3},1},
{{channel, terminate,2,1},1},
{{channel, channels,0,1},1},
{{channel,alloc,1,1},1},
{{channel,alloc,1,2},0},
{{channel, free,2,1},1}]}

For channel, the result shows that all clauses have been caled once, except the second clause of
channel : al | oc/ 1 which has not been called at al.

Finaly, if the analysisis made on line level, the result is given as a list of tuples{ Li ne, Cal | s}.HereCal | s is
the number of times each line has been executed:

Ericsson AB. All Rights Reserved.: Tools | 5

1.1 cover

11> cover:analyse(channel,calls,line).

{ok, [{{channel,9},1},
{{channel,12},1},
{{channel,17},1},
{{channel,20},1},
{{channel, 25},1},
{{channel,28},1},
{{channel,31},1},
{{channel, 32},1},
{{channel,35},1},
{{channel,36},1},
{{channel,39},1},
{{channel, 44} ,1},
{{channel,47},1},
{{channel, 49},0},
{{channel,52},1}1}

For channel , the result shows that all lines have been executed once, except line number 49 which has not been
executed at al.

Analysis to File
A linelevel calsanalysisof channel canbewrittentoafileusingcover: analysis_to file/1:

12> cover:analyse to file(channel).
{ok, "channel.COVER.out"}

The function createsacopy of channel . er | whereit for each executable lineis specified how many timesthat line
has been executed. The output fileis called channel . COVER. out .

6 | Ericsson AB. All Rights Reserved.: Tools

1.1 cover

File generated from channel.erl by COVER 2001-05-21 at 11:16:38

3k 5k >k 3k ok >k >k ok >k >k 5k 5k >k Sk ok >k >k ok >k sk ok >k >k 5k ok >k >k ok >k >k 5k >k >k ok ok >k 5k ok >k >k 5k >k >k 5k >k >k 5k ok >k K ok >k >k 5k >k >k 5k ok >k 5k ok >k 5k ok >k >k 5k >k >k >k ok >k ko k >k

-module(channel).
-behaviour(gen server).

-export([start link/0,stop/0]).
-export([alloc/0,free/l]). % client interface

-export([init/1,handle call/3,terminate/2]). % callback functions

start link() ->

|
|
|
|
|
|
|
1..] gen _server:start link({local,channel},channel, [],[]).
|
| stop() ->
1..] gen_server:call(channel,stop).
|
| %%%-Client interface functions---------------mmo
|
| alloc() ->
1..] gen_server:call(channel,alloc).
|
| free(Channel) ->
1..] gen_server:call(channel, {free,Channel}).
|
| %%%-gen server callback functions--------------oooommmmn
|
| init(Arg) ->
1..] {ok,channels()}.
|
| handle call(stop,Client,Channels) ->
1..] {stop,normal, ok,Channels};
|
| handle call(alloc,Client,Channels) ->
1..] {Ch,Channels2} = alloc(Channels),
1..] {reply, {ok,Ch},Channels2};
|
| handle call({free,Channel},Client,Channels) ->
oo Channels2 = free(Channel, Channels),
1..] {reply,ok,Channels2}.
|
| terminate(Reason,Channels) ->
1..] ok.
|
| %%%-Internal functionS-------------mmmmmmm
|
| channels() ->
1..] [chl,ch2,ch3].
|
| alloc([Channel|Channels]) ->
1..] {Channel, Channels};
| alloc([]) ->
0..| false.
|
| free(Channel,Channels) ->
oo [Channel|Channels].
Conclusion

By looking at the results from the analyses, it can be deducted that the test case does not cover the case when al

channelsare allocated and t est . er | should be extended accordingly.

Incidentally, when the test caseis corrected abug in channel should indeed be discovered.

Ericsson AB. All Rights Reserved.: Tools | 7

1.2 cprof - The Call Count Profiler

When the Cover analysis is ready, Cover is stopped and al Cover compiled modules are unloaded. The code for
channel isnow loaded asusual from a. beamfilein the current path.

13> code:which(channel).
cover compiled

14> cover:stop().

ok

15> code:which(channel).
"./channel.beam"

1.1.3 Miscellaneous

Performance

Execution of code in Cover compiled modules is slower and more memory consuming than for regularly compiled
modules. As the Cover database contains information about each executable line in each Cover compiled module,
performance decreases proportionally to the size and number of the Cover compiled modules.

To improve performance when analysing cover resultsit is possible to do multiple callsto analyse and analyse to_file
at once. Y ou can also use the async_analyse to_file convenience function.
Executable Lines

Cover uses the concept of executable lines, which is lines of code containing an executable expression such as a
matching or a function call. A blank line or a line containing a comment, function head or pattern in acase- or
recei ve statement is not executable.

In the example below, lines number 2,4,6,8 and 11 are executable lines:

1: is_loaded(Module,Compiled) ->

2 case get file(Module,Compiled) of
3 {ok,File} ->

4: case code:which(Module) of
5: ?TAG ->

6 {loaded,File};

7 >

8: unloaded

9: end;

10: false ->

11: false

12: end.

Code Loading Mechanism

When amoduleis Cover compiled, it isaso loaded using the normal code loading mechanism of Erlang. This means
that if a Cover compiled moduleisre-loaded during a Cover session, for exampleusing c(Modul e) , it will nolonger
be Cover compiled.

Usecover:is_conpil ed/ 1orcode: whi ch/ 1toseeif amoduleisCover compiled (and still loaded) or not.
When Cover is stopped, al Cover compiled modules are unloaded.

1.2 cprof - The Call Count Profiler

cpr of isaprofiling tool that can be used to get a picture of how often different functionsin the system are called.

cpr of uses breakpoints similar to local call trace, but containing counters, to collect profiling data. Therefore there
isno need for special compilation of any module to be profiled.

8 | Ericsson AB. All Rights Reserved.: Tools

1.2 cprof - The Call Count Profiler

cpr of presents al profiled modules in decreasing total call count order, and for each module presents all profiled
functionsalsoin decreasing call count order. A call count limit can be specified tofilter out all functionsbel ow thelimit.

Profiling is done in the following steps:

cprof:start/0..3
Starts profiling with zeroed call counters for specified functions by setting call count breakpoints on them.
Mod: Fun()
Runs the code to be profiled.
cprof : pause/0..3
Pauses the call counters for specified functions. This minimises the impact of code running in the background
or in the shell that disturbs the profiling. Call counters are automatically paused when they "hit the ceiling” of
the host machine word size. For a 32 bit host the maximum counter value is 2147483647.
cprof:anal yse/0..2
Collects call counters and computes the result.
cprof:restart/0..3
Restarts the call counters from zero for specified functions. Can be used to collect a new set of counters without
having to stop and start call count profiling.
cprof:stop/0..3
Stops profiling by removing call count breakpoints from specified functions.

Functions can be specified as either all in the system, all in one module, all arities of one function, one function, or all
functionsin all modules not yet loaded. As for now, BIFs cannot be call count traced.

The analysis result can either be for all modules, or for one module. In either case a call count limit can be given to
filter out the functionswith acall count below the limit. The all modules analysis does not contain the module cpr of
itself, it can only be analysed by specifying it as a single module to analyse.

Call count tracing is very lightweight compared to other forms of tracing since no trace message has to be generated.
Some measurements indicates performance degradations in the vicinity of 10 percent.

The following sections show some examples of profiling with cpr of . See also cprof(3).

1.2.1 Example: Background work
From the Erlang shell:

Ericsson AB. All Rights Reserved.: Tools | 9

1.2 cprof - The Call Count Profiler

1> cprof:start(), cprof:pause(). % Stop counters just after start
8492
2> cprof:analyse().
{539,
[{shell, 155,
[{{shell,prep check,1},55},
{{shell,used records,4},45},
{{shell,used records,1},45},
{{shell,used record defs,2},1},
{{shell, record defs,2},1},
{{shell, record bindings,2},1},
{{shell,exprs,7},1},
{{shell,expr,4},1},
{{shell,expand records,2},1},
{{shell, check command,2},1},
{{shell,apply fun,3},1},
{{shell, '-exprs/7-1c$70/1-0-"',1},1},
{{shell, '-eval loop/3-fun-0-',3},1}1},
%% Information about many modules omitted.

%% Here is the last part.
{erts_internal,2,[{{erts _internal,trace pattern,3},2}]1},
{otp_internal,l, [{{otp _internal,obsolete,3},1}1},
{maps, 1, [{{maps,from list,1},1}1},
{erl _internal,l,[{{erl internal,bif,3},1}1}1}
3> cprof:analyse(cprof).
{cprof, 3, [{{cprof,tr,2},2},{{cprof,pause,0},1}]}
4> cprof:stop().
8586

The example showed some of the background work that the shell performs just to interpret the first command line.

What is captured in this example isthe part of the work the shell doeswhile interpreting the command line that occurs
between the actual callstocprof : start () andcprof : anal yse().

1.2.2 Example: One module
From the Erlang shell:

1> cprof:start(),R=calendar:day of the week(1896,4,27),cprof:pause(),R.

1

2> cprof:analyse(calendar).

{calendar,9,
[{{calendar,last_day of_ the monthl,2},61},
{{calendar,last_day of_ the_month,2},1},
{{calendar,is leap yearl,1},1},
{{calendar,is leap year,1},1},
{{calendar,dy,1},1},
{{calendar,dm,1},1},
{{calendar,df,2},1},
{{calendar,day of the week,3},1},
{{calendar,date to gregorian days,3},1}]}

3> cprof:stop().

8648

The exampletellsusthat "Aktiebolaget LM Ericsson & Co" was registered on aMonday (since the return value of the
first command is 1), and that the cal endar module needed 9 function calls to calculate that.

10 | Ericsson AB. All Rights Reserved.: Tools

1.2 cprof - The Call Count Profiler

Using cpr of : anal yse() in this example also shows approximately the same background work as in the first
example.

1.2.3 Example: In the code

Write amodule:

-module(sort).
-export([do/1]).

do(N) ->
cprof:stop(),
cprof:start(),
do(N, [1).

do(0@, L) ->
R = lists:sort(L),
cprof:pause(),

do(N, L) ->
do(N-1, [rand:uniform(256)-1 | L]).

From the Erlang shell:

Ericsson AB. All Rights Reserved.: Tools | 11

1.3 The Erlang mode for Emacs

1> c(sort).
{ok,sort}
2> rand:seed(default, 42), ok.
ok.
3> sort:do(1000).
[0,0,0,1,1,1,1,2,2,3,3,4,4,4,4,5,5,5,6,6,6,6,7,7,7,7,7,8,8]...1
4> cprof:analyse().
{13180,
[{lists, 6173,

[{{lists,rmerge3 1,6},1045},
{{lists,rmerge3 2,6},977},
{{lists,split 1,5},652},
{{lists,merge3 1,6},579},
{{lists,merge3 2,6},577},
{{lists,rmerge3 12 3,6},511},
{{lists,split 1 1,6},347},
{{lists,merge3 12 3,6},310},
{{lists,rmerge3 21 3,6},282},
{{lists,merge3 21 3,6},221},
{{lists,merge2 1,4},154},
{{lists,merge2 2,5},138},
{{lists, reverse,2},106},
{{lists,rmerge2 2,5},87},
{{lists, rmergel,2},81},
{{lists,rmerge2 1,4},75},
{{lists,mergel,2},28},
{{lists, keyfind,3},2},
{{lists,sort,1},1}]},

{rand, 5000,
[{{rand,uniform_s,2},1000},

{{rand,uniform,1},1000},

{{rand,seed put,1},1000},

{{rand,seed get,0},1000},

{{rand,exsss uniform,2},1000}]},

{erlang, 1004,
[{{erlang,put,2},1000},
{{erlang, trace pattern,3},2},
{{erlang,ensure_tracer module loaded,2},2}1},
{sort, 1001, [{{sort,do,2},1001}]},
{erts_internal,2,[{{erts _internal,trace pattern,3},2}]1}1}
5> cprof:stop().
12625

The example shows some details of how | i st's: sort/ 1 works. It used 6173 function callsinthe modulel i st's
to complete the work.

This time, since the shell was not involved in starting and stopping cpr of , no other work was done in the system
during the profiling.

1.3 The Erlang mode for Emacs

1.3.1 Purpose

The purpose of this user guideisto introduce you to the Erlang mode for Emacs and gives some relevant background
information of the functions and features. See also Erlang mode reference manua The purpose of the Erlang mode
itself isto facilitate the developing process for the Erlang programmer.

1.3.2 Pre-requisites
Basic knowledge of Emacs and Erlang/OTP.

12 | Ericsson AB. All Rights Reserved.: Tools

1.3 The Erlang mode for Emacs

1.3.3 Elisp

There are two Elisp modulesincluded in this tool package for Emacs. Thereis erlang.el that defines the actual erlang
mode and there is erlang-start.el that makes some nice initializations.

1.3.4 Setup on UNIX
To set up the Erlang Emacs mode on a UNIX systems, edit/create thefile. emacs in the your home directory.

Below is a complete example of what should be added to a user's . enacs provided that OTP is installed in the
directory / usr/ 1 ocal /ot p :

(setq load-path (cons "/usr/local/otp/lib/tools-<ToolsVer>/emacs"

load-path))

(setq erlang-root-dir "/usr/local/otp")

(setq exec-path (cons "/usr/local/otp/bin" exec-path))
(require 'erlang-start)

1.3.5 Setup on Windows

To set up the Erlang Emacs mode on a Windows systems, edit/create thefile . enacs, thelocation of the file depends
on the configuration of the system. If the HOME environment variable is set, Emacswill look for the. enacs filein
the directory indicated by the HOME variable. If HOME is not set, Emacs will ook for the. enacs filein C: \

Below is a complete example of what should be added to a user's . enacs provided that OTP is installed in the
directory C: \ Program Fi | es\ er| <Ver >:

(setq load-path (cons "C:/Program Files/erl<Ver>/lib/tools-<ToolsVer>/emacs"

load-path))

(setq erlang-root-dir "C:/Program Files/erl<Ver>")

(setq exec-path (cons "C:/Program Files/erl<Ver>/bin" exec-path))
(require 'erlang-start)

In .emacs, the slash character "/" can be used as path separator. But if you decide to use the backslash character "\",
please not that you must use double backslashes, since they are treated as escape characters by Emacs.

1.3.6 Indentation

The "Oxford Advanced Learners Dictionary of Current English” says the following about the word "indent":

"start (a line of print or writing) farther fromthe margin than the others".

The Erlang mode does, of course, provide this feature. The layout used is based on the common use of the language.
It is strongly recommended to use this feature and avoid to indent lines in a nonstandard way. Some motivations are:

» Code using the same layout is easy to read and maintain.
* Since several features of Erlang mode is based on the standard layout they might not work correctly if a
nonstandard layout is used.

The indentation features can be used to reindent large sections of a file. If some lines use nonstandard indentation
they will be reindented.

1.3.7 Editing

e Mx erl ang-node RET - Thiscommand activates the Erlang major mode for the current buffer. When this
mode is active the mode line contain the word "Erlang”.

Ericsson AB. All Rights Reserved.: Tools | 13

1.3 The Erlang mode for Emacs

When the Erlang mode is correctly installed, it is automatically activated when afile endingin. erl or. hrl is
opened in Emacs.

When afileissaved thenameinthe- nodul e() . lineischecked against the file name. Should they mismatch Emacs
can change the module specifier so that it matches the file name. By default, the user is asked before the change is
performed.

An"electric* command is a character that in addition to just inserting the character performs some type of action. For
example the";" character is typed in a situation where is ends a function clause a new function header is generated.
The electric commands are as follows:

e erlang-el ectric-comm - Insert acomma character and possibly a new indented line.

* erlang-electric-seni col on - Insert asemicolon character and possibly a prototype for the next line.

e erlang-electric-gt -"Insert a"™>"-sign and possible anew indented line.

To disableall electric commands set thevariableer | ang- el ect ri c- commands to the empty list. In short, place
thefollowing linein your . emacs-file:

(setq erlang-electric-commands '())

1.3.8 Syntax highlighting

It is possible for Emacs to use colors when displaying a buffer. By "syntax highlighting”, we mean that syntactic
components, for example keywords and function names, will be colored.

The basic idea of syntax highlighting is to make the structure of a program clearer. For example, the highlighting will
make it easier to spot simple bugs. Have not you ever written avariable in lower-case only? With syntax highlighting
avariable will colored while atoms will be shown with the normal text color.

1.3.9 Tags

Tags is a standard Emacs package used to record information about source files in large development projects. In
addition to listing the files of a project, atagsfile normally contains information about all functions and variables that
are defined. By far, the most useful command of the tags system isits ability to find the definition of functionsin any
filein the project. However the Tags system is not limited to this feature, for example, it is possible to do atext search
in al filesin aproject, or to perform a project-wide search and replace.

In order to use the Tags system afile named TAGS must be created. Thefile can be seen asadatabase over all functions,
records, and macros in all filesin the project. The TAGS file can be created using two different methods for Erlang.
Thefirst isthe standard Emacs utility "etags"', the second is by using the Erlang module t ags.

1.3.10 Etags

et ags isaprogram that is part of the Emacs distribution. It is normally executed from a command line, like a unix
shell or aDOS box.

Theet ags program of fairly modern versions of Emacs and X Emacs has native support for Erlang. To check if your
version doesinclude this support, issue the command et ags - - hel p at athe command line prompt. At the end of
the help text there is a list of supported languages. Unless Erlang is a member of thislist | suggest that you should
upgrade to a newer version of Emacs.

Asseenin the help text -- unless you have not upgraded your Emacs yet (well, what are you waiting around here for?
Off you go and upgrade!) -- et ags associate the file extensions. er| and. hr | with Erlang.

Basically, the et ags utility isran using the following form:

etags filel.erl file2.erl

Thiswill create afile named TAGS in the current directory.

14 | Ericsson AB. All Rights Reserved.: Tools

1.4 fprof - The File Trace Profiler

The et ags utility can also read alist of files from its standard input by supplying a single dash in place of the file
names. This feature is useful when a project consists of alarge number of files. The standard UNIX command f i nd
can be used to generate the list of files, e.q:

find . -name "*.[helrl" -print | etags -
The above line will create a TAGS file covering all the Erlang source files in the current directory, and in the
subdirectories below.
Please see the GNU Emacs Manual and the etags man page for moreinfo.

1.3.11 Shell

The look and feel on an Erlang shell inside Emacs should be the same as in a normal Erlang shell. There isjust one
major difference, the cursor keys will actually move the cursor around just like in any normal Emacs buffer. The
command line history can be accessed by the following commands:

e GCup orMp (com nt-previous-input)-Movetothepreviouslineintheinput history.

e Cdown orMn (com nt-next-input)-Movetothenextlineintheinput history.

If the Erlang shell buffer would be killed the command line history is saved to afile. The command line history is
automatically retrieved when a new Erlang shell is started.

1.3.12 Compilation

The classic edit-compile-bugfix cycle for Erlang is to edit the source file in an editor, save it to a file and switch to
an Erlang shell. In the shell the compilation command is given. Should the compilation fail you have to bring out the
editor and locate the correct line.

With the Erlang editing mode the entire edit-compile-bugfix cycle can be performed without leaving Emacs. Emacs
can order Erlang to compile afile and it can parse the error messages to automatically place the point on the erroneous
lines.

1.4 fprof - The File Trace Profiler

f pr of isaprofiling tool that can be used to get a picture of how much processing time different functions consumes
and in which processes.

f pr of uses tracing with timestamps to collect profiling data. Therefore there is no need for special compilation of
any module to be profiled.

f pr of presentswall clock times from the host machine OS, with the assumption that OS scheduling will randomly
load the profiled functions in a fair way. Both own time i.e the time used by a function for its own execution, and
accumulated timei.e execution time including called functions.

Profiling is essentially donein 3 steps:

1
Tracing; to file, as mentioned in the previous paragraph.

2
Profiling; the tracefileis read and raw profile datais collected into an internal RAM storage on the node.
During this step the trace data may be dumped in text format to file or console.

3

Analysing; the raw profile datais sorted and dumped in text format either to file or console.

Since f pr of uses trace to file, the runtime performance degradation is minimized, but still far from negligible,
especialy not for programs that use the filesystem heavily by themselves. Where you place the trace file is also
important, e.g on Solaris/ t np is usually a good choice, while any NFS mounted disk isalousy choice.

Ericsson AB. All Rights Reserved.: Tools | 15

1.5 lcnt - The Lock Profiler

Fprof can also skip the file step and trace to atracer process of its own that does the profiling in runtime.

The following sections show some examples of how to profile with Fprof. See also the reference manual fprof(3).

1.4.1 Profiling from the source code

If you can edit and recompile the source code, it is convenient to insert fprof:trace(start) and
fprof:trace(stop) beforeand after the code to be profiled. All spawned processes are also traced. If you want
some other filenamethan the default try f prof : trace(start, "ny_fprof.trace").

Then read the trace file and create the raw profile data with fprof:profile(), or perhaps
fprof:profile(file, "ny fprof.trace") for non-default filename.

Finally create an informative table dumped on the console with f prof:anal yse(), or on file with
fprof:anal yse(dest, []),orperhapsevenf prof:anal yse([{dest, "my_fprof.analysis"},
{col s, 120}]) forawider listing on non-default filename.

See the fprof(3) manual page for more options and arguments to the functions trace, profile and anayse.

1.4.2 Profiling a function

If you have one function that does the task that you want to profile, and the function returns when the profiling should
stop, it is convenient to usef pr of : appl y(Mbdul e, Function, Args) andrelated for the tracing step.

If the tracing should continue after the function returns, for example if it is a start function that spawns processes to
be profiled, you canusef prof : appl y(M F, Args, [continue | O herOpts]).Thetracinghastobe
stopped at asuitable later timeusing f pr of : t race(st op) .

1.4.3 Immediate profiling

Itisalso possibleto trace immediately into the profiling process that createsthe raw profile data, that isto short circuit
the tracing and profiling steps so that the filesystem is not used.

Do something like this:

{ok, Tracer} = fprof:profile(start),
fprof:trace([start, {tracer, Tracer}]),
%% Code to profile

fprof:trace(stop);

This puts less load on the filesystem, but much more on the Erlang runtime system.

1.5 lcnt - The Lock Profiler

Internally in the Erlang runtime system locks are used to protect resources from being updated from multiple threads
in afatal way. Locks are necessary to ensure that the runtime system works properly but it also introduces a couple
of limitations. Lock contention and locking overhead.

With lock contention we mean when one thread locks a resource and another thread, or threads, tries to acquire the
same resource at the same time. The lock will deny the other thread access to the resource and the thread will be
blocked from continuing its execution. The second thread has to wait until the first thread has completed its access to
the resource and unlocked it. Thel cnt tool measures these lock conflicts.

Lockshave aninherent cost in execution time and memory space. It takestimeinitialize, destroy, acquiring or releasing
locks. To decrease lock contention it some times necessary to use finer grained locking strategies. This will usually
also increase the locking overhead and hence there is a tradeoff between lock contention and overhead. In general,
lock contention increases with the number of threads running concurrently. Thel cnt tool does not measure locking
overhead.

16 | Ericsson AB. All Rights Reserved.: Tools

1.5 lcnt - The Lock Profiler

1.5.1 Enabling lock-counting

For investigation of locks in the emulator we use an internal tool called | cnt (short for lock-count). The VM needs
to be compiled with this option enabled. To compile alock-counting VM along with anormal VM, use:

cd $ERL_TOP
./configure --enable-lock-counter

Start the lock-counting VM like this:

$ERL TOP/bin/erl -emu_ type lcnt

To verify that lock counting is enabled check that [| ock- count i ng] appears in the status text when the VM is
started.

Erlang/0TP 20 [erts-9.0] [64-bit] [smp:8:8] [ds:8:8:10] [async-threads:10] [hipe]
[kernel-poll:false] [lock-counting]

1.5.2 Getting started

Once you have alock counting enabled VM the module| cnt can be used. The module is intended to be used from
the current running nodes shell. To access remote nodesusel cnt : cl ear (Node) andl cnt : col | ect (Node) .

All locks are continuously monitored and its statistics updated. Use | cnt : ¢l ear/ O to initialy clear all counters
before running any specific tests. This command will also reset the duration timer internally.

Toretrievelock statisticsinformation, usel cnt : col | ect/ 0, 1. Thecollect operation will start al cnt server if it
not already started. All collected datawill be built into an Erlang term and uploaded to the server and a duration time
will also be uploaded. This duration isthetime between| cnt : cl ear/ 0, 1 andl cnt: col | ect/ 0, 1.

Once the data is collected to the server it can be filtered, sorted and printed in many different ways.
See the reference manual for a description of each function.

1.5.3 Example of usage
From the Erlang shell:

Erlang R13BO3 (erts-5.7.4) [source] [smp:8:8] [rq:8] [async-threads:0] [hipe]
[kernel-poll:false] [lock-counting]
1> lcnt:rt_opt({copy save, true}).
false
2> lcnt:clear(), big:bang(1000), lcnt:collect().
ok
3> lcnt:conflicts().
lock id #tries #collisions collisions [%] time [us] duration [%]

alcu allocator 50 4113692 158921 3.8632 215464 4.4962

pix lock 256 4007140 4882 0.1218 12221 0.2550

run_queue 8 2287246 6949 0.3038 9825 0.2050

proc_main 1029 3115778 25755 0.8266 1199 0.0250

proc_msgq 1029 2467022 1910 0.0774 1048 0.0219

proc_status 1029 5708439 2435 0.0427 706 0.0147

message pre alloc lock 8 2008569 134 0.0067 90 0.0019
timeofday 1 54065 8 0.0148 22 0.0005

gc_info 1 7071 7 0.0990 5 0.0001

ok

Ericsson AB. All Rights Reserved.: Tools | 17

1.5 lcnt - The Lock Profiler

Another way to to profile a specific function is to use | cnt: apply/3 or | cnt:apply/1 which does
I cnt: cl ear/ 0 beforethefunctionand | cnt : col | ect/ O after itsinvocation. This method should only be used
in micro-benchmarks since it sets copy_save tot r ue for the duration of the function call, which may cause the
emulator to run out of memory if attempted under load.

Erlang R13BO3 (erts-5.7.4) [source] [smp:8:8] [rq:8] [async-threads:0] [hipe]
[kernel-poll:false] [lock-counting]
1> lcnt:apply(fun() -> big:bang(1000) end).
4384.338
2> lent:conflicts().
lock id #tries #collisions collisions [%] time [us] duration [%]

alcu allocator 50 4117913 183091 4.4462 234232 5.1490
run_queue 8 2050398 3801 0.1854 6700 0.1473

pix lock 256 4007080 4943 0.1234 2847 0.0626

proc_main 1028 3000178 28247 0.9415 1022 0.0225

proc_msgq 1028 2293677 1352 0.0589 545 0.0120

proc_status 1028 5258029 1744 0.0332 442 0.0097

message pre alloc lock 8 2009322 147 0.0073 82 0.0018
timeofday 1 48616 9 0.0185 13 0.0003

gc_info 1 7455 12 0.1610 9 0.0002

ok

The process locks are sorted after its class like all other locks. It is convenient to look at specific processes and ports
as classes. We can do this by swapping class and classidentifierswith| cnt : swap_pi d_keys/ 0.

3> lcnt:swap _pid keys().

ok

4> lcnt:conflicts([{print, [name, tries, ratio, time]}]).
lock #tries collisions [%] time [us]

alcu allocator 4117913 4.4462 234232
run_queue 2050398 0.1854 6700

pix_lock 4007080 0.1234 2847
message pre _alloc lock 2009322 0.0073 82
<nonode@nohost.660.0> 13493 1.4452 41
<nonode@nohost.724.0> 13504 1.1404 36
<nonode@nohost.803.0> 13181 1.6235 35
<nonode@nohost.791.0> 13534 0.8202 22
<nonode@nohost.37.0> 8744 5.8326 22
<nonode@nohost.876.0> 13335 1.1174 19
<nonode@nohost.637.0> 13452 1.3678 19
<nonode@nohost.799.0> 13497 1.8745 18
<nonode@nohost.469.0> 11009 2.5343 18
<nonode@nohost.862.0> 13131 1.2566 16
<nonode@nohost.642.0> 13216 1.7327 15
<nonode@nohost.582.0> 13156 1.1098 15
<nonode@nohost.622.0> 13420 0.7303 14
<nonode@nohost.596.0> 13141 1.6437 14
<nonode@nohost.592.0> 13346 1.2064 13
<nonode@nohost.526.0> 13076 1.1701 13

ok

1.5.4 Example with Mnesia Transaction Benchmark
From the Erlang shell:

18 | Ericsson AB. All Rights Reserved.: Tools

1.5 lcnt - The Lock Profiler

Erlang R13BO3 (erts-5.7.4) [source] [smp:8:8] [rq:8] [async-threads:0] [hipe]
[kernel-poll:false] [lock-counting]

Eshell V5.7.4 (abort with ~G)
1> Conf=[{db_nodes, [node()]}, {driver nodes, [node()]}, {replica nodes, [node()]},
{n_drivers per node, 10}, {n_branches, 1000}, {n_accounts per branch, 10},
{replica_type, ram copies}, {stop after, 60000}, {reuse history id, true}].
[{db _nodes, [nonode@nohost]},
{driver _nodes, [nonode@nohost]},
{replica_nodes, [nonode@nohost]},
{n_drivers per node, 10},
{n_branches, 1000},
{n_accounts per branch, 10},
{replica_type,ram copies},
{stop_after,60000},
{reuse history id,true}]
2> mnesia_tpcb:init([{use running mnesia, false}|Conf]).
ignore

Initial configuring of the benchmark is done. It istime to profile the actual benchmark and Mnesia

3> lent:apply(fun() -> {ok,{time, Tps, , , , }} = mnesia tpcb:run([{use running mnesia,
true}|Confl), Tps/60 end).

12037.483333333334

ok

4> lcnt:swap pid keys().

ok

Thei d header represents the number of unique identifiers under a class when the option { conbi ne, true} is
used (whichison by default). It will otherwise show the specific identifier. Thedb_t ab listing shows 722287 unique
locks, it isone for each ets-table created and Mnesia creates one for each transaction.

5> lcnt:conflicts().

lock id #tries #collisions collisions [%] time [us] duration [%]

alcu allocator 50 56355118 732662 1.3001 2934747 4.8862

db_tab 722287 94513441 63203 0.0669 1958797 3.2613

timeofday 1 2701048 175854 6.5106 1746079 2.9071

pix_lock 256 24306168 163214 0.6715 918309 1.5289

run_queue 8 11813811 152637 1.2920 357040 0.5945

message pre alloc lock 8 17671449 57203 0.3237 263043 0.4380
mnesia locker 4 17477633 1618548 9.2607 97092 0.1617

mnesia tm 4 9891408 463788 4.6888 86353 0.1438

gc_info 1 823460 628 0.0763 24826 0.0413

meta main tab slot 16 41393400 7193 0.0174 11393 0.0190
<nonode@nohost.1108.0> 4 4331412 333 0.0077 7148 0.0119
timer wheel 1 203185 30 0.0148 3108 0.0052
<nonode@nohost.1110.0> 4 4291098 210 0.0049 885 0.0015
<nonode@nohost.1114.0> 4 4294702 288 0.0067 442 0.0007
<nonode@nohost.1113.0> 4 4346066 235 0.0054 390 0.0006
<nonode@nohost.1106.0> 4 4348159 287 0.0066 379 0.0006
<nonode@nohost.1111.0> 4 4279309 290 0.0068 325 0.0005
<nonode@nohost.1107.0> 4 4292190 302 0.0070 315 0.0005
<nonode@nohost.1112.0> 4 4208858 265 0.0063 276 0.0005
<nonode@nohost.1109.0> 4 4377502 267 0.0061 276 0.0005

ok

Thelisting shows mesi a_| ocker , aprocess, has highly contended locks.

Ericsson AB. All Rights Reserved.: Tools | 19

1.5 lcnt - The Lock Profiler

6> lcnt:inspect(mnesia locker).

lock id #tries #collisions collisions [%] time [us] duration [%]
mnesia locker proc msgq 5449930 59374 1.0894 69781 0.1162
mnesia locker proc main 4462782 1487374 33.3284 14398 0.0240
mnesia locker proc status 7564921 71800 0.9491 12913 0.0215
mnesia locker proc link 0 0 0.0000 0 0.0000

ok

Listing without class combiner.

7> lcnt:conflicts([{combine, false}, {print, [name, id, tries, ratio, timel}]).

lock id #tries collisions [%] time [us]

db_tab mnesia transient decision 722250 3.9463 1856852

timeofday undefined 2701048 6.5106 1746079

alcu allocator ets alloc 7490696 2.2737 692655

alcu allocator ets alloc 7081771 2.3294 664522

alcu allocator ets alloc 7047750 2.2520 658495

alcu allocator ets alloc 5883537 2.3177 610869
pix_lock 58 11011355 1.1924 564808

pix_lock 60 4426484 0.7120 262490

alcu allocator ets alloc 1897004 2.4248 219543

message pre alloc lock undefined 4211267 0.3242 128299
run_queue 3 2801555 1.3003 116792

run_queue 2 2799988 1.2700 100091

run_queue 1 2966183 1.2712 78834

mnesia locker proc_msgq 5449930 1.0894 69781

message pre alloc lock undefined 3495672 0.3262 65773
message pre alloc lock undefined 4189752 0.3174 58607
mnesia tm proc_msgq 2094144 1.7184 56361

run_queue 4 2343585 1.3115 44300

db_tab branch 1446529 0.5229 38244

gc_info undefined 823460 0.0763 24826

ok

In this scenario the lock that protects ets-tablermesi a_t r ansi ent _deci si on has spent most of itswaiting for.
That is 1.8 secondsin atest that run for 60 seconds. Thetimeis aso spread on eight different scheduler threads.

20 | Ericsson AB. All Rights Reserved.: Tools

1.6 Xref - The Cross Reference Tool

8> lcnt:inspect(db _tab, [{print, [name, id, tries, colls, ratio, duration]}]).

lock id #tries #collisions collisions [%] duration [%]
db_tab mnesia transient decision 722250 28502 3.9463 3.0916
db tab branch 1446529 7564 0.5229 0.0637
db tab account 1464500 8203 0.5601 0.0357
db tab teller 1464529 8110 0.5538 0.0291
db_tab history 722250 3767 0.5216 0.0232
db_tab mnesia stats 750332 7057 0.9405 0.0180
db_tab mnesia_trans store 61 0 0.0000 0.0000
db_tab mnesia_ trans store 61 0 0.0000 0.0000
db_tab mnesia_trans store 53 0 0.0000 0.0000
db_tab mnesia_trans store 53 0 0.0000 0.0000
db_tab mnesia_trans store 53 0 0.0000 0.0000
db_tab mnesia_trans store 53 0 0.0000 0.0000
db_tab mnesia_trans store 53 0 0.0000 0.0000
db_tab mnesia_trans store 53 0 0.0000 0.0000
db_tab mnesia_ trans store 53 0 0.0000 0.0000
db_tab mnesia_trans store 53 0 0.0000 0.0000
db_tab mnesia_trans store 53 0 0.0000 0.0000
db_tab mnesia trans store 53 0 0.0000 0.0000
db_tab mnesia_trans store 53 0 0.0000 0.0000
db_tab mnesia_trans store 53 0 0.0000 0.0000

1.5.5 Deciphering the output

Typicaly hight i me valuesare bad and thisis often the thing to look for. However, one should also look for high lock
acquisition frequencies (#tries) since locks generate overhead and because high frequency could become problematic
if they begin to have conflicts even if it is not shown in a particular test.

1.5.6 See Also
LCNT Reference Manual

1.6 Xref - The Cross Reference Tool

Xref isacross reference tool that can be used for finding dependencies between functions, modules, applications and
releases. It does so by analyzing the defined functions and the function calls.

In order to make Xref easy to use, there are predefined analyses that perform some common tasks. Typically, amodule
or arelease can be checked for calls to undefined functions. For the somewhat more advanced user there is a small,
but rather flexible, language that can be used for selecting parts of the analyzed system and for doing some simple
graph analyses on selected calls.

The following sections show some features of Xref, beginning with a module check and a predefined analysis. Then
follow examples that can be skipped on the first reading; not all of the concepts used are explained, and it is assumed
that the reference manual has been at least skimmed.

1.6.1 Module Check

Assume we want to check the following module:

Ericsson AB. All Rights Reserved.: Tools | 21

1.6 Xref - The Cross Reference Tool

-module(my module).
-export([t/1]).

t(A) ->
my module:t2(A).

t2() ->

true.

Cross reference data are read from BEAM files, so the first step when checking an edited module isto compileit:

1> c(my _module, debug info).
./my module.erl:10: Warning: function t2/1 is unused
{ok, my module}

The debug_i nf o option ensures that the BEAM file contains debug information, which makes it possible to find
unused local functions.

The module can now be checked for calls to deprecated functions, calls to undefined functions, and for unused local
functions:

2> xref:m(my _module)

[{deprecated, [1},

{undefined, [{{my module,t,1},{my module,t2,1}}1},
{unused, [{my module,t2,1}]}]

n 1 is also suitable for checking that the BEAM file of a module that is about to be loaded into a running a system
does not call any undefined functions. In either case, the code path of the code server (see the module code) is used
for finding modulesthat export externally called functions not exported by the checked module itself, so called library
modules.

1.6.2 Predefined Analysis

In the last example the module to analyze was given asan argument to ni 1, and the code path was (implicitly) used as
library path. In this example an xref server will be used, which makesit possible to analyze applications and rel eases,
and also to select the library path explicitly.

Each Xref server is referred to by a unique name. The name is given when creating the server:

1> xref:start(s).
{ok,<0.27.0>}

Next the system to be analyzed is added to the Xref server. Here the system will be OTP, so no library path will be
needed. Otherwise, when analyzing a system that uses OTP, the OTP modules are typically made library modules
by setting the library path to the default OTP code path (or to code_pat h, see the reference manual). By default,
the names of read BEAM files and warnings are output when adding analyzed modules, but these messages can be
avoided by setting default values of some options:

2> xref:set default(s, [{verbose,false}, {warnings,false}]).
ok

3> xref:add release(s, code:lib dir(), {name, otp}).
{ok,otp}

22 | Ericsson AB. All Rights Reserved.: Tools

1.6 Xref - The Cross Reference Tool

add_r el ease/ 3 assumes that all subdirectories of the library directory returned by code: i b_di r () contain
applications; the effect is that of reading all applications BEAM files.

It is now easy to check the release for calls to undefined functions:

4> xref:analyze(s, undefined function calls).
{ok, [...1}

We can now continue with further analyses, or we can delete the Xref server:

5> xref:stop(s).

The check for calls to undefined functions is an example of a predefined analysis, probably the most useful one.
Other examples are the analyses that find unused local functions, or functions that call some given functions. See the
analyze/2,3 functions for a complete list of predefined analyses.

Each predefined analysis is a shorthand for a query, a sentence of atiny language providing cross reference data as
values of predefined variables. The check for calls to undefined functions can thus be stated as a query:

4> xref:

q(s, "(XC - UC) || (XU - X - B)").
{ok,[...1}

The query asks for the restriction of external calls except the unresolved calls to calls to functions that are externally
used but neither exported nor built-in functions (the | | operator restricts the used functions while the | operator
restricts the calling functions). The - operator returns the difference of two sets, and the + operator to be used below
returns the union of two sets.

The relationships between the predefined variables XU, X, B and a few others are worth elaborating upon. The
reference manual mentions two ways of expressing the set of al functions, one that focuses on how they are defined:
X + L + B + U, and one that focuses on how they are used: UU + LU + XU. The reference also mentions
some facts about the variables:

e FisequatoL + X(thedefined functionsarethelocal functions and the externa functions);

e Uisasubset of XU (the unknown functions are a subset of the externally used functions since the compiler
ensures that locally used functions are defined);

* Bisasubset of XU (callsto built-in functions are always external by definition, and unused built-in functions

areignored);

e LUisasubset of F (thelocally used functions are either local functions or exported functions, again ensured by
the compiler);

e WUisequaltoF - (XU + LU) (theunused functions are defined functions that are neither used externally
nor locally);

e UUisasubset of F (the unused functions are defined in analyzed modul es).
Using these facts, the two small circles in the picture below can be combined.

Ericsson AB. All Rights Reserved.: Tools | 23

1.6 Xref - The Cross Reference Tool

-
N

T
y UL

Definition and Use

Definition

Figure 6.1: Definition and use of functions

It is often clarifying to mark the variables of a query in such a circle. This is illustrated in the picture below for
some of the predefined analyses. Note that local functions used by local functions only are not marked in the
| ocal s_not _used circle.

XU -X-B K —XUu (L=O0) * (UL + [XU-L L))

undefined_functicons exports_not_nsed lecals_not_used [smplified)
[modules mode)

Figure 6.2: Some predefined analyses as subsets of all functions

24 | Ericsson AB. All Rights Reserved.: Tools

1.6 Xref - The Cross Reference Tool

1.6.3 Expressions

The module check and the predefined analyses are useful, but limited. Sometimes more flexibility is needed, for
instance one might not need to apply agraph analysison all calls, but some subset will do equally well. That flexibility
is provided with asimple language. Bel ow are some expressions of the language with comments, focusing on elements
of the language rather than providing useful examples. The analyzed system is assumed to be OTP, so in order to run
the queries, first evaluate these calls:

xref:start(s).
xref:add release(s, code:root dir()).

xref:q(s, "(Fun) xref : Md").

All functions of the xr ef module.
xref:q(s, "xref : Md * X').

All exported functions of the xr ef module. The first operand of the intersection operator * isimplicitly

converted to the more special type of the second operand.
xref:q(s, "(Md) tools").

All modules of the Tools application.
xref:q(s, '""xref_ .*" : NMdd').

All modules with a name beginning with xr ef _.
xref:q(s, "# E| X").

Number of calls from exported functions.
xref:q(s, "XC || L ").

All externa callsto local functions.
xref:q(s, "XC * LC").

All calls that have both an external and alocal version.
xref:q(s, "(LLin) (LC* XO").

The lineswhere the local calls of the last example are made.
xref:q(s, "(XLin) (LC* XO").

The lines where the external calls of the example before last are made.
xref:q(s, "XC* (ME - strict ME)").

External calls within some module.

xref:q(s, "E ||| kernel").
All callswithin the Kernel application.
xref:q(s, "closure E| kernel || kernel").

All direct and indirect calls within the Kernel application. Both the calling and the used functions of indirect
calls are defined in modules of the kernel application, but it is possible that some functions outside the kernel
application are used by indirect calls.
xref:q(s, "{tool bar, debugger}: Mod of ME").
A chain of module callsfromt ool bar todebugger , if thereis such a chain, otherwisef al se. The chain
of callsisrepresented by alist of modules, t ool bar being the first element and debugger the last element.
xref:q(s, "closure E| tool bar:Md || debugger: Md").
All (in)direct callsfrom functionsint ool bar tofunctionsin debugger .
xref:q(s, "(Fun) xref -> xref _base").
All function callsfrom xr ef toxr ef base.
xref:q(s, "E * xref -> xref _base").
Same interpretation as last expression.
xref:q(s, "E || xref_base | xref").
Same interpretation as last expression.
xref:q(s, "E* [xref -> lists, xref_base -> digraph]").
All function callsfrom xr ef tol i st's, and al function calsfrom xr ef _base todi gr aph.

Ericsson AB. All Rights Reserved.: Tools | 25

1.6 Xref - The Cross Reference Tool

xref:q(s, "E | [xref, xref_base] || [lists, digraph]").
All function callsfrom xr ef andxr ef _base tol i st s anddi gr aph.
xref:q(s, "conponents EE").
All strongly connected components of the Inter Call Graph. Each component is a set of exported or unused
local functions that call each other (in)directly.
xref:q(s, "X * digraph * range (closure (E | digraph) | (L * digraph))").
All exported functions of the di gr aph module used (in)directly by some function indi gr aph.
xref:q(s, "L * yeccparser: Mod - range (closure (E |
yeccparser: Mdd) | (X * yeccparser:Md))").
The interpretation is left as an exercise.

1.6.4 Graph Analysis

The list representation of graphs is used analyzing direct calls, while the di gr aph representation is suited
for analyzing indirect calls. The restriction operators (|, || and | | |) are the only operators that accept both
representations. This means that in order to analyze indirect calls using restriction, the cl osur e operator (which
createsthe di gr aph representation of graphs) has to be applied explicitly.

As an example of analyzing indirect calls, the following Erlang function tries to answer the question: if we want to
know which modules are used indirectly by some module(s), isit worth while using the function graph rather than the
module graph? Recall that amodule M1 is said to call amodule M2 if there is some function in M1 that calls some
functionin M2. It would be nice if we could use the much smaller module graph, sinceit is available also in the light
weight modul esmode of Xref servers.

t(S) ->
{ok, } = xref:q(S, "Eplus := closure E"),
{ok, Ms} = xref:q(S, "AM"),
Fun = fun(M, N) ->

Q = io lib:format("# (Mod) (Eplus | ~p : Mod)", [MI]),
{ok, N0} = xref:q(S, lists:flatten(Q)),
N + NO

end,

Sum = lists:foldl(Fun, 0, Ms),

ok = xref:forget(S, 'Eplus'),

{ok, Tot} = xref:q(S, "# (closure ME | AM)"),
100 * ((Tot - Sum) / Tot).

Comments on the code:

Wewant to find the reduction of the closure of the function graph to modules. The direct expression for doing
that would be (Mbd) (closure E | AM, but then wewould have to represent all of the transitive closure
of E in memory. Instead the number of indirectly used modulesis found for each analyzed module, and the sum
over al modulesis caculated.

» A user variable is employed for holding the di gr aph representation of the function graph for use in many
gueries. Thereason is efficiency. As opposed to the = operator, the : = operator saves a value for subsequent
analyses. Here might be the place to note that equal subexpressions within a query are evaluated only once; =
cannot be used for speeding things up.

e Eplus | ~p : Mod. The| operator convertsthe second operand to the type of the first operand. In this
case the module is converted to all functions of the module. It is necessary to assign atype to the module
(: Mod), otherwise moduleslike ker nel would be converted to all functions of the application with the same
name; the most general constant is used in cases of ambiguity.

» Sinceweare only interested in aratio, the unary operator # that counts the elements of the operand is used. It
cannot be applied to the di gr aph representation of graphs.

* Wecould find the size of the closure of the module graph with aloop similar to one used for the function graph,
but since the module graph is so much smaller, amore direct method is feasible.

26 | Ericsson AB. All Rights Reserved.: Tools

1.6 Xref - The Cross Reference Tool

When the Erlang function t / 1 was applied to an Xref server loaded with the current version of OTP, the returned
value was close to 84 (percent). This means that the number of indirectly used modules is approximately six times
greater when using the module graph. So the answer to the above stated question is that it is definitely worth while
using the function graph for this particular analysis. Finaly, note that in the presence of unresolved calls, the graphs
may be incomplete, which means that there may be indirectly used modules that do not show up.

Ericsson AB. All Rights Reserved.: Tools | 27

1.6 Xref - The Cross Reference Tool

2 Reference Manual

The Tools application contains a number of stand-alone tools, which are useful when developing Erlang programs.

cover
A coverage analysistool for Erlang.

cprof
A profiling tool that shows how many times each function is called. Uses akind of local call trace breakpoints
containing counters to achieve very low runtime performance degradation.

erlang.el- Erlang mode for Emacs
Editing support such as indentation, syntax highlighting, electric commands, module name verification,
comment support including paragraph filling, skeletons, tags support and more for erlang source code.

epr of
A time profiling tool; measure how timeis used in Erlang programs. Predecessor of fprof (see below).
fprof

Another Erlang profiler; measure how timeis used in your Erlang programs. Uses trace to file to minimize
runtime performance impact, and displays time for calling and called functions.
lent
A lock profiling tool for the Erlang runtime system.
make
A make utility for Erlang similar to UNIX make.
tags
A tool for generating Emacs TAGS files from Erlang sourcefiles.
xr ef
A cross reference tool. Can be used to check dependencies between functions, modules, applications and
releases.

28 | Ericsson AB. All Rights Reserved.: Tools

cover

cover

Erlang module

The module cover provides a set of functions for coverage analysis of Erlang programs, counting how many times
each executable line of code is executed when a program isrun.

An executableline contains an Erlang expression such asamatching or afunction call. A blank line or aline containing
acomment, function head or patterninacase- or r ecei ve statement is not executable.

Coverage analysis can be used to verify test cases, making sure all relevant code is covered, and may also be helpful
when looking for bottlenecks in the code.

Before any analysis can take place, the involved modules must be Cover compiled. This means that some extra
information is added to the module before it is compiled into a binary which then is loaded. The source file of the
moduleis not affected and no . beamfileis created.

Each time afunction in aCover compiled moduleis called, information about the call is added to an internal database
of Cover. The coverage analysisis performed by examining the contents of the Cover database. The output Answer
is determined by two parameters, Level and Anal ysi s.

e Level = nodule

Answer = {Modul e, Val ue}, where Modul e isthe module name.
e Level = function
Answer = [{Functi on, Val ue}], onetuplefor each function in the module. A function is specified by its
module name M function name F and arity Aasatuple{ M F, A}.
* Level = clause
Answer = [{C ause, Val ue}], onetuplefor each clauseinthe module. A clauseis specified by its module
name M function name F, arity A and position in the function definition Casatuple{ M F, A, C} .
e Level =1line
Answer = [{Line, Val ue}], one tuple for each executable line in the module. A line is specified by its
module name Mand line number in the source fileNasatuple{ M N} .
e Analysis = coverage
Val ue = { Cov, Not Cov} where Cov isthe number of executable linesin the module, function, clause or line
that have been executed at least once and Not Cov isthe number of executable linesthat have not been executed.
e Analysis = calls
Val ue = Cal | s whichisthe number of times the module, function, or clause has been called. In the case of
linelevel analysis, Cal | s isthe number of times the line has been executed.
Distribution

Cover can be used in a distributed Erlang system. One of the nodes in the system must then be selected as the main
node, and all Cover commands must be executed from this node. The error reason not _mai n_node isreturned if
an interface function is called on one of the remote nodes.

Usecover:start/1andcover: st op/ 1 toadd or remove nodes. The same Cover compiled code will beloaded
on each node, and analysis will collect and sum up coverage data results from all nodes.

To only collect data from remote nodes without stopping cover on those nodes, usecover : fl ush/ 1

If the connection to a remote node goes down, the main node will mark it as lost. If the node comes back it will be
added again. If the remote node was alive during the disconnected period, cover data from before and during this
period will be included in the analysis.

Ericsson AB. All Rights Reserved.: Tools | 29

cover

Exports

start() -> {ok, pid()} | {error, Reason}
Types.
Reason = {already started, pid()} | term()

Starts the Cover server which owns the Cover internal database. This function is called automatically by the other
functionsin the module.

local only() -> ok | {error, too late}

Only support running Cover on the local node. This function must be called before any modules have been compiled
or any nodes added. When running in this mode, modules will be Cover compiled in a more efficient way, but the
resulting code will only work on the same node they were compiled on.

start(Nodes) ->
{ok, StartedNodes} |
{error, not main node} |
{error, local only}

Types:
Nodes = node() | [node()]
StartedNodes = [node()]

Starts a Cover server on the each of given nodes, and loads all cover compiled modules. This call will fail if
cover: |l ocal _only/ 0 hasbeencalled.

compile(ModFiles) -> Result | [Result]
compile(ModFiles, Options) -> Result | [Result]
compile module(ModFiles) -> Result | [Result]
compile module(ModFiles, Options) -> Result | [Result]
Types:
ModFiles = mod files()
Options = [option()]
Result = compile result()
mod files() = mod file() | [mod file()]
mod file() = (Module :: module()) | (File :: file:filename())
option() =
{i, Dir :: file:filename()} |
{d, Macro :: atom()} |

{d, Macro :: atom(), Value :: term()} |
export all

Seecompile:filel2.

compile result() =
{ok, Module :: module()} |
{error, file:filename()} |
{error, not _main node}

Compiles amodule for Cover analysis. The module is given by its module name Mbdul e or by itsfilename Fi | e.
The. er| extension may be omitted. If the module islocated in another directory, the path has to be specified.

30 | Ericsson AB. All Rights Reserved.: Tools

cover

Opt i ons isalist of compiler optionswhich defaultsto[] . Only options defining include file directories and macros
arepassedto conpi | e: fi |l e/ 2, everything elseisignored.

If the module is successfully Cover compiled, the function returns { ok, Modul e} . Otherwise the function returns
{error, File}.Errorsand warningsare printed as they occur.

If alist of ModFi | es isgivenasinput, alist of Resul t will bereturned. The order of the returned list is undefined.

Notethat theinternal databaseis(re-)initiated during the compilation, meaning any previously collected coverage data
for the module will be lost.

compile directory() -> [Result] | {error, Reason}
compile directory(Dir) -> [Result] | {error, Reason}
compile directory(Dir, Options) -> [Result] | {error, Reason}
Types:
Dir = file:filename()
Options = [option()]
Reason = file error()
Result = compile result()
option() =
{i, Dir :: file:filename()} |
{d, Macro :: atom()} |

{d, Macro :: atom(), Value :: term()} |
export all

Seeconmpile:filel2.
file error() = eacces | enoent

compile result() =
{ok, Module :: module()} |
{error, file:filename()} |
{error, not main node}

Compilesall modules (. er | files)inadirectory Di r for Cover analysisthe sasmeway asconpi | e_nodul e/ 1, 2
and returns alist with the return values.

Di r defaultsto the current working directory.

The function returns{ err or, eacces} if thedirectory isnot readableor { error, enoent} if the directory
does not exist.

compile beam(ModFiles) -> Result | [Result]
Types:

Ericsson AB. All Rights Reserved.: Tools | 31

cover

ModFiles = beam mod files()
Result = compile beam result()
beam mod files() = beam mod file() | [beam mod file()]
beam mod file() =
(Module :: module()) | (BeamFile :: file:filename())
compile beam result() =
{ok, module()} |
{error, BeamFile :: file:filename()} |
{error, Reason :: compile beam rsn()}
compile beam rsn() =
non_existing |
{no_abstract code, BeamFile :: file:filename()} |
{encrypted abstract code, BeamFile :: file:filename()} |
{already cover compiled, no beam found, module()} |
{{missing backend, module()}, BeamFile :: file:filename()} |
{no_file attribute, BeamFile :: file:filename()} |
not main node

Doesthesameasconpi | e/ 1, 2, but uses an existing . beamfile as base, that is, the module is not compiled from
source. Thusconpi | e_beani 1 isfaster thanconpi | e/ 1, 2.

Note that the existing . beam file must contain abstract code, that is, it must have been compiled with the
debug_i nf o option. If not, the error reason { no_abst ract _code, BeanFi | e} isreturned. If the abstract
code is encrypted, and no key is available for decrypting it, the error reason { encr ypt ed_abstract _code,
Beanti | e} isreturned.

If only the module name (that is, not the full name of the. beamfile) isgiven to thisfunction, the. beamfileisfound
by caling code: whi ch(Mbdul e) . If no. beamfileisfound, the error reason non_exi st i ng isreturned. If the
module is already cover compiled with conpi | e_beant 1, the. beamfile will be picked from the same location
as the first time it was compiled. If the module is already cover compiled with conpi | e/ 1, 2, there is no way to
find the correct . beamfile, sotheerrorreason{ al r eady_cover _conpi | ed, no_beam found, Modul e}
isreturned.

{error, Beantil e} isreturnedif the compiled code cannot be loaded on the node.
If alist of ModFi | es isgivenasinput, alist of Resul t will be returned. The order of the returned list is undefined.

compile beam directory() -> [Result] | {error, Reason}

compile beam directory(Dir) -> [Result] | {error, Reason}
Types:

32 | Ericsson AB. All Rights Reserved.: Tools

cover

Dir = file:filename()
Reason = file error()
Result = compile beam result()

compile beam result() =
{ok, module()} |
{error, BeamFile ::
{error, Reason ::

compile beam rsn() =
non_existing |

{no_abstract code, BeamFile ::
{encrypted abstract code, BeamFile ::

file:filename()} |
compile beam rsn()}

file:filename()} |
file:filename()} |

{already cover compiled, no beam found, module()} |

{{missing backend, module()
{no_file attribute, BeamFile ::

not _main_node
file error() = eacces | enoent

}, BeamFile :: file:filename()} |
file:filename()} |

Compilesall modules (. beamfiles) inadirectory Di r for Cover analysisthe sameway asconpi | e_beam 1 and

returns alist with the return values.
Di r defaultsto the current working directory.

The function returns{ er r or,
does not exist.

analyse() ->
{result, analyse ok(),
{error, not main node}
analyse(Analysis) ->
{result, analyse ok(),
{error, not main node}

analyse(Level) ->
{result, analyse ok(),
{error, not main node}

analyse(Modules) ->
OneResult |
{result, analyse ok(),
{error, not main node}
analyse(Analysis, Level) ->
{result, analyse ok(),
{error, not_main_node}

analyse(Modules, Analysis) ->
OneResult |
{result, analyse ok(),
{error, not main node}
analyse(Modules, Level) ->
OneResult |
{result, analyse ok(),
{error, not main node}
analyse(Modules, Analysis, Level)
OneResult |

eacces} if thedirectory isnot readable or { er r or,

enoent } if the directory

analyse fail()} |

analyse fail()} |

analyse fail()} |

analyse fail()} |

analyse fail()} |

analyse fail()} |

analyse fail()} |

->

Ericsson AB. All Rights Reserved.: Tools | 33

cover

{result, analyse ok(), analyse fail()} |
{error, not main node}

Types.
Analysis = analysis()
Level = level()
Modules = modules()
OneResult = one result()
analysis() = coverage | calls
level() = line | clause | function | module
modules() = module() | [module()]

one result() =
{ok, {Module :: module(), Value :: analyse value()}} |
{ok, [{Item :: analyse item(), Value :: analyse value()}]} |
{error, {not cover compiled, module()}}
analyse fail() = [{not cover compiled, module()}]
analyse ok() =
[{Module :: module(), Value :: analyse value()}] |
[{Item :: analyse item(), Value :: analyse value()}]
analyse value() =
{Cov :: integer() >= 0, NotCov :: integer() >= 0} |
(Calls :: integer() >= 0)
analyse item() =
(Line :: {M :: module(), N :: integer() >= 0}) |

(Clause ::
{M :: module(),
F :: atom(),
A :: arity(),

C :: integer() >= 0}) |
(Function :: {M :: module(), F :: atom(), A :: arity()})

Performs analysis of one or more Cover compiled modules, as specified by Anal ysi s and Level (seeabove), by
examining the contents of the internal database.

Anal ysi s defaultsto cover age and Level defaultstof uncti on.
If Modul es isanatom (onemodule), thereturnwill beOneResul t , elsethereturnwillbe{resul t, Ok, Fail}.

If Modul es isnot given, all modulesthat have datain the cover datatable, are analysed. Note that this includes both
cover compiled modules and imported modules.

If agiven moduleisnot Cover compiled, thisisindicated by theerror reason{ not _cover _conpi | ed, Modul e}.

analyse to file() ->
{result,
analyse file ok(),
analyse file fail()} |
{error, not main node}
analyse to file(Modules) ->
Answer |
{result,
analyse file ok(),
analyse file fail()} |

34 | Ericsson AB. All Rights Reserved.: Tools

cover

{error, not main node}
analyse to file(Options) ->
{result,
analyse file ok(),
analyse file fail()} |
{error, not main node}
analyse to file(Modules, Options) ->
Answer |
{result,
analyse file ok(),
analyse file fail()} |
{error, not_main _node}

Types:
Modules = modules()
Options = [analyse option()]

Answer = analyse answer()

modules() = module() | [module()]

analyse option() =
html |
{outfile, OQutFile :: file:filename()} |
{outdir, OutDir :: file:filename()}

analyse answer() =
{ok, OutFile :: file:filename()} | {error, analyse rsn()}

analyse file ok() = [OutFile :: file:filename()]
analyse file fail() = [analyse rsn()]
analyse rsn() =

{not _cover compiled, Module :: module()} |
{file, File :: file:filename(), Reason :: term()} |
{no_source code found, Module :: module()}

Makes copies of the sourcefile for the given modules, where it for each executable line is specified how many times
it has been executed.

The output file Qut Fi | e defaults to Mbdul e. COVER. out , or Mbdul e. COVER. ht m if the option ht M was
used.

If Modul es is an atom (one module), the return will be Answer , else the return will be alist, {resul t, X,
Fail}.

If Modul es isnot given, all modules that have datain the cover datatable, are analysed. Note that thisincludes both
cover compiled modules and imported modules.

If amoduleis not Cover compiled, thisisindicated by the error reason { not _cover conpi | ed, Modul e}.

If the source file and/or the output file cannot be opened using fi | e: open/ 2, the function returns { er r or,
{file, File, Reason}} whereFil e isthefile nameand Reason isthe error reason.

If a module was cover compiled from the .beam file, that is, using conpile_beanil or
conpi | e_beam di rectory/ 0, 1 ,itisassumed that the source code can be found in the same directory as the
. beamfile in. . / sr c relativeto that directory, or using the source pathin Modul e: modul e_i nf o(conpi | e) .
When using thelatter, two paths are examined: first the one constructed by joining . . / sr ¢ and thetail of the compiled
path below atrailing sr ¢ component, then the compiled path itself. If no source code is found, thisis indicated by
the error reason { no_sour ce_code_f ound, Mbdul e}.

Ericsson AB. All Rights Reserved.: Tools | 35

cover

async_analyse to file(Module) -> pid()
async_analyse to file(Module, OutFile) -> pid()
async_analyse to file(Module, Options) -> pid()
async_analyse to file(Module, OutFile, Options) -> pid()
Types:

Module = module()

QutFile = file:filename()

Options = [Option]

Option = html

analyse rsn() =

{not_cover compiled, Module :: module()} |
{file, File :: file:filename(), Reason :: term()} |
{no_source code found, Module :: module()}

This function works exactly the same way as anal yse to _fil e except that it is asynchronous instead of
synchronous. The spawned processwill link with the caller when created. If an error of typeanal yse_r sn() occurs
whiledoing the cover analysisthe processwill crash with the sasmeerror reasonasanal yse_t o _fi | e wouldreturn.

modules() -> [module()] | {error, not main node}
Returns alist with all modules that are currently Cover compiled.

imported modules() -> [module()] | {error, not main node}
Returns alist with all modules for which there are imported data.

imported() -> [file:filename()] | {error, not main node}
Returns alist with all imported files.

which nodes() -> [node()]

Returns a list with all nodes that are part of the coverage analysis. Note that the current node is not returned. This
node is always part of the analysis.

is compiled(Module) ->
{file, File :: file:filename()} |
false |
{error, not main node}

Types:
Module = module()

Returns{fil e, Fil e} if the module Modul e is Cover compiled, or f al se otherwise. Fi | e isthe. er| file
used by conpi | e_nodul e/ 1, 2 or the. beamfileused by conpi | e_beant 1.

reset() -> ok | {error, not main node}

reset (Module) ->
ok |
{error, not_main node} |
{error, {not cover compiled, Module}}

Types.

36 | Ericsson AB. All Rights Reserved.: Tools

cover

Module = module()

Resets all coverage data for a Cover compiled module Modul e in the Cover database on all nodes. If the argument
is omitted, the coverage datawill be reset for all modules known by Cover.

If Modul e isnot Cover compiled, the functionreturns{ err or, {not_cover_conpil ed, Modul e}}.

export(File) -> ok | {error, Reason}
export(File, Module) -> ok | {error, Reason}

Types:
File = file:filename()
Module = module()

Reason = export reason()

export reason() =
{not_cover compiled, Module :: module()} |
{cant_open file,
ExportFile :: file:filename(),
FileReason :: term()} |
not _main_node

Exportsthe current coverage datafor Modul e tothefileExport Fi | e. ItisrecommendedtonametheExport Fi | e
with the extension . cover dat a, since other filenames cannot be read by the web based interface to cover.

If Modul e isnot given, datafor all Cover compiled or earlier imported modules is exported.
This function is useful if coverage datafrom different systemsisto be merged.
Seealsoi nport/ 1.

import(ExportFile) -> ok | {error, Reason}
Types:
ExportFile = file:filename()

Reason =
{cant _open file, ExportFile, FileReason :: term()} |
not _main_node

Imports coverage data from the file Expor t Fi | e created with export/ 1, 2. Any anaysis performed after this
will include the imported data.

Note that when compiling a module all existing cover age data is removed, including imported data. If amoduleis
already compiled when datais imported, the imported datais added to the existing coverage data.

Coverage data from several export files can be imported into one system. The coverage data is then added up when
analysing.

Coverage data for amodule cannot be imported from the same file twice unless the moduleisfirst reset or compiled.
The check is based on the filename, so you can easily fool the system by renaming your export file.

Seeasoexport/ 1, 2.

stop() -> ok | {error, not main node}
Stops the Cover server and unloads all Cover compiled code.

stop(Nodes) -> ok | {error, not main node}
Types:

Ericsson AB. All Rights Reserved.: Tools | 37

cover

Nodes = node() | [node()]

Stops the Cover server and unloads all Cover compiled code on the given nodes. Data stored in the Cover database
on the remote nodes is fetched and stored on the main node.

flush(Nodes) -> ok | {error, not main node}
Types:
Nodes = node() | [node()]
Fetch data from the Cover database on the remote nodes and stored on the main node.

SEE ALSO
code(3), compile(3)

38 | Ericsson AB. All Rights Reserved.: Tools

cprof

cprof

Erlang module

Thecpr of moduleisusedto profileaprogram to find out how many times different functions are called. Breakpoints
similar to local call trace, but containing a counter, are used to minimise runtime performance impact.

Since breakpoints are used there is no need for special compilation of any module to be profiled. For now these
breakpoints can only be set on BEAM code so BIFs cannot be call count traced.

The size of the call countersisthe host machine word size. One bit is used when pausing the counter, so the maximum
counter value for a 32-bit host is 2147483647.

Theprofiling resultisdelivered asaterm containing asorted list of entries, one per module. Each module entry contains
asorted list of functions. The sorting order in both casesis of decreasing call count.

Call count tracing is very lightweight compared to other forms of tracing since no trace message has to be generated.
Some measurements indicates performance degradation in the vicinity of 10 percent.

Exports

analyse() ->
{AllCallCount :: integer() >= 0,
ModAnalysisList :: mod analysis list()}
analyse(Limit) ->
{AllCallCount :: integer() >= 0,
ModAnalysisList :: mod analysis list()}

analyse(Mod) -> ModAnalysis :: mod analysis()
analyse(Mod, Limit) -> ModAnalysis :: mod analysis()
Types:

Mod = module()
Limit = integer() >= 0
mod analysis list() = [mod analysis()]
mod analysis() =
{Mod :: module(),
ModCallCount :: integer() >= 0,
FuncAnalysislList :: func analysis list()}
func_analysis list() =
[{mfa(), FuncCallCount :: integer() >= 0}]

Collects and analysesthe call counters presently in the node for either module Mod, or for al modules (except cpr of
itself), and returns:

FuncAnal ysi sLi st

A list of tuples, one for each function in amodule, in decreasing FuncCal | Count order.
MbdCal | Count

The sum of FuncCal | Count valuesfor al functionsin module Mod.
Al'l Cal | Count

The sum of MbdCal | Count vauesfor all modules concerned in ModAnal ysi sLi st .
MbdAnal ysi sLi st

A list of tuples, one for each module except cpr of , in decreasing ModCal | Count order.

Ericsson AB. All Rights Reserved.: Tools | 39

cprof

If call countersaretill runningwhileanal yse/ 0. . 2 isexecuting, you might get aninconsistent result. Thishappens
if the process executing anal yse/ 0. . 2 gets scheduled out so some other process can increment the counters that
are being analysed, Calling pause() before analysing takes care of the problem.

If the Mod argument is given, the result contains a ModAnal ysi s tuple for module Mbd only, otherwise the result
contains one ModAnal ysi s tuple for all modules returned from code: al | _| oaded() except cpr of itself.

All functionswithaFuncCal | Count lower thanLi m t areexcluded from FuncAnal ysi sLi st . They are till
included in ModCal | Count , though. The default valuefor Li mi t is1.

pause() -> integer() >= 0

Pause call count tracing for all functionsin al modules and stop it for all functions in modules to be loaded. Thisis
thesameas(pause({' _',"' _',' _"})+stop({on_load})).

Seealsopause/ 1. . 3 below.

pause(FuncSpec) -> integer() >= 0
pause(Mod, Func) -> integer() >= 0
pause(Mod, Func, Arity) -> integer() >= 0
Types:
Mod = module()
Func = atom()
Arity = arity()
Pause call counters for matching functions in matching modules. The FS argument can be used to specify the first
argumenttoer | ang: trace_pattern/ 3.
The call counters for all matching functions that has got call count breakpoints are paused at their current count.

Return the number of matching functions that can have call count breakpoints, the sameasst art/ 0. . 3 with the
same arguments would have returned.

restart() -> integer() >= 0
restart(FuncSpec) -> integer() >= 0
restart(Mod, Func) -> integer() >= 0
restart(Mod, Func, Arity) -> integer() >= 0
Types.
Mod = module()
Func = atom()
Arity = arity()
Restart call counters for the matching functions in matching modules that are call count traced. The FS argument can
be used to specify thefirst argument toer | ang: trace_pattern/ 3.
The call counters for all matching functions that has got call count breakpoints are set to zero and running.

Return the number of matching functions that can have call count breakpoints, the sameasst art/ 0. . 3 with the
same arguments would have returned.

start() -> integer() >= 0

Start call count tracing for all functionsin all modules, and also for all functionsin modules to be loaded. Thisisthe
sameas(start({' _'," ',' '"})+start({on_load})).

40 | Ericsson AB. All Rights Reserved.: Tools

cprof

Seedsostart/ 1.. 3 below.

start(FuncSpec) -> integer() >= 0
start(Mod, Func) -> integer() >= 0
start(Mod, Func, Arity) -> integer() >= 0
Types:
Mod = module()
Func = atom()
Arity = arity()
Start call count tracing for matching functions in matching modules. The FS argument can be used to specify the first
argumenttoer | ang: t race_pattern/ 3, for exampleon_| oad.

Set call count breakpoints on the matching functions that has no call count breakpoints. Call counters are set to zero
and running for all matching functions.

Return the number of matching functions that has got call count breakpoints.

stop() -> integer() >= 0

Stop call count tracing for all functionsin all modules, and also for al functions in modules to be loaded. Thisisthe
sameas(stop({"_',"'_'," _"})+stop({on_l oad})).

Seealsost op/ 1. . 3 below.

stop(FuncSpec) -> integer() >= 0
stop(Mod, Func) -> integer() >= 0
stop(Mod, Func, Arity) -> integer() >= 0
Types.
Mod = module()
Func = atom()
Arity = arity()
Stop call count tracing for matching functions in matching modules. The FS argument can be used to specify the first
argumenttoer | ang: trace_pattern/ 3, for exampleon_| oad.

Remove call count breakpoints from the matching functions that has call count breakpoints.

Return the number of matching functions that can have call count breakpoints, the sameasst art/ 0. . 3 with the
same arguments would have returned.

See Also
eprof(3), fprof(3), erlang(3), User's Guide

Ericsson AB. All Rights Reserved.: Tools | 41

eprof

eprof

Erlang module

The module epr of provides a set of functions for time profiling of Erlang programs to find out how the execution
time is used. The profiling is done using the Erlang trace BIFs. Tracing of local function calls for a specified set of
processes is enabled when profiling is begun, and disabled when profiling is stopped.

When using Eprof, expect a slowdown in program execution.

Exports

start() -> {ok, Pid} | {error, Reason}
Types:
Pid = pid()
Reason = {already started, Pid}
Starts the Eprof server which holds the internal state of the collected data.

start profiling(Rootset) -> profiling | {error, Reason}
start profiling(Rootset, Pattern) -> profiling | {error, Reason}

start profiling(Rootset, Pattern, Options) ->
profiling | {error, Reason}

Types:
Rootset = [atom() | pid()]
Pattern = trace pattern mfa()
Options = [set on spawn | {set on spawn, boolean()}]
Reason = term()
trace pattern mfa() = {atom(), atom(), arity() | ' '}

Starts profiling for the processesin Root set (and any new processes spawned from them). Information about activity
in any profiled processis stored in the Eprof database.

Root set isalist of pidsand registered names.
The function returnspr of i | i ng if tracing could be enabled for all processesin Root set , or er r or otherwise.

A pattern can be selected to narrow the profiling. For instance a specific module can be selected, and only the code
executed in that module will be profiled.

Theset _on_spawn option will active call time tracing for all processes spawned by processes in the rootset. This
isthe default behaviour.

stop profiling() -> profiling stopped | profiling already stopped
Stops profiling started withst art _profiling/1orprofile/l.

42 | Ericsson AB. All Rights Reserved.: Tools

eprof

profile(Fun) -> {ok, Value} | {error, Reason}

profile(Fun, Options) -> {ok, Value} | {error, Reason}
profile(Rootset) -> profiling | {error, Reason}
profile(Rootset, Fun) -> {ok, Value} | {error, Reason}
profile(Rootset, Fun, Pattern) -> {ok, Value} | {error, Reason}

profile(Rootset, Module, Function, Args) ->
{ok, Value} | {error, Reason}

profile(Rootset, Fun, Pattern, Options) ->
{ok, Value} | {error, Reason}

profile(Rootset, Module, Function, Args, Pattern) ->
{ok, Value} | {error, Reason}

profile(Rootset, Module, Function, Args, Pattern, Options) ->
{ok, Value} | {error, Reason}

Types:
Rootset = [atom() | pid()]
Module = module()
Function = atom()
Args = [term()]
Pattern trace pattern mfa()
Options = [set on spawn | {set on spawn, boolean()}]
Value = Reason = term()
trace pattern mfa() = {atom(), atom(), arity() | ' '}

This function first spawns a process P which evaluates Fun() or appl y(Modul e, Functi on, Args) . Then, it
starts profiling for P and the processesin Root set (and any new processes spawned from them). Information about
activity in any profiled processis stored in the Eprof database.

Root set isalist of pidsand registered names.

If tracing could be enabled for P and al processes in Root set, the function returns { ok, Val ue} when
Fun() /appl y returns with the value Val ue, or {error, Reason} if Fun() /apply fails with exit reason
Reason. Otherwiseit returns{ error, Reason} immediately.

Theset _on_spawn option will active call timetracing for all processes spawned by processes in the rootset. This
isthe default behaviour.

The programmer must ensure that the function given as argument is truly synchronous and that no work continues
after the function has returned avalue.

analyze() -> ok | nothing to analyze
analyze(Type) -> ok | nothing to analyze
analyze(Type, Options) -> ok | nothing to analyze
Types.

Ericsson AB. All Rights Reserved.: Tools | 43

eprof

Type = analyze type()

Options = [Option]

Option = {filter, Filter} | {sort, Sort}

Filter = [{calls, integer() >= 0} | {time, float()}]
Sort = time | calls | mfa

analyze type() = procs | total

Call this function when profiling has been stopped to display the results per process, that is:

* how much time has been used by each process, and
» inwhich function calls this time has been spent.

Call anal yze witht ot al option when profiling has been stopped to display the results per function call, that isin
which function calls the time has been spent.

Timeis shown as percentage of total time and as absolute time.

log(File) -> ok
Types:
File = atom() | file:filename()
Thisfunction ensuresthat theresultsdisplayed by anal yze/ 0, 1, 2 areprinted both to thefileFi | e and the screen.

stop() -> stopped
Stops the Eprof server.

44 | Ericsson AB. All Rights Reserved.: Tools

erlang.el

erlang.el

Erlang module

Possibly the most important feature of an editor designed for programmers is the ability to indent a line of code in
accordancewith the structure of the programming language. The Erlang mode does, of course, providethisfeature. The
layout used is based on the common use of the language. The mode also providesthings as syntax highlighting, electric
commands, module name verification, comment support including paragraph filling, skeletons, tags support etc.

In the following descriptions the use of the word Point means: "Point can be seen as the position of the cursor. More
precisely, the point is the position between two characters while the cursor is drawn over the character following the
point".

Indent
The following command are directly available for indentation.

e TAB(erl ang-i ndent - conmrand) - Indents the current line of code.

e MG\ (i ndent -region) - Indentsal linesin the region.

e M1 (i ndent-for-comrent) - Insert acomment character to the right of the code on the line (if any).

Lines containing comment are indented differently depending on the number of %-characters used:

« Lineswith one %-character isindented to the right of the code. The column is specified by the variable
commrent - col umm, by default column 48 is used.

« Lineswith two %-characters will be indented to the same depth as code would have been in the same situation.

» Lineswith three of more %-characters are indented to the left margin.

e« GCoc Cq(erlang-indent-function)-Indentsthe current Erlang function.

e« Mx erlang-indent-clause RET
-Indent the current Erlang clause.

e Mx erlang-indent-current-buffer RET - Indenttheentirebuffer.

Edit - Fill Comment

When editing normal text in text mode you can let Emacs reformat the text by thefi | | - par agr aph command.
This command will not work for comments since it will treat the comment characters as words.

The Erlang editing mode provides a command that knows about the Erlang comment structure and can be used to fill
text paragraphs in comments. Ex:

This is just a very simple test to show
how the Erlang fill
paragraph command works.

a° o° o°
o® o° o°

Clearly, the text is badly formatted. Instead of formatting this paragraph line by line, let'stry erl ang-fill -
par agr aph by pressing M g. Theresult is:

[
)
)

"6

This is just a very simple test to show how the Erlang fill
paragraph command works.

o
%

Edit - Comment/Uncomment Region

C-c¢ G c will put comment characters at the beginning of all lines in a marked region. If you want to have two
comment charactersinstead of oneyoucandoC-u 2 G c Cc¢

Ericsson AB. All Rights Reserved.: Tools | 45

erlang.el

C- ¢ C- u will undo acomment-region command.

Edit - Moving the point

e« MGCa (erlang-beginning-of-function)-Movethepoint to the beginning of the current or
preceding Erlang function. With an numeric argument (ex C-u 2 M C- a) the function skips backwards over
this many Erlang functions. Should the argument be negative the point is moved to the beginning of afunction
below the current function.

e« GCoc Ma (erlang-begi nni ng-of - cl ause) - Asabove but move point to the beginning of the current
or preceding Erlang clause.

« MC e (erlang-end-of-function)-Movetotheend of the current or following Erlang function.
With an numeric argument (ex C-u 2 M C- e) the function skips backwards over this many Erlang functions.
Should the argument be negative the point is moved to the end of afunction below the current function.

e« GCc Me (erlang-end-of-clause)-Asabove but move point to the end of the current or following
Erlang clause.

Edit - Marking
« MCGC h(erlang-mar k- functi on) - Put the region around the current Erlang function. The point is placed
in the beginning and the mark at the end of the function.

e GCc Mh (erlang-nark-cl ause) Put the region around the current Erlang clause. The point is placed in
the beginning and the mark at the end of the function.

Edit - Function Header Commands

e« GCoc Cj (erl ang-generat e- new cl ause) - Create anew clause in the current Erlang function. The
point is placed between the parentheses of the argument list.

e GCc Cy(erlang-clone-argunents)- Copy the function arguments of the preceding Erlang clause.
This command is useful when defining a new clause with almost the same argument as the preceding.

Edit - Arrows
e« GCoc Caf(erlang-align-arrows)-alignsarrows after clausesinside aregion.

Example:

sum(L) -> sum(L, O).
sum([H|T], Sum) -> sum(T, Sum + H);

sum([], Sum) -> Sum.

becomes:

sum(L) -> sum(L, 0).
sum([H|T], Sum) -> sum(T, Sum + H);
sum([], Sum) -> Sum.

Syntax highlighting
The syntax highlighting can be activated from the Erlang menu. There are four different alternatives:

« Off: Normal black and white display.

» Level 1: Function headers, reserved words, comments, strings, quoted atoms, and character constants will be
colored.

* Level 2: The above, attributes, Erlang bif:s, guards, and words in comments enclosed in single quotes will be
colored.

46 | Ericsson AB. All Rights Reserved.: Tools

erlang.el

Level 3: The above, variables, records, and macros will be colored. (Thislevel is aso known as the Christmas
treelevel.)

Tags

For the tag commands to work it requires that you have generated a tag file. See Erlang mode users guide

M . (find-tag)- Find afunction definition. The default value is the function name under the point.

Find Tag (er | ang- f i nd- t ag) - Like the Elisp-function “find-tag'. Capable of retrieving Erlang modules.
Tags can be given on the forms “tag’, ‘'module:’, 'module:tag'.

M + (er | ang- f i nd- next - t ag) - Find the next occurrence of tag.

M TAB (er | ang- conpl et e-t ag) - Perform completion on the tag entered in a tag search. Completes to the
set of names listed in the current tagstable.

Tagsaprops (t ags- apr opos) - Display list of al tags in tags table REGEXP matches.
C-x t s (tags-search) - Search through all fileslisted in tags table for match for REGEXP. Stops when a
match is found.

Skeletons

A skeletonisapiece of pre-written codethat can beinsertedinto the buffer. Erlang mode comeswith a set of predefined
skeletons. The skeletons can be accessed either from the Erlang menu of from commandsnamedt enpo- t enpl at e-
erl ang- *, asthe skeletons is defined using the standard Emacs package "tempo". Here follows a brief description
of the available skeletons:

Simple skeletons: If, Case, Receive, Receive After, Receive Loop - Basic code constructs.

Header elements. Module, Author - These commandsinsert lines on the form - modul e(xxx) . and -
aut hor (' my@one') . . They can be used directly, but are al'so used as part of the full headers described
below.

Full Headers: Small (minimum requirement), Medium (with fields for basic information about the module), and
Large Header (medium header with some extra layout structure).

Small Server - skeleton for a simple server not using OTP.

Application - skeletons for the OTP application behavior

Supervisor - skeleton for the OTP supervisor behavior

Supervisor Bridge - skeleton for the OTP supervisor bridge behavior

gen_server - skeleton for the OTP gen_server behavior

gen_event - skeleton for the OTP gen_event behavior

gen_fsm - skeleton for the OTP gen_fsm behavior

gen_statem (StateName/3) - skeleton for the OTP gen_statem behavior using state name functions
gen_statem (handle_event/4) - skeleton for the OTP gen_statem behavior using one state function
Library module - skeleton for amodule that does not implement a process.

Corba callback - skeleton for a Corba callback module.

Erlang test suite - skeleton for a callback module for the erlang test server.

Shell

New shell (er | ang- shel |') - Startsanew Erlang shell.

C-c Gz, (erlang-shel | -di spl ay) - Displaysan Erlang shell, or starts anew one if thereis no shell
started.

Ericsson AB. All Rights Reserved.: Tools | 47

erlang.el

Compile

+ GCc Gk, (erlang-comnpil e) - Compilesthe Erlang modulein the current buffer. You can also use G- u
C- ¢ C k to debug compile the module with the debug options debug_i nf o andexport _al | .

e GCoc CI, (erlang-conpi |l e-di spl ay) - Display compilation output.

* GCu G x Start parsing the compiler output from the beginning. This command will place the point on the
line where the first error was found.

e GCx (erlang-next-error)-Movethe point on to the next error. The buffer displaying the compilation
errorswill be updated so that the current error will be visible.

Man

On unix you can view the manual pages in emacs. In order to find the manual pages, the variable “erlang-root-dir
should be bound to the name of the directory containing the Erlang installation. The name should not include the final
dash. Practically, you should add aline on the following form to your ~/.emacs,

(setq erlang-root-dir "/the/erlang/root/dir/goes/here")

Starting IMenu

e MXx inmenu-add-to-nmenubar RET - Thiscommand will create the IMenu menu containing all the
functionsin the current buffer.The command will ask you for a suitable name for the menu. Not supported by
Xemacs.

Version

e Mx erlang-version RET - Thiscommand displays the version number of the Erlang editing mode.
Remember to always supply the version number when asking questions about the Erlang mode.

48 | Ericsson AB. All Rights Reserved.: Tools

fprof

fprof

Erlang module

This module is used to profile aprogram to find out how the execution timeis used. Trace to file is used to minimize
runtime performance impact.

Thef pr of module usestracing to collect profiling data, hence thereisno need for special compilation of any module
to be profiled. When it starts tracing, f pr of will erase all previous tracing in the node and set the necessary trace
flags on the profiling target processes aswell aslocal call trace on all functionsin all loaded modules and all modules
to beloaded. f pr of erasesall tracing in the node when it stops tracing.

f pr of presents both own time i.e how much time afunction has used for its own execution, and accumulated time
i.eincluding called functions. All presented times are collected using trace timestamps. f pr of triesto collect cpu
time timestamps, if the host machine OS supports it. Therefore the times may be wallclock times and OS scheduling
will randomly strike all called functions in a presumably fair way.

If, however, the profiling time is short, and the host machine OS does not support high resolution cpu time
measurements, some few OS schedulings may show up as ridiculously long execution times for functions doing
practically nothing. An example of a function more or less just composing a tuple in about 100 times the normal
execution time has been seen, and when the tracing was repeated, the execution time became normal.

Profiling is essentially donein 3 steps:

1
Tracing; to file, as mentioned in the previous paragraph. The trace contains entries for function calls, returns to
function, process scheduling, other process related (spawn, etc) events, and garbage collection. All trace entries
are timestamped.

2
Profiling; the tracefile is read, the execution call stack is simulated, and raw profile datais calculated from the
simulated call stack and the trace timestamps. The profile datais stored in the f pr of server state. During this
step the trace data may be dumped in text format to file or console.

3

Analysing; the raw profile datais sorted, filtered and dumped in text format either to file or console. The text
format intended to be both readable for a human reader, as well as parsable with the standard erlang parsing
tools.

Since f pr of uses trace to file, the runtime performance degradation is minimized, but still far from negligible,
especially for programs that use the filesystem heavily by themselves. Where you place the tracefile is also important,
e.gon Solaris/ t np is usually a good choice since it is essentially a RAM disk, while any NFS (network) mounted
disk isabad idea

f pr of can also skip the file step and trace to atracer process that does the profiling in runtime.

Exports

start() -> {ok, Pid} | {error, {already started, Pid}}
Types:

Pid = pid()
Startsthe f pr of server.

Note that it seldom needs to be started explicitly since it is automatically started by the functions that need a running
server.

Ericsson AB. All Rights Reserved.: Tools | 49

fprof

stop() -> ok
Sameasst op(normal).

stop(Reason) -> ok
Types:

Reason = term()
Stopsthef pr of server.

The supplied Reason becomes the exit reason for the server process. Default Any Reason other than ki | | sends
arequest to the server and waits for it to clean up, reply and exit. If Reason iski | | , the server is bluntly killed.

If thef pr of serverisnot running, this function returns immediately with the same return value.

| When thef pr of server is stopped the collected raw profile dataislost. |

apply(Func, Args) -> term()

Types.
Func = function() | {Module :: module(),
Args = [term()]

Sameasappl y(Func, Args, []).

apply(Module, Function, Args) -> term()
Types:

Module = module()

Function = atom()

Args = [term()]

Sameasappl y({Mdul e, Function}, Args, []).

apply(Func, Args, OptionList) -> term()
Types:

50 | Ericsson AB. All Rights Reserved.: Tools

Function :: atom()}

fprof

Func function() | {Module :: module(), Function :: atom()}
Args [term()]
OptionList = [Option]
Option = apply option()
apply option() =
continue |
{procs, PidList :: [pid()]} |
start |
(TraceStartOption :: trace option())
trace option() =
cpu_time |
{cpu_time, boolean()} |
file |
{file, Filename :: file:filename()} |
{procs, PidSpec :: pid spec()} |
{procs, [PidSpec :: pid spec()1} |
start | stop |
{tracer, Tracer :: pid() | port()} |
verbose |
{verbose, boolean()}

pid spec() = pid() | atom()

Cdlserl ang: appl y(Func, Args) surroundedbytrace([start, ...]) ardtrace(stop).

Some effort is made to keep the trace clean from unnecessary trace messages; tracing is started and stopped from a
spawned process while the er | ang: appl y/ 2 cal is made in the current process, only surrounded by r ecei ve
and send statements towards the trace starting process. The trace starting process exits when not needed any more.

TheTraceSt art Opti on isany option allowed fort race/ 1. Theoptions[start, {procs, [self() |
PidList]} | OptlList] aregiventotrace/ 1, whereOpt Li st isOpti onLi st withconti nue,start
and{ procs, _} optionsremoved.

Thecont i nue option inhibitsthe call tot r ace(st op) and leavesit up to the caller to stop tracing at a suitable
time.

apply(Module, Function, Args, OptionList) -> term()
Types:

Ericsson AB. All Rights Reserved.: Tools | 51

fprof

Module = module()
Function = atom()
Args = [term()]
OptionList = [Option]
Option = apply option()
apply option() =
continue |
{procs, PidList :: [pid()]} |
start |
(TraceStartOption :: trace option())
trace option() =
cpu_time |
{cpu_time, boolean()} |
file |
{file, Filename :: file:filename()} |
{procs, PidSpec :: pid spec()} |
{procs, [PidSpec :: pid spec()1} |

start | stop |
{tracer, Tracer :: pid() | port()} |
verbose |

{verbose, boolean()}
pid spec() = pid() | atom()
Sameasappl y({ Modul e, Function}, Args, OptionList).
Opt i onLi st isanoption list allowed for appl y/ 3.

trace(OptionName :: start, Filename) ->
ok | {error, Reason} | {'EXIT', ServerPid, Reason}

Types.
Filename = file:filename()
ServerPid = pid()
Reason = term()

Sameastrace([start, {file, Filenane}]).

trace(OptionName :: verbose, Filename) ->
ok | {error, Reason} | {'EXIT', ServerPid, Reason}

Types.
Filename = file:filename()
ServerPid = pid()
Reason = term()
Sameastrace([start, verbose, {file, Filenane}]).

trace(OptionName, OptionValue) ->

ok | {error, Reason} | {'EXIT', ServerPid, Reason}
Types.

52 | Ericsson AB. All Rights Reserved.: Tools

fprof

OptionName = atom()

OptionValue = term()

ServerPid = pid()

Reason = term()
Sameastrace([{Opti onNanme, OptionVal ue}]).

trace(Option :: verbose) ->
ok | {error, Reason} | {'EXIT', ServerPid, Reason}

Types:

ServerPid = pid()

Reason = term()
Sameastrace([start, verbose]).

trace(OptionName) ->
ok | {error, Reason} | {'EXIT', ServerPid, Reason}

Types.
OptionName = atom()
ServerPid = pid()
Reason = term()

Sameast race([Opti onNane]).

trace(Option :: {OptionName, OptionValue}) ->
ok | {error, Reason} | {'EXIT', ServerPid, Reason}

Types.

OptionName = atom()

OptionValue = term()

ServerPid = pid()

Reason = term()
Sameastrace([{Opti onNanme, OptionVal ue}]).

trace(OptionList) ->
ok | {error, Reason} | {'EXIT', ServerPid, Reason}

Types:

Ericsson AB. All Rights Reserved.: Tools | 53

fprof

OptionList = [Option]
Option = trace option()
ServerPid = pid()
Reason = term()

trace option() =

cpu_time |

{cpu_time, boolean()} |

file |

{file, Filename :: file:filename()} |

{procs, PidSpec :: pid spec()} |
{procs, [PidSpec :: pid spec()1} |
start | stop |

{tracer, Tracer :: pid() | port()} |
verbose |

{verbose, boolean()}

pid spec() = pid() | atom()
Starts or stopstracing.

Pi dSpec and Tracer are used in callsto erl ang: trace(Pi dSpec, true, [{tracer, Tracer}
| Fl ags]), and Fil ename is used to call dbg:trace_port(file, Fi | enanme). Please see
erlang:trace/ 3anddbg: trace_port/ 2.

Option description:

st op
Stopsarunning f pr of trace and clearsall tracing from the node. Either option st op or st art must be
specified, but not both.
start
Clears al tracing from the node and startsanew f pr of trace. Either option st art or st op must be
specified, but not both.
ver bose |{verbose, bool ean()}
Theoptionsver bose or{ ver bose, true} addssometraceflagsthat f pr of does not need, but that may
be interesting for general debugging purposes. This option is only allowed with the st ar t option.
cpu_tinme|{cpu_tinme, boolean()}
Theoptionscpu_tinmeor{cpu_tine, true} makesthetimestampsin thetracebein CPU timeinstead
of wallclock time which isthe default. Thisoptionis only allowed with the st ar t option.

Getting correct values out of cpu_time can be difficult. The best way to get correct valuesis to run using a
single scheduler and bind that scheduler to a specific CPU,i.e.erl +S 1 +sbt db.

{procs, PidSpec} |{procs, [PidSpec]}
Specifies which processes that shall be traced. If thisoption is not given, the calling processis traced. All
processes spawned by the traced processes are also traced. This option is only allowed with the st ar t option.
filel[{file, Filenane}
Specifies the filename of the trace. If the option f i | e isgiven, or none of these options are given, the file
"fprof.trace" isused. Thisoptionisonly allowed with thest ar t option, but not withthe{t r acer,
Tracer} option.
{tracer, Tracer}
Specifies that trace to process or port shall be done instead of traceto file. Thisoption is only allowed with the
start option, but not withthe{fil e, Fil ename} option.

54 | Ericsson AB. All Rights Reserved.: Tools

fprof

profile() -> ok | {error, Reason} | {'EXIT', ServerPid, Reason}

Types.
ServerPid = pid()
Reason = term()
Sameasprofile([]).

profile(OptionName, OptionValue) ->
ok |
{ok, Tracer} |
{error, Reason} |
{'EXIT', ServerPid, Reason}

Types:
OptionName = atom()
OptionValue = term()
Tracer = ServerPid = pid()
Reason term()

Sameasprofil e([{Opti onNane, OptionVal ue}]).

profile(OptionName) ->
ok |
{ok, Tracer} |
{error, Reason} |
{'EXIT', ServerPid, Reason}
Types:
OptionName = atom()
Tracer = ServerPid = pid()
Reason term()

Sameasprofil e([Opti onNane]).

profile(Option :: {OptionName, OptionValue}) ->
ok |
{ok, Tracer} |
{error, Reason} |
{'EXIT', ServerPid, Reason}

Types.
OptionName = atom()
OptionValue = term()
Tracer = ServerPid = pid()
Reason term()

Sameasprofil e([{Opti onNane, OptionValue}]).

profile(OptionList) ->
ok |
{ok, Tracer} |
{error, Reason} |

Ericsson AB. All Rights Reserved.: Tools | 55

fprof

{'EXIT', ServerPid, Reason}
Types.
OptionList = [Option]

Option = profile option()
Tracer = ServerPid = pid()
Reason = term()

profile option() =
append | dump |
{dump, pid() | (Dump :: (Dumpfile :: file:filename() | [1))} |
file |
{file, Filename :: file:filename()} |
start | stop

Compilesatraceinto raw profile data held by thef pr of server.

Dunmpfile is used to cal file:open/2, and Fil enane is used to cal dbg:trace_port(file,
Fi | enanme) . Pleaseseefi | e: open/ 2 anddbg: trace_port/2

Option description:

filel|{file, Filenane}
Readsthefile Fi | enane and creates raw profile datathat is stored in RAM by the f pr of server. If the
optionfi | e isgiven, or none of these options are given, thefile" f pr of . t race" isread. The call will
return when the whole trace has been read with the return value ok if successful. This option is not allowed
withthest art or st op options.

dunp |{dunp, Dunp}
Specifies the destination for the trace text dump. If this option is not given, no dump is generated, if itisdunp
the destination will be the caller's group leader, otherwise the destination Dunp is either the pid of an I/O
deviceor afilename. And, finaly, if the filenameis[] -"f pr of . dunmp" isused instead. This option is not
allowed with the st op option.

append
Causes the trace text dump to be appended to the destination file. This option is only allowed with the { dunp,
Dunpfi |l e} option

start
Starts atracer process that profiles trace datain runtime. The call will return immediately with the return value
{ok, Tracer} if successful. Thisoptionisnot allowed withthest op,fileor{file, Filenane}
options.

st op
Stops the tracer process that profiles trace datain runtime. The return value will be value ok if successful. This
optionisnot allowed withthestart,fileor{fil e, Filenane} options.

analyse() -> ok | {error, Reason} | {'EXIT', ServerPid, Reason}
Types.

ServerPid = pid()

Reason = term()
Sameasanal yse([]).

analyse(OptionName, OptionValue) ->

ok | {error, Reason} | {'EXIT', ServerPid, Reason}
Types:

56 | Ericsson AB. All Rights Reserved.: Tools

fprof

OptionName = atom()

OptionValue = term()

ServerPid = pid()

Reason = term()
Sameasanal yse([{Opti onNane, OptionVal ue}]).

analyse(OptionName) ->
ok | {error, Reason} | {'EXIT', ServerPid, Reason}
Types:
OptionName = atom()
ServerPid = pid()
Reason = term()

Sameasanal yse([Opti onNane]) .

analyse(Option :: {OptionName, OptionValue}) ->
ok | {error, Reason} | {'EXIT', ServerPid, Reason}
Types:
OptionName = atom()
OptionValue = term()
ServerPid = pid()
Reason = term()

Sameasanal yse([{Opti onNane, OptionVal ue}]).

analyse(OptionList) ->
ok | {error, Reason} | {'EXIT', ServerPid, Reason}
Types.
OptionList = [Option]
Option = analyse option()
ServerPid = pid()
Reason = term()
analyse option() =
append | callers |
{callers, boolean()} |
{cols, Cols :: integer() >= 0} |
dest |
{dest, Dest :: pid() | (Destfile :: file:filename())} |
details |
{details, boolean()} |
no _callers | no _details |
{sort, SortSpec :: acc | own} |
totals |
{totals, boolean()}

Analyses raw profile data in the f pr of server. If called while there is no raw profile data available, { er r or,
no_profil e} isreturned.

Destfileisusedtocal fil e: open/2.

Ericsson AB. All Rights Reserved.: Tools | 57

fprof

Option description:

dest |{dest, Dest}
Specifies the destination for the analysis. If thisoptionis not given or it isdest , the destination will be the
caller's group leader, otherwise the destination Dest is either the pi d() of an I/O device or afilename. And,
finaly, if thefilenameis[] -"f prof . anal ysi s" isused instead.

append
Causes the analysis to be appended to the destination file. This option is only alowed with the { dest ,
Destfil e} option.

{col s, Col s}
Specifies the number of columnsin the analysis text. If this option is not given the number of columnsis set to
80.

callers|{callers, true}
Prints callers and called information in the analysis. This is the default.

{callers, false} |no_callers
Suppresses the printing of callers and called information in the analysis.

{sort, Sort Spec}
Specifiesif the analysis should be sorted according to the ACC column, which is the default, or the OWN
column. See Analysis Format below.

totals|{totals, true}
Includes a section containing call statistics for all calls regardless of process, in the analysis.

{totals, false}
Suppresses the totals section in the analysis, which is the default.

details|{details, true}
Prints call statistics for each processin the analysis. This is the default.

{details, false} |no_details
Suppresses the call statistics for each process from the analysis.

Analysis format
This section describes the output format of the analyse command. See analyse/0.

The format is parsable with the standard Erlang parsingtoolser| _scan ander| _parse,file:consult/1or
i 0: read/ 2. The parseformat is not explained here - it should be easy for the interested to try it out. Note that some
flagsto anal yse/ 1 will affect the format.

Thefollowing example wasrun on OTP/R8 on Solaris 8, all OTPinternalsin this example are very version dependent.

Asan example, we will use the following function, that you may recognise as a dightly modified benchmark function
from the manpage file(3):

58 | Ericsson AB. All Rights Reserved.: Tools

fprof

-module(foo).
-export([create file slow/2]).

create file slow(Name, N) when is integer(N), N >= 0 ->
{ok, FD} =
file:open(Name, [raw, write, delayed write, binaryl]),
if N > 256 ->
ok = file:write(FD,
lists:map(fun (X) -> <<X:32/unsigned>> end,
lists:seq(0, 255))),

ok = create file slow(FD, 256, N);
true ->
ok = create file slow(FD, 0, N)

end,
ok = file:close(FD).

create file slow(FD, M, M) ->
ok;

create file slow(FD, M, N) ->
ok = file:write(FD, <<M:32/unsigned>>),
create file slow(FD, M+1, N).

Let us have alook at the printout after running:

1> fprof:apply(foo, create file slow, [junk, 1024]).
2> fprof:profile().
3> fprof:analyse().

The printout starts with:

%% Analysis results:
{ analysis options,
[{callers, true},

{sort, acc},
{totals, false},
{details, true}l}.

% CNT ACC OWN
[{ totals, 9627, 1691.119, 1659.074}]1. 9%%%

The CNT column shows the total number of function calls that was found in the trace. In the ACC column isthe total
time of the trace from first timestamp to last. And in the OWN column is the sum of the execution time in functions
found in the trace, not including called functions. In this caseit is very close to the ACC time since the emulator had
practically nothing else to do than to execute our test program.

All time values in the printout are in milliseconds.

The printout continues:

% CNT ACC OWN
[{ "<0.28.0>", 9627,undefined, 1659.074}]. %%

Thisisthe printout header of one process. The printout contains only thisone processsincewedidf pr of : appl y/ 3
which traces only the current process. Therefore the CNT and OWN columns perfectly matches the totals above. The
ACC column is undefined since summing the ACC times of all calls in the process makes no sense - you would get
something like the ACC value from totals above multiplied by the average depth of the call stack, or something.

All paragraphs up to the next process header only concerns function calls within this process.

Now we come to something more interesting:

Ericsson AB. All Rights Reserved.: Tools | 59

fprof

{[{undefined, 0, 1691.076, 0.030}],

{ {fprof,apply start stop,4}, 0, 1691.076, 0.030}, %
[{{foo,create file slow,2}, 1, 1691.046, 0.103},
{suspend, 1, 0.000, 0.000}1}.

{[{{fprof,apply start stop,4}, 1, 1691.046, 0.103}],

{ {foo,create file slow,2}, 1, 1691.046, 0.103}, %
[{{file,close, 1}, 1, 1398.873, 0.019},
{{foo,create file slow,3}, 1, 249.678, 0.029},
{{file,open,2}, 1, 20.778, 0.055}%,
{{lists,map,2}, 1, 16.590, 0.043},
{{lists,seq, 2}, 1, 4.708, 0.017},
{{file,write, 2}, 1, 0.316, 0.021}1}.

The printout consists of one paragraph per called function. The function marked with '%' is the one the paragraph
concerns - f oo: create_fil e_sl ow 2. Above the marked function are the calling functions - those that has
called the marked, and below are those called by the marked function.

The paragraphs are per default sorted in decreasing order of the ACC column for the marked function. The calling list
and called list within one paragraph are also per default sorted in decreasing order of their ACC column.

The columns are: CNT - the number of times the function has been called, ACC - the time spent in the function
including called functions, and OWN - the time spent in the function not including called functions.

Therowsfor the calling functions contain statistics for the mar ked function with the constraint that only the occasions
when acall was made from the row's function to the mar ked function are accounted for.

The row for the marked function ssmply contains the sum of all calling rows.

Therows for the called functions contains statistics for the row's function with the constraint that only the occasions
when acall was made from the marked to the row's function are accounted for.

So, weseethat f oo: create fil e sl ow 2 used very little time for its own execution. It spent most of itstime
infile:closel/l. Thefunctionf oo: create fil e_sl ow 3 that writes 3/4 of the file contents is the second
biggest time thief.

Wealso seethat thecall tofi |l e: write/ 2 that writes 1/4 of the file contents takes very little time in itself. What
takestimeisto buildthedata(l i sts: seq/2andl i sts: map/ 2).

The function 'undefined' that has called f pr of : appl y_start _st op/ 4 isan unknown function because that call
wasnot recordedinthetrace. It wasonly recorded that the execution returned fromf pr of : appl y_start _stop/ 4
to some other function above in the call stack, or that the process exited from there.

Let us continue down the printout to find:

{[{{foo,create file slow,2}, 1, 249.678, 0.029},
{{foo,create file slow,3}, 768, 0.000, 23.294}1,

{ {foo,create file slow,3}, 769, 249.678, 23.323}, %
[{{file,write,2}, 768, 220.314, 14.539},
{suspend, 57, 6.041, 0.000},
{{foo,create file slow,3}, 768, 0.000, 23.294}1%}.

If you compare with the code you will see there also that foo: create fil e sl ow 3 was called only
from foo: create_fil e_sl ow 2 and itself, and called only fil e: write/ 2, note the number of cals to
file:witel/2. Buthereweseethat suspend wascalled afew times. Thisisapseudo function that indicates that
the process was suspended while executing in f oo: create_fil e_sl ow 3, and sincethereisnor ecei ve or
erl ang: yi el d/ 0 inthe code, it must be Erlang scheduling suspensions, or the trace file driver compensating for
large file write operations (these are regarded as a schedule out followed by a schedule in to the same process).

Let usfind thesuspend entry:

60 | Ericsson AB. All Rights Reserved.: Tools

fprof

{[{{file,write,2}, 53, 6.281, 0.000},
{{foo,create file slow,3}, 57, 6.041, 0.000},
{{prim_file,drv_command,4}, 50, 4.582, 0.000},
{{prim file,drv_get response,1}, 34, 2.986, 0.000},
{{lists,map, 2}, 10, 2.104, 0.000},
{{prim file,write,2}, 17, 1.852, 0.000},
{{erlang,port command,2}, 15, 1.713, 0.000},
{{prim_file,drv_command,?2}, 22, 1.482, 0.000},
{{prim_file, translate response,2}, 11, 1.441, 0.000},
{{prim _file,'-drv_command/2-fun-0-',1}, 15, 1.340, 0.000},
{{lists,seq, 4}, 3, 0.880, 0.000},
{{foo, '-create file slow/2-fun-0-',1}, 5, 0.523, 0.000},
{{erlang,bump reductions,1}, 4, 0.503, 0.000},
{{prim file,open int setopts,3}, 1, 0.165, 0.000},
{{prim file,i32,4}, 1, 0.109, 0.000},
{{fprof,apply start stop,4}, 1, 0.000, 0.000}],

{ suspend, 299, 32.002, 0.000}, %

[13.

We find no particularly long suspend times, so no function seems to have waited in a receive statement. Actually,
primfile:drv_conmand/ 4 containsareceive statement, but in thistest program, the messageliesin the process
receive buffer when the receive statement is entered. We also see that the total suspend time for the test run is small.

The suspend pseudo function has got an OWN time of zero. Thisisto prevent the process total OWN time from
including time in suspension. Whether suspend timeisreally ACC or OWN time is more of a philosophical question.

Now we look at another interesting pseudo function, gar bage_col | ect:

{[{{prim file,drv_command,4}, 25, 0.873, 0.873},
{{prim file,write,2}, 16, 0.692, 0.692},
{{lists,map, 2}, 2, 0.195, 0.195}1],

{ garbage collect, 43, 1.760, 1.760}, %

[13.

Here we see that no function distinguishes itself considerably, which isvery normal.

The gar bage_col | ect pseudo function has not got an OWN time of zero like suspend, instead it is equa to
the ACC time.

Garbage collect often occurs while a processis suspended, but f pr of hidesthisfact by pretending that the suspended
function was first unsuspended and then garbage collected. Otherwise the printout would show gar bage_col | ect
being called from suspend but not which function that might have caused the garbage collection.

Let us now get back to the test code:

{[{{foo,create file slow,3}, 768, 220.314, 14.539},
{{foo,create file slow,2}, 1, 0.316, 0.021}1],

{ {file,write,?2}, 769, 220.630, 14.560}, %
[{{prim file,write,2}, 769, 199.789, 22.573},
{suspend, 53, 6.281, 0.000}]1}.

Not unexpectedly, we see that file:wite/2 was cadled from foo:create_file_slow 3 and
foo:create_fil e_sl ow 2. Thenumber of callsin each case as well asthe used time are also just confirms the
previous results.

Weseethatfile:wite/2onlycalsprimfile:wite/2,butletusrefrain from digging into the internals
of the kernel application.

But, if we nevertheless do dig down we find the call to the linked in driver that does the file operations towards the
host operating system:

Ericsson AB. All Rights Reserved.: Tools | 61

fprof

{[{{prim _file,drv_command,4}, 772, 1458.356, 1456.643}],
{ {erlang,port command,?2}, 772, 1458.356, 1456.643}, %
[{suspend, 15, 1.713, 0.000}]1}.

Thisis 86 % of the total run time, and as we saw before it is the close operation the absolutely biggest contributor.
We find a comparison ratio alittle bit up in the call stack:

{[{{prim_file,close,1}, 1, 1398.748, 0.024},
{{prim_file,write,2}, 769, 174.672, 12.810},
{{prim file,open int,4}, 1, 19.755, 0.017},
{{prim file,open int setopts,3}, 1, 0.147, 0.016}],

{ {prim_file,drv_command, 2}, 772, 1593.322, 12.867}, %
[{{prim file,drv_command,4}, 772, 1578.973, 27.265},
{suspend, 22, 1.482, 0.000}]1}.

Thetimefor file operationsin the linked in driver distributesitself as 1 % for open, 11 % for write and 87 % for close.
All datais probably buffered in the operating system until the close.

The unsleeping reader may notice that the ACC times for primfile:drv_comand/2 and
primfile:drv_conmand/ 4 isnot equal between the paragraphs above, even though it is easy to believe that
primfile:drv_conmmand/ 2 isjust apassthrough function.

The missing time can be found inthe paragraphforpri m fi | e: drv_command/ 4 whereit isevident that not only
primfile:drv_conmmand/ 2 iscalled but alsoafun:

{[{{prim file,drv_command,2}, 772, 1578.973, 27.265}1,

{ {prim_file,drv_command,b4}, 772, 1578.973, 27.265}, %
[{{erlang,port command,?2}, 772, 1458.356, 1456.643},
{{prim_file,'-drv_command/2-fun-0-',1}, 772, 87.897, 12.736},
{suspend, 50, 4.582, 0.000},
{garbage collect, 25, 0.873, 0.873}1}.

And some more missing time can be explained by the fact that primfile: open_int/4 both cals
primfile:drv_comrand/ 2 directly as well as through pri m fil e: open_i nt_setopts/ 3, which
complicates the picture.

{[{{prim file,open,2}, 1, 20.309, 0.029},
{{prim file,open int,4}, 1, 0.000, 0.057}1,

{ {prim_file,open int,4}, 2, 20.309, 0.086}, %
[{{prim file,drv_command,?2}, 1, 19.755, 0.017},
{{prim file,open int setopts,3}, 1, 0.360, 0.032},
{{prim file,drv_open,2}, 1, 0.071, 0.030},
{{erlang,list to binary,1}, 1, 0.020, 0.020},
{{prim file,i32,1}, 1, 0.017, 0.017},
{{prim file,open int,4}, 1, 0.000, 0.057}1}.

{[{{prim file,open int,4}, 1, 0.360, 0.032},
{{prim file,open int setopts,3}, 1, 0.000, 0.016}],

{ {prim_file,open_int setopts,3}, 2, 0.360, 0.048}, %
[{suspend, 1, 0.165, 0.000},
{{prim file,drv_command,2}, 1, 0.147, 0.016},
{{prim file,open int setopts,3}, 1, 0.000, 0.016}1}.

62 | Ericsson AB. All Rights Reserved.: Tools

fprof

Notes

The actual supervision of execution timesisin itself a CPU intensive activity. A message is written on the trace file
for every function call that is made by the profiled code.

The ACC time calculation is sometimes difficult to make correct, sinceit is difficult to define. This happens especially
when a function occurs in several instances in the call stack, for example by calling itself perhaps through other
functions and perhaps even non-tail recursively.

To produce sensibleresults, f pr of triesnot to charge any function morethan oncefor ACC time. Theinstance highest
up (with longest duration) in the call stack is chosen.

Sometimes a function may unexpectedly waste a lot (some 10 ms or more depending on host machine OS) of OWN
(and ACC) time, even functions that do practically nothing at all. The problem may be that the OS has chosen to
schedule out the Erlang runtime system process for awhile, and if the OS does not support high resolution cpu time
measurementsf pr of will usewallclock timefor itscalculations, and it will appear asfunctionsrandomly burn virtual
machine time.

See Also
dbg(3), eprof(3), erlang(3), io(3), Tools User's Guide

Ericsson AB. All Rights Reserved.: Tools | 63

lcnt

lcnt

Erlang module

The | cnt module is used to profile the internal ethread locks in the Erlang Runtime System. With | cnt enabled,
internal counters in the runtime system are updated each time alock is taken. The counters stores information about
the number of acquisition triesand the number of collisionsthat has occurred during the acquisition tries. The counters
also record the waiting time alock has caused for a blocked thread when a collision has occurred.

The data produced by the lock counters will give an estimate on how well the runtime system will behave from a
parallelizable view point for the scenarios tested. This tool was mainly developed to help Erlang runtime devel opers
iron out potential and generic bottlenecks.

Locksinthe emulator are named after what type of resource they protect and where in the emulator they areinitialized,
those arelock 'classes. Most of thoselocks are also instantiated several times, and given unique identifiers, to increase
locking granularity. Typically an instantiated lock protects a digunct set of the resource, for example ets tables,
processes or ports. In other cases it protects a specific range of a resource, for example pi x_I| ock which protects
index to process mappings, and is given a unique number within the class. A unique lock in| cnt is referenced by
aname (class) and an identifier: { Narre, 1d}.

Some locks in the system are static and protects global resources, for example bi f _ti mer s and ther un_queue
locks. Other locks are dynamic and not necessarily long lived, for example process locks and ets-table locks.
The statistics data from short lived locks can be stored separately when the locks are deleted. This behavior is
by default turned off to save memory but can be turned on vial cnt: rt _opt ({copy_save, true}). The
| cnt: appl y/ 1, 2, 3 functions enables this behavior during profiling.

Exports

start() -> {ok, Pid} | {error, {already started, Pid}}
Types.
Pid = pid()

Startsthe lock profiler server. The server only act as amedium for the user and performs filtering and printing of data
collectedby | cnt: col | ect/ 1.

stop() -> ok
Stops the lock profiler server.

collect() -> ok
Sameascol | ect (node()).

collect(Node) -> ok
Types:
Node = node()

Collectslock statisticsfrom the runtime system. The function startsaserver if it isnot already started. It then popul ates
the server with lock statistics. If the server held any lock statistics data before the collect then that datais lost.

clear() -> ok
Sameascl ear (node()) .

64 | Ericsson AB. All Rights Reserved.: Tools

lent

clear(Node) -> ok
Types.
Node = node()

Clears the internal lock statistics from the runtime system. This does not clear the data on the server only on runtime
system. All counters for static locks are zeroed, al dynamic locks currently alive are zeroed and all saved locks now
destroyed are removed. It also resets the duration timer.

conflicts() -> ok
Sameasconflicts([]).

conflicts(Options) -> ok

Types:

Options = [option()]

option() =
{sort, Sort :: sort()} |
{reverse, boolean()} |
{locations, boolean()} |
{thresholds, Thresholds :: [threshold()]1} |
{print,

PrintOptions :: [print() | {print(), integer() >= 0}1} |
{max_locks, MaxLocks :: integer() >= 0 | none} |
{combine, boolean()}

print() =
colls | duration | entry | id | name | ratio | time | tries |
type
sort() =
colls | entry | id | name | ratio | time | tries | type
threshold() =

{colls, integer() >= 0} |
{time, integer() >= 0} |
{tries, integer() >= 0}

Printsalist of internal locks and its statistics.
For option description, seel cnt : i nspect/ 2.

locations() -> ok
Sameas| ocations([]).

locations(Options) -> ok
Types:

Ericsson AB. All Rights Reserved.: Tools | 65

lcnt

Options = [option()]
option() =
{sort, Sort :: sort()} |
{reverse, boolean()} |
{locations, boolean()} |
{thresholds, Thresholds :: [threshold()]} |

{print,
PrintOptions :: [print() | {print(), integer() >= 0}]} |
{max_locks, MaxLocks :: integer() >= 0 | none} |
{combine, boolean()}
print() =
colls | duration | entry | id | name | ratio | time | tries |
type
sort() =
colls | entry | id | name | ratio | time | tries | type
threshold() =

{colls, integer() >= 0} |
{time, integer() >= 0} |
{tries, integer() >= 0}

Printsalist of internal lock counters by source code locations.

For option description, seel cnt : i nspect/ 2.

inspect(Lock) -> ok
Types:
Lock = Name | {Name, Id | [Id]}
Name = atom() | pid() | port()
Id = atom() | integer() | pid() | port()

Sameasi nspect (Lock, []).

inspect(Lock, Options) -> ok
Types:

66 | Ericsson AB. All Rights Reserved.: Tools

lent

Lock = Name | {Name, Id | [Id]}
Name = atom() | pid() | port()
Id = atom() | integer() | pid() | port()
Options = [option()]
option() =
{sort, Sort :: sort()} |
{reverse, boolean()} |

{locations, boolean()} |
{thresholds, Thresholds :: [threshold()]} |

{print,
PrintOptions :: [print() | {print(), integer() >= 0}]} |
{max_locks, MaxLocks :: integer() >= 0 | none} |
{combine, boolean()}
print() =
colls | duration | entry | id | name | ratio | time | tries |
type
sort() =
colls | entry | id | name | ratio | time | tries | type
threshold() =

{colls, integer() >= 0} |
{time, integer() >= 0} |
{tries, integer() >= 0}

Printsalist of internal lock counters for a specific lock.

Lock Nane and | d for ports and processes are interchangeable with theuse of | cnt : swap_pi d_keys/ 0 andis
the reason why pi d() and port () optionscan be used in both Nane and | d space. Both pids and ports are special
identifiers with stripped creation and can be recreated with| cnt : pi d/ 2, 3andl cnt: port/1, 2.

Option description:

{combi ne, bool ean()}
Combine the statistics from different instances of alock class.
Default: t r ue
{l ocations, boolean()}
Print the statistics by source file and line numbers.
Default: f al se
{max_| ocks, MaxLocks}
Maximum number of locks printed or no limit with none.
Default: 20
{print, PrintOptions}
Printing options:
name
Named lock or named set of locks (classes). The same name used for initializing the lock in the VM.
id
Internal id for set of locks, not always unique. This could be table name for etstables (db_tab), port id for
ports, integer identifiers for allocators, etc.
type
Typeof lock: r w_mut ex, mut ex, spi nl ock, rw_spi nl ock or procl ock
entry
In combination with{| ocat i ons, true} thisoption printsthelock operations sourcefile and line
number entry-points along with statistics for each entry.

Ericsson AB. All Rights Reserved.: Tools | 67

lcnt

tries
Number of acquisitions of thislock.
colls
Number of collisions when athread tried to acquire thislock. Thisiswhen atrylock is EBUSY, awrite
try on read held rw_lock, atry read on write held rw_lock, athread tries to lock an aready locked lock.
(Internal states supervisesthis).
ratio
The ratio between the number of collisions and the number of tries (acquisitions) in percentage.
time
Accumulated waiting time for this lock. This could be greater than actual wall clock time, itis
accumulated for all threads. Trylock conflicts does not accumulate time.
duration
Percentage of accumulated waiting time of wall clock time. This percentage can be higher than 100%
since accumulated timeisfrom all threads.
Default: [nanme, id, tries,colls,ratio,tine,duration]
{reverse, bool ean()}
Reverses the order of sorting.
Default: f al se
{sort, Sort}
Column sorting orders.
Default: ti me
{t hreshol ds, Threshol ds}
Filtering thresholds. Anything values above the threshold value are passed through.
Default: [{tries, 0}, {colls, 0}, {tinme, 0}]

information() -> ok
Prints lcnt server state and generic information about collected lock statistics.

swap pid keys() -> ok
Swaps places on Nane and | d space for ports and processes.

load(Filename) -> ok
Types:

Filename = file:filename()
Restores previously saved datato the server.

save(Filename) -> ok
Types:

Filename = file:filename()
Saves the collected datato file.

The following functions are used for convenience.

Exports

apply(Fun) -> term()
Types:

68 | Ericsson AB. All Rights Reserved.: Tools

lent

Fun = function()
Sameasappl y(Fun, []).

apply(Fun, Args) -> term()
Types:
Fun = function()
Args = [term()]
Clears the lock counters and then setups the instrumentation to save all destroyed locks. After setup the function is
called, passing the elementsin Ar gs as arguments. When the function returns the statistics areimmediately collected

to the server. After the collection the instrumentation is returned to its previous behavior. The result of the applied
function is returned.

This function should only be used for micro-benchmarks; it setscopy_save tot r ue for the duration of the call,
which can quickly lead to running out of memory.

apply(Module, Function, Args) -> term()
Types:
Module = module()
Function = atom()
Args = [term()]
Sameasappl y(fun() -> erlang: appl y(Mddul e, Function, Args) end).

pid(Id, Serial) -> pid()
Types:
Id = Serial = integer()

Sameaspi d(node(), Id, Serial).

pid(Node, Id, Serial) -> pid()
Types.

Node = node()

Id = Serial = integer()

Creates aprocess id with creation 0.
port(Id) -> port()
Types:

Id = integer()
Sameasport (node(), 1d).

port(Node, Id) -> port()
Types:

Ericsson AB. All Rights Reserved.: Tools | 69

lcnt

Node = node()
Id = integer()
Creates a port id with creation 0.
The following functions control the behavior of the internal counters.

Exports

rt collect() -> [lock counter data()]
Types:

lock counter data() = term()
Sameasrt_col | ect (node()).

rt collect(Node) -> [lock counter data()]
Types:

Node = node()

lock counter data() = term()

Returns alist of raw lock counter data.

rt clear() -> ok
Sameasrt _cl ear (node()).

rt clear(Node) -> ok
Types:
Node = node()
Clear theinterna counters. Same as| cnt : cl ear (Node) .

rt mask() -> [category atom()]
Types:

category atom() = atom()
Sameasrt _mask(node()).

rt mask(Node) -> [category atom()]
Types:

Node = node()

category atom() = atom()

Refer tort _nmask/ 2. for alist of valid categories. All categories are enabled by default.

rt mask(Categories) -> ok | {error, copy save enabled}
Types:

Categories = [category atom()]

category atom() = atom()

Sameasrt _mask(node(), Categories).

70 | Ericsson AB. All Rights Reserved.: Tools

lent

rt mask(Node, Categories) -> ok | {error, copy save enabled}
Types:
Node = node()
Categories = [category atom()]
category atom() = atom()
Sets the lock category mask to the given categories.
Thiswill fail if thecopy_save optionisenabled; seel cnt: rt_opt/ 2.
Valid categories are:

« allocator

e db (ETStables)

e debug

e distribution
e generic

e io

e process

e schedul er

Thislist is subject to change at any time, asis the category any given lock may belong to.

rt opt(Option) -> boolean()
Types:
Option = {Type, Value :: boolean()}
Type = copy save | process locks
Sameasrt _opt (node(), {Type, Value}).

rt opt(Node, Option) -> boolean()
Types:

Node = node()

Option = {Type, Value :: boolean()}

Type = copy save | process locks
Option description:

{copy_save, bool ean()}
Retains the statistics of destroyed locks.
Default: f al se

This option will use alot of memory when enabled, which must be reclaimed with| cnt : rt _cl ear . Note
that it makes no distinction between locks that were destroyed and locks for which counting was disabled, so

enabling this option will disable changes to the lock category mask.

{process_| ocks, bool ean()}

Profile process locks, equal to adding pr ocess to the lock category mask; seel cnt: rt _mask/ 2

Default: t r ue

Ericsson AB. All Rights Reserved.: Tools | 71

lcnt

See Also
LCNT User's Guide

72 | Ericsson AB. All Rights Reserved.: Tools

make

make

Erlang module

The module make provides a set of functions similar to the UNIX type Make functions.

Exports

all() -> up to date | error
all(Options) -> up to date | error
Types:
Options = [Option]
Option =
noexec | load | netload | {emake, Emake} | compile:option()
Emake = [EmakeElement]
EmakeElement = Modules | {Modules, [compile:option()]}
Modules = atom() | [atom()]
This function determines the set of modulesto compile and the compile optionsto use, by first looking for the emak e

make option, if not present reads the configuration from a file named Enakefi | e (see below). If no such fileis
found, the set of modules to compile defaults to al modulesin the current working directory.

Traversing the set of modules, it then recompiles every modulefor which at |east one of the following conditions apply:

« thereisno object file, or
» the source file has been modified since it was last compiled, or,
« aninclude file has been modified since the source file was last compiled.

As aside effect, the function prints the name of each module it tries to compile. If compilation fails for amodule, the
make procedure stops and er r or isreturned.

Opt i ons isalist of make- and compiler options. The following make options exist:

* noexec
No execution mode. Just prints the name of each module that needs to be compiled.
+ |oad

Load mode. Loads all recompiled modules.

« netload
Net load mode. Loads al recompiled modules on all known nodes.

e {enmake, Enake}
Rather than reading the Emmakef i | e specify configuration explicitly.

All items in Opti ons that are not make options are assumed to be compiler options and are passed as-is to
conpile:filel2.Options defaultsto[] .

files(ModFiles) -> up to date | error

files(ModFiles, Options) -> up to date | error
Types.

Ericsson AB. All Rights Reserved.: Tools | 73

make

ModFiles = [(Module :: module()) | (File :: file:filename())]
Options = [Option]
Option = noexec | load | netload | compile:option()

files/ 1, 2 doesexactly thesamethingasal | / 0, 1 but for the specified ModFi | es, which isalist of module
or file names. Thefile extension . er | may be omitted.

The Emakefi | e (if it exists) in the current directory is searched for compiler options for each module. If a given
module does not exist in Emakef i | e or if Enakef i | e doesnot exist, the moduleis still compiled.

Emakefile
nmake: al | /0, 1andmake: fil es/ 1, 2 firstlooksfor { emake, Enmke} inoptions, theninthe current working
directory for afile named Emakef i | e. If present Enake should contain elementslike this:

Modules.
{Modules,Options}.

Modul es isan atom or alist of atoms. It can be

 amodulename eg.fil el

e amodule namein ancther directory,e.g.' . ./ foo/fil e3'

* aset of modules specified with awildcards, eg.' fi | e*'

e awildcard indicating all modulesin current directory, i.e.’ *'

* alistof any of theabove,eg.['file*','../foo/file3 ,'Filed']
Opt i ons isalist of compiler options.

Emakef i | e isread fromtop to bottom. If amodule matches morethan oneentry, thefirst matchisvalid. For example,
the following Emakefi | € means that fi | el shall be compiled with the options [debug_info, {i,"../
fo0o0"}],whileadl other filesin the current directory shall be compiled with only thedebug_i nf o flag.

{'filel', [debug info,{i,"../fo0"}]}.
{'*',[debug info]}.

See Also
conpi |l e(3)

74 | Ericsson AB. All Rights Reserved.: Tools

tags

tags

Erlang module

A TAGS fileisused by Emacsto find function and variable definitionsin any sourcefilein large projects. Thismodule
can generate a TAGS file from Erlang source files. It recognises functions, records, and macro definitions.

Exports

file(File) -> ok | error
file(File, Options) -> ok | error
Types:

File = file:filename()

Options = [option()]

option() =
{outfile, NameOfTAGSFile :: file:filename()} |
{outdir, NameOfDirectory :: file:filename()}

Create a TAGS filefor thefileFi | e.

files(FileList) -> ok | error
files(FileList, Options) -> ok | error
Types:
FileList = [file:filename()]
Options = [option()]

option() =
{outfile, NameOfTAGSFile :: file:filename()} |
{outdir, NameOfDirectory :: file:filename()}
Create aTAGSfilefor thefilesinthelist Fi | eLi st .
dir(Dir) -> ok | error
dir(Dir, Options) -> ok | error
Types:
Dir = file:filename()
Options = [option()]
option() =
{outfile, NameOfTAGSFile :: file:filename()} |
{outdir, NameOfDirectory :: file:filename()}

Create a TAGSfilefor al filesin directory Di r .
dirs(DirList) -> ok | error

dirs(DirList, Options) -> ok | error
Types:

Ericsson AB. All Rights Reserved.: Tools | 75

tags

DirList = [file:filename()]
Options = [option()]

option() =
{outfile, NameOfTAGSFile :: file:filename()} |
{outdir, NameOfDirectory :: file:filename()}
Create a TAGSfilefor al filesin any directory inDi r Li st .
subdir(Dir) -> ok | error
subdir(Dir, Options) -> ok | error
Types:
Dir = file:filename()
Options = [option()]
option() =
{outfile, NameOfTAGSFile :: file:filename()} |
{outdir, NameOfDirectory :: file:filename()}

Descend recursively down the directory Di r and create a TAGS file based on dl files found.

subdirs(DirList) -> ok | error
subdirs(DirList, Options) -> ok | error
Types:

DirList = [file:filename()]

Options = [option()]

option() =
{outfile, NameOfTAGSFile :: file:filename()} |
{outdir, NameOfDirectory :: file:filename()}

Descend recursively down all the directoriesin Di r Li st and create a TAGS file based on al files found.

root() -> ok | error
root(Options) -> ok | error

Types:
Options = [option()]
option() =
{outfile, NameOfTAGSFile :: file:filename()} |
{outdir, NameOfDirectory :: file:filename()}
Create a TAGS file covering al filesin the Erlang distribution.
OPTIONS

The functions above have an optional argument, Opt i ons. Itisalist which can contain the following elements:

e {outfile, NanmeOf TAGSFi | e} Create a TAGS file named NameOf TAGSFi | e.
e {outdir, NaneOf D rectory} Createafile named TAGS inthedirectory NaneCf Di r ect ory.

The default behaviour isto create afile named TAGS in the current directory.

76 | Ericsson AB. All Rights Reserved.: Tools

tags

Examples

tags:root([{outfile, "root.TAGS"'}]).

This command will create afile named r oot . TAGS in the current directory. The file will contain references to
all Erlang source filesin the Erlang distribution.
tags:files(["foo.erl", "bar.erl", "baz.erl"], [{outdir, "../projectdir"}]).

Herewe createfilenamed TAGS placed itinthedirectory . . / pr oj ect di r . Thefile containsinformation about
the functions, records, and macro definitions of the threefiles.

SEE ALSO

Richard M. Stallman. GNU Emacs Manual, chapter "Editing Programs’, section "Tag Tables". Free Software
Foundation, 1995.

Anders Lindgren. The Erlang editing mode for Emacs. Ericsson, 1998.

Ericsson AB. All Rights Reserved.: Tools | 77

xref

xref

Erlang module

Xref isacross reference tool that can be used for finding dependencies between functions, modules, applications and
releases.

Calls between functions are either local calls like f (), or external calls like m f () . Module data, which are
extracted from BEAM files, include local functions, exported functions, local callsand externa calls. By default, calls
to built-in functions (BIF) are ignored, but if the option bui | ti ns, accepted by some of this modul€e's functions,
issetto t rue, calls to BIFs are included as well. It is the analyzing OTP version that decides what functions are
BIFs. Functional objects are assumed to be called where they are created (and nowhere else). Unresolved calls are
calsto appl y or spawn with variable module, variable function, or variable arguments. Examples are M F(a) ,
apply(M f, [a]),andspawn(m f(), Args).Unresolved calls are represented by calls where variable
modules have been replaced with the atom ' $M _EXPR , variable functions have been replaced with the atom
' $F_EXPR' , and variable number of arguments have been replaced with the number - 1. The above mentioned
examples are represented by calsto' $M EXPR : ' $F EXPR / 1,' SM EXPR :f/1,andm ' $F_EXPR /- 1.
The unresolved calls are a subset of the external calls.

Unresolved calls make module data incomplete, which implies that the results of analyses may be invalid.

Applications are collections of modules. The modules BEAM files are located in the ebi n subdirectory of the
application directory. The name of the application directory determines the name and version of the application.
Releases are collections of applicationslocated inthel i b subdirectory of the release directory. Thereis moreto read
about applications and releases in the Design Principles book.

Xref serversareidentified by names, supplied when creating new servers. Each Xref server holds a set of releases, a
set of applications, and a set of moduleswith module data. Xref servers are independent of each other, and all analyses
are evaluated in the context of one single Xref server (exceptions are the functions n1 1 and d/ 1 which do not use
servers at al). The mode of an Xref server determines what module data are extracted from BEAM files as modules
are added to the server. Starting with R7, BEAM files compiled withtheoptiondebug_i nf o contain so called debug
information, whichisan abstract representation of thecode. Inf unct i ons mode, whichisthedefault mode, function
cals and line numbers are extracted from debug information. In modul es mode, debug information is ignored if
present, but dependencies between modules are extracted from other parts of the BEAM files. Thenodul es modeis
significantly lesstime and space consuming thanthef unct i ons mode, but the analyses that can be done are limited.

An analyzed module is a module that has been added to an Xref server together with its module data. A library
module is a module located in some directory mentioned in the library path. A library module is said to be used if
some of its exported functions are used by some analyzed module. An unknown moduleisamodulethat is neither an
analyzed module nor alibrary module, but whose exported functions are used by some analyzed module. An unknown
function isaused function that isneither local or exported by any analyzed module nor exported by any library module.
Anundefined function is an externally used function that is not exported by any analyzed module or library module.
With this notion, alocal function can be an undefined function, namely if it is externally used from some module. All
unknown functions are also undefined functions; there isafigure in the User's Guide that illustrates this relationship.

Starting with R9C, the module attribute tag depr ecat ed can be used to inform Xref about deprecated functions
and optionally when functions are planned to be removed. A few examples show the idea:

-deprecated({f,1}).
The exported function f / 1 is deprecated. Nothing is said whether f / 1 will be removed or not.

78 | Ericsson AB. All Rights Reserved.: Tools

xref

-deprecated({f,1,"Use g/1 instead"}).
As above but with a descriptive string. The string is currently unused by xr ef but other tools can make use of
it.
-deprecated({f,'_'}).
All exported functionsf / 0, f / 1 and so on are deprecated.
-deprecated(module).
All exported functions in the module are deprecated. Equivalentto - deprecated({' _'," _"})..
-deprecated([{ g,1,next_version}]).
The function g/ 1 is deprecated and will be removed in next version.
-deprecated([{ g,2,next_major_release}]).
The function g/ 2 is deprecated and will be removed in next major release.
-deprecated([{ g,3,eventualy}]).
The function g/ 3 is deprecated and will eventually be removed.
-deprecated({"_',' ',eventually}).
All exported functions in the module are deprecated and will eventually be removed.

Before any analysis can take place, module data must be set up. For instance, the cross reference and the unknown
functions are computed when al module data are known. The functions that need complete data (anal yze, q,
vari abl es) take care of setting up data automatically. Module data need to be set up (again) after calls to any of
theadd, repl ace,renove,set _|i brary_pat h or updat e functions.

The result of setting up module data is the Call Graph. A (directed) graph consists of a set of vertices and a set of
(directed) edges. The edges represent calls (From, To) between functions, modules, applications or releases. From
issaid to call To, and To is said to be used by From. The vertices of the Call Graph are the functions of all module
data: local and exported functions of analyzed modules; used BIFs; used exported functions of library modules; and
unknown functions. The functions nodul e_i nf o/ 0, 1 added by the compiler are included among the exported
functions, but only when called from some module. The edges are the function calls of all module data. A consequence
of the edges being a set is that there is only one edge if afunction islocally or externally used several times on one
and the same line of code.

The Call Graph isrepresented by Erlang terms (the setsarelists), which is suitable for many analyses. But for analyses
that look at chains of calls, alist representation is much too slow. Instead the representation offered by the di gr aph
moduleis used. The tranglation of the list representation of the Call Graph - or a subgraph thereof - to thedi gr aph
representation does not come for free, so the language used for expressing queries to be described below has a special
operator for thistask and a possibility to savethedi gr aph representation for subsequent analyses.

In addition to the Call Graph there is a graph called the Inter Call Graph. Thisis a graph of calls (From, To) such
that there isa chain of calls from Fromto To in the Call Graph, and every From and To is an exported function or an
unused local function. The vertices are the same as for the Call Graph.

Calls between modules, applications and releases are also directed graphs. The types of the vertices and edges of
these graphs are (ranging from the most special to the most general): Fun for functions; Mod for modules; App for
applications; and Rel for releases. The following paragraphs will describe the different constructs of the language
used for selecting and analyzing parts of the graphs, beginning with the constants:

* Expression ::= Constants

e Constants ::= Consts | Consts: Type | RegExpr

e Consts::= Congtant | [Constant, ...] |{ Constant, ...}

e Congtant ::= Call | Const

e Cdl ::= FunSpec - > FunSpec | { MFA, MFA} | AtomConst - > AtomConst | { AtomConst, AtomConst}

e Const ::= AtomConst | FunSpec | MFA

e AtomConst ::= Application | Module | Release

* FunSpec::= Module: Function/ Arity

e MFA :={Module, Function, Arity}

Ericsson AB. All Rights Reserved.: Tools | 79

xref

* RegExpr::=RegString: Type | RegFunc | RegFunc: Type

e RegFunc::= RegModule: RegFunction/ RegArity

* RegModule ::= RegAtom

* RegFunction ::= RegAtom

* RegArity ::= RegString | Number | _|-1

* RegAtom ::= RegString | Atom | _

e RegString ::= - aregular expression, as described in ther e module, enclosed in double quotes -

e Type:=Fun|Md |App | Rel

* Function ::= Atom

e Application ::= Atom

* Module::= Atom

* Release::= Atom

e Arity ::=Number |- 1

e Atom ::=- same as Erlang atoms -

e Number ::= - same as non-negative Erlang integers -

Examples of constants are: ker nel , kernel ->stdli b, [kernel, sasl],[pg -> mesia, ({tv,
mmesi a}] : Mod.Itisanerror if aninstance of Const does not match any vertex of any graph. If there are more
than one vertex matching an untyped instance of At ontConst , then the one of the most general typeis chosen. A list
of constants is interpreted as a set of constants, all of the same type. A tuple of constants constitute a chain of calls

(which may, but does not have to, correspond to an actual chain of calls of some graph). Assigning atypeto alist or
tuple of Const ant isequivalent to assigning the typeto each Const ant .

Regular expressions are used as a means to select some of the vertices of a graph. A RegExpr consisting of a
RegStri ng and atype - an exampleis" xref . *" : Mod - isinterpreted as those modules (or applications or
releases, depending on thetype) that match the expression. Similarly, aRegFunc isinterpreted asthose vertices of the
Call Graph that match the expression. An exampleis" xref _. *":"add_.*"/" (2| 3)", which matches all add
functions of arity two or three of any of the xref modules. Another example, one that matches all functions of arity 10
ormore: : /"[1-9].+".Here_isanabbreviationfor". *" thatis, theregular expression that matchesanything.

The syntax of variablesis simple:

* Expression ::=Variable

e Variable::= - sameasErlang variables -

There are two kinds of variables: predefined variables and user variables. Predefined variables hold set up module
data, and cannot be assigned to but only used in queries. User variables on the other hand can be assigned to, and are

typically used for temporary results while evaluating a query, and for keeping results of queries for use in subsegquent
gueries. The predefined variables are (variables marked with (*) are availablein f unct i ons mode only):

E
Call Graph Edges (*).

\
Call Graph Vertices (*).
M
Modules. All modules: analyzed modules, used library modules, and unknown modules.
A
Applications.
R
Releases.
ME

Module Edges. All module calls.

80 | Ericsson AB. All Rights Reserved.: Tools

xref

AE
Application Edges. All application calls.
RE
Release Edges. All release calls.
L
Loca Functions (*). All local functions of analyzed modules.
X
Exported Functions. All exported functions of analyzed modules and all used exported functions of library
modules.
F
Functions (*).
B
Used BIFs. Bisempty if bui | ti ns isf al se for all analyzed modules.
U

Unknown Functions.
uu
Unused Functions (*). All local and exported functions of analyzed modules that have not been used.
XU
Externally Used Functions. Functions of all modules - including local functions - that have been used in some
external call.
LU
Locally Used Functions (*). Functions of all modules that have been used in some local call.
a
Functions with an attributetag on_| oad (*).
LC
Loca Cals (*).
XC
External Calls (*).
AM
Analyzed Modules.
UM
Unknown Modules.
LM
Used Library Modules.
uc
Unresolved Calls. Empty in nodul es mode.
EE
Inter Call Graph Edges (*).
DF
Deprecated Functions. All deprecated exported functions and all used deprecated BIFs.
DF_1
Deprecated Functions. All deprecated functions to be removed in next version.
DF_2
Deprecated Functions. All deprecated functions to be removed in next version or next major release.
DF_3
Deprecated Functions. All deprecated functions to be removed in next version, next major release, or later.

These are afew facts about the predefined variables (the set operators + (union) and - (difference) as well asthe cast

operator (Type) are described below):

e FisequaltoL + X

e VisequatoX + L + B + U, whereX, L, Band Uarepairwise digoint (that is, have no elementsin
common).

Ericsson AB. All Rights Reserved.: Tools | 81

xref

e WUisequa toV - (XU + LU),whereLUand XUmay have elementsin common. Put in another way:
e VisequatoUU + XU + LU.
e (L isasubset of F.

e Eisequa toLC + XC. Notethat LCand XC may have elementsin common, namely if some functionis
locally and externally used from one and the same function.

e Uisasubset of XU.

* Bisasubset of XU.

e LUisequa torange LC.

+ XUisequal tor ange XC.

* LUisasubset of F.

 UUisasubset of F.

* range UCisasubset of U.

e Misequa toAM + LM + UM where AM LMand UMare pairwise disjoint.

e MEisequa to(Md) E.

e« AEisequa to(App) E.

e REisequato(Rel) E.

e (Mdd) Visasubset of M Equality holdsif al analyzed modules have some local, exported, or unknown
function.

* (App) Misasubset of A. Equality holdsif all applications have some module.

* (Rel) Aisasubset of R Equality holdsif all releases have some application.

e DF_1isasubset of DF_2.

e DF_2isasubset of DF_3.

 DF_3isasubset of DF.

e DFisasubsetof X + B.

An important notion is that of conversion of expressions. The syntax of a cast expression is:
* Expression::=(Type) Expression

Theinterpretation of the cast operator depends on the named type Ty pe, the type of Expr essi on, and the structure
of the elements of theinterpretation of Expr essi on. If the named typeis equal to the expression type, no conversion
is done. Otherwise, the conversion is done one step at atime; (Fun) (App) RE, for instance, is equivaent to
(Fun) (Mod) (App) RE. Now assume that the interpretation of Expr essi on isaset of constants (functions,
modules, applications or releases). If the named type is more general than the expression type, say Mod and Fun
respectively, then the interpretation of the cast expression isthe set of modulesthat have at least one of their functions
mentioned in the interpretation of the expression. If the named type is more special than the expression type, say Fun
and Mod, then the interpretation is the set of al the functions of the modules (in rodul es mode, the conversion
is partial since the local functions are not known). The conversions to and from applications and releases work
analogoudly. Forinstance, (App) "xref . *" : Mbd returnsall applications containing at least one module such
that xr ef _ isaprefix of the module name.

Now assume that the interpretation of Expr essi on is a set of cals. If the named type is more genera than the
expression type, say Mod and Fun respectively, then theinterpretation of the cast expressionisthe set of calls(M1, M2)
such that the interpretation of the expression contains acall from some function of M1 to some function of M2. If the
named typeis more specia than the expression type, say Fun and Mbd, then theinterpretation isthe set of all function
cals (F1, F2) such that the interpretation of the expression contains acall (M1, M2) and F1 is a function of M1 and
F2isafunction of M2 (in modul es mode, there are no functions cals, so acast to Fun alwaysyields an empty set).
Again, the conversions to and from applications and rel eases work analogously.

82 | Ericsson AB. All Rights Reserved.: Tools

xref

The interpretation of constants and variables are sets, and those sets can be used as the basis for forming new sets by
the application of set operators. The syntax:

e Expression ::= Expression BinarySetOp Expression
* BinarySetOp ::=+|* |-

+,* and- areinterpreted asunion, intersection and difference respectively: the union of two sets containsthe elements
of both sets; the intersection of two sets contains the elements common to both sets; and the difference of two sets
contains the elements of the first set that are not members of the second set. The elements of the two sets must be of
the same structure; for instance, a function call cannot be combined with a function. But if a cast operator can make
the elements compatible, then the more general elements are converted to the less general element type. For instance,
M + Fisequivdentto(Fun) M + F,andE - AEisequivdenttoE - (Fun) AE. One more example: X
* xref : Mod isinterpreted as the set of functions exported by the module xr ef ; xref : Mbd is converted
to the more special type of X (Fun, that is) yielding all functions of xr ef , and the intersection with X (all functions
exported by analyzed modules and library modul es) isinterpreted as those functions that are exported by some module
and functions of xr ef .

There are also unary set operators:
e Expression ::= UnarySetOp Expression
* UnarySetOp ::=domai n |[range |stri ct

Recall that acall isapair (From, To). domai n applied to a set of callsisinterpreted as the set of all vertices From,
and r ange asthe set of all vertices To. The interpretation of the st ri ct operator is the operand with all calls on
theform (A, A) removed.

The interpretation of the restriction operatorsis a subset of the first operand, a set of calls. The second operand, a
set of vertices, is converted to the type of the first operand. The syntax of the restriction operators:

* Expression ::= Expression RestrOp Expression

* RestrOp:=|
e RestrOp:=||
* RestrOp:=|]||

Theinterpretation in some detail for the three operators:

N
The subset of callsto any of the vertices.

[
The subset of callsto and from any of the vertices. For all sets of calls CS and all sets of vertices VS,
CS ||| VS isequivdenttoCS | VS * CS || VS

Two functions (modules, applications, releases) belong to the same strongly connected component if they call each
other (in)directly. The interpretation of the conmponent s operator is the set of strongly connected components of a
set of calls. Thecondensat i on of aset of calsisanew set of calls between the strongly connected components
such that there is an edge between two components if there is some constant of the first component that calls some
constant of the second component.

The subset of calls from any of the vertices.

The interpretation of the of operator is achain of calls of the second operand (a set of calls) that passes throw all of
the vertices of the first operand (atuple of constants), in the given order. The second operand is converted to the type
of thefirst operand. For instance, the of operator can be used for finding out whether afunction calls another function
indirectly, and the chain of calls demonstrates how. The syntax of the graph analyzing operators:

* Expression ::= Expression BinaryGraphOp Expression

e Expression ::= UnaryGraphOp Expression

Ericsson AB. All Rights Reserved.: Tools | 83

xref

e UnaryGraphOp ::= conponent s |condensat i on

e BinaryGraphOp ::= of

As was mentioned before, the graph analyses operate on the di gr aph representation of graphs. By default, the
di gr aph representationiscreated when needed (and del eted when no longer used), but it can al so be created explicitly
by use of the cl osur e operator:

* Expression ::= ClosureOp Expression

e ClosureOp::=cl osure

Theinterpretation of thecl osur e operator is the transitive closure of the operand.

Therestriction operators are defined for closuresaswell; cl osure E | xref : Mdisinterpreted asthedirect or
indirect function callsfrom the xr ef module, whiletheinterpretationof E | xref : Mod istheset of direct cals
fromxr ef . If some graph isto be used in several graph analyses, it savestimeto assign thedi gr aph representation
of the graph to a user variable, and then make sure that every graph analysis operates on that variable instead of the
list representation of the graph.

The lines where functions are defined (more precisely: where thefirst clause begins) and the lines where functions are
used areavailableinf unct i ons mode. Theline numbersrefer to thefileswherethefunctionsare defined. Thisholds
also for files included with the - i ncl ude and - i ncl ude_I i b directives, which may result in functions defined
apparently in the sameline. Theline oper ator sare used for assigning line numbersto functions and for assigning sets
of line numbers to function calls. The syntax is similar to the one of the cast operator:

e Expression::=(LineOp) Expression

* Expression::=(XLineOp) Expression

e LineOp:=Lin|ELi n|LLin|XLin

e XLineOp ::= XXL

The interpretation of the Li n operator applied to a set of functions assigns to each function the line number where the
function is defined. Unknown functions and functions of library modules are assigned the number O.

Theinterpretation of some LineOp operator applied to aset of function calls assignsto each call the set of line numbers
where the first function calls the second function. Not all calls are assigned line numbers by all operators:

e theLi n operator is defined for Call Graph Edges,

* thelLLi n operator isdefined for Local Calls.

e theXLi n operator is defined for External Calls.

* theELi n operator is defined for Inter Call Graph Edges.

TheLi n (LLi n, XLi n) operator assignsthelineswherecalls (local cals, external calls) aremade. The ELi n operator

assigns to each call (From, To), for which it is defined, every line L such that there is a chain of calls from From to
To beginning with acall onlineL.

The XXL operator is defined for the interpretation of any of the LineOp operators applied to a set of function calls.
Theresult isthat of replacing the function call with aline numbered function call, that is, each of the two functions of
the call isreplaced by apair of the function and the line where the function is defined. The effect of the XXL operator
can be undone by the LineOp operators. For instance, (Li n) (XXL) (Lin) Eisequivaentto(Lin) E.

The+, - ,* and# operatorsaredefined for line number expressions, provided the operands are compatible. The LineOp
operators are also defined for modules, applications, and releases; the operand is implicitly converted to functions.
Similarly, the cast operator is defined for the interpretation of the LineOp operators.

The interpretation of the counting oper ator isthe number of elements of a set. The operator is undefined for closures.
The +, - and * operators are interpreted as the obvious arithmetical operators when applied to numbers. The syntax
of the counting operator:

* Expression ::= CountOp Expression

84 | Ericsson AB. All Rights Reserved.: Tools

xref

e CountOp:=#

All binary operators are left associative; forinstance, A | B || Cisequivalentto(A | B) || C.Thefollowing
isalist of al operators, in increasing order of precedence:

. +, -
. #

s |yl
e of

s (Type)

e« closure,conponent s, condensati on,domnai n,range, strict

Parentheses are used for grouping, either to make an expression more readable or to override the default precedence
of operators:

e Expression::=(Expression)

A guery isanon-empty sequence of statements. A statement is either an assignment of auser variable or an expression.
The value of an assignment is the value of the right hand side expression. It makes no sense to put a plain expression
anywhere else but last in queries. The syntax of queriesis summarized by these productions:

¢ Query ::= Statement, ...

o Statement ::= Assignment | Expression

e Assignment ::= Variable : = Expression | Variable = Expression

A variable cannot be assighed a new value unless first removed. Variables assigned to by the = operator are removed
at the end of the query, while variables assigned to by the: = operator can only beremoved by callstof or get . There

are no user variables when module data need to be set up again; if any of the functions that make it necessary to set
up module dataagain is called, al user variables are forgotten.

Ericsson AB. All Rights Reserved.: Tools | 85

xref

Data Types

application() = atom()

call() = {atom(), atom()} | funcall()
constant() = xmfa() | module() | application() | release()
directory() = atom() | file:filename()

file() = file:filename()

file error() = atom()

funcall() = {xmfa(), xmfa()}

function name() = atom()

library() = atom()

library path() = path() | code path

mode() = functions | modules

path() = [file()]

release() = atom()

string position() = integer() >=1

variable() = atom()

xarity() = arity() | -1

xmfa() = {module(), function name(), xarity()}
xref() atom() | pid()

Exports

add application(XrefServer, Directory) ->
{ok, application()} | {error, module(), Reason}

add application(XrefServer, Directory, Options) ->
{ok, application()} | {error, module(), Reason}

Types.

86 | Ericsson AB. All Rights Reserved.: Tools

xref

XrefServer = xref()
Directory = directory()
Options = Option | [Option]
Option =

{builtins, boolean()} |

{name, application()} |

{verbose, boolean()} |

{warnings, boolean()} |

builtins | verbose | warnings
Reason =

{application clash, {application(), directory(), directory()}} |

add dir rsn()
add dir rsn() =

{file error, file(), file error()} |

{invalid filename, term()} |

{invalid options, term()} |

{unrecognized file, file()} |

beam lib:chnk rsn()

o

Adds an application, the modules of the application and module data of the modules to an Xref server. The modules
will be members of the application. The default is to use the base name of the directory with the version removed as
application name, but this can be overridden by the nanme option. Returns the name of the application.

If the given directory has a subdirectory named ebi n, modules (BEAM files) are searched for in that directory,
otherwise modules are searched for in the given directory.

If the mode of the Xref server isf unct i ons, BEAM files that contain no debug information are ignored.

add directory(XrefServer, Directory) ->

{ok, Modules} | {error, module(), Reason}
add directory(XrefServer, Directory, Options) ->

{ok, Modules} | {error, module(), Reason}
Types:

Ericsson AB. All Rights Reserved.: Tools | 87

xref

XrefServer = xref()
Directory = directory()
Options = Option | [Option]
Option =

{builtins, boolean()} |

{recurse, boolean()} |

{verbose, boolean()} |

{warnings, boolean()} |

builtins | recurse | verbose | warnings
Modules = [module()]
Reason = add dir rsn()
add dir rsn() =

{file error, file(), file error()} |

{invalid filename, term()} |

{invalid options, term()} |

{unrecognized file, file()} |

beam lib:chnk rsn()

Adds the modules found in the given directory and the modules' datato an Xref server. The default is not to examine
subdirectories, but if theoptionr ecur se hasthevaluet r ue, modules are searched for in subdirectorieson all levels
aswell asin the given directory. Returns a sorted list of the names of the added modules.

The modules added will not be members of any applications.

If the mode of the Xref serverisf unct i ons, BEAM files that contain no debug information are ignored.

add _module(XrefServer, File) ->
{ok, module()} | {error, module(), Reason}
add _module(XrefServer, File, Options) ->
{ok, module()} | {error, module(), Reason}
Types.
XrefServer = xref()
File = file:filename()
Options = Option | [Option]
Option =
{builtins, boolean()} |
{verbose, boolean()} |
{warnings, boolean()} |
builtins | verbose | warnings
Reason = add mod rsn()
add mod rsn() =
{file error, file(), file error()} |
{invalid filename, term()} |
{invalid options, term()} |
{module clash, {module(), file(), file()}} |
{no_debug info, file()} |
beam lib:chnk rsn()

Adds a module and its module data to an Xref server. The module will not be member of any application. Returns
the name of the module.

88 | Ericsson AB. All Rights Reserved.: Tools

xref

If the mode of the Xref serverisf unct i ons, and the BEAM file contains no debug information, the error message
no_debug_i nf o isreturned.

add release(XrefServer, Directory) ->
{ok, release()} | {error, module(), Reason}

add release(XrefServer, Directory, Options) ->
{ok, release()} | {error, module(), Reason}
Types.
XrefServer = xref()
Directory = directory()
Options = Option | [Option]
Option =
{builtins, boolean()} |
{name, release()} |
{verbose, boolean()} |
{warnings, boolean()} |
builtins | verbose | warnings

Reason =
{application clash, {application(), directory(), directory()}} |
{release clash, {release(), directory(), directory()}} |
add dir rsn()
add dir rsn() =
{file error, file(), file error()} |
{invalid filename, term()} |
{invalid options, term()} |
{unrecognized file, flle()} |
beam lib:chnk rsn()

Adds arelease, the applications of the release, the modules of the applications, and module data of the modulesto an
Xref server. The applications will be members of the release, and the modules will be members of the applications.
The default is to use the base name of the directory as release name, but this can be overridden by the nane option.
Returns the name of the release.

If the given directory has a subdirectory named | i b, the directories in that directory are assumed to be application
directories, otherwise al subdirectories of the given directory are assumed to be application directories. If there are
several versions of some application, the one with the highest version is chosen.

If the mode of the Xref serverisf unct i ons, BEAM files that contain no debug information are ignored.

analyze(XrefServer, Analysis) ->
{ok, Answer} | {error, module(), Reason}

analyze(XrefServer, Analysis, Options) ->
{ok, Answer} | {error, module(), Reason}

Types:

Ericsson AB. All Rights Reserved.: Tools | 89

xref

XrefServer = xref()
Analysis = analysis()
Options = Option | [Option]

Option = {verbose, boolean()} | verbose
Answer = [term()]
Reason = analyze rsn()

analysis() =
undefined function calls | undefined functions |
locals not used | exports not used |
deprecated function calls |
{deprecated function calls, DeprFlag :: depr flag()} |
deprecated functions |
{deprecated functions, DeprFlag :: depr flag()} |
{call, FuncSpec :: func spec()} |

{use, FuncSpec :: func spec()} |
{module call, ModSpec :: mod spec()} |
{module use, ModSpec :: mod spec()} |

{application call, AppSpec :: app _spec()} |
{application use, AppSpec :: app spec()} |
{release call, RelSpec :: rel spec()} |
{release use, RelSpec :: rel spec()}

app_spec() = application() | [application()]

depr flag() next version | next major release | eventually
func_spec() xmfa() | [xmfa()]

mod spec() module() | [module()]

rel spec() = release() | [release()]

analyze rsn() =
{invalid options, term()} |
{parse_error, string position(), term()} |
{unavailable analysis, term()} |
{unknown analysis, term()} |
{unknown constant, string()} |
{unknown variable, variable()}

Evaluates a predefined analysis. Returns a sorted list without duplicatesof cal | () or const ant (), depending on
the chosen analysis. The predefined analyses, which operate on al analyzed modules, are (analyses marked with (*)
areavailableinf unct i onsmode only):

undefi ned_function_cal |l s(*)
Returns alist of callsto undefined functions.
undefi ned_functions
Returns alist of undefined functions.
| ocal s_not _used(*)
Returns alist of local functions that have not been locally used.
exports_not _used
Returns alist of exported functions that have not been externally used. Note that in nodul es mode,
M behavi our _i nf o/ 1 isnever reported as unused.
deprecat ed_function_call s(*)
Returns alist of external callsto deprecated functions.

90 | Ericsson AB. All Rights Reserved.: Tools

xref

{deprecated_function_calls, DeprFlag}(*)
Returns alist of external calls to deprecated functions. If Depr Fl ag isequal to next _ver si on, calsto
functionsto be removed in next version are returned. If Depr Fl ag isequal tonext _maj or _r el ease,
callsto functions to be removed in next major release are returned as well as callsto functions to be removed
in next version. Finaly, if Depr Fl ag isequal to event ual | y, al callsto functions to be removed are
returned, including callsto functions to be removed in next version or next major release.

deprecat ed_functions
Returns alist of externally used deprecated functions.

{deprecated_functions, DeprFl ag}
Returns alist of externally used deprecated functions. If Depr FI ag isequal to next _ver si on, functions
to be removed in next version are returned. If Depr Fl ag isequal to next _maj or _r el ease, functions
to be removed in next major release are returned as well as functions to be removed in next version. Finally,
if Depr Fl ag isequal to event ual | y, al functions to be removed are returned, including functions to be
removed in next version or next major release.

{cal |, FuncSpec}(*)
Returns alist of functions called by some of the given functions.

{use, FuncSpec} (*)
Returns alist of functions that use some of the given functions.

{nodul e_cal |, MdSpec}
Returns alist of modules called by some of the given modules.

{nodul e_use, MbdSpec}
Returns alist of modules that use some of the given modules.

{application_call, AppSpec}
Returns alist of applications called by some of the given applications.

{application_use, AppSpec}
Returns alist of applications that use some of the given applications.

{rel ease_call, Rel Spec}
Returns alist of releases called by some of the given releases.

{rel ease_use, Rel Spec}
Returns alist of releases that use some of the given releases.

d(Directory) ->
[DebugInfoResult] |
[NoDebugInfoResult] |
{error, module(), Reason}

Types:
Directory = directory()

DebugInfoResult =
{deprecated, [funcall()]} |
{undefined, [funcall()]} |
{unused, [mfa()]}

NoDebugInfoResult =
{deprecated, [xmfa()]} | {undefined, [xmfa()]}

Reason =
{file error, file(), file error()} |
{invalid filename, term()} |
{unrecognized file, file()} |
beam lib:chnk rsn()

The modules found in the given directory are checked for calls to deprecated functions, calls to undefined functions,
and for unused local functions. The code path is used as library path.

Ericsson AB. All Rights Reserved.: Tools | 91

xref

If some of the found BEAM files contain debug information, then those modules are checked and a list of tuplesis
returned. The first element of each tupleis one of:

* deprecat ed, the second element is a sorted list of callsto deprecated functions;

e undefi ned, the second element is a sorted list of callsto undefined functions;

e unused, the second element is a sorted list of unused local functions.

If no BEAM file contains debug information, then alist of tuplesisreturned. Thefirst element of each tupleisone of:

» deprecat ed, the second element is a sorted list of externally used deprecated functions;
« undefi ned, the second element is a sorted list of undefined functions.

forget (XrefServer) -> ok
forget(XrefServer, Variables) -> ok | {error, module(), Reason}
Types:

XrefServer = xref()

Variables = variable() | [variable()]

Reason = {not user variable, term()}

forget/1andf orget/ 2 removeal or some of the user variables of an Xref server.

format_error(Error) -> io lib:chars()
Types:
Error = {error, module(), Reason :: term()}

Given the error returned by any function of this module, the function f or mat _er r or returns adescriptive string of
the error in English. For file errors, the functionfi | e: format _error/ 1 iscalled.

get default(XrefServer) -> [{Option, Value}]

get default(XrefServer, Option) ->
{ok, Value} | {error, module(), Reason}

Types:
XrefServer = xref()
Option = builtins | recurse | verbose | warnings
Value = boolean()
Reason = {invalid options, term()}

Returns the default values of one or more options.

get library path(XrefServer) -> {ok, LibraryPath}
Types:

XrefServer = xref()

LibraryPath = library path()

Returnsthe library path.
info(XrefServer) -> [Info]

info(XrefServer, Category) ->
[{Item, [Info]}] |

92 | Ericsson AB. All Rights Reserved.: Tools

xref

{error, module(), {no such info, Category}}

info(XrefServer, Category, Items) ->
[{Item, [Info]}] | {error, module(), Reason}

Types:
XrefServer = xref()
Category = modules | applications | releases | libraries
Items = Item | [Item]

Item = module() | application() | release() | library()
Info = info()
Reason =

{no such application, Item} |
{no such info, Category} |
{no such library, Item} |
{no such module, Item} |
{no such release, Item}
info() =
{application, Application :: [application()]1} |
{builtins, boolean()} |
{directory, directory()} |
{library path, library path()} |
{mode, mode()} |
{no_analyzed modules, integer() >= 0} |
{no_applications, integer() >= 0} |

{no_calls,
{NoResolved :: integer() >= 0,
NoUnresolved :: integer() >= 0}} |

{no_function_calls,

{NoLocal :: integer() >= 0,
NoResolvedExternal :: integer() >= 0,
NoUnresolved :: integer() >= 0}} |

{no_functions,

{NoLocal :: integer() >= 0,

NoExternal :: integer() >= 0}} |
{no_inter function calls, integer() >= 0} |
{no_releases, integer() >= 0} |
{release, Release :: [release()]} |
{version, Version :: [integer() >= 0]}

Thei nf o functions return information as alist of pairs { Tag, term()} in some order about the state and the module
data of an Xref server.

i nf o/ 1 returnsinformation with the following tags (tags marked with (*) are availableinf unct i ons mode only):
e« library_pat h,thelibrary path

e node, the mode;

* no_rel eases, number of releases;

e« no_appli cati ons, tota number of applications (of al releases);

 no_anal yzed_nodul es, total number of analyzed modules;

e no_call s (*), total number of cals (in al modules), regarding instances of one function call in different lines
as separate calls;

e no_function_calls (*), total number of local calls, resolved external calls and unresolved calls;

Ericsson AB. All Rights Reserved.: Tools | 93

xref

* no_functions (*), total number of local and exported functions;
e no_inter_function_calls (*),tota number of calsof the Inter Call Graph.

i nfo/ 2 andi nf o/ 3 returninformation about all or some of the analyzed modules, applications, releases or library
modules of an Xref server. The following information is returned for every analyzed module:

 application,anempty listif the module does not belong to any application, otherwise alist of the
application name;

e builtins,whether calsto BIFsare included in the module's data;

» directory,thedirectory where the module's BEAM fileislocated;

e no_cal |l s (*), number of cals, regarding instances of one function call in different lines as separate cals;

 no_function_calls (*), number of local calls, resolved external calls and unresolved calls;

* no_functions (*), number of local and exported functions;

e no_inter_function_calls (*), number of cals of the Inter Call Graph;

The following information is returned for every application:

* directory,thedirectory where the modules BEAM files are located;
¢ no_anal yzed_nodul es, number of analyzed modules,

 no_call s (*), number of calls of the application's modules, regarding instances of one function call in
different lines as separate calls;

e no_function_call s (*), number of local calls, resolved external calls and unresolved calls of the
application's modules;

 no_functions (*), number of local and exported functions of the application's modules;
e no_inter_function_calls (*), number of cals of the Inter Call Graph of the application's modules;
* rel ease, anempty list if the application does not belong to any release, otherwise alist of the release name;

* versi on, theapplication's version as alist of numbers. For instance, the directory "kernel-2.6" resultsin the
application name ker nel and the application version [2,6]; "kernel" yields the name ker nel and the version

IE

The following information isreturned for every release:

e directory,therelease directory;
* no_anal yzed_nodul es, number of analyzed modules;
 no_applicati ons, number of applications;

* no_call s (*), number of calls of the release’'s modules, regarding instances of one function call in different
lines as separate calls;

e no_function_calls (*), number of local calls, resolved external calls and unresolved calls of the release's
modules;

* no_functions (*), number of local and exported functions of the release's modules;
e no_inter_function_calls (*), number of cals of the Inter Call Graph of the release's modules.

The following information is returned for every library module:
« directory,thedirectory where the library module's BEAM fileislocated.

For every number of calls, functions etc. returned by the no__ tags, there is a query returning the same number. Listed
below are examples of such queries. Some of the queries return the sum of atwo or more of the no_ tags numbers.
nod (app, r el) refersto any module (application, release).

94 | Ericsson AB. All Rights Reserved.: Tools

xref

* no_

* no_

s no_

e no_

anal yzed_nodul es

"# AM' (info/l)

"# (Mod) app: App" (application)

"# (Mod) rel:Rel" (release)

applications

"# A" (info/l)

cal | s. The sum of the number of resolved and unresolved calls:

"# (XLin) E + # (LLin) E" (info/1)

"T = E| nmod:Md, # (LLin) T + # (XLin) T" (module)
"T E | app:App, # (LLin) T + # (XLin) T" (application)
"T E| rel:Rel, # (LLin) T + # (XLin) T" (release)
functions. Functions in library modules and the functions nodul e_i nf o/ 0, 1 are not counted by

i nfo.Assumingthat "Extra := _:nodule_info/\"(0|1)\" + LM hasbeen evauated, the sum of
the number of local and exported functions are:

s no_

e no_

s no_

"# (F - Extra)" (info/1)

"# (F * nod: Mod - Extra)" (module)

"# (F * app: App - Extra)" (application)

"# (F * rel:Rel - Extra)" (rdlease)

function_cal |l s. Thesum of the number of local calls, resolved external calls and unresolved calls:
"# LC + # XC' (info/l)

"# LC | nod:Modd + # XC | nod: Mod" (module)

"# LC | app:App + # XC | app: App" (application)

"# LC | rel:Rel + # XC | nod: Rel" (release)

inter _function calls

"# EE" (info/1)

"# EE | nod: Mbd" (module)
"# EE | app: App" (application)
"# EE | rel:Rel" (release)
rel eases

"# R (info/l)

m(FileOrModule) ->

Types:

[DebugInfoResult] |
[NoDebugInfoResult] |
{error, module(), Reason}

Ericsson AB. All Rights Reserved.: Tools | 95

xref

FileOrModule = file:filename() | module()

DebugInfoResult =
{deprecated, [funcall()]} |
{undefined, [funcall()]} |
{unused, [mfa()]}

NoDebugInfoResult =

{deprecated, [xmfa()]} | {undefined, [xmfa()]}
Reason =

{cover compiled, Module :: module()} |

{file error, file(), file error()} |
{interpreted, Module :: module()} |
{invalid filename, term()} |

{no _such module, Module :: module()} |
beam lib:chnk rsn()

The given BEAM file (with or without the . beamextension) or the file found by calling code: whi ch(Modul e)
is checked for calls to deprecated functions, calls to undefined functions, and for unused local functions. The code
path isused aslibrary path.

If the BEAM file contains debug information, then alist of tuplesisreturned. Thefirst element of each tupleisone of:
* deprecat ed, the second element is a sorted list of callsto deprecated functions;

 undefi ned, the second element is a sorted list of callsto undefined functions;
* unused, the second element is a sorted list of unused local functions.

If the BEAM file does not contain debug information, then alist of tuplesisreturned. The first element of each tuple
is one of:

» deprecat ed, the second element is a sorted list of externally used deprecated functions;

* undefi ned, the second element is a sorted list of undefined functions.

q(XrefServer, Query) -> {ok, Answer} | {error, module(), Reason}

g(XrefServer, Query, Options) ->
{ok, Answer} | {error, module(), Reason}

Types:

96 | Ericsson AB. All Rights Reserved.: Tools

xref

XrefServer = xref()
Query = string() | atom()
Options = Option | [Option]
Option = {verbose, boolean()} | verbose
Answer = answer()
Reason g _rsn()
answer() =
false |
[constant()] |
[(Call :: call()) |
(ComponentCall :: {component(), component()})] |
[Component :: component()] |
integer() >= 0 |
[DefineAt :: define at()] |
[CallAt :: {funcall(), LineNumbers :: [integer() >= 0]}] |

[AllLines ::
{{define at(), define at()},
LineNumbers :: [integer() >= 0]}]
define at() = {xmfa(), LineNumber :: integer() >= 0}
component() = [constant()]
g rsn() =

{invalid options, term()} |

{parse_error, string position(), term()} |
{type _error, string()} |

{type mismatch, string(), string()} |
{unknown_analysis, term()} |

{unknown constant, string()} |

{unknown variable, variable()} |

{variable reassigned, string()}

Evaluates a query in the context of an Xref server, and returns the value of the last statement. The syntax of the value
depends on the expression:

A set of callsisrepresented by a sorted list without duplicatesof cal | () .

A set of constantsis represented by a sorted list without duplicates of const ant () .

A set of strongly connected componentsis a sorted list without duplicates of Conponent .

A set of calls between strongly connected componentsis a sorted list without duplicates of Conrponent Cal | .

A chain of callsisrepresented by alist of const ant () . Thelist contains the From vertex of every cal and
the To vertex of thelast call.

The of operator returnsf al se if no chain of calls between the given constants can be found.

The value of thecl osur e operator (the di gr aph representation) is represented by theatom ' cl osure() ' .
A set of line numbered functionsis represented by a sorted list without duplicates of Def i neAt .

A set of line numbered function callsis represented by a sorted list without duplicates of Cal | At .

A set of line numbered functions and function callsis represented by a sorted list without duplicates of
Al'l Li nes.

ForbothCal | At andAl | Li nes itholdsthat for nolist elementisLi neNunber s an empty list; such elementshave
been removed. The constants of conponent and the integers of Li neNurnber s are sorted and without duplicates.

remove application(XrefServer, Applications) ->

Ericsson AB. All Rights Reserved.: Tools | 97

xref

ok | {error, module(), Reason}
Types.
XrefServer = xref()
Applications = application() | [application()]
Reason = {no such application, application()}
Removes applications and their modules and module data from an Xref server.

remove _module(XrefServer, Modules) ->
ok | {error, module(), Reason}
Types.
XrefServer = xref()
Modules = module() | [module()]
Reason = {no such module, module()}

Removes analyzed modules and module data from an Xref server.

remove release(XrefServer, Releases) ->
ok | {error, module(), Reason}
Types.
XrefServer = xref()
Releases = release() | [release()]
Reason = {no such release, release()}

Removes releases and their applications, modules and module data from an Xref server.

replace application(XrefServer, Application, Directory) ->
{ok, Application} |
{error, module(), Reason}
replace _application(XrefServer, Application, Directory, Options) ->
{ok, Application} |
{error, module(), Reason}
Types:

98 | Ericsson AB. All Rights Reserved.: Tools

xref

XrefServer = xref()
Application = application()
Directory = directory()
Options = Option | [Option]
Option =

{builtins, boolean()} |

{verbose, boolean()} |

{warnings, boolean()} |

builtins | verbose | warnings
Reason =

{application clash, {application(), directory(), directory()}} |

{no_such application, Application} |

add dir _rsn()
add dir rsn() =

{file error, file(), file error()} |

{invalid filename, term()} |

{invalid options, term()} |

{unrecognized file, file()} |

beam lib:chnk rsn()

Replaces the modules of an application with other modules read from an application directory. Release membership
of the application isretained. Note that the name of the application is kept; the name of the given directory is not used.

replace module(XrefServer, Module, File) ->
{ok, Module} | {error, module(), Reason}

replace module(XrefServer, Module, File, Options) ->
{ok, Module} | {error, module(), Reason}

Types:

Ericsson AB. All Rights Reserved.: Tools | 99

xref

XrefServer = xref()
Module = module()
File = file()
Options = Option | [Option]
Option =
{verbose, boolean()} |

{warnings, boolean()} |
verbose | warnings

Reason =
{module mismatch, Module, ReadModule :: module()} |
{no_such module, Module} |
add mod _rsn()

add mod rsn() =
{file error, file(), file error()} |
{invalid filename, term()} |
{invalid options, term()} |
{module clash, {module(), file(), file()}} |
{no_debug info, file()} |
beam lib:chnk rsn()

Replaces modul e data of an analyzed module with dataread fromaBEAM file. Application membership of the module
is retained, and so is the value of the bui | t i ns option of the module. An error is returned if the name of the read
module differs from the given module.

Theupdat e function is an aternative for updating modul e data of recompiled modules.

set default(XrefServer, Option, Value) ->
{ok, Oldvalue} | {error, module(), Reason}

set default(XrefServer, OptionValues) ->
ok | {error, module(), Reason}

Types.
XrefServer = xref()
OptionValues = OptionValue | [OptionValue]
OptionValue = {Option, Value}
Option = builtins | recurse | verbose | warnings
Value = boolean()
Reason = {invalid options, term()}

Sets the default value of one or more options. The options that can be set thisway are:

e builtins,withinitial default valuef al se;
* recurse,withinitial default valuef al se;
e verbose, withinitial default valuef al se;
* war ni ngs, with initial default valuet r ue.

Theinitial default values are set when creating an Xref server.
set library path(XrefServer, LibraryPath) ->

ok | {error, module(), Reason}
set library path(XrefServer, LibraryPath, Options) ->

100 | Ericsson AB. All Rights Reserved.: Tools

xref

ok | {error, module(), Reason}
Types.
XrefServer = xref()
LibraryPath = library path()
Options = Option | [Option]
Option = {verbose, boolean()} | verbose
Reason = {invalid options, term()} | {invalid path, term()}
Setsthe library path. If the given path isalist of directories, the set of library modulesis determined by choosing the

first module encountered while traversing the directoriesin the given order, for those modul es that occur in more than
one directory. By default, the library path is an empty list.

The library path code_pat h is used by the functions n1 1 and d/ 1, but can also be set explicitly. Note however
that the code path will be traversed once for each used library module while setting up module data. On the other
hand, if there are only a few modules that are used but not analyzed, using code_pat h may be faster than setting
thelibrary path to code: get _pat h() .

If the library path is set to code_pat h, the set of library modules is not determined, and the i nf o functions will
return empty lists of library modules.

start(NameOrOptions) ->
{ok, pid()} | {error, {already started, pid()}}

Types:
NameOrOptions = Name | Options
Name = atom()
Options = Option | [Option]
Option = {xref mode, mode()} | term()

Creates an Xref server. The process may optionally be given aname. The default modeisf unct i ons. Options that
are not recognized by Xref are passed ontogen_server: start/ 4.

start(Name, Options) ->
{ok, pid()} | {error, {already started, pid()}}
Types.
Name = atom()
Options = Option | [Option]
Option = {xref mode, mode()} | term()

Creates an Xref server with agiven name. The default modeisf unct i ons. Options that are not recognized by Xref
arepassed ontogen_server:start/ 4.

stop(XrefServer) -> stopped
Types.

XrefServer = xref()
Stops an Xref server.

update(XrefServer) -> {ok, Modules} | {error, module(), Reason}
update(XrefServer, Options) ->

Ericsson AB. All Rights Reserved.: Tools | 101

xref

{ok, Modules} | {error, module(), Reason}
Types.
XrefServer = xref()
Options = Option | [Option]
Option =
{verbose, boolean()} |

{warnings, boolean()} |
verbose | warnings

Modules = [module()]

Reason =
{module mismatch, module(), ReadModule :: module()} |
add mod _rsn()

add mod rsn() =
{file error, file(), file error()} |
{invalid filename, term()} |
{invalid options, term()} |
{module clash, {module(), file(), file()}} |
{no_debug info, file()} |
beam lib:chnk rsn()

Replaces the module data of all analyzed modules the BEAM files of which have been modified since last read by an
add function or updat e. Application membership of the modulesisretained, and so is the value of thebui I ti ns
option. Returns a sorted list of the names of the replaced modules.

variables(XrefServer) -> {ok, [VariableInfol}
variables(XrefServer, Options) -> {ok, [VariablelInfo]}
Types:

XrefServer = xref()

Options = Option | [Option]

Option = predefined | user | {verbose, boolean()} | verbose

VariableInfo =

{predefined, [variable()]} | {user, [variable()]}

Returns a sorted lists of the names of the variables of an Xref server. The default is to return the user variables only.

See Also
beam_lib(3), digraph(3), digraph_utils(3), re(3), TOOLS User's Guide

102 | Ericsson AB. All Rights Reserved.: Tools

	Tools
	Tools User's Guide
	cover
	Introduction
	Getting Started With Cover
	Example
	Preparation
	Coverage Analysis
	Call Statistics
	Analysis to File
	Conclusion

	Miscellaneous
	Performance
	Executable Lines
	Code Loading Mechanism

	cprof - The Call Count Profiler
	Example: Background work
	Example: One module
	Example: In the code

	The Erlang mode for Emacs
	Purpose
	Pre-requisites
	Elisp
	Setup on UNIX
	Setup on Windows
	Indentation
	Editing
	Syntax highlighting
	Tags
	Etags
	Shell
	Compilation

	fprof - The File Trace Profiler
	Profiling from the source code
	Profiling a function
	Immediate profiling

	lcnt - The Lock Profiler
	 Enabling lock-counting
	Getting started
	 Example of usage
	 Example with Mnesia Transaction Benchmark
	 Deciphering the output
	See Also

	Xref - The Cross Reference Tool
	Module Check
	Predefined Analysis
	Expressions
	Graph Analysis

	Reference Manual
	cover
	start/0
	local_only/0
	start/1
	compile/1
	compile/2
	compile_module/1
	compile_module/2
	compile_directory/0
	compile_directory/1
	compile_directory/2
	compile_beam/1
	compile_beam_directory/0
	compile_beam_directory/1
	analyse/0
	analyse/1
	analyse/1
	analyse/1
	analyse/2
	analyse/2
	analyse/2
	analyse/3
	analyse_to_file/0
	analyse_to_file/1
	analyse_to_file/1
	analyse_to_file/2
	async_analyse_to_file/1
	async_analyse_to_file/2
	async_analyse_to_file/2
	async_analyse_to_file/3
	modules/0
	imported_modules/0
	imported/0
	which_nodes/0
	is_compiled/1
	reset/0
	reset/1
	export/1
	export/2
	import/1
	stop/0
	stop/1
	flush/1

	cprof
	analyse/0
	analyse/1
	analyse/1
	analyse/2
	pause/0
	pause/1
	pause/2
	pause/3
	restart/0
	restart/1
	restart/2
	restart/3
	start/0
	start/1
	start/2
	start/3
	stop/0
	stop/1
	stop/2
	stop/3

	eprof
	start/0
	start_profiling/1
	start_profiling/2
	start_profiling/3
	stop_profiling/0
	profile/1
	profile/2
	profile/1
	profile/2
	profile/3
	profile/4
	profile/4
	profile/5
	profile/6
	analyze/0
	analyze/1
	analyze/2
	log/1
	stop/0

	erlang.el
	fprof
	start/0
	stop/0
	stop/1
	apply/2
	apply/3
	apply/3
	apply/4
	trace/2
	trace/2
	trace/2
	trace/1
	trace/1
	trace/1
	trace/1
	profile/0
	profile/2
	profile/1
	profile/1
	profile/1
	analyse/0
	analyse/2
	analyse/1
	analyse/1
	analyse/1

	lcnt
	start/0
	stop/0
	collect/0
	collect/1
	clear/0
	clear/1
	conflicts/0
	conflicts/1
	locations/0
	locations/1
	inspect/1
	inspect/2
	information/0
	swap_pid_keys/0
	load/1
	save/1
	apply/1
	apply/2
	apply/3
	pid/2
	pid/3
	port/1
	port/2
	rt_collect/0
	rt_collect/1
	rt_clear/0
	rt_clear/1
	rt_mask/0
	rt_mask/1
	rt_mask/1
	rt_mask/2
	rt_opt/1
	rt_opt/2

	make
	all/0
	all/1
	files/1
	files/2

	tags
	file/1
	file/2
	files/1
	files/2
	dir/1
	dir/2
	dirs/1
	dirs/2
	subdir/1
	subdir/2
	subdirs/1
	subdirs/2
	root/0
	root/1

	xref
	add_application/2
	add_application/3
	add_directory/2
	add_directory/3
	add_module/2
	add_module/3
	add_release/2
	add_release/3
	analyze/2
	analyze/3
	d/1
	forget/1
	forget/2
	format_error/1
	get_default/1
	get_default/2
	get_library_path/1
	info/1
	info/2
	info/3
	m/1
	q/2
	q/3
	remove_application/2
	remove_module/2
	remove_release/2
	replace_application/3
	replace_application/4
	replace_module/3
	replace_module/4
	set_default/3
	set_default/2
	set_library_path/2
	set_library_path/3
	start/1
	start/2
	stop/1
	update/1
	update/2
	variables/1
	variables/2

