
Kernel
Copyright © 1997-2025 Ericsson AB. All Rights Reserved.

Kernel 8.5.4.6
May 7, 2025

Copyright © 1997-2025 Ericsson AB. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance
with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless
required by applicable law or agreed to in writing, software distributed under the License is distributed on an
"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See
the License for the specific language governing permissions and limitations under the License. Ericsson AB. All
Rights Reserved..

May 7, 2025

1.1 Introduction

1 Kernel User's Guide

1.1 Introduction
1.1.1 Scope
The Kernel application has all the code necessary to run the Erlang runtime system: file servers, code servers, and so on.

The Kernel application is the first application started. It is mandatory in the sense that the minimal system based on
Erlang/OTP consists of Kernel and STDLIB. Kernel contains the following functional areas:

• Start, stop, supervision, configuration, and distribution of applications

• Code loading

• Logging

• Global name service

• Supervision of Erlang/OTP

• Communication with sockets

• Operating system interface

1.1.2 Prerequisites
It is assumed that the reader is familiar with the Erlang programming language.

1.2 Socket Usage
1.2.1 Introduction
The socket interface (module) is basically a "thin" layer on top of the OS socket interface. It is assumed that, unless
you have special needs, gen_[tcp|udp|sctp] should be sufficient (when they become available).

Note that just because we have a documented and described option, it does not mean that the OS supports it. So its
recommended that the user reads the platform specific documentation for the option used.

Asynchronous calls
Some functions allow for an asynchronous call (accept/2, connect/3, recv/3,4, recvfrom/3,4,
recvmsg/2,3,5, send/3,4, sendmsg/3,4 and sendto/4,5). This is achieved by setting the Timeout
argument to nowait. For instance, if calling the recv/3 function with Timeout set to nowait (i.e. recv(Sock,
0, nowait)) when there is actually nothing to read, it will return with {select, SelectInfo} (SelectInfo
contains the SelectHandle). When data eventually arrives a 'select message' will be sent to the caller:

{'$socket', socket(), select, SelectHandle}

The caller can then make another call to the recv function and now expect data.

Note that all other users are locked out until the 'current user' has called the function (recv in this case). So either
immediately call the function or cancel.

The user must also be prepared to receive an abort message:

Ericsson AB. All Rights Reserved.: Kernel | 1

1.2 Socket Usage

{'$socket', socket(), abort, Info}

If the operation is aborted for whatever reason (e.g. if the socket is closed "by someone else"). The Info part contains
the abort reason (in this case that the socket has been closed Info = {SelectHandle, closed}).

The general form of the 'socket' message is:

{'$socket', Sock :: socket(), Tag :: atom(), Info :: term()}

Where the format of Info is a function of Tag:

Tag Info value type

select select_handle()

abort {select_handle(), Reason :: term()}

Table 2.1: socket message info value type

The select_handle() is the same as was returned in the SelectInfo.

1.2.2 Socket Registry
The socket registry is how we keep track of sockets. There are two functions that can be used for interaction:
socket:number_of/0 and socket:which_sockets/1.

In systems which create and delete many sockets dynamically, it (the socket registry) could become a bottleneck. For
such systems, there are a couple of ways to control the use of the socket registry.

Firstly, its possible to effect the global default value when building OTP from source with the two configure options:

--enable-esock-socket-registry (default) | --disable-esock-socket-registry

Second, its possible to effect the global default value by setting the environment variable
ESOCK_USE_SOCKET_REGISTRY (boolean) before starting the erlang.

Third, its possible to alter the global default value in runtime by calling the function use_registry/1.

And finally, its possible to override the global default when creating a socket (with open/2 and open/4) by
providing the attribute use_registry (boolean) in the their Opts argument (which effects that specific socket).

1.2.3 Socket Options
Options for level otp:

Option Name Value Type Set Get
Other
Requirements and
comments

assoc_id integer() no yes
type = seqpacket,
protocol = sctp, is an
association

debug boolean() yes yes none

iow boolean() yes yes none

2 | Ericsson AB. All Rights Reserved.: Kernel

1.2 Socket Usage

controlling_process pid() yes yes none

rcvbuf

default |
pos_integer() |
{pos_integer(),
pos_ineteger()}

yes yes

'default' only valid
for set. The tuple
form is only valid
for type 'stream' and
protocol 'tcp'.

rcvctrlbuf
default |
pos_integer()

yes yes
default only valid for
set

sndctrlbuf
default |
pos_integer()

yes yes
default only valid for
set

fd integer() no yes none

use_registry boolean() no yes

the value is set when
the socket is created,
by a call to open/2
or open/4.

Table 2.2: option levels

Options for level socket:

Option Name Value Type Set Get
Other
Requirements and
comments

acceptconn boolean() no yes none

bindtodevice string() yes yes

Before Linux 3.8,
this socket option
could be set, but
not get. Only works
for some socket
types (e.g. inet).
If empty value is
set, the binding is
removed.

broadcast boolean() yes yes type = dgram

debug integer() yes yes
may require admin
capability

domain domain() no yes
Not on FreeBSD (for
instance)

dontroute boolean() yes yes none

Ericsson AB. All Rights Reserved.: Kernel | 3

1.2 Socket Usage

keepalive boolean() yes yes none

linger abort | linger() yes yes none

oobinline boolean() yes yes none

peek_off integer() yes yes

domain = local
(unix). Currently
disabled due to a
possible infinite
loop when calling
recv([peek]) the
second time.

priority integer() yes yes none

protocol protocol() no yes
Not on (some)
Darwin (for instance)

rcvbuf non_neg_integer() yes yes none

rcvlowat non_neg_integer() yes yes none

rcvtimeo timeval() yes yes

This option is
not normally
supported (see why
below). OTP has
to be explicitly
built with the --
enable-esock-
rcvsndtime
configure option
for this to be
available. Since our
implementation is
nonblocking, its
unknown if and how
this option works,
or even if it may
cause malfunctions.
Therefore, we do
not recommend
setting this option.
Instead, use the
Timeout argument
to, for instance, the
recv/3 function.

reuseaddr boolean() yes yes none

reuseport boolean() yes yes domain = inet | inet6

4 | Ericsson AB. All Rights Reserved.: Kernel

1.2 Socket Usage

sndbuf non_neg_integer() yes yes none

sndlowat non_neg_integer() yes yes
not changeable on
Linux

sndtimeo timeval() yes yes

This option is
not normally
supported (see why
below). OTP has
to be explicitly
built with the --
enable-esock-
rcvsndtime
configure option
for this to be
available. Since our
implementation is
nonblocking, its
unknown if and how
this option works,
or even if it may
cause malfunctions.
Therefore, we do
not recommend
setting this option.
Instead, use the
Timeout argument
to, for instance, the
send/3 function.

timestamp boolean() yes yes none

type type() no yes none

Table 2.3: socket options

Options for level ip:

Option Name Value Type Set Get
Other
Requirements and
comments

add_membership ip_mreq() yes no none

add_source_membershipip_mreq_source() yes no none

block_source ip_mreq_source() yes no none

drop_membership ip_mreq() yes no none

drop_source_membershipip_mreq_source() yes no none

Ericsson AB. All Rights Reserved.: Kernel | 5

1.2 Socket Usage

freebind boolean() yes yes none

hdrincl boolean() yes yes type = raw

minttl integer() yes yes type = raw

msfilter null | ip_msfilter() yes no none

mtu integer() no yes type = raw

mtu_discover ip_pmtudisc() yes yes none

multicast_all boolean() yes yes none

multicast_if any | ip4_address() yes yes none

multicast_loop boolean() yes yes none

multicast_ttl uint8() yes yes none

nodefrag boolean() yes yes type = raw

pktinfo boolean() yes yes type = dgram

recvdstaddr boolean() yes yes type = dgram

recverr boolean() yes yes none

recvif boolean() yes yes type = dgram | raw

recvopts boolean() yes yes type =/= stream

recvorigdstaddr boolean() yes yes none

recvttl boolean() yes yes type =/= stream

retopts boolean() yes yes type =/= stream

router_alert integer() yes yes type = raw

sendsrcaddr boolean() yes yes none

tos ip_tos() yes yes
some high-priority
levels may require
superuser capability

transparent boolean() yes yes
requires admin
capability

ttl integer() yes yes none

6 | Ericsson AB. All Rights Reserved.: Kernel

1.2 Socket Usage

unblock_source ip_mreq_source() yes no none

Table 2.4: ip options

Options for level ipv6:

Option Name Value Type Set Get
Other
Requirements and
comments

addrform inet yes no

allowed only for
IPv6 sockets that are
connected and bound
to a v4-mapped-on-
v6 address

add_membership ipv6_mreq() yes no none

authhdr boolean() yes yes
type = dgram | raw,
obsolete?

drop_membership ipv6_mreq() yes no none

dstopts boolean() yes yes
type = dgram | raw,
requires superuser
privileges to update

flowinfo boolean() yes yes
type = dgram | raw,
requires superuser
privileges to update

hoplimit boolean() yes yes

type = dgram | raw.
On some platforms
(e.g. FreeBSD) is
used to set in order
to get hoplimit
as a control message
heeader. On others
(e.g. Linux),
recvhoplimit
is set in order to get
hoplimit.

hopopts boolean() yes yes
type = dgram | raw,
requires superuser
privileges to update

mtu boolean() yes yes
Get: Only after the
socket has been
connected

Ericsson AB. All Rights Reserved.: Kernel | 7

1.2 Socket Usage

mtu_discover ipv6_pmtudisc() yes yes none

multicast_hops default | uint8() yes yes none

multicast_if integer() yes yes type = dgram | raw

multicast_loop boolean() yes yes none

recverr boolean() yes yes none

recvhoplimit boolean() yes yes

type = dgram | raw.
On some platforms
(e.g. Linux),
recvhoplimit
is set in order to get
hoplimit

recvpktinfo | pktinfo boolean() yes yes

type = dgram | raw.
On some platforms
(e.g. FreeBSD) is
used to set in order
to get hoplimit
as a control message
heeader. On others
(e.g. Linux),
recvhoplimit
is set in order to get
hoplimit.

recvtclass boolean() yes yes

type = dgram | raw.
On some platforms
is used to set (=true)
in order to get the
tclass control
message heeader.
On others, tclass
is set in order to get
tclass control
message heeader.

router_alert integer() yes yes type = raw

rthdr boolean() yes yes
type = dgram | raw,
requires superuser
privileges to update

tclass integer() yes yes

Set the traffic class
associated with
outgoing packets.
RFC3542.

unicast_hops default | uint8() yes yes none

8 | Ericsson AB. All Rights Reserved.: Kernel

1.2 Socket Usage

v6only boolean() yes no none

Table 2.5: ipv6 options

Options for level tcp:

Option Name Value Type Set Get
Other
Requirements and
comments

congestion string() yes yes none

maxseg integer() yes yes
Set not allowed on
all platforms.

nodelay boolean() yes yes none

Table 2.6: tcp options

Options for level udp:

Option Name Value Type Set Get
Other
Requirements and
comments

cork boolean() yes yes none

Table 2.7: udp options

Options for level sctp:

Option Name Value Type Set Get
Other
Requirements and
comments

associnfo sctp_assocparams() yes yes none

autoclose non_neg_integer() yes yes none

disable_fragments boolean() yes yes none

events sctp_event_subscribe() yes no none

initmsg sctp_initmsg() yes yes none

maxseg non_neg_integer() yes yes none

nodelay boolean() yes yes none

Ericsson AB. All Rights Reserved.: Kernel | 9

1.3 Logging

rtoinfo sctp_rtoinfo() yes yes none

Table 2.8: sctp options

1.3 Logging
Erlang/OTP 21.0 provides a standard API for logging through Logger, which is part of the Kernel application. Logger
consists of the API for issuing log events, and a customizable backend where log handlers, filters and formatters can
be plugged in.

By default, the Kernel application installs one log handler at system start. This handler is named default. It receives
and processes standard log events produced by the Erlang runtime system, standard behaviours and different Erlang/
OTP applications. The log events are by default written to the terminal.

You can also configure the system so that the default handler prints log events to a single file, or to a set of wrap
logs via disk_log.

By configuration, you can also modify or disable the default handler, replace it by a custom handler, and install
additional handlers.

Note:

Since Logger is new in Erlang/OTP 21.0, we do reserve the right to introduce changes to the Logger API and
functionality in patches following this release. These changes might or might not be backwards compatible with
the initial version.

1.3.1 Overview
A log event consists of a log level, the message to be logged, and metadata.

The Logger backend forwards log events from the API, first through a set of primary filters, then through a set of
secondary filters attached to each log handler. The secondary filters are in the following named handler filters.

Each filter set consists of a log level check, followed by zero or more filter functions.

The following figure shows a conceptual overview of Logger. The figure shows two log handlers, but any number
of handlers can be installed.

10 | Ericsson AB. All Rights Reserved.: Kernel

1.3 Logging

Figure 3.1: Conceptual Overview

Log levels are expressed as atoms. Internally in Logger, the atoms are mapped to integer values, and a log event passes
the log level check if the integer value of its log level is less than or equal to the currently configured log level. That
is, the check passes if the event is equally or more severe than the configured level. See section Log Level for a listing
and description of all log levels.

The primary log level can be overridden by a log level configured per module. This is to, for instance, allow more
verbose logging from a specific part of the system.

Filter functions can be used for more sophisticated filtering than the log level check provides. A filter function can
stop or pass a log event, based on any of the event's contents. It can also modify all parts of the log event. See section
Filters for more details.

If a log event passes through all primary filters and all handler filters for a specific handler, Logger forwards the event to
the handler callback. The handler formats and prints the event to its destination. See section Handlers for more details.

Ericsson AB. All Rights Reserved.: Kernel | 11

1.3 Logging

Everything up to and including the call to the handler callbacks is executed on the client process, that is, the process
where the log event was issued. It is up to the handler implementation if other processes are involved or not.

The handlers are called in sequence, and the order is not defined.

1.3.2 Logger API
The API for logging consists of a set of macros, and a set of functions on the form logger:Level/1,2,3, which
are all shortcuts for logger:log(Level,Arg1[,Arg2[,Arg3]]).

The macros are defined in logger.hrl, which is included in a module with the directive

-include_lib("kernel/include/logger.hrl").

The difference between using the macros and the exported functions is that macros add location (originator)
information to the metadata, and performs lazy evaluation by wrapping the logger call in a case statement, so it is only
evaluated if the log level of the event passes the primary log level check.

Log Level
The log level indicates the severity of a event. In accordance with the Syslog protocol, RFC 5424, eight log levels can
be specified. The following table lists all possible log levels by name (atom), integer value, and description:

Level Integer Description

emergency 0 system is unusable

alert 1 action must be taken immediately

critical 2 critical conditions

error 3 error conditions

warning 4 warning conditions

notice 5 normal but significant conditions

info 6 informational messages

debug 7 debug-level messages

Table 3.1: Log Levels

Notice that the integer value is only used internally in Logger. In the API, you must always use the atom. To compare
the severity of two log levels, use logger:compare_levels/2.

Log Message
The log message contains the information to be logged. The message can consist of a format string and arguments
(given as two separate parameters in the Logger API), a string or a report.

Example, format string and arguments:

logger:error("The file does not exist: ~ts",[Filename])

Example, string:

12 | Ericsson AB. All Rights Reserved.: Kernel

href

1.3 Logging

logger:notice("Something strange happened!")

A report, which is either a map or a key-value list, is the preferred way to log using Logger as it makes it possible for
different backends to filter and format the log event as it needs to.

Example, report:

?LOG_ERROR(#{ user => joe, filename => Filename, reason => enoent })

Reports can be accompanied by a report callback specified in the log event's metadata. The report callback is a
convenience function that the formatter can use to convert the report to a format string and arguments, or directly
to a string. The formatter can also use its own conversion function, if no callback is provided, or if a customized
formatting is desired.

The report callback must be a fun with one or two arguments. If it takes one argument, this is the report itself, and
the fun returns a format string and arguments:

fun((logger:report()) -> {io:format(),[term()]})

If it takes two arguments, the first is the report, and the second is a map containing extra data that allows direct
conversion to a string:

fun((logger:report(),logger:report_cb_config()) -> unicode:chardata())

The fun must obey the depth and chars_limit parameters provided in the second argument, as the formatter
cannot do anything useful of these parameters with the returned string. The extra data also contains a field named
single_line, indicating if the printed log message may contain line breaks or not. This variant is used when the
formatting of the report depends on the size or single line parameters.

Example, report, and metadata with report callback:

logger:debug(#{got => connection_request, id => Id, state => State},
 #{report_cb => fun(R) -> {"~p",[R]} end})

The log message can also be provided through a fun for lazy evaluation. The fun is only evaluated if the primary log
level check passes, and is therefore recommended if it is expensive to generate the message. The lazy fun must return
a string, a report, or a tuple with format string and arguments.

Metadata
Metadata contains additional data associated with a log message. Logger inserts some metadata fields by default, and
the client can add custom metadata in three different ways:

Set primary metadata

Primary metadata applies is the base metadata given to all log events. At startup it can be set
using the kernel configuration parameter logger_metadata. At run-time it can be set and updated using
logger:set_primary_config/1 and logger:update_primary_config/1 respectively.

Set process metadata

Process metadata is set and updated with logger:set_process_metadata/1 and
logger:update_process_metadata/1, respectively. This metadata applies to the process on which
these calls are made, and Logger adds the metadata to all log events issued on that process.

Add metadata to a specific log event

Metadata associated with one specific log event is given as the last parameter to the log macro or Logger API
function when the event is issued. For example:

Ericsson AB. All Rights Reserved.: Kernel | 13

1.3 Logging

?LOG_ERROR("Connection closed",#{context => server})

See the description of the logger:metadata() type for information about which default keys Logger inserts, and
how the different metadata maps are merged.

1.3.3 Filters
Filters can be primary, or attached to a specific handler. Logger calls the primary filters first, and if they all pass, it
calls the handler filters for each handler. Logger calls the handler callback only if all filters attached to the handler
in question also pass.

A filter is defined as:

{FilterFun, Extra}

where FilterFun is a function of arity 2, and Extra is any term. When applying the filter, Logger calls the function
with the log event as the first argument, and the value of Extra as the second argument. See logger:filter()
for type definitions.

The filter function can return stop, ignore or the (possibly modified) log event.

If stop is returned, the log event is immediately discarded. If the filter is primary, no handler filters or callbacks are
called. If it is a handler filter, the corresponding handler callback is not called, but the log event is forwarded to filters
attached to the next handler, if any.

If the log event is returned, the next filter function is called with the returned value as the first argument. That is, if
a filter function modifies the log event, the next filter function receives the modified event. The value returned from
the last filter function is the value that the handler callback receives.

If the filter function returns ignore, it means that it did not recognize the log event, and thus leaves to other filters
to decide the event's destiny.

The configuration option filter_default specifies the behaviour if all filter functions return ignore, or if no
filters exist. filter_default is by default set to log, meaning that if all existing filters ignore a log event, Logger
forwards the event to the handler callback. If filter_default is set to stop, Logger discards such events.

Primary filters are added with logger:add_primary_filter/2 and removed with
logger:remove_primary_filter/1. They can also be added at system start via the Kernel configuration
parameter logger.

Handler filters are added with logger:add_handler_filter/3 and removed with
logger:remove_handler_filter/2. They can also be specified directly in the configuration when adding a
handler with logger:add_handler/3 or via the Kernel configuration parameter logger.

To see which filters are currently installed in the system, use logger:get_config/0, or
logger:get_primary_config/0 and logger:get_handler_config/1. Filters are listed in the order
they are applied, that is, the first filter in the list is applied first, and so on.

For convenience, the following built-in filters exist:

logger_filters:domain/2

Provides a way of filtering log events based on a domain field in Metadata.

logger_filters:level/2

Provides a way of filtering log events based on the log level.

logger_filters:progress/2

Stops or allows progress reports from supervisor and application_controller.

14 | Ericsson AB. All Rights Reserved.: Kernel

1.3 Logging

logger_filters:remote_gl/2

Stops or allows log events originating from a process that has its group leader on a remote node.

1.3.4 Handlers
A handler is defined as a module exporting at least the following callback function:

log(LogEvent, Config) -> void()

This function is called when a log event has passed through all primary filters, and all handler filters attached to the
handler in question. The function call is executed on the client process, and it is up to the handler implementation if
other processes are involved or not.

Logger allows adding multiple instances of a handler callback. That is, if a callback module implementation allows
it, you can add multiple handler instances using the same callback module. The different instances are identified by
unique handler identities.

In addition to the mandatory callback function log/2, a handler module can export the optional callback
functions adding_handler/1, changing_config/3, filter_config/1, and removing_handler/1.
See section Handler Callback Functions in the logger(3) manual page for more information about these function.

The following built-in handlers exist:

logger_std_h

This is the default handler used by OTP. Multiple instances can be started, and each instance will write log events
to a given destination, terminal or file.

logger_disk_log_h

This handler behaves much like logger_std_h, except it uses disk_log as its destination.

error_logger

This handler is provided for backwards compatibility only. It is not started by default, but
will be automatically started the first time an error_logger event handler is added with
error_logger:add_report_handler/1,2.

The old error_logger event handlers in STDLIB and SASL still exist, but they are not added by Erlang/
OTP 21.0 or later.

1.3.5 Formatters
A formatter can be used by the handler implementation to do the final formatting of a log event, before printing to
the handler's destination. The handler callback receives the formatter information as part of the handler configuration,
which is passed as the second argument to HModule:log/2.

The formatter information consist of a formatter module, FModule and its configuration, FConfig. FModule must
export the following function, which can be called by the handler:

format(LogEvent,FConfig)
 -> FormattedLogEntry

The formatter information for a handler is set as a part of its configuration when the handler is added.
It can also be changed during runtime with logger:set_handler_config(HandlerId,formatter,
{FModule,FConfig}) , which overwrites the current formatter information, or with
logger:update_formatter_config/2,3, which only modifies the formatter configuration.

If the formatter module exports the optional callback function check_config(FConfig), Logger calls this
function when the formatter information is set or modified, to verify the validity of the formatter configuration.

Ericsson AB. All Rights Reserved.: Kernel | 15

1.3 Logging

If no formatter information is specified for a handler, Logger uses logger_formatter as default. See the
logger_formatter(3) manual page for more information about this module.

1.3.6 Configuration
At system start, Logger is configured through Kernel configuration parameters. The parameters that apply to Logger
are described in section Kernel Configuration Parameters. Examples are found in section Configuration Examples.

During runtime, Logger configuration is changed via API functions. See section Configuration API Functions in the
logger(3) manual page.

Primary Logger Configuration
Logger API functions that apply to the primary Logger configuration are:

• get_primary_config/0

• set_primary_config/1,2

• update_primary_config/1

• add_primary_filter/2

• remove_primary_filter/1

The primary Logger configuration is a map with the following keys:

level = logger:level() | all | none

Specifies the primary log level, that is, log event that are equally or more severe than this level, are forwarded to
the primary filters. Less severe log events are immediately discarded.

See section Log Level for a listing and description of possible log levels.

The initial value of this option is set by the Kernel configuration parameter logger_level. It is changed during
runtime with logger:set_primary_config(level,Level).

Defaults to notice.

filters = [{FilterId,Filter}]

Specifies the primary filters.

• FilterId = logger:filter_id()

• Filter = logger:filter()

The initial value of this option is set by the Kernel configuration parameter logger. During
runtime, primary filters are added and removed with logger:add_primary_filter/2 and
logger:remove_primary_filter/1, respectively.

See section Filters for more detailed information.

Defaults to [].

filter_default = log | stop

Specifies what happens to a log event if all filters return ignore, or if no filters exist.

See section Filters for more information about how this option is used.

Defaults to log.

metadata = metadata()

The primary metadata to be used for all log calls.

See section Metadata for more information about how this option is used.

Defaults to #{}.

16 | Ericsson AB. All Rights Reserved.: Kernel

1.3 Logging

Handler Configuration
Logger API functions that apply to handler configuration are:

• get_handler_config/0,1

• set_handler_config/2,3

• update_handler_config/2,3

• add_handler_filter/3

• remove_handler_filter/2

• update_formatter_config/2,3

The configuration for a handler is a map with the following keys:

id = logger:handler_id()

Automatically inserted by Logger. The value is the same as the HandlerId specified when adding the handler,
and it cannot be changed.

module = module()

Automatically inserted by Logger. The value is the same as the Module specified when adding the handler, and
it cannot be changed.

level = logger:level() | all | none

Specifies the log level for the handler, that is, log events that are equally or more severe than this level, are
forwarded to the handler filters for this handler.

See section Log Level for a listing and description of possible log levels.

The log level is specified when adding the handler, or changed during runtime with, for instance,
logger:set_handler_config(HandlerId,level,Level).

Defaults to all.

filters = [{FilterId,Filter}]

Specifies the handler filters.

• FilterId = logger:filter_id()

• Filter = logger:filter()

Handler filters are specified when adding the handler, or added or removed during runtime with
logger:add_handler_filter/3 and logger:remove_handler_filter/2, respectively.

See Filters for more detailed information.

Defaults to [].

filter_default = log | stop

Specifies what happens to a log event if all filters return ignore, or if no filters exist.

See section Filters for more information about how this option is used.

Defaults to log.

formatter = {FormatterModule,FormatterConfig}

Specifies a formatter that the handler can use for converting the log event term to a printable string.

• FormatterModule = module()

• FormatterConfig = logger:formatter_config()

Ericsson AB. All Rights Reserved.: Kernel | 17

1.3 Logging

The formatter information is specified when adding the handler. The formatter configuration can be changed
during runtime with logger:update_formatter_config/2,3, or the complete formatter information
can be overwritten with, for instance, logger:set_handler_config/3.

See section Formatters for more detailed information.

Defaults to {logger_formatter,DefaultFormatterConfig}. See the logger_formatter(3)
manual page for information about this formatter and its default configuration.

config = term()

Handler specific configuration, that is, configuration data related to a specific handler implementation.

The configuration for the built-in handlers is described in the logger_std_h(3) and
logger_disk_log_h(3) manual pages.

Notice that level and filters are obeyed by Logger itself before forwarding the log events to each handler, while
formatter and all handler specific options are left to the handler implementation.

Kernel Configuration Parameters
The following Kernel configuration parameters apply to Logger:

logger = [Config]

Specifies the configuration for Logger, except the primary log level, which is specified with logger_level,
and the compatibility with SASL Error Logging, which is specified with logger_sasl_compatible.

With this parameter, you can modify or disable the default handler, add custom handlers and primary logger
filters, set log levels per module, and modify the proxy configuration.

Config is any (zero or more) of the following:

{handler, default, undefined}

Disables the default handler. This allows another application to add its own default handler.

Only one entry of this type is allowed.

{handler, HandlerId, Module, HandlerConfig}

If HandlerId is default, then this entry modifies the default handler, equivalent to calling

 logger:remove_handler(default)

followed by

 logger:add_handler(default, Module, HandlerConfig)

For all other values of HandlerId, this entry adds a new handler, equivalent to calling

 logger:add_handler(HandlerId, Module, HandlerConfig)

Multiple entries of this type are allowed.

{filters, FilterDefault, [Filter]}

Adds the specified primary filters.

• FilterDefault = log | stop

18 | Ericsson AB. All Rights Reserved.: Kernel

1.3 Logging

• Filter = {FilterId, {FilterFun, FilterConfig}}

Equivalent to calling

 logger:add_primary_filter(FilterId, {FilterFun, FilterConfig})

for each Filter.

FilterDefault specifies the behaviour if all primary filters return ignore, see section Filters.

Only one entry of this type is allowed.

{module_level, Level, [Module]}

Sets module log level for the given modules. Equivalent to calling

 logger:set_module_level(Module, Level)

for each Module.

Multiple entries of this type are allowed.

{proxy, ProxyConfig}

Sets the proxy configuration, equivalent to calling

 logger:set_proxy_config(ProxyConfig)

Only one entry of this type is allowed.

See section Configuration Examples for examples using the logger parameter for system configuration.

logger_metadata = map()

Specifies the primary metadata. See the kernel(6) manual page for more information about this parameter.

logger_level = Level

Specifies the primary log level. See the kernel(6) manual page for more information about this parameter.

logger_sasl_compatible = true | false

Specifies Logger's compatibility with SASL Error Logging. See the kernel(6) manual page for more
information about this parameter.

Configuration Examples
The value of the Kernel configuration parameter logger is a list of tuples. It is possible to write the term on the
command line when starting an erlang node, but as the term grows, a better approach is to use the system configuration
file. See the config(4) manual page for more information about this file.

Each of the following examples shows a simple system configuration file that configures Logger according to the
description.

Modify the default handler to print to a file instead of standard_io:

[{kernel,
 [{logger,
 [{handler, default, logger_std_h, % {handler, HandlerId, Module,
 #{config => #{file => "log/erlang.log"}}} % Config}
]}]}].

Ericsson AB. All Rights Reserved.: Kernel | 19

1.3 Logging

Modify the default handler to print each log event as a single line:

[{kernel,
 [{logger,
 [{handler, default, logger_std_h,
 #{formatter => {logger_formatter, #{single_line => true}}}}
]}]}].

Modify the default handler to print the pid of the logging process for each log event:

[{kernel,
 [{logger,
 [{handler, default, logger_std_h,
 #{formatter => {logger_formatter,
 #{template => [time," ",pid," ",msg,"\n"]}}}}
]}]}].

Modify the default handler to only print errors and more severe log events to "log/erlang.log", and add another handler
to print all log events to "log/debug.log".

[{kernel,
 [{logger,
 [{handler, default, logger_std_h,
 #{level => error,
 config => #{file => "log/erlang.log"}}},
 {handler, info, logger_std_h,
 #{level => debug,
 config => #{file => "log/debug.log"}}}
]}]}].

1.3.7 Backwards Compatibility with error_logger
Logger provides backwards compatibility with error_logger in the following ways:

API for Logging

The error_logger API still exists, but should only be used by legacy code. It will be removed in a later release.

Calls to error_logger:error_report/1,2, error_logger:error_msg/1,2, and corresponding
functions for warning and info messages, are all forwarded to Logger as calls to
logger:log(Level,Report,Metadata).

Level = error | warning | info and is taken from the function name. Report contains the actual log
message, and Metadata contains additional information which can be used for creating backwards compatible
events for legacy error_logger event handlers, see section Legacy Event Handlers.

Output Format

To get log events on the same format as produced by error_logger_tty_h and error_logger_file_h,
use the default formatter, logger_formatter, with configuration parameter legacy_header set to true.
This is the default configuration of the default handler started by Kernel.

Default Format of Log Events from OTP

By default, all log events originating from within OTP, except the former so called "SASL reports", look the
same as before.

SASL Reports

By SASL reports we mean supervisor reports, crash reports and progress reports.

Prior to Erlang/OTP 21.0, these reports were only logged when the SASL application was running, and they were
printed through SASL's own event handlers sasl_report_tty_h and sasl_report_file_h.

20 | Ericsson AB. All Rights Reserved.: Kernel

1.3 Logging

The destination of these log events was configured by SASL configuration parameters.

Due to the specific event handlers, the output format slightly differed from other log events.

As of Erlang/OTP 21.0, the concept of SASL reports is removed, meaning that the default behaviour is as follows:

• Supervisor reports, crash reports, and progress reports are no longer connected to the SASL application.

• Supervisor reports and crash reports are issued as error level log events, and are logged through the
default handler started by Kernel.

• Progress reports are issued as info level log events, and since the default primary log level is notice,
these are not logged by default. To enable printing of progress reports, set the primary log level to info.

• The output format is the same for all log events.

If the old behaviour is preferred, the Kernel configuration parameter logger_sasl_compatible can be set
to true. The SASL configuration parameters can then be used as before, and the SASL reports will only be
printed if the SASL application is running, through a second log handler named sasl.

All SASL reports have a metadata field domain which is set to [otp,sasl]. This field can be used by filters
to stop or allow the log events.

See section SASL User's Guide for more information about the old SASL error logging functionality.

Legacy Event Handlers

To use event handlers written for error_logger, just add your event handler with

error_logger:add_report_handler/1,2.

This automatically starts the error logger event manager, and adds error_logger as a handler to Logger, with
the following configuration:

#{level => info,
 filter_default => log,
 filters => []}.

Note:

This handler ignores events that do not originate from the error_logger API, or from within OTP. This
means that if your code uses the Logger API for logging, then your log events will be discarded by this handler.

The handler is not overload protected.

1.3.8 Error Handling
Logger does, to a certain extent, check its input data before forwarding a log event to filters and handlers. It does,
however, not evaluate report callbacks, or check the validity of format strings and arguments. This means that all
filters and handlers must be careful when formatting the data of a log event, making sure that it does not crash due
to bad input data or faulty callbacks.

If a filter or handler still crashes, Logger will remove the filter or handler in question from the configuration, and print
a short error message to the terminal. A debug event containing the crash reason and other details is also issued.

See section Log Message for more information about report callbacks and valid forms of log messages.

1.3.9 Example: Add a handler to log info events to file
When starting an Erlang node, the default behaviour is that all log events on level notice or more severe, are logged
to the terminal via the default handler. To also log info events, you can either change the primary log level to info:

Ericsson AB. All Rights Reserved.: Kernel | 21

1.3 Logging

1> logger:set_primary_config(level, info).
ok

or set the level for one or a few modules only:

2> logger:set_module_level(mymodule, info).
ok

This allows info events to pass through to the default handler, and be printed to the terminal as well. If there are many
info events, it can be useful to print these to a file instead.

First, set the log level of the default handler to notice, preventing it from printing info events to the terminal:

3> logger:set_handler_config(default, level, notice).
ok

Then, add a new handler which prints to file. You can use the handler module logger_std_h, and configure it
to log to file:

4> Config = #{config => #{file => "./info.log"}, level => info}.
#{config => #{file => "./info.log"},level => info}
5> logger:add_handler(myhandler, logger_std_h, Config).
ok

Since filter_default defaults to log, this handler now receives all log events. If you want info events only in the
file, you must add a filter to stop all non-info events. The built-in filter logger_filters:level/2 can do this:

6> logger:add_handler_filter(myhandler, stop_non_info,
 {fun logger_filters:level/2, {stop, neq, info}}).
ok

See section Filters for more information about the filters and the filter_default configuration parameter.

1.3.10 Example: Implement a handler
Section Handler Callback Functions in the logger(3) manual page describes the callback functions that can be
implemented for a Logger handler.

A handler callback module must export:

• log(Log, Config)

It can optionally also export some, or all, of the following:

• adding_handler(Config)

• removing_handler(Config)

• changing_config(SetOrUpdate, OldConfig, NewConfig)

• filter_config(Config)

When a handler is added, by for example a call to logger:add_handler(Id, HModule, Config),
Logger first calls HModule:adding_handler(Config). If this function returns {ok,Config1}, Logger
writes Config1 to the configuration database, and the logger:add_handler/3 call returns. After this, the
handler is installed and must be ready to receive log events as calls to HModule:log/2.

22 | Ericsson AB. All Rights Reserved.: Kernel

1.3 Logging

A handler can be removed by calling logger:remove_handler(Id). Logger calls
HModule:removing_handler(Config), and removes the handler's configuration from the configuration
database.

When logger:set_handler_config/2,3 or logger:update_handler_config/2,3 is called,
Logger calls HModule:changing_config(SetOrUpdate, OldConfig, NewConfig). If this function
returns {ok,NewConfig1}, Logger writes NewConfig1 to the configuration database.

When logger:get_config/0 or logger:get_handler_config/0,1 is called, Logger calls
HModule:filter_config(Config). This function must return the handler configuration where internal data
is removed.

A simple handler that prints to the terminal can be implemented as follows:

-module(myhandler1).
-export([log/2]).

log(LogEvent, #{formatter := {FModule, FConfig}}) ->
 io:put_chars(FModule:format(LogEvent, FConfig)).

Notice that the above handler does not have any overload protection, and all log events are printed directly from the
client process.

For information and examples of overload protection, please refer to section Protecting the Handler from Overload,
and the implementation of logger_std_h and logger_disk_log_h .

The following is a simpler example of a handler which logs to a file through one single process:

-module(myhandler2).
-export([adding_handler/1, removing_handler/1, log/2]).
-export([init/1, handle_call/3, handle_cast/2, terminate/2]).

adding_handler(Config) ->
 MyConfig = maps:get(config,Config,#{file => "myhandler2.log"}),
 {ok, Pid} = gen_server:start(?MODULE, MyConfig, []),
 {ok, Config#{config => MyConfig#{pid => Pid}}}.

removing_handler(#{config := #{pid := Pid}}) ->
 gen_server:stop(Pid).

log(LogEvent,#{config := #{pid := Pid}} = Config) ->
 gen_server:cast(Pid, {log, LogEvent, Config}).

init(#{file := File}) ->
 {ok, Fd} = file:open(File, [append, {encoding, utf8}]),
 {ok, #{file => File, fd => Fd}}.

handle_call(_, _, State) ->
 {reply, {error, bad_request}, State}.

handle_cast({log, LogEvent, Config}, #{fd := Fd} = State) ->
 do_log(Fd, LogEvent, Config),
 {noreply, State}.

terminate(_Reason, #{fd := Fd}) ->
 _ = file:close(Fd),
 ok.

do_log(Fd, LogEvent, #{formatter := {FModule, FConfig}}) ->
 String = FModule:format(LogEvent, FConfig),
 io:put_chars(Fd, String).

Ericsson AB. All Rights Reserved.: Kernel | 23

1.3 Logging

1.3.11 Protecting the Handler from Overload
The default handlers, logger_std_h and logger_disk_log_h, feature an overload protection mechanism,
which makes it possible for the handlers to survive, and stay responsive, during periods of high load (when huge
numbers of incoming log requests must be handled). The mechanism works as follows:

Message Queue Length
The handler process keeps track of the length of its message queue and takes some form of action when the current
length exceeds a configurable threshold. The purpose is to keep the handler in, or to as quickly as possible get the
handler into, a state where it can keep up with the pace of incoming log events. The memory use of the handler
must never grow larger and larger, since that will eventually cause the handler to crash. These three thresholds, with
associated actions, exist:

sync_mode_qlen

As long as the length of the message queue is lower than this value, all log events are handled asynchronously.
This means that the client process sending the log event, by calling a log function in the Logger API, does not wait
for a response from the handler but continues executing immediately after the event is sent. It is not affected by
the time it takes the handler to print the event to the log device. If the message queue grows larger than this value,
the handler starts handling log events synchronously instead, meaning that the client process sending the event
must wait for a response. When the handler reduces the message queue to a level below the sync_mode_qlen
threshold, asynchronous operation is resumed. The switch from asynchronous to synchronous mode can slow
down the logging tempo of one, or a few, busy senders, but cannot protect the handler sufficiently in a situation
of many busy concurrent senders.

Defaults to 10 messages.

drop_mode_qlen

When the message queue grows larger than this threshold, the handler switches to a mode in which it drops all
new events that senders want to log. Dropping an event in this mode means that the call to the log function never
results in a message being sent to the handler, but the function returns without taking any action. The handler
keeps logging the events that are already in its message queue, and when the length of the message queue is
reduced to a level below the threshold, synchronous or asynchronous mode is resumed. Notice that when the
handler activates or deactivates drop mode, information about it is printed in the log.

Defaults to 200 messages.

flush_qlen

If the length of the message queue grows larger than this threshold, a flush (delete) operation takes place. To
flush events, the handler discards the messages in the message queue by receiving them in a loop without logging.
Client processes waiting for a response from a synchronous log request receive a reply from the handler indicating
that the request is dropped. The handler process increases its priority during the flush loop to make sure that no
new events are received during the operation. Notice that after the flush operation is performed, the handler prints
information in the log about how many events have been deleted.

Defaults to 1000 messages.

For the overload protection algorithm to work properly, it is required that:

sync_mode_qlen =< drop_mode_qlen =< flush_qlen

and that:

drop_mode_qlen > 1

To disable certain modes, do the following:

• If sync_mode_qlen is set to 0, all log events are handled synchronously. That is, asynchronous logging is
disabled.

24 | Ericsson AB. All Rights Reserved.: Kernel

1.3 Logging

• If sync_mode_qlen is set to the same value as drop_mode_qlen, synchronous mode is disabled. That is,
the handler always runs in asynchronous mode, unless dropping or flushing is invoked.

• If drop_mode_qlen is set to the same value as flush_qlen, drop mode is disabled and can never occur.

During high load scenarios, the length of the handler message queue rarely grows in a linear and predictable way.
Instead, whenever the handler process is scheduled in, it can have an almost arbitrary number of messages waiting in
the message queue. It is for this reason that the overload protection mechanism is focused on acting quickly, and quite
drastically, such as immediately dropping or flushing messages, when a large queue length is detected.

The values of the previously listed thresholds can be specified by the user. This way, a handler can be configured
to, for example, not drop or flush messages unless the message queue length of the handler process grows extremely
large. Notice that large amounts of memory can be required for the node under such circumstances. Another example
of user configuration is when, for performance reasons, the client processes must never be blocked by synchronous
log requests. It is possible, perhaps, that dropping or flushing events is still acceptable, since it does not affect the
performance of the client processes sending the log events.

A configuration example:

logger:add_handler(my_standard_h, logger_std_h,
 #{config => #{file => "./system_info.log",
 sync_mode_qlen => 100,
 drop_mode_qlen => 1000,
 flush_qlen => 2000}}).

Controlling Bursts of Log Requests
Large bursts of log events - many events received by the handler under a short period of time - can potentially cause
problems, such as:

• Log files grow very large, very quickly.

• Circular logs wrap too quickly so that important data is overwritten.

• Write buffers grow large, which slows down file sync operations.

For this reason, both built-in handlers offer the possibility to specify the maximum number of events to be handled
within a certain time frame. With this burst control feature enabled, the handler can avoid choking the log with massive
amounts of printouts. The configuration parameters are:

burst_limit_enable

Value true enables burst control and false disables it.

Defaults to true.

burst_limit_max_count

This is the maximum number of events to handle within a burst_limit_window_time time frame. After
the limit is reached, successive events are dropped until the end of the time frame.

Defaults to 500 events.

burst_limit_window_time

See the previous description of burst_limit_max_count.

Defaults to 1000 milliseconds.

A configuration example:

logger:add_handler(my_disk_log_h, logger_disk_log_h,
 #{config => #{file => "./my_disk_log",
 burst_limit_enable => true,
 burst_limit_max_count => 20,
 burst_limit_window_time => 500}}).

Ericsson AB. All Rights Reserved.: Kernel | 25

1.3 Logging

Terminating an Overloaded Handler
It is possible that a handler, even if it can successfully manage peaks of high load without crashing, can build up a
large message queue, or use a large amount of memory. The overload protection mechanism includes an automatic
termination and restart feature for the purpose of guaranteeing that a handler does not grow out of bounds. The feature
is configured with the following parameters:

overload_kill_enable

Value true enables the feature and false disables it.

Defaults to false.

overload_kill_qlen

This is the maximum allowed queue length. If the message queue grows larger than this, the handler process is
terminated.

Defaults to 20000 messages.

overload_kill_mem_size

This is the maximum memory size that the handler process is allowed to use. If the handler grows larger than
this, the process is terminated.

Defaults to 3000000 bytes.

overload_kill_restart_after

If the handler is terminated, it restarts automatically after a delay specified in milliseconds. The value infinity
prevents restarts.

Defaults to 5000 milliseconds.

If the handler process is terminated because of overload, it prints information about it in the log. It also prints
information about when a restart has taken place, and the handler is back in action.

Note:

The sizes of the log events affect the memory needs of the handler. For information about how to limit the size of
log events, see the logger_formatter(3) manual page.

1.3.12 Logger Proxy
The Logger proxy is an Erlang process which is part of the Kernel application's supervision tree. During startup, the
proxy process registers itself as the system_logger, meaning that log events produced by the emulator are sent
to this process.

When a log event is issued on a process which has its group leader on a remote node, Logger automatically forwards the
log event to the group leader's node. To achieve this, it first sends the log event as an Erlang message from the original
client process to the proxy on the local node, and the proxy in turn forwards the event to the proxy on the remote node.

When receiving a log event, either from the emulator or from a remote node, the proxy calls the Logger API to log
the event.

The proxy process is overload protected in the same way as described in section Protecting the Handler from Overload,
but with the following default values:

26 | Ericsson AB. All Rights Reserved.: Kernel

1.4 Logging Cookbook

 #{sync_mode_qlen => 500,
 drop_mode_qlen => 1000,
 flush_qlen => 5000,
 burst_limit_enable => false,
 overload_kill_enable => false}

For log events from the emulator, synchronous message passing mode is not applicable, since all messages are passed
asynchronously by the emulator. Drop mode is achieved by setting the system_logger to undefined, forcing
the emulator to drop events until it is set back to the proxy pid again.

The proxy uses erlang:send_nosuspend/2 when sending log events to a remote node. If the message could
not be sent without suspending the sender, it is dropped. This is to avoid blocking the proxy process.

1.3.13 See Also
disk_log(3), erlang(3), error_logger(3), logger(3), logger_disk_log_h(3),
logger_filters(3), logger_formatter(3), logger_std_h(3), sasl(6)

1.4 Logging Cookbook
Using and especially configuring Logger can be difficult at times as there are many different options that can be
changed and often more than one way to achieve the same result. This User's Guide tries to help by giving many
different examples of how you can use logger.

For more examples of practical use-cases of using Logger, Fred Hebert's blog post Erlang/OTP 21's new logger is
a great starting point.

Note:

If you find that some common Logger usage is missing from this guide, please open a pull request on github with
the suggested addition

1.4.1 Get Logger information
Print the primary Logger configurations.
1> logger:i(primary).
Primary configuration:
 Level: notice
 Filter Default: log
 Filters:
 (none)

It is also possible to fetch the configuration using logger:get_primary_config().

See also
• logger:i()

• Configuration in the Logging User's Guide

Ericsson AB. All Rights Reserved.: Kernel | 27

href

1.4 Logging Cookbook

Print the configuration of all handlers.
2> logger:i(handlers).
Handler configuration:
 Id: default
 Module: logger_std_h
 Level: all
 Formatter:
 Module: logger_formatter
 Config:
 legacy_header: true
 single_line: false
 Filter Default: stop
 Filters:
 Id: remote_gl
 Fun: fun logger_filters:remote_gl/2
 Arg: stop
 Id: domain
 Fun: fun logger_filters:domain/2
 Arg: {log,super,[otp,sasl]}
 Id: no_domain
 Fun: fun logger_filters:domain/2
 Arg: {log,undefined,[]}
 Handler Config:
 burst_limit_enable: true
 burst_limit_max_count: 500
 burst_limit_window_time: 1000
 drop_mode_qlen: 200
 filesync_repeat_interval: no_repeat
 flush_qlen: 1000
 overload_kill_enable: false
 overload_kill_mem_size: 3000000
 overload_kill_qlen: 20000
 overload_kill_restart_after: 5000
 sync_mode_qlen: 10
 type: standard_io

You can also print the configuration of a specific handler using
logger:i(HandlerName), or fetch the configuration using logger:get_handler_config(), or
logger:get_handler_config(HandlerName) for a specific handler.

See also
• logger:i()

• Configuration in the Logging User's Guide

1.4.2 Configure the Logger
Where did my progress reports go?
In OTP-21 the default primary log level is notice. The means that many log messages are by default not printed.
This includes the progress reports of supervisors. In order to get progress reports you need to raise the primary log
level to info

$ erl -kernel logger_level info
=PROGRESS REPORT==== 4-Nov-2019::16:33:11.742069 ===
 application: kernel
 started_at: nonode@nohost
=PROGRESS REPORT==== 4-Nov-2019::16:33:11.746546 ===
 application: stdlib
 started_at: nonode@nohost
Eshell V10.5.3 (abort with ^G)
1>

28 | Ericsson AB. All Rights Reserved.: Kernel

1.4 Logging Cookbook

1.4.3 Configure Logger formatter
In order to fit better into your existing logging infrastructure Logger can format its logging messages any way you
want to. Either you can use the built-in formatter, or you can build your own.

Single line configuration
Since single line logging is the default of the built-in formatter you only have to provide the empty map as the
configuration. The example below uses the sys.config to change the formatter configuration.

$ cat sys.config
[{kernel,
 [{logger,
 [{handler, default, logger_std_h,
 #{ formatter => {logger_formatter, #{ }}}}]}]}].
$ erl -config sys
Eshell V10.5.1 (abort with ^G)
1> logger:error("Oh noes, an error").
1962-10-03T11:07:47.466763-04:00 error: Oh noes, an error

However, if you just want to change it for the current session you can also do that.

1> logger:set_handler_config(default, formatter, {logger_formatter, #{}}).
ok
2> logger:error("Oh noes, another error").
1962-10-04T15:34:02.648713-04:00 error: Oh noes, another error

See also
• logger_formatter's Configuration

• Formatters in the Logging User's Guide

• logger:set_handler_config/3

Add file and line number to log entries
You can change what is printed to the log by using the formatter template:

$ cat sys.config
[{kernel,
 [{logger,
 [{handler, default, logger_std_h,
 #{ formatter => {logger_formatter,
 #{ template => [time," ", file,":",line," ",level,": ",msg,"\n"] }}}}]}]}].
$ erl -config sys
Eshell V10.5.1 (abort with ^G)
1> logger:error("Oh noes, more errors",#{ file => "shell.erl", line => 1 }).
1962-10-05T07:37:44.104241+02:00 shell.erl:1 error: Oh noes, more errors

Note that file and line have to be added in the metadata by the caller of logger:log/3 as otherwise Logger will
not know from where it was called. The file and line number are automatically added if you use the ?LOG_ERROR
macros in kernel/include/logger.hrl.

See also
• logger_formatter's Configuration

• logger_formatter's Template

• Logger Macros

• Metadata in the Logging User's Guide

Ericsson AB. All Rights Reserved.: Kernel | 29

1.4 Logging Cookbook

1.4.4 Configuring handlers
Print logs to a file
Instead of printing the logs to stdout we print them to a rotating file log.

$ cat sys.config
[{kernel,
 [{logger,
 [{handler, default, logger_std_h,
 #{ config => #{ file => "log/erlang.log",
 max_no_bytes => 4096,
 max_no_files => 5},
 formatter => {logger_formatter, #{}}}}]}]}].
$ erl -config sys
Eshell V10.5.1 (abort with ^G)
1> logger:error("Oh noes, even more errors").
ok
2> erlang:halt().
$ cat log/erlang.log
2019-10-07T11:47:16.837958+02:00 error: Oh noes, even more errors

See also
• logger_std_h's Description

• Handlers in the Logging User's Guide

Debug only handler
Add a handler that prints debug log events to a file, while the default handler prints only up to notice level events
to standard out.

$ cat sys.config
[{kernel,
 [{logger_level, all},
 {logger,
 [{handler, default, logger_std_h,
 #{ level => notice }},
 {handler, debug, logger_std_h,
 #{ filters => [{debug,{fun logger_filters:level/2, {stop, neq, debug}}}],
 config => #{ file => "log/debug.log" } }}
]}]}].
$ erl -config sys
Eshell V10.5.1 (abort with ^G)
1> logger:error("Oh noes, even more errors").
=ERROR REPORT==== 9-Oct-2019::14:40:54.784162 ===
Oh noes, even more errors
ok
2> logger:debug("A debug event").
ok
3> erlang:halt().
$ cat log/debug.log
2019-10-09T14:41:03.680541+02:00 debug: A debug event

In the configuration above we first raise the primary log level to max in order for the debug log events to get to the
handlers. Then we configure the default handler to only log notice and below events, the default log level for a handler
is all. Then the debug handler is configured with a filter to stop any log message that is not a debug level message.

It is also possible to do the same changes in an already running system using the logger module. Then you do like this:

30 | Ericsson AB. All Rights Reserved.: Kernel

1.4 Logging Cookbook

$ erl
1> logger:set_handler_config(default, level, notice).
ok
2> logger:add_handler(debug, logger_std_h, #{
 filters => [{debug,{fun logger_filters:level/2, {stop, neq, debug}}}],
 config => #{ file => "log/debug.log" } }).
ok
3> logger:set_primary_config(level, all).
ok

It is important that you do not raise the primary log level before adjusting the default handler's level as otherwise your
standard out may be flooded by debug log messages.

See also
• logger_std_h's Description

• Filters in the Logging User's Guide

1.4.5 Logging
What to log and how
The simplest way to log something is by using the Logger macros and give a report to the macro. For example if you
want to log an error:

?LOG_ERROR(#{ what => http_error, status => 418, src => ClientIP, dst => ServerIP }).

This will print the following in the default log:

=ERROR REPORT==== 10-Oct-2019::12:13:10.089073 ===
 dst: {8,8,4,4}
 src: {8,8,8,8}
 status: 418
 what: http_error

or the below if you use a single line formatter:

2019-10-10T12:14:11.921843+02:00 error: dst: {8,8,4,4}, src: {8,8,8,8}, status: 418, what: http_error

See also
• Log Message in the Logging User's Guide

Report call-backs and printing of events
If you want to do structured logging, but still want to have some control of how the final log message is formatted you
can give a report_cb as part of the metadata with your log event.

ReportCB = fun(#{ what := What, status := Status, src := Src, dst := Dst }) ->
 {ok, #hostent{ h_name = SrcName }} = inet:gethostbyaddr(Src),
 {ok, #hostent{ h_name = DstName }} = inet:gethostbyaddr(Dst),
 {"What: ~p~nStatus: ~p~nSrc: ~s (~s)~nDst: ~s (~s)~n",
 [What, Status, inet:ntoa(Src), SrcName, inet:ntoa(Dst), DstName]}
 end,
?LOG_ERROR(#{ what => http_error, status => 418, src => ClientIP, dst => ServerIP },
 #{ report_cb => ReportCB }).

This will print the following:

Ericsson AB. All Rights Reserved.: Kernel | 31

1.4 Logging Cookbook

=ERROR REPORT==== 10-Oct-2019::13:29:02.230863 ===
What: http_error
Status: 418
Src: 8.8.8.8 (dns.google)
Dst: 192.121.151.106 (erlang.org)

Note that the order that things are printed have changed, and also I added a reverse-dns lookup of the IP address. This
will not print as nicely when using a single line formatter, however you can also use a report_cb fun with 2 arguments
where the second argument is the formatting options.

See also
• Log Message in the Logging User's Guide

• Logger Report Callbacks

1.4.6 Filters
Filters are used to remove or change log events before they reach the handlers.

Process filters
If we only want debug messages from a specific process it is possible to do this with a filter like this:

%% Initial setup to use a filter for the level filter instead of the primary level
PrimaryLevel = maps:get(level, logger:get_primary_config()),
ok = logger:add_primary_filter(primary_level,
 {fun logger_filters:level/2, {log, gteq, PrimaryLevel}}),
logger:set_primary_config(filter_default, stop),
logger:set_primary_config(level, all),

%% Test that things work as they should
logger:notice("Notice should be logged"),
logger:debug("Should not be logged"),

%% Add the filter to allow PidToLog to send debug events
PidToLog = self(),
PidFilter = fun(LogEvent, _) when PidToLog =:= self() -> LogEvent;
 (_LogEvent, _) -> ignore end,
ok = logger:add_primary_filter(pid, {PidFilter,[]}),
logger:debug("Debug should be logged").

There is a bit of setup needed to allow filters to decide whether a specific process should be allowed to log. This is
because the default primary log level is notice and it is enforced before the primary filters. So in order for the pid filter
to be useful we have to raise the primary log level to all and then add a level filter that only lets certain messages at
or greater than notice through. When the setup is done, it is simple to add a filter that allows a certain pid through.

Note that doing the primary log level filtering through a filter and not through the level is quite a lot more expensive,
so make sure to test that your system can handle the extra load before you enable it on a production node.

See also
• Filters in the Logging User's Guide

• logger_filters:level/2

• logger:set_primary_config/2

Domains
Domains are used to specify which subsystem a certain log event originates from. The default handler will by default
only log events with the domain [otp] or without a domain. If you would like to include SSL log events into the
default handler log you could do this:

32 | Ericsson AB. All Rights Reserved.: Kernel

1.5 EEP-48: Documentation storage and format

1> logger:add_handler_filter(default,ssl_domain,
 {fun logger_filters:domain/2,{log,sub,[otp,ssl]}}).
2> application:ensure_all_started(ssl).
{ok,[crypto,asn1,public_key,ssl]}
3> ssl:connect("www.erlang.org",443,[{log_level,debug}]).
%% lots of text

See also
• Filters in the Logging User's Guide

• logger_filters:domain/2

• logger:set_primary_config/2

1.5 EEP-48: Documentation storage and format
This User's Guide describes the documentation storage format initially described in EEP-48. By standardizing how
API documentation is stored, it will be possible to write tools that work across languages.

To fetch the EEP-48 documentation for a module you can use code:get_doc/1.

To render the EEP-48 documentation for an Erlang module you can use shell_docs:render/2.

1.5.1 the "Docs" storage
To look for documentation for a module name example, a tool should:

Look for example.beam in the code path, parse the BEAM file and retrieve the Docs chunk. If the chunk is not
available, it should look for "example.beam" in the code path and find the doc/chunks/example.chunk file in
the application that defines the example module. If a .chunk file is not available, then documentation is not available.

The choice of using a chunk or the filesystem is completely up to the language or library. In both cases, the
documentation can be added or removed at any moment by stripping the Docs chunk or by removing the doc/chunks
directory.

For example, languages like Elixir and LFE attach the Docs chunk at compilation time, which can be controlled via
a compiler flag. On the other hand, projects like OTP itself will likely generate the doc/chunks entries on a separate
command, completely unrelated from code compilation.

1.5.2 the "Docs" format
In both storages, the documentation is written in the exactly same format: an Erlang term serialized to binary via
term_to_binary/1. The term may be optionally compressed when serialized. It must follow the type specification
below:

{docs_v1,
 Anno :: erl_anno:anno(),
 BeamLanguage :: atom(),
 Format :: binary(),
 ModuleDoc :: #{DocLanguage := DocValue} | none | hidden,
 Metadata :: map(),
 Docs ::
 [{{Kind, Name, Arity},
 Anno :: erl_anno:anno(),
 Signature :: [binary()],
 Doc :: #{DocLanguage := DocValue} | none | hidden,
 Metadata :: map()
 }]} when DocLanguage :: binary(),
 DocValue :: binary() | term()

where in the root tuple we have:

Ericsson AB. All Rights Reserved.: Kernel | 33

href

1.5 EEP-48: Documentation storage and format

Anno
annotation (line, column, file) of the definition itself (see erl_anno(3))

BeamLanguage
an atom representing the language, for example: erlang, elixir, lfe, alpaca, etc

Format
the mime type of the documentation, such as <<"text/markdown">> or <<"application/erlang+html">>. For
details of the format used by Erlang see the EEP-48 Chapter in Erl_Docgen's User's Guide.

ModuleDoc
a map with the documentation language as key, such as <<"en">> or <<"pt_BR">>, and the documentation
as a binary value. It may be the atom none in case there is no documentation or the atom hidden if
documentation has been explicitly disabled for this entry.

Metadata
a map of atom keys with any term as value. This can be used to add annotations like the authors of a
module, deprecated, or anything else a language or documentation tool may find relevant.

Docs
a list of documentation for other entities (such as functions and types) in the module.

For each entry in Docs, we have:

{Kind, Name, Arity}
the kind, name and arity identifying the function, callback, type, etc. The official entities are: function,
type and callback. Other languages will add their own. For instance, Elixir and LFE may add macro.

Anno
annotation (line, column, file) of the module documentation or of the definition itself (see erl_anno(3)).

Signature
the signature of the entity. It is is a list of binaries. Each entry represents a binary in the signature that
can be joined with a whitespace or a newline. For example, [<<"binary_to_atom(Binary,
Encoding)">>, <<"when is_binary(Binary)">>] may be rendered as a single line or two lines.
It exists exclusively for exhibition purposes.

Doc
a map with the documentation language as key, such as <<"en">> or <<"pt_BR">>, and the documentation
as a value. The documentation may either be a binary or any Erlang term, both described by Format. If it is
an Erlang term, then the Format must be <<"application/erlang+SUFFIX",>> such as <<"application/erlang
+html">> when the documentation is an Erlang representation of an HTML document. The Doc may also
be atom none in case there is no documentation or the atom hidden if documentation has been explicitly
disabled for this entry.

Metadata
a map of atom keys with any term as value.

This shared format is the heart of the EEP as it is what effectively allows cross-language collaboration.

The Metadata field exists to allow languages, tools and libraries to add custom information to each entry. This EEP
documents the following metadata keys:

authors := [binary()]
a list of authors as binaries.

cross_references := [module() | {module(), {Kind, Name, Arity}}]
a list of modules or module entries that can be used as cross references when generating documentation.

deprecated := binary()
when present, it means the current entry is deprecated with a binary that represents the reason for deprecation
and a recommendation to replace the deprecated code.

since := binary()
a binary representing the version such entry was added, such as <<"1.3.0">> or <<"20.0">>.

edit_url := binary()
a binary representing a URL to change the documentation itself.

34 | Ericsson AB. All Rights Reserved.: Kernel

1.5 EEP-48: Documentation storage and format

Any key may be added to Metadata at any time. Keys that are frequently used by the community can be standardized
in future versions.

1.5.3 See Also
erl_anno(3), shell_docs(3), EEP-48 Chapter in Erl_Docgen's User's Guide,
code:get_doc/1

Ericsson AB. All Rights Reserved.: Kernel | 35

1.5 EEP-48: Documentation storage and format

2 Reference Manual

36 | Ericsson AB. All Rights Reserved.: Kernel

kernel

kernel
Application

The Kernel application has all the code necessary to run the Erlang runtime system: file servers, code servers, and so on.

The Kernel application is the first application started. It is mandatory in the sense that the minimal system based on
Erlang/OTP consists of Kernel and STDLIB. Kernel contains the following functional areas:

• Start, stop, supervision, configuration, and distribution of applications

• Code loading

• Logging

• Global name service

• Supervision of Erlang/OTP

• Communication with sockets

• Operating system interface

Logger Handlers
Two standard logger handlers are defined in the Kernel application. These are described in the Kernel User's Guide,
and in the logger_std_h(3) and logger_disk_log_h(3) manual pages.

OS Signal Event Handler
Asynchronous OS signals may be subscribed to via the Kernel applications event manager (see OTP Design Principles
and gen_event(3)) registered as erl_signal_server. A default signal handler is installed which handles the
following signals:

sigusr1

The default handler will halt Erlang and produce a crashdump with slogan "Received SIGUSR1". This is
equivalent to calling erlang:halt("Received SIGUSR1").

sigquit

The default handler will halt Erlang immediately. This is equivalent to calling erlang:halt().

sigterm

The default handler will terminate Erlang normally. This is equivalent to calling init:stop().

Events
Any event handler added to erl_signal_server must handle the following events.

sighup

Hangup detected on controlling terminal or death of controlling process

sigquit

Quit from keyboard

sigabrt

Abort signal from abort

sigalrm

Timer signal from alarm

Ericsson AB. All Rights Reserved.: Kernel | 37

kernel

sigterm

Termination signal

sigusr1

User-defined signal 1

sigusr2

User-defined signal 2

sigchld

Child process stopped or terminated

sigstop

Stop process

sigtstp

Stop typed at terminal

Setting OS signals are described in os:set_signal/2.

Configuration
The following configuration parameters are defined for the Kernel application. For more information about
configuration parameters, see file app(4).

connect_all = true | false

If enabled (true), which also is the default, global(3) will actively connect to all nodes that becomes
known to it. Note that you also want to enable prevent_overlapping_partitions in order for global
to ensure that a fully connected network is maintained. prevent_overlapping_partitions will also
prevent inconsistencies in global's name registration and locking.

The now deprecated command line argument -connect_all <boolean> has the same effect as the
connect_all configuration parameter. If this configuration parameter is defined, it will override the command
line argument.

distributed = [Distrib]

Specifies which applications that are distributed and on which nodes they are allowed to execute. In this parameter:

• Distrib = {App,Nodes} | {App,Time,Nodes}

• App = atom()

• Time = integer()>0

• Nodes = [node() | {node(),...,node()}]

The parameter is described in application:load/2.

dist_auto_connect = Value

Specifies when nodes are automatically connected. If this parameter is not specified, a node is always
automatically connected, for example, when a message is to be sent to that node. Value is one of:

never

Connections are never automatically established, they must be explicitly connected. See net_kernel(3).

once

Connections are established automatically, but only once per node. If a node goes down, it must thereafter
be explicitly connected. See net_kernel(3).

38 | Ericsson AB. All Rights Reserved.: Kernel

kernel

permissions = [Perm]

Specifies the default permission for applications when they are started. In this parameter:

• Perm = {ApplName,Bool}

• ApplName = atom()

• Bool = boolean()

Permissions are described in application:permit/2.

logger = [Config]

Specifies the configuration for Logger, except the primary log level, which is specified with logger_level,
and the compatibility with SASL Error Logging, which is specified with logger_sasl_compatible.

The logger parameter is described in section Logging in the Kernel User's Guide.

logger_level = Level

Specifies the primary log level for Logger. Log events with the same, or a more severe level, pass through the
primary log level check. See section Logging in the Kernel User's Guide for more information about Logger and
log levels.

Level = emergency | alert | critical | error | warning | notice | info |
debug | all | none

To change the primary log level at runtime, use logger:set_primary_config(level, Level).

Defaults to notice.

logger_metadata = Metadata

Specifies primary metadata for log events.

Metadata = map()

Defaults to #{}.

logger_sasl_compatible = true | false

Specifies if Logger behaves backwards compatible with the SASL error logging functionality from releases prior
to Erlang/OTP 21.0.

If this parameter is set to true, the default Logger handler does not log any progress-, crash-, or supervisor
reports. If the SASL application is then started, it adds a Logger handler named sasl, which logs these events
according to values of the SASL configuration parameter sasl_error_logger and sasl_errlog_type.

See section Deprecated Error Logger Event Handlers and Configuration in the sasl(6) manual page for information
about the SASL configuration parameters.

See section SASL Error Logging in the SASL User's Guide, and section Backwards Compatibility with
error_logger in the Kernel User's Guide for information about the SASL error logging functionality, and how
Logger can be backwards compatible with this.

Defaults to false.

Note:

If this parameter is set to true, sasl_errlog_type indicates that progress reports shall be logged, and
the configured primary log level is notice or more severe, then SASL automatically sets the primary log
level to info. That is, this setting can potentially overwrite the value of the Kernel configuration parameter
logger_level. This is to allow progress reports, which have log level info, to be forwarded to the
handlers.

Ericsson AB. All Rights Reserved.: Kernel | 39

kernel

global_groups = [GroupTuple]

Defines global groups, see global_group(3). In this parameter:

• GroupTuple = {GroupName, [Node]} | {GroupName, PublishType, [Node]}

• GroupName = atom()

• PublishType = normal | hidden

• Node = node()

inet_default_connect_options = [{Opt, Val}]

Specifies default options for connect sockets, see inet(3).

inet_default_listen_options = [{Opt, Val}]

Specifies default options for listen (and accept) sockets, see inet(3).

inet_dist_use_interface = ip_address()

If the host of an Erlang node has many network interfaces, this parameter specifies which one to listen on. For
the type definition of ip_address(), see inet(3).

inet_dist_listen_min = First
inet_dist_listen_max = Last

Defines the First..Last port range for the listener socket of a distributed Erlang node.

inet_dist_listen_options = Opts

Defines a list of extra socket options to be used when opening the listening socket for a distributed Erlang node.
See gen_tcp:listen/2.

inet_dist_connect_options = Opts

Defines a list of extra socket options to be used when connecting to other distributed Erlang nodes. See
gen_tcp:connect/4.

inet_parse_error_log = silent

If set, no log events are issued when erroneous lines are found and skipped in the various Inet configuration files.

inetrc = Filename

The name (string) of an Inet user configuration file. For details, see section Inet Configuration in the
ERTS User's Guide.

net_setuptime = SetupTime

SetupTime must be a positive integer or floating point number, and is interpreted as the maximum allowed
time for each network operation during connection setup to another Erlang node. The maximum allowed value
is 120. If higher values are specified, 120 is used. Default is 7 seconds if the variable is not specified, or if the
value is incorrect (for example, not a number).

Notice that this value does not limit the total connection setup time, but rather each individual network operation
during the connection setup and handshake.

net_ticker_spawn_options = Opts

Defines a list of extra spawn options for net ticker processes. There exist one such process for each connection
to another node. A net ticker process is responsible for supervising the connection it is associated with. These
processes also execute the distribution handshake protocol when setting up connections. When there is a large
number of distribution connections, setting up garbage collection options can be helpful to reduce memory usage.
Default is [link, {priority, max}], and these two options cannot be changed. The monitor and
{monitor, MonitorOpts} options are not allowed and will be dropped if present. See the documentation

40 | Ericsson AB. All Rights Reserved.: Kernel

kernel

of the erlang:spawn_opt/4 BIF for information about valid options. If the Opts list is not a proper list, or
containing invalid options the setup of connections will fail.

Note that the behavior described above is only true if the distribution carrier protocol used is implemented
as described in ERTS User's Guide # How to implement an Alternative Carrier for the Erlang Distribution #
Distribution Module without further alterations. The implementer of the distribution carrier protocol used, may
have chosen to ignore the net_ticker_spawn_options parameter or altered its behavior. Currently all
distribution modules shipped with OTP do, however, behave as described above.

net_tickintensity = NetTickIntensity

Net tick intensity specifies how many ticks to send during a net tick time period when no other data is sent
over a connection to another node. This also determines how often to check for data from the other node. The
higher net tick intensity, the closer to the chosen net tick time period the node will detect an unresponsive node.
The net tick intensity defaults to 4. The value of NetTickIntensity should be an integer in the range
4..1000. If the NetTickIntensity is not an integer or an integer less than 4, 4 will silently be used. If
NetTickIntensity is an integer larger than 1000, 1000 will silently be used.

Note:

Note that all communicating nodes are expected to use the same net tick intensity as well as the same net
tick time.

Warning:

Be careful not to set a too high net tick intensity, since you can overwhelm the node with work if it is set
too high.

net_ticktime = NetTickTime

Specifies the net tick time in seconds. This is the approximate time a connected node may be unresponsive until
it is considered down and thereby disconnected.

Net tick time together with net tick intensity determines an interval TickInterval = NetTickTime/
NetTickIntensity. Once every TickInterval seconds, each connected node is ticked if nothing has
been sent to it during that last TickInterval seconds. A tick is a small package sent on the connection. A
connected node is considered to be down if no ticks or payload packages have been received during the last
NetTickIntensity number of TickInterval seconds intervals. This ensures that nodes that are not
responding, for reasons such as hardware errors, are considered to be down.

As the availability is only checked every TickInterval seconds, the actual time T a node have been
unresponsive when detected may vary between MinT and MaxT, where:

MinT = NetTickTime - NetTickTime / NetTickIntensity
MaxT = NetTickTime + NetTickTime / NetTickIntensity

NetTickTime defaults to 60 seconds and NetTickIntensity defaults to 4. Thus, 45 < T < 75 seconds.

Note:

Notice that all communicating nodes are to have the same NetTickTime and NetTickIntensity values
specified, as it determines both the frequency of outgoing ticks and the expected frequency of incominging
ticks.

Ericsson AB. All Rights Reserved.: Kernel | 41

kernel

NetTickTime needs to be a multiple of NetTickIntensity. If the configured
values are not, NetTickTime will internally be rounded up to the nearest millisecond.
net_kernel:get_net_ticktime() will, however, report net tick time truncated to the nearest second.

Normally, a terminating node is detected immediately by the transport protocol (like TCP/IP).

prevent_overlapping_partitions = true | false

If enabled (true), global will actively prevent overlapping partitions from forming when connections are
lost between nodes. This fix is enabled by default. If you are about to disable this fix, make sure to read the
global(3) documentation about this fix for more important information about this.

shutdown_timeout = integer() | infinity

Specifies the time application_controller waits for an application to terminate during node shutdown.
If the timer expires, application_controller brutally kills application_master of the hanging
application. If this parameter is undefined, it defaults to infinity.

sync_nodes_mandatory = [NodeName]

Specifies which other nodes that must be alive for this node to start properly. If some node in the list does not
start within the specified time, this node does not start either. If this parameter is undefined, it defaults to [].

sync_nodes_optional = [NodeName]

Specifies which other nodes that can be alive for this node to start properly. If some node in this list does not start
within the specified time, this node starts anyway. If this parameter is undefined, it defaults to the empty list.

sync_nodes_timeout = integer() | infinity

Specifies the time (in milliseconds) that this node waits for the mandatory and optional nodes to start. If this
parameter is undefined, no node synchronization is performed. This option ensures that global is synchronized.

start_distribution = true | false

Starts all distribution services, such as rpc, global, and net_kernel if the parameter is true. This
parameter is to be set to false for systems who want to disable all distribution functionality.

Defaults to true.

start_dist_ac = true | false

Starts the dist_ac server if the parameter is true. This parameter is to be set to true for systems using
distributed applications.

Defaults to false. If this parameter is undefined, the server is started if parameter distributed is set.

start_boot_server = true | false

Starts the boot_server if the parameter is true (see erl_boot_server(3)). This parameter is to be set
to true in an embedded system using this service.

Defaults to false.

boot_server_slaves = [SlaveIP]

If configuration parameter start_boot_server is true, this parameter can be used to initialize
boot_server with a list of slave IP addresses:

SlaveIP = string() | atom | {integer(),integer(),integer(),integer()},

where 0 <= integer() <=255.

Examples of SlaveIP in atom, string, and tuple form:

'150.236.16.70', "150,236,16,70", {150,236,16,70}.

Defaults to [].

42 | Ericsson AB. All Rights Reserved.: Kernel

kernel

start_disk_log = true | false

Starts the disk_log_server if the parameter is true (see disk_log(3)). This parameter is to be set to
true in an embedded system using this service.

Defaults to false.

start_pg = true | false

Starts the default pg scope server (see pg(3)) if the parameter is true. This parameter is to be set to true
in an embedded system that uses this service.

Defaults to false.

start_timer = true | false

Starts the timer_server if the parameter is true (see timer(3)). This parameter is to be set to true in
an embedded system using this service.

Defaults to false.

shell_history = enabled | disabled | module()

Specifies whether shell history should be logged to disk between usages of erl (enabled), not logged at all
(disabled), or a user-specified module will be used to log shell history. This module should export load()
-> [string()] returning a list of strings to load in the shell when it starts, and add(iodata()) -> ok.
called every time new line is entered in the shell. By default logging is disabled.

shell_history_drop = [string()]

Specific log lines that should not be persisted. For example ["q().", "init:stop()."] will allow to
ignore commands that shut the node down. Defaults to [].

shell_history_file_bytes = integer()

How many bytes the shell should remember. By default, the value is set to 512kb, and the minimal value is 50kb.

shell_history_path = string()

Specifies where the shell history files will be stored. defaults to the user's cache directory as returned by
filename:basedir(user_cache, "erlang-history").

shutdown_func = {Mod, Func}

Where:

• Mod = atom()

• Func = atom()

Sets a function that application_controller calls when it starts to terminate. The function is called as
Mod:Func(Reason), where Reason is the terminate reason for application_controller, and it must
return as soon as possible for application_controller to terminate properly.

source_search_rules = [DirRule] | [SuffixRule]

Where:

• DirRule = {ObjDirSuffix,SrcDirSuffix}

• SuffixRule = {ObjSuffix,SrcSuffix,[DirRule]}

• ObjDirSuffix = string()

• SrcDirSuffix = string()

• ObjSuffix = string()

• SrcSuffix = string()

Ericsson AB. All Rights Reserved.: Kernel | 43

kernel

Specifies a list of rules for use by filelib:find_file/2 filelib:find_source/2 If this is set to
some other value than the empty list, it replaces the default rules. Rules can be simple pairs of directory suffixes,
such as {"ebin", "src"}, which are used by filelib:find_file/2, or triples specifying separate
directory suffix rules depending on file name extensions, for example [{".beam", ".erl", [{"ebin",
"src"}]}, which are used by filelib:find_source/2. Both kinds of rules can be mixed in the list.

The interpretation of ObjDirSuffix and SrcDirSuffix is as follows: if the end of the directory name
where an object is located matches ObjDirSuffix, then the name created by replacing ObjDirSuffix with
SrcDirSuffix is expanded by calling filelib:wildcard/1, and the first regular file found among the
matches is the source file.

Deprecated Configuration Parameters
In Erlang/OTP 21.0, a new API for logging was added. The old error_logger event manager, and event handlers
running on this manager, still work, but they are no longer used by default.

The following application configuration parameters can still be set, but they are only used if the corresponding
configuration parameters for Logger are not set.

error_logger
Replaced by setting the type, and possibly file and modes parameters of the default logger_std_h
handler. Example:

erl -kernel logger '[{handler,default,logger_std_h,#{config=>#{file=>"/tmp/erlang.log"}}}]'

error_logger_format_depth
Replaced by setting the depth parameter of the default handlers formatter. Example:

erl -kernel logger '[{handler,default,logger_std_h,#{formatter=>{logger_formatter,#{legacy_header=>true,template=>[{logger_formatter,header},"\n",msg,"\n"],depth=>10}}}]'

See Backwards compatibility with error_logger for more information.

See Also
app(4), application(3), code(3), disk_log(3), erl_boot_server(3), erl_ddll(3),
file(3), global(3), global_group(3), heart(3), inet(3), logger(3), net_kernel(3),
os(3), pg(3), rpc(3), seq_trace(3), user(3), timer(3)

44 | Ericsson AB. All Rights Reserved.: Kernel

app

app
Name

The application resource file specifies the resources an application uses, and how the application is started. There
must always be one application resource file called Application.app for each application Application in
the system.

The file is read by the application controller when an application is loaded/started. It is also used by the functions in
systools, for example when generating start scripts.

File Syntax
The application resource file is to be called Application.app, where Application is the application name.
The file is to be located in directory ebin for the application.

The file must contain a single Erlang term, which is called an application specification:

{application, Application,
 [{description, Description},
 {id, Id},
 {vsn, Vsn},
 {modules, Modules},
 {maxP, MaxP},
 {maxT, MaxT},
 {registered, Names},
 {included_applications, Apps},
 {optional_applications, Apps},
 {applications, Apps},
 {env, Env},
 {mod, Start},
 {start_phases, Phases},
 {runtime_dependencies, RTDeps}]}.

 Value Default
 ----- -------
Application atom() -
Description string() ""
Id string() ""
Vsn string() ""
Modules [Module] []
MaxP int() infinity
MaxT int() infinity
Names [Name] []
Apps [App] []
Env [{Par,Val}] []
Start {Module,StartArgs} []
Phases [{Phase,PhaseArgs}] undefined
RTDeps [ApplicationVersion] []

Module = Name = App = Par = Phase = atom()
Val = StartArgs = PhaseArgs = term()
ApplicationVersion = string()

Application
Application name.

For the application controller, all keys are optional. The respective default values are used for any omitted keys.

The functions in systools require more information. If they are used, the following keys are mandatory:

• description

Ericsson AB. All Rights Reserved.: Kernel | 45

app

• vsn

• modules

• registered

• applications

The other keys are ignored by systools.

description

A one-line description of the application.

id

Product identification, or similar.

vsn

Version of the application.

modules

All modules introduced by this application. systools uses this list when generating start scripts and tar files.
A module can only be defined in one application.

maxP

Deprecated - is ignored

Maximum number of processes allowed in the application.

maxT

Maximum time, in milliseconds, that the application is allowed to run. After the specified time, the application
terminates automatically.

registered

All names of registered processes started in this application. systools uses this list to detect name clashes
between different applications.

included_applications

All applications included by this application. When this application is started, all included applications are loaded
automatically, but not started, by the application controller. It is assumed that the top-most supervisor of the
included application is started by a supervisor of this application.

applications

All applications that must be started before this application. If an application is also listed in
optional_applications, then the application is not required to exist (but if it exists, it is also guaranteed
to be started before this one).

systools uses this list to generate correct start scripts. Defaults to the empty list, but notice that all applications
have dependencies to (at least) Kernel and STDLIB.

optional_applications

A list of applications that are optional. Note if you want an optional dependency to be automatically
started before the current application whenever it is available, it must be listed on both applications and
optional_applications.

env

Configuration parameters used by the application. The value of a configuration parameter is retrieved by calling
application:get_env/1,2. The values in the application resource file can be overridden by values in a
configuration file (see config(4)) or by command-line flags (see erts:erl(1)).

46 | Ericsson AB. All Rights Reserved.: Kernel

app

mod

Specifies the application callback module and a start argument, see application(3).

Key mod is necessary for an application implemented as a supervision tree, otherwise the application controller
does not know how to start it. mod can be omitted for applications without processes, typically code libraries,
for example, STDLIB.

start_phases

A list of start phases and corresponding start arguments for the application. If this key
is present, the application master, in addition to the usual call to Module:start/2, also
calls Module:start_phase(Phase,Type,PhaseArgs) for each start phase defined by key
start_phases. Only after this extended start procedure, application:start(Application) returns.

Start phases can be used to synchronize startup of an application and its included applications. In this case, key
mod must be specified as follows:

{mod, {application_starter,[Module,StartArgs]}}

The application master then calls Module:start/2 for the primary application, followed by calls to
Module:start_phase/3 for each start phase (as defined for the primary application), both for the primary
application and for each of its included applications, for which the start phase is defined.

This implies that for an included application, the set of start phases must be a subset of the set of phases defined
for the primary application. For more information, see OTP Design Principles.

runtime_dependencies

A list of application versions that the application depends on. An example of such an application version is
"kernel-3.0". Application versions specified as runtime dependencies are minimum requirements. That is,
a larger application version than the one specified in the dependency satisfies the requirement. For information
about how to compare application versions, see section Versions in the System Principles User's Guide.

Notice that the application version specifies a source code version. One more, indirect, requirement is that the
installed binary application of the specified version is built so that it is compatible with the rest of the system.

Some dependencies can only be required in specific runtime scenarios. When such optional dependencies exist,
these are specified and documented in the corresponding "App" documentation of the specific application.

Warning:

The runtime_dependencies key was introduced in OTP 17.0. The type of its value might be subject
to changes during the OTP 17 release.

Warning:

All runtime dependencies specified in OTP applications during the OTP 17 release may not be completely
correct. This is actively being worked on. Declared runtime dependencies in OTP applications are expected
to be correct in OTP 18.

See Also
application(3), systools(3)

Ericsson AB. All Rights Reserved.: Kernel | 47

application

application
Erlang module

In OTP, application denotes a component implementing some specific functionality, that can be started and stopped
as a unit, and that can be reused in other systems. This module interacts with application controller, a process started
at every Erlang runtime system. This module contains functions for controlling applications (for example, starting and
stopping applications), and functions to access information about applications (for example, configuration parameters).

An application is defined by an application specification. The specification is normally located in an application
resource file named Application.app, where Application is the application name. For details about the
application specification, see app(4).

This module can also be viewed as a behaviour for an application implemented according to the OTP design principles
as a supervision tree. The definition of how to start and stop the tree is to be located in an application callback module,
exporting a predefined set of functions.

For details about applications and behaviours, see OTP Design Principles.

Data Types
start_type() =
 normal |
 {takeover, Node :: node()} |
 {failover, Node :: node()}
restart_type() = permanent | transient | temporary
tuple_of(T)
A tuple where the elements are of type T.

Exports

ensure_all_started(Application) -> {ok, Started} | {error, Reason}
ensure_all_started(Application, Type) ->
 {ok, Started} | {error, Reason}
Types:

Application = atom()
Type = restart_type()
Started = [atom()]
Reason = term()

Equivalent to calling start/1,2 repeatedly on all dependencies that are not yet started for an application. Optional
dependencies will also be loaded and started if they are available.

Returns {ok, AppNames} for a successful start or for an already started application (which is, however, omitted
from the AppNames list).

The function reports {error, {AppName,Reason}} for errors, where Reason is any possible reason returned
by start/1,2 when starting a specific dependency.

If an error occurs, the applications started by the function are stopped to bring the set of running applications back
to its initial state.

48 | Ericsson AB. All Rights Reserved.: Kernel

application

ensure_started(Application) -> ok | {error, Reason}
ensure_started(Application, Type) -> ok | {error, Reason}
Types:

Application = atom()
Type = restart_type()
Reason = term()

Equivalent to start/1,2 except it returns ok for already started applications.

get_all_env() -> Env
get_all_env(Application) -> Env
Types:

Application = atom()
Env = [{Par :: atom(), Val :: term()}]

Returns the configuration parameters and their values for Application. If the argument is omitted, it defaults to
the application of the calling process.

If the specified application is not loaded, or if the process executing the call does not belong to any application, the
function returns [].

get_all_key() -> [] | {ok, Keys}
get_all_key(Application) -> undefined | Keys
Types:

Application = atom()
Keys = {ok, [{Key :: atom(), Val :: term()}, ...]}

Returns the application specification keys and their values for Application. If the argument is omitted, it defaults
to the application of the calling process.

If the specified application is not loaded, the function returns undefined. If the process executing the call does not
belong to any application, the function returns [].

get_application() -> undefined | {ok, Application}
get_application(PidOrModule) -> undefined | {ok, Application}
Types:

PidOrModule = (Pid :: pid()) | (Module :: module())
Application = atom()

Returns the name of the application to which the process Pid or the module Module belongs. Providing no argument
is the same as calling get_application(self()).

If the specified process does not belong to any application, or if the specified process or module does not exist, the
function returns undefined.

get_env(Par) -> undefined | {ok, Val}
get_env(Application, Par) -> undefined | {ok, Val}
Types:

Ericsson AB. All Rights Reserved.: Kernel | 49

application

Application = Par = atom()
Val = term()

Returns the value of configuration parameter Par for Application. If the application argument is omitted, it
defaults to the application of the calling process.

Returns undefined if any of the following applies:

• The specified application is not loaded.

• The configuration parameter does not exist.

• The process executing the call does not belong to any application.

get_env(Application, Par, Def) -> Val
Types:

Application = Par = atom()
Def = Val = term()

Works like get_env/2 but returns value Def when configuration parameter Par does not exist.

get_key(Key) -> undefined | {ok, Val}
get_key(Application, Key) -> undefined | {ok, Val}
Types:

Application = Key = atom()
Val = term()

Returns the value of the application specification key Key for Application. If the application argument is omitted,
it defaults to the application of the calling process.

Returns undefined if any of the following applies:

• The specified application is not loaded.

• The specification key does not exist.

• The process executing the call does not belong to any application.

load(AppDescr) -> ok | {error, Reason}
load(AppDescr, Distributed) -> ok | {error, Reason}
Types:

50 | Ericsson AB. All Rights Reserved.: Kernel

application

AppDescr = Application | (AppSpec :: application_spec())
Application = atom()
Distributed =
 {Application, Nodes} | {Application, Time, Nodes} | default
Nodes = [node() | tuple_of(node())]
Time = integer() >= 1
Reason = term()
application_spec() =
 {application,
 Application :: atom(),
 AppSpecKeys :: [application_opt()]}
application_opt() =
 {description, Description :: string()} |
 {vsn, Vsn :: string()} |
 {id, Id :: string()} |
 {modules, [Module :: module()]} |
 {registered, Names :: [Name :: atom()]} |
 {applications, [Application :: atom()]} |
 {included_applications, [Application :: atom()]} |
 {env, [{Par :: atom(), Val :: term()}]} |
 {start_phases,
 [{Phase :: atom(), PhaseArgs :: term()}] | undefined} |
 {maxT, MaxT :: timeout()} |
 {maxP, MaxP :: integer() >= 1 | infinity} |
 {mod, Start :: {Module :: module(), StartArgs :: term()}}

Loads the application specification for an application into the application controller. It also loads the application
specifications for any included applications. Notice that the function does not load the Erlang object code.

The application can be specified by its name Application. In this case, the application controller searches the code
path for the application resource file Application.app and loads the specification it contains.

The application specification can also be specified directly as a tuple AppSpec, having the format and contents as
described in app(4).

If Distributed == {Application,[Time,]Nodes}, the application becomes distributed. The argument
overrides the value for the application in the Kernel configuration parameter distributed. Application must
be the application name (same as in the first argument). If a node crashes and Time is specified, the application
controller waits for Time milliseconds before attempting to restart the application on another node. If Time is not
specified, it defaults to 0 and the application is restarted immediately.

Nodes is a list of node names where the application can run, in priority from left to right. Node names can be grouped
using tuples to indicate that they have the same priority.

Example:

Nodes = [cp1@cave, {cp2@cave, cp3@cave}]

This means that the application is preferably to be started at cp1@cave. If cp1@cave is down, the application is
to be started at cp2@cave or cp3@cave.

If Distributed == default, the value for the application in the Kernel configuration parameter distributed
is used.

Ericsson AB. All Rights Reserved.: Kernel | 51

application

loaded_applications() -> [{Application, Description, Vsn}]
Types:

Application = atom()
Description = Vsn = string()

Returns a list with information about the applications, and included applications, which are loaded using load/1,2.
Application is the application name. Description and Vsn are the values of their description and vsn
application specification keys, respectively.

set_env(Config) -> ok
set_env(Config, Opts) -> ok
Types:

Config = [{Application, Env}]
Application = atom()
Env = [{Par :: atom(), Val :: term()}]
Opts = [{timeout, timeout()} | {persistent, boolean()}]

Sets the configuration Config for multiple applications. It is equivalent to calling set_env/4 on each application
individually, except it is more efficient. The given Config is validated before the configuration is set.

set_env/2 uses the standard gen_server time-out value (5000 ms). Option timeout can be specified if another
time-out value is useful, for example, in situations where the application controller is heavily loaded.

Option persistent can be set to true to guarantee that parameters set with set_env/2 are not overridden by
those defined in the application resource file on load. This means that persistent values will stick after the application
is loaded and also on application reload.

If an application is given more than once or if an application has the same key given more than once, the behaviour is
undefined and a warning message will be logged. In future releases, an error will be raised.

set_env/1 is equivalent to set_env(Config, []).

Warning:

Use this function only if you know what you are doing, that is, on your own applications. It is very application-
dependent and configuration parameter-dependent when and how often the value is read by the application. Careless
use of this function can put the application in a weird, inconsistent, and malfunctioning state.

permit(Application, Permission) -> ok | {error, Reason}
Types:

Application = atom()
Permission = boolean()
Reason = term()

Changes the permission for Application to run at the current node. The application must be loaded using
load/1,2 for the function to have effect.

If the permission of a loaded, but not started, application is set to false, start returns ok but the application is
not started until the permission is set to true.

If the permission of a running application is set to false, the application is stopped. If the permission later is set
to true, it is restarted.

52 | Ericsson AB. All Rights Reserved.: Kernel

application

If the application is distributed, setting the permission to false means that the application will be started at, or moved
to, another node according to how its distribution is configured (see load/2).

The function does not return until the application is started, stopped, or successfully moved to another node. However,
in some cases where permission is set to true, the function returns ok even though the application is not started. This
is true when an application cannot start because of dependencies to other applications that are not yet started. When
they are started, Application is started as well.

By default, all applications are loaded with permission true on all nodes. The permission can be configured using
the Kernel configuration parameter permissions.

set_env(Application, Par, Val) -> ok
set_env(Application, Par, Val, Opts) -> ok
Types:

Application = Par = atom()
Val = term()
Opts = [{timeout, timeout()} | {persistent, boolean()}]

Sets the value of configuration parameter Par for Application.

set_env/4 uses the standard gen_server time-out value (5000 ms). Option timeout can be specified if another
time-out value is useful, for example, in situations where the application controller is heavily loaded.

If set_env/4 is called before the application is loaded, the application environment values specified in file
Application.app override the ones previously set. This is also true for application reloads.

Option persistent can be set to true to guarantee that parameters set with set_env/4 are not overridden by
those defined in the application resource file on load. This means that persistent values will stick after the application
is loaded and also on application reload.

Warning:

Use this function only if you know what you are doing, that is, on your own applications. It is very application-
dependent and configuration parameter-dependent when and how often the value is read by the application. Careless
use of this function can put the application in a weird, inconsistent, and malfunctioning state.

start(Application) -> ok | {error, Reason}
start(Application, Type) -> ok | {error, Reason}
Types:

Application = atom()
Type = restart_type()
Reason = term()

Starts Application. If it is not loaded, the application controller first loads it using load/1. It ensures that
any included applications are loaded, but does not start them. That is assumed to be taken care of in the code for
Application.

The application controller checks the value of the application specification key applications, to ensure that all
applications needed to be started before this application are running. If an application is missing and the application
is not marked as optional, {error,{not_started,App}} is returned, where App is the name of the missing
application. Note this function makes no attempt to start any of the applications listed in applications, not
even optional ones. See ensure_all_started/1,2 for recursively starting the current application and its
dependencies.

Ericsson AB. All Rights Reserved.: Kernel | 53

application

Once validated, the application controller then creates an application master for the application. The application
master becomes the group leader of all the processes in the application. I/O is forwarded to the previous group leader,
though, this is just a way to identify processes that belong to the application. Used for example to find itself from any
process, or, reciprocally, to kill them all when it terminates.

The application master starts the application by calling the application callback function Module:start/2 as
defined by the application specification key mod.

Argument Type specifies the type of the application. If omitted, it defaults to temporary.

• If a permanent application terminates, all other applications and the entire Erlang node are also terminated.

• If a transient application terminates:

• with Reason == normal, this is reported but no other applications are terminated.

• abnormally, all other applications and the entire Erlang node are also terminated.

• If a temporary application terminates, this is reported but no other applications are terminated.

Notice that an application can always be stopped explicitly by calling stop/1. Regardless of the type of the
application, no other applications are affected.

Notice also that the transient type is of little practical use, because when a supervision tree terminates, the reason is
set to shutdown, not normal.

start_type() -> StartType | undefined | local
Types:

StartType = start_type()
This function is intended to be called by a process belonging to an application, when the application is started, to
determine the start type, which is StartType or local.

For a description of StartType, see Module:start/2.

local is returned if only parts of the application are restarted (by a supervisor), or if the function is called outside
a startup.

If the process executing the call does not belong to any application, the function returns undefined.

stop(Application) -> ok | {error, Reason}
Types:

Application = atom()
Reason = term()

Stops Application. The application master calls Module:prep_stop/1, if such a function is defined, and then
tells the top supervisor of the application to shut down (see supervisor(3)). This means that the entire supervision
tree, including included applications, is terminated in reversed start order. After the shutdown, the application master
calls Module:stop/1. Module is the callback module as defined by the application specification key mod.

Last, the application master terminates. Notice that all processes with the application master as group leader, that is,
processes spawned from a process belonging to the application, are also terminated.

When stopped, the application is still loaded.

To stop a distributed application, stop/1 must be called on all nodes where it can execute (that is, on all nodes where
it has been started). The call to stop/1 on the node where the application currently executes stops its execution. The
application is not moved between nodes, as stop/1 is called on the node where the application currently executes
before stop/1 is called on the other nodes.

54 | Ericsson AB. All Rights Reserved.: Kernel

application

takeover(Application, Type) -> ok | {error, Reason}
Types:

Application = atom()
Type = restart_type()
Reason = term()

Takes over the distributed application Application, which executes at another node Node. At the current
node, the application is restarted by calling Module:start({takeover,Node},StartArgs). Module and
StartArgs are retrieved from the loaded application specification. The application at the other node is not stopped
until the startup is completed, that is, when Module:start/2 and any calls to Module:start_phase/3 have
returned.

Thus, two instances of the application run simultaneously during the takeover, so that data can be transferred from the
old to the new instance. If this is not an acceptable behavior, parts of the old instance can be shut down when the new
instance is started. However, the application cannot be stopped entirely, at least the top supervisor must remain alive.

For a description of Type, see start/1,2.

unload(Application) -> ok | {error, Reason}
Types:

Application = atom()
Reason = term()

Unloads the application specification for Application from the application controller. It also unloads the
application specifications for any included applications. Notice that the function does not purge the Erlang object code.

unset_env(Application, Par) -> ok
unset_env(Application, Par, Opts) -> ok
Types:

Application = Par = atom()
Opts = [{timeout, timeout()} | {persistent, boolean()}]

Removes the configuration parameter Par and its value for Application.

unset_env/2 uses the standard gen_server time-out value (5000 ms). Option timeout can be specified if
another time-out value is useful, for example, in situations where the application controller is heavily loaded.

unset_env/3 also allows the persistent option to be passed (see set_env/4).

Warning:

Use this function only if you know what you are doing, that is, on your own applications. It is very application-
dependent and configuration parameter-dependent when and how often the value is read by the application. Careless
use of this function can put the application in a weird, inconsistent, and malfunctioning state.

which_applications() -> [{Application, Description, Vsn}]
which_applications(Timeout) -> [{Application, Description, Vsn}]
Types:

Ericsson AB. All Rights Reserved.: Kernel | 55

application

Timeout = timeout()
Application = atom()
Description = Vsn = string()

Returns a list with information about the applications that are currently running. Application is the application
name. Description and Vsn are the values of their description and vsn application specification keys,
respectively.

which_applications/0 uses the standard gen_server time-out value (5000 ms). A Timeout argument can
be specified if another time-out value is useful, for example, in situations where the application controller is heavily
loaded.

The following functions are to be exported from an application callback module.

Exports

Module:start(StartType, StartArgs) -> {ok, Pid} | {ok, Pid, State} | {error,
Reason}
Types:

StartType = start_type()

StartArgs = term()

Pid = pid()

State = term()

This function is called whenever an application is started using start/1,2, and is to start the processes of the
application. If the application is structured according to the OTP design principles as a supervision tree, this means
starting the top supervisor of the tree.

StartType defines the type of start:

• normal if it is a normal startup.

• normal also if the application is distributed and started at the current node because of a failover from another
node, and the application specification key start_phases == undefined.

• {takeover,Node} if the application is distributed and started at the current node because of a takeover from
Node, either because takeover/2 has been called or because the current node has higher priority than Node.

• {failover,Node} if the application is distributed and started at the current node because of a failover from
Node, and the application specification key start_phases /= undefined.

StartArgs is the StartArgs argument defined by the application specification key mod.

The function is to return {ok,Pid} or {ok,Pid,State}, where Pid is the pid of the top supervisor and
State is any term. If omitted, State defaults to []. If the application is stopped later, State is passed to
Module:prep_stop/1.

Module:start_phase(Phase, StartType, PhaseArgs) -> ok | {error, Reason}
Types:

Phase = atom()

StartType = start_type()

PhaseArgs = term()

Pid = pid()

State = state()

56 | Ericsson AB. All Rights Reserved.: Kernel

application

Starts an application with included applications, when synchronization is needed between processes in the different
applications during startup.

The start phases are defined by the application specification key start_phases == [{Phase,PhaseArgs}].
For included applications, the set of phases must be a subset of the set of phases defined for the including application.

The function is called for each start phase (as defined for the primary application) for the primary application and all
included applications, for which the start phase is defined.

For a description of StartType, see Module:start/2.

Module:prep_stop(State) -> NewState
Types:

State = NewState = term()

This function is called when an application is about to be stopped, before shutting down the processes of the application.

State is the state returned from Module:start/2, or [] if no state was returned. NewState is any term and
is passed to Module:stop/1.

The function is optional. If it is not defined, the processes are terminated and then Module:stop(State) is called.

Module:stop(State)
Types:

State = term()

This function is called whenever an application has stopped. It is intended to be the opposite of Module:start/2
and is to do any necessary cleaning up. The return value is ignored.

State is the return value of Module:prep_stop/1, if such a function exists. Otherwise State is taken from
the return value of Module:start/2.

Module:config_change(Changed, New, Removed) -> ok
Types:

Changed = [{Par,Val}]

New = [{Par,Val}]

Removed = [Par]

 Par = atom()

 Val = term()

This function is called by an application after a code replacement, if the configuration parameters have changed.

Changed is a list of parameter-value tuples including all configuration parameters with changed values.

New is a list of parameter-value tuples including all added configuration parameters.

Removed is a list of all removed parameters.

See Also
OTP Design Principles, kernel(6), app(4)

Ericsson AB. All Rights Reserved.: Kernel | 57

auth

auth
Erlang module

This module is deprecated. For a description of the Magic Cookie system, refer to Distributed Erlang in the Erlang
Reference Manual.

Data Types
cookie() = atom()

Exports

cookie() -> Cookie
Types:

Cookie = cookie()
Use erlang:get_cookie() in ERTS instead.

cookie(TheCookie) -> true
Types:

TheCookie = Cookie | [Cookie]
The cookie can also be specified as a list with a single atom element.

Cookie = cookie()
Use erlang:set_cookie(node(), Cookie) in ERTS instead.

is_auth(Node) -> yes | no
Types:

Node = node()
Returns yes if communication with Node is authorized. Notice that a connection to Node is established in this case.
Returns no if Node does not exist or communication is not authorized (it has another cookie than auth thinks it has).

Use net_adm:ping(Node) instead.

node_cookie([Node, Cookie]) -> yes | no
Types:

Node = node()

Cookie = cookie()

Equivalent to node_cookie(Node, Cookie).

node_cookie(Node, Cookie) -> yes | no
Types:

Node = node()
Cookie = cookie()

Sets the magic cookie of Node to Cookie and verifies the status of the authorization. Equivalent to calling
erlang:set_cookie(Node, Cookie), followed by auth:is_auth(Node).

58 | Ericsson AB. All Rights Reserved.: Kernel

code

code
Erlang module

This module contains the interface to the Erlang code server, which deals with the loading of compiled code into a
running Erlang runtime system.

The runtime system can be started in interactive or embedded mode. Which one is decided by the command-line
flag -mode:

% erl -mode interactive

The modes are as follows:

• In interactive mode, which is default, only some code is loaded during system startup, basically the modules
needed by the runtime system. Other code is dynamically loaded when first referenced. When a call to a function
in a certain module is made, and the module is not loaded, the code server searches for and tries to load the module.

• In embedded mode, modules are not auto loaded. Trying to use a module that has not been loaded results in an
error. This mode is recommended when the boot script loads all modules, as it is typically done in OTP releases.
(Code can still be loaded later by explicitly ordering the code server to do so).

To prevent accidentally reloading of modules affecting the Erlang runtime system, directories kernel, stdlib, and
compiler are considered sticky. This means that the system issues a warning and rejects the request if a user tries
to reload a module residing in any of them. The feature can be disabled by using command-line flag -nostick.

Code Path
In interactive mode, the code server maintains a search path, usually called the code path, consisting of a list of
directories, which it searches sequentially when trying to load a module.

Initially, the code path consists of the current working directory and all Erlang object code directories under library
directory $OTPROOT/lib, where $OTPROOT is the installation directory of Erlang/OTP, code:root_dir().
Directories can be named Name[-Vsn] and the code server, by default, chooses the directory with the highest version
number among those having the same Name. Suffix -Vsn is optional. If an ebin directory exists under Name[-
Vsn], this directory is added to the code path.

Environment variable ERL_LIBS (defined in the operating system) can be used to define more library directories to
be handled in the same way as the standard OTP library directory described above, except that directories without an
ebin directory are ignored.

All application directories found in the additional directories appear before the standard OTP applications, except for
the Kernel and STDLIB applications, which are placed before any additional applications. In other words, modules
found in any of the additional library directories override modules with the same name in OTP, except for modules
in Kernel and STDLIB.

Environment variable ERL_LIBS (if defined) is to contain a colon-separated (for Unix-like systems) or semicolon-
separated (for Windows) list of additional libraries.

Example:

On a Unix-like system, ERL_LIBS can be set to the following

/usr/local/jungerl:/home/some_user/my_erlang_lib

On Windows, use semi-colon as separator.

Ericsson AB. All Rights Reserved.: Kernel | 59

code

Loading of Code From Archive Files

Warning:

The support for loading code from archive files is experimental. The purpose of releasing it before it is ready is
to obtain early feedback. The file format, semantics, interfaces, and so on, can be changed in a future release. The
function lib_dir/2 and flag -code_path_choice are also experimental.

The Erlang archives are ZIP files with extension .ez. Erlang archives can also be enclosed in escript files whose
file extension is arbitrary.

Erlang archive files can contain entire Erlang applications or parts of applications. The structure in an archive file
is the same as the directory structure for an application. If you, for example, create an archive of mnesia-4.4.7,
the archive file must be named mnesia-4.4.7.ez and it must contain a top directory named mnesia-4.4.7. If
the version part of the name is omitted, it must also be omitted in the archive. That is, a mnesia.ez archive must
contain a mnesia top directory.

An archive file for an application can, for example, be created like this:

zip:create("mnesia-4.4.7.ez",
 ["mnesia-4.4.7"],
 [{cwd, code:lib_dir()},
 {compress, all},
 {uncompress,[".beam",".app"]}]).

Any file in the archive can be compressed, but to speed up the access of frequently read files, it can be a good idea
to store beam and app files uncompressed in the archive.

Normally the top directory of an application is located in library directory $OTPROOT/lib or in a directory referred
to by environment variable ERL_LIBS. At startup, when the initial code path is computed, the code server also looks
for archive files in these directories and possibly adds ebin directories in archives to the code path. The code path
then contains paths to directories that look like $OTPROOT/lib/mnesia.ez/mnesia/ebin or $OTPROOT/
lib/mnesia-4.4.7.ez/mnesia-4.4.7/ebin.

The code server uses module erl_prim_loader in ERTS (possibly through erl_boot_server) to read
code files from archives. However, the functions in erl_prim_loader can also be used by other applications
to read files from archives. For example, the call erl_prim_loader:list_dir("/otp/root/lib/
mnesia-4.4.7.ez/mnesia-4.4.7/examples/bench)" would list the contents of a directory inside an
archive. See erl_prim_loader(3).

An application archive file and a regular application directory can coexist. This can be useful when it is needed to have
parts of the application as regular files. A typical case is the priv directory, which must reside as a regular directory
to link in drivers dynamically and start port programs. For other applications that do not need this, directory priv can
reside in the archive and the files under the directory priv can be read through erl_prim_loader.

When a directory is added to the code path and when the entire code path is (re)set, the code server decides which
subdirectories in an application that are to be read from the archive and which that are to be read as regular files. If
directories are added or removed afterwards, the file access can fail if the code path is not updated (possibly to the
same path as before, to trigger the directory resolution update).

For each directory on the second level in the application archive (ebin, priv, src, and so on), the code
server first chooses the regular directory if it exists and second from the archive. Function code:lib_dir/2
returns the path to the subdirectory. For example, code:lib_dir(megaco,ebin) can return /otp/root/
lib/megaco-3.9.1.1.ez/megaco-3.9.1.1/ebin while code:lib_dir(megaco,priv) can return
/otp/root/lib/megaco-3.9.1.1/priv.

60 | Ericsson AB. All Rights Reserved.: Kernel

code

When an escript file contains an archive, there are no restrictions on the name of the escript and no restrictions
on how many applications that can be stored in the embedded archive. Single Beam files can also reside on the top
level in the archive. At startup, the top directory in the embedded archive and all (second level) ebin directories in
the embedded archive are added to the code path. See erts:escript(1).

When the choice of directories in the code path is strict, the directory that ends up in the code path is
exactly the stated one. This means that if, for example, the directory $OTPROOT/lib/mnesia-4.4.7/ebin is
explicitly added to the code path, the code server does not load files from $OTPROOT/lib/mnesia-4.4.7.ez/
mnesia-4.4.7/ebin.

This behavior can be controlled through command-line flag -code_path_choice Choice. If the flag is set to
relaxed, the code server instead chooses a suitable directory depending on the actual file structure. If a regular
application ebin directory exists, it is chosen. Otherwise, the directory ebin in the archive is chosen if it exists. If
neither of them exists, the original directory is chosen.

Command-line flag -code_path_choice Choice also affects how module init interprets the boot script.
The interpretation of the explicit code paths in the boot script can be strict or relaxed. It is particularly
useful to set the flag to relaxed when elaborating with code loading from archives without editing the boot
script. The default is relaxed. See erts:init(3).

Current and Old Code
The code for a module can exist in two variants in a system: current code and old code. When a module is loaded into
the system for the first time, the module code becomes 'current' and the global export table is updated with references
to all functions exported from the module.

If then a new instance of the module is loaded (for example, because of error correction), the code of the previous
instance becomes 'old', and all export entries referring to the previous instance are removed. After that, the new instance
is loaded as for the first time, and becomes 'current'.

Both old and current code for a module are valid, and can even be evaluated concurrently. The difference is that
exported functions in old code are unavailable. Hence, a global call cannot be made to an exported function in old
code, but old code can still be evaluated because of processes lingering in it.

If a third instance of the module is loaded, the code server removes (purges) the old code and any processes lingering
in it are terminated. Then the third instance becomes 'current' and the previously current code becomes 'old'.

For more information about old and current code, and how to make a process switch from old to current code, see
section Compilation and Code Loading in the Erlang Reference Manual.

Argument Types and Invalid Arguments
Module and application names are atoms, while file and directory names are strings. For backward compatibility
reasons, some functions accept both strings and atoms, but a future release will probably only allow the arguments
that are documented.

Functions in this module generally fail with an exception if they are passed an incorrect type (for example, an integer
or a tuple where an atom is expected). An error tuple is returned if the argument type is correct, but there are some
other errors (for example, a non-existing directory is specified to set_path/1).

Error Reasons for Code-Loading Functions
Functions that load code (such as load_file/1) will return {error,Reason} if the load operation fails. Here
follows a description of the common reasons.

badfile

The object code has an incorrect format or the module name in the object code is not the expected module name.

Ericsson AB. All Rights Reserved.: Kernel | 61

code

nofile

No file with object code was found.

not_purged

The object code could not be loaded because an old version of the code already existed.

on_load_failure

The module has an -on_load function that failed when it was called.

sticky_directory

The object code resides in a sticky directory.

Data Types
load_ret() =
 {error, What :: load_error_rsn()} |
 {module, Module :: module()}
load_error_rsn() =
 badfile | nofile | not_purged | on_load_failure |
 sticky_directory
module_status() = not_loaded | loaded | modified | removed
prepared_code()
An opaque term holding prepared code.

Exports

set_path(Path) -> true | {error, What}
Types:

Path = [Dir :: file:filename()]
What = bad_directory

Sets the code path to the list of directories Path.

Returns:

true

If successful

{error, bad_directory}

If any Dir is not a directory name

get_path() -> Path
Types:

Path = [Dir :: file:filename()]
Returns the code path.

add_path(Dir) -> add_path_ret()
add_pathz(Dir) -> add_path_ret()
Types:

62 | Ericsson AB. All Rights Reserved.: Kernel

code

Dir = file:filename()
add_path_ret() = true | {error, bad_directory}

Adds Dir to the code path. The directory is added as the last directory in the new path. If Dir already exists in the
path, it is not added.

Returns true if successful, or {error, bad_directory} if Dir is not the name of a directory.

add_patha(Dir) -> add_path_ret()
Types:

Dir = file:filename()
add_path_ret() = true | {error, bad_directory}

Adds Dir to the beginning of the code path. If Dir exists, it is removed from the old position in the code path.

Returns true if successful, or {error, bad_directory} if Dir is not the name of a directory.

add_paths(Dirs) -> ok
add_pathsz(Dirs) -> ok
Types:

Dirs = [Dir :: file:filename()]
Adds the directories in Dirs to the end of the code path. If a Dir exists, it is not added.

Always returns ok, regardless of the validity of each individual Dir.

add_pathsa(Dirs) -> ok
Types:

Dirs = [Dir :: file:filename()]
Traverses Dirs and adds each Dir to the beginning of the code path. This means that the order of Dirs is reversed
in the resulting code path. For example, if you add [Dir1,Dir2], the resulting path will be [Dir2,Dir1|
OldCodePath].

If a Dir already exists in the code path, it is removed from the old position.

Always returns ok, regardless of the validity of each individual Dir.

del_path(NameOrDir) -> boolean() | {error, What}
Types:

NameOrDir = Name | Dir
Name = atom()
Dir = file:filename()
What = bad_name

Deletes a directory from the code path. The argument can be an atom Name, in which case the directory with the
name .../Name[-Vsn][/ebin] is deleted from the code path. Also, the complete directory name Dir can be
specified as argument.

Returns:

true

If successful

Ericsson AB. All Rights Reserved.: Kernel | 63

code

false

If the directory is not found

{error, bad_name}

If the argument is invalid

replace_path(Name, Dir) -> true | {error, What}
Types:

Name = atom()
Dir = file:filename()
What = bad_directory | bad_name | {badarg, term()}

Replaces an old occurrence of a directory named .../Name[-Vsn][/ebin] in the code path, with Dir. If Name
does not exist, it adds the new directory Dir last in the code path. The new directory must also be named .../Name[-
Vsn][/ebin]. This function is to be used if a new version of the directory (library) is added to a running system.

Returns:

true

If successful

{error, bad_name}

If Name is not found

{error, bad_directory}

If Dir does not exist

{error, {badarg, [Name, Dir]}}

If Name or Dir is invalid

load_file(Module) -> load_ret()
Types:

Module = module()
load_ret() =
 {error, What :: load_error_rsn()} |
 {module, Module :: module()}

Tries to load the Erlang module Module, using the code path. It looks for the object code file with an extension
corresponding to the Erlang machine used, for example, Module.beam. The loading fails if the module name found
in the object code differs from the name Module. load_binary/3 must be used to load object code with a module
name that is different from the file name.

Returns {module, Module} if successful, or {error, Reason} if loading fails. See Error Reasons for Code-
Loading Functions for a description of the possible error reasons.

load_abs(Filename) -> load_ret()
Types:

64 | Ericsson AB. All Rights Reserved.: Kernel

code

Filename = file:filename()
load_ret() =
 {error, What :: load_error_rsn()} |
 {module, Module :: module()}
loaded_filename() =
 (Filename :: file:filename()) | loaded_ret_atoms()
loaded_ret_atoms() = cover_compiled | preloaded

Same as load_file(Module), but Filename is an absolute or relative filename. The code path is not searched.
It returns a value in the same way as load_file/1. Notice that Filename must not contain the extension (for
example, .beam) because load_abs/1 adds the correct extension.

ensure_loaded(Module) -> {module, Module} | {error, What}
Types:

Module = module()
What = embedded | badfile | nofile | on_load_failure

Tries to load a module in the same way as load_file/1, unless the module is already loaded. However, in embedded
mode it does not load a module that is not already loaded, but returns {error, embedded} instead. See Error
Reasons for Code-Loading Functions for a description of other possible error reasons.

load_binary(Module, Filename, Binary) ->
 {module, Module} | {error, What}
Types:

Module = module()
Filename = loaded_filename()
Binary = binary()
What = badarg | load_error_rsn()
loaded_filename() =
 (Filename :: file:filename()) | loaded_ret_atoms()
loaded_ret_atoms() = cover_compiled | preloaded

This function can be used to load object code on remote Erlang nodes. Argument Binary must contain object code for
Module. Filename is only used by the code server to keep a record of from which file the object code for Module
comes. Thus, Filename is not opened and read by the code server.

Returns {module, Module} if successful, or {error, Reason} if loading fails. See Error Reasons for Code-
Loading Functions for a description of the possible error reasons.

atomic_load(Modules) -> ok | {error, [{Module, What}]}
Types:

Ericsson AB. All Rights Reserved.: Kernel | 65

code

Modules = [Module | {Module, Filename, Binary}]
Module = module()
Filename = file:filename()
Binary = binary()
What =
 badfile | nofile | on_load_not_allowed | duplicated |
 not_purged | sticky_directory | pending_on_load

Tries to load all of the modules in the list Modules atomically. That means that either all modules are loaded at the
same time, or none of the modules are loaded if there is a problem with any of the modules.

Loading can fail for one the following reasons:

badfile

The object code has an incorrect format or the module name in the object code is not the expected module name.

nofile

No file with object code exists.

on_load_not_allowed

A module contains an -on_load function.

duplicated

A module is included more than once in Modules.

not_purged

The object code cannot be loaded because an old version of the code already exists.

sticky_directory

The object code resides in a sticky directory.

pending_on_load

A previously loaded module contains an -on_load function that never finished.

If it is important to minimize the time that an application is inactive while changing code, use prepare_loading/1 and
finish_loading/1 instead of atomic_load/1. Here is an example:

{ok,Prepared} = code:prepare_loading(Modules),
%% Put the application into an inactive state or do any
%% other preparation needed before changing the code.
ok = code:finish_loading(Prepared),
%% Resume the application.

prepare_loading(Modules) ->
 {ok, Prepared} | {error, [{Module, What}]}
Types:

66 | Ericsson AB. All Rights Reserved.: Kernel

code

Modules = [Module | {Module, Filename, Binary}]
Module = module()
Filename = file:filename()
Binary = binary()
Prepared = prepared_code()
What = badfile | nofile | on_load_not_allowed | duplicated

Prepares to load the modules in the list Modules. Finish the loading by calling finish_loading(Prepared).

This function can fail with one of the following error reasons:

badfile

The object code has an incorrect format or the module name in the object code is not the expected module name.

nofile

No file with object code exists.

on_load_not_allowed

A module contains an -on_load function.

duplicated

A module is included more than once in Modules.

finish_loading(Prepared) -> ok | {error, [{Module, What}]}
Types:

Prepared = prepared_code()
Module = module()
What = not_purged | sticky_directory | pending_on_load

Tries to load code for all modules that have been previously prepared by prepare_loading/1. The loading occurs
atomically, meaning that either all modules are loaded at the same time, or none of the modules are loaded.

This function can fail with one of the following error reasons:

not_purged

The object code cannot be loaded because an old version of the code already exists.

sticky_directory

The object code resides in a sticky directory.

pending_on_load

A previously loaded module contains an -on_load function that never finished.

ensure_modules_loaded(Modules :: [Module]) ->
 ok | {error, [{Module, What}]}
Types:

Module = module()
What = badfile | nofile | on_load_failure

Tries to load any modules not already loaded in the list Modules in the same way as load_file/1.

Returns ok if successful, or {error,[{Module,Reason}]} if loading of some modules fails. See Error Reasons
for Code-Loading Functions for a description of other possible error reasons.

Ericsson AB. All Rights Reserved.: Kernel | 67

code

delete(Module) -> boolean()
Types:

Module = module()
Removes the current code for Module, that is, the current code for Module is made old. This means that processes
can continue to execute the code in the module, but no external function calls can be made to it.

Returns true if successful, or false if there is old code for Module that must be purged first, or if Module is
not a (loaded) module.

purge(Module) -> boolean()
Types:

Module = module()
Purges the code for Module, that is, removes code marked as old. If some processes still linger in the old code, these
processes are killed before the code is removed.

Note:

As of ERTS version 9.0, a process is only considered to be lingering in the code if it has direct references to the
code. For more information see documentation of erlang:check_process_code/3, which is used in order
to determine this.

Returns true if successful and any process is needed to be killed, otherwise false.

soft_purge(Module) -> boolean()
Types:

Module = module()
Purges the code for Module, that is, removes code marked as old, but only if no processes linger in it.

Note:

As of ERTS version 9.0, a process is only considered to be lingering in the code if it has direct references to the
code. For more information see documentation of erlang:check_process_code/3, which is used in order
to determine this.

Returns false if the module cannot be purged because of processes lingering in old code, otherwise true.

is_loaded(Module) -> {file, Loaded} | false
Types:

Module = module()
Loaded = loaded_filename()
loaded_filename() =
 (Filename :: file:filename()) | loaded_ret_atoms()
Filename is an absolute filename.

loaded_ret_atoms() = cover_compiled | preloaded
Checks if Module is loaded. If it is, {file, Loaded} is returned, otherwise false.

68 | Ericsson AB. All Rights Reserved.: Kernel

code

Normally, Loaded is the absolute filename Filename from which the code is obtained. If the module is
preloaded (see script(4)), Loaded==preloaded. If the module is Cover-compiled (see cover(3)),
Loaded==cover_compiled.

all_available() -> [{Module, Filename, Loaded}]
Types:

Module = string()
Filename = loaded_filename()
Loaded = boolean()
loaded_filename() =
 (Filename :: file:filename()) | loaded_ret_atoms()
Filename is an absolute filename.

loaded_ret_atoms() = cover_compiled | preloaded
Returns a list of tuples {Module, Filename, Loaded} for all available modules. A module is considered to be
available if it either is loaded or would be loaded if called. Filename is normally the absolute filename, as described
for is_loaded/1.

all_loaded() -> [{Module, Loaded}]
Types:

Module = module()
Loaded = loaded_filename()
loaded_filename() =
 (Filename :: file:filename()) | loaded_ret_atoms()
Filename is an absolute filename.

loaded_ret_atoms() = cover_compiled | preloaded
Returns a list of tuples {Module, Loaded} for all loaded modules. Loaded is normally the absolute filename,
as described for is_loaded/1.

which(Module) -> Which
Types:

Module = module()
Which = loaded_filename() | non_existing
loaded_filename() =
 (Filename :: file:filename()) | loaded_ret_atoms()
loaded_ret_atoms() = cover_compiled | preloaded

If the module is not loaded, this function searches the code path for the first file containing object code for Module
and returns the absolute filename.

If the module is loaded, it returns the name of the file containing the loaded object code.

If the module is preloaded, preloaded is returned.

If the module is Cover-compiled, cover_compiled is returned.

If the module cannot be found, non_existing is returned.

get_object_code(Module) -> {Module, Binary, Filename} | error
Types:

Ericsson AB. All Rights Reserved.: Kernel | 69

code

Module = module()
Binary = binary()
Filename = file:filename()

Searches the code path for the object code of module Module. Returns {Module, Binary, Filename} if
successful, otherwise error. Binary is a binary data object, which contains the object code for the module. This
can be useful if code is to be loaded on a remote node in a distributed system. For example, loading module Module
on a node Node is done as follows:

...
{_Module, Binary, Filename} = code:get_object_code(Module),
rpc:call(Node, code, load_binary, [Module, Filename, Binary]),
...

get_doc(Mod) -> {ok, Res} | {error, Reason}
Types:

Mod = module()
Res = #docs_v1{}
Reason = non_existing | missing | file:posix()

Searches the code path for EEP-48 style documentation and returns it if available. If no documentation can be found
the function tries to generate documentation from the debug information in the module. If no debug information is
available, this function will return {error,missing}.

For more information about the documentation chunk see Documentation Storage and Format in Kernel's User's Guide.

root_dir() -> file:filename()
Returns the root directory of Erlang/OTP, which is the directory where it is installed.

Example:

> code:root_dir().
"/usr/local/otp"

lib_dir() -> file:filename()
Returns the library directory, $OTPROOT/lib, where $OTPROOT is the root directory of Erlang/OTP.

Example:

> code:lib_dir().
"/usr/local/otp/lib"

lib_dir(Name) -> file:filename() | {error, bad_name}
Types:

Name = atom()
Returns the path for the "library directory", the top directory, for an application Name located under $OTPROOT/lib
or on a directory referred to with environment variable ERL_LIBS.

If a regular directory called Name or Name-Vsn exists in the code path with an ebin subdirectory, the path to this
directory is returned (not the ebin directory).

70 | Ericsson AB. All Rights Reserved.: Kernel

code

If the directory refers to a directory in an archive, the archive name is stripped away before the path is returned.
For example, if directory /usr/local/otp/lib/mnesia-4.2.2.ez/mnesia-4.2.2/ebin is in the
path, /usr/local/otp/lib/mnesia-4.2.2/ebin is returned. This means that the library directory for an
application is the same, regardless if the application resides in an archive or not.

Example:

> code:lib_dir(mnesia).
"/usr/local/otp/lib/mnesia-4.2.2"

Returns {error, bad_name} if Name is not the name of an application under $OTPROOT/lib or on a directory
referred to through environment variable ERL_LIBS. Fails with an exception if Name has the wrong type.

Warning:

For backward compatibility, Name is also allowed to be a string. That will probably change in a future release.

lib_dir(Name, SubDir) -> file:filename() | {error, bad_name}
Types:

Name = SubDir = atom()

Returns the path to a subdirectory directly under the top directory of an application. Normally the subdirectories reside
under the top directory for the application, but when applications at least partly reside in an archive, the situation is
different. Some of the subdirectories can reside as regular directories while others reside in an archive file. It is not
checked whether this directory exists.

Example:

> code:lib_dir(megaco, priv).
"/usr/local/otp/lib/megaco-3.9.1.1/priv"

Fails with an exception if Name or SubDir has the wrong type.

compiler_dir() -> file:filename()
Returns the compiler library directory. Equivalent to code:lib_dir(compiler).

priv_dir(Name) -> file:filename() | {error, bad_name}
Types:

Name = atom()
Returns the path to the priv directory in an application. Equivalent to code:lib_dir(Name, priv).

Warning:

For backward compatibility, Name is also allowed to be a string. That will probably change in a future release.

objfile_extension() -> nonempty_string()
Returns the object code file extension corresponding to the Erlang machine used, namely .beam.

Ericsson AB. All Rights Reserved.: Kernel | 71

code

stick_dir(Dir) -> ok | error
Types:

Dir = file:filename()
Marks Dir as sticky.

Returns ok if successful, otherwise error.

unstick_dir(Dir) -> ok | error
Types:

Dir = file:filename()
Unsticks a directory that is marked as sticky.

Returns ok if successful, otherwise error.

is_sticky(Module) -> boolean()
Types:

Module = module()
Returns true if Module is the name of a module that has been loaded from a sticky directory (in other words: an
attempt to reload the module will fail), or false if Module is not a loaded module or is not sticky.

where_is_file(Filename) -> non_existing | Absname
Types:

Filename = Absname = file:filename()

Searches the code path for Filename, a file of arbitrary type. If found, the full name is returned. non_existing
is returned if the file cannot be found. The function can be useful, for example, to locate application resource files.

clash() -> ok
Searches all directories in the code path for module names with identical names and writes a report to stdout.

module_status() -> [{module(), module_status()}]
Types:

module_status() = not_loaded | loaded | modified | removed
See module_status/1 and all_loaded/0 for details.

module_status(Module :: module() | [module()]) ->
 module_status() | [{module(), module_status()}]
Types:

module_status() = not_loaded | loaded | modified | removed
The status of a module can be one of:

not_loaded

If Module is not currently loaded.

loaded

If Module is loaded and the object file exists and contains the same code.

72 | Ericsson AB. All Rights Reserved.: Kernel

code

removed

If Module is loaded but no corresponding object file can be found in the code path.

modified

If Module is loaded but the object file contains code with a different MD5 checksum.

Preloaded modules are always reported as loaded, without inspecting the contents on disk. Cover compiled modules
will always be reported as modified if an object file exists, or as removed otherwise. Modules whose load path is
an empty string (which is the convention for auto-generated code) will only be reported as loaded or not_loaded.

See also modified_modules/0.

modified_modules() -> [module()]
Returns the list of all currently loaded modules for which module_status/1 returns modified. See also
all_loaded/0.

is_module_native(Module) -> true | false | undefined
Types:

Module = module()
Returns false if the given Module is loaded, and undefined if it is not.

Warning:

This function is deprecated and will be removed in a future release.

get_mode() -> embedded | interactive
Returns an atom describing the mode of the code server: interactive or embedded.

This information is useful when an external entity (for example, an IDE) provides additional code for a running node.
If the code server is in interactive mode, it only has to add the path to the code. If the code server is in embedded
mode, the code must be loaded with load_binary/3.

Ericsson AB. All Rights Reserved.: Kernel | 73

config

config
Name

A configuration file contains values for configuration parameters for the applications in the system. The erl
command-line argument -config Name tells the system to use data in the system configuration file Name.config.

The erl command-line argument -configfd works the same way as the -config option but specifies a file
descriptor to read configuration data from instead of a file.

The configuration data from configuration files and file descriptors are read in the same order as they are given on the
command line. For example, erl -config a -configfd 3 -config b -configfd 4 would cause the
system to read configuration data in the following order a.config, file descriptor 3, b.config, and file descriptor
4. If a configuration parameter is specified more than once in the given files and file descriptors, the last one overrides
the previous ones.

Configuration parameter values in a configuration file or file descriptor override the values in the application
resource files (see app(4)). The values in the configuration file are always overridden by command-line flags (see
erts:erl(1)).

The value of a configuration parameter is retrieved by calling application:get_env/1,2.

File Syntax
The configuration file is to be called Name.config, where Name is any name.

File .config contains a single Erlang term and has the following syntax:

[{Application1, [{Par11, Val11}, ...]},
 ...
 {ApplicationN, [{ParN1, ValN1}, ...]}].

Application = atom()

Application name.

Par = atom()

Name of a configuration parameter.

Val = term()

Value of a configuration parameter.

sys.config
When starting Erlang in embedded mode, it is assumed that exactly one system configuration file is used, named
sys.config. This file is to be located in $ROOT/releases/Vsn, where $ROOT is the Erlang/OTP root
installation directory and Vsn is the release version.

Release handling relies on this assumption. When installing a new release version, the new sys.config is read and
used to update the application's configurations.

This means that specifying another .config file, or more .config files, leads to an inconsistent update of
application configurations. There is, however, a way to point out other config files from a sys.config. How to do
this is described in the next section.

74 | Ericsson AB. All Rights Reserved.: Kernel

config

Including Files from sys.config and -configfd Configurations
There is a way to include other configuration files from a sys.config file and from a configuration that comes
from a file descriptor that has been pointed out with the -configfd command-line argument.

The syntax for including files can be described by the Erlang type language like this:

[{Application, [{Par, Val}]} | IncludeFile].

IncludeFile = string()
Name of a .config file. The extension .config can be omitted. It is recommended to use absolute paths.
If a relative path is used in a sys.config, IncludeFile is searched, first, relative to the sys.config
directory, then relative to the current working directory of the emulator. If a relative path is used in a -
configfd configuration, IncludeFile is searched, first, relative to the dictionary containing the boot
script (see also the -boot command-line argument) for the emulator, then relative to the current working
directory of the emulator. This makes it possible to use sys.config for pointing out other .config files
in a release or in a node started manually using -config or -configfd with the same result whatever the
current working directory is.

When traversing the contents of a sys.config or a -configfd configuration and a filename is encountered, its
contents are read and merged with the result so far. When an application configuration tuple {Application, Env}
is found, it is merged with the result so far. Merging means that new parameters are added and existing parameter
values are overwritten.

Example:

sys.config:

["/home/user/myconfig1"
 {myapp,[{par1,val1},{par2,val2}]},
 "/home/user/myconfig2"].

myconfig1.config:

[{myapp,[{par0,val0},{par1,val0},{par2,val0}]}].

myconfig2.config:

[{myapp,[{par2,val3},{par3,val4}]}].

This yields the following environment for myapp:

[{par0,val0},{par1,val1},{par2,val3},{par3,val4}]

The run-time system will abort before staring up if an include file specified in sys.config or a -configfd
configuration does not exist, or is erroneous. However, installing a new release version will not fail if there is an error
while loading an include file, but an error message is returned and the erroneous file is ignored.

See Also
app(4), erts:erl(1), OTP Design Principles

Ericsson AB. All Rights Reserved.: Kernel | 75

disk_log

disk_log
Erlang module

disk_log is a disk-based term logger that enables efficient logging of items on files.

Two types of logs are supported:

halt logs

Appends items to a single file, which size can be limited by the disk_log module.

wrap logs

Uses a sequence of wrap log files of limited size. As a wrap log file is filled up, further items are logged on to
the next file in the sequence, starting all over with the first file when the last file is filled up.

For efficiency reasons, items are always written to files as binaries.

Two formats of the log files are supported:

internal format

Supports automatic repair of log files that are not properly closed and enables efficient reading of logged items
in chunks using a set of functions defined in this module. This is the only way to read internally formatted logs.
An item logged to an internally formatted log must not occupy more than 4 GB of disk space (the size must fit
in 4 bytes).

external format

Leaves it up to the user to read and interpret the logged data. The disk_log module cannot repair externally
formatted logs.

For each open disk log, one process handles requests made to the disk log. This process is created when open/1 is
called, provided there exists no process handling the disk log. A process that opens a disk log can be an owner or an
anonymous user of the disk log. Each owner is linked to the disk log process, and an owner can close the disk log
either explicitly (by calling close/1 or lclose/1,2) or by terminating.

Owners can subscribe to notifications, messages of the form {disk_log, Node, Log, Info}, which are sent
from the disk log process when certain events occur, see the functions and in particular the open/1 option notify.
A log can have many owners, but a process cannot own a log more than once. However, the same process can open
the log as a user more than once.

For a disk log process to close its file properly and terminate, it must be closed by its owners and once by some non-
owner process for each time the log was used anonymously. The users are counted and there must not be any users
left when the disk log process terminates.

Items can be logged synchronously by using functions log/2, blog/2, log_terms/2, and blog_terms/2. For
each of these functions, the caller is put on hold until the items are logged (but not necessarily written, use sync/1 to
ensure that). By adding an a to each of the mentioned function names, we get functions that log items asynchronously.
Asynchronous functions do not wait for the disk log process to write the items to the file, but return the control to
the caller more or less immediately.

When using the internal format for logs, use functions log/2, log_terms/2, alog/2, and alog_terms/2.
These functions log one or more Erlang terms. By prefixing each of the functions with a b (for "binary"), we get
the corresponding blog() functions for the external format. These functions log one or more chunks of bytes.
For example, to log the string "hello" in ASCII format, you can use disk_log:blog(Log, "hello"), or
disk_log:blog(Log, list_to_binary("hello")). The two alternatives are equally efficient.

The blog() functions can also be used for internally formatted logs, but in this case they must be called with binaries
constructed with calls to term_to_binary/1. There is no check to ensure this, it is entirely the responsibility of

76 | Ericsson AB. All Rights Reserved.: Kernel

disk_log

the caller. If these functions are called with binaries that do not correspond to Erlang terms, the chunk/2,3 and
automatic repair functions fail. The corresponding terms (not the binaries) are returned when chunk/2,3 is called.

An open disk log is only accessible from the node where the disk log process runs. All processes on the node where
the disk log process runs can log items or otherwise change, inspect, or close the log.

Errors are reported differently for asynchronous log attempts and other uses of the disk_log module. When used
synchronously, this module replies with an error message, but when called asynchronously, this module does not know
where to send the error message. Instead, owners subscribing to notifications receive an error_status message.

The disk_log module does not report errors to the error_logger module. It is up to the caller to decide whether
to employ the error logger. Function format_error/1 can be used to produce readable messages from error replies.
However, information events are sent to the error logger in two situations, namely when a log is repaired, or when
a file is missing while reading chunks.

Error message no_such_log means that the specified disk log is not open. Nothing is said about whether the disk
log files exist or not.

Note:

If an attempt to reopen or truncate a log fails (see reopen/2,3 and truncate/1,2) the disk log process
terminates immediately. Before the process terminates, links to owners and blocking processes (see block/1,2)
are removed. The effect is that the links work in one direction only. Any process using a disk log must check for
error message no_such_log if some other process truncates or reopens the log simultaneously.

Data Types
log() = term()
dlog_size() =
 infinity |
 integer() >= 1 |
 {MaxNoBytes :: integer() >= 1, MaxNoFiles :: integer() >= 1}
dlog_format() = external | internal
dlog_head_opt() = none | term() | iodata()
dlog_mode() = read_only | read_write
dlog_type() = halt | wrap
continuation()
Chunk continuation returned by chunk/2,3, bchunk/2,3, or chunk_step/3.

invalid_header() = term()
file_error() = term()

Exports

all() -> [Log]
Types:

Log = log()
Returns the names of the disk logs accessible on the current node.

accessible_logs() -> {[Log], []}
Types:

Ericsson AB. All Rights Reserved.: Kernel | 77

disk_log

Log = log()
Returns the names of the disk logs accessible on the current node. The first list contains the logs. The second list is
always empty (before Erlang/OTP 24.0 it used to contain so called distributed disk logs).

Note:

This function is deprecated. Use all/0 instead.

alog(Log, Term) -> notify_ret()
balog(Log, Bytes) -> notify_ret()
Types:

Log = log()
Term = term()
Bytes = iodata()
notify_ret() = ok | {error, no_such_log}

Asynchronously append an item to a disk log. alog/2 is used for internally formatted logs and balog/2 for
externally formatted logs. balog/2 can also be used for internally formatted logs if the binary is constructed with
a call to term_to_binary/1.

Owners subscribing to notifications receive message read_only, blocked_log, or format_external if the
item cannot be written on the log, and possibly one of the messages wrap, full, or error_status if an item
is written on the log. Message error_status is sent if something is wrong with the header function or if a file
error occurs.

alog_terms(Log, TermList) -> notify_ret()
balog_terms(Log, ByteList) -> notify_ret()
Types:

Log = log()
TermList = [term()]
ByteList = [iodata()]
notify_ret() = ok | {error, no_such_log}

Asynchronously append a list of items to a disk log. alog_terms/2 is used for internally formatted logs and
balog_terms/2 for externally formatted logs. balog_terms/2 can also be used for internally formatted logs if
the binaries are constructed with calls to term_to_binary/1.

Owners subscribing to notifications receive message read_only, blocked_log, or format_external if the
items cannot be written on the log, and possibly one or more of the messages wrap, full, and error_status
if items are written on the log. Message error_status is sent if something is wrong with the header function or
if a file error occurs.

block(Log) -> ok | {error, block_error_rsn()}
block(Log, QueueLogRecords) -> ok | {error, block_error_rsn()}
Types:

78 | Ericsson AB. All Rights Reserved.: Kernel

disk_log

Log = log()
QueueLogRecords = boolean()
block_error_rsn() = no_such_log | nonode | {blocked_log, log()}

With a call to block/1,2 a process can block a log. If the blocking process is not an owner of the log, a temporary
link is created between the disk log process and the blocking process. The link ensures that the disk log is unblocked
if the blocking process terminates without first closing or unblocking the log.

Any process can probe a blocked log with info/1 or close it with close/1. The blocking process can also
use functions chunk/2,3, bchunk/2,3, chunk_step/3, and unblock/1 without being affected by the
block. Any other attempt than those mentioned so far to update or read a blocked log suspends the calling process
until the log is unblocked or returns error message {blocked_log, Log}, depending on whether the value of
QueueLogRecords is true or false. QueueLogRecords defaults to true, which is used by block/1.

change_header(Log, Header) -> ok | {error, Reason}
Types:

Log = log()
Header =
 {head, dlog_head_opt()} |
 {head_func, MFA :: {atom(), atom(), list()}}
Reason =
 no_such_log | nonode |
 {read_only_mode, Log} |
 {blocked_log, Log} |
 {badarg, head}

Changes the value of option head or head_func for an owner of a disk log.

change_notify(Log, Owner, Notify) -> ok | {error, Reason}
Types:

Log = log()
Owner = pid()
Notify = boolean()
Reason =
 no_such_log | nonode |
 {blocked_log, Log} |
 {badarg, notify} |
 {not_owner, Owner}

Changes the value of option notify for an owner of a disk log.

change_size(Log, Size) -> ok | {error, Reason}
Types:

Ericsson AB. All Rights Reserved.: Kernel | 79

disk_log

Log = log()
Size = dlog_size()
Reason =
 no_such_log | nonode |
 {read_only_mode, Log} |
 {blocked_log, Log} |
 {new_size_too_small, Log, CurrentSize :: integer() >= 1} |
 {badarg, size} |
 {file_error, file:filename(), file_error()}

Changes the size of an open log. For a halt log, the size can always be increased, but it cannot be decreased to something
less than the current file size.

For a wrap log, both the size and the number of files can always be increased, as long as the number of files does
not exceed 65000. If the maximum number of files is decreased, the change is not valid until the current file is full
and the log wraps to the next file. The redundant files are removed the next time the log wraps around, that is, starts
to log to file number 1.

As an example, assume that the old maximum number of files is 10 and that the new maximum number of files is 6.
If the current file number is not greater than the new maximum number of files, files 7-10 are removed when file 6
is full and the log starts to write to file number 1 again. Otherwise, the files greater than the current file are removed
when the current file is full (for example, if the current file is 8, files 9 and 10 are removed). The files between the
new maximum number of files and the current file (that is, files 7 and 8) are removed the next time file 6 is full.

If the size of the files is decreased, the change immediately affects the current log. It does not change the size of log
files already full until the next time they are used.

If the log size is decreased, for example, to save space, function inc_wrap_file/1 can be used to force the log
to wrap.

chunk(Log, Continuation) -> chunk_ret()
chunk(Log, Continuation, N) -> chunk_ret()
bchunk(Log, Continuation) -> bchunk_ret()
bchunk(Log, Continuation, N) -> bchunk_ret()
Types:

80 | Ericsson AB. All Rights Reserved.: Kernel

disk_log

Log = log()
Continuation = start | continuation()
N = integer() >= 1 | infinity
chunk_ret() =
 {Continuation2 :: continuation(), Terms :: [term()]} |
 {Continuation2 :: continuation(),
 Terms :: [term()],
 Badbytes :: integer() >= 0} |
 eof |
 {error, Reason :: chunk_error_rsn()}
bchunk_ret() =
 {Continuation2 :: continuation(), Binaries :: [binary()]} |
 {Continuation2 :: continuation(),
 Binaries :: [binary()],
 Badbytes :: integer() >= 0} |
 eof |
 {error, Reason :: chunk_error_rsn()}
chunk_error_rsn() =
 no_such_log |
 {format_external, log()} |
 {blocked_log, log()} |
 {badarg, continuation} |
 {not_internal_wrap, log()} |
 {corrupt_log_file, FileName :: file:filename()} |
 {file_error, file:filename(), file_error()}

Efficiently reads the terms that are appended to an internally formatted log. It minimizes disk I/O by reading 64
kilobyte chunks from the file. Functions bchunk/2,3 return the binaries read from the file, they do not call
binary_to_term(). Apart from that, they work just like chunk/2,3.

The first time chunk() (or bchunk()) is called, an initial continuation, the atom start, must be provided.

When chunk/3 is called, N controls the maximum number of terms that are read from the log in each chunk. Defaults
to infinity, which means that all the terms contained in the 64 kilobyte chunk are read. If less than N terms are
returned, this does not necessarily mean that the end of the file is reached.

chunk() returns a tuple {Continuation2, Terms}, where Terms is a list of terms found in the log.
Continuation2 is yet another continuation, which must be passed on to any subsequent calls to chunk(). With
a series of calls to chunk(), all terms from a log can be extracted.

chunk() returns a tuple {Continuation2, Terms, Badbytes} if the log is opened in read-only mode
and the read chunk is corrupt. Badbytes is the number of bytes in the file found not to be Erlang terms in the
chunk. Notice that the log is not repaired. When trying to read chunks from a log opened in read-write mode, tuple
{corrupt_log_file, FileName} is returned if the read chunk is corrupt.

chunk() returns eof when the end of the log is reached, or {error, Reason} if an error occurs. If a wrap log
file is missing, a message is output on the error log.

When chunk/2,3 is used with wrap logs, the returned continuation might not be valid in the next call to chunk().
This is because the log can wrap and delete the file into which the continuation points. To prevent this, the log can
be blocked during the search.

chunk_info(Continuation) -> InfoList | {error, Reason}
Types:

Ericsson AB. All Rights Reserved.: Kernel | 81

disk_log

Continuation = continuation()
InfoList = [{node, Node :: node()}, ...]
Reason = {no_continuation, Continuation}

Returns the pair {node, Node}, describing the chunk continuation returned by chunk/2,3, bchunk/2,3, or
chunk_step/3.

Terms are read from the disk log running on Node.

chunk_step(Log, Continuation, Step) ->
 {ok, any()} | {error, Reason}
Types:

Log = log()
Continuation = start | continuation()
Step = integer()
Reason =
 no_such_log | end_of_log |
 {format_external, Log} |
 {blocked_log, Log} |
 {badarg, continuation} |
 {file_error, file:filename(), file_error()}

Can be used with chunk/2,3 and bchunk/2,3 to search through an internally formatted wrap log. It takes as
argument a continuation as returned by chunk/2,3, bchunk/2,3, or chunk_step/3, and steps forward (or
backward) Step files in the wrap log. The continuation returned, points to the first log item in the new current file.

If atom start is specified as continuation, the first file of the wrap log is chosen as the new current file.

If the wrap log is not full because all files are not yet used, {error, end_of_log} is returned if trying to step
outside the log.

close(Log) -> ok | {error, close_error_rsn()}
Types:

Log = log()
close_error_rsn() =
 no_such_log | nonode |
 {file_error, file:filename(), file_error()}

Closes a disk log properly. An internally formatted log must be closed before the Erlang system is stopped. Otherwise,
the log is regarded as unclosed and the automatic repair procedure is activated next time the log is opened.

The disk log process is not terminated as long as there are owners or users of the log. All owners must close the log,
possibly by terminating. Also, any other process, not only the processes that have opened the log anonymously, can
decrement the users counter by closing the log. Attempts to close a log by a process that is not an owner are ignored
if there are no users.

If the log is blocked by the closing process, the log is also unblocked.

format_error(Error) -> io_lib:chars()
Types:

Error = term()
Given the error returned by any function in this module, this function returns a descriptive string of the error in English.
For file errors, function format_error/1 in module file is called.

82 | Ericsson AB. All Rights Reserved.: Kernel

disk_log

inc_wrap_file(Log) -> ok | {error, inc_wrap_error_rsn()}
Types:

Log = log()
inc_wrap_error_rsn() =
 no_such_log | nonode |
 {read_only_mode, log()} |
 {blocked_log, log()} |
 {halt_log, log()} |
 {invalid_header, invalid_header()} |
 {file_error, file:filename(), file_error()}
invalid_header() = term()

Forces the internally formatted disk log to start logging to the next log file. It can be used, for example, with
change_size/2 to reduce the amount of disk space allocated by the disk log.

Owners subscribing to notifications normally receive a wrap message, but if an error occurs with a reason tag of
invalid_header or file_error, an error_status message is sent.

info(Log) -> InfoList | {error, no_such_log}
Types:

Log = log()
InfoList = [dlog_info()]
dlog_info() =
 {name, Log :: log()} |
 {file, File :: file:filename()} |
 {type, Type :: dlog_type()} |
 {format, Format :: dlog_format()} |
 {size, Size :: dlog_size()} |
 {mode, Mode :: dlog_mode()} |
 {owners, [{pid(), Notify :: boolean()}]} |
 {users, Users :: integer() >= 0} |
 {status,
 Status :: ok | {blocked, QueueLogRecords :: boolean()}} |
 {node, Node :: node()} |
 {head,
 Head ::
 none |
 {head, binary()} |
 (MFA :: {atom(), atom(), list()})} |
 {no_written_items, NoWrittenItems :: integer() >= 0} |
 {full, Full :: boolean} |
 {no_current_bytes, integer() >= 0} |
 {no_current_items, integer() >= 0} |
 {no_items, integer() >= 0} |
 {current_file, integer() >= 1} |
 {no_overflows,
 {SinceLogWasOpened :: integer() >= 0,
 SinceLastInfo :: integer() >= 0}}

Returns a list of {Tag, Value} pairs describing a log running on the node.

The following pairs are returned for all logs:

Ericsson AB. All Rights Reserved.: Kernel | 83

disk_log

{name, Log}

Log is the log name as specified by the open/1 option name.

{file, File}

For halt logs File is the filename, and for wrap logs File is the base name.

{type, Type}

Type is the log type as specified by the open/1 option type.

{format, Format}

Format is the log format as specified by the open/1 option format.

{size, Size}

Size is the log size as specified by the open/1 option size, or the size set by change_size/2. The value
set by change_size/2 is reflected immediately.

{mode, Mode}

Mode is the log mode as specified by the open/1 option mode.

{owners, [{pid(), Notify}]}

Notify is the value set by the open/1 option notify or function change_notify/3 for the owners of
the log.

{users, Users}

Users is the number of anonymous users of the log, see the open/1 option linkto.

{status, Status}

Status is ok or {blocked, QueueLogRecords} as set by functions block/1,2 and unblock/1.

{node, Node}

The information returned by the current invocation of function info/1 is gathered from the disk log process
running on Node.

The following pairs are returned for all logs opened in read_write mode:

{head, Head}

Depending on the value of the open/1 options head and head_func, or set by function
change_header/2, the value of Head is none (default), {head, H} (head option), or {M,F,A}
(head_func option).

{no_written_items, NoWrittenItems}

NoWrittenItems is the number of items written to the log since the disk log process was created.

The following pair is returned for halt logs opened in read_write mode:

{full, Full}

Full is true or false depending on whether the halt log is full or not.

The following pairs are returned for wrap logs opened in read_write mode:

{no_current_bytes, integer() >= 0}

The number of bytes written to the current wrap log file.

{no_current_items, integer() >= 0}

The number of items written to the current wrap log file, header inclusive.

84 | Ericsson AB. All Rights Reserved.: Kernel

disk_log

{no_items, integer() >= 0}

The total number of items in all wrap log files.

{current_file, integer()}

The ordinal for the current wrap log file in the range 1..MaxNoFiles, where MaxNoFiles is specified by
the open/1 option size or set by change_size/2.

{no_overflows, {SinceLogWasOpened, SinceLastInfo}}

SinceLogWasOpened (SinceLastInfo) is the number of times a wrap log file has been filled up and a
new one is opened or inc_wrap_file/1 has been called since the disk log was last opened (info/1 was
last called). The first time info/2 is called after a log was (re)opened or truncated, the two values are equal.

Notice that functions chunk/2,3, bchunk/2,3, and chunk_step/3 do not affect any value returned by
info/1.

lclose(Log) -> ok | {error, lclose_error_rsn()}
lclose(Log, Node) -> ok | {error, lclose_error_rsn()}
Types:

Log = log()
Node = node()
lclose_error_rsn() =
 no_such_log | {file_error, file:filename(), file_error()}

lclose/1 closes a disk log on the current node.

lclose/2 closes a disk log on the current node if Node is the current node.

lclose(Log) is equivalent to lclose(Log, node()). See also close/1.

If no log with the specified name exist on the current node, no_such_log is returned.

Note:

These functions are deprecated. Use close/1 instead.

log(Log, Term) -> ok | {error, Reason :: log_error_rsn()}
blog(Log, Bytes) -> ok | {error, Reason :: log_error_rsn()}
Types:

Log = log()
Term = term()
Bytes = iodata()
log_error_rsn() =
 no_such_log | nonode |
 {read_only_mode, log()} |
 {format_external, log()} |
 {blocked_log, log()} |
 {full, log()} |
 {invalid_header, invalid_header()} |
 {file_error, file:filename(), file_error()}

Synchronously appends a term to a disk log. Returns ok or {error, Reason} when the term is written to disk.
Terms are written by the ordinary write() function of the operating system. Hence, it is not guaranteed that the

Ericsson AB. All Rights Reserved.: Kernel | 85

disk_log

term is written to disk, it can linger in the operating system kernel for a while. To ensure that the item is written to
disk, function sync/1 must be called.

log/2 is used for internally formatted logs, and blog/2 for externally formatted logs. blog/2 can also be used
for internally formatted logs if the binary is constructed with a call to term_to_binary/1.

Owners subscribing to notifications are notified of an error with an error_status message if the error reason tag
is invalid_header or file_error.

log_terms(Log, TermList) ->
 ok | {error, Reason :: log_error_rsn()}
blog_terms(Log, BytesList) ->
 ok | {error, Reason :: log_error_rsn()}
Types:

Log = log()
TermList = [term()]
BytesList = [iodata()]
log_error_rsn() =
 no_such_log | nonode |
 {read_only_mode, log()} |
 {format_external, log()} |
 {blocked_log, log()} |
 {full, log()} |
 {invalid_header, invalid_header()} |
 {file_error, file:filename(), file_error()}

Synchronously appends a list of items to the log. It is more efficient to use these functions instead of functions log/2
and blog/2. The specified list is split into as large sublists as possible (limited by the size of wrap log files), and
each sublist is logged as one single item, which reduces the overhead.

log_terms/2 is used for internally formatted logs, and blog_terms/2 for externally formatted logs.
blog_terms/2 can also be used for internally formatted logs if the binaries are constructed with calls to
term_to_binary/1.

Owners subscribing to notifications are notified of an error with an error_status message if the error reason tag
is invalid_header or file_error.

open(ArgL) -> open_ret()
Types:

86 | Ericsson AB. All Rights Reserved.: Kernel

disk_log

ArgL = dlog_options()
dlog_options() = [dlog_option()]
dlog_option() =
 {name, Log :: log()} |
 {file, FileName :: file:filename()} |
 {linkto, LinkTo :: none | pid()} |
 {repair, Repair :: true | false | truncate} |
 {type, Type :: dlog_type()} |
 {format, Format :: dlog_format()} |
 {size, Size :: dlog_size()} |
 {notify, boolean()} |
 {head, Head :: dlog_head_opt()} |
 {head_func, MFA :: {atom(), atom(), list()}} |
 {quiet, boolean()} |
 {mode, Mode :: dlog_mode()}
open_ret() =
 {ok, Log :: log()} |
 {repaired,
 Log :: log(),
 {recovered, Rec :: integer() >= 0},
 {badbytes, Bad :: integer() >= 0}} |
 {error, open_error_rsn()}
open_error_rsn() =
 no_such_log |
 {badarg, term()} |
 {size_mismatch,
 CurrentSize :: dlog_size(),
 NewSize :: dlog_size()} |
 {arg_mismatch,
 OptionName :: dlog_optattr(),
 CurrentValue :: term(),
 Value :: term()} |
 {name_already_open, Log :: log()} |
 {open_read_write, Log :: log()} |
 {open_read_only, Log :: log()} |
 {need_repair, Log :: log()} |
 {not_a_log_file, FileName :: file:filename()} |
 {invalid_index_file, FileName :: file:filename()} |
 {invalid_header, invalid_header()} |
 {file_error, file:filename(), file_error()} |
 {node_already_open, Log :: log()}
dlog_optattr() =
 name | file | linkto | repair | type | format | size |
 notify | head | head_func | mode
dlog_size() =
 infinity |
 integer() >= 1 |
 {MaxNoBytes :: integer() >= 1, MaxNoFiles :: integer() >= 1}

Parameter ArgL is a list of the following options:

Ericsson AB. All Rights Reserved.: Kernel | 87

disk_log

{name, Log}

Specifies the log name. This name must be passed on as a parameter in all subsequent logging operations. A
name must always be supplied.

{file, FileName}

Specifies the name of the file to be used for logged terms. If this value is omitted and the log name is an atom or
a string, the filename defaults to lists:concat([Log, ".LOG"]) for halt logs.

For wrap logs, this is the base name of the files. Each file in a wrap log is called <base_name>.N, where N is
an integer. Each wrap log also has two files called <base_name>.idx and <base_name>.siz.

{linkto, LinkTo}

If LinkTo is a pid, it becomes an owner of the log. If LinkTo is none, the log records that it is used
anonymously by some process by incrementing the users counter. By default, the process that calls open/1
owns the log.

{repair, Repair}

If Repair is true, the current log file is repaired, if needed. As the restoration is initiated, a message is
output on the error log. If false is specified, no automatic repair is attempted. Instead, the tuple {error,
{need_repair, Log}} is returned if an attempt is made to open a corrupt log file. If truncate is specified,
the log file becomes truncated, creating an empty log. Defaults to true, which has no effect on logs opened
in read-only mode.

{type, Type}

The log type. Defaults to halt.

{format, Format}

Disk log format. Defaults to internal.

{size, Size}

Log size.

When a halt log has reached its maximum size, all attempts to log more items are rejected. Defaults to infinity,
which for halt implies that there is no maximum size.

For wrap logs, parameter Size can be a pair {MaxNoBytes, MaxNoFiles} or infinity. In the latter
case, if the files of an existing wrap log with the same name can be found, the size is read from the existing wrap
log, otherwise an error is returned.

Wrap logs write at most MaxNoBytes bytes on each file and use MaxNoFiles files before starting all over
with the first wrap log file. Regardless of MaxNoBytes, at least the header (if there is one) and one item are
written on each wrap log file before wrapping to the next file.

The first time an existing wrap log is opened, that is, when the disk log process is created, the value of the
option size is allowed to differ from the current log size, and the size of the disk log is changed as per
change_size/2.

When opening an existing wrap log, it is not necessary to supply a value for option size, but if the log is already
open, that is, the disk log process exists, the supplied value must equal the current log size, otherwise the tuple
{error, {size_mismatch, CurrentSize, NewSize}} is returned.

Note:

Before Erlang/OTP 24.0, the supplied value of option size was to be equal to the current log size when
opening an existing wrap log for the first time, that is, when creating the disk log process.

88 | Ericsson AB. All Rights Reserved.: Kernel

disk_log

When opening an already open halt log, option size is ignored.

{notify, boolean()}

If true, the log owners are notified when certain log events occur. Defaults to false. The owners are sent one
of the following messages when an event occurs:

{disk_log, Node, Log, {wrap, NoLostItems}}

Sent when a wrap log has filled up one of its files and a new file is opened. NoLostItems is the number
of previously logged items that were lost when truncating existing files.

{disk_log, Node, Log, {truncated, NoLostItems}}

Sent when a log is truncated or reopened. For halt logs NoLostItems is the number of items written on
the log since the disk log process was created. For wrap logs NoLostItems is the number of items on
all wrap log files.

{disk_log, Node, Log, {read_only, Items}}

Sent when an asynchronous log attempt is made to a log file opened in read-only mode. Items is the items
from the log attempt.

{disk_log, Node, Log, {blocked_log, Items}}

Sent when an asynchronous log attempt is made to a blocked log that does not queue log attempts. Items
is the items from the log attempt.

{disk_log, Node, Log, {format_external, Items}}

Sent when function alog/2 or alog_terms/2 is used for internally formatted logs. Items is the items
from the log attempt.

{disk_log, Node, Log, full}

Sent when an attempt to log items to a wrap log would write more bytes than the limit set by option size.

{disk_log, Node, Log, {error_status, Status}}

Sent when the error status changes. The error status is defined by the outcome of the last attempt to log
items to the log, or to truncate the log, or the last use of function sync/1, inc_wrap_file/1, or
change_size/2. Status is either ok or {error, Error}, the former is the initial value.

{head, Head}

Specifies a header to be written first on the log file. If the log is a wrap log, the item Head is written first in each
new file. Head is to be a term if the format is internal, otherwise an iodata(). Defaults to none, which
means that no header is written first on the file.

{head_func, {M,F,A}}

Specifies a function to be called each time a new log file is opened. The call M:F(A) is assumed to return {ok,
Head}. The item Head is written first in each file. Head is to be a term if the format is internal, otherwise
an iodata().

{mode, Mode}

Specifies if the log is to be opened in read-only or read-write mode. Defaults to read_write.

{quiet, Boolean}

Specifies if messages will be sent to error_logger on recoverable errors with the log files. Defaults to false.

open/1 returns {ok, Log} if the log file is successfully opened. If the file is successfully repaired, the tuple
{repaired, Log, {recovered, Rec}, {badbytes, Bad}} is returned, where Rec is the number of
whole Erlang terms found in the file and Bad is the number of bytes in the file that are non-Erlang terms.

Ericsson AB. All Rights Reserved.: Kernel | 89

disk_log

When a disk log is opened in read-write mode, any existing log file is checked for. If there is none, a new empty log is
created, otherwise the existing file is opened at the position after the last logged item, and the logging of items starts
from there. If the format is internal and the existing file is not recognized as an internally formatted log, a tuple
{error, {not_a_log_file, FileName}} is returned.

open/1 cannot be used for changing the values of options of an open log. When there are prior owners or users of
a log, all option values except name, linkto, and notify are only checked against the values supplied before as
option values to function open/1, change_header/2, change_notify/3, or change_size/2. Thus, none
of the options except name is mandatory. If some specified value differs from the current value, a tuple {error,
{arg_mismatch, OptionName, CurrentValue, Value}} is returned.

Note:

If an owner attempts to open a log as owner once again, it is acknowledged with the return value {ok, Log},
but the state of the disk log is not affected.

A log file can be opened more than once by giving different values to option name or by using the same file when
opening a log on different nodes. It is up to the user of module disk_log to ensure that not more than one disk log
process has write access to any file, otherwise the file can be corrupted.

If an attempt to open a log file for the first time fails, the disk log process terminates with the EXIT message
{{failed,Reason},[{disk_log,open,1}]}. The function returns {error, Reason} for all other
errors.

pid2name(Pid) -> {ok, Log} | undefined
Types:

Pid = pid()
Log = log()

Returns the log name given the pid of a disk log process on the current node, or undefined if the specified pid is
not a disk log process.

This function is meant to be used for debugging only.

reopen(Log, File) -> ok | {error, reopen_error_rsn()}
reopen(Log, File, Head) -> ok | {error, reopen_error_rsn()}
breopen(Log, File, BHead) -> ok | {error, reopen_error_rsn()}
Types:

90 | Ericsson AB. All Rights Reserved.: Kernel

disk_log

Log = log()
File = file:filename()
Head = term()
BHead = iodata()
reopen_error_rsn() =
 no_such_log | nonode |
 {read_only_mode, log()} |
 {blocked_log, log()} |
 {same_file_name, log()} |
 {invalid_index_file, file:filename()} |
 {invalid_header, invalid_header()} |
 {file_error, file:filename(), file_error()}

Renames the log file to File and then recreates a new log file. If a wrap log exists, File is used as the base name of
the renamed files. By default the header given to open/1 is written first in the newly opened log file, but if argument
Head or BHead is specified, this item is used instead. The header argument is used only once. Next time a wrap log
file is opened, the header given to open/1 is used.

reopen/2,3 are used for internally formatted logs, and breopen/3 for externally formatted logs.

Owners subscribing to notifications receive a truncate message.

Upon failure to reopen the log, the disk log process terminates with the EXIT message {{failed,Error},
[{disk_log,Fun,Arity}]}. Other processes having requests queued receive the message {disk_log,
Node, {error, disk_log_stopped}}.

sync(Log) -> ok | {error, sync_error_rsn()}
Types:

Log = log()
sync_error_rsn() =
 no_such_log | nonode |
 {read_only_mode, log()} |
 {blocked_log, log()} |
 {file_error, file:filename(), file_error()}

Ensures that the contents of the log are written to the disk. This is usually a rather expensive operation.

truncate(Log) -> ok | {error, trunc_error_rsn()}
truncate(Log, Head) -> ok | {error, trunc_error_rsn()}
btruncate(Log, BHead) -> ok | {error, trunc_error_rsn()}
Types:

Ericsson AB. All Rights Reserved.: Kernel | 91

disk_log

Log = log()
Head = term()
BHead = iodata()
trunc_error_rsn() =
 no_such_log | nonode |
 {read_only_mode, log()} |
 {blocked_log, log()} |
 {invalid_header, invalid_header()} |
 {file_error, file:filename(), file_error()}

Removes all items from a disk log. If argument Head or BHead is specified, this item is written first in the newly
truncated log, otherwise the header given to open/1 is used. The header argument is used only once. Next time a
wrap log file is opened, the header given to open/1 is used.

truncate/1 is used for both internally and externally formatted logs.

truncate/2 is used for internally formatted logs, and btruncate/2 for externally formatted logs.

Owners subscribing to notifications receive a truncate message.

If the attempt to truncate the log fails, the disk log process terminates with the EXIT message {{failed,Reason},
[{disk_log,Fun,Arity}]}. Other processes having requests queued receive the message {disk_log,
Node, {error, disk_log_stopped}}.

unblock(Log) -> ok | {error, unblock_error_rsn()}
Types:

Log = log()
unblock_error_rsn() =
 no_such_log | nonode |
 {not_blocked, log()} |
 {not_blocked_by_pid, log()}

Unblocks a log. A log can only be unblocked by the blocking process.

See Also
file(3), wrap_log_reader(3)

92 | Ericsson AB. All Rights Reserved.: Kernel

erl_boot_server

erl_boot_server
Erlang module

This server is used to assist diskless Erlang nodes that fetch all Erlang code from another machine.

This server is used to fetch all code, including the start script, if an Erlang runtime system is started with command-
line flag -loader inet. All hosts specified with command-line flag -hosts Host must have one instance of
this server running.

This server can be started with the Kernel configuration parameter start_boot_server.

The erl_boot_server can read regular files and files in archives. See code(3) and erl_prim_loader(3)
in ERTS.

Warning:

The support for loading code from archive files is experimental. It is released before it is ready to obtain early
feedback. The file format, semantics, interfaces, and so on, can be changed in a future release.

Exports

add_slave(Slave) -> ok | {error, Reason}
Types:

Slave = Host
Host = inet:ip_address() | inet:hostname()
Reason = {badarg, Slave}

Adds a Slave node to the list of allowed slave hosts.

delete_slave(Slave) -> ok | {error, Reason}
Types:

Slave = Host
Host = inet:ip_address() | inet:hostname()
Reason = {badarg, Slave}

Deletes a Slave node from the list of allowed slave hosts.

start(Slaves) -> {ok, Pid} | {error, Reason}
Types:

Slaves = [Host]
Host = inet:ip_address() | inet:hostname()
Pid = pid()
Reason = {badarg, Slaves}

Starts the boot server. Slaves is a list of IP addresses for hosts, which are allowed to use this server as a boot server.

start_link(Slaves) -> {ok, Pid} | {error, Reason}
Types:

Ericsson AB. All Rights Reserved.: Kernel | 93

erl_boot_server

Slaves = [Host]
Host = inet:ip_address() | inet:hostname()
Pid = pid()
Reason = {badarg, Slaves}

Starts the boot server and links to the caller. This function is used to start the server if it is included in a supervision tree.

which_slaves() -> Slaves
Types:

Slaves = [Slave]
Slave =
 {Netmask :: inet:ip_address(), Address :: inet:ip_address()}

Returns the current list of allowed slave hosts.

SEE ALSO
erts:init(3), erts:erl_prim_loader(3)

94 | Ericsson AB. All Rights Reserved.: Kernel

erl_ddll

erl_ddll
Erlang module

This module provides an interface for loading and unloading Erlang linked-in drivers in runtime.

Note:

This is a large reference document. For casual use of this module, and for most real world applications, the
descriptions of functions load/2 and unload/1 are enough to getting started.

The driver is to be provided as a dynamically linked library in an object code format specific for the platform in use,
that is, .so files on most Unix systems and .ddl files on Windows. An Erlang linked-in driver must provide specific
interfaces to the emulator, so this module is not designed for loading arbitrary dynamic libraries. For more information
about Erlang drivers, see erts:erl_driver .

When describing a set of functions (that is, a module, a part of a module, or an application), executing in a process
and wanting to use a ddll-driver, we use the term user. A process can have many users (different modules needing the
same driver) and many processes running the same code, making up many users of a driver.

In the basic scenario, each user loads the driver before starting to use it and unloads the driver when done. The reference
counting keeps track of processes and the number of loads by each process. This way the driver is only unloaded
when no one wants it (it has no user). The driver also keeps track of ports that are opened to it. This enables delay of
unloading until all ports are closed, or killing of all ports that use the driver when it is unloaded.

The interface supports two basic scenarios of loading and unloading. Each scenario can also have the option of either
killing ports when the driver is unloading, or waiting for the ports to close themselves. The scenarios are as follows:

Load and Unload on a "When Needed Basis"

This (most common) scenario simply supports that each user of the driver loads it when needed and unloads it
when no longer needed. The driver is always reference counted and as long as a process keeping the driver loaded
is still alive, the driver is present in the system.

Each user of the driver use literally the same pathname for the driver when demanding load, but the users are
not concerned with if the driver is already loaded from the file system or if the object code must be loaded from
file system.

The following two pairs of functions support this scenario:

load/2 and unload/1

When using the load/unload interfaces, the driver is not unloaded until the last port using the driver is
closed. Function unload/1 can return immediately, as the users have no interest in when the unloading
occurs. The driver is unloaded when no one needs it any longer.

If a process having the driver loaded dies, it has the same effect as if unloading is done.

When loading, function load/2 returns ok when any instance of the driver is present. Thus, if a driver is
waiting to get unloaded (because of open ports), it simply changes state to no longer need unloading.

load_driver/2 and unload_driver/1

These interfaces are intended to be used when it is considered an error that ports are open to a driver that no
user has loaded. The ports that are still open when the last user calls unload_driver/1 or when the last
process having the driver loaded dies, are killed with reason driver_unloaded.

The function names load_driver and unload_driver are kept for backward compatibility.

Ericsson AB. All Rights Reserved.: Kernel | 95

erl_ddll

Loading and Reloading for Code Replacement

This scenario can occur if the driver code needs replacement during operation of the Erlang emulator.
Implementing driver code replacement is a little more tedious than Beam code replacement, as one driver cannot
be loaded as both "old" and "new" code. All users of a driver must have it closed (no open ports) before the old
code can be unloaded and the new code can be loaded.

The unloading/loading is done as one atomic operation, blocking all processes in the system from using the driver
in question while in progress.

The preferred way to do driver code replacement is to let one single process keep track of the driver. When
the process starts, the driver is loaded. When replacement is required, the driver is reloaded. Unload is probably
never done, or done when the process exits. If more than one user has a driver loaded when code replacement is
demanded, the replacement cannot occur until the last "other" user has unloaded the driver.

Demanding reload when a reload is already in progress is always an error. Using the high-level functions, it is
also an error to demand reloading when more than one user has the driver loaded.

To simplify driver replacement, avoid designing your system so that more than one user has the driver loaded.

The two functions for reloading drivers are to be used together with corresponding load functions to support the
two different behaviors concerning open ports:

load/2 and reload/2

This pair of functions is used when reloading is to be done after the last open port to the driver is closed.

As reload/2 waits for the reloading to occur, a misbehaving process keeping open ports to the driver
(or keeping the driver loaded) can cause infinite waiting for reload. Time-outs must be provided outside of
the process demanding the reload or by using the low-level interface try_load/3 in combination with
driver monitors.

load_driver/2 and reload_driver/2

This pair of functions are used when open ports to the driver are to be killed with reason
driver_unloaded to allow for new driver code to get loaded.

However, if another process has the driver loaded, calling reload_driver returns error code
pending_process. As stated earlier, the recommended design is to not allow other users than the "driver
reloader" to demand loading of the driver in question.

Data Types
driver() = iolist() | atom()
path() = string() | atom()

Exports

demonitor(MonitorRef) -> ok
Types:

MonitorRef = reference()
Removes a driver monitor in much the same way as erlang:demonitor/1 in ERTS does with process monitors.
For details about how to create driver monitors, see monitor/2, try_load/3, and try_unload/2.

The function throws a badarg exception if the parameter is not a reference().

format_error(ErrorDesc) -> string()
Types:

96 | Ericsson AB. All Rights Reserved.: Kernel

erl_ddll

ErrorDesc = term()
Takes an ErrorDesc returned by load, unload, or reload functions and returns a string that describes the error or
warning.

Note:

Because of peculiarities in the dynamic loading interfaces on different platforms, the returned string is only
guaranteed to describe the correct error if format_error/1 is called in the same instance of the Erlang virtual
machine as the error appeared in (meaning the same operating system process).

info() -> AllInfoList
Types:

AllInfoList = [DriverInfo]
DriverInfo = {DriverName, InfoList}
DriverName = string()
InfoList = [InfoItem]
InfoItem = {Tag :: atom(), Value :: term()}

Returns a list of tuples {DriverName, InfoList}, where InfoList is the result of calling info/1 for that
DriverName. Only dynamically linked-in drivers are included in the list.

info(Name) -> InfoList
Types:

Name = driver()
InfoList = [InfoItem, ...]
InfoItem = {Tag :: atom(), Value :: term()}

Returns a list of tuples {Tag, Value}, where Tag is the information item and Value is the result of calling
info/2 with this driver name and this tag. The result is a tuple list containing all information available about a driver.

The following tags appears in the list:

• processes

• driver_options

• port_count

• linked_in_driver

• permanent

• awaiting_load

• awaiting_unload

For a detailed description of each value, see info/2.

The function throws a badarg exception if the driver is not present in the system.

info(Name, Tag) -> Value
Types:

Ericsson AB. All Rights Reserved.: Kernel | 97

erl_ddll

Name = driver()
Tag =
 processes | driver_options | port_count | linked_in_driver |
 permanent | awaiting_load | awaiting_unload
Value = term()

Returns specific information about one aspect of a driver. Parameter Tag specifies which aspect to get information
about. The return Value differs between different tags:

processes

Returns all processes containing users of the specific drivers as a list of tuples {pid(),integer() >= 0},
where integer() denotes the number of users in process pid().

driver_options

Returns a list of the driver options provided when loading, and any options set by the driver during initialization.
The only valid option is kill_ports.

port_count

Returns the number of ports (an integer() >= 0) using the driver.

linked_in_driver

Returns a boolean(), which is true if the driver is a statically linked-in one, otherwise false.

permanent

Returns a boolean(), which is true if the driver has made itself permanent (and is not a statically linked-
in driver), otherwise false.

awaiting_load

Returns a list of all processes having monitors for loading active. Each process is returned as
{pid(),integer() >= 0}, where integer() is the number of monitors held by process pid().

awaiting_unload

Returns a list of all processes having monitors for unloading active. Each process is returned as
{pid(),integer() >= 0}, where integer() is the number of monitors held by process pid().

If option linked_in_driver or permanent returns true, all other options return linked_in_driver or
permanent, respectively.

The function throws a badarg exception if the driver is not present in the system or if the tag is not supported.

load(Path, Name) -> ok | {error, ErrorDesc}
Types:

Path = path()
Name = driver()
ErrorDesc = term()

Loads and links the dynamic driver Name. Path is a file path to the directory containing the driver. Name must be a
shareable object/dynamic library. Two drivers with different Path parameters cannot be loaded under the same name.
Name is a string or atom containing at least one character.

The Name specified is to correspond to the filename of the dynamically loadable object file residing in the directory
specified as Path, but without the extension (that is, .so). The driver name provided in the driver initialization
routine must correspond with the filename, in much the same way as Erlang module names correspond to the names
of the .beam files.

98 | Ericsson AB. All Rights Reserved.: Kernel

erl_ddll

If the driver was previously unloaded, but is still present because of open ports to it, a call to load/2 stops the
unloading and keeps the driver (as long as Path is the same), and ok is returned. If you really want the object code to
be reloaded, use reload/2 or the low-level interface try_load/3 instead. See also the description of different
scenarios for loading/unloading in the introduction.

If more than one process tries to load an already loaded driver with the same Path, or if the same process tries to load
it many times, the function returns ok. The emulator keeps track of the load/2 calls, so that a corresponding number
of unload/2 calls must be done from the same process before the driver gets unloaded. It is therefore safe for an
application to load a driver that is shared between processes or applications when needed. It can safely be unloaded
without causing trouble for other parts of the system.

It is not allowed to load multiple drivers with the same name but with different Path parameters.

Note:

Path is interpreted literally, so that all loaders of the same driver must specify the same literal Path string,
although different paths can point out the same directory in the file system (because of use of relative paths and
links).

On success, the function returns ok. On failure, the return value is {error,ErrorDesc}, where ErrorDesc is
an opaque term to be translated into human readable form by function format_error/1.

For more control over the error handling, use the try_load/3 interface instead.

The function throws a badarg exception if the parameters are not specified as described here.

load_driver(Path, Name) -> ok | {error, ErrorDesc}
Types:

Path = path()
Name = driver()
ErrorDesc = term()

Works essentially as load/2, but loads the driver with other options. All ports using the driver are killed with reason
driver_unloaded when the driver is to be unloaded.

The number of loads and unloads by different users influences the loading and unloading of a driver file. The port
killing therefore only occurs when the last user unloads the driver, or when the last process having loaded the driver
exits.

This interface (or at least the name of the functions) is kept for backward compatibility. Using try_load/3 with
{driver_options,[kill_ports]} in the option list gives the same effect regarding the port killing.

The function throws a badarg exception if the parameters are not specified as described here.

loaded_drivers() -> {ok, Drivers}
Types:

Drivers = [Driver]
Driver = string()

Returns a list of all the available drivers, both (statically) linked-in and dynamically loaded ones.

The driver names are returned as a list of strings rather than a list of atoms for historical reasons.

For more information about drivers, see info.

Ericsson AB. All Rights Reserved.: Kernel | 99

erl_ddll

monitor(Tag, Item) -> MonitorRef
Types:

Tag = driver
Item = {Name, When}
Name = driver()
When = loaded | unloaded | unloaded_only
MonitorRef = reference()

Creates a driver monitor and works in many ways as erlang:monitor/2 in ERTS, does for processes. When
a driver changes state, the monitor results in a monitor message that is sent to the calling process. MonitorRef
returned by this function is included in the message sent.

As with process monitors, each driver monitor set only generates one single message. The monitor is "destroyed" after
the message is sent, so it is then not needed to call demonitor/1.

MonitorRef can also be used in subsequent calls to demonitor/1 to remove a monitor.

The function accepts the following parameters:

Tag

The monitor tag is always driver, as this function can only be used to create driver monitors. In the future,
driver monitors will be integrated with process monitors, why this parameter has to be specified for consistence.

Item

Parameter Item specifies which driver to monitor (the driver name) and which state change to monitor. The
parameter is a tuple of arity two whose first element is the driver name and second element is one of the following:

loaded

Notifies when the driver is reloaded (or loaded if loading is underway). It only makes sense to monitor drivers
that are in the process of being loaded or reloaded. A future driver name for loading cannot be monitored.
That only results in a DOWN message sent immediately. Monitoring for loading is therefore most useful when
triggered by function try_load/3, where the monitor is created because the driver is in such a pending
state.

Setting a driver monitor for loading eventually leads to one of the following messages being sent:

{'UP', reference(), driver, Name, loaded}

This message is sent either immediately if the driver is already loaded and no reloading is pending, or
when reloading is executed if reloading is pending.

The user is expected to know if reloading is demanded before creating a monitor for loading.

{'UP', reference(), driver, Name, permanent}

This message is sent if reloading was expected, but the (old) driver made itself permanent before
reloading. It is also sent if the driver was permanent or statically linked-in when trying to create the
monitor.

{'DOWN', reference(), driver, Name, load_cancelled}

This message arrives if reloading was underway, but the requesting user cancelled it by dying or calling
try_unload/2 (or unload/1/unload_driver/1) again before it was reloaded.

{'DOWN', reference(), driver, Name, {load_failure, Failure}}

This message arrives if reloading was underway but the loading for some reason failed. The Failure
term is one of the errors that can be returned from try_load/3. The error term can be passed to

100 | Ericsson AB. All Rights Reserved.: Kernel

erl_ddll

format_error/1 for translation into human readable form. Notice that the translation must be done
in the same running Erlang virtual machine as the error was detected in.

unloaded

Monitors when a driver gets unloaded. If one monitors a driver that is not present in the system, one
immediately gets notified that the driver got unloaded. There is no guarantee that the driver was ever loaded.

A driver monitor for unload eventually results in one of the following messages being sent:

{'DOWN', reference(), driver, Name, unloaded}

The monitored driver instance is now unloaded. As the unload can be a result of a reload/2 request,
the driver can once again have been loaded when this message arrives.

{'UP', reference(), driver, Name, unload_cancelled}

This message is sent if unloading was expected, but while the driver was waiting for all ports to get
closed, a new user of the driver appeared, and the unloading was cancelled.

This message appears if {ok, pending_driver} was returned from try_unload/2 for the last
user of the driver, and then {ok, already_loaded} is returned from a call to try_load/3.

If one really wants to monitor when the driver gets unloaded, this message distorts the picture, because
no unloading was done. Option unloaded_only creates a monitor similar to an unloaded monitor,
but never results in this message.

{'UP', reference(), driver, Name, permanent}

This message is sent if unloading was expected, but the driver made itself permanent before unloading.
It is also sent if trying to monitor a permanent or statically linked-in driver.

unloaded_only

A monitor created as unloaded_only behaves exactly as one created as unloaded except that the
{'UP', reference(), driver, Name, unload_cancelled} message is never sent, but the
monitor instead persists until the driver really gets unloaded.

The function throws a badarg exception if the parameters are not specified as described here.

reload(Path, Name) -> ok | {error, ErrorDesc}
Types:

Path = path()
Name = driver()
ErrorDesc = pending_process | OpaqueError
OpaqueError = term()

Reloads the driver named Name from a possibly different Path than previously used. This function is used in the
code change scenario described in the introduction.

If there are other users of this driver, the function returns {error, pending_process}, but if there are no other
users, the function call hangs until all open ports are closed.

Note:

Avoid mixing multiple users with driver reload requests.

To avoid hanging on open ports, use function try_load/3 instead.

The Name and Path parameters have exactly the same meaning as when calling the plain function load/2.

Ericsson AB. All Rights Reserved.: Kernel | 101

erl_ddll

On success, the function returns ok. On failure, the function returns an opaque error, except the pending_process
error described earlier. The opaque errors are to be translated into human readable form by function
format_error/1.

For more control over the error handling, use the try_load/3 interface instead.

The function throws a badarg exception if the parameters are not specified as described here.

reload_driver(Path, Name) -> ok | {error, ErrorDesc}
Types:

Path = path()
Name = driver()
ErrorDesc = pending_process | OpaqueError
OpaqueError = term()

Works exactly as reload/2, but for drivers loaded with the load_driver/2 interface.

As this interface implies that ports are killed when the last user disappears, the function does not hang waiting for
ports to get closed.

For more details, see scenarios in this module description and the function description for reload/2.

The function throws a badarg exception if the parameters are not specified as described here.

try_load(Path, Name, OptionList) ->
 {ok, Status} |
 {ok, PendingStatus, Ref} |
 {error, ErrorDesc}
Types:

Path = path()
Name = driver()
OptionList = [Option]
Option =
 {driver_options, DriverOptionList} |
 {monitor, MonitorOption} |
 {reload, ReloadOption}
DriverOptionList = [DriverOption]
DriverOption = kill_ports
MonitorOption = ReloadOption = pending_driver | pending
Status = loaded | already_loaded | PendingStatus
PendingStatus = pending_driver | pending_process
Ref = reference()
ErrorDesc = ErrorAtom | OpaqueError
ErrorAtom =
 linked_in_driver | inconsistent | permanent |
 not_loaded_by_this_process | not_loaded | pending_reload |
 pending_process
OpaqueError = term()

Provides more control than the load/2/reload/2 and load_driver/2/reload_driver/2 interfaces. It
never waits for completion of other operations related to the driver, but immediately returns the status of the driver
as one of the following:

102 | Ericsson AB. All Rights Reserved.: Kernel

erl_ddll

{ok, loaded}

The driver was loaded and is immediately usable.

{ok, already_loaded}

The driver was already loaded by another process or is in use by a living port, or both. The load by you is registered
and a corresponding try_unload is expected sometime in the future.

{ok, pending_driver}or {ok, pending_driver, reference()}

The load request is registered, but the loading is delayed because an earlier instance of the driver is still waiting
to get unloaded (open ports use it). Still, unload is expected when you are done with the driver. This return
value mostly occurs when options {reload,pending_driver} or {reload,pending} are used, but
can occur when another user is unloading a driver in parallel and driver option kill_ports is set. In other
words, this return value always needs to be handled.

{ok, pending_process}or {ok, pending_process, reference()}

The load request is registered, but the loading is delayed because an earlier instance of the driver is still waiting
to get unloaded by another user (not only by a port, in which case {ok,pending_driver} would have been
returned). Still, unload is expected when you are done with the driver. This return value only occurs when option
{reload,pending} is used.

When the function returns {ok, pending_driver} or {ok, pending_process}, one can get information
about when the driver is actually loaded by using option {monitor, MonitorOption}.

When monitoring is requested, and a corresponding {ok, pending_driver} or {ok, pending_process}
would be returned, the function instead returns a tuple {ok, PendingStatus, reference()} and the process
then gets a monitor message later, when the driver gets loaded. The monitor message to expect is described in the
function description of monitor/2.

Note:

In case of loading, monitoring can not only get triggered by using option {reload, ReloadOption}, but
also in special cases where the load error is transient. Thus, {monitor, pending_driver} is to be used
under basically all real world circumstances.

The function accepts the following parameters:

Path

The file system path to the directory where the driver object file is located. The filename of the object file (minus
extension) must correspond to the driver name (used in parameter Name) and the driver must identify itself with
the same name. Path can be provided as an iolist(), meaning it can be a list of other iolist()s, characters (8-
bit integers), or binaries, all to be flattened into a sequence of characters.

The (possibly flattened) Path parameter must be consistent throughout the system. A driver is to, by all users,
be loaded using the same literal Path. The exception is when reloading is requested, in which case Path can
be specified differently. Notice that all users trying to load the driver later need to use the new Path if Path
is changed using a reload option. This is yet another reason to have only one loader of a driver one wants
to upgrade in a running system.

Name

This parameter is the name of the driver to be used in subsequent calls to function erlang:open_port in
ERTS. The name can be specified as an iolist() or an atom(). The name specified when loading is used
to find the object file (with the help of Path and the system-implied extension suffix, that is, .so). The name
by which the driver identifies itself must also be consistent with this Name parameter, much as the module name
of a Beam file much corresponds to its filename.

Ericsson AB. All Rights Reserved.: Kernel | 103

erl_ddll

OptionList

Some options can be specified to control the loading operation. The options are specified as a list of two-tuples.
The tuples have the following values and meanings:

{driver_options, DriverOptionList}

This is to provide options that changes its general behavior and "sticks" to the driver throughout its lifespan.

The driver options for a specified driver name need always to be consistent, even when the driver is
reloaded, meaning that they are as much a part of the driver as the name.

The only allowed driver option is kill_ports, which means that all ports opened to the driver are killed
with exit reason driver_unloaded when no process any longer has the driver loaded. This situation
arises either when the last user calls try_unload/2, or when the last process having loaded the driver
exits.

{monitor, MonitorOption}

A MonitorOption tells try_load/3 to trigger a driver monitor under certain conditions. When the
monitor is triggered, the function returns a three-tuple {ok, PendingStatus, reference()},
where reference() is the monitor reference for the driver monitor.

Only one MonitorOption can be specified. It is one of the following:

• The atom pending, which means that a monitor is to be created whenever a load operation is delayed,

• The atom pending_driver, in which a monitor is created whenever the operation is delayed because
of open ports to an otherwise unused driver.

Option pending_driver is of little use, but is present for completeness, as it is well defined which reload
options that can give rise to which delays. However, it can be a good idea to use the same MonitorOption
as the ReloadOption, if present.

If reloading is not requested, it can still be useful to specify option monitor, as forced unloads (driver
option kill_ports or option kill_ports to try_unload/2) trigger a transient state where driver
loading cannot be performed until all closing ports are closed. Thus, as try_unload can, in almost all
situations, return {ok, pending_driver}, always specify at least {monitor, pending_driver}
in production code (see the monitor discussion earlier).

{reload, ReloadOption}

This option is used to reload a driver from disk, most often in a code upgrade scenario. Having a reload
option also implies that parameter Path does not need to be consistent with earlier loads of the driver.

To reload a driver, the process must have loaded the driver before, that is, there must be an active user of
the driver in the process.

The reload option can be either of the following:

pending

With the atom pending, reloading is requested for any driver and is effectuated when all ports opened
to the driver are closed. The driver replacement in this case takes place regardless if there are still
pending users having the driver loaded.

The option also triggers port-killing (if driver option kill_ports is used) although there are pending
users, making it usable for forced driver replacement, but laying much responsibility on the driver users.
The pending option is seldom used as one does not want other users to have loaded the driver when
code change is underway.

104 | Ericsson AB. All Rights Reserved.: Kernel

erl_ddll

pending_driver

This option is more useful. Here, reloading is queued if the driver is not loaded by any other users,
but the driver has opened ports, in which case {ok, pending_driver} is returned (a monitor
option is recommended).

If the driver is unloaded (not present in the system), error code not_loaded is returned. Option reload
is intended for when the user has already loaded the driver in advance.

The function can return numerous errors, some can only be returned given a certain combination of options.

Some errors are opaque and can only be interpreted by passing them to function format_error/1, but some can
be interpreted directly:

{error,linked_in_driver}

The driver with the specified name is an Erlang statically linked-in driver, which cannot be manipulated with
this API.

{error,inconsistent}

The driver is already loaded with other DriverOptionList or a different literal Path argument.

This can occur even if a reload option is specified, if DriverOptionList differs from the current.

{error, permanent}

The driver has requested itself to be permanent, making it behave like an Erlang linked-in driver and can no
longer be manipulated with this API.

{error, pending_process}

The driver is loaded by other users when option {reload, pending_driver} was specified.

{error, pending_reload}

Driver reload is already requested by another user when option {reload, ReloadOption} was specified.

{error, not_loaded_by_this_process}

Appears when option reload is specified. The driver Name is present in the system, but there is no user of it
in this process.

{error, not_loaded}

Appears when option reload is specified. The driver Name is not in the system. Only drivers loaded by this
process can be reloaded.

All other error codes are to be translated by function format_error/1. Notice that calls to format_error are
to be performed from the same running instance of the Erlang virtual machine as the error is detected in, because of
system-dependent behavior concerning error values.

If the arguments or options are malformed, the function throws a badarg exception.

try_unload(Name, OptionList) ->
 {ok, Status} |
 {ok, PendingStatus, Ref} |
 {error, ErrorAtom}
Types:

Ericsson AB. All Rights Reserved.: Kernel | 105

erl_ddll

Name = driver()
OptionList = [Option]
Option = {monitor, MonitorOption} | kill_ports
MonitorOption = pending_driver | pending
Status = unloaded | PendingStatus
PendingStatus = pending_driver | pending_process
Ref = reference()
ErrorAtom =
 linked_in_driver | not_loaded | not_loaded_by_this_process |
 permanent

This is the low-level function to unload (or decrement reference counts of) a driver. It can be used to force port killing,
in much the same way as the driver option kill_ports implicitly does. Also, it can trigger a monitor either because
other users still have the driver loaded or because open ports use the driver.

Unloading can be described as the process of telling the emulator that this particular part of the code in this particular
process (that is, this user) no longer needs the driver. That can, if there are no other users, trigger unloading of the
driver, in which case the driver name disappears from the system and (if possible) the memory occupied by the driver
executable code is reclaimed.

If the driver has option kill_ports set, or if kill_ports is specified as an option to this function, all pending
ports using this driver are killed when unloading is done by the last user. If no port-killing is involved and there are
open ports, the unloading is delayed until no more open ports use the driver. If, in this case, another user (or even this
user) loads the driver again before the driver is unloaded, the unloading never takes place.

To allow the user to request unloading to wait for actual unloading, monitor triggers can be specified in much
the same way as when loading. However, as users of this function seldom are interested in more than decrementing
the reference counts, monitoring is seldom needed.

Note:

If option kill_ports is used, monitor trigging is crucial, as the ports are not guaranteed to be killed until the
driver is unloaded. Thus, a monitor must be triggered for at least the pending_driver case.

The possible monitor messages to expect are the same as when using option unloaded to function monitor/2.

The function returns one of the following statuses upon success:

{ok, unloaded}

The driver was immediately unloaded, meaning that the driver name is now free to use by other drivers and, if
the underlying OS permits it, the memory occupied by the driver object code is now reclaimed.

The driver can only be unloaded when there are no open ports using it and no more users require it to be loaded.

{ok, pending_driver}or {ok, pending_driver, reference()}

Indicates that this call removed the last user from the driver, but there are still open ports using it. When all ports
are closed and no new users have arrived, the driver is reloaded and the name and memory reclaimed.

This return value is valid even if option kill_ports was used, as killing ports can be a process that does not
complete immediately. However, the condition is in that case transient. Monitors are always useful to detect when
the driver is really unloaded.

{ok, pending_process}or {ok, pending_process, reference()}

The unload request is registered, but other users still hold the driver. Notice that the term pending_process
can refer to the running process; there can be more than one user in the same process.

106 | Ericsson AB. All Rights Reserved.: Kernel

erl_ddll

This is a normal, healthy, return value if the call was just placed to inform the emulator that you have no further use
of the driver. It is the most common return value in the most common scenario described in the introduction.

The function accepts the following parameters:

Name

Name is the name of the driver to be unloaded. The name can be specified as an iolist() or as an atom().

OptionList

Argument OptionList can be used to specify certain behavior regarding ports and triggering monitors under
certain conditions:

kill_ports

Forces killing of all ports opened using this driver, with exit reason driver_unloaded, if you are the
last user of the driver.

If other users have the driver loaded, this option has no effect.

To get the consistent behavior of killing ports when the last user unloads, use driver option kill_ports
when loading the driver instead.

{monitor, MonitorOption}

Creates a driver monitor if the condition specified in MonitorOption is true. The valid options are:

pending_driver

Creates a driver monitor if the return value is to be {ok, pending_driver}.

pending

Creates a monitor if the return value is {ok, pending_driver} or {ok, pending_process}.

The pending_driver MonitorOption is by far the most useful. It must be used to ensure that the
driver really is unloaded and the ports closed whenever option kill_ports is used, or the driver can have
been loaded with driver option kill_ports.

Using the monitor triggers in the call to try_unload ensures that the monitor is added before the unloading
is executed, meaning that the monitor is always properly triggered, which is not the case if monitor/2
is called separately.

The function can return the following error conditions, all well specified (no opaque values):

{error, linked_in_driver}

You were trying to unload an Erlang statically linked-in driver, which cannot be manipulated with this interface
(and cannot be unloaded at all).

{error, not_loaded}

The driver Name is not present in the system.

{error, not_loaded_by_this_process}

The driver Name is present in the system, but there is no user of it in this process.

As a special case, drivers can be unloaded from processes that have done no corresponding call to try_load/3
if, and only if, there are no users of the driver at all, which can occur if the process containing the last user dies.

{error, permanent}

The driver has made itself permanent, in which case it can no longer be manipulated by this interface (much like
a statically linked-in driver).

The function throws a badarg exception if the parameters are not specified as described here.

Ericsson AB. All Rights Reserved.: Kernel | 107

erl_ddll

unload(Name) -> ok | {error, ErrorDesc}
Types:

Name = driver()
ErrorDesc = term()

Unloads, or at least dereferences the driver named Name. If the caller is the last user of the driver, and no more open
ports use the driver, the driver gets unloaded. Otherwise, unloading is delayed until all ports are closed and no users
remain.

If there are other users of the driver, the reference counts of the driver is merely decreased, so that the caller is no
longer considered a user of the driver. For use scenarios, see the description in the beginning of this module.

The ErrorDesc returned is an opaque value to be passed further on to function format_error/1. For more
control over the operation, use the try_unload/2 interface.

The function throws a badarg exception if the parameters are not specified as described here.

unload_driver(Name) -> ok | {error, ErrorDesc}
Types:

Name = driver()
ErrorDesc = term()

Unloads, or at least dereferences the driver named Name. If the caller is the last user of the driver, all remaining open
ports using the driver are killed with reason driver_unloaded and the driver eventually gets unloaded.

If there are other users of the driver, the reference counts of the driver is merely decreased, so that the caller is no
longer considered a user. For use scenarios, see the description in the beginning of this module.

The ErrorDesc returned is an opaque value to be passed further on to function format_error/1. For more
control over the operation, use the try_unload/2 interface.

The function throws a badarg exception if the parameters are not specified as described here.

See Also
erts:erl_driver(4), erts:driver_entry(4)

108 | Ericsson AB. All Rights Reserved.: Kernel

erl_epmd

erl_epmd
Erlang module

This module communicates with the EPMD daemon, see epmd. To implement your own epmd module please see
ERTS User's Guide: How to Implement an Alternative Node Discovery for Erlang Distribution

Exports

start_link() -> {ok, pid()} | ignore | {error, term()}
This function is invoked as this module is added as a child of the erl_distribution supervisor.

register_node(Name, Port) -> Result
register_node(Name, Port, Driver) -> Result
Types:

Name = string()
Port = integer() >= 0
Driver = inet_tcp | inet6_tcp | inet | inet6
Creation = integer() >= 0 | -1
Result = {ok, Creation} | {error, already_registered} | term()

Registers the node with epmd and tells epmd what port will be used for the current node. It returns a creation number.
This number is incremented on each register to help differentiate a new node instance connecting to epmd with the
same name.

After the node has successfully registered with epmd it will automatically attempt reconnect to the daemon if the
connection is broken.

port_please(Name, Host) ->
 {port, Port, Version} |
 noport | closed |
 {error, term()}
port_please(Name, Host, Timeout) ->
 {port, Port, Version} |
 noport | closed |
 {error, term()}
Types:

Name = atom() | string()
Host = atom() | string() | inet:ip_address()
Timeout = integer() >= 0 | infinity
Port = Version = integer() >= 0

Requests the distribution port for the given node of an EPMD instance. Together with the port it returns a distribution
protocol version which has been 5 since Erlang/OTP R6.

listen_port_please(Name, Host) -> {ok, Port}
Types:

Ericsson AB. All Rights Reserved.: Kernel | 109

erl_epmd

Name = atom() | string()
Host = atom() | string() | inet:ip_address()
Port = integer() >= 0

Called by the distribution module to get which port the local node should listen to when accepting new distribution
requests.

address_please(Name, Host, AddressFamily) ->
 Success | {error, term()}
Types:

Name = string()
Host = string() | inet:ip_address()
AddressFamily = inet | inet6
Port = Version = integer() >= 0
Success =
 {ok, inet:ip_address()} |
 {ok, inet:ip_address(), Port, Version}

Called by the distribution module to resolves the Host to an IP address of a remote node.

As an optimization this function may also return the port and version of the remote node. If port and version are
returned port_please/3 will not be called.

names(Host) -> {ok, [{Name, Port}]} | {error, Reason}
Types:

Host = atom() | string() | inet:ip_address()
Name = string()
Port = integer() >= 0
Reason = address | file:posix()

Called by net_adm:names/0. Host defaults to the localhost. Returns the names and associated port numbers of
the Erlang nodes that epmd registered at the specified host. Returns {error, address} if epmd is not operational.

Example:

(arne@dunn)1> erl_epmd:names(localhost).
{ok,[{"arne",40262}]}

110 | Ericsson AB. All Rights Reserved.: Kernel

erl_prim_loader

erl_prim_loader
Erlang module

The module erl_prim_loader is moved to the runtime system application. Please see erl_prim_loader(3) in the ERTS
reference manual instead.

Ericsson AB. All Rights Reserved.: Kernel | 111

erlang

erlang
Erlang module

The module erlang is moved to the runtime system application. Please see erlang(3) in the ERTS reference manual
instead.

112 | Ericsson AB. All Rights Reserved.: Kernel

erpc

erpc
Erlang module

This module provide services similar to Remote Procedure Calls. A remote procedure call is a method to call a function
on a remote node and collect the answer. It is used for collecting information on a remote node, or for running a
function with some specific side effects on the remote node.

This is an enhanced subset of the operations provided by the rpc module. Enhanced in the sense that it makes it
possible to distinguish between returned value, raised exceptions, and other errors. erpc also has better performance
and scalability than the original rpc implementation. However, current rpc module will utilize erpc in order to also
provide these properties when possible.

In order for an erpc operation to succeed, the remote node also needs to support erpc. Typically only ordinary
Erlang nodes as of OTP 23 have erpc support.

Note that it is up to the user to ensure that correct code to execute via erpc is available on the involved nodes.

Data Types
request_id()
An opaque request identifier. For more information see send_request/4.

request_id_collection()
An opaque collection of request identifiers (request_id()) where each request identifier can be associated with a
label chosen by the user. For more information see reqids_new/0.

timeout_time() = 0..4294967295 | infinity | {abs, integer()}
0..4294967295

Timeout relative to current time in milliseconds.

infinity

Infinite timeout. That is, the operation will never time out.

{abs, Timeout}

An absolute Erlang monotonic time timeout in milliseconds. That is, the operation will time out when
erlang:monotonic_time(millisecond) returns a value larger than or equal to Timeout. Timeout
is not allowed to identify a time further into the future than 4294967295 milliseconds. Identifying the timeout
using an absolute timeout value is especially handy when you have a deadline for responses corresponding to
a complete collection of requests (request_id_collection()) , since you do not have to recalculate the
relative time until the deadline over and over again.

Exports

call(Node, Fun) -> Result
call(Node, Fun, Timeout) -> Result
Types:

Ericsson AB. All Rights Reserved.: Kernel | 113

erpc

Node = node()
Fun = function()
Timeout = timeout_time()
Result = term()

The same as calling erpc:call(Node, erlang, apply, [Fun,[]], Timeout). May raise all the same
exceptions as call/5 plus an {erpc, badarg} error exception if Fun is not a fun of zero arity.

The call erpc:call(Node,Fun) is the same as the call erpc:call(Node,Fun,infinity).

call(Node, Module, Function, Args) -> Result
call(Node, Module, Function, Args, Timeout) -> Result
Types:

Node = node()
Module = Function = atom()
Args = [term()]
Timeout = timeout_time()
Result = term()

Evaluates apply(Module, Function, Args) on node Node and returns the corresponding value Result.
Timeout sets an upper time limit for the call operation to complete.

The call erpc:call(Node, Module, Function, Args) is equivalent to the call erpc:call(Node,
Module, Function, Args, infinity)

The call() function only returns if the applied function successfully returned without raising any uncaught
exceptions, the operation did not time out, and no failures occurred. In all other cases an exception is raised. The
following exceptions, listed by exception class, can currently be raised by call():

throw

The applied function called throw(Value) and did not catch this exception. The exception reason Value
equals the argument passed to throw/1.

exit

Exception reason:

{exception, ExitReason}

The applied function called exit(ExitReason) and did not catch this exception. The exit reason
ExitReason equals the argument passed to exit/1.

{signal, ExitReason}

The process that applied the function received an exit signal and terminated due to this signal. The process
terminated with exit reason ExitReason.

error

Exception reason:

{exception, ErrorReason, StackTrace}

A runtime error occurred which raised an error exception while applying the function, and the applied
function did not catch the exception. The error reason ErrorReason indicates the type of error that
occurred. StackTrace is formatted as when caught in a try/catch construct. The StackTrace is
limited to the applied function and functions called by it.

114 | Ericsson AB. All Rights Reserved.: Kernel

erpc

{erpc, ERpcErrorReason}

The erpc operation failed. The following ERpcErrorReasons are the most common ones:

badarg

If any one of these are true:

• Node is not an atom.

• Module is not an atom.

• Function is not an atom.

• Args is not a list. Note that the list is not verified to be a proper list at the client side.

• Timeout is invalid.

noconnection

The connection to Node was lost or could not be established. The function may or may not be applied.

system_limit

The erpc operation failed due to some system limit being reached. This typically due to failure to
create a process on the remote node Node, but can be other things as well.

timeout

The erpc operation timed out. The function may or may not be applied.

notsup

The remote node Node does not support this erpc operation.

If the erpc operation fails, but it is unknown if the function is/will be applied (that is, a timeout or a connection
loss), the caller will not receive any further information about the result if/when the applied function completes. If
the applied function explicitly communicates with the calling process, such communication may, of course, reach the
calling process.

Note:

You cannot make any assumptions about the process that will perform the apply(). It may be the calling process
itself, a server, or a freshly spawned process.

cast(Node, Fun) -> ok
Types:

Node = node()
Fun = function()

The same as calling erpc:cast(Node,erlang,apply,[Fun,[]]).

cast/2 fails with an {erpc, badarg} error exception if:

• Node is not an atom.

• Fun is not a a fun of zero arity.

cast(Node, Module, Function, Args) -> ok
Types:

Ericsson AB. All Rights Reserved.: Kernel | 115

erpc

Node = node()
Module = Function = atom()
Args = [term()]

Evaluates apply(Module, Function, Args) on node Node. No response is delivered to the calling process.
cast() returns immediately after the cast request has been sent. Any failures beside bad arguments are silently
ignored.

cast/4 fails with an {erpc, badarg} error exception if:

• Node is not an atom.

• Module is not an atom.

• Function is not an atom.

• Args is not a list. Note that the list is not verified to be a proper list at the client side.

Note:

You cannot make any assumptions about the process that will perform the apply(). It may be a server, or a
freshly spawned process.

check_response(Message, RequestId) ->
 {response, Result} | no_response
Types:

Message = term()
RequestId = request_id()
Result = term()

Check if a message is a response to a call request previously made by the calling process using send_request/4.
RequestId should be the value returned from the previously made send_request/4 call, and the
corresponding response should not already have been received and handled to completion by check_response/2,
receive_response/2, or wait_response/2. Message is the message to check.

If Message does not correspond to the response, the atom no_response is returned. If Message corresponds to
the response, the call operation is completed and either the result is returned as {response, Result} where
Result corresponds to the value returned from the applied function or an exception is raised. The exceptions that
can be raised corresponds to the same exceptions as can be raised by call/4. That is, no {erpc, timeout}
error exception can be raised. check_response() will fail with an {erpc, badarg} exception if/when an
invalid RequestId is detected.

If the erpc operation fails, but it is unknown if the function is/will be applied (that is, a connection loss), the caller
will not receive any further information about the result if/when the applied function completes. If the applied function
explicitly communicates with the calling process, such communication may, of course, reach the calling process.

check_response(Message, RequestIdCollection, Delete) ->
 {{response, Result},
 Label, NewRequestIdCollection} |
 no_response | no_request
Types:

116 | Ericsson AB. All Rights Reserved.: Kernel

erpc

Message = term()
RequestIdCollection = request_id_collection()
Delete = boolean()
Result = Label = term()
NewRequestIdCollection = request_id_collection()

Check if a message is a response to a call request corresponding to a request identifier saved in
RequestIdCollection. All request identifiers of RequestIdCollection must correspond to requests that
have been made using send_request/4 or send_request/6, and all requests must have been made by the
process calling this function.

Label is the label associated with the request identifier of the request that the response corresponds to. A request
identifier is associated with a label when adding a request identifier in a request identifier collection, or when sending
the request using send_request/6.

Compared to check_response/2, the returned result associated with a specific request identifier or an exception
associated with a specific request identifier will be wrapped in a 3-tuple. The first element of this tuple equals the value
that would have been produced by check_response/2, the second element equals the Label associated with
the specific request identifier, and the third element NewRequestIdCollection is a possibly modified request
identifier collection. The error exception {erpc, badarg} is not associated with any specific request identifier,
and will hence not be wrapped.

If RequestIdCollection is empty, the atom no_request will be returned. If Message does not correspond
to any of the request identifiers in RequestIdCollection, the atom no_response is returned.

If Delete equals true, the association with Label will have been deleted from RequestIdCollection in the
resulting NewRequestIdCollection. If Delete equals false, NewRequestIdCollection will equal
RequestIdCollection. Note that deleting an association is not for free and that a collection containing already
handled requests can still be used by subsequent calls to check_response/3, receive_response/3, and
wait_response/3. However, without deleting handled associations, the above calls will not be able to detect when
there are no more outstanding requests to handle, so you will have to keep track of this some other way than relying on a
no_request return. Note that if you pass a collection only containing associations of already handled or abandoned
requests to check_response/3, it will always return no_response.

Note that a response might have been consumed uppon an {erpc, badarg} exception and if so, will be lost for ever.

multicall(Nodes, Fun) -> Result
multicall(Nodes, Fun, Timeout) -> Result
Types:

Nodes = [atom()]
Fun = function()
Timeout = timeout_time()
Result = term()

The same as calling erpc:multicall(Nodes, erlang, apply, [Fun,[]], Timeout). May raise all
the same exceptions as multicall/5 plus an {erpc, badarg} error exception if Fun is not a fun of zero arity.

The call erpc:multicall(Nodes,Fun) is the same as the call erpc:multicall(Nodes,Fun,
infinity).

multicall(Nodes, Module, Function, Args) -> Result
multicall(Nodes, Module, Function, Args, Timeout) -> Result
Types:

Ericsson AB. All Rights Reserved.: Kernel | 117

erpc

Nodes = [atom()]
Module = Function = atom()
Args = [term()]
Timeout = timeout_time()
Result =
 [{ok, ReturnValue :: term()} | caught_call_exception()]
caught_call_exception() =
 {throw, Throw :: term()} |
 {exit, {exception, Reason :: term()}} |
 {error,
 {exception, Reason :: term(), StackTrace :: [stack_item()]}} |
 {exit, {signal, Reason :: term()}} |
 {error, {erpc, Reason :: term()}}
stack_item() =
 {Module :: atom(),
 Function :: atom(),
 Arity :: arity() | (Args :: [term()]),
 Location ::
 [{file, Filename :: string()} |
 {line, Line :: integer() >= 1}]}

Performs multiple call operations in parallel on multiple nodes. That is, evaluates apply(Module, Function,
Args) on the nodes Nodes in parallel. Timeout sets an upper time limit for all call operations to complete. The
result is returned as a list where the result from each node is placed at the same position as the node name is placed
in Nodes. Each item in the resulting list is formatted as either:

{ok, Result}

The call operation for this specific node returned Result.

{Class, ExceptionReason}

The call operation for this specific node raised an exception of class Class with exception reason
ExceptionReason. These correspond to the exceptions that call/5 can raise.

multicall/5 fails with an {erpc, badarg} error exception if:

• Nodes is not a proper list of atoms. Note that some requests may already have been sent when the failure occurs.
That is, the function may or may not be applied on some nodes.

• Module is not an atom.

• Function is not an atom.

• Args is not a list. Note that the list is not verified to be a proper list at the client side.

The call erpc:multicall(Nodes, Module, Function, Args) is equivalent to the call
erpc:multicall(Nodes, Module, Function, Args, infinity). These calls are also equivalent to
calling my_multicall(Nodes, Module, Function, Args) below if one disregard performance and failure
behavior. multicall() can utilize a selective receive optimization which removes the need to scan the message
queue from the beginning in order to find a matching message. The send_request()/receive_response()
combination can, however, not utilize this optimization.

118 | Ericsson AB. All Rights Reserved.: Kernel

erpc

my_multicall(Nodes, Module, Function, Args) ->
 ReqIds = lists:map(fun (Node) ->
 erpc:send_request(Node, Module, Function, Args)
 end,
 Nodes),
 lists:map(fun (ReqId) ->
 try
 {ok, erpc:receive_response(ReqId, infinity)}
 catch
 Class:Reason ->
 {Class, Reason}
 end
 end,
 ReqIds).

If an erpc operation fails, but it is unknown if the function is/will be applied (that is, a timeout, connection loss, or an
improper Nodes list), the caller will not receive any further information about the result if/when the applied function
completes. If the applied function communicates with the calling process, such communication may, of course, reach
the calling process.

Note:

You cannot make any assumptions about the process that will perform the apply(). It may be the calling process
itself, a server, or a freshly spawned process.

multicast(Nodes, Fun) -> ok
Types:

Nodes = [node()]
Fun = function()

The same as calling erpc:multicast(Nodes,erlang,apply,[Fun,[]]).

multicast/2 fails with an {erpc, badarg} error exception if:

• Nodes is not a proper list of atoms.

• Fun is not a a fun of zero arity.

multicast(Nodes, Module, Function, Args) -> ok
Types:

Nodes = [node()]
Module = Function = atom()
Args = [term()]

Evaluates apply(Module, Function, Args) on the nodes Nodes. No response is delivered to the calling
process. multicast() returns immediately after the cast requests have been sent. Any failures beside bad arguments
are silently ignored.

multicast/4 fails with an {erpc, badarg} error exception if:

• Nodes is not a proper list of atoms. Note that some requests may already have been sent when the failure occurs.
That is, the function may or may not be applied on some nodes.

• Module is not an atom.

• Function is not an atom.

• Args is not a list. Note that the list is not verified to be a proper list at the client side.

Ericsson AB. All Rights Reserved.: Kernel | 119

erpc

Note:

You cannot make any assumptions about the process that will perform the apply(). It may be a server, or a
freshly spawned process.

receive_response(RequestId) -> Result
Types:

RequestId = request_id()
Result = term()

The same as calling erpc:receive_response(RequestId, infinity).

receive_response(RequestId, Timeout) -> Result
Types:

RequestId = request_id()
Timeout = timeout_time()
Result = term()

Receive a response to a call request previously made by the calling process using send_request/4.
RequestId should be the value returned from the previously made send_request/4 call, and the corresponding
response should not already have been received and handled to completion by receive_response(),
check_response/4, or wait_response/4.

Timeout sets an upper time limit on how long to wait for a response. If the operation times out, the request identified
by RequestId will be abandoned, then an {erpc, timeout} error exception will be raised. That is, no
response corresponding to the request will ever be received after a timeout. If a response is received, the call
operation is completed and either the result is returned or an exception is raised. The exceptions that can be raised
corresponds to the same exceptions as can be raised by call/5. receive_response/2 will fail with an {erpc,
badarg} exception if/when an invalid RequestId is detected or if an invalid Timeout is passed.

A call to the function my_call(Node, Module, Function, Args, Timeout) below is equivalent to the
call erpc:call(Node, Module, Function, Args, Timeout) if one disregards performance. call()
can utilize a selective receive optimization which removes the need to scan the message queue from the beginning in
order to find a matching message. The send_request()/receive_response() combination can, however,
not utilize this optimization.

my_call(Node, Module, Function, Args, Timeout) ->
 RequestId = erpc:send_request(Node, Module, Function, Args),
 erpc:receive_response(RequestId, Timeout).

If the erpc operation fails, but it is unknown if the function is/will be applied (that is, a timeout, or a connection
loss), the caller will not receive any further information about the result if/when the applied function completes. If
the applied function explicitly communicates with the calling process, such communication may, of course, reach the
calling process.

receive_response(RequestIdCollection, Timeout, Delete) ->
 {Result, Label, NewRequestIdCollection} |
 no_request
Types:

120 | Ericsson AB. All Rights Reserved.: Kernel

erpc

RequestIdCollection = request_id_collection()
Timeout = timeout_time()
Delete = boolean()
Result = Label = term()
NewRequestIdCollection = request_id_collection()

Receive a response to a call request corresponding to a request identifier saved in RequestIdCollection.
All request identifiers of RequestIdCollection must correspond to requests that have been made using
send_request/4 or send_request/6, and all requests must have been made by the process calling this
function.

Label is the label associated with the request identifier of the request that the response corresponds to. A request
identifier is associated with a label when adding a request identifier in a request identifier collection, or when sending
the request using send_request/6.

Compared to receive_response/2, the returned result associated with a specific request identifier or an exception
associated with a specific request identifier will be wrapped in a 3-tuple. The first element of this tuple equals the value
that would have been produced by receive_response/2, the second element equals the Label associated with
the specific request identifier, and the third element NewRequestIdCollection is a possibly modified request
identifier collection. The error exceptions {erpc, badarg} and {erpc, timeout} are not associated with
any specific request identifiers, and will hence not be wrapped.

If RequestIdCollection is empty, the atom no_request will be returned.

If the operation times out, all requests identified by RequestIdCollection will be abandoned, then an {erpc,
timeout} error exception will be raised. That is, no responses corresponding to any of the request identifiers in
RequestIdCollection will ever be received after a timeout. The difference between receive_response/3
and wait_response/3 is that receive_response/3 abandons the requests at timeout so that any potential
future responses are ignored, while wait_response/3 does not.

If Delete equals true, the association with Label will have been deleted from RequestIdCollection in the
resulting NewRequestIdCollection. If Delete equals false, NewRequestIdCollection will equal
RequestIdCollection. Note that deleting an association is not for free and that a collection containing already
handled requests can still be used by subsequent calls to receive_response/3, check_response/3, and
wait_response/3. However, without deleting handled associations, the above calls will not be able to detect when
there are no more outstanding requests to handle, so you will have to keep track of this some other way than relying on a
no_request return. Note that if you pass a collection only containing associations of already handled or abandoned
requests to receive_response/3, it will always block until a timeout determined by Timeout is triggered.

Note that a response might have been consumed uppon an {erpc, badarg} exception and if so, will be lost for ever.

reqids_add(RequestId :: request_id(),
 Label :: term(),
 RequestIdCollection :: request_id_collection()) ->
 NewRequestIdCollection :: request_id_collection()
Saves RequestId and associates a Label with the request identifier by adding this information to
RequestIdCollection and returning the resulting request identifier collection.

reqids_new() -> NewRequestIdCollection :: request_id_collection()
Returns a new empty request identifier collection. A request identifier collection can be utilized in order the handle
multiple outstanding requests.

Request identifiers of requests made by send_request/4 can be saved in a request identifier collection
using reqids_add/3. Such a collection of request identifiers can later be used in order to get one response

Ericsson AB. All Rights Reserved.: Kernel | 121

erpc

corresponding to a request in the collection by passing the collection as argument to check_response/3,
receive_response/3, and wait_response/3.

reqids_size/1 can be used to determine the amount of request identifiers in a request identifier collection.

reqids_size(RequestIdCollection :: request_id_collection()) ->
 integer() >= 0
Returns the amount of request identifiers saved in RequestIdCollection.

reqids_to_list(RequestIdCollection :: request_id_collection()) ->
 [{RequestId :: request_id(), Label :: term()}]
Returns a list of {RequestId, Label} tuples which corresponds to all request identifiers with their associated
labels present in the RequestIdCollection collection.

send_request(Node, Fun) -> RequestId
Types:

Node = node()
Fun = function()
RequestId = request_id()

The same as calling erpc:send_request(Node, erlang, apply, [Fun, []]).

Fails with an {erpc, badarg} error exception if:

• Node is not an atom.

• Fun is not a fun of zero arity.

Note:

You cannot make any assumptions about the process that will perform the apply(). It may be a server, or a
freshly spawned process.

send_request(Node, Module, Function, Args) -> RequestId
Types:

Node = node()
Module = Function = atom()
Args = [term()]
RequestId = request_id()

Send an asynchronous call request to the node Node. send_request/4 returns a request identifier that later
is to be passed to either receive_response/2, wait_response/2, or, check_response/2 in order to
get the response of the call request. Besides passing the request identifier directly to these functions, it can also be
added in a request identifier collection using reqids_add/3. Such a collection of request identifiers can later be
used in order to get one response corresponding to a request in the collection by passing the collection as argument to
receive_response/3, wait_response/3, or, check_response/3. If you are about to save the request
identifier in a request identifier collection, you may want to consider using send_request/6 instead.

A call to the function my_call(Node, Module, Function, Args, Timeout) below is equivalent to the
call erpc:call(Node, Module, Function, Args, Timeout) if one disregards performance. call()
can utilize a selective receive optimization which removes the need to scan the message queue from the beginning in

122 | Ericsson AB. All Rights Reserved.: Kernel

erpc

order to find a matching message. The send_request()/receive_response() combination can, however,
not utilize this optimization.

my_call(Node, Module, Function, Args, Timeout) ->
 RequestId = erpc:send_request(Node, Module, Function, Args),
 erpc:receive_response(RequestId, Timeout).

Fails with an {erpc, badarg} error exception if:

• Node is not an atom.

• Module is not an atom.

• Function is not an atom.

• Args is not a list. Note that the list is not verified to be a proper list at the client side.

Note:

You cannot make any assumptions about the process that will perform the apply(). It may be a server, or a
freshly spawned process.

send_request(Node, Fun, Label, RequestIdCollection) ->
 NewRequestIdCollection
Types:

Node = node()
Fun = function()
Label = term()
RequestIdCollection = NewRequestIdCollection = request_id_collection()

The same as calling erpc:send_request(Node, erlang, apply, [Fun,[]]), Label,
RequestIdCollection).

Fails with an {erpc, badarg} error exception if:

• Node is not an atom.

• Fun is not a fun of zero arity.

• RequestIdCollection is detected not to be request identifier collection.

Note:

You cannot make any assumptions about the process that will perform the apply(). It may be a server, or a
freshly spawned process.

send_request(Node, Module, Function, Args, Label,
 RequestIdCollection) ->
 NewRequestIdCollection
Types:

Ericsson AB. All Rights Reserved.: Kernel | 123

erpc

Node = node()
Module = Function = atom()
Args = [term()]
Label = term()
RequestIdCollection = NewRequestIdCollection = request_id_collection()

Send an asynchronous call request to the node Node. The Label will be associated with the request identifier of
the operation and added to the returned request identifier collection NewRequestIdCollection. The collection
can later be used in order to get one response corresponding to a request in the collection by passing the collection as
argument to receive_response/3, wait_response/3, or, check_response/3.

The same as calling erpc:reqids_add(erpc:send_request(Node, Module, Function, Args),
Label, RequestIdCollection), but calling send_request/6 is slightly more efficient.

Fails with an {erpc, badarg} error exception if:

• Node is not an atom.

• Module is not an atom.

• Function is not an atom.

• Args is not a list. Note that the list is not verified to be a proper list at the client side.

• RequestIdCollection is detected not to be request identifier collection.

Note:

You cannot make any assumptions about the process that will perform the apply(). It may be a server, or a
freshly spawned process.

wait_response(RequestId) -> {response, Result} | no_response
Types:

RequestId = request_id()
Result = term()

The same as calling erpc:wait_response(RequestId, 0). That is, poll for a response message to a call
request previously made by the calling process.

wait_response(RequestId, WaitTime) ->
 {response, Result} | no_response
Types:

RequestId = request_id()
WaitTime = timeout_time()
Result = term()

Wait or poll for a response message to a call request previously made by the calling process using
send_request/4. RequestId should be the value returned from the previously made send_request()
call, and the corresponding response should not already have been received and handled to completion by
check_response/2, receive_response/2, or wait_response().

WaitTime sets an upper time limit on how long to wait for a response. If no response is received before the
WaitTime timeout has triggered, the atom no_response is returned. It is valid to continue waiting for a
response as many times as needed up until a response has been received and completed by check_response(),
receive_response(), or wait_response(). If a response is received, the call operation is completed and
either the result is returned as {response, Result} where Result corresponds to the value returned from the

124 | Ericsson AB. All Rights Reserved.: Kernel

erpc

applied function or an exception is raised. The exceptions that can be raised corresponds to the same exceptions as can
be raised by call/4. That is, no {erpc, timeout} error exception can be raised. wait_response/2 will
fail with an {erpc, badarg} exception if/when an invalid RequestId is detected or if an invalid WaitTime
is passed.

If the erpc operation fails, but it is unknown if the function is/will be applied (that is, a too large wait time value,
or a connection loss), the caller will not receive any further information about the result if/when the applied function
completes. If the applied function explicitly communicates with the calling process, such communication may, of
course, reach the calling process.

wait_response(RequestIdCollection, WaitTime, Delete) ->
 {{response, Result},
 Label, NewRequestIdCollection} |
 no_response | no_request
Types:

RequestIdCollection = request_id_collection()
WaitTime = timeout_time()
Delete = boolean()
Label = term()
NewRequestIdCollection = request_id_collection()
Result = term()

Wait or poll for a response to a call request corresponding to a request identifier saved in
RequestIdCollection. All request identifiers of RequestIdCollection must correspond to requests that
have been made using send_request/4 or send_request/6, and all requests must have been made by the
process calling this function.

Label is the label associated with the request identifier of the request that the response corresponds to. A request
identifier is associated with a label when adding a request identifier in a request identifier collection, or when sending
the request using send_request/6.

Compared to wait_response/2, the returned result associated with a specific request identifier or an exception
associated with a specific request identifier will be wrapped in a 3-tuple. The first element of this tuple equals the
value that would have been produced by wait_response/2, the second element equals the Label associated with
the specific request identifier, and the third element NewRequestIdCollection is a possibly modified request
identifier collection. The error exception {erpc, badarg} is not associated with any specific request identifier,
and will hence not be wrapped.

If RequestIdCollection is empty, no_request will be returned. If no response is received before the
WaitTime timeout has triggered, the atom no_response is returned. It is valid to continue waiting for a
response as many times as needed up until a response has been received and completed by check_response(),
receive_response(), or wait_response(). The difference between receive_response/3 and
wait_response/3 is that receive_response/3 abandons requests at timeout so that any potential future
responses are ignored, while wait_response/3 does not.

If Delete equals true, the association with Label will have been deleted from RequestIdCollection
in the resulting NewRequestIdCollection. If Delete equals false, NewRequestIdCollection will
equal RequestIdCollection. Note that deleting an association is not for free and that a collection containing
already handled requests can still be used by subsequent calls to wait_response/3, check_response/3, and
receive_response/3. However, without deleting handled associations, the above calls will not be able to detect
when there are no more outstanding requests to handle, so you will have to keep track of this some other way than
relying on a no_request return. Note that if you pass a collection only containing associations of already handled
or abandoned requests to wait_response/3, it will always block until a timeout determined by WaitTime is
triggered and then return no_response.

Ericsson AB. All Rights Reserved.: Kernel | 125

erpc

Note that a response might have been consumed uppon an {erpc, badarg} exception and if so, will be lost for ever.

126 | Ericsson AB. All Rights Reserved.: Kernel

error_handler

error_handler
Erlang module

This module defines what happens when certain types of errors occur.

Exports

raise_undef_exception(Module, Function, Args) -> no_return()
Types:

Module = Function = atom()
Args = list()
A (possibly empty) list of arguments Arg1,..,ArgN

Raises an undef exception with a stacktrace, indicating that Module:Function/N is undefined.

undefined_function(Module, Function, Args) -> any()
Types:

Module = Function = atom()
Args = list()
A (possibly empty) list of arguments Arg1,..,ArgN

This function is called by the runtime system if a call is made to Module:Function(Arg1,.., ArgN) and
Module:Function/N is undefined. Notice that this function is evaluated inside the process making the original call.

This function first attempts to autoload Module. If that is not possible, an undef exception is raised.

If it is possible to load Module and function Function/N is exported, it is called.

Otherwise, if function '$handle_undefined_function'/2 is exported, it is called as
'$handle_undefined_function'(Function, Args).

Warning:

Defining '$handle_undefined_function'/2 in ordinary application code is highly discouraged. It is very
easy to make subtle errors that can take a long time to debug. Furthermore, none of the tools for static code analysis
(such as Dialyzer and Xref) supports the use of '$handle_undefined_function'/2 and no such support
will be added. Only use this function after having carefully considered other, less dangerous, solutions. One example
of potential legitimate use is creating stubs for other sub-systems during testing and debugging.

Otherwise an undef exception is raised.

undefined_lambda(Module, Fun, Args) -> term()
Types:

Module = atom()
Fun = function()
Args = list()
A (possibly empty) list of arguments Arg1,..,ArgN

This function is evaluated if a call is made to Fun(Arg1,.., ArgN) when the module defining the fun is not
loaded. The function is evaluated inside the process making the original call.

Ericsson AB. All Rights Reserved.: Kernel | 127

error_handler

If Module is interpreted, the interpreter is invoked and the return value of the interpreted Fun(Arg1,.., ArgN)
call is returned.

Otherwise, it returns, if possible, the value of apply(Fun, Args) after an attempt is made to autoload Module.
If this is not possible, the call fails with exit reason undef.

Notes
The code in error_handler is complex. Do not change it without fully understanding the interaction between the
error handler, the init process of the code server, and the I/O mechanism of the code.

Code changes that seem small can cause a deadlock, as unforeseen consequences can occur. The use of input is
dangerous in this type of code.

128 | Ericsson AB. All Rights Reserved.: Kernel

error_logger

error_logger
Erlang module

Note:

In Erlang/OTP 21.0, a new API for logging was added. The old error_logger module can still be used by
legacy code, but log events are redirected to the new Logger API. New code should use the Logger API directly.

error_logger is no longer started by default, but is automatically started when an event handler is added with
error_logger:add_report_handler/1,2. The error_logger module is then also added as a handler
to the new logger.

See logger(3) and the Logging chapter in the User's Guide for more information.

The Erlang error logger is an event manager (see OTP Design Principles and gen_event(3)), registered as
error_logger.

Error logger is no longer started by default, but is automatically started when an event handler is added with
add_report_handler/1,2. The error_logger module is then also added as a handler to the new logger,
causing log events to be forwarded from logger to error logger, and consequently to all installed error logger event
handlers.

User-defined event handlers can be added to handle application-specific events.

Existing event handlers provided by STDLIB and SASL are still available, but are no longer used by OTP.

Warning events were introduced in Erlang/OTP R9C and are enabled by default as from Erlang/OTP 18.0. To retain
backwards compatibility with existing user-defined event handlers, the warning events can be tagged as errors or
info using command-line flag +W <e | i | w>, thus showing up as ERROR REPORT or INFO REPORT
in the logs.

Data Types
report() =
 [{Tag :: term(), Data :: term()} | term()] | string() | term()

Exports

add_report_handler(Handler) -> any()
add_report_handler(Handler, Args) -> Result
Types:

Handler = module()
Args = gen_event:handler_args()
Result = gen_event:add_handler_ret()

Adds a new event handler to the error logger. The event handler must be implemented as a gen_event callback
module, see gen_event(3).

Handler is typically the name of the callback module and Args is an optional term (defaults to []) passed to the
initialization callback function Handler:init/1. The function returns ok if successful.

The event handler must be able to handle the events in this module, see section Events.

Ericsson AB. All Rights Reserved.: Kernel | 129

error_logger

The first time this function is called, error_logger is added as a Logger handler, and the error_logger process
is started.

delete_report_handler(Handler) -> Result
Types:

Handler = module()
Result = gen_event:del_handler_ret()

Deletes an event handler from the error logger by calling gen_event:delete_handler(error_logger,
Handler, []), see gen_event(3).

If no more event handlers exist after the deletion, error_logger is removed as a Logger handler, and the
error_logger process is stopped.

error_msg(Format) -> ok
error_msg(Format, Data) -> ok
format(Format, Data) -> ok
Types:

Format = string()
Data = list()

Log a standard error event. The Format and Data arguments are the same as the arguments of io:format/2
in STDLIB.

Error logger forwards the event to Logger, including metadata that allows backwards compatibility with legacy error
logger event handlers.

The event is handled by the default Logger handler.

These functions are kept for backwards compatibility and must not be used by new code. Use the ?LOG_ERROR macro
or logger:error/1,2,3 instead.

Example:

1> error_logger:error_msg("An error occurred in ~p", [a_module]).
=ERROR REPORT==== 22-May-2018::11:18:43.376917 ===
An error occurred in a_module
ok

Warning:

If the Unicode translation modifier (t) is used in the format string, all event handlers must ensure that the formatted
output is correctly encoded for the I/O device.

error_report(Report) -> ok
Types:

Report = report()
Log a standard error event. Error logger forwards the event to Logger, including metadata that allows backwards
compatibility with legacy error logger event handlers.

The event is handled by the default Logger handler.

130 | Ericsson AB. All Rights Reserved.: Kernel

error_logger

This functions is kept for backwards compatibility and must not be used by new code. Use the ?LOG_ERROR macro
or logger:error/1,2,3 instead.

Example:

2> error_logger:error_report([{tag1,data1},a_term,{tag2,data}]).
=ERROR REPORT==== 22-May-2018::11:24:23.699306 ===
 tag1: data1
 a_term
 tag2: data
ok
3> error_logger:error_report("Serious error in my module").
=ERROR REPORT==== 22-May-2018::11:24:45.972445 ===
Serious error in my module
ok

error_report(Type, Report) -> ok
Types:

Type = term()
Report = report()

Log a user-defined error event. Error logger forwards the event to Logger, including metadata that allows backwards
compatibility with legacy error logger event handlers.

Error logger also adds a domain field with value [Type] to this event's metadata, causing the filters of the default
Logger handler to discard the event. A different Logger handler, or an error logger event handler, must be added to
handle this event.

It is recommended that Report follows the same structure as for error_report/1.

This functions is kept for backwards compatibility and must not be used by new code. Use the ?LOG_ERROR macro
or logger:error/1,2,3 instead.

get_format_depth() -> unlimited | integer() >= 1
Returns max(10, Depth), where Depth is the value of error_logger_format_depth in the Kernel
application, if Depth is an integer. Otherwise, unlimited is returned.

Note:

The error_logger_format_depth variable is deprecated since the Logger API was introduced in Erlang/
OTP 21.0. The variable, and this function, are kept for backwards compatibility since they still might be used by
legacy report handlers.

info_msg(Format) -> ok
info_msg(Format, Data) -> ok
Types:

Format = string()
Data = list()

Log a standard information event. The Format and Data arguments are the same as the arguments of io:format/2
in STDLIB.

Error logger forwards the event to Logger, including metadata that allows backwards compatibility with legacy error
logger event handlers.

Ericsson AB. All Rights Reserved.: Kernel | 131

error_logger

The event is handled by the default Logger handler.

These functions are kept for backwards compatibility and must not be used by new code. Use the ?LOG_INFO macro
or logger:info/1,2,3 instead.

Example:

1> error_logger:info_msg("Something happened in ~p", [a_module]).
=INFO REPORT==== 22-May-2018::12:03:32.612462 ===
Something happened in a_module
ok

Warning:

If the Unicode translation modifier (t) is used in the format string, all event handlers must ensure that the formatted
output is correctly encoded for the I/O device.

info_report(Report) -> ok
Types:

Report = report()
Log a standard information event. Error logger forwards the event to Logger, including metadata that allows backwards
compatibility with legacy error logger event handlers.

The event is handled by the default Logger handler.

This functions is kept for backwards compatibility and must not be used by new code. Use the ?LOG_INFO macro
or logger:info/1,2,3 instead.

Example:

2> error_logger:info_report([{tag1,data1},a_term,{tag2,data}]).
=INFO REPORT==== 22-May-2018::12:06:35.994440 ===
 tag1: data1
 a_term
 tag2: data
ok
3> error_logger:info_report("Something strange happened").
=INFO REPORT==== 22-May-2018::12:06:49.066872 ===
Something strange happened
ok

info_report(Type, Report) -> ok
Types:

Type = any()
Report = report()

Log a user-defined information event. Error logger forwards the event to Logger, including metadata that allows
backwards compatibility with legacy error logger event handlers.

Error logger also adds a domain field with value [Type] to this event's metadata, causing the filters of the default
Logger handler to discard the event. A different Logger handler, or an error logger event handler, must be added to
handle this event.

It is recommended that Report follows the same structure as for info_report/1.

132 | Ericsson AB. All Rights Reserved.: Kernel

error_logger

This functions is kept for backwards compatibility and must not be used by new code. Use the ?LOG_INFO macro
or logger:info/1,2,3 instead.

logfile(Request :: {open, Filename}) -> ok | {error, OpenReason}
logfile(Request :: close) -> ok | {error, CloseReason}
logfile(Request :: filename) -> Filename | {error, FilenameReason}
Types:

Filename = file:name()
OpenReason = allready_have_logfile | open_error()
CloseReason = module_not_found
FilenameReason = no_log_file
open_error() = file:posix() | badarg | system_limit

Enables or disables printout of standard events to a file.

This is done by adding or deleting the error_logger_file_h event handler, and thus indirectly adding
error_logger as a Logger handler.

Notice that this function does not manipulate the Logger configuration directly, meaning that if the default Logger
handler is already logging to a file, this function can potentially cause logging to a second file.

This function is useful as a shortcut during development and testing, but must not be used in a production system.
See section Logging in the Kernel User's Guide, and the logger(3) manual page for information about how to
configure Logger for live systems.

Request is one of the following:

{open, Filename}

Opens log file Filename. Returns ok if successful, or {error, allready_have_logfile} if logging to
file is already enabled, or an error tuple if another error occurred (for example, if Filename cannot be opened).
The file is opened with encoding UTF-8.

close

Closes the current log file. Returns ok, or {error, module_not_found}.

filename

Returns the name of the log file Filename, or {error, no_log_file} if logging to file is not enabled.

tty(Flag) -> ok
Types:

Flag = boolean()
Enables (Flag == true) or disables (Flag == false) printout of standard events to the terminal.

This is done by manipulating the Logger configuration. The function is useful as a shortcut during development
and testing, but must not be used in a production system. See section Logging in the Kernel User's Guide, and the
logger(3) manual page for information about how to configure Logger for live systems.

warning_map() -> Tag
Types:

Ericsson AB. All Rights Reserved.: Kernel | 133

error_logger

Tag = error | warning | info
Returns the current mapping for warning events. Events sent using warning_msg/1,2 or
warning_report/1,2 are tagged as errors, warnings (default), or info, depending on the value of command-line
flag +W.

Example:

os$ erl
Erlang (BEAM) emulator version 5.4.8 [hipe] [threads:0] [kernel-poll]

Eshell V5.4.8 (abort with ^G)
1> error_logger:warning_map().
warning
2> error_logger:warning_msg("Warnings tagged as: ~p~n", [warning]).

=WARNING REPORT==== 11-Aug-2005::15:31:55 ===
Warnings tagged as: warning
ok
3>
User switch command
 --> q
os$ erl +W e
Erlang (BEAM) emulator version 5.4.8 [hipe] [threads:0] [kernel-poll]

Eshell V5.4.8 (abort with ^G)
1> error_logger:warning_map().
error
2> error_logger:warning_msg("Warnings tagged as: ~p~n", [error]).

=ERROR REPORT==== 11-Aug-2005::15:31:23 ===
Warnings tagged as: error
ok

warning_msg(Format) -> ok
warning_msg(Format, Data) -> ok
Types:

Format = string()
Data = list()

Log a standard warning event. The Format and Data arguments are the same as the arguments of io:format/2
in STDLIB.

Error logger forwards the event to Logger, including metadata that allows backwards compatibility with legacy error
logger event handlers.

The event is handled by the default Logger handler. The log level can be changed to error or info, see
warning_map/0.

These functions are kept for backwards compatibility and must not be used by new code. Use the ?LOG_WARNING
macro or logger:warning/1,2,3 instead.

Warning:

If the Unicode translation modifier (t) is used in the format string, all event handlers must ensure that the formatted
output is correctly encoded for the I/O device.

134 | Ericsson AB. All Rights Reserved.: Kernel

error_logger

warning_report(Report) -> ok
Types:

Report = report()
Log a standard warning event. Error logger forwards the event to Logger, including metadata that allows backwards
compatibility with legacy error logger event handlers.

The event is handled by the default Logger handler. The log level can be changed to error or info, see
warning_map/0.

This functions is kept for backwards compatibility and must not be used by new code. Use the ?LOG_WARNING
macro or logger:warning/1,2,3 instead.

warning_report(Type, Report) -> ok
Types:

Type = any()
Report = report()

Log a user-defined warning event. Error logger forwards the event to Logger, including metadata that allows backwards
compatibility with legacy error logger event handlers.

Error logger also adds a domain field with value [Type] to this event's metadata, causing the filters of the default
Logger handler to discard the event. A different Logger handler, or an error logger event handler, must be added to
handle this event.

The log level can be changed to error or info, see warning_map/0.

It is recommended that Report follows the same structure as for warning_report/1.

This functions is kept for backwards compatibility and must not be used by new code. Use the ?LOG_WARNING
macro or logger:warning/1,2,3 instead.

Events
All event handlers added to the error logger must handle the following events. Gleader is the group leader pid of
the process that sent the event, and Pid is the process that sent the event.

{error, Gleader, {Pid, Format, Data}}

Generated when error_msg/1,2 or format is called.

{error_report, Gleader, {Pid, std_error, Report}}

Generated when error_report/1 is called.

{error_report, Gleader, {Pid, Type, Report}}

Generated when error_report/2 is called.

{warning_msg, Gleader, {Pid, Format, Data}}

Generated when warning_msg/1,2 is called if warnings are set to be tagged as warnings.

{warning_report, Gleader, {Pid, std_warning, Report}}

Generated when warning_report/1 is called if warnings are set to be tagged as warnings.

{warning_report, Gleader, {Pid, Type, Report}}

Generated when warning_report/2 is called if warnings are set to be tagged as warnings.

{info_msg, Gleader, {Pid, Format, Data}}

Generated when info_msg/1,2 is called.

Ericsson AB. All Rights Reserved.: Kernel | 135

error_logger

{info_report, Gleader, {Pid, std_info, Report}}

Generated when info_report/1 is called.

{info_report, Gleader, {Pid, Type, Report}}

Generated when info_report/2 is called.

Notice that some system-internal events can also be received. Therefore a catch-all clause last in the definition
of the event handler callback function Module:handle_event/2 is necessary. This also applies for
Module:handle_info/2, as the event handler must also take care of some system-internal messages.

See Also
gen_event(3), logger(3), log_mf_h(3), kernel(6), sasl(6)

136 | Ericsson AB. All Rights Reserved.: Kernel

file

file
Erlang module

This module provides an interface to the file system.

Warning:

File operations are only guaranteed to appear atomic when going through the same file server. A NIF or other OS
process may observe intermediate steps on certain operations on some operating systems, eg. renaming an existing
file on Windows, or write_file_info/2 on any OS at the time of writing.

Regarding filename encoding, the Erlang VM can operate in two modes. The current mode can be queried using
function native_name_encoding/0. It returns latin1 or utf8.

In latin1 mode, the Erlang VM does not change the encoding of filenames. In utf8 mode, filenames can contain
Unicode characters greater than 255 and the VM converts filenames back and forth to the native filename encoding
(usually UTF-8, but UTF-16 on Windows).

The default mode depends on the operating system. Windows, MacOS X and Android enforce consistent filename
encoding and therefore the VM uses utf8 mode.

On operating systems with transparent naming (for example, all Unix systems except MacOS X), default is utf8 if
the terminal supports UTF-8, otherwise latin1. The default can be overridden using +fnl (to force latin1 mode)
or +fnu (to force utf8 mode) when starting erl.

On operating systems with transparent naming, files can be inconsistently named, for example, some files are encoded
in UTF-8 while others are encoded in ISO Latin-1. The concept of raw filenames is introduced to handle file systems
with inconsistent naming when running in utf8 mode.

A raw filename is a filename specified as a binary. The Erlang VM does not translate a filename specified as a binary
on systems with transparent naming.

When running in utf8 mode, functions list_dir/1 and read_link/1 never return raw filenames. To return
all filenames including raw filenames, use functions list_dir_all/1 and read_link_all/1.

See also section Notes About Raw Filenames in the STDLIB User's Guide.

Note:

File operations used to accept filenames containing null characters (integer value zero). This caused the name to be
truncated and in some cases arguments to primitive operations to be mixed up. Filenames containing null characters
inside the filename are now rejected and will cause primitive file operations fail.

Data Types
deep_list() = [char() | atom() | deep_list()]
fd()
A file descriptor representing a file opened in raw mode.

filename() = string()
See also the documentation of the name_all() type.

filename_all() = string() | binary()
See also the documentation of the name_all() type.

Ericsson AB. All Rights Reserved.: Kernel | 137

file

io_device() = pid() | fd()
As returned by open/2; pid() is a process handling I/O-protocols.

name() = string() | atom() | deep_list()
If VM is in Unicode filename mode, string() and char() are allowed to be > 255. See also the documentation
of the name_all() type.

name_all() =
 string() | atom() | deep_list() | (RawFilename :: binary())
If VM is in Unicode filename mode, characters are allowed to be > 255. RawFilename is a filename not subject to
Unicode translation, meaning that it can contain characters not conforming to the Unicode encoding expected from
the file system (that is, non-UTF-8 characters although the VM is started in Unicode filename mode). Null characters
(integer value zero) are not allowed in filenames (not even at the end).

posix() =
 eacces | eagain | ebadf | ebadmsg | ebusy | edeadlk |
 edeadlock | edquot | eexist | efault | efbig | eftype |
 eintr | einval | eio | eisdir | eloop | emfile | emlink |
 emultihop | enametoolong | enfile | enobufs | enodev |
 enolck | enolink | enoent | enomem | enospc | enosr | enostr |
 enosys | enotblk | enotdir | enotsup | enxio | eopnotsupp |
 eoverflow | eperm | epipe | erange | erofs | espipe | esrch |
 estale | etxtbsy | exdev
An atom that is named from the POSIX error codes used in Unix, and in the runtime libraries of most C compilers.

date_time() = calendar:datetime()
Must denote a valid date and time.

file_info() =
 #file_info{size = integer() >= 0 | undefined,
 type =
 device | directory | other | regular |
 symlink | undefined,
 access =
 read | write | read_write | none | undefined,
 atime =
 file:date_time() |
 integer() >= 0 |
 undefined,
 mtime =
 file:date_time() |
 integer() >= 0 |
 undefined,
 ctime =
 file:date_time() |
 integer() >= 0 |
 undefined,
 mode = integer() >= 0 | undefined,
 links = integer() >= 0 | undefined,
 major_device = integer() >= 0 | undefined,
 minor_device = integer() >= 0 | undefined,
 inode = integer() >= 0 | undefined,
 uid = integer() >= 0 | undefined,

138 | Ericsson AB. All Rights Reserved.: Kernel

file

 gid = integer() >= 0 | undefined}
location() =
 integer() |
 {bof, Offset :: integer()} |
 {cur, Offset :: integer()} |
 {eof, Offset :: integer()} |
 bof | cur | eof
mode() =
 read | write | append | exclusive | raw | binary |
 {delayed_write,
 Size :: integer() >= 0,
 Delay :: integer() >= 0} |
 delayed_write |
 {read_ahead, Size :: integer() >= 1} |
 read_ahead | compressed | compressed_one |
 {encoding, unicode:encoding()} |
 sync
file_info_option() =
 {time, local} | {time, universal} | {time, posix} | raw

Exports

advise(IoDevice, Offset, Length, Advise) -> ok | {error, Reason}
Types:

IoDevice = io_device()
Offset = Length = integer()
Advise = posix_file_advise()
Reason = posix() | badarg
posix_file_advise() =
 normal | sequential | random | no_reuse | will_need |
 dont_need

advise/4 can be used to announce an intention to access file data in a specific pattern in the future, thus allowing
the operating system to perform appropriate optimizations.

On some platforms, this function might have no effect.

allocate(File, Offset, Length) -> ok | {error, posix()}
Types:

File = io_device()
Offset = Length = integer() >= 0

allocate/3 can be used to preallocate space for a file.

This function only succeeds in platforms that provide this feature.

change_group(Filename, Gid) -> ok | {error, Reason}
Types:

Ericsson AB. All Rights Reserved.: Kernel | 139

file

Filename = name_all()
Gid = integer()
Reason = posix() | badarg

Changes group of a file. See write_file_info/2.

change_mode(Filename, Mode) -> ok | {error, Reason}
Types:

Filename = name_all()
Mode = integer()
Reason = posix() | badarg

Changes permissions of a file. See write_file_info/2.

change_owner(Filename, Uid) -> ok | {error, Reason}
Types:

Filename = name_all()
Uid = integer()
Reason = posix() | badarg

Changes owner of a file. See write_file_info/2.

change_owner(Filename, Uid, Gid) -> ok | {error, Reason}
Types:

Filename = name_all()
Uid = Gid = integer()
Reason = posix() | badarg

Changes owner and group of a file. See write_file_info/2.

change_time(Filename, Mtime) -> ok | {error, Reason}
Types:

Filename = name_all()
Mtime = date_time()
Reason = posix() | badarg

Changes the modification and access times of a file. See write_file_info/2.

change_time(Filename, Atime, Mtime) -> ok | {error, Reason}
Types:

Filename = name_all()
Atime = Mtime = date_time()
Reason = posix() | badarg

Changes the modification and last access times of a file. See write_file_info/2.

close(IoDevice) -> ok | {error, Reason}
Types:

140 | Ericsson AB. All Rights Reserved.: Kernel

file

IoDevice = io_device()
Reason = posix() | badarg | terminated

Closes the file referenced by IoDevice. It mostly returns ok, except for some severe errors such as out of memory.

Notice that if option delayed_write was used when opening the file, close/1 can return an old write error and
not even try to close the file. See open/2.

consult(Filename) -> {ok, Terms} | {error, Reason}
Types:

Filename = name_all()
Terms = [term()]
Reason =
 posix() |
 badarg | terminated | system_limit |
 {Line :: integer(), Mod :: module(), Term :: term()}

Reads Erlang terms, separated by '.', from Filename. Returns one of the following:

{ok, Terms}

The file was successfully read.

{error, atom()}

An error occurred when opening the file or reading it. For a list of typical error codes, see open/2.

{error, {Line, Mod, Term}}

An error occurred when interpreting the Erlang terms in the file. To convert the three-element tuple to an English
description of the error, use format_error/1.

Example:

f.txt: {person, "kalle", 25}.
 {person, "pelle", 30}.

1> file:consult("f.txt").
{ok,[{person,"kalle",25},{person,"pelle",30}]}

The encoding of Filename can be set by a comment, as described in epp(3).

copy(Source, Destination) -> {ok, BytesCopied} | {error, Reason}
copy(Source, Destination, ByteCount) ->
 {ok, BytesCopied} | {error, Reason}
Types:

Source = Destination = io_device() | Filename | {Filename, Modes}
Filename = name_all()
Modes = [mode()]
ByteCount = integer() >= 0 | infinity
BytesCopied = integer() >= 0
Reason = posix() | badarg | terminated

Copies ByteCount bytes from Source to Destination. Source and Destination refer to either filenames
or IO devices from, for example, open/2. ByteCount defaults to infinity, denoting an infinite number of bytes.

Ericsson AB. All Rights Reserved.: Kernel | 141

file

Argument Modes is a list of possible modes, see open/2, and defaults to [].

If both Source and Destination refer to filenames, the files are opened with [read, binary] and [write,
binary] prepended to their mode lists, respectively, to optimize the copy.

If Source refers to a filename, it is opened with read mode prepended to the mode list before the copy, and closed
when done.

If Destination refers to a filename, it is opened with write mode prepended to the mode list before the copy,
and closed when done.

Returns {ok, BytesCopied}, where BytesCopied is the number of bytes that was copied, which can be less
than ByteCount if end of file was encountered on the source. If the operation fails, {error, Reason} is returned.

Typical error reasons: as for open/2 if a file had to be opened, and as for read/2 and write/2.

datasync(IoDevice) -> ok | {error, Reason}
Types:

IoDevice = io_device()
Reason = posix() | badarg | terminated

Ensures that any buffers kept by the operating system (not by the Erlang runtime system) are written to disk. In many
ways it resembles fsync but it does not update some of the metadata of the file, such as the access time. On some
platforms this function has no effect.

Applications that access databases or log files often write a tiny data fragment (for example, one line in a log file) and
then call fsync() immediately to ensure that the written data is physically stored on the hard disk. Unfortunately,
fsync() always initiates two write operations: one for the newly written data and another one to update the
modification time stored in the inode. If the modification time is not a part of the transaction concept, fdatasync()
can be used to avoid unnecessary inode disk write operations.

Available only in some POSIX systems, this call results in a call to fsync(), or has no effect in systems not providing
the fdatasync() syscall.

del_dir(Dir) -> ok | {error, Reason}
Types:

Dir = name_all()
Reason = posix() | badarg

Tries to delete directory Dir. The directory must be empty before it can be deleted. Returns ok if successful.

Typical error reasons:

eacces

Missing search or write permissions for the parent directories of Dir.

eexist

The directory is not empty.

enoent

The directory does not exist.

enotdir

A component of Dir is not a directory. On some platforms, enoent is returned instead.

einval

Attempt to delete the current directory. On some platforms, eacces is returned instead.

142 | Ericsson AB. All Rights Reserved.: Kernel

file

del_dir_r(File) -> ok | {error, Reason}
Types:

File = name_all()
Reason = posix() | badarg

Deletes file or directory File. If File is a directory, its contents is first recursively deleted. Returns:

ok

The operation completed without errors.

{error, posix()}

An error occurred when accessing or deleting File. If some file or directory under File could not be deleted,
File cannot be deleted as it is non-empty, and {error, eexist} is returned.

delete(Filename) -> ok | {error, Reason}
delete(Filename, Opts) -> ok | {error, Reason}
Types:

Filename = name_all()
Opts = [delete_option()]
Reason = posix() | badarg
delete_option() = raw

Tries to delete file Filename. Returns ok if successful.

If the option raw is set, the file server is not called. This can be useful in particular during the early boot stage when
the file server is not yet registered, to still be able to delete local files.

Typical error reasons:

enoent

The file does not exist.

eacces

Missing permission for the file or one of its parents.

eperm

The file is a directory and the user is not superuser.

enotdir

A component of the filename is not a directory. On some platforms, enoent is returned instead.

einval

Filename has an improper type, such as tuple.

Warning:

In a future release, a bad type for argument Filename will probably generate an exception.

eval(Filename) -> ok | {error, Reason}
Types:

Ericsson AB. All Rights Reserved.: Kernel | 143

file

Filename = name_all()
Reason =
 posix() |
 badarg | terminated | system_limit |
 {Line :: integer(), Mod :: module(), Term :: term()}

Reads and evaluates Erlang expressions, separated by '.' (or ',', a sequence of expressions is also an expression) from
Filename. The result of the evaluation is not returned; any expression sequence in the file must be there for its side
effect. Returns one of the following:

ok

The file was read and evaluated.

{error, atom()}

An error occurred when opening the file or reading it. For a list of typical error codes, see open/2.

{error, {Line, Mod, Term}}

An error occurred when interpreting the Erlang expressions in the file. To convert the three-element tuple to an
English description of the error, use format_error/1.

The encoding of Filename can be set by a comment, as described in epp(3).

eval(Filename, Bindings) -> ok | {error, Reason}
Types:

Filename = name_all()
Bindings = erl_eval:binding_struct()
Reason =
 posix() |
 badarg | terminated | system_limit |
 {Line :: integer(), Mod :: module(), Term :: term()}

The same as eval/1, but the variable bindings Bindings are used in the evaluation. For information about the
variable bindings, see erl_eval(3).

format_error(Reason) -> Chars
Types:

Reason =
 posix() |
 badarg | terminated | system_limit |
 {Line :: integer(), Mod :: module(), Term :: term()}
Chars = string()

Given the error reason returned by any function in this module, returns a descriptive string of the error in English.

get_cwd() -> {ok, Dir} | {error, Reason}
Types:

Dir = filename()
Reason = posix()

Returns {ok, Dir}, where Dir is the current working directory of the file server.

144 | Ericsson AB. All Rights Reserved.: Kernel

file

Note:

In rare circumstances, this function can fail on Unix. It can occur if read permission does not exist for the parent
directories of the current directory.

A typical error reason:

eacces

Missing read permission for one of the parents of the current directory.

get_cwd(Drive) -> {ok, Dir} | {error, Reason}
Types:

Drive = string()
Dir = filename()
Reason = posix() | badarg

Returns {ok, Dir} or {error, Reason}, where Dir is the current working directory of the specified drive.

Drive is to be of the form "Letter:", for example, "c:".

Returns {error, enotsup} on platforms that have no concept of current drive (Unix, for example).

Typical error reasons:

enotsup

The operating system has no concept of drives.

eacces

The drive does not exist.

einval

The format of Drive is invalid.

list_dir(Dir) -> {ok, Filenames} | {error, Reason}
Types:

Dir = name_all()
Filenames = [filename()]
Reason =
 posix() |
 badarg |
 {no_translation, Filename :: unicode:latin1_binary()}

Lists all files in a directory, except files with raw filenames. Returns {ok, Filenames} if successful, otherwise
{error, Reason}. Filenames is a list of the names of all the files in the directory. The names are not sorted.

Typical error reasons:

eacces

Missing search or write permissions for Dir or one of its parent directories.

enoent

The directory does not exist.

Ericsson AB. All Rights Reserved.: Kernel | 145

file

{no_translation, Filename}

Filename is a binary() with characters coded in ISO Latin-1 and the VM was started with parameter +fnue.

list_dir_all(Dir) -> {ok, Filenames} | {error, Reason}
Types:

Dir = name_all()
Filenames = [filename_all()]
Reason = posix() | badarg

Lists all the files in a directory, including files with raw filenames. Returns {ok, Filenames} if successful,
otherwise {error, Reason}. Filenames is a list of the names of all the files in the directory. The names are
not sorted.

Typical error reasons:

eacces

Missing search or write permissions for Dir or one of its parent directories.

enoent

The directory does not exist.

make_dir(Dir) -> ok | {error, Reason}
Types:

Dir = name_all()
Reason = posix() | badarg

Tries to create directory Dir. Missing parent directories are not created. Returns ok if successful.

Typical error reasons:

eacces

Missing search or write permissions for the parent directories of Dir.

eexist

A file or directory named Dir exists already.

enoent

A component of Dir does not exist.

enospc

No space is left on the device.

enotdir

A component of Dir is not a directory. On some platforms, enoent is returned instead.

make_link(Existing, New) -> ok | {error, Reason}
Types:

Existing = New = name_all()
Reason = posix() | badarg

Makes a hard link from Existing to New on platforms supporting links (Unix and Windows). This function
returns ok if the link was successfully created, otherwise {error, Reason}. On platforms not supporting links,
{error,enotsup} is returned.

146 | Ericsson AB. All Rights Reserved.: Kernel

file

Typical error reasons:

eacces

Missing read or write permissions for the parent directories of Existing or New.

eexist

New already exists.

enotsup

Hard links are not supported on this platform.

make_symlink(Existing, New) -> ok | {error, Reason}
Types:

Existing = New = name_all()
Reason = posix() | badarg

Creates a symbolic link New to the file or directory Existing on platforms supporting symbolic links (most Unix
systems and Windows, beginning with Vista). Existing does not need to exist. Returns ok if the link is successfully
created, otherwise {error, Reason}. On platforms not supporting symbolic links, {error, enotsup} is
returned.

Typical error reasons:

eacces

Missing read or write permissions for the parent directories of Existing or New.

eexist

New already exists.

enotsup

Symbolic links are not supported on this platform.

eperm

User does not have privileges to create symbolic links (SeCreateSymbolicLinkPrivilege on Windows).

native_name_encoding() -> latin1 | utf8
Returns the filename encoding mode. If it is latin1, the system translates no filenames. If it is utf8, filenames are
converted back and forth to the native filename encoding (usually UTF-8, but UTF-16 on Windows).

open(File, Modes) -> {ok, IoDevice} | {error, Reason}
Types:

File = Filename | iodata()
Filename = name_all()
Modes = [mode() | ram | directory]
IoDevice = io_device()
Reason = posix() | badarg | system_limit

Opens file File in the mode determined by Modes, which can contain one or more of the following options:

read

The file, which must exist, is opened for reading.

Ericsson AB. All Rights Reserved.: Kernel | 147

file

write

The file is opened for writing. It is created if it does not exist. If the file exists and write is not combined with
read, the file is truncated.

append

The file is opened for writing. It is created if it does not exist. Every write operation to a file opened with append
takes place at the end of the file.

exclusive

The file is opened for writing. It is created if it does not exist. If the file exists, {error, eexist} is returned.

Warning:

This option does not guarantee exclusiveness on file systems not supporting O_EXCL properly, such as NFS.
Do not depend on this option unless you know that the file system supports it (in general, local file systems
are safe).

raw

Allows faster access to a file, as no Erlang process is needed to handle the file. However, a file opened in this
way has the following limitations:

• The functions in the io module cannot be used, as they can only talk to an Erlang process. Instead, use
functions read/2, read_line/1, and write/2.

• Especially if read_line/1 is to be used on a raw file, it is recommended to combine this option with
option {read_ahead, Size} as line-oriented I/O is inefficient without buffering.

• Only the Erlang process that opened the file can use it.

• A remote Erlang file server cannot be used. The computer on which the Erlang node is running must have
access to the file system (directly or through NFS).

binary

Read operations on the file return binaries rather than lists.

{delayed_write, Size, Delay}

Data in subsequent write/2 calls is buffered until at least Size bytes are buffered, or until the oldest buffered
data is Delay milliseconds old. Then all buffered data is written in one operating system call. The buffered data
is also flushed before some other file operation than write/2 is executed.

The purpose of this option is to increase performance by reducing the number of operating system calls. Thus,
the write/2 calls must be for sizes significantly less than Size, and not interspersed by too many other file
operations.

When this option is used, the result of write/2 calls can prematurely be reported as successful, and if a write
error occurs, the error is reported as the result of the next file operation, which is not executed.

For example, when delayed_write is used, after a number of write/2 calls, close/1 can return
{error, enospc}, as there is not enough space on the disc for previously written data. close/1 must
probably be called again, as the file is still open.

delayed_write

The same as {delayed_write, Size, Delay} with reasonable default values for Size and Delay
(roughly some 64 KB, 2 seconds).

148 | Ericsson AB. All Rights Reserved.: Kernel

file

{read_ahead, Size}

Activates read data buffering. If read/2 calls are for significantly less than Size bytes, read operations to
the operating system are still performed for blocks of Size bytes. The extra data is buffered and returned in
subsequent read/2 calls, giving a performance gain as the number of operating system calls is reduced.

The read_ahead buffer is also highly used by function read_line/1 in raw mode, therefore this option is
recommended (for performance reasons) when accessing raw files using that function.

If read/2 calls are for sizes not significantly less than, or even greater than Size bytes, no performance gain
can be expected.

read_ahead

The same as {read_ahead, Size} with a reasonable default value for Size (roughly some 64 KB).

compressed

Makes it possible to read or write gzip compressed files. Option compressed must be combined with read
or write, but not both. Notice that the file size obtained with read_file_info/1 does probably not match
the number of bytes that can be read from a compressed file.

compressed_one

Read one member of a gzip compressed file. Option compressed_one can only be combined with read.

{encoding, Encoding}

Makes the file perform automatic translation of characters to and from a specific (Unicode) encoding. Notice
that the data supplied to write/2 or returned by read/2 still is byte-oriented; this option denotes only how
data is stored in the disk file.

Depending on the encoding, different methods of reading and writing data is preferred. The default encoding of
latin1 implies using this module (file) for reading and writing data as the interfaces provided here work with
byte-oriented data. Using other (Unicode) encodings makes the io(3) functions get_chars, get_line, and
put_chars more suitable, as they can work with the full Unicode range.

If data is sent to an io_device() in a format that cannot be converted to the specified encoding, or if data
is read by a function that returns data in a format that cannot cope with the character range of the data, an error
occurs and the file is closed.

Allowed values for Encoding:

latin1

The default encoding. Bytes supplied to the file, that is, write/2 are written "as is" on the file. Likewise,
bytes read from the file, that is, read/2 are returned "as is". If module io(3) is used for writing, the file
can only cope with Unicode characters up to code point 255 (the ISO Latin-1 range).

unicode or utf8

Characters are translated to and from UTF-8 encoding before they are written to or read from the file. A
file opened in this way can be readable using function read/2, as long as no data stored on the file lies
beyond the ISO Latin-1 range (0..255), but failure occurs if the data contains Unicode code points beyond
that range. The file is best read with the functions in the Unicode aware module io(3).

Bytes written to the file by any means are translated to UTF-8 encoding before being stored on the disk file.

utf16 or {utf16,big}

Works like unicode, but translation is done to and from big endian UTF-16 instead of UTF-8.

{utf16,little}

Works like unicode, but translation is done to and from little endian UTF-16 instead of UTF-8.

Ericsson AB. All Rights Reserved.: Kernel | 149

file

utf32 or {utf32,big}

Works like unicode, but translation is done to and from big endian UTF-32 instead of UTF-8.

{utf32,little}

Works like unicode, but translation is done to and from little endian UTF-32 instead of UTF-8.

The Encoding can be changed for a file "on the fly" by using function io:setopts/2. So a file can be analyzed
in latin1 encoding for, for example, a BOM, positioned beyond the BOM and then be set for the right encoding
before further reading. For functions identifying BOMs, see module unicode(3).

This option is not allowed on raw files.

ram

File must be iodata(). Returns an fd(), which lets module file operate on the data in-memory as if it
is a file.

sync

On platforms supporting it, enables the POSIX O_SYNC synchronous I/O flag or its platform-dependent
equivalent (for example, FILE_FLAG_WRITE_THROUGH on Windows) so that writes to the file block until the
data is physically written to disk. However, be aware that the exact semantics of this flag differ from platform to
platform. For example, none of Linux or Windows guarantees that all file metadata are also written before the call
returns. For precise semantics, check the details of your platform documentation. On platforms with no support
for POSIX O_SYNC or equivalent, use of the sync flag causes open to return {error, enotsup}.

directory

Allows open to work on directories.

Returns:

{ok, IoDevice}

The file is opened in the requested mode. IoDevice is a reference to the file.

{error, Reason}

The file cannot be opened.

IoDevice is really the pid of the process that handles the file. This process monitors the process that originally
opened the file (the owner process). If the owner process terminates, the file is closed and the process itself terminates
too. An IoDevice returned from this call can be used as an argument to the I/O functions (see io(3)).

Warning:

While this function can be used to open any file, we recommend against using it for NFS-mounted files, FIFOs,
devices, or similar since they can cause IO threads to hang forever.

If your application needs to interact with these kinds of files we recommend breaking out those parts to a port
program instead.

Note:

In previous versions of file, modes were specified as one of the atoms read, write, or read_write instead
of a list. This is still allowed for reasons of backwards compatibility, but is not to be used for new code. Also note
that read_write is not allowed in a mode list.

Typical error reasons:

150 | Ericsson AB. All Rights Reserved.: Kernel

file

enoent

The file does not exist.

eacces

Missing permission for reading the file or searching one of the parent directories.

eisdir

The named file is a directory.

enotdir

A component of the filename is not a directory, or the filename itself is not a directory if directory mode was
specified. On some platforms, enoent is returned instead.

enospc

There is no space left on the device (if write access was specified).

path_consult(Path, Filename) ->
 {ok, Terms, FullName} | {error, Reason}
Types:

Path = [Dir]
Dir = Filename = name_all()
Terms = [term()]
FullName = filename_all()
Reason =
 posix() |
 badarg | terminated | system_limit |
 {Line :: integer(), Mod :: module(), Term :: term()}

Searches the path Path (a list of directory names) until the file Filename is found. If Filename is an absolute
filename, Path is ignored. Then reads Erlang terms, separated by '.', from the file.

Returns one of the following:

{ok, Terms, FullName}

The file is successfully read. FullName is the full name of the file.

{error, enoent}

The file cannot be found in any of the directories in Path.

{error, atom()}

An error occurred when opening the file or reading it. For a list of typical error codes, see open/2.

{error, {Line, Mod, Term}}

An error occurred when interpreting the Erlang terms in the file. Use format_error/1 to convert the three-
element tuple to an English description of the error.

The encoding of Filename can be set by a comment as described in epp(3).

path_eval(Path, Filename) -> {ok, FullName} | {error, Reason}
Types:

Ericsson AB. All Rights Reserved.: Kernel | 151

file

Path = [Dir :: name_all()]
Filename = name_all()
FullName = filename_all()
Reason =
 posix() |
 badarg | terminated | system_limit |
 {Line :: integer(), Mod :: module(), Term :: term()}

Searches the path Path (a list of directory names) until the file Filename is found. If Filename is an absolute
filename, Path is ignored. Then reads and evaluates Erlang expressions, separated by '.' (or ',', a sequence of
expressions is also an expression), from the file. The result of evaluation is not returned; any expression sequence in
the file must be there for its side effect.

Returns one of the following:

{ok, FullName}

The file is read and evaluated. FullName is the full name of the file.

{error, enoent}

The file cannot be found in any of the directories in Path.

{error, atom()}

An error occurred when opening the file or reading it. For a list of typical error codes, see open/2.

{error, {Line, Mod, Term}}

An error occurred when interpreting the Erlang expressions in the file. Use format_error/1 to convert the
three-element tuple to an English description of the error.

The encoding of Filename can be set by a comment as described in epp(3).

path_open(Path, Filename, Modes) ->
 {ok, IoDevice, FullName} | {error, Reason}
Types:

Path = [Dir :: name_all()]
Filename = name_all()
Modes = [mode() | directory]
IoDevice = io_device()
FullName = filename_all()
Reason = posix() | badarg | system_limit

Searches the path Path (a list of directory names) until the file Filename is found. If Filename is an absolute
filename, Path is ignored. Then opens the file in the mode determined by Modes.

Returns one of the following:

{ok, IoDevice, FullName}

The file is opened in the requested mode. IoDevice is a reference to the file and FullName is the full name
of the file.

{error, enoent}

The file cannot be found in any of the directories in Path.

{error, atom()}

The file cannot be opened.

152 | Ericsson AB. All Rights Reserved.: Kernel

file

path_script(Path, Filename) ->
 {ok, Value, FullName} | {error, Reason}
Types:

Path = [Dir :: name_all()]
Filename = name_all()
Value = term()
FullName = filename_all()
Reason =
 posix() |
 badarg | terminated | system_limit |
 {Line :: integer(), Mod :: module(), Term :: term()}

Searches the path Path (a list of directory names) until the file Filename is found. If Filename is an absolute
filename, Path is ignored. Then reads and evaluates Erlang expressions, separated by '.' (or ',', a sequence of
expressions is also an expression), from the file.

Returns one of the following:

{ok, Value, FullName}

The file is read and evaluated. FullName is the full name of the file and Value the value of the last expression.

{error, enoent}

The file cannot be found in any of the directories in Path.

{error, atom()}

An error occurred when opening the file or reading it. For a list of typical error codes, see open/2.

{error, {Line, Mod, Term}}

An error occurred when interpreting the Erlang expressions in the file. Use format_error/1 to convert the
three-element tuple to an English description of the error.

The encoding of Filename can be set by a comment as described in epp(3).

path_script(Path, Filename, Bindings) ->
 {ok, Value, FullName} | {error, Reason}
Types:

Path = [Dir :: name_all()]
Filename = name_all()
Bindings = erl_eval:binding_struct()
Value = term()
FullName = filename_all()
Reason =
 posix() |
 badarg | terminated | system_limit |
 {Line :: integer(), Mod :: module(), Term :: term()}

The same as path_script/2 but the variable bindings Bindings are used in the evaluation. See erl_eval(3)
about variable bindings.

pid2name(Pid) -> {ok, Filename} | undefined
Types:

Ericsson AB. All Rights Reserved.: Kernel | 153

file

Filename = filename_all()
Pid = pid()

If Pid is an I/O device, that is, a pid returned from open/2, this function returns the filename, or rather:

{ok, Filename}

If the file server of this node is not a slave, the file was opened by the file server of this node (this implies that
Pid must be a local pid) and the file is not closed. Filename is the filename in flat string format.

undefined

In all other cases.

Warning:

This function is intended for debugging only.

position(IoDevice, Location) ->
 {ok, NewPosition} | {error, Reason}
Types:

IoDevice = io_device()
Location = location()
NewPosition = integer()
Reason = posix() | badarg | terminated

Sets the position of the file referenced by IoDevice to Location. Returns {ok, NewPosition} (as absolute
offset) if successful, otherwise {error, Reason}. Location is one of the following:

Offset

The same as {bof, Offset}.

{bof, Offset}

Absolute offset.

{cur, Offset}

Offset from the current position.

{eof, Offset}

Offset from the end of file.

bof | cur | eof

The same as above with Offset 0.

Notice that offsets are counted in bytes, not in characters. If the file is opened using some other encoding than
latin1, one byte does not correspond to one character. Positioning in such a file can only be done to known character
boundaries. That is, to a position earlier retrieved by getting a current position, to the beginning/end of the file or to
some other position known to be on a correct character boundary by some other means (typically beyond a byte order
mark in the file, which has a known byte-size).

A typical error reason is:

einval

Either Location is illegal, or it is evaluated to a negative offset in the file. Notice that if the resulting position
is a negative value, the result is an error, and after the call the file position is undefined.

154 | Ericsson AB. All Rights Reserved.: Kernel

file

pread(IoDevice, LocNums) -> {ok, DataL} | eof | {error, Reason}
Types:

IoDevice = io_device()
LocNums =
 [{Location :: location(), Number :: integer() >= 0}]
DataL = [Data]
Data = string() | binary() | eof
Reason = posix() | badarg | terminated

Performs a sequence of pread/3 in one operation, which is more efficient than calling them one at a time. Returns
{ok, [Data, ...]} or {error, Reason}, where each Data, the result of the corresponding pread, is
either a list or a binary depending on the mode of the file, or eof if the requested position is beyond end of file.

As the position is specified as a byte-offset, take special caution when working with files where encoding is set to
something else than latin1, as not every byte position is a valid character boundary on such a file.

pread(IoDevice, Location, Number) ->
 {ok, Data} | eof | {error, Reason}
Types:

IoDevice = io_device()
Location = location()
Number = integer() >= 0
Data = string() | binary()
Reason = posix() | badarg | terminated

Combines position/2 and read/2 in one operation, which is more efficient than calling them one at a time.

Location is only allowed to be an integer for raw and ram modes.

The current position of the file after the operation is undefined for raw mode and unchanged for ram mode.

As the position is specified as a byte-offset, take special caution when working with files where encoding is set to
something else than latin1, as not every byte position is a valid character boundary on such a file.

pwrite(IoDevice, LocBytes) -> ok | {error, {N, Reason}}
Types:

IoDevice = io_device()
LocBytes = [{Location :: location(), Bytes :: iodata()}]
N = integer() >= 0
Reason = posix() | badarg | terminated

Performs a sequence of pwrite/3 in one operation, which is more efficient than calling them one at a time. Returns
ok or {error, {N, Reason}}, where N is the number of successful writes done before the failure.

When positioning in a file with other encoding than latin1, caution must be taken to set the position on a correct
character boundary. For details, see position/2.

pwrite(IoDevice, Location, Bytes) -> ok | {error, Reason}
Types:

Ericsson AB. All Rights Reserved.: Kernel | 155

file

IoDevice = io_device()
Location = location()
Bytes = iodata()
Reason = posix() | badarg | terminated

Combines position/2 and write/2 in one operation, which is more efficient than calling them one at a time.

Location is only allowed to be an integer for raw and ram modes.

The current position of the file after the operation is undefined for raw mode and unchanged for ram mode.

When positioning in a file with other encoding than latin1, caution must be taken to set the position on a correct
character boundary. For details, see position/2.

read(IoDevice, Number) -> {ok, Data} | eof | {error, Reason}
Types:

IoDevice = io_device() | atom()
Number = integer() >= 0
Data = string() | binary()
Reason =
 posix() |
 badarg | terminated |
 {no_translation, unicode, latin1}

Reads Number bytes/characters from the file referenced by IoDevice. The functions read/2, pread/3, and
read_line/1 are the only ways to read from a file opened in raw mode (although they work for normally opened
files, too).

For files where encoding is set to something else than latin1, one character can be represented by more than
one byte on the file. The parameter Number always denotes the number of characters read from the file, while the
position in the file can be moved much more than this number when reading a Unicode file.

Also, if encoding is set to something else than latin1, the read/3 call fails if the data contains characters larger
than 255, which is why module io(3) is to be preferred when reading such a file.

The function returns:

{ok, Data}

If the file was opened in binary mode, the read bytes are returned in a binary, otherwise in a list. The list or binary
is shorter than the number of bytes requested if end of file was reached.

eof

Returned if Number>0 and end of file was reached before anything at all could be read.

{error, Reason}

An error occurred.

Typical error reasons:

ebadf

The file is not opened for reading.

{no_translation, unicode, latin1}

The file is opened with another encoding than latin1 and the data in the file cannot be translated to the byte-
oriented data that this function returns.

156 | Ericsson AB. All Rights Reserved.: Kernel

file

read_file(Filename) -> {ok, Binary} | {error, Reason}
Types:

Filename = name_all()
Binary = binary()
Reason = posix() | badarg | terminated | system_limit

Returns {ok, Binary}, where Binary is a binary data object that contains the contents of Filename, or
{error, Reason} if an error occurs.

Typical error reasons:

enoent

The file does not exist.

eacces

Missing permission for reading the file, or for searching one of the parent directories.

eisdir

The named file is a directory.

enotdir

A component of the filename is not a directory. On some platforms, enoent is returned instead.

enomem

There is not enough memory for the contents of the file.

read_file_info(File) -> {ok, FileInfo} | {error, Reason}
read_file_info(File, Opts) -> {ok, FileInfo} | {error, Reason}
Types:

File = name_all() | io_device()
Opts = [file_info_option()]
FileInfo = file_info()
Reason = posix() | badarg

Retrieves information about a file. Returns {ok, FileInfo} if successful, otherwise {error, Reason}.
FileInfo is a record file_info, defined in the Kernel include file file.hrl. Include the following directive
in the module from which the function is called:

 -include_lib("kernel/include/file.hrl").

The time type returned in atime, mtime, and ctime is dependent on the time type set in Opts :: {time,
Type} as follows:

local

Returns local time.

universal

Returns universal time.

posix

Returns seconds since or before Unix time epoch, which is 1970-01-01 00:00 UTC.

Default is {time, local}.

Ericsson AB. All Rights Reserved.: Kernel | 157

file

If the option raw is set, the file server is not called and only information about local files is returned. Note that this
will break this module's atomicity guarantees as it can race with a concurrent call to write_file_info/1,2 .

This option has no effect when the function is given an I/O device instead of a file name. Use open/2 with the raw
mode to obtain a file descriptor first.

Note:

As file times are stored in POSIX time on most OS, it is faster to query file information with option posix.

The record file_info contains the following fields:

size = integer() >= 0

Size of file in bytes.

type = device | directory | other | regular

The type of the file. Can also contain symlink when returned from read_link_info/1,2.

access = read | write | read_write | none

The current system access to the file.

atime = date_time() | integer() >= 0

The last time the file was read.

mtime = date_time() | integer() >= 0

The last time the file was written.

ctime = date_time() | integer() >=0

The interpretation of this time field depends on the operating system. On Unix, it is the last time the file or the
inode was changed. In Windows, it is the create time.

mode = integer() >= 0

The file permissions as the sum of the following bit values:

8#00400

read permission: owner

8#00200

write permission: owner

8#00100

execute permission: owner

8#00040

read permission: group

8#00020

write permission: group

8#00010

execute permission: group

8#00004

read permission: other

158 | Ericsson AB. All Rights Reserved.: Kernel

file

8#00002

write permission: other

8#00001

execute permission: other

16#800

set user id on execution

16#400

set group id on execution

On Unix platforms, other bits than those listed above may be set.

links = integer() >= 0

Number of links to the file (this is always 1 for file systems that have no concept of links).

major_device = integer() >= 0

Identifies the file system where the file is located. In Windows, the number indicates a drive as follows: 0 means
A:, 1 means B:, and so on.

minor_device = integer() >= 0

Only valid for character devices on Unix. In all other cases, this field is zero.

inode = integer() >= 0

Gives the inode number. On non-Unix file systems, this field is zero.

uid = integer() >= 0

Indicates the owner of the file. On non-Unix file systems, this field is zero.

gid = integer() >= 0

Gives the group that the owner of the file belongs to. On non-Unix file systems, this field is zero.

Typical error reasons:

eacces

Missing search permission for one of the parent directories of the file.

enoent

The file does not exist.

enotdir

A component of the filename is not a directory. On some platforms, enoent is returned instead.

read_line(IoDevice) -> {ok, Data} | eof | {error, Reason}
Types:

Ericsson AB. All Rights Reserved.: Kernel | 159

file

IoDevice = io_device() | atom()
Data = string() | binary()
Reason =
 posix() |
 badarg | terminated |
 {no_translation, unicode, latin1}

Reads a line of bytes/characters from the file referenced by IoDevice. Lines are defined to be delimited by the
linefeed (LF, \n) character, but any carriage return (CR, \r) followed by a newline is also treated as a single
LF character (the carriage return is silently ignored). The line is returned including the LF, but excluding any CR
immediately followed by an LF. This behaviour is consistent with the behaviour of io:get_line/2. If end of file
is reached without any LF ending the last line, a line with no trailing LF is returned.

The function can be used on files opened in raw mode. However, it is inefficient to use it on raw files if the file is
not opened with option {read_ahead, Size} specified. Thus, combining raw and {read_ahead, Size}
is highly recommended when opening a text file for raw line-oriented reading.

If encoding is set to something else than latin1, the read_line/1 call fails if the data contains characters
larger than 255, why module io(3) is to be preferred when reading such a file.

The function returns:

{ok, Data}

One line from the file is returned, including the trailing LF, but with CRLF sequences replaced by a single LF
(see above).

If the file is opened in binary mode, the read bytes are returned in a binary, otherwise in a list.

eof

Returned if end of file was reached before anything at all could be read.

{error, Reason}

An error occurred.

Typical error reasons:

ebadf

The file is not opened for reading.

{no_translation, unicode, latin1}

The file is opened with another encoding than latin1 and the data on the file cannot be translated to the
byte-oriented data that this function returns.

read_link(Name) -> {ok, Filename} | {error, Reason}
Types:

Name = name_all()
Filename = filename()
Reason = posix() | badarg

Returns {ok, Filename} if Name refers to a symbolic link that is not a raw filename, or {error, Reason}
otherwise. On platforms that do not support symbolic links, the return value is {error,enotsup}.

Typical error reasons:

160 | Ericsson AB. All Rights Reserved.: Kernel

file

einval

Name does not refer to a symbolic link or the name of the file that it refers to does not conform to the expected
encoding.

enoent

The file does not exist.

enotsup

Symbolic links are not supported on this platform.

read_link_all(Name) -> {ok, Filename} | {error, Reason}
Types:

Name = name_all()
Filename = filename_all()
Reason = posix() | badarg

Returns {ok, Filename} if Name refers to a symbolic link or {error, Reason} otherwise. On platforms that
do not support symbolic links, the return value is {error,enotsup}.

Notice that Filename can be either a list or a binary.

Typical error reasons:

einval

Name does not refer to a symbolic link.

enoent

The file does not exist.

enotsup

Symbolic links are not supported on this platform.

read_link_info(Name) -> {ok, FileInfo} | {error, Reason}
read_link_info(Name, Opts) -> {ok, FileInfo} | {error, Reason}
Types:

Name = name_all()
Opts = [file_info_option()]
FileInfo = file_info()
Reason = posix() | badarg

Works like read_file_info/1,2 except that if Name is a symbolic link, information about the link is returned
in the file_info record and the type field of the record is set to symlink.

If the option raw is set, the file server is not called and only information about local files is returned. Note that this
will break this module's atomicity guarantees as it can race with a concurrent call to write_file_info/1,2

If Name is not a symbolic link, this function returns the same result as read_file_info/1. On platforms that do
not support symbolic links, this function is always equivalent to read_file_info/1.

rename(Source, Destination) -> ok | {error, Reason}
Types:

Ericsson AB. All Rights Reserved.: Kernel | 161

file

Source = Destination = name_all()
Reason = posix() | badarg

Tries to rename the file Source to Destination. It can be used to move files (and directories) between directories,
but it is not sufficient to specify the destination only. The destination filename must also be specified. For example,
if bar is a normal file and foo and baz are directories, rename("foo/bar", "baz") returns an error, but
rename("foo/bar", "baz/bar") succeeds. Returns ok if it is successful.

Note:

Renaming of open files is not allowed on most platforms (see eacces below).

Typical error reasons:

eacces

Missing read or write permissions for the parent directories of Source or Destination. On some platforms,
this error is given if either Source or Destination is open.

eexist

Destination is not an empty directory. On some platforms, also given when Source and Destination
are not of the same type.

einval

Source is a root directory, or Destination is a subdirectory of Source.

eisdir

Destination is a directory, but Source is not.

enoent

Source does not exist.

enotdir

Source is a directory, but Destination is not.

exdev

Source and Destination are on different file systems.

script(Filename) -> {ok, Value} | {error, Reason}
Types:

Filename = name_all()
Value = term()
Reason =
 posix() |
 badarg | terminated | system_limit |
 {Line :: integer(), Mod :: module(), Term :: term()}

Reads and evaluates Erlang expressions, separated by '.' (or ',', a sequence of expressions is also an expression), from
the file.

Returns one of the following:

{ok, Value}

The file is read and evaluated. Value is the value of the last expression.

162 | Ericsson AB. All Rights Reserved.: Kernel

file

{error, atom()}

An error occurred when opening the file or reading it. For a list of typical error codes, see open/2.

{error, {Line, Mod, Term}}

An error occurred when interpreting the Erlang expressions in the file. Use format_error/1 to convert the
three-element tuple to an English description of the error.

The encoding of Filename can be set by a comment as described in epp(3).

script(Filename, Bindings) -> {ok, Value} | {error, Reason}
Types:

Filename = name_all()
Bindings = erl_eval:binding_struct()
Value = term()
Reason =
 posix() |
 badarg | terminated | system_limit |
 {Line :: integer(), Mod :: module(), Term :: term()}

The same as script/1 but the variable bindings Bindings are used in the evaluation. See erl_eval(3) about
variable bindings.

sendfile(Filename, Socket) ->
 {ok, integer() >= 0} |
 {error, inet:posix() | closed | badarg | not_owner}
Types:

Filename = name_all()
Socket =
 inet:socket() |
 socket:socket() |
 fun((iolist()) -> ok | {error, inet:posix() | closed})

Sends the file Filename to Socket. Returns {ok, BytesSent} if successful, otherwise {error, Reason}.

sendfile(RawFile, Socket, Offset, Bytes, Opts) ->
 {ok, integer() >= 0} |
 {error, inet:posix() | closed | badarg | not_owner}
Types:

RawFile = fd()
Socket =
 inet:socket() |
 socket:socket() |
 fun((iolist()) -> ok | {error, inet:posix() | closed})
Offset = Bytes = integer() >= 0
Opts = [sendfile_option()]
sendfile_option() =
 {chunk_size, integer() >= 0} | {use_threads, boolean()}

Sends Bytes from the file referenced by RawFile beginning at Offset to Socket. Returns {ok, BytesSent}
if successful, otherwise {error, Reason}. If Bytes is set to 0 all data after the specified Offset is sent.

Ericsson AB. All Rights Reserved.: Kernel | 163

file

The file used must be opened using the raw flag, and the process calling sendfile must be the controlling
process of the socket. See gen_tcp:controlling_process/2 or module socket's level otp socket option
controlling_process.

If the OS used does not support non-blocking sendfile, an Erlang fallback using read/2 and gen_tcp:send/2
is used.

The option list can contain the following options:

chunk_size

The chunk size used by the Erlang fallback to send data. If using the fallback, set this to a value that comfortably
fits in the systems memory. Default is 20 MB.

set_cwd(Dir) -> ok | {error, Reason}
Types:

Dir = name() | EncodedBinary
EncodedBinary = binary()
Reason = posix() | badarg | no_translation

Sets the current working directory of the file server to Dir. Returns ok if successful.

The functions in the module file usually treat binaries as raw filenames, that is, they are passed "as is" even when the
encoding of the binary does not agree with native_name_encoding(). However, this function expects binaries
to be encoded according to the value returned by native_name_encoding().

Typical error reasons are:

enoent

The directory does not exist.

enotdir

A component of Dir is not a directory. On some platforms, enoent is returned.

eacces

Missing permission for the directory or one of its parents.

badarg

Dir has an improper type, such as tuple.

no_translation

Dir is a binary() with characters coded in ISO-latin-1 and the VM is operating with unicode filename
encoding.

Warning:

In a future release, a bad type for argument Dir will probably generate an exception.

sync(IoDevice) -> ok | {error, Reason}
Types:

IoDevice = io_device()
Reason = posix() | badarg | terminated

Ensures that any buffers kept by the operating system (not by the Erlang runtime system) are written to disk. On some
platforms, this function might have no effect.

164 | Ericsson AB. All Rights Reserved.: Kernel

file

A typical error reason is:

enospc

Not enough space left to write the file.

truncate(IoDevice) -> ok | {error, Reason}
Types:

IoDevice = io_device()
Reason = posix() | badarg | terminated

Truncates the file referenced by IoDevice at the current position. Returns ok if successful, otherwise {error,
Reason}.

write(IoDevice, Bytes) -> ok | {error, Reason}
Types:

IoDevice = io_device() | atom()
Bytes = iodata()
Reason = posix() | badarg | terminated

Writes Bytes to the file referenced by IoDevice. This function is the only way to write to a file opened in raw
mode (although it works for normally opened files too). Returns ok if successful, and {error, Reason} otherwise.

If the file is opened with encoding set to something else than latin1, each byte written can result in many bytes
being written to the file, as the byte range 0..255 can represent anything between one and four bytes depending on
value and UTF encoding type.

Typical error reasons:

ebadf

The file is not opened for writing.

enospc

No space is left on the device.

write_file(Filename, Bytes) -> ok | {error, Reason}
Types:

Filename = name_all()
Bytes = iodata()
Reason = posix() | badarg | terminated | system_limit

Writes the contents of the iodata term Bytes to file Filename. The file is created if it does not exist. If it exists,
the previous contents are overwritten. Returns ok if successful, otherwise {error, Reason}.

Typical error reasons:

enoent

A component of the filename does not exist.

enotdir

A component of the filename is not a directory. On some platforms, enoent is returned instead.

enospc

No space is left on the device.

Ericsson AB. All Rights Reserved.: Kernel | 165

file

eacces

Missing permission for writing the file or searching one of the parent directories.

eisdir

The named file is a directory.

write_file(Filename, Bytes, Modes) -> ok | {error, Reason}
Types:

Filename = name_all()
Bytes = iodata()
Modes = [mode()]
Reason = posix() | badarg | terminated | system_limit

Same as write_file/2, but takes a third argument Modes, a list of possible modes, see open/2. The mode flags
binary and write are implicit, so they are not to be used.

write_file_info(Filename, FileInfo) -> ok | {error, Reason}
write_file_info(Filename, FileInfo, Opts) -> ok | {error, Reason}
Types:

Filename = name_all()
Opts = [file_info_option()]
FileInfo = file_info()
Reason = posix() | badarg

Changes file information. Returns ok if successful, otherwise {error, Reason}. FileInfo is a record
file_info, defined in the Kernel include file file.hrl. Include the following directive in the module from which
the function is called:

 -include_lib("kernel/include/file.hrl").

The time type set in atime, mtime, and ctime depends on the time type set in Opts :: {time, Type} as
follows:

local

Interprets the time set as local.

universal

Interprets it as universal time.

posix

Must be seconds since or before Unix time epoch, which is 1970-01-01 00:00 UTC.

Default is {time, local}.

If the option raw is set, the file server is not called and only information about local files is returned.

The following fields are used from the record, if they are specified:

atime = date_time() | integer() >= 0

The last time the file was read.

mtime = date_time() | integer() >= 0

The last time the file was written.

166 | Ericsson AB. All Rights Reserved.: Kernel

file

ctime = date_time() | integer() >= 0

On Unix, any value specified for this field is ignored (the "ctime" for the file is set to the current time). On
Windows, this field is the new creation time to set for the file.

mode = integer() >= 0

The file permissions as the sum of the following bit values:

8#00400

Read permission: owner

8#00200

Write permission: owner

8#00100

Execute permission: owner

8#00040

Read permission: group

8#00020

Write permission: group

8#00010

Execute permission: group

8#00004

Read permission: other

8#00002

Write permission: other

8#00001

Execute permission: other

16#800

Set user id on execution

16#400

Set group id on execution

On Unix platforms, other bits than those listed above may be set.

uid = integer() >= 0

Indicates the file owner. Ignored for non-Unix file systems.

gid = integer() >= 0

Gives the group that the file owner belongs to. Ignored for non-Unix file systems.

Typical error reasons:

eacces

Missing search permission for one of the parent directories of the file.

enoent

The file does not exist.

Ericsson AB. All Rights Reserved.: Kernel | 167

file

enotdir

A component of the filename is not a directory. On some platforms, enoent is returned instead.

POSIX Error Codes
• eacces - Permission denied

• eagain - Resource temporarily unavailable

• ebadf - Bad file number

• ebusy - File busy

• edquot - Disk quota exceeded

• eexist - File already exists

• efault - Bad address in system call argument

• efbig - File too large

• eintr - Interrupted system call

• einval - Invalid argument

• eio - I/O error

• eisdir - Illegal operation on a directory

• eloop - Too many levels of symbolic links

• emfile - Too many open files

• emlink - Too many links

• enametoolong - Filename too long

• enfile - File table overflow

• enodev - No such device

• enoent - No such file or directory

• enomem - Not enough memory

• enospc - No space left on device

• enotblk - Block device required

• enotdir - Not a directory

• enotsup - Operation not supported

• enxio - No such device or address

• eperm - Not owner

• epipe - Broken pipe

• erofs - Read-only file system

• espipe - Invalid seek

• esrch - No such process

• estale - Stale remote file handle

• exdev - Cross-domain link

Performance
For increased performance, raw files are recommended.

A normal file is really a process so it can be used as an I/O device (see io). Therefore, when data is written to a normal
file, the sending of the data to the file process, copies all data that are not binaries. Opening the file in binary mode
and writing binaries is therefore recommended. If the file is opened on another node, or if the file server runs as slave
to the file server of another node, also binaries are copied.

168 | Ericsson AB. All Rights Reserved.: Kernel

file

Note:

Raw files use the file system of the host machine of the node. For normal files (non-raw), the file server is used to
find the files, and if the node is running its file server as slave to the file server of another node, and the other node
runs on some other host machine, they can have different file systems. However, this is seldom a problem.

open/2 can be given the options delayed_write and read_ahead to turn on caching, which will reduce the
number of operating system calls and greatly improve performance for small reads and writes. However, the overhead
won't disappear completely and it's best to keep the number of file operations to a minimum. As a contrived example,
the following function writes 4MB in 2.5 seconds when tested:

create_file_slow(Name) ->
 {ok, Fd} = file:open(Name, [raw, write, delayed_write, binary]),
 create_file_slow_1(Fd, 4 bsl 20),
 file:close(Fd).

create_file_slow_1(_Fd, 0) ->
 ok;
create_file_slow_1(Fd, M) ->
 ok = file:write(Fd, <<0>>),
 create_file_slow_1(Fd, M - 1).

The following functionally equivalent code writes 128 bytes per call to write/2 and so does the same work in 0.08
seconds, which is roughly 30 times faster:

create_file(Name) ->
 {ok, Fd} = file:open(Name, [raw, write, delayed_write, binary]),
 create_file_1(Fd, 4 bsl 20),
 file:close(Fd),
 ok.

create_file_1(_Fd, 0) ->
 ok;
create_file_1(Fd, M) when M >= 128 ->
 ok = file:write(Fd, <<0:(128)/unit:8>>),
 create_file_1(Fd, M - 128);
create_file_1(Fd, M) ->
 ok = file:write(Fd, <<0:(M)/unit:8>>),
 create_file_1(Fd, M - 1).

When writing data it's generally more efficient to write a list of binaries rather than a list of integers. It is not needed to
flatten a deep list before writing. On Unix hosts, scatter output, which writes a set of buffers in one operation, is used
when possible. In this way write(FD, [Bin1, Bin2 | Bin3]) writes the contents of the binaries without
copying the data at all, except for perhaps deep down in the operating system kernel.

Warning:

If an error occurs when accessing an open file with module io, the process handling the file exits. The dead file
process can hang if a process tries to access it later. This will be fixed in a future release.

See Also
filename(3)

Ericsson AB. All Rights Reserved.: Kernel | 169

gen_sctp

gen_sctp
Erlang module

This module provides functions for communicating with sockets using the SCTP protocol. The implementation
assumes that the OS kernel supports SCTP (RFC 2960) through the user-level Sockets API Extensions.

During development, this implementation was tested on:

• Linux Fedora Core 5.0 (kernel 2.6.15-2054 or later is needed)

• Solaris 10, 11

During OTP adaptation it was tested on:

• SUSE Linux Enterprise Server 10 (x86_64) kernel 2.6.16.27-0.6-smp, with lksctp-tools-1.0.6

• Briefly on Solaris 10

• SUSE Linux Enterprise Server 10 Service Pack 1 (x86_64) kernel 2.6.16.54-0.2.3-smp with lksctp-tools-1.0.7

• FreeBSD 8.2

This module was written for one-to-many style sockets (type seqpacket). With the addition of peeloff/2, one-
to-one style sockets (type stream) were introduced.

Record definitions for this module can be found using:

-include_lib("kernel/include/inet_sctp.hrl").

These record definitions use the "new" spelling 'adaptation', not the deprecated 'adaption', regardless of which spelling
the underlying C API uses.

Data Types
Exported data types
assoc_id()
An opaque term returned in, for example, #sctp_paddr_change{}, which identifies an association for an SCTP
socket. The term is opaque except for the special value 0, which has a meaning such as "the whole endpoint" or "all
future associations".

option() = elementary_option() | record_option()
One of the SCTP Socket Options used to set an option.

option_name() =
 elementary_option_name() | record_option() | ro_option()
An option name or one of the SCTP Socket Options used to get an option.

option_value() =
 elementary_option() | record_option() | ro_option()
One of the SCTP Socket Options as returned when getting an option.

sctp_socket()
Socket identifier returned from open/*.

170 | Ericsson AB. All Rights Reserved.: Kernel

href
href

gen_sctp

Data Types
Internal data types
elementary_option() =
 {active, true | false | once | -32768..32767} |
 {buffer, integer() >= 0} |
 {debug, boolean()} |
 {dontroute, boolean()} |
 {high_msgq_watermark, integer() >= 1} |
 {linger, {boolean(), integer() >= 0}} |
 {low_msgq_watermark, integer() >= 1} |
 {mode, list | binary} |
 list | binary |
 {priority, integer() >= 0} |
 {recbuf, integer() >= 0} |
 {reuseaddr, boolean()} |
 {ipv6_v6only, boolean()} |
 {sndbuf, integer() >= 0} |
 {sctp_autoclose, integer() >= 0} |
 {sctp_disable_fragments, boolean()} |
 {sctp_i_want_mapped_v4_addr, boolean()} |
 {sctp_maxseg, integer() >= 0} |
 {sctp_nodelay, boolean()} |
 {tos, integer() >= 0} |
 {tclass, integer() >= 0} |
 {ttl, integer() >= 0} |
 {recvtos, boolean()} |
 {recvtclass, boolean()} |
 {recvttl, boolean()}
elementary_option_name() =
 active | buffer | debug | dontroute | high_msgq_watermark |
 linger | low_msgq_watermark | mode | priority | recbuf |
 reuseaddr | ipv6_v6only | sctp_autoclose |
 sctp_disable_fragments | sctp_i_want_mapped_v4_addr |
 sctp_maxseg | sctp_nodelay | sndbuf | tos | tclass | ttl |
 recvtos | recvtclass | recvttl
record_option() =
 {sctp_adaptation_layer, #sctp_setadaptation{}} |
 {sctp_associnfo, #sctp_assocparams{}} |
 {sctp_default_send_param, #sctp_sndrcvinfo{}} |
 {sctp_delayed_ack_time, #sctp_assoc_value{}} |
 {sctp_events, #sctp_event_subscribe{}} |
 {sctp_initmsg, #sctp_initmsg{}} |
 {sctp_peer_addr_params, #sctp_paddrparams{}} |
 {sctp_primary_addr, #sctp_prim{}} |
 {sctp_rtoinfo, #sctp_rtoinfo{}} |
 {sctp_set_peer_primary_addr, #sctp_setpeerprim{}}
ro_option() =
 {sctp_get_peer_addr_info, #sctp_paddrinfo{}} |

Ericsson AB. All Rights Reserved.: Kernel | 171

gen_sctp

 {sctp_status, #sctp_status{}}

Exports

abort(Socket, Assoc) -> ok | {error, inet:posix()}
Types:

Socket = sctp_socket()
Assoc = #sctp_assoc_change{}

Abnormally terminates the association specified by Assoc, without flushing of unsent data. The socket itself remains
open. Other associations opened on this socket are still valid, and the socket can be used in new associations.

close(Socket) -> ok | {error, inet:posix()}
Types:

Socket = sctp_socket()
Closes the socket and all associations on it. The unsent data is flushed as in eof/2. The close/1 call is blocking or
otherwise depending of the value of the linger socket option. If close does not linger or linger time-out expires,
the call returns and the data is flushed in the background.

connect(Socket, SockAddr, Opts) ->
 {ok, #sctp_assoc_change{state = comm_up}} |
 {error, #sctp_assoc_change{state = cant_assoc}} |
 {error, inet:posix()}
Types:

Socket = sctp_socket()
SockAddr = socket:sockaddr_in() | socket:sockaddr_in6()
Opts = [Opt :: option()]

Same as connect(Socket, SockAddr, Opts, infinity).

connect(Socket, SockAddr, Opts, Timeout) ->
 {ok, #sctp_assoc_change{state = comm_up}} |
 {error, #sctp_assoc_change{state = cant_assoc}} |
 {error, inet:posix()}
Types:

Socket = sctp_socket()
SockAddr = socket:sockaddr_in() | socket:sockaddr_in6()
Opts = [Opt :: option()]
Timeout = timeout()

This is conceptually the same as connect/5, only with the difference that we use a socket address,
socket:sockaddr_in() or socket:sockaddr_in6() instead of an address (inet:ip_address() or
inet:hostname()) and port-number.

connect(Socket, Addr, Port, Opts) ->
 {ok, #sctp_assoc_change{state = comm_up}} |
 {error, #sctp_assoc_change{state = cant_assoc}} |
 {error, inet:posix()}
Types:

172 | Ericsson AB. All Rights Reserved.: Kernel

gen_sctp

Socket = sctp_socket()
Addr = inet:ip_address() | inet:hostname()
Port = inet:port_number()
Opts = [Opt :: option()]

Same as connect(Socket, Addr, Port, Opts, infinity).

connect(Socket, Addr, Port, Opts, Timeout) ->
 {ok, #sctp_assoc_change{state = comm_up}} |
 {error, #sctp_assoc_change{state = cant_assoc}} |
 {error, inet:posix()}
Types:

Socket = sctp_socket()
Addr = inet:ip_address() | inet:hostname()
Port = inet:port_number()
Opts = [Opt :: option()]
Timeout = timeout()

Establishes a new association for socket Socket, with the peer (SCTP server socket) specified by Addr and Port.
Timeout, is expressed in milliseconds. A socket can be associated with multiple peers.

Warning:

Using a value of Timeout less than the maximum time taken by the OS to establish an association (around 4.5
minutes if the default values from RFC 4960 are used), can result in inconsistent or incorrect return values. This is
especially relevant for associations sharing the same Socket (that is, source address and port), as the controlling
process blocks until connect/* returns. connect_init/* provides an alternative without this limitation.

The result of connect/* is an #sctp_assoc_change{} event that contains, in particular, the new Association
ID:

#sctp_assoc_change{
 state = atom(),
 error = integer(),
 outbound_streams = integer(),
 inbound_streams = integer(),
 assoc_id = assoc_id()
}

The number of outbound and inbound streams can be set by giving an sctp_initmsg option to connect as in:

connect(Socket, Ip, Port>,
 [{sctp_initmsg,#sctp_initmsg{num_ostreams=OutStreams,
 max_instreams=MaxInStreams}}])

All options Opt are set on the socket before the association is attempted. If an option record has undefined field values,
the options record is first read from the socket for those values. In effect, Opt option records only define field values
to change before connecting.

The returned outbound_streams and inbound_streams are the stream numbers on the socket. These can be
different from the requested values (OutStreams and MaxInStreams, respectively) if the peer requires lower
values.

Ericsson AB. All Rights Reserved.: Kernel | 173

href

gen_sctp

state can have the following values:

comm_up

Association is successfully established. This indicates a successful completion of connect.

cant_assoc

The association cannot be established (connect/* failure).

Other states do not normally occur in the output from connect/*. Rather, they can occur in
#sctp_assoc_change{} events received instead of data in recv/* calls. All of them indicate losing the
association because of various error conditions, and are listed here for the sake of completeness:

comm_lost
restart
shutdown_comp

Field error can provide more detailed diagnostics. The error field value can be converted into a string using
error_string/1.

connect_init(Socket, SockAddr, Opts) -> ok | {error, inet:posix()}
Types:

Socket = sctp_socket()
SockAddr = socket:sockaddr_in() | socket:sockaddr_in6()
Opts = [option()]

Same as connect_init(Socket, SockAddr, Opts, infinity).

connect_init(Socket, SockAddr, Opts, Timeout) ->
 ok | {error, inet:posix()}
Types:

Socket = sctp_socket()
SockAddr = socket:sockaddr_in() | socket:sockaddr_in6()
Opts = [option()]
Timeout = timeout()

This is conceptually the same as connect_init/5, only with the difference that we use a socket
address, socket:sockaddr_in() or socket:sockaddr_in6() instead of an address (inet:ip_address() or
inet:hostname()) and port-number.

connect_init(Socket, Addr, Port, Opts) ->
 ok | {error, inet:posix()}
Types:

Socket = sctp_socket()
Addr = inet:ip_address() | inet:hostname()
Port = inet:port_number()
Opts = [option()]

Same as connect_init(Socket, Addr, Port, Opts, infinity).

connect_init(Socket, Addr, Port, Opts, Timeout) ->
 ok | {error, inet:posix()}
Types:

174 | Ericsson AB. All Rights Reserved.: Kernel

gen_sctp

Socket = sctp_socket()
Addr = inet:ip_address() | inet:hostname()
Port = inet:port_number()
Opts = [option()]
Timeout = timeout()

Initiates a new association for socket Socket, with the peer (SCTP server socket) specified by Addr and Port.

The fundamental difference between this API and connect/* is that the return value is that of the underlying OS
connect(2) system call. If ok is returned, the result of the association establishment is received by the calling
process as an #sctp_assoc_change{} event. The calling process must be prepared to receive this, or poll for it
using recv/*, depending on the value of the active option.

The parameters are as described in connect/*, except the Timeout value.

The timer associated with Timeout only supervises IP resolution of Addr.

connectx_init(Socket, SockAddrs, Opts) ->
 {ok, assoc_id()} | {error, inet:posix()}
Types:

Socket = sctp_socket()
SockAddrs =
 [{inet:ip_address(), inet:port_number()} |
 inet:family_address() |
 socket:sockaddr_in() |
 socket:sockaddr_in6()]
Opts = [option()]

Similar to connectx_init/5 except using socket addresses, and not having a Timeout. Since the addresses do
not need lookup and the connect is non-blocking this call returns immediately.

The value of each socket address port must be the same or zero. At least one socket address must have a non-zero
port

connectx_init(Socket, Addrs, Port, Opts) ->
 {ok, assoc_id()} | {error, inet:posix()}
Types:

Socket = sctp_socket()
Addrs = [inet:ip_address() | inet:hostname()]
Port = inet:port_number() | atom()
Opts = [option()]

Same as connectx_init(Socket, Addrs, Port, Opts, infinity).

connectx_init(Socket, Addrs, Port, Opts, Timeout) ->
 {ok, assoc_id()} | {error, inet:posix()}
Types:

Ericsson AB. All Rights Reserved.: Kernel | 175

gen_sctp

Socket = sctp_socket()
Addrs = [inet:ip_address() | inet:hostname()]
Port = inet:port_number() | atom()
Opts = [option()]
Timeout = timeout()

Initiates a new association for socket Socket, with the peer (SCTP server socket) specified by Addrs and Port.

This API is similar to connect_init/* except the underlying OS sctp_connectx(3) system call is used.

If successful, the association ID is returned which will be received in a subsequent #sctp_assoc_change{} event.

The parameters are as described in connect_init/5

NOTE: This API allows the OS to use all Addrs when establishing an association, but does not guarantee it will.
Therefore, if the connection fails the user may want to rotate the order of addresses for a subsequent call.

controlling_process(Socket, Pid) -> ok | {error, Reason}
Types:

Socket = sctp_socket()
Pid = pid()
Reason = closed | not_owner | badarg | inet:posix()

Assigns a new controlling process Pid to Socket. Same implementation as
gen_udp:controlling_process/2.

eof(Socket, Assoc) -> ok | {error, Reason}
Types:

Socket = sctp_socket()
Assoc = #sctp_assoc_change{}
Reason = term()

Gracefully terminates the association specified by Assoc, with flushing of all unsent data. The socket itself remains
open. Other associations opened on this socket are still valid. The socket can be used in new associations.

error_string(ErrorNumber) -> ok | string() | unknown_error
Types:

ErrorNumber = integer()
Translates an SCTP error number from, for example, #sctp_remote_error{} or #sctp_send_failed{}
into an explanatory string, or one of the atoms ok for no error or undefined for an unrecognized error.

listen(Socket, IsServer) -> ok | {error, Reason}
listen(Socket, Backlog) -> ok | {error, Reason}
Types:

Socket = sctp_socket()
Backlog = integer()
Reason = term()

Sets up a socket to listen on the IP address and port number it is bound to.

176 | Ericsson AB. All Rights Reserved.: Kernel

gen_sctp

For type seqpacket, sockets (the default) IsServer must be true or false. In contrast to TCP, there is no
listening queue length in SCTP. If IsServer is true, the socket accepts new associations, that is, it becomes an
SCTP server socket.

For type stream, sockets Backlog define the backlog queue length just like in TCP.

open() -> {ok, Socket} | {error, inet:posix()}
open(Port) -> {ok, Socket} | {error, inet:posix()}
open(Opts) -> {ok, Socket} | {error, inet:posix()}
open(Port, Opts) -> {ok, Socket} | {error, inet:posix()}
Types:

Opts = [Opt]
Opt =
 {ifaddr, IP | SockAddr} |
 {ip, IP} |
 {port, Port} |
 inet:address_family() |
 {type, SockType} |
 {netns, file:filename_all()} |
 {bind_to_device, binary()} |
 option()
IP = inet:ip_address() | any | loopback
SockAddr = socket:sockaddr_in() | socket:sockaddr_in6()
Port = inet:port_number()
SockType = seqpacket | stream
Socket = sctp_socket()

Creates an SCTP socket and binds it to the local addresses specified by all {ip,IP} (or synonymously
{ifaddr,IP}) options (this feature is called SCTP multi-homing). The default IP and Port are any and 0,
meaning bind to all local addresses on any free port.

It is also possible to use {ifaddr, SockAddr}, in which case it takes precedence over the ip and port options.
These options can however be used to update the address and port of ifaddr (if they occur after ifaddr in the options
list), although this is not recommended.

Other options:

inet6

Sets up the socket for IPv6.

inet

Sets up the socket for IPv4. This is the default.

A default set of socket options is used. In particular, the socket is opened in binary and passive mode, with SockType
seqpacket, and with reasonably large kernel and driver buffers.

If the socket is in passive mode data can be received through the recv/1,2 calls.

If the socket is in active mode data received data is delivered to the controlling process as messages:

{sctp, Socket, FromIP, FromPort, {AncData, Data}}

See recv/1,2 for a description of the message fields.

Ericsson AB. All Rights Reserved.: Kernel | 177

gen_sctp

Note:

This message format unfortunately differs slightly from the gen_udp message format with ancillary data, and
from the recv/1,2 return tuple format.

peeloff(Socket, Assoc) -> {ok, NewSocket} | {error, Reason}
Types:

Socket = sctp_socket()
Assoc = #sctp_assoc_change{} | assoc_id()
NewSocket = sctp_socket()
Reason = term()

Branches off an existing association Assoc in a socket Socket of type seqpacket (one-to-many style) into a new
socket NewSocket of type stream (one-to-one style).

The existing association argument Assoc can be either a #sctp_assoc_change{} record as returned from, for
example, recv/*, connect/*, or from a listening socket in active mode. It can also be just the field assoc_id
integer from such a record.

recv(Socket) ->
 {ok, {FromIP, FromPort, AncData, Data}} | {error, Reason}
recv(Socket, Timeout) ->
 {ok, {FromIP, FromPort, AncData, Data}} | {error, Reason}
Types:

Socket = sctp_socket()
Timeout = timeout()
FromIP = inet:ip_address()
FromPort = inet:port_number()
AncData = [#sctp_sndrcvinfo{} | inet:ancillary_data()]
Data =
 binary() |
 string() |
 #sctp_sndrcvinfo{} |
 #sctp_assoc_change{} |
 #sctp_paddr_change{} |
 #sctp_adaptation_event{}
Reason =
 inet:posix() |
 #sctp_send_failed{} |
 #sctp_paddr_change{} |
 #sctp_pdapi_event{} |
 #sctp_remote_error{} |
 #sctp_shutdown_event{}

Receives the Data message from any association of the socket. If the receive times out, {error,timeout} is
returned. The default time-out is infinity. FromIP and FromPort indicate the address of the sender.

AncData is a list of ancillary data items that can be received along with the main Data. This list can be empty,
or contain a single #sctp_sndrcvinfo{} record if receiving of such ancillary data is enabled (see option
sctp_events). It is enabled by default, as such ancillary data provides an easy way of determining the association

178 | Ericsson AB. All Rights Reserved.: Kernel

gen_sctp

and stream over which the message is received. (An alternative way is to get the association ID from FromIP and
FromPort using socket option sctp_get_peer_addr_info, but this does still not produce the stream number).

AncData may also contain ancillary data from the socket options recvtos, recvtclass or recvttl, if that
is supported by the platform for the socket.

The Data received can be a binary() or a list() of bytes (integers in the range 0 through 255) depending on
the socket mode, or an SCTP event.

Possible SCTP events:

• #sctp_sndrcvinfo{}

• #sctp_assoc_change{}

•
#sctp_paddr_change{
 addr = {ip_address(),port()},
 state = atom(),
 error = integer(),
 assoc_id = assoc_id()
}

Indicates change of the status of the IP address of the peer specified by addr within association assoc_id.
Possible values of state (mostly self-explanatory) include:

addr_unreachable
addr_available
addr_removed
addr_added
addr_made_prim
addr_confirmed

In case of an error (for example, addr_unreachable), field error provides more diagnostics. In such
cases, event #sctp_paddr_change{} is automatically converted into an error term returned by recv. The
error field value can be converted into a string using error_string/1.

•
#sctp_send_failed{
 flags = true | false,
 error = integer(),
 info = #sctp_sndrcvinfo{},
 assoc_id = assoc_id()
 data = binary()
}

The sender can receive this event if a send operation fails.

flags

A Boolean specifying if the data has been transmitted over the wire.

error

Provides extended diagnostics, use error_string/1.

info

The original #sctp_sndrcvinfo{} record used in the failed send/*.

data

The whole original data chunk attempted to be sent.

In the current implementation of the Erlang/SCTP binding, this event is internally converted into an error term
returned by recv/*.

Ericsson AB. All Rights Reserved.: Kernel | 179

gen_sctp

•
#sctp_adaptation_event{
 adaptation_ind = integer(),
 assoc_id = assoc_id()
}

Delivered when a peer sends an adaptation layer indication parameter (configured through option
sctp_adaptation_layer). Notice that with the current implementation of the Erlang/SCTP binding, this
event is disabled by default.

•
#sctp_pdapi_event{
 indication = sctp_partial_delivery_aborted,
 assoc_id = assoc_id()
}

A partial delivery failure. In the current implementation of the Erlang/SCTP binding, this event is internally
converted into an error term returned by recv/*.

send(Socket, SndRcvInfo, Data) -> ok | {error, Reason}
Types:

Socket = sctp_socket()
SndRcvInfo = #sctp_sndrcvinfo{}
Data = binary() | iolist()
Reason = term()

Sends the Data message with all sending parameters from a #sctp_sndrcvinfo{} record. This way, the user
can specify the PPID (passed to the remote end) and context (passed to the local SCTP layer), which can be used, for
example, for error identification. However, such a fine level of user control is rarely required. The function send/4
is sufficient for most applications.

send(Socket, Assoc, Stream, Data) -> ok | {error, Reason}
Types:

Socket = sctp_socket()
Assoc = #sctp_assoc_change{} | assoc_id()
Stream = integer()
Data = binary() | iolist()
Reason = term()

Sends a Data message over an existing association and specified stream.

SCTP Socket Options
The set of admissible SCTP socket options is by construction orthogonal to the sets of TCP, UDP, and generic inet
options. Only options listed here are allowed for SCTP sockets. Options can be set on the socket using open/1,2 or
inet:setopts/2, retrieved using inet:getopts/2. Options can be changed when calling connect/4,5.

{mode, list|binary} or just list or binary

Determines the type of data returned from recv/1,2.

{active, true|false|once|N}

• If false (passive mode, the default), the caller must do an explicit recv call to retrieve the available data
from the socket.

180 | Ericsson AB. All Rights Reserved.: Kernel

gen_sctp

• If true|once|N (active modes) received data or events are sent to the owning process. See open/0..2
for the message format.

• If true (full active mode) there is no flow control.

Note:

Note that this can cause the message queue to overflow causing for example the virtual machine to run
out of memory and crash.

• If once, only one message is automatically placed in the message queue, and after that the mode is
automatically reset to passive. This provides flow control and the possibility for the receiver to listen for its
incoming SCTP data interleaved with other inter-process messages.

• If active is specified as an integer N in the range -32768 to 32767 (inclusive), that number is added to
the socket's counting of data messages to be delivered to the controlling process. If the result of the addition
is negative, the count is set to 0. Once the count reaches 0, either through the delivery of messages or by
being explicitly set with inet:setopts/2, the socket mode is automatically reset to passive ({active,
false}). When a socket in this active mode transitions to passive mode, the message {sctp_passive,
Socket} is sent to the controlling process to notify it that if it wants to receive more data messages from
the socket, it must call inet:setopts/2 to set the socket back into an active mode.

{tos, integer()}

Sets the Type-Of-Service field on the IP datagrams that are sent, to the specified value. This effectively determines
a prioritization policy for the outbound packets. The acceptable values are system-dependent.

{priority, integer()}

A protocol-independent equivalent of tos above. Setting priority implies setting tos as well.

{dontroute, true|false}

Defaults to false. If true, the kernel does not send packets through any gateway, only sends them to directly
connected hosts.

{reuseaddr, true|false}

Defaults to false. If true, the local binding address {IP,Port} of the socket can be reused immediately. No
waiting in state CLOSE_WAIT is performed (can be required for high-throughput servers).

{sndbuf, integer()}

The size, in bytes, of the OS kernel send buffer for this socket. Sending errors would occur for datagrams larger
than val(sndbuf). Setting this option also adjusts the size of the driver buffer (see buffer above).

{recbuf, integer()}

The size, in bytes, of the OS kernel receive buffer for this socket. Sending errors would occur for datagrams larger
than val(recbuf). Setting this option also adjusts the size of the driver buffer (see buffer above).

{sctp_module, module()}

Overrides which callback module is used. Defaults to inet_sctp for IPv4 and inet6_sctp for IPv6.

{sctp_rtoinfo, #sctp_rtoinfo{}}

#sctp_rtoinfo{
 assoc_id = assoc_id(),
 initial = integer(),
 max = integer(),
 min = integer()
}

Ericsson AB. All Rights Reserved.: Kernel | 181

gen_sctp

Determines retransmission time-out parameters, in milliseconds, for the association(s) specified by assoc_id.

assoc_id = 0 (default) indicates the whole endpoint. See RFC 2960 and Sockets API Extensions for SCTP
for the exact semantics of the field values.

{sctp_associnfo, #sctp_assocparams{}}

#sctp_assocparams{
 assoc_id = assoc_id(),
 asocmaxrxt = integer(),
 number_peer_destinations = integer(),
 peer_rwnd = integer(),
 local_rwnd = integer(),
 cookie_life = integer()
}

Determines association parameters for the association(s) specified by assoc_id.

assoc_id = 0 (default) indicates the whole endpoint. See Sockets API Extensions for SCTP for the
discussion of their semantics. Rarely used.

{sctp_initmsg, #sctp_initmsg{}}

#sctp_initmsg{
 num_ostreams = integer(),
 max_instreams = integer(),
 max_attempts = integer(),
 max_init_timeo = integer()
}

Determines the default parameters that this socket tries to negotiate with its peer while establishing an association
with it. Is to be set after open/* but before the first connect/*. #sctp_initmsg{} can also be used as
ancillary data with the first call of send/* to a new peer (when a new association is created).

num_ostreams
Number of outbound streams

max_instreams
Maximum number of inbound streams

max_attempts
Maximum retransmissions while establishing an association

max_init_timeo
Time-out, in milliseconds, for establishing an association

{sctp_autoclose, integer() >= 0}

Determines the time, in seconds, after which an idle association is automatically closed. 0 means that the
association is never automatically closed.

{sctp_nodelay, true|false}

Turns on|off the Nagle algorithm for merging small packets into larger ones. This improves throughput at the
expense of latency.

{sctp_disable_fragments, true|false}

If true, induces an error on an attempt to send a message larger than the current PMTU size (which would
require fragmentation/reassembling). Notice that message fragmentation does not affect the logical atomicity of
its delivery; this option is provided for performance reasons only.

{sctp_i_want_mapped_v4_addr, true|false}

Turns on|off automatic mapping of IPv4 addresses into IPv6 ones (if the socket address family is AF_INET6).

182 | Ericsson AB. All Rights Reserved.: Kernel

href
href
href

gen_sctp

{sctp_maxseg, integer()}

Determines the maximum chunk size if message fragmentation is used. If 0, the chunk size is limited by the
Path MTU only.

{sctp_primary_addr, #sctp_prim{}}

#sctp_prim{
 assoc_id = assoc_id(),
 addr = {IP, Port}
}
 IP = ip_address()
 Port = port_number()

For the association specified by assoc_id, {IP,Port} must be one of the peer addresses. This option
determines that the specified address is treated by the local SCTP stack as the primary address of the peer.

{sctp_set_peer_primary_addr, #sctp_setpeerprim{}}

#sctp_setpeerprim{
 assoc_id = assoc_id(),
 addr = {IP, Port}
}
 IP = ip_address()
 Port = port_number()

When set, informs the peer to use {IP, Port} as the primary address of the local endpoint for the association
specified by assoc_id.

{sctp_adaptation_layer, #sctp_setadaptation{}}

#sctp_setadaptation{
 adaptation_ind = integer()
}

When set, requests that the local endpoint uses the value specified by adaptation_ind as the Adaptation
Indication parameter for establishing new associations. For details, see RFC 2960 and Sockets API Extensions
for SCTP.

{sctp_peer_addr_params, #sctp_paddrparams{}}

#sctp_paddrparams{
 assoc_id = assoc_id(),
 address = {IP, Port},
 hbinterval = integer(),
 pathmaxrxt = integer(),
 pathmtu = integer(),
 sackdelay = integer(),
 flags = list()
}
IP = ip_address()
Port = port_number()

Determines various per-address parameters for the association specified by assoc_id and the peer address
address (the SCTP protocol supports multi-homing, so more than one address can correspond to a specified
association).

hbinterval

Heartbeat interval, in milliseconds

Ericsson AB. All Rights Reserved.: Kernel | 183

href
href
href

gen_sctp

pathmaxrxt

Maximum number of retransmissions before this address is considered unreachable (and an alternative
address is selected)

pathmtu

Fixed Path MTU, if automatic discovery is disabled (see flags below)

sackdelay

Delay, in milliseconds, for SAC messages (if the delay is enabled, see flags below)

flags

The following flags are available:

hb_enable
Enables heartbeat

hb_disable
Disables heartbeat

hb_demand
Initiates heartbeat immediately

pmtud_enable
Enables automatic Path MTU discovery

pmtud_disable
Disables automatic Path MTU discovery

sackdelay_enable
Enables SAC delay

sackdelay_disable
Disables SAC delay

{sctp_default_send_param, #sctp_sndrcvinfo{}}

#sctp_sndrcvinfo{
 stream = integer(),
 ssn = integer(),
 flags = list(),
 ppid = integer(),
 context = integer(),
 timetolive = integer(),
 tsn = integer(),
 cumtsn = integer(),
 assoc_id = assoc_id()
}

#sctp_sndrcvinfo{} is used both in this socket option, and as ancillary data while sending or receiving
SCTP messages. When set as an option, it provides default values for subsequent send calls on the association
specified by assoc_id.

assoc_id = 0 (default) indicates the whole endpoint.

The following fields typically must be specified by the sender:

sinfo_stream

Stream number (0-base) within the association to send the messages through;

sinfo_flags

The following flags are recognised:

184 | Ericsson AB. All Rights Reserved.: Kernel

gen_sctp

unordered
The message is to be sent unordered

addr_over
The address specified in send overwrites the primary peer address

abort
Aborts the current association without flushing any unsent data

eof
Gracefully shuts down the current association, with flushing of unsent data

Other fields are rarely used. For complete information, see RFC 2960 and Sockets API Extensions for
SCTP.

{sctp_events, #sctp_event_subscribe{}}

#sctp_event_subscribe{
 data_io_event = true | false,
 association_event = true | false,
 address_event = true | false,
 send_failure_event = true | false,
 peer_error_event = true | false,
 shutdown_event = true | false,
 partial_delivery_event = true | false,
 adaptation_layer_event = true | false
}

This option determines which SCTP Events are to be received (through recv/*) along with the data.
The only exception is data_io_event, which enables or disables receiving of #sctp_sndrcvinfo{}
ancillary data, not events. By default, all flags except adaptation_layer_event are enabled, although
sctp_data_io_event and association_event are used by the driver itself and not exported to the
user level.

{sctp_delayed_ack_time, #sctp_assoc_value{}}

#sctp_assoc_value{
 assoc_id = assoc_id(),
 assoc_value = integer()
}

Rarely used. Determines the ACK time (specified by assoc_value, in milliseconds) for the specified
association or the whole endpoint if assoc_value = 0 (default).

{sctp_status, #sctp_status{}}

#sctp_status{
 assoc_id = assoc_id(),
 state = atom(),
 rwnd = integer(),
 unackdata = integer(),
 penddata = integer(),
 instrms = integer(),
 outstrms = integer(),
 fragmentation_point = integer(),
 primary = #sctp_paddrinfo{}
}

This option is read-only. It determines the status of the SCTP association specified by assoc_id. The following
are the possible values of state (the state designations are mostly self-explanatory):

Ericsson AB. All Rights Reserved.: Kernel | 185

href
href
href

gen_sctp

sctp_state_empty
Default. Means that no other state is active.

sctp_state_closed
sctp_state_cookie_wait
sctp_state_cookie_echoed
sctp_state_established
sctp_state_shutdown_pending
sctp_state_shutdown_sent
sctp_state_shutdown_received
sctp_state_shutdown_ack_sent

Semantics of the other fields:

sstat_rwnd
Current receiver window size of the association

sstat_unackdata
Number of unacked data chunks

sstat_penddata
Number of data chunks pending receipt

sstat_instrms
Number of inbound streams

sstat_outstrms
Number of outbound streams

sstat_fragmentation_point
Message size at which SCTP fragmentation occurs

sstat_primary
Information on the current primary peer address (see below for the format of #sctp_paddrinfo{})

{sctp_get_peer_addr_info, #sctp_paddrinfo{}}

#sctp_paddrinfo{
 assoc_id = assoc_id(),
 address = {IP, Port},
 state = inactive | active | unconfirmed,
 cwnd = integer(),
 srtt = integer(),
 rto = integer(),
 mtu = integer()
}
IP = ip_address()
Port = port_number()

This option is read-only. It determines the parameters specific to the peer address specified by address within
the association specified by assoc_id. Field address fmust be set by the caller; all other fields are filled in on
return. If assoc_id = 0 (default), the address is automatically translated into the corresponding association
ID. This option is rarely used. For the semantics of all fields, see RFC 2960 and Sockets API Extensions for
SCTP.

SCTP Examples
Example of an Erlang SCTP server that receives SCTP messages and prints them on the standard output:

186 | Ericsson AB. All Rights Reserved.: Kernel

href
href
href

gen_sctp

-module(sctp_server).

-export([server/0,server/1,server/2]).
-include_lib("kernel/include/inet.hrl").
-include_lib("kernel/include/inet_sctp.hrl").

server() ->
 server(any, 2006).

server([Host,Port]) when is_list(Host), is_list(Port) ->
 {ok, #hostent{h_addr_list = [IP|_]}} = inet:gethostbyname(Host),
 io:format("~w -> ~w~n", [Host, IP]),
 server([IP, list_to_integer(Port)]).

server(IP, Port) when is_tuple(IP) orelse IP == any orelse IP == loopback,
 is_integer(Port) ->
 {ok,S} = gen_sctp:open(Port, [{recbuf,65536}, {ip,IP}]),
 io:format("Listening on ~w:~w. ~w~n", [IP,Port,S]),
 ok = gen_sctp:listen(S, true),
 server_loop(S).

server_loop(S) ->
 case gen_sctp:recv(S) of
 {error, Error} ->
 io:format("SCTP RECV ERROR: ~p~n", [Error]);
 Data ->
 io:format("Received: ~p~n", [Data])
 end,
 server_loop(S).

Example of an Erlang SCTP client interacting with the above server. Notice that in this example the client creates
an association with the server with 5 outbound streams. Therefore, sending of "Test 0" over stream 0 succeeds,
but sending of "Test 5" over stream 5 fails. The client then aborts the association, which results in that the
corresponding event is received on the server side.

Ericsson AB. All Rights Reserved.: Kernel | 187

gen_sctp

-module(sctp_client).

-export([client/0, client/1, client/2]).
-include_lib("kernel/include/inet.hrl").
-include_lib("kernel/include/inet_sctp.hrl").

client() ->
 client([localhost]).

client([Host]) ->
 client(Host, 2006);

client([Host, Port]) when is_list(Host), is_list(Port) ->
 client(Host,list_to_integer(Port)),
 init:stop().

client(Host, Port) when is_integer(Port) ->
 {ok,S} = gen_sctp:open(),
 {ok,Assoc} = gen_sctp:connect
 (S, Host, Port, [{sctp_initmsg,#sctp_initmsg{num_ostreams=5}}]),
 io:format("Connection Successful, Assoc=~p~n", [Assoc]),

 io:write(gen_sctp:send(S, Assoc, 0, <<"Test 0">>)),
 io:nl(),
 timer:sleep(10000),
 io:write(gen_sctp:send(S, Assoc, 5, <<"Test 5">>)),
 io:nl(),
 timer:sleep(10000),
 io:write(gen_sctp:abort(S, Assoc)),
 io:nl(),

 timer:sleep(1000),
 gen_sctp:close(S).

A simple Erlang SCTP client that uses the connect_init API:

188 | Ericsson AB. All Rights Reserved.: Kernel

gen_sctp

-module(ex3).

-export([client/4]).
-include_lib("kernel/include/inet.hrl").
-include_lib("kernel/include/inet_sctp.hrl").

client(Peer1, Port1, Peer2, Port2)
 when is_tuple(Peer1), is_integer(Port1), is_tuple(Peer2), is_integer(Port2) ->
 {ok,S} = gen_sctp:open(),
 SctpInitMsgOpt = {sctp_initmsg,#sctp_initmsg{num_ostreams=5}},
 ActiveOpt = {active, true},
 Opts = [SctpInitMsgOpt, ActiveOpt],
 ok = gen_sctp:connect(S, Peer1, Port1, Opts),
 ok = gen_sctp:connect(S, Peer2, Port2, Opts),
 io:format("Connections initiated~n", []),
 client_loop(S, Peer1, Port1, undefined, Peer2, Port2, undefined).

client_loop(S, Peer1, Port1, AssocId1, Peer2, Port2, AssocId2) ->
 receive
 {sctp, S, Peer1, Port1, {_Anc, SAC}}
 when is_record(SAC, sctp_assoc_change), AssocId1 == undefined ->
 io:format("Association 1 connect result: ~p. AssocId: ~p~n",
 [SAC#sctp_assoc_change.state,
 SAC#sctp_assoc_change.assoc_id]),
 client_loop(S, Peer1, Port1, SAC#sctp_assoc_change.assoc_id,
 Peer2, Port2, AssocId2);

 {sctp, S, Peer2, Port2, {_Anc, SAC}}
 when is_record(SAC, sctp_assoc_change), AssocId2 == undefined ->
 io:format("Association 2 connect result: ~p. AssocId: ~p~n",
 [SAC#sctp_assoc_change.state, SAC#sctp_assoc_change.assoc_id]),
 client_loop(S, Peer1, Port1, AssocId1, Peer2, Port2,
 SAC#sctp_assoc_change.assoc_id);

 {sctp, S, Peer1, Port1, Data} ->
 io:format("Association 1: received ~p~n", [Data]),
 client_loop(S, Peer1, Port1, AssocId1,
 Peer2, Port2, AssocId2);

 {sctp, S, Peer2, Port2, Data} ->
 io:format("Association 2: received ~p~n", [Data]),
 client_loop(S, Peer1, Port1, AssocId1,
 Peer2, Port2, AssocId2);

 Other ->
 io:format("Other ~p~n", [Other]),
 client_loop(S, Peer1, Port1, AssocId1,
 Peer2, Port2, AssocId2)

 after 5000 ->
 ok
 end.

See Also
gen_tcp(3), gen_udp(3), inet(3), RFC 2960 (Stream Control Transmission Protocol), Sockets API
Extensions for SCTP

Ericsson AB. All Rights Reserved.: Kernel | 189

href
href
href

gen_tcp

gen_tcp
Erlang module

This module provides functions for communicating with sockets using the TCP/IP protocol.

The following code fragment is a simple example of a client connecting to a server at port 5678, transferring a binary,
and closing the connection:

client() ->
 SomeHostInNet = "localhost", % to make it runnable on one machine
 {ok, Sock} = gen_tcp:connect(SomeHostInNet, 5678,
 [binary, {packet, 0}]),
 ok = gen_tcp:send(Sock, "Some Data"),
 ok = gen_tcp:close(Sock).

At the other end, a server is listening on port 5678, accepts the connection, and receives the binary:

server() ->
 {ok, LSock} = gen_tcp:listen(5678, [binary, {packet, 0},
 {active, false}]),
 {ok, Sock} = gen_tcp:accept(LSock),
 {ok, Bin} = do_recv(Sock, []),
 ok = gen_tcp:close(Sock),
 ok = gen_tcp:close(LSock),
 Bin.

do_recv(Sock, Bs) ->
 case gen_tcp:recv(Sock, 0) of
 {ok, B} ->
 do_recv(Sock, [Bs, B]);
 {error, closed} ->
 {ok, list_to_binary(Bs)}
 end.

For more examples, see section Examples.

190 | Ericsson AB. All Rights Reserved.: Kernel

gen_tcp

Note:

Functions that create sockets can take an optional option; {inet_backend, Backend} that, if specified, has
to be the first option. This selects the implementation backend towards the platform's socket API.

This is a temporary option that will be ignored in a future release.

The default is Backend = inet that selects the traditional inet_drv.c driver. The other choice is
Backend = socket that selects the new socket module and its NIF implementation.

The system default can be changed when the node is started with the application kernel's configuration variable
inet_backend.

For gen_tcp with inet_backend = socket we have tried to be as "compatible" as possible which has
sometimes been impossible. Here is a list of cases when the behaviour of inet-backend inet (default) and socket
are different:

• Non-blocking send

If a user calling gen_tcp:send/2 with inet_backend = inet, tries to send more data than there is
room for in the OS buffers, the "rest data" is buffered by the inet driver (and later sent in the background). The
effect for the user is that the call is non-blocking.

This is not the effect when inet_backend = socket, since there is no buffering. Instead the user hangs
either until all data has been sent or the send_timeout timeout has been reached.

• Remote close detected by background send.

An background send will detect a 'remote close' and (the inet driver will) mark the socket as 'closed'. No other
action is taken. If the socket has active set to false (passive) at this point and no one is reading, this
will not be noticed. But as soon as the socket is "activated" (active set to not false, send/2 is called or
recv/2,3 is called), an error message will be sent to the caller or (socket) owner: {tcp_error, Socket,
econnreset}. Any data in the OS receive buffers will be lost!

This behaviour is not replicated by the socket implementation. A send operation will detect a remote close
and immediately return this to the caller, but do nothing else. A reader will therefore be able to extract any
data from the OS buffers. If the socket is set to active to not false, the data will be received as expected
({tcp, ...} and then a closed message ({tcp_closed, ...} will be received (not an error).

• The option show_econnreset basically do not work as described when used with inet_backend =
socket. The "issue" is that a remote close (as described above) do allow a reader to extract what is in the
read buffers before a close is "delivered".

• The option nodelay is a TCP specific option that is not compatible with domain = local.

When using inet_backend = socket, trying to create a socket (via listen or connect) with domain =
local (for example with option {ifaddr, {local,"/tmp/test"}}) will fail with {error, enotsup}.

This does not actually work for inet_backend = inet either, but in that case the error is simply ignored,
which is a bad idea. We have chosen to not ignore this error for inet_backend = socket.

• Async shutdown write

Calling gen_tcp:shutdown(Socket, write | read_write) on a socket created with inet_backend = socket
will take immediate effect, unlike for a socket created with inet_backend = inet.

See async shutdown write for more info.

Data Types
option() =
 {active, true | false | once | -32768..32767} |

Ericsson AB. All Rights Reserved.: Kernel | 191

gen_tcp

 {buffer, integer() >= 0} |
 {debug, boolean()} |
 {delay_send, boolean()} |
 {deliver, port | term} |
 {dontroute, boolean()} |
 {exit_on_close, boolean()} |
 {header, integer() >= 0} |
 {high_msgq_watermark, integer() >= 1} |
 {high_watermark, integer() >= 0} |
 {keepalive, boolean()} |
 {linger, {boolean(), integer() >= 0}} |
 {low_msgq_watermark, integer() >= 1} |
 {low_watermark, integer() >= 0} |
 {mode, list | binary} |
 list | binary |
 {nodelay, boolean()} |
 {packet,
 0 | 1 | 2 | 4 | raw | sunrm | asn1 | cdr | fcgi | line |
 tpkt | http | httph | http_bin | httph_bin} |
 {packet_size, integer() >= 0} |
 {priority, integer() >= 0} |
 {raw,
 Protocol :: integer() >= 0,
 OptionNum :: integer() >= 0,
 ValueBin :: binary()} |
 {recbuf, integer() >= 0} |
 {reuseaddr, boolean()} |
 {send_timeout, integer() >= 0 | infinity} |
 {send_timeout_close, boolean()} |
 {show_econnreset, boolean()} |
 {sndbuf, integer() >= 0} |
 {tos, integer() >= 0} |
 {tclass, integer() >= 0} |
 {ttl, integer() >= 0} |
 {recvtos, boolean()} |
 {recvtclass, boolean()} |
 {recvttl, boolean()} |
 {ipv6_v6only, boolean()}
pktoptions_value() = {pktoptions, inet:ancillary_data()}
If the platform implements the IPv4 option IP_PKTOPTIONS, or the IPv6 option IPV6_PKTOPTIONS or
IPV6_2292PKTOPTIONS for the socket this value is returned from inet:getopts/2 when called with the option
name pktoptions.

Note:

This option appears to be VERY Linux specific, and its existence in future Linux kernel versions is also worrying
since the option is part of RFC 2292 which is since long (2003) obsoleted by RFC 3542 that explicitly removes
this possibility to get packet information from a stream socket. For comparison: it has existed in FreeBSD but is
now removed, at least since FreeBSD 10.

option_name() =

192 | Ericsson AB. All Rights Reserved.: Kernel

gen_tcp

 active | buffer | debug | delay_send | deliver | dontroute |
 exit_on_close | header | high_msgq_watermark |
 high_watermark | keepalive | linger | low_msgq_watermark |
 low_watermark | mode | nodelay | packet | packet_size |
 priority |
 {raw,
 Protocol :: integer() >= 0,
 OptionNum :: integer() >= 0,
 ValueSpec ::
 (ValueSize :: integer() >= 0) | (ValueBin :: binary())} |
 recbuf | reuseaddr | send_timeout | send_timeout_close |
 show_econnreset | sndbuf | tos | tclass | ttl | recvtos |
 recvtclass | recvttl | pktoptions | ipv6_v6only
connect_option() =
 {fd, Fd :: integer() >= 0} |
 inet:address_family() |
 {ifaddr,
 socket:sockaddr_in() |
 socket:sockaddr_in6() |
 inet:socket_address()} |
 {ip, inet:socket_address()} |
 {port, inet:port_number()} |
 {tcp_module, module()} |
 {netns, file:filename_all()} |
 {bind_to_device, binary()} |
 option()
listen_option() =
 {fd, Fd :: integer() >= 0} |
 inet:address_family() |
 {ifaddr,
 socket:sockaddr_in() |
 socket:sockaddr_in6() |
 inet:socket_address()} |
 {ip, inet:socket_address()} |
 {port, inet:port_number()} |
 {backlog, B :: integer() >= 0} |
 {tcp_module, module()} |
 {netns, file:filename_all()} |
 {bind_to_device, binary()} |
 option()
socket()
As returned by accept/1,2 and connect/3,4.

Exports

accept(ListenSocket) -> {ok, Socket} | {error, Reason}
accept(ListenSocket, Timeout) -> {ok, Socket} | {error, Reason}
Types:

ListenSocket = socket()
Returned by listen/2.

Ericsson AB. All Rights Reserved.: Kernel | 193

gen_tcp

Timeout = timeout()
Socket = socket()
Reason = closed | timeout | system_limit | inet:posix()

Accepts an incoming connection request on a listening socket. Socket must be a socket returned from listen/2.
Timeout specifies a time-out value in milliseconds. Defaults to infinity.

Returns:

• {ok, Socket} if a connection is established

• {error, closed} if ListenSocket is closed

• {error, timeout} if no connection is established within the specified time

• {error, system_limit} if all available ports in the Erlang emulator are in use

• A POSIX error value if something else goes wrong, see inet(3) for possible error values

Packets can be sent to the returned socket Socket using send/2. Packets sent from the peer are delivered as
messages (unless {active, false} is specified in the option list for the listening socket, in which case packets
are retrieved by calling recv/2):

{tcp, Socket, Data}

Note:

The accept call does not have to be issued from the socket owner process. Using version 5.5.3 and higher of
the emulator, multiple simultaneous accept calls can be issued from different processes, which allows for a pool
of acceptor processes handling incoming connections.

close(Socket) -> ok
Types:

Socket = socket()
Closes a TCP socket.

Note that in most implementations of TCP, doing a close does not guarantee that any data sent is delivered to the
recipient before the close is detected at the remote side. If you want to guarantee delivery of the data to the recipient
there are two common ways to achieve this.

• Use gen_tcp:shutdown(Sock, write) to signal that no more data is to be sent and wait for the read
side of the socket to be closed.

• Use the socket option {packet, N} (or something similar) to make it possible for the receiver to close the
connection when it knowns it has received all the data.

connect(SockAddr, Opts) -> {ok, Socket} | {error, Reason}
connect(SockAddr, Opts, Timeout) -> {ok, Socket} | {error, Reason}
Types:

194 | Ericsson AB. All Rights Reserved.: Kernel

gen_tcp

SockAddr = socket:sockaddr_in() | socket:sockaddr_in6()
Opts = [inet:inet_backend() | connect_option()]
Timeout = timeout()
Socket = socket()
Reason = timeout | inet:posix()

Connects to a server according to SockAddr. This is primarily intended for link local IPv6 addresses
(which require the scope-id), socket:sockaddr_in6(). But for completeness, we also support IPv4,
socket:sockaddr_in().

The options available are the same as for connect/3,4.

Note:

Keep in mind that if the underlying OS connect() call returns a timeout, gen_tcp:connect will also return
a timeout (i.e. {error, etimedout}), even if a larger Timeout was specified.

Note:

The default values for options specified to connect can be affected by the Kernel configuration parameter
inet_default_connect_options. For details, see inet(3).

connect(Address, Port, Opts) -> {ok, Socket} | {error, Reason}
connect(Address, Port, Opts, Timeout) ->
 {ok, Socket} | {error, Reason}
Types:

Address = inet:socket_address() | inet:hostname()
Port = inet:port_number()
Opts = [inet:inet_backend() | connect_option()]
Timeout = timeout()
Socket = socket()
Reason = timeout | inet:posix()

Connects to a server on TCP port Port on the host with IP address Address. Argument Address can be a hostname
or an IP address.

The following options are available:

{ip, Address}

If the host has many network interfaces, this option specifies which one to use.

{ifaddr, Address}

Same as {ip, Address}. If the host has many network interfaces, this option specifies which one to use.

However, if this instead is an socket:sockaddr_in() or socket:sockaddr_in6() this takes
precedence over any value previously set with the ip and port options. If these options (ip or/and port)
however comes after this option, they may be used to update their corresponding fields of this options (for ip,
the addr field, and for port, the port field).

Ericsson AB. All Rights Reserved.: Kernel | 195

gen_tcp

{fd, integer() >= 0}

If a socket has somehow been connected without using gen_tcp, use this option to pass the file descriptor for
it. If {ip, Address} and/or {port, port_number()} is combined with this option, the fd is bound
to the specified interface and port before connecting. If these options are not specified, it is assumed that the fd
is already bound appropriately.

inet

Sets up the socket for IPv4.

inet6

Sets up the socket for IPv6.

local

Sets up a Unix Domain Socket. See inet:local_address()

{port, Port}

Specifies which local port number to use.

{tcp_module, module()}

Overrides which callback module is used. Defaults to inet_tcp for IPv4 and inet6_tcp for IPv6.

Opt

See inet:setopts/2.

Packets can be sent to the returned socket Socket using send/2. Packets sent from the peer are delivered as
messages:

{tcp, Socket, Data}

If the socket is in {active, N} mode (see inet:setopts/2 for details) and its message counter drops to 0, the
following message is delivered to indicate that the socket has transitioned to passive ({active, false}) mode:

{tcp_passive, Socket}

If the socket is closed, the following message is delivered:

{tcp_closed, Socket}

If an error occurs on the socket, the following message is delivered (unless {active, false} is specified in the
option list for the socket, in which case packets are retrieved by calling recv/2):

{tcp_error, Socket, Reason}

The optional Timeout parameter specifies a time-out in milliseconds. Defaults to infinity.

Note:

Keep in mind that if the underlying OS connect() call returns a timeout, gen_tcp:connect will also return
a timeout (i.e. {error, etimedout}), even if a larger Timeout was specified.

Note:

The default values for options specified to connect can be affected by the Kernel configuration parameter
inet_default_connect_options. For details, see inet(3).

196 | Ericsson AB. All Rights Reserved.: Kernel

gen_tcp

controlling_process(Socket, Pid) -> ok | {error, Reason}
Types:

Socket = socket()
Pid = pid()
Reason = closed | not_owner | badarg | inet:posix()

Assigns a new controlling process Pid to Socket. The controlling process is the process that receives messages from
the socket. If called by any other process than the current controlling process, {error, not_owner} is returned.
If the process identified by Pid is not an existing local pid, {error, badarg} is returned. {error, badarg}
may also be returned in some cases when Socket is closed during the execution of this function.

If the socket is set in active mode, this function will transfer any messages in the mailbox of the caller to the new
controlling process. If any other process is interacting with the socket while the transfer is happening, the transfer may
not work correctly and messages may remain in the caller's mailbox. For instance changing the sockets active mode
before the transfer is complete may cause this.

listen(Port, Options) -> {ok, ListenSocket} | {error, Reason}
Types:

Port = inet:port_number()
Options = [inet:inet_backend() | listen_option()]
ListenSocket = socket()
Reason = system_limit | inet:posix()

Sets up a socket to listen on port Port on the local host.

If Port == 0, the underlying OS assigns an available port number, use inet:port/1 to retrieve it.

The following options are available:

list

Received Packet is delivered as a list.

binary

Received Packet is delivered as a binary.

{backlog, B}

B is an integer >= 0. The backlog value defines the maximum length that the queue of pending connections can
grow to. Defaults to 5.

inet6

Sets up the socket for IPv6.

inet

Sets up the socket for IPv4.

{fd, Fd}

If a socket has somehow been connected without using gen_tcp, use this option to pass the file descriptor for it.

{ip, Address}

If the host has many network interfaces, this option specifies which one to listen on.

{port, Port}

Specifies which local port number to use.

Ericsson AB. All Rights Reserved.: Kernel | 197

gen_tcp

{ifaddr, Address}

Same as {ip, Address}. If the host has many network interfaces, this option specifies which one to use.

However, if this instead is an socket:sockaddr_in() or socket:sockaddr_in6() this takes
precedence over any value previously set with the ip and port options. If these options (ip or/and port)
however comes after this option, they may be used to update their corresponding fields of this options (for ip,
the addr field, and for port, the port field).

{tcp_module, module()}

Overrides which callback module is used. Defaults to inet_tcp for IPv4 and inet6_tcp for IPv6.

Opt

See inet:setopts/2.

The returned socket ListenSocket should be used in calls to accept/1,2 to accept incoming connection
requests.

Note:

The default values for options specified to listen can be affected by the Kernel configuration parameter
inet_default_listen_options. For details, see inet(3).

recv(Socket, Length) -> {ok, Packet} | {error, Reason}
recv(Socket, Length, Timeout) -> {ok, Packet} | {error, Reason}
Types:

Socket = socket()
Length = integer() >= 0
Timeout = timeout()
Packet = string() | binary() | HttpPacket
Reason = closed | timeout | inet:posix()
HttpPacket = term()
See the description of HttpPacket in erlang:decode_packet/3 in ERTS.

Receives a packet from a socket in passive mode. A closed socket is indicated by return value {error, closed}.

Argument Length is only meaningful when the socket is in raw mode and denotes the number of bytes to read.
If Length is 0, all available bytes are returned. If Length > 0, exactly Length bytes are returned, or an error;
possibly discarding less than Length bytes of data when the socket is closed from the other side.

The optional Timeout parameter specifies a time-out in milliseconds. Defaults to infinity.

send(Socket, Packet) -> ok | {error, Reason}
Types:

Socket = socket()
Packet = iodata()
Reason = closed | {timeout, RestData} | inet:posix()
RestData = binary()

Sends a packet on a socket.

There is no send call with a time-out option, use socket option send_timeout if time-outs are desired. See section
Examples.

198 | Ericsson AB. All Rights Reserved.: Kernel

gen_tcp

The return value {error, {timeout, RestData}} can only be returned when inet_backend = socket.

Note:

Non-blocking send.

If the user tries to send more data than there is room for in the OS send buffers, the 'rest data' is put into (inet driver)
internal buffers and later sent in the background. The function immediately returns ok (not informing the caller
that not all of the data was actually sent). Any issue while sending the 'rest data' is maybe returned later.

When using inet_backend = socket, the behaviour is different. There is no buffering done (like the inet-
driver does), instead the caller will "hang" until all of the data has been sent or send timeout (as specified by the
send_timeout option) expires (the function can hang even when using 'inet' backend if the internal buffers
are full).

If this happens when using packet =/= raw, we have a partial package written. A new package therefore
must not be written at this point, as there is no way for the peer to distinguish this from the data portion of the
current package. Instead, set package to raw, send the rest data (as raw data) and then set package to the wanted
package type again.

shutdown(Socket, How) -> ok | {error, Reason}
Types:

Socket = socket()
How = read | write | read_write
Reason = inet:posix()

Closes a socket in one or two directions.

How == write means closing the socket for writing, reading from it is still possible.

If How == read or there is no outgoing data buffered in the Socket port, the socket is shut down immediately
and any error encountered is returned in Reason.

If there is data buffered in the socket port, the attempt to shutdown the socket is postponed until that data is written to
the kernel socket send buffer. If any errors are encountered, the socket is closed and {error, closed} is returned
on the next recv/2 or send/2.

Option {exit_on_close, false} is useful if the peer has done a shutdown on the write side.

Note:

Async shutdown write (write or read_write).

If the shutdown attempt is made while the inet-driver is sending buffered data in the background, the shutdown is
postponed until all buffered data has been sent. The function immediately returns ok and the caller is not informed
(that the shutdown has not yet been performed).

When using inet_backend = socket, the behaviour is different. A shutdown with How == write |
read_write, the operation will take immediate effect (unlike the inet-driver, which basically saves the operation
for later).

Examples
The following example illustrates use of option {active,once} and multiple accepts by implementing a server
as a number of worker processes doing accept on a single listening socket. Function start/2 takes the number of

Ericsson AB. All Rights Reserved.: Kernel | 199

gen_tcp

worker processes and the port number on which to listen for incoming connections. If LPort is specified as 0, an
ephemeral port number is used, which is why the start function returns the actual port number allocated:

start(Num,LPort) ->
 case gen_tcp:listen(LPort,[{active, false},{packet,2}]) of
 {ok, ListenSock} ->
 start_servers(Num,ListenSock),
 {ok, Port} = inet:port(ListenSock),
 Port;
 {error,Reason} ->
 {error,Reason}
 end.

start_servers(0,_) ->
 ok;
start_servers(Num,LS) ->
 spawn(?MODULE,server,[LS]),
 start_servers(Num-1,LS).

server(LS) ->
 case gen_tcp:accept(LS) of
 {ok,S} ->
 loop(S),
 server(LS);
 Other ->
 io:format("accept returned ~w - goodbye!~n",[Other]),
 ok
 end.

loop(S) ->
 inet:setopts(S,[{active,once}]),
 receive
 {tcp,S,Data} ->
 Answer = process(Data), % Not implemented in this example
 gen_tcp:send(S,Answer),
 loop(S);
 {tcp_closed,S} ->
 io:format("Socket ~w closed [~w]~n",[S,self()]),
 ok
 end.

Example of a simple client:

client(PortNo,Message) ->
 {ok,Sock} = gen_tcp:connect("localhost",PortNo,[{active,false},
 {packet,2}]),
 gen_tcp:send(Sock,Message),
 A = gen_tcp:recv(Sock,0),
 gen_tcp:close(Sock),
 A.

The send call does not accept a time-out option because time-outs on send is handled through socket option
send_timeout. The behavior of a send operation with no receiver is mainly defined by the underlying TCP stack
and the network infrastructure. To write code that handles a hanging receiver that can eventually cause the sender to
hang on a send do like the following.

Consider a process that receives data from a client process to be forwarded to a server on the network. The process
is connected to the server through TCP/IP and does not get any acknowledge for each message it sends, but has to
rely on the send time-out option to detect that the other end is unresponsive. Option send_timeout can be used
when connecting:

200 | Ericsson AB. All Rights Reserved.: Kernel

gen_tcp

...
{ok,Sock} = gen_tcp:connect(HostAddress, Port,
 [{active,false},
 {send_timeout, 5000},
 {packet,2}]),
 loop(Sock), % See below
...

In the loop where requests are handled, send time-outs can now be detected:

loop(Sock) ->
 receive
 {Client, send_data, Binary} ->
 case gen_tcp:send(Sock,[Binary]) of
 {error, timeout} ->
 io:format("Send timeout, closing!~n",
 []),
 handle_send_timeout(), % Not implemented here
 Client ! {self(),{error_sending, timeout}},
 %% Usually, it's a good idea to give up in case of a
 %% send timeout, as you never know how much actually
 %% reached the server, maybe only a packet header?!
 gen_tcp:close(Sock);
 {error, OtherSendError} ->
 io:format("Some other error on socket (~p), closing",
 [OtherSendError]),
 Client ! {self(),{error_sending, OtherSendError}},
 gen_tcp:close(Sock);
 ok ->
 Client ! {self(), data_sent},
 loop(Sock)
 end
 end.

Usually it suffices to detect time-outs on receive, as most protocols include some sort of acknowledgment from the
server, but if the protocol is strictly one way, option send_timeout comes in handy.

Ericsson AB. All Rights Reserved.: Kernel | 201

gen_udp

gen_udp
Erlang module

This module provides functions for communicating with sockets using the UDP protocol.

Note:

Functions that create sockets can take an optional option; {inet_backend, Backend} that, if specified, has
to be the first option. This selects the implementation backend towards the platform's socket API.

This is a temporary option that will be ignored in a future release.

The default is Backend = inet that selects the traditional inet_drv.c driver. The other choice is
Backend = socket that selects the new socket module and its NIF implementation.

The system default can be changed when the node is started with the application kernel's configuration variable
inet_backend.

For gen_udp with inet_backend = socket we have tried to be as "compatible" as possible which has
sometimes been impossible. Here is a list of cases when the behaviour of inet-backend inet (default) and socket
are different:

• The option read_packets is currently ignored.

Data Types
option() =
 {active, true | false | once | -32768..32767} |
 {add_membership, membership()} |
 {broadcast, boolean()} |
 {buffer, integer() >= 0} |
 {debug, boolean()} |
 {deliver, port | term} |
 {dontroute, boolean()} |
 {drop_membership, membership()} |
 {header, integer() >= 0} |
 {high_msgq_watermark, integer() >= 1} |
 {low_msgq_watermark, integer() >= 1} |
 {mode, list | binary} |
 list | binary |
 {multicast_if, multicast_if()} |
 {multicast_loop, boolean()} |
 {multicast_ttl, integer() >= 0} |
 {priority, integer() >= 0} |
 {raw,
 Protocol :: integer() >= 0,
 OptionNum :: integer() >= 0,
 ValueBin :: binary()} |
 {read_packets, integer() >= 0} |
 {recbuf, integer() >= 0} |
 {reuseaddr, boolean()} |
 {sndbuf, integer() >= 0} |
 {tos, integer() >= 0} |

202 | Ericsson AB. All Rights Reserved.: Kernel

gen_udp

 {tclass, integer() >= 0} |
 {ttl, integer() >= 0} |
 {recvtos, boolean()} |
 {recvtclass, boolean()} |
 {recvttl, boolean()} |
 {ipv6_v6only, boolean()}
option_name() =
 active | broadcast | buffer | debug | deliver | dontroute |
 header | high_msgq_watermark | low_msgq_watermark | mode |
 multicast_if | multicast_loop | multicast_ttl | priority |
 {raw,
 Protocol :: integer() >= 0,
 OptionNum :: integer() >= 0,
 ValueSpec ::
 (ValueSize :: integer() >= 0) | (ValueBin :: binary())} |
 read_packets | recbuf | reuseaddr | sndbuf | tos | tclass |
 ttl | recvtos | recvtclass | recvttl | pktoptions |
 ipv6_v6only
open_option() =
 {ip, inet:socket_address()} |
 {fd, integer() >= 0} |
 {ifaddr,
 socket:sockaddr_in() |
 socket:sockaddr_in6() |
 inet:socket_address()} |
 inet:address_family() |
 {port, inet:port_number()} |
 {netns, file:filename_all()} |
 {bind_to_device, binary()} |
 option()
socket()
As returned by open/1,2.

multicast_if() = ip_multicast_if() | ip6_multicast_if()
ip_multicast_if() = inet:ip4_address()
ip6_multicast_if() = integer()
For IPv6 this is an interface index (an integer).

membership() = ip_membership() | ip6_membership()
ip_membership() =
 {MultiAddress :: inet:ip4_address(),
 Interface :: inet:ip4_address()} |
 {MultiAddress :: inet:ip4_address(),
 Address :: inet:ip4_address(),
 IfIndex :: integer()}
The tuple with size 3 is *not* supported on all platforms. 'ifindex' defaults to zero (0) on platforms that supports the
3-tuple variant.

ip6_membership() =

Ericsson AB. All Rights Reserved.: Kernel | 203

gen_udp

 {MultiAddress :: inet:ip6_address(), IfIndex :: integer()}

Exports

close(Socket) -> ok
Types:

Socket = socket()
Closes a UDP socket.

controlling_process(Socket, Pid) -> ok | {error, Reason}
Types:

Socket = socket()
Pid = pid()
Reason = closed | not_owner | badarg | inet:posix()

Assigns a new controlling process Pid to Socket. The controlling process is the process that receives messages from
the socket. If called by any other process than the current controlling process, {error, not_owner} is returned.
If the process identified by Pid is not an existing local pid, {error, badarg} is returned. {error, badarg}
may also be returned in some cases when Socket is closed during the execution of this function.

connect(Socket, SockAddr) -> ok | {error, Reason}
Types:

Socket = socket()
SockAddr = socket:sockaddr_in() | socket:sockaddr_in6()
Reason = inet:posix()

Connecting a UDP socket only means storing the specified (destination) socket address, as specified by SockAddr,
so that the system knows where to send data.

This means that it is not necessary to specify the destination address when sending a datagram. That is, we can use
send/2.

It also means that the socket will only received data from this address.

connect(Socket, Address, Port) -> ok | {error, Reason}
Types:

Socket = socket()
Address = inet:socket_address() | inet:hostname()
Port = inet:port_number()
Reason = inet:posix()

Connecting a UDP socket only means storing the specified (destination) socket address, as specified by Address
and Port, so that the system knows where to send data.

This means that it is not necessary to specify the destination address when sending a datagram. That is, we can use
send/2.

It also means that the socket will only received data from this address.

204 | Ericsson AB. All Rights Reserved.: Kernel

gen_udp

open(Port) -> {ok, Socket} | {error, Reason}
open(Port, Opts) -> {ok, Socket} | {error, Reason}
Types:

Port = inet:port_number()
Opts = [inet:inet_backend() | open_option()]
Socket = socket()
Reason = system_limit | inet:posix()

Associates a UDP port number (Port) with the calling process.

The following options are available:

list

Received Packet is delivered as a list.

binary

Received Packet is delivered as a binary.

{ip, Address}

If the host has many network interfaces, this option specifies which one to use.

{ifaddr, Address}

Same as {ip, Address}. If the host has many network interfaces, this option specifies which one to use.

However, if this instead is an socket:sockaddr_in() or socket:sockaddr_in6() this takes
precedence over any value previously set with the ip options. If the ip option comes after the ifaddr option,
it may be used to update its corresponding field of the ifaddr option (the addr field).

{fd, integer() >= 0}

If a socket has somehow been opened without using gen_udp, use this option to pass the file descriptor for it.
If Port is not set to 0 and/or {ip, ip_address()} is combined with this option, the fd is bound to the
specified interface and port after it is being opened. If these options are not specified, it is assumed that the fd
is already bound appropriately.

inet6

Sets up the socket for IPv6.

inet

Sets up the socket for IPv4.

local

Sets up a Unix Domain Socket. See inet:local_address()

{udp_module, module()}

Overrides which callback module is used. Defaults to inet_udp for IPv4 and inet6_udp for IPv6.

{multicast_if, Address}

Sets the local device for a multicast socket.

{multicast_loop, true | false}

When true, sent multicast packets are looped back to the local sockets.

Ericsson AB. All Rights Reserved.: Kernel | 205

gen_udp

{multicast_ttl, Integer}

Option multicast_ttl changes the time-to-live (TTL) for outgoing multicast datagrams to control the scope
of the multicasts.

Datagrams with a TTL of 1 are not forwarded beyond the local network. Defaults to 1.

{add_membership, {MultiAddress, InterfaceAddress}}

Joins a multicast group.

{drop_membership, {MultiAddress, InterfaceAddress}}

Leaves a multicast group.

Opt

See inet:setopts/2.

The returned socket Socket is used to send packets from this port with send/4. When UDP packets arrive at the
opened port, if the socket is in an active mode, the packets are delivered as messages to the controlling process:

{udp, Socket, IP, InPortNo, Packet} % Without ancillary data
{udp, Socket, IP, InPortNo, AncData, Packet} % With ancillary data

The message contains an AncData field if any of the socket options recvtos, recvtclass or recvttl are
active, otherwise it does not.

If the socket is not in an active mode, data can be retrieved through the recv/2,3 calls. Notice that arriving UDP
packets that are longer than the receive buffer option specifies can be truncated without warning.

When a socket in {active, N} mode (see inet:setopts/2 for details), transitions to passive ({active,
false}) mode, the controlling process is notified by a message of the following form:

{udp_passive, Socket}

IP and InPortNo define the address from which Packet comes. Packet is a list of bytes if option list is
specified. Packet is a binary if option binary is specified.

Default value for the receive buffer option is {recbuf, 8192}.

If Port == 0, the underlying OS assigns a free UDP port, use inet:port/1 to retrieve it.

recv(Socket, Length) -> {ok, RecvData} | {error, Reason}
recv(Socket, Length, Timeout) -> {ok, RecvData} | {error, Reason}
Types:

Socket = socket()
Length = integer() >= 0
Timeout = timeout()
RecvData =
 {Address, Port, Packet} | {Address, Port, AncData, Packet}
Address = inet:ip_address() | inet:returned_non_ip_address()
Port = inet:port_number()
AncData = inet:ancillary_data()
Packet = string() | binary()
Reason = not_owner | timeout | inet:posix()

Receives a packet from a socket in passive mode. Optional parameter Timeout specifies a time-out in milliseconds.
Defaults to infinity.

206 | Ericsson AB. All Rights Reserved.: Kernel

gen_udp

If any of the socket options recvtos, recvtclass or recvttl are active, the RecvData tuple contains an
AncData field, otherwise it does not.

send(Socket, Packet) -> ok | {error, Reason}
Types:

Socket = socket()
Packet = iodata()
Reason = not_owner | inet:posix()

Sends a packet on a connected socket (see connect/2 and connect/3).

send(Socket, Destination, Packet) -> ok | {error, Reason}
Types:

Socket = socket()
Destination =
 {inet:ip_address(), inet:port_number()} |
 inet:family_address() |
 socket:sockaddr_in() |
 socket:sockaddr_in6()
Packet = iodata()
Reason = not_owner | inet:posix()

Sends a packet to the specified Destination.

This function is equivalent to send(Socket, Destination, [], Packet).

send(Socket, Host, Port, Packet) -> ok | {error, Reason}
Types:

Socket = socket()
Host = inet:hostname() | inet:ip_address()
Port = inet:port_number() | atom()
Packet = iodata()
Reason = not_owner | inet:posix()

Sends a packet to the specified Host and Port.

This clause is equivalent to send(Socket, Host, Port, [], Packet).

send(Socket, Destination, AncData, Packet) -> ok | {error, Reason}
Types:

Ericsson AB. All Rights Reserved.: Kernel | 207

gen_udp

Socket = socket()
Destination =
 {inet:ip_address(), inet:port_number()} |
 inet:family_address() |
 socket:sockaddr_in() |
 socket:sockaddr_in6()
AncData = inet:ancillary_data()
Packet = iodata()
Reason = not_owner | inet:posix()

Sends a packet to the specified Destination with ancillary data AncData.

Note:

The ancillary data AncData contains options that for this single message override the default options for the
socket, an operation that may not be supported on all platforms, and if so return {error, einval}. Using more
than one of an ancillary data item type may also not be supported. AncData =:= [] is always supported.

send(Socket, Destination, PortZero, Packet) ->
 ok | {error, Reason}
Types:

Socket = socket()
Destination =
 {inet:ip_address(), inet:port_number()} |
 inet:family_address()
PortZero = inet:port_number()
Packet = iodata()
Reason = not_owner | inet:posix()

Sends a packet to the specified Destination. Since Destination is complete, PortZero is redundant and
has to be 0.

This is a legacy clause mostly for Destination = {local, Binary} where PortZero is superfluous. It is
equivalent to send(Socket, Destination, [], Packet), the clause right above here.

send(Socket, Host, Port, AncData, Packet) -> ok | {error, Reason}
Types:

Socket = socket()
Host =
 inet:hostname() | inet:ip_address() | inet:local_address()
Port = inet:port_number() | atom()
AncData = inet:ancillary_data()
Packet = iodata()
Reason = not_owner | inet:posix()

Sends a packet to the specified Host and Port, with ancillary data AncData.

Argument Host can be a hostname or a socket address, and Port can be a port number or a service name atom. These
are resolved into a Destination and after that this function is equivalent to send(Socket, Destination,
AncData, Packet), read there about ancillary data.

208 | Ericsson AB. All Rights Reserved.: Kernel

global

global
Erlang module

This module consists of the following services:

• Registration of global names

• Global locks

• Maintenance of the fully connected network

As of OTP 25, global will by default prevent overlapping partitions due to network issues by actively disconnecting
from nodes that reports that they have lost connections to other nodes. This will cause fully connected partitions to
form instead of leaving the network in a state with overlapping partitions.

Warning:

Prevention of overlapping partitions can be disabled using the prevent_overlapping_partitions
kernel(6) parameter, making global behave like it used to do. This is, however, problematic for all
applications expecting a fully connected network to be provided, such as for example mnesia, but also for
global itself. A network of overlapping partitions might cause the internal state of global to become
inconsistent. Such an inconsistency can remain even after such partitions have been brought together to form a fully
connected network again. The effect on other applications that expects that a fully connected network is maintained
may vary, but they might misbehave in very subtle hard to detect ways during such a partitioning. Since you might
get hard to detect issues without this fix, you are strongly advised not to disable this fix. Also note that this fix has
to be enabled on all nodes in the network in order to work properly.

Note:

None of the above services will be reliably delivered unless both of the kernel parameters connect_all and
prevent_overlapping_partitions are enabled. Calls to the global API will, however, not fail even
though one or both of them are disabled. You will just get unreliable results.

These services are controlled through the process global_name_server that exists on every node. The global
name server starts automatically when a node is started. With the term global is meant over a system consisting of
many Erlang nodes.

The ability to globally register names is a central concept in the programming of distributed Erlang systems. In this
module, the equivalent of the register/2 and whereis/1 BIFs (for local name registration) are provided, but
for a network of Erlang nodes. A registered name is an alias for a process identifier (pid). The global name server
monitors globally registered pids. If a process terminates, the name is also globally unregistered.

The registered names are stored in replica global name tables on every node. There is no central storage point. Thus,
the translation of a name to a pid is fast, as it is always done locally. For any action resulting in a change to the global
name table, all tables on other nodes are automatically updated.

Global locks have lock identities and are set on a specific resource. For example, the specified resource can be a pid.
When a global lock is set, access to the locked resource is denied for all resources other than the lock requester.

Both the registration and lock services are atomic. All nodes involved in these actions have the same view of the
information.

The global name server also performs the critical task of continuously monitoring changes in node configuration. If
a node that runs a globally registered process goes down, the name is globally unregistered. To this end, the global
name server subscribes to nodeup and nodedown messages sent from module net_kernel. Relevant Kernel

Ericsson AB. All Rights Reserved.: Kernel | 209

global

application variables in this context are net_setuptime, net_ticktime, and dist_auto_connect. See
also kernel(6).

The name server also maintains a fully connected network. For example, if node N1 connects to node N2 (which is
already connected to N3), the global name servers on the nodes N1 and N3 ensure that also N1 and N3 are connected.
In this case, the name registration service cannot be used, but the lock mechanism still works.

If the global name server fails to connect nodes (N1 and N3 in the example), a warning event is sent to the error
logger. The presence of such an event does not exclude the nodes to connect later (you can, for example, try command
rpc:call(N1, net_adm, ping, [N2]) in the Erlang shell), but it indicates a network problem.

Note:

If the fully connected network is not set up properly, try first to increase the value of net_setuptime.

Data Types
id() = {ResourceId :: term(), LockRequesterId :: term()}

Exports

del_lock(Id) -> true
del_lock(Id, Nodes) -> true
Types:

Id = id()
Nodes = [node()]

Deletes the lock Id synchronously.

disconnect() -> [node()]
Disconnect from all other nodes known to global. A list of node names (in an unspecified order) is returned
which corresponds to the nodes that were disconnected. All disconnect operations performed have completed when
global:disconnect/0 returns.

The disconnects will be made in such a way that only the current node will be removed from the cluster of global
nodes. If prevent_overlapping_partitions is enabled and you disconnect, from other nodes in the cluster
of global nodes, by other means, global on the other nodes may partition the remaining nodes in order to ensure
that no overlapping partitions appear. Even if prevent_overlapping_partitions is disabled, you should
preferably use global:disconnect/0 in order to remove current node from a cluster of global nodes, since
you otherwise likely will create overlapping partitions which might cause problems.

Note that if the node is going to be halted, there is no need to remove it from a cluster of global nodes explicitly
by calling global:disconnect/0 before halting it. The removal from the cluster is taken care of automatically
when the node halts regardless of whether prevent_overlapping_partitions is enabled or not.

If current node has been configured to be part of a global group, only connected and/or synchronized nodes in that
group are known to global, so global:disconnect/0 will only disconnect from those nodes. If current node
is not part of a global group, all connected visible nodes will be known to global, so global:disconnect/0
will disconnect from all those nodes.

Note that information about connected nodes does not instantaneously reach global, so the caller might see a
node part of the result returned by nodes() while it still is not known to global. The disconnect operation will,
however, still not cause any overlapping partitions when prevent_overlapping_partitions is enabled. If
prevent_overlapping_partitions is disabled, overlapping partitions might form in this case.

210 | Ericsson AB. All Rights Reserved.: Kernel

global

Note that when prevent_overlapping_partitions is enabled, you may see warning reports on other nodes
when they detect that current node has disconnected. These are in this case completely harmless and can be ignored.

notify_all_name(Name, Pid1, Pid2) -> none
Types:

Name = term()
Pid1 = Pid2 = pid()

Can be used as a name resolving function for register_name/3 and re_register_name/3.

The function unregisters both pids and sends the message {global_name_conflict, Name, OtherPid}
to both processes.

random_exit_name(Name, Pid1, Pid2) -> pid()
Types:

Name = term()
Pid1 = Pid2 = pid()

Can be used as a name resolving function for register_name/3 and re_register_name/3.

The function randomly selects one of the pids for registration and kills the other one.

random_notify_name(Name, Pid1, Pid2) -> pid()
Types:

Name = term()
Pid1 = Pid2 = pid()

Can be used as a name resolving function for register_name/3 and re_register_name/3.

The function randomly selects one of the pids for registration, and sends the message {global_name_conflict,
Name} to the other pid.

re_register_name(Name, Pid) -> yes
re_register_name(Name, Pid, Resolve) -> yes
Types:

Name = term()
Pid = pid()
Resolve = method()
method() =
 fun((Name :: term(), Pid :: pid(), Pid2 :: pid()) ->
 pid() | none)
{Module, Function} is also allowed.

Atomically changes the registered name Name on all nodes to refer to Pid.

Function Resolve has the same behavior as in register_name/2,3.

register_name(Name, Pid) -> yes | no
register_name(Name, Pid, Resolve) -> yes | no
Types:

Ericsson AB. All Rights Reserved.: Kernel | 211

global

Name = term()
Pid = pid()
Resolve = method()
method() =
 fun((Name :: term(), Pid :: pid(), Pid2 :: pid()) ->
 pid() | none)
{Module, Function} is also allowed for backward compatibility, but its use is deprecated.

Globally associates name Name with a pid, that is, globally notifies all nodes of a new global name in a network of
Erlang nodes.

When new nodes are added to the network, they are informed of the globally registered names that already exist. The
network is also informed of any global names in newly connected nodes. If any name clashes are discovered, function
Resolve is called. Its purpose is to decide which pid is correct. If the function crashes, or returns anything other than
one of the pids, the name is unregistered. This function is called once for each name clash.

Warning:

If you plan to change code without restarting your system, you must use an external fun (fun
Module:Function/Arity) as function Resolve. If you use a local fun, you can never replace the code for
the module that the fun belongs to.

Three predefined resolve functions exist: random_exit_name/3, random_notify_name/3, and
notify_all_name/3. If no Resolve function is defined, random_exit_name is used. This means that one
of the two registered processes is selected as correct while the other is killed.

This function is completely synchronous, that is, when this function returns, the name is either registered on all nodes
or none.

The function returns yes if successful, no if it fails. For example, no is returned if an attempt is made to register an
already registered process or to register a process with a name that is already in use.

Note:

Releases up to and including Erlang/OTP R10 did not check if the process was already registered. The global name
table could therefore become inconsistent. The old (buggy) behavior can be chosen by giving the Kernel application
variable global_multi_name_action the value allow.

If a process with a registered name dies, or the node goes down, the name is unregistered on all nodes.

registered_names() -> [Name]
Types:

Name = term()
Returns a list of all globally registered names.

send(Name, Msg) -> Pid
Types:

Name = Msg = term()
Pid = pid()

Sends message Msg to the pid globally registered as Name.

If Name is not a globally registered name, the calling function exits with reason {badarg, {Name, Msg}}.

212 | Ericsson AB. All Rights Reserved.: Kernel

global

set_lock(Id) -> boolean()
set_lock(Id, Nodes) -> boolean()
set_lock(Id, Nodes, Retries) -> boolean()
Types:

Id = id()
Nodes = [node()]
Retries = retries()
id() = {ResourceId :: term(), LockRequesterId :: term()}
retries() = integer() >= 0 | infinity

Sets a lock on the specified nodes (or on all nodes if none are specified) on ResourceId for LockRequesterId.
If a lock already exists on ResourceId for another requester than LockRequesterId, and Retries is not equal
to 0, the process sleeps for a while and tries to execute the action later. When Retries attempts have been made,
false is returned, otherwise true. If Retries is infinity, true is eventually returned (unless the lock is
never released).

If no value for Retries is specified, infinity is used.

This function is completely synchronous.

If a process that holds a lock dies, or the node goes down, the locks held by the process are deleted.

The global name server keeps track of all processes sharing the same lock, that is, if two processes set the same lock,
both processes must delete the lock.

This function does not address the problem of a deadlock. A deadlock can never occur as long as processes only lock
one resource at a time. A deadlock can occur if some processes try to lock two or more resources. It is up to the
application to detect and rectify a deadlock.

Note:

Avoid the following values of ResourceId, otherwise Erlang/OTP does not work properly:

• dist_ac

• global

• mnesia_adjust_log_writes

• mnesia_table_lock

sync() -> ok | {error, Reason :: term()}
Synchronizes the global name server with all nodes known to this node. These are the nodes that are returned from
erlang:nodes(). When this function returns, the global name server receives global information from all nodes.
This function can be called when new nodes are added to the network.

The only possible error reason Reason is {"global_groups definition error", Error}.

trans(Id, Fun) -> Res | aborted
trans(Id, Fun, Nodes) -> Res | aborted
trans(Id, Fun, Nodes, Retries) -> Res | aborted
Types:

Ericsson AB. All Rights Reserved.: Kernel | 213

global

Id = id()
Fun = trans_fun()
Nodes = [node()]
Retries = retries()
Res = term()
retries() = integer() >= 0 | infinity
trans_fun() = function() | {module(), atom()}

Sets a lock on Id (using set_lock/3). If this succeeds, Fun() is evaluated and the result Res is returned. Returns
aborted if the lock attempt fails. If Retries is set to infinity, the transaction does not abort.

infinity is the default setting and is used if no value is specified for Retries.

unregister_name(Name) -> term()
Types:

Name = term()
Removes the globally registered name Name from the network of Erlang nodes.

whereis_name(Name) -> pid() | undefined
Types:

Name = term()
Returns the pid with the globally registered name Name. Returns undefined if the name is not globally registered.

See Also
global_group(3), net_kernel(3)

214 | Ericsson AB. All Rights Reserved.: Kernel

global_group

global_group
Erlang module

This module makes it possible to partition the nodes of a system into global groups. Each global group has its own
global namespace, see global(3).

The main advantage of dividing systems into global groups is that the background load decreases while the number
of nodes to be updated is reduced when manipulating globally registered names.

The Kernel configuration parameter global_groups defines the global groups (see also kernel(6) and
config(4)):

{global_groups, [GroupTuple :: group_tuple()]}

For the processes and nodes to run smoothly using the global group functionality, the following criteria must be met:

• An instance of the global group server, global_group, must be running on each node. The processes are
automatically started and synchronized when a node is started.

• All involved nodes must agree on the global group definition, otherwise the behavior of the system is undefined.

• All nodes in the system must belong to exactly one global group.

In the following descriptions, a group node is a node belonging to the same global group as the local node.

Data Types
group_tuple() =
 {GroupName :: group_name(), [node()]} |
 {GroupName :: group_name(),
 PublishType :: publish_type(),
 [node()]}
A GroupTuple without PublishType is the same as a GroupTuple with PublishType equal to normal.

group_name() = atom()
publish_type() = hidden | normal
A node started with command-line flag -hidden (see erl(1)) is said to be a hidden node. A hidden node establishes
hidden connections to nodes not part of the same global group, but normal (visible) connections to nodes part of the
same global group.

A global group defined with PublishType equal to hidden is said to be a hidden global group. All nodes in a
hidden global group are hidden nodes, whether they are started with command-line flag -hidden or not.

name() = atom()
A registered name.

where() = {node, node()} | {group, group_name()}

Exports

global_groups() -> {GroupName, GroupNames} | undefined
Types:

Ericsson AB. All Rights Reserved.: Kernel | 215

global_group

GroupName = group_name()
GroupNames = [GroupName]

Returns a tuple containing the name of the global group that the local node belongs to, and the list of all other known
group names. Returns undefined if no global groups are defined.

info() -> [info_item()]
Types:

info_item() =
 {state, State :: sync_state()} |
 {own_group_name, GroupName :: group_name()} |
 {own_group_nodes, Nodes :: [node()]} |
 {synched_nodes, Nodes :: [node()]} |
 {sync_error, Nodes :: [node()]} |
 {no_contact, Nodes :: [node()]} |
 {other_groups, Groups :: [group_tuple()]} |
 {monitoring, Pids :: [pid()]}
sync_state() = no_conf | synced

Returns a list containing information about the global groups. Each list element is a tuple. The order of the tuples
is undefined.

{state, State}

If the local node is part of a global group, State is equal to synced. If no global groups are defined, State
is equal to no_conf.

{own_group_name, GroupName}

The name (atom) of the group that the local node belongs to.

{own_group_nodes, Nodes}

A list of node names (atoms), the group nodes.

{synced_nodes, Nodes}

A list of node names, the group nodes currently synchronized with the local node.

{sync_error, Nodes}

A list of node names, the group nodes with which the local node has failed to synchronize.

{no_contact, Nodes}

A list of node names, the group nodes to which there are currently no connections.

{other_groups, Groups}

Groups is a list of tuples {GroupName, Nodes}, specifying the name and nodes of the other global groups.

{monitoring, Pids}

A list of pids, specifying the processes that have subscribed to nodeup and nodedown messages.

monitor_nodes(Flag) -> ok
Types:

Flag = boolean()
Depending on Flag, the calling process starts subscribing (Flag equal to true) or stops subscribing (Flag equal
to false) to node status change messages.

216 | Ericsson AB. All Rights Reserved.: Kernel

global_group

A process that has subscribed receives the messages {nodeup, Node} and {nodedown, Node} when a group
node connects or disconnects, respectively.

own_nodes() -> Nodes
Types:

Nodes = [Node :: node()]
Returns the names of all group nodes, regardless of their current status.

registered_names(Where) -> Names
Types:

Where = where()
Names = [Name :: name()]

Returns a list of all names that are globally registered on the specified node or in the specified global group.

send(Name, Msg) -> pid() | {badarg, {Name, Msg}}
send(Where, Name, Msg) -> pid() | {badarg, {Name, Msg}}
Types:

Where = where()
Name = name()
Msg = term()

Searches for Name, globally registered on the specified node or in the specified global group, or (if argument Where
is not provided) in any global group. The global groups are searched in the order that they appear in the value of
configuration parameter global_groups.

If Name is found, message Msg is sent to the corresponding pid. The pid is also the return value of the function. If the
name is not found, the function returns {badarg, {Name, Msg}}.

sync() -> ok
Synchronizes the group nodes, that is, the global name servers on the group nodes. Also checks the names globally
registered in the current global group and unregisters them on any known node not part of the group.

If synchronization is not possible, an error report is sent to the error logger (see also error_logger(3).

Returns {error, {'invalid global_groups definition', Bad}} if configuration parameter
global_groups has an invalid value Bad.

whereis_name(Name) -> pid() | undefined
whereis_name(Where, Name) -> pid() | undefined
Types:

Where = where()
Name = name()

Searches for Name, globally registered on the specified node or in the specified global group, or (if argument Where
is not provided) in any global group. The global groups are searched in the order that they appear in the value of
configuration parameter global_groups.

If Name is found, the corresponding pid is returned. If the name is not found, the function returns undefined.

Ericsson AB. All Rights Reserved.: Kernel | 217

global_group

Notes
• In the situation where a node has lost its connections to other nodes in its global group, but has connections to

nodes in other global groups, a request from another global group can produce an incorrect or misleading result.
For example, the isolated node can have inaccurate information about registered names in its global group.

• Function send/2,3 is not secure.

• Distribution of applications is highly dependent of the global group definitions. It is not recommended that an
application is distributed over many global groups, as the registered names can be moved to another global group
at failover/takeover. Nothing prevents this to be done, but the application code must then handle the situation.

See Also
global(3), erl(1)

218 | Ericsson AB. All Rights Reserved.: Kernel

heart

heart
Erlang module

This modules contains the interface to the heart process. heart sends periodic heartbeats to an external port
program, which is also named heart. The purpose of the heart port program is to check that the Erlang
runtime system it is supervising is still running. If the port program has not received any heartbeats within
HEART_BEAT_TIMEOUT seconds (defaults to 60 seconds), the system can be rebooted.

An Erlang runtime system to be monitored by a heart program is to be started with command-line flag -heart (see
also erl(1)). The heart process is then started automatically:

% erl -heart ...

If the system is to be rebooted because of missing heartbeats, or a terminated Erlang runtime system, environment
variable HEART_COMMAND must be set before the system is started. If this variable is not set, a warning text is printed
but the system does not reboot.

To reboot on Windows, HEART_COMMAND can be set to heart -shutdown (included in the Erlang delivery) or
to any other suitable program that can activate a reboot.

The environment variable HEART_BEAT_TIMEOUT can be used to configure the heart time-outs; it can be set in the
operating system shell before Erlang is started or be specified at the command line:

% erl -heart -env HEART_BEAT_TIMEOUT 30 ...

The value (in seconds) must be in the range 10 < X <= 65535.

When running on OSs lacking support for monotonic time, heart is susceptible to system clock adjustments of more
than HEART_BEAT_TIMEOUT seconds. When this happens, heart times out and tries to reboot the system. This
can occur, for example, if the system clock is adjusted automatically by use of the Network Time Protocol (NTP).

If a crash occurs, an erl_crash.dump is not written unless environment variable ERL_CRASH_DUMP_SECONDS
is set:

% erl -heart -env ERL_CRASH_DUMP_SECONDS 10 ...

If a regular core dump is wanted, let heart know by setting the kill signal to abort using environment variable
HEART_KILL_SIGNAL=SIGABRT. If unset, or not set to SIGABRT, the default behavior is a kill signal using
SIGKILL:

% erl -heart -env HEART_KILL_SIGNAL SIGABRT ...

If heart should not kill the Erlang runtime system, this can be indicated using the environment variable
HEART_NO_KILL=TRUE. This can be useful if the command executed by heart takes care of this, for example as part
of a specific cleanup sequence. If unset, or not set to TRUE, the default behaviour will be to kill as described above.

% erl -heart -env HEART_NO_KILL 1 ...

Furthermore, ERL_CRASH_DUMP_SECONDS has the following behavior on heart:

Ericsson AB. All Rights Reserved.: Kernel | 219

heart

ERL_CRASH_DUMP_SECONDS=0

Suppresses the writing of a crash dump file entirely, thus rebooting the runtime system immediately. This is the
same as not setting the environment variable.

ERL_CRASH_DUMP_SECONDS=-1

Setting the environment variable to a negative value does not reboot the runtime system until the crash dump
file is completely written.

ERL_CRASH_DUMP_SECONDS=S

heart waits for S seconds to let the crash dump file be written. After S seconds, heart reboots the runtime
system, whether the crash dump file is written or not.

In the following descriptions, all functions fail with reason badarg if heart is not started.

Data Types
heart_option() = check_schedulers

Exports

set_cmd(Cmd) -> ok | {error, {bad_cmd, Cmd}}
Types:

Cmd = string()
Sets a temporary reboot command. This command is used if a HEART_COMMAND other than the one specified with
the environment variable is to be used to reboot the system. The new Erlang runtime system uses (if it misbehaves)
environment variable HEART_COMMAND to reboot.

Limitations: Command string Cmd is sent to the heart program as an ISO Latin-1 or UTF-8 encoded binary,
depending on the filename encoding mode of the emulator (see file:native_name_encoding/0). The size of
the encoded binary must be less than 2047 bytes.

clear_cmd() -> ok
Clears the temporary boot command. If the system terminates, the normal HEART_COMMAND is used to reboot.

get_cmd() -> {ok, Cmd}
Types:

Cmd = string()
Gets the temporary reboot command. If the command is cleared, the empty string is returned.

set_callback(Module, Function) ->
 ok | {error, {bad_callback, {Module, Function}}}
Types:

Module = Function = atom()

This validation callback will be executed before any heartbeat is sent to the port program. For the validation to succeed
it needs to return with the value ok.

An exception within the callback will be treated as a validation failure.

The callback will be removed if the system reboots.

220 | Ericsson AB. All Rights Reserved.: Kernel

heart

clear_callback() -> ok
Removes the validation callback call before heartbeats.

get_callback() -> {ok, {Module, Function}} | none
Types:

Module = Function = atom()

Get the validation callback. If the callback is cleared, none will be returned.

set_options(Options) -> ok | {error, {bad_options, Options}}
Types:

Options = [heart_option()]
Valid options set_options are:

check_schedulers

If enabled, a signal will be sent to each scheduler to check its responsiveness. The system check occurs before any
heartbeat sent to the port program. If any scheduler is not responsive enough the heart program will not receive
its heartbeat and thus eventually terminate the node.

Returns with the value ok if the options are valid.

get_options() -> {ok, Options} | none
Types:

Options = [atom()]
Returns {ok, Options} where Options is a list of current options enabled for heart. If the callback is cleared,
none will be returned.

Ericsson AB. All Rights Reserved.: Kernel | 221

inet

inet
Erlang module

This module provides access to TCP/IP protocols.

See also ERTS User's Guide: Inet Configuration for more information about how to configure an Erlang runtime
system for IP communication.

The following two Kernel configuration parameters affect the behavior of all sockets opened on an Erlang node:

• inet_default_connect_options can contain a list of default options used for all sockets returned when
doing connect.

• inet_default_listen_options can contain a list of default options used when issuing a listen call.

When accept is issued, the values of the listening socket options are inherited. No such application variable is
therefore needed for accept.

Using the Kernel configuration parameters above, one can set default options for all TCP sockets on a node, but use
this with care. Options such as {delay_send,true} can be specified in this way. The following is an example of
starting an Erlang node with all sockets using delayed send:

$ erl -sname test -kernel \
inet_default_connect_options '[{delay_send,true}]' \
inet_default_listen_options '[{delay_send,true}]'

Notice that default option {active, true} cannot be changed, for internal reasons.

Addresses as inputs to functions can be either a string or a tuple. For example, the IP address 150.236.20.73 can be
passed to gethostbyaddr/1, either as string "150.236.20.73" or as tuple {150, 236, 20, 73}.

IPv4 address examples:

Address ip_address()
------- ------------
127.0.0.1 {127,0,0,1}
192.168.42.2 {192,168,42,2}

IPv6 address examples:

Address ip_address()
------- ------------
::1 {0,0,0,0,0,0,0,1}
::192.168.42.2 {0,0,0,0,0,0,(192 bsl 8) bor 168,(42 bsl 8) bor 2}
::FFFF:192.168.42.2
 {0,0,0,0,0,16#FFFF,(192 bsl 8) bor 168,(42 bsl 8) bor 2}
3ffe:b80:1f8d:2:204:acff:fe17:bf38
 {16#3ffe,16#b80,16#1f8d,16#2,16#204,16#acff,16#fe17,16#bf38}
fe80::204:acff:fe17:bf38
 {16#fe80,0,0,0,16#204,16#acff,16#fe17,16#bf38}

Function parse_address/1 can be useful:

1> inet:parse_address("192.168.42.2").
{ok,{192,168,42,2}}
2> inet:parse_address("::FFFF:192.168.42.2").
{ok,{0,0,0,0,0,65535,49320,10754}}

222 | Ericsson AB. All Rights Reserved.: Kernel

inet

Data Types
Exported data types
hostent() =
 #hostent{h_name = inet:hostname(),
 h_aliases = [inet:hostname()],
 h_addrtype = inet | inet6,
 h_length = integer() >= 0,
 h_addr_list = [inet:ip_address()]}
The record is defined in the Kernel include file "inet.hrl".

Add the following directive to the module:

-include_lib("kernel/include/inet.hrl").

hostname() = atom() | string()
ip_address() = ip4_address() | ip6_address()
ip4_address() = {0..255, 0..255, 0..255, 0..255}
ip6_address() =
 {0..65535,
 0..65535,
 0..65535,
 0..65535,
 0..65535,
 0..65535,
 0..65535,
 0..65535}
port_number() = 0..65535
family_address() =
 inet_address() | inet6_address() | local_address()
A general address format on the form {Family, Destination} where Family is an atom such as local and
the format of Destination depends on Family, and is a complete address (for example an IP address including
port number).

local_address() = {local, File :: binary() | string()}
This address family only works on Unix-like systems.

File is normally a file pathname in a local filesystem. It is limited in length by the operating system, traditionally
to 108 bytes.

A binary() is passed as is to the operating system, but a string() is encoded according to the system filename
encoding mode.

Other addresses are possible, for example Linux implements "Abstract Addresses". See the documentation for Unix
Domain Sockets on your system, normally unix in manual section 7.

In most API functions where you can use this address family the port number must be 0.

inet_backend() = {inet_backend, inet | socket}
Select the implementation backend for sockets. The current default is inet which at the bottom uses inet_drv.c
to call the platform's socket API. The value socket instead at the bottom uses the socket module and its NIF
implementation.

This is a temporary option that will be ignored in a future release.

Ericsson AB. All Rights Reserved.: Kernel | 223

inet

socket_address() =
 ip_address() | any | loopback | local_address()
socket_getopt() =
 gen_sctp:option_name() |
 gen_tcp:option_name() |
 gen_udp:option_name()
socket_setopt() =
 gen_sctp:option() | gen_tcp:option() | gen_udp:option()
socket_optval() =
 gen_sctp:option_value() |
 gen_tcp:option() |
 gen_udp:option() |
 gen_tcp:pktoptions_value()
returned_non_ip_address() =
 {local, binary()} | {unspec, <<>>} | {undefined, any()}
Addresses besides ip_address() ones that are returned from socket API functions. See in particular
local_address(). The unspec family corresponds to AF_UNSPEC and can occur if the other side has no socket
address. The undefined family can only occur in the unlikely event of an address family that the VM does not
recognize.

ancillary_data() =
 [{tos, byte()} | {tclass, byte()} | {ttl, byte()}]
Ancillary data received with the data packet, read with the socket option pktoptions from a TCP socket, or to set
in a call to gen_udp:send/4 or gen_udp:send/5.

The value(s) correspond to the currently active socket options recvtos, recvtclass and recvttl, or for a
single send operation the option(s) to override the currently active socket option(s).

posix() =
 eaddrinuse | eaddrnotavail | eafnosupport | ealready |
 econnaborted | econnrefused | econnreset | edestaddrreq |
 ehostdown | ehostunreach | einprogress | eisconn | emsgsize |
 enetdown | enetunreach | enopkg | enoprotoopt | enotconn |
 enotty | enotsock | eproto | eprotonosupport | eprototype |
 esocktnosupport | etimedout | ewouldblock | exbadport |
 exbadseq |
 file:posix()
An atom that is named from the POSIX error codes used in Unix, and in the runtime libraries of most C compilers.
See section POSIX Error Codes.

socket()
See gen_tcp:type-socket and gen_udp:type-socket.

address_family() = inet | inet6 | local
socket_protocol() = tcp | udp | sctp
stat_option() =
 recv_cnt | recv_max | recv_avg | recv_oct | recv_dvi |

224 | Ericsson AB. All Rights Reserved.: Kernel

inet

 send_cnt | send_max | send_avg | send_oct | send_pend

Data Types
Internal data types
inet_address() =
 {inet, {ip4_address() | any | loopback, port_number()}}

Warning:

This address format is for now experimental and for completeness to make all address families have a {Family,
Destination} representation.

inet6_address() =
 {inet6, {ip6_address() | any | loopback, port_number()}}

Warning:

This address format is for now experimental and for completeness to make all address families have a {Family,
Destination} representation.

getifaddrs_ifopts() =
 [Ifopt ::
 {flags,
 Flags ::
 [up | broadcast | loopback | pointtopoint |
 running | multicast]} |
 {addr, Addr :: ip_address()} |
 {netmask, Netmask :: ip_address()} |
 {broadaddr, Broadaddr :: ip_address()} |
 {dstaddr, Dstaddr :: ip_address()} |
 {hwaddr, Hwaddr :: [byte()]}]
Interface address description list returned from getifaddrs/0,1 for a named interface, translated from the returned
data of the POSIX API function getaddrinfo().

Hwaddr is hardware dependent, for example, on Ethernet interfaces it is the 6-byte Ethernet address (MAC address
(EUI-48 address)).

The tuples {addr,Addr}, {netmask,Netmask}, and possibly {broadaddr,Broadaddr} or
{dstaddr,Dstaddr} are repeated in the list if the interface has got multiple addresses. An interface may
have multiple {flag,_} tuples for example if it has different flags for different address families. Multiple
{hwaddr,Hwaddr} tuples is hard to say anything definite about, though. The tuple {flag,Flags} is mandatory,
all others are optional.

Do not rely too much on the order of Flags atoms or the Ifopt tuples. There are however some rules:

• A {flag,_} tuple applies to all other tuples that follow.

• Immediately after {addr,_} follows {netmask,_}.

• Immediately thereafter may {broadaddr,_} follow if broadcast is member of Flags, or {dstaddr,_}
if pointtopoint is member of Flags. Both {dstaddr,_} and {broadaddr,_} does not occur for the
same {addr,_}.

• Any {netmask,_}, {broadaddr,_}, or {dstaddr,_} tuples that follow an {addr,Addr} tuple
concerns the address Addr.

Ericsson AB. All Rights Reserved.: Kernel | 225

inet

The tuple {hwaddr,_} is not returned on Solaris, as the hardware address historically belongs to the link layer and
it is not returned by the Solaris API function getaddrinfo().

Warning:

On Windows, the data is fetched from different OS API functions, so the Netmask and Broadaddr values may
be calculated, just as some Flags values.

Exports

close(Socket) -> ok
Types:

Socket = socket()
Closes a socket of any type.

cancel_monitor(MRef) -> boolean()
Types:

MRef = reference()
If MRef is a reference that the calling process obtained by calling monitor/1, this monitor is turned off. If the
monitoring is already turned off, nothing happens.

The returned value is one of the following:

true

The monitor was found and removed. In this case, no 'DOWN' message corresponding to this monitor has been
delivered and will not be delivered.

false

The monitor was not found and could not be removed. This probably because a 'DOWN' message corresponding
to this monitor has already been placed in the caller message queue.

Failure: It is an error if MRef refers to a monitor started by another process.

format_error(Reason) -> string()
Types:

Reason = posix() | system_limit
Returns a diagnostic error string. For possible POSIX values and corresponding strings, see section POSIX Error
Codes.

get_rc() ->
 [{Par :: atom(), Val :: any()} |
 {Par :: atom(), Val1 :: any(), Val2 :: any()}]
Returns the state of the Inet configuration database in form of a list of recorded configuration parameters. For more
information, see ERTS User's Guide: Inet Configuration.

Only actual parameters with other than default values are returned, for example not directives that specify other sources
for configuration parameters nor directives that clear parameters.

226 | Ericsson AB. All Rights Reserved.: Kernel

inet

getaddr(Host, Family) -> {ok, Address} | {error, posix()}
Types:

Host = ip_address() | hostname()
Family = address_family()
Address = ip_address()

Returns the IP address for Host as a tuple of integers. Host can be an IP address, a single hostname, or a fully
qualified hostname.

getaddrs(Host, Family) -> {ok, Addresses} | {error, posix()}
Types:

Host = ip_address() | hostname()
Family = address_family()
Addresses = [ip_address()]

Returns a list of all IP addresses for Host. Host can be an IP address, a single hostname, or a fully qualified hostname.

gethostbyaddr(Address) -> {ok, Hostent} | {error, posix()}
Types:

Address = string() | ip_address()
Hostent = hostent()

Returns a hostent record for the host with the specified address.

gethostbyname(Hostname) -> {ok, Hostent} | {error, posix()}
Types:

Hostname = hostname()
Hostent = hostent()

Returns a hostent record for the host with the specified hostname.

If resolver option inet6 is true, an IPv6 address is looked up.

gethostbyname(Hostname, Family) ->
 {ok, Hostent} | {error, posix()}
Types:

Hostname = hostname()
Family = address_family()
Hostent = hostent()

Returns a hostent record for the host with the specified name, restricted to the specified address family.

gethostname() -> {ok, Hostname}
Types:

Hostname = string()
Returns the local hostname. Never fails.

getifaddrs() ->
 {ok,

Ericsson AB. All Rights Reserved.: Kernel | 227

inet

 [{Ifname :: string(),
 Ifopts :: getifaddrs_ifopts()}]} |
 {error, posix()}
Returns a list of 2-tuples containing interface names and the interfaces' addresses. Ifname is a Unicode string and
Ifopts is a list of interface address description tuples.

The interface address description tuples are documented under the type of the Ifopts value.

getifaddrs(Opts) -> {ok, [{Ifname, Ifopts}]} | {error, Posix}
Types:

Opts = [{netns, Namespace}]

Namespace = file:filename_all()

Ifname = string()

Ifopts = getifaddrs_ifopts()

Posix = posix()

The same as getifaddrs/0 but the Option {netns, Namespace} sets a network namespace for the OS call,
on platforms that supports that feature.

See the socket option {netns, Namespace} under setopts/2.

getopts(Socket, Options) -> {ok, OptionValues} | {error, posix()}
Types:

Socket = socket()
Options = [socket_getopt()]
OptionValues = [socket_optval()]

Gets one or more options for a socket. For a list of available inet options, see setopts/2. See also the descriptions
for the protocol specific types referenced by socket_optval() .

The number of elements in the returned OptionValues list does not necessarily correspond to the number of options
asked for. If the operating system fails to support an option, it is left out in the returned list. An error tuple is returned
only when getting options for the socket is impossible (that is, the socket is closed or the buffer size in a raw request
is too large). This behavior is kept for backward compatibility reasons.

A raw option request RawOptReq = {raw, Protocol, OptionNum, ValueSpec} can be used to get
information about socket options not (explicitly) supported by the emulator. The use of raw socket options makes the
code non-portable, but allows the Erlang programmer to take advantage of unusual features present on a particular
platform.

RawOptReq consists of tag raw followed by the protocol level, the option number, and either a binary or the size, in
bytes, of the buffer in which the option value is to be stored. A binary is to be used when the underlying getsockopt
requires input in the argument field. In this case, the binary size is to correspond to the required buffer size of the
return value. The supplied values in a RawOptReq correspond to the second, third, and fourth/fifth parameters to the
getsockopt call in the C socket API. The value stored in the buffer is returned as a binary ValueBin, where all
values are coded in the native endianness.

Asking for and inspecting raw socket options require low-level information about the current operating system and
TCP stack.

Example:

Consider a Linux machine where option TCP_INFO can be used to collect TCP statistics for a socket. Assume you
are interested in field tcpi_sacked of struct tcp_info filled in when asking for TCP_INFO. To be able to
access this information, you need to know the following:

228 | Ericsson AB. All Rights Reserved.: Kernel

inet

• The numeric value of protocol level IPPROTO_TCP

• The numeric value of option TCP_INFO

• The size of struct tcp_info

• The size and offset of the specific field

By inspecting the headers or writing a small C program, it is found that IPPROTO_TCP is 6, TCP_INFO is 11, the
structure size is 92 (bytes), the offset of tcpi_sacked is 28 bytes, and the value is a 32-bit integer. The following
code can be used to retrieve the value:

get_tcpi_sacked(Sock) ->
 {ok,[{raw,_,_,Info}]} = inet:getopts(Sock,[{raw,6,11,92}]),
 <<_:28/binary,TcpiSacked:32/native,_/binary>> = Info,
 TcpiSacked.

Preferably, you would check the machine type, the operating system, and the Kernel version before executing anything
similar to this code.

getstat(Socket) -> {ok, OptionValues} | {error, posix()}
getstat(Socket, Options) -> {ok, OptionValues} | {error, posix()}
Types:

Socket = socket()
Options = [stat_option()]
OptionValues = [{stat_option(), integer()}]
stat_option() =
 recv_cnt | recv_max | recv_avg | recv_oct | recv_dvi |
 send_cnt | send_max | send_avg | send_oct | send_pend

Gets one or more statistic options for a socket.

getstat(Socket) is equivalent to getstat(Socket, [recv_avg, recv_cnt, recv_dvi,
recv_max, recv_oct, send_avg, send_cnt, send_pend, send_max, send_oct]).

The following options are available:

recv_avg

Average size of packets, in bytes, received by the socket.

recv_cnt

Number of packets received by the socket.

recv_dvi

Average packet size deviation, in bytes, received by the socket.

recv_max

Size of the largest packet, in bytes, received by the socket.

recv_oct

Number of bytes received by the socket.

send_avg

Average size of packets, in bytes, sent from the socket.

send_cnt

Number of packets sent from the socket.

Ericsson AB. All Rights Reserved.: Kernel | 229

inet

send_pend

Number of bytes waiting to be sent by the socket.

send_max

Size of the largest packet, in bytes, sent from the socket.

send_oct

Number of bytes sent from the socket.

i() -> ok
i(Proto :: socket_protocol()) -> ok
i(X1 :: socket_protocol(), Fs :: [atom()]) -> ok
Lists all TCP, UDP and SCTP sockets, including those that the Erlang runtime system uses as well as those created
by the application.

The following options are available:

port

The internal index of the port.

module

The callback module of the socket.

recv

Number of bytes received by the socket.

sent

Number of bytes sent from the socket.

owner

The socket owner process.

local_address

The local address of the socket.

foreign_address

The address and port of the other end of the connection.

state

The connection state.

type

STREAM or DGRAM or SEQPACKET.

info(Socket) -> Info
Types:

Socket = socket()
Info = term()

Produces a term containing miscellaneous information about a socket.

230 | Ericsson AB. All Rights Reserved.: Kernel

inet

monitor(Socket) -> reference()
Types:

Socket = socket()
Start monitor the socket Socket.

If the monitored socket does not exist or when the monitor is triggered, a 'DOWN' message is sent that has the following
pattern:

 {'DOWN', MonitorRef, Type, Object, Info}

MonitorRef

The identity of the socket.

Type

The type of socket, can be one of the following atoms: port or socket.

Object

The monitored entity, the socket, which triggered the event.

Info

Either the termination reason of the socket or nosock (socket Socket did not exist at the time of monitor
creation).

Making several calls to inet:monitor/1 for the same Socket is not an error; it results in as many independent
monitoring instances.

is_ip_address(IPAddress) -> boolean()
Types:

IPAddress = ip_address() | term()
Tests if IPAddress is an ip_address() and returns true if so, otherwise false.

is_ipv4_address(IPv4Address) -> boolean()
Types:

IPv4Address = ip4_address() | term()
Tests if IPAddress is an ip4_address() and returns true if so, otherwise false.

is_ipv6_address(IPv6Address) -> boolean()
Types:

IPv6Address = ip6_address() | term()
Tests if IPAddress is an ip6_address() and returns true if so, otherwise false.

ntoa(IpAddress) -> Address | {error, einval}
Types:

Address = string()
IpAddress = ip_address()

Parses an ip_address() and returns an IPv4 or IPv6 address string.

Ericsson AB. All Rights Reserved.: Kernel | 231

inet

parse_address(Address) -> {ok, IPAddress} | {error, einval}
Types:

Address = string()
IPAddress = ip_address()

Parses an IPv4 or IPv6 address string and returns an ip4_address() or ip6_address(). Accepts a shortened
IPv4 address string.

parse_ipv4_address(Address) -> {ok, IPv4Address} | {error, einval}
Types:

Address = string()
IPv4Address = ip4_address()

Parses an IPv4 address string and returns an ip4_address(). Accepts a shortened IPv4 address string.

parse_ipv4strict_address(Address) ->
 {ok, IPv4Address} | {error, einval}
Types:

Address = string()
IPv4Address = ip4_address()

Parses an IPv4 address string containing four fields, that is, not shortened, and returns an ip4_address().

parse_ipv6_address(Address) -> {ok, IPv6Address} | {error, einval}
Types:

Address = string()
IPv6Address = ip6_address()

Parses an IPv6 address string and returns an ip6_address(). If an IPv4 address string is specified, an IPv4-mapped
IPv6 address is returned.

parse_ipv6strict_address(Address) ->
 {ok, IPv6Address} | {error, einval}
Types:

Address = string()
IPv6Address = ip6_address()

Parses an IPv6 address string and returns an ip6_address(). Does not accept IPv4 addresses.

ipv4_mapped_ipv6_address(X1 :: ip_address()) -> ip_address()
Convert an IPv4 address to an IPv4-mapped IPv6 address or the reverse. When converting from an IPv6 address all
but the 2 low words are ignored so this function also works on some other types of addresses than IPv4-mapped.

parse_strict_address(Address) -> {ok, IPAddress} | {error, einval}
Types:

Address = string()
IPAddress = ip_address()

Parses an IPv4 or IPv6 address string and returns an ip4_address() or ip6_address(). Does not accept a
shortened IPv4 address string.

232 | Ericsson AB. All Rights Reserved.: Kernel

inet

peername(Socket :: socket()) ->
 {ok,
 {ip_address(), port_number()} |
 returned_non_ip_address()} |
 {error, posix()}
Returns the address and port for the other end of a connection.

Notice that for SCTP sockets, this function returns only one of the peer addresses of the socket. Function
peernames/1,2 returns all.

peernames(Socket :: socket()) ->
 {ok,
 [{ip_address(), port_number()} |
 returned_non_ip_address()]} |
 {error, posix()}
Equivalent to peernames(Socket, 0).

Notice that the behavior of this function for an SCTP one-to-many style socket is not defined by the SCTP Sockets
API Extensions.

peernames(Socket, Assoc) ->
 {ok, [{Address, Port}]} | {error, posix()}
Types:

Socket = socket()
Assoc = #sctp_assoc_change{} | gen_sctp:assoc_id()
Address = ip_address()
Port = integer() >= 0

Returns a list of all address/port number pairs for the other end of an association Assoc of a socket.

This function can return multiple addresses for multihomed sockets, such as SCTP sockets. For other sockets it returns
a one-element list.

Notice that parameter Assoc is by the SCTP Sockets API Extensions defined to be ignored for one-to-one style
sockets. What the special value 0 means, hence its behavior for one-to-many style sockets, is unfortunately undefined.

port(Socket) -> {ok, Port} | {error, any()}
Types:

Socket = socket()
Port = port_number()

Returns the local port number for a socket.

setopts(Socket, Options) -> ok | {error, posix()}
Types:

Socket = socket()
Options = [socket_setopt()]

Sets one or more options for a socket.

The following options are available:

Ericsson AB. All Rights Reserved.: Kernel | 233

href
href
href

inet

{active, true | false | once | N}

If the value is true, which is the default, everything received from the socket is sent as messages to the receiving
process.

If the value is false (passive mode), the process must explicitly receive incoming data by calling
gen_tcp:recv/2,3, gen_udp:recv/2,3, or gen_sctp:recv/1,2 (depending on the type of socket).

If the value is once ({active, once}), one data message from the socket is sent to the process. To receive
one more message, setopts/2 must be called again with option {active, once}.

If the value is an integer N in the range -32768 to 32767 (inclusive), the value is added to the socket's count of data
messages sent to the controlling process. A socket's default message count is 0. If a negative value is specified,
and its magnitude is equal to or greater than the socket's current message count, the socket's message count is set
to 0. Once the socket's message count reaches 0, either because of sending received data messages to the process
or by being explicitly set, the process is then notified by a special message, specific to the type of socket, that the
socket has entered passive mode. Once the socket enters passive mode, to receive more messages setopts/2
must be called again to set the socket back into an active mode.

When using {active, once} or {active, N}, the socket changes behavior automatically when data is
received. This can be confusing in combination with connection-oriented sockets (that is, gen_tcp), as a socket
with {active, false} behavior reports closing differently than a socket with {active, true} behavior.
To simplify programming, a socket where the peer closed, and this is detected while in {active, false}
mode, still generates message {tcp_closed,Socket} when set to {active, once}, {active,
true}, or {active, N} mode. It is therefore safe to assume that message {tcp_closed,Socket},
possibly followed by socket port termination (depending on option exit_on_close) eventually appears when
a socket changes back and forth between {active, true} and {active, false} mode. However, when
peer closing is detected it is all up to the underlying TCP/IP stack and protocol.

Notice that {active, true} mode provides no flow control; a fast sender can easily overflow the receiver
with incoming messages. The same is true for {active, N} mode, while the message count is greater than zero.

Use active mode only if your high-level protocol provides its own flow control (for example, acknowledging
received messages) or the amount of data exchanged is small. {active, false} mode, use of the {active,
once} mode, or {active, N} mode with values of N appropriate for the application provides flow control.
The other side cannot send faster than the receiver can read.

{broadcast, Boolean} (UDP sockets)

Enables/disables permission to send broadcasts.

{buffer, Size}

The size of the user-level buffer used by the driver. Not to be confused with options sndbuf and recbuf,
which correspond to the Kernel socket buffers. For TCP it is recommended to have val(buffer)
>= val(recbuf) to avoid performance issues because of unnecessary copying. For UDP the same
recommendation applies, but the max should not be larger than the MTU of the network path. val(buffer)
is automatically set to the above maximum when recbuf is set. However, as the size set for recbuf usually
become larger, you are encouraged to use getopts/2 to analyze the behavior of your operating system.

Note that this is also the maximum amount of data that can be received from a single recv call. If you are using
higher than normal MTU consider setting buffer higher.

{delay_send, Boolean}

Normally, when an Erlang process sends to a socket, the driver tries to send the data immediately. If that fails,
the driver uses any means available to queue up the message to be sent whenever the operating system says it can
handle it. Setting {delay_send, true} makes all messages queue up. The messages sent to the network
are then larger but fewer. The option affects the scheduling of send requests versus Erlang processes instead of
changing any real property of the socket. The option is implementation-specific. Defaults to false.

234 | Ericsson AB. All Rights Reserved.: Kernel

inet

{deliver, port | term}

When {active, true}, data is delivered on the form port : {S, {data, [H1,..Hsz | Data]}}
or term : {tcp, S, [H1..Hsz | Data]}.

{dontroute, Boolean}

Enables/disables routing bypass for outgoing messages.

{exit_on_close, Boolean}

This option is set to true by default.

The only reason to set it to false is if you want to continue sending data to the socket after a close is detected,
for example, if the peer uses gen_tcp:shutdown/2 to shut down the write side.

{header, Size}

This option is only meaningful if option binary was specified when the socket was created. If option header
is specified, the first Size number bytes of data received from the socket are elements of a list, and the remaining
data is a binary specified as the tail of the same list. For example, if Size == 2, the data received matches
[Byte1,Byte2|Binary].

{high_msgq_watermark, Size}

The socket message queue is set to a busy state when the amount of data on the message queue reaches this
limit. Notice that this limit only concerns data that has not yet reached the ERTS internal socket implementation.
Defaults to 8 kB.

Senders of data to the socket are suspended if either the socket message queue is busy or the socket itself is busy.

For more information, see options low_msgq_watermark, high_watermark, and low_watermark.

Notice that distribution sockets disable the use of high_msgq_watermark and low_msgq_watermark.
Instead use the distribution buffer busy limit, which is a similar feature.

{high_watermark, Size} (TCP/IP sockets)

The socket is set to a busy state when the amount of data queued internally by the ERTS socket implementation
reaches this limit. Defaults to 8 kB.

Senders of data to the socket are suspended if either the socket message queue is busy or the socket itself is busy.

For more information, see options low_watermark, high_msgq_watermark, and
low_msqg_watermark.

{ipv6_v6only, Boolean}

Restricts the socket to use only IPv6, prohibiting any IPv4 connections. This is only applicable for IPv6 sockets
(option inet6).

On most platforms this option must be set on the socket before associating it to an address. It is therefore only
reasonable to specify it when creating the socket and not to use it when calling function (setopts/2) containing
this description.

The behavior of a socket with this option set to true is the only portable one. The original idea when IPv6 was
new of using IPv6 for all traffic is now not recommended by FreeBSD (you can use {ipv6_v6only,false}
to override the recommended system default value), forbidden by OpenBSD (the supported GENERIC kernel),
and impossible on Windows (which has separate IPv4 and IPv6 protocol stacks). Most Linux distros still have
a system default value of false. This policy shift among operating systems to separate IPv6 from IPv4 traffic
has evolved, as it gradually proved hard and complicated to get a dual stack implementation correct and secure.

On some platforms, the only allowed value for this option is true, for example, OpenBSD and Windows. Trying
to set this option to false, when creating the socket, fails in this case.

Ericsson AB. All Rights Reserved.: Kernel | 235

inet

Setting this option on platforms where it does not exist is ignored. Getting this option with getopts/2 returns
no value, that is, the returned list does not contain an {ipv6_v6only,_} tuple. On Windows, the option does
not exist, but it is emulated as a read-only option with value true.

Therefore, setting this option to true when creating a socket never fails, except possibly on a platform where you
have customized the kernel to only allow false, which can be doable (but awkward) on, for example, OpenBSD.

If you read back the option value using getopts/2 and get no value, the option does not exist in the host
operating system. The behavior of both an IPv6 and an IPv4 socket listening on the same port, and for an IPv6
socket getting IPv4 traffic is then no longer predictable.

{keepalive, Boolean}(TCP/IP sockets)

Enables/disables periodic transmission on a connected socket when no other data is exchanged. If the other end
does not respond, the connection is considered broken and an error message is sent to the controlling process.
Defaults to false.

{linger, {true|false, Seconds}}

Determines the time-out, in seconds, for flushing unsent data in the close/1 socket call.

The first component is if linger is enabled, the second component is the flushing time-out, in seconds. There are
3 alternatives:

{false, _}

close/1 or shutdown/2 returns immediately, not waiting for data to be flushed, with closing happening in
the background.

{true, 0}

Aborts the connection when it is closed. Discards any data still remaining in the send buffers and sends
RST to the peer.

This avoids TCP's TIME_WAIT state, but leaves open the possibility that another "incarnation" of this
connection being created.

{true, Time} when Time > 0

close/1 or shutdown/2 will not return until all queued messages for the socket have been successfully sent
or the linger timeout (Time) has been reached.

{low_msgq_watermark, Size}

If the socket message queue is in a busy state, the socket message queue is set in a not busy state when the amount
of data queued in the message queue falls below this limit. Notice that this limit only concerns data that has not
yet reached the ERTS internal socket implementation. Defaults to 4 kB.

Senders that are suspended because of either a busy message queue or a busy socket are resumed when the socket
message queue and the socket are not busy.

For more information, see options high_msgq_watermark, high_watermark, and low_watermark.

Notice that distribution sockets disable the use of high_msgq_watermark and low_msgq_watermark.
Instead they use the distribution buffer busy limit, which is a similar feature.

{low_watermark, Size} (TCP/IP sockets)

If the socket is in a busy state, the socket is set in a not busy state when the amount of data queued internally by
the ERTS socket implementation falls below this limit. Defaults to 4 kB.

Senders that are suspended because of a busy message queue or a busy socket are resumed when the socket
message queue and the socket are not busy.

236 | Ericsson AB. All Rights Reserved.: Kernel

inet

For more information, see options high_watermark, high_msgq_watermark, and
low_msgq_watermark.

{mode, Mode :: binary | list}

Received Packet is delivered as defined by Mode.

{netns, Namespace :: file:filename_all()}

Sets a network namespace for the socket. Parameter Namespace is a filename defining the namespace, for
example, "/var/run/netns/example", typically created by command ip netns add example.
This option must be used in a function call that creates a socket, that is, gen_tcp:connect/3,4,
gen_tcp:listen/2, gen_udp:open/1,2 or gen_sctp:open/0,1,2, and also getifaddrs/1.

This option uses the Linux-specific syscall setns(), such as in Linux kernel 3.0 or later, and therefore only
exists when the runtime system is compiled for such an operating system.

The virtual machine also needs elevated privileges, either running as superuser or (for Linux) having
capability CAP_SYS_ADMIN according to the documentation for setns(2). However, during testing also
CAP_SYS_PTRACE and CAP_DAC_READ_SEARCH have proven to be necessary.

Example:

setcap cap_sys_admin,cap_sys_ptrace,cap_dac_read_search+epi beam.smp

Notice that the filesystem containing the virtual machine executable (beam.smp in the example) must be local,
mounted without flag nosetuid, support extended attributes, and the kernel must support file capabilities. All
this runs out of the box on at least Ubuntu 12.04 LTS, except that SCTP sockets appear to not support network
namespaces.

Namespace is a filename and is encoded and decoded as discussed in module file, with the following exceptions:

• Emulator flag +fnu is ignored.

• getopts/2 for this option returns a binary for the filename if the stored filename cannot be decoded. This
is only to occur if you set the option using a binary that cannot be decoded with the emulator's filename
encoding: file:native_name_encoding/0.

{bind_to_device, Ifname :: binary()}

Binds a socket to a specific network interface. This option must be used in a function call that
creates a socket, that is, gen_tcp:connect/3,4, gen_tcp:listen/2, gen_udp:open/1,2, or
gen_sctp:open/0,1,2.

Unlike getifaddrs/0, Ifname is encoded a binary. In the unlikely case that a system is using non-7-bit-ASCII
characters in network device names, special care has to be taken when encoding this argument.

This option uses the Linux-specific socket option SO_BINDTODEVICE, such as in Linux kernel 2.0.30 or later,
and therefore only exists when the runtime system is compiled for such an operating system.

Before Linux 3.8, this socket option could be set, but could not retrieved with getopts/2. Since Linux 3.8,
it is readable.

The virtual machine also needs elevated privileges, either running as superuser or (for Linux) having capability
CAP_NET_RAW.

The primary use case for this option is to bind sockets into Linux VRF instances.

list

Received Packet is delivered as a list.

binary

Received Packet is delivered as a binary.

Ericsson AB. All Rights Reserved.: Kernel | 237

href

inet

{nodelay, Boolean}(TCP/IP sockets)

If Boolean == true, option TCP_NODELAY is turned on for the socket, which means that also small amounts
of data are sent immediately.

This option is not supported for domain = local, but if inet_backend =/= socket this error will
be ignored.

{nopush, Boolean}(TCP/IP sockets)

This translates to TCP_NOPUSH on BSD and to TCP_CORK on Linux.

If Boolean == true, the corresponding option is turned on for the socket, which means that small amounts
of data are accumulated until a full MSS-worth of data is available or this option is turned off.

Note that while TCP_NOPUSH socket option is available on OSX, its semantics is very different (e.g., unsetting
it does not cause immediate send of accumulated data). Hence, nopush option is intentionally ignored on OSX.

{packet, PacketType}(TCP/IP sockets)

Defines the type of packets to use for a socket. Possible values:

raw | 0

No packaging is done.

1 | 2 | 4

Packets consist of a header specifying the number of bytes in the packet, followed by that number of bytes.
The header length can be one, two, or four bytes, and containing an unsigned integer in big-endian byte
order. Each send operation generates the header, and the header is stripped off on each receive operation.

The 4-byte header is limited to 2Gb.

asn1 | cdr | sunrm | fcgi | tpkt | line

These packet types only have effect on receiving. When sending a packet, it is the responsibility of the
application to supply a correct header. On receiving, however, one message is sent to the controlling process
for each complete packet received, and, similarly, each call to gen_tcp:recv/2,3 returns one complete
packet. The header is not stripped off.

The meanings of the packet types are as follows:

• asn1 - ASN.1 BER

• sunrm - Sun's RPC encoding

• cdr - CORBA (GIOP 1.1)

• fcgi - Fast CGI

• tpkt - TPKT format [RFC1006]

• line - Line mode, a packet is a line-terminated with newline, lines longer than the receive buffer are
truncated

http | http_bin

The Hypertext Transfer Protocol. The packets are returned with the format according to HttpPacket
described in erlang:decode_packet/3 in ERTS. A socket in passive mode returns {ok,
HttpPacket} from gen_tcp:recv while an active socket sends messages like {http, Socket,
HttpPacket}.

httph | httph_bin

These two types are often not needed, as the socket automatically switches from http/http_bin to
httph/httph_bin internally after the first line is read. However, there can be occasions when they are
useful, such as parsing trailers from chunked encoding.

238 | Ericsson AB. All Rights Reserved.: Kernel

inet

{packet_size, Integer}(TCP/IP sockets)

Sets the maximum allowed length of the packet body. If the packet header indicates that the length of the packet is
longer than the maximum allowed length, the packet is considered invalid. The same occurs if the packet header
is too large for the socket receive buffer.

For line-oriented protocols (line, http*), option packet_size also guarantees that lines up to the indicated
length are accepted and not considered invalid because of internal buffer limitations.

{line_delimiter, Char}(TCP/IP sockets)

Sets the line delimiting character for line-oriented protocols (line). Defaults to $\n.

{raw, Protocol, OptionNum, ValueBin}

See below.

{read_packets, Integer}(UDP sockets)

Sets the maximum number of UDP packets to read without intervention from the socket when data is available.
When this many packets have been read and delivered to the destination process, new packets are not read until
a new notification of available data has arrived. Defaults to 5. If this parameter is set too high, the system can
become unresponsive because of UDP packet flooding.

{recbuf, Size}

The minimum size of the receive buffer to use for the socket. You are encouraged to use getopts/2 to retrieve
the size set by your operating system.

{recvtclass, Boolean}

If set to true activates returning the received TCLASS value on platforms that implements the protocol
IPPROTO_IPV6 option IPV6_RECVTCLASS or IPV6_2292RECVTCLASS for the socket. The value is
returned as a {tclass,TCLASS} tuple regardless of if the platform returns an IPV6_TCLASS or an
IPV6_RECVTCLASS CMSG value.

For packet oriented sockets that supports receiving ancillary data with the payload data (gen_udp and
gen_sctp), the TCLASS value is returned in an extended return tuple contained in an ancillary data list. For
stream oriented sockets (gen_tcp) the only way to get the TCLASS value is if the platform supports the
pktoptions option.

{recvtos, Boolean}

If set to true activates returning the received TOS value on platforms that implements the protocol
IPPROTO_IP option IP_RECVTOS for the socket. The value is returned as a {tos,TOS} tuple regardless of
if the platform returns an IP_TOS or an IP_RECVTOS CMSG value.

For packet oriented sockets that supports receiving ancillary data with the payload data (gen_udp and
gen_sctp), the TOS value is returned in an extended return tuple contained in an ancillary data list. For stream
oriented sockets (gen_tcp) the only way to get the TOS value is if the platform supports the pktoptions
option.

{recvttl, Boolean}

If set to true activates returning the received TTL value on platforms that implements the protocol
IPPROTO_IP option IP_RECVTTL for the socket. The value is returned as a {ttl,TTL} tuple regardless of
if the platform returns an IP_TTL or an IP_RECVTTL CMSG value.

For packet oriented sockets that supports receiving ancillary data with the payload data (gen_udp and
gen_sctp), the TTL value is returned in an extended return tuple contained in an ancillary data list. For stream
oriented sockets (gen_tcp) the only way to get the TTL value is if the platform supports the pktoptions
option.

Ericsson AB. All Rights Reserved.: Kernel | 239

inet

{reuseaddr, Boolean}

Allows or disallows local reuse of address. By default, reuse is disallowed.

Note:

On Windows this option will be ignored unless Socket is an UDP socket. This since the behavior of
reuseaddr is very different on Windows compared to other system.

{send_timeout, Integer}

Only allowed for connection-oriented sockets.

Specifies a longest time to wait for a send operation to be accepted by the underlying TCP stack. When the limit
is exceeded, the send operation returns {error,timeout}. How much of a packet that got sent is unknown;
the socket is therefore to be closed whenever a time-out has occurred (see send_timeout_close below).
Defaults to infinity.

{send_timeout_close, Boolean}

Only allowed for connection-oriented sockets.

Used together with send_timeout to specify whether the socket is to be automatically closed when the send
operation returns {error,timeout}. The recommended setting is true, which automatically closes the
socket. Defaults to false because of backward compatibility.

{show_econnreset, Boolean} (TCP/IP sockets)

When this option is set to false, which is default, an RST received from the TCP peer is treated as a normal
close (as though an FIN was sent). A caller to gen_tcp:recv/2 gets {error, closed}. In active mode,
the controlling process receives a {tcp_closed, Socket} message, indicating that the peer has closed the
connection.

Setting this option to true allows you to distinguish between a connection that was closed normally, and
one that was aborted (intentionally or unintentionally) by the TCP peer. A call to gen_tcp:recv/2 returns
{error, econnreset}. In active mode, the controlling process receives a {tcp_error, Socket,
econnreset} message before the usual {tcp_closed, Socket}, as is the case for any other socket error.
Calls to gen_tcp:send/2 also returns {error, econnreset} when it is detected that a TCP peer has
sent an RST.

A connected socket returned from gen_tcp:accept/1 inherits the show_econnreset setting from the
listening socket.

{sndbuf, Size}

The minimum size of the send buffer to use for the socket. You are encouraged to use getopts/2, to retrieve
the size set by your operating system.

{priority, Integer}

Sets the SO_PRIORITY socket level option on platforms where this is implemented. The behavior and allowed
range varies between different systems. The option is ignored on platforms where it is not implemented. Use
with caution.

{tos, Integer}

Sets IP_TOS IP level options on platforms where this is implemented. The behavior and allowed range varies
between different systems. The option is ignored on platforms where it is not implemented. Use with caution.

240 | Ericsson AB. All Rights Reserved.: Kernel

inet

{tclass, Integer}

Sets IPV6_TCLASS IP level options on platforms where this is implemented. The behavior and allowed range
varies between different systems. The option is ignored on platforms where it is not implemented. Use with
caution.

In addition to these options, raw option specifications can be used. The raw options are specified as a tuple of arity
four, beginning with tag raw, followed by the protocol level, the option number, and the option value specified as
a binary. This corresponds to the second, third, and fourth arguments to the setsockopt call in the C socket API.
The option value must be coded in the native endianness of the platform and, if a structure is required, must follow
the structure alignment conventions on the specific platform.

Using raw socket options requires detailed knowledge about the current operating system and TCP stack.

Example:

This example concerns the use of raw options. Consider a Linux system where you want to set option TCP_LINGER2
on protocol level IPPROTO_TCP in the stack. You know that on this particular system it defaults to 60 (seconds), but
you want to lower it to 30 for a particular socket. Option TCP_LINGER2 is not explicitly supported by inet, but you
know that the protocol level translates to number 6, the option number to number 8, and the value is to be specified as
a 32-bit integer. You can use this code line to set the option for the socket named Sock:

inet:setopts(Sock,[{raw,6,8,<<30:32/native>>}]),

As many options are silently discarded by the stack if they are specified out of range; it can be a good idea to check
that a raw option is accepted. The following code places the value in variable TcpLinger2:

{ok,[{raw,6,8,<<TcpLinger2:32/native>>}]}=inet:getopts(Sock,[{raw,6,8,4}]),

Code such as these examples is inherently non-portable, even different versions of the same OS on the same platform
can respond differently to this kind of option manipulation. Use with care.

Notice that the default options for TCP/IP sockets can be changed with the Kernel configuration parameters mentioned
in the beginning of this manual page.

sockname(Socket :: socket()) ->
 {ok,
 {ip_address(), port_number()} |
 returned_non_ip_address()} |
 {error, posix()}
Returns the local address and port number for a socket.

Notice that for SCTP sockets this function returns only one of the socket addresses. Function socknames/1,2
returns all.

socknames(Socket :: socket()) ->
 {ok,
 [{ip_address(), port_number()} |
 returned_non_ip_address()]} |
 {error, posix()}
Equivalent to socknames(Socket, 0).

socknames(Socket, Assoc) ->
 {ok, [{Address, Port}]} | {error, posix()}
Types:

Ericsson AB. All Rights Reserved.: Kernel | 241

inet

Socket = socket()
Assoc = #sctp_assoc_change{} | gen_sctp:assoc_id()
Address = ip_address()
Port = integer() >= 0

Returns a list of all local address/port number pairs for a socket for the specified association Assoc.

This function can return multiple addresses for multihomed sockets, such as SCTP sockets. For other sockets it returns
a one-element list.

Notice that parameter Assoc is by the SCTP Sockets API Extensions defined to be ignored for one-to-one style
sockets. For one-to-many style sockets, the special value 0 is defined to mean that the returned addresses must be
without any particular association. How different SCTP implementations interpret this varies somewhat.

POSIX Error Codes
• e2big - Too long argument list

• eacces - Permission denied

• eaddrinuse - Address already in use

• eaddrnotavail - Cannot assign requested address

• eadv - Advertise error

• eafnosupport - Address family not supported by protocol family

• eagain - Resource temporarily unavailable

• ealign - EALIGN

• ealready - Operation already in progress

• ebade - Bad exchange descriptor

• ebadf - Bad file number

• ebadfd - File descriptor in bad state

• ebadmsg - Not a data message

• ebadr - Bad request descriptor

• ebadrpc - Bad RPC structure

• ebadrqc - Bad request code

• ebadslt - Invalid slot

• ebfont - Bad font file format

• ebusy - File busy

• echild - No children

• echrng - Channel number out of range

• ecomm - Communication error on send

• econnaborted - Software caused connection abort

• econnrefused - Connection refused

• econnreset - Connection reset by peer

• edeadlk - Resource deadlock avoided

• edeadlock - Resource deadlock avoided

• edestaddrreq - Destination address required

• edirty - Mounting a dirty fs without force

• edom - Math argument out of range

• edotdot - Cross mount point

242 | Ericsson AB. All Rights Reserved.: Kernel

href

inet

• edquot - Disk quota exceeded

• eduppkg - Duplicate package name

• eexist - File already exists

• efault - Bad address in system call argument

• efbig - File too large

• ehostdown - Host is down

• ehostunreach - Host is unreachable

• eidrm - Identifier removed

• einit - Initialization error

• einprogress - Operation now in progress

• eintr - Interrupted system call

• einval - Invalid argument

• eio - I/O error

• eisconn - Socket is already connected

• eisdir - Illegal operation on a directory

• eisnam - Is a named file

• el2hlt - Level 2 halted

• el2nsync - Level 2 not synchronized

• el3hlt - Level 3 halted

• el3rst - Level 3 reset

• elbin - ELBIN

• elibacc - Cannot access a needed shared library

• elibbad - Accessing a corrupted shared library

• elibexec - Cannot exec a shared library directly

• elibmax - Attempting to link in more shared libraries than system limit

• elibscn - .lib section in a.out corrupted

• elnrng - Link number out of range

• eloop - Too many levels of symbolic links

• emfile - Too many open files

• emlink - Too many links

• emsgsize - Message too long

• emultihop - Multihop attempted

• enametoolong - Filename too long

• enavail - Unavailable

• enet - ENET

• enetdown - Network is down

• enetreset - Network dropped connection on reset

• enetunreach - Network is unreachable

• enfile - File table overflow

• enoano - Anode table overflow

• enobufs - No buffer space available

• enocsi - No CSI structure available

• enodata - No data available

Ericsson AB. All Rights Reserved.: Kernel | 243

inet

• enodev - No such device

• enoent - No such file or directory

• enoexec - Exec format error

• enolck - No locks available

• enolink - Link has been severed

• enomem - Not enough memory

• enomsg - No message of desired type

• enonet - Machine is not on the network

• enopkg - Package not installed

• enoprotoopt - Bad protocol option

• enospc - No space left on device

• enosr - Out of stream resources or not a stream device

• enosym - Unresolved symbol name

• enosys - Function not implemented

• enotblk - Block device required

• enotconn - Socket is not connected

• enotdir - Not a directory

• enotempty - Directory not empty

• enotnam - Not a named file

• enotsock - Socket operation on non-socket

• enotsup - Operation not supported

• enotty - Inappropriate device for ioctl

• enotuniq - Name not unique on network

• enxio - No such device or address

• eopnotsupp - Operation not supported on socket

• eperm - Not owner

• epfnosupport - Protocol family not supported

• epipe - Broken pipe

• eproclim - Too many processes

• eprocunavail - Bad procedure for program

• eprogmismatch - Wrong program version

• eprogunavail - RPC program unavailable

• eproto - Protocol error

• eprotonosupport - Protocol not supported

• eprototype - Wrong protocol type for socket

• erange - Math result unrepresentable

• erefused - EREFUSED

• eremchg - Remote address changed

• eremdev - Remote device

• eremote - Pathname hit remote filesystem

• eremoteio - Remote I/O error

• eremoterelease - EREMOTERELEASE

• erofs - Read-only filesystem

244 | Ericsson AB. All Rights Reserved.: Kernel

inet

• erpcmismatch - Wrong RPC version

• erremote - Object is remote

• eshutdown - Cannot send after socket shutdown

• esocktnosupport - Socket type not supported

• espipe - Invalid seek

• esrch - No such process

• esrmnt - Srmount error

• estale - Stale remote file handle

• esuccess - Error 0

• etime - Timer expired

• etimedout - Connection timed out

• etoomanyrefs - Too many references

• etxtbsy - Text file or pseudo-device busy

• euclean - Structure needs cleaning

• eunatch - Protocol driver not attached

• eusers - Too many users

• eversion - Version mismatch

• ewouldblock - Operation would block

• exdev - Cross-domain link

• exfull - Message tables full

• nxdomain - Hostname or domain name cannot be found

Ericsson AB. All Rights Reserved.: Kernel | 245

inet_res

inet_res
Erlang module

This module performs DNS name resolving to recursive name servers.

See also ERTS User's Guide: Inet Configuration for more information about how to configure an Erlang runtime
system for IP communication, and how to enable this DNS client by defining 'dns' as a lookup method. The DNS
client then acts as a backend for the resolving functions in inet.

This DNS client can resolve DNS records even if it is not used for normal name resolving in the node.

This is not a full-fledged resolver, only a DNS client that relies on asking trusted recursive name servers.

Name Resolving
UDP queries are used unless resolver option usevc is true, which forces TCP queries. If the query is too large for
UDP, TCP is used instead. For regular DNS queries, 512 bytes is the size limit.

When EDNS is enabled (resolver option edns is set to the EDNS version (that is, 0 instead of false), resolver
option udp_payload_size sets the limit. If a name server replies with the TC bit set (truncation), indicating that
the answer is incomplete, the query is retried to that name server using TCP. Resolver option udp_payload_size
also sets the advertised size for the maximum allowed reply size, if EDNS is enabled, otherwise the name server uses
the limit 512 bytes. If the reply is larger, it gets truncated, forcing a TCP requery.

For UDP queries, resolver options timeout and retry control retransmission. Each name server in the
nameservers list is tried with a time-out of timeout/retry. Then all name servers are tried again, doubling the
time-out, for a total of retry times.

But before all name servers are tried again, there is a (user configurable) timeout, servfail_retry_timeout.
The point of this is to prevent the new query to be handled by a server's servfail cache (a client that is too eager will
actually only get what is in the servfail cache). If there is too little time left of the resolver call's timeout to do a retry,
the resolver call may return before the call's timeout has expired.

For queries not using the search list, if the query to all nameservers results in {error,nxdomain} or an
empty answer, the same query is tried for alt_nameservers.

Resolver Types
The following data types concern the resolver:

Data Types
res_option() =
 {alt_nameservers, [nameserver()]} |
 {edns, 0 | false} |
 {inet6, boolean()} |
 {nameservers, [nameserver()]} |
 {recurse, boolean()} |
 {retry, integer()} |
 {timeout, integer()} |
 {udp_payload_size, integer()} |
 {usevc, boolean()} |
 {nxdomain_reply, boolean()}
nameserver() = {inet:ip_address(), Port :: 1..65535}
res_error() =

246 | Ericsson AB. All Rights Reserved.: Kernel

inet_res

 formerr | qfmterror | servfail | nxdomain | notimp | refused |
 badvers | timeout

DNS Types
The following data types concern the DNS client:

Data Types
dns_name() = string()
A string with no adjacent dots.

dns_rr_type() =
 a | aaaa | caa | cname | gid | hinfo | ns | mb | md | mg |
 mf | minfo | mx | naptr | null | ptr | soa | spf | srv | txt |
 uid | uinfo | unspec | uri | wks
dns_class() = in | chaos | hs | any
dns_msg() = term()
This is the start of a hierarchy of opaque data structures that can be examined with access functions in inet_dns,
which return lists of {Field,Value} tuples. The arity 2 functions only return the value for a specified field.

Ericsson AB. All Rights Reserved.: Kernel | 247

inet_res

dns_msg() = DnsMsg
 inet_dns:msg(DnsMsg) ->
 [{header, dns_header()}
 | {qdlist, dns_query()}
 | {anlist, dns_rr()}
 | {nslist, dns_rr()}
 | {arlist, dns_rr()}]
 inet_dns:msg(DnsMsg, header) -> dns_header() % for example
 inet_dns:msg(DnsMsg, Field) -> Value

dns_header() = DnsHeader
 inet_dns:header(DnsHeader) ->
 [{id, integer()}
 | {qr, boolean()}
 | {opcode, query | iquery | status | integer()}
 | {aa, boolean()}
 | {tc, boolean()}
 | {rd, boolean()}
 | {ra, boolean()}
 | {pr, boolean()}
 | {rcode, integer(0..16)}]
 inet_dns:header(DnsHeader, Field) -> Value

query_type() = axfr | mailb | maila | any | dns_rr_type()

dns_query() = DnsQuery
 inet_dns:dns_query(DnsQuery) ->
 [{domain, dns_name()}
 | {type, query_type()}
 | {class, dns_class()}]
 inet_dns:dns_query(DnsQuery, Field) -> Value

dns_rr() = DnsRr
 inet_dns:rr(DnsRr) -> DnsRrFields | DnsRrOptFields
 DnsRrFields = [{domain, dns_name()}
 | {type, dns_rr_type()}
 | {class, dns_class()}
 | {ttl, integer()}
 | {data, dns_data()}]
 DnsRrOptFields = [{domain, dns_name()}
 | {type, opt}
 | {udp_payload_size, integer()}
 | {ext_rcode, integer()}
 | {version, integer()}
 | {z, integer()}
 | {data, dns_data()}]
 inet_dns:rr(DnsRr, Field) -> Value

There is an information function for the types above:

inet_dns:record_type(dns_msg()) -> msg;
inet_dns:record_type(dns_header()) -> header;
inet_dns:record_type(dns_query()) -> dns_query;
inet_dns:record_type(dns_rr()) -> rr;
inet_dns:record_type(_) -> undefined.

So, inet_dns:(inet_dns:record_type(X))(X) converts any of these data structures into a
{Field,Value} list.

dns_data() =
 dns_name() |
 inet:ip4_address() |

248 | Ericsson AB. All Rights Reserved.: Kernel

inet_res

 inet:ip6_address() |
 {MName :: dns_name(),
 RName :: dns_name(),
 Serial :: integer(),
 Refresh :: integer(),
 Retry :: integer(),
 Expiry :: integer(),
 Minimum :: integer()} |
 {inet:ip4_address(), Proto :: integer(), BitMap :: binary()} |
 {CpuString :: string(), OsString :: string()} |
 {RM :: dns_name(), EM :: dns_name()} |
 {Prio :: integer(), dns_name()} |
 {Prio :: integer(),
 Weight :: integer(),
 Port :: integer(),
 dns_name()} |
 {Order :: integer(),
 Preference :: integer(),
 Flags :: string(),
 Services :: string(),
 Regexp :: string(),
 dns_name()} |
 [string()] |
 binary()
Regexp is a string with characters encoded in the UTF-8 coding standard.

hostent() =
 {hostent,
 H_name :: inet:hostname(),
 H_aliases :: [inet:hostname()],
 H_addrtype :: dns_rr_type(),
 H_length :: integer() >= 0,
 H_addr_list :: [dns_data()]}

Exports

getbyname(Name, Type) -> {ok, Hostent} | {error, Reason}
getbyname(Name, Type, Timeout) -> {ok, Hostent} | {error, Reason}
Types:

Name = dns_name()
Type = dns_rr_type()
Timeout = timeout()
Hostent = inet:hostent() | hostent()
Reason = inet:posix() | res_error()

Resolves a DNS record of the specified Type for the specified host, of class in. Returns, on success, when resolving
a Type = a|aaaa DNS record, a #hostent{} record with #hostent.h_addrtype = inet|inet6,
respectively; see inet:hostent().

Ericsson AB. All Rights Reserved.: Kernel | 249

inet_res

When resolving other Type = dns_rr_type():s (of class in), also returns a #hostent{} record but with
dns_rr_type() in #hostent.h_addrtype, and the resolved dns_data() in #hostent.h_addr_list;
see hostent().

This function uses resolver option search that is a list of domain names. If the name to resolve contains no dots, it
is prepended to each domain name in the search list, and they are tried in order. If the name contains dots, it is first
tried as an absolute name and if that fails, the search list is used. If the name has a trailing dot, it is supposed to be
an absolute name and the search list is not used.

gethostbyaddr(Address) -> {ok, Hostent} | {error, Reason}
gethostbyaddr(Address, Timeout) -> {ok, Hostent} | {error, Reason}
Types:

Address = inet:ip_address()
Timeout = timeout()
Hostent = inet:hostent()
Reason = inet:posix() | res_error()

Backend functions used by inet:gethostbyaddr/1.

gethostbyname(Name) -> {ok, Hostent} | {error, Reason}
gethostbyname(Name, Family) -> {ok, Hostent} | {error, Reason}
gethostbyname(Name, Family, Timeout) ->
 {ok, Hostent} | {error, Reason}
Types:

Name = dns_name()
Hostent = inet:hostent()
Timeout = timeout()
Family = inet:address_family()
Reason = inet:posix() | res_error()

Backend functions used by inet:gethostbyname/1,2.

This function uses resolver option search just like getbyname/2,3.

If resolver option inet6 is true, an IPv6 address is looked up.

lookup(Name, Class, Type) -> [dns_data()]
lookup(Name, Class, Type, Opts) -> [dns_data()]
lookup(Name, Class, Type, Opts, Timeout) -> [dns_data()]
Types:

Name = dns_name() | inet:ip_address()
Class = dns_class()
Type = dns_rr_type()
Opts = [res_option() | verbose]
Timeout = timeout()

Resolves the DNS data for the record of the specified type and class for the specified name. On success, filters out
the answer records with the correct Class and Type, and returns a list of their data fields. So, a lookup for type
any gives an empty answer, as the answer records have specific types that are not any. An empty answer or a failed
lookup returns an empty list.

250 | Ericsson AB. All Rights Reserved.: Kernel

inet_res

Calls resolve/* with the same arguments and filters the result, so Opts is described for those functions.

resolve(Name, Class, Type) -> {ok, dns_msg()} | Error
resolve(Name, Class, Type, Opts) -> {ok, dns_msg()} | Error
resolve(Name, Class, Type, Opts, Timeout) ->
 {ok, dns_msg()} | Error
Types:

Name = dns_name() | inet:ip_address()
Class = dns_class()
Type = dns_rr_type()
Opts = [Opt]
Opt = res_option() | verbose | atom()
Timeout = timeout()
Error = {error, Reason} | {error, {Reason, dns_msg()}}
Reason = inet:posix() | res_error()

Resolves a DNS record of the specified type and class for the specified name. The returned dns_msg() can be
examined using access functions in inet_db, as described in section in DNS Types.

If Name is an ip_address(), the domain name to query for is generated as the standard reverse ".IN-
ADDR.ARPA." name for an IPv4 address, or the ".IP6.ARPA." name for an IPv6 address. In this case, you most
probably want to use Class = in and Type = ptr, but it is not done automatically.

Opts overrides the corresponding resolver options. If option nameservers is specified, it is assumed that
it is the complete list of name serves, so resolver option alt_nameserves is ignored. However, if option
alt_nameserves is also specified to this function, it is used.

Option verbose (or rather {verbose,true}) causes diagnostics printout through io:format/2 of queries,
replies retransmissions, and so on, similar to from utilities, such as dig and nslookup.

Option nxdomain_reply (or rather {nxdomain_reply,true}) causes nxdomain errors from DNS servers to
be returned as {error, {nxdomain, dns_msg()}}. dns_msg() contains the additional sections that where
included by the answering server. This is mainly useful to inspect the SOA record to get the TTL for negative caching.

If Opt is any atom, it is interpreted as {Opt,true} unless the atom string starts with "no", making the
interpretation {Opt,false}. For example, usevc is an alias for {usevc,true} and nousevc is an alias for
{usevc,false}.

Option inet6 has no effect on this function. You probably want to use Type = a | aaaa instead.

Example
This access functions example shows how lookup/3 can be implemented using resolve/3 from outside the
module:

example_lookup(Name, Class, Type) ->
 case inet_res:resolve(Name, Class, Type) of
 {ok,Msg} ->
 [inet_dns:rr(RR, data)
 || RR <- inet_dns:msg(Msg, anlist),
 inet_dns:rr(RR, type) =:= Type,
 inet_dns:rr(RR, class) =:= Class];
 {error,_} ->
 []
 end.

Ericsson AB. All Rights Reserved.: Kernel | 251

inet_res

These are deprecated because the annoying double meaning of the name servers/time-out argument, and because they
have no decent place for a resolver options list.

Exports

nslookup(Name, Class, Type) -> {ok, dns_msg()} | {error, Reason}
nslookup(Name, Class, Type, Timeout) ->
 {ok, dns_msg()} | {error, Reason}
nslookup(Name, Class, Type, Nameservers) ->
 {ok, dns_msg()} | {error, Reason}
Types:

Name = dns_name() | inet:ip_address()
Class = dns_class()
Type = dns_rr_type()
Timeout = timeout()
Nameservers = [nameserver()]
Reason = inet:posix() | res_error()

Resolves a DNS record of the specified type and class for the specified name.

nnslookup(Name, Class, Type, Nameservers) ->
 {ok, dns_msg()} | {error, Reason}
nnslookup(Name, Class, Type, Nameservers, Timeout) ->
 {ok, dns_msg()} | {error, Reason}
Types:

Name = dns_name() | inet:ip_address()
Class = dns_class()
Type = dns_rr_type()
Timeout = timeout()
Nameservers = [nameserver()]
Reason = inet:posix()

Resolves a DNS record of the specified type and class for the specified name.

252 | Ericsson AB. All Rights Reserved.: Kernel

init

init
Erlang module

This module is moved to the ERTS application.

Ericsson AB. All Rights Reserved.: Kernel | 253

logger

logger
Erlang module

This module implements the main API for logging in Erlang/OTP. To create a log event, use the API functions or
the log macros, for example:

?LOG_ERROR("error happened because: ~p", [Reason]). % With macro
logger:error("error happened because: ~p", [Reason]). % Without macro

To configure the Logger backend, use Kernel configuration parameters or configuration functions in the Logger API.

By default, the Kernel application installs one log handler at system start. This handler is named default. It receives
and processes standard log events produced by the Erlang runtime system, standard behaviours and different Erlang/
OTP applications. The log events are by default printed to the terminal.

If you want your systems logs to be printed to a file instead, you must configure the default handler to do so. The
simplest way is to include the following in your sys.config:

[{kernel,
 [{logger,
 [{handler, default, logger_std_h,
 #{config => #{file => "path/to/file.log"}}}]}]}].

For more information about:

• the Logger facility in general, see the User's Guide.

• how to configure Logger, see the Configuration section in the User's Guide.

• the built-in handlers, see logger_std_h and logger_disk_log_h.

• the built-in formatter, see logger_formatter.

• built-in filters, see logger_filters.

Note:

Since Logger is new in Erlang/OTP 21.0, we do reserve the right to introduce changes to the Logger API and
functionality in patches following this release. These changes might or might not be backwards compatible with
the initial version.

Data Types
filter() =
 {fun((log_event(), filter_arg()) -> filter_return()),
 filter_arg()}
A filter which can be installed as a handler filter, or as a primary filter in Logger.

filter_arg() = term()
The second argument to the filter fun.

filter_id() = atom()
A unique identifier for a filter.

filter_return() = stop | ignore | log_event()
The return value from the filter fun.

254 | Ericsson AB. All Rights Reserved.: Kernel

logger

formatter_config() = #{atom() => term()}
Configuration data for the formatter. See logger_formatter(3) for an example of a formatter implementation.

handler_config() =
 #{id => handler_id(),
 config => term(),
 level => level() | all | none,
 module => module(),
 filter_default => log | stop,
 filters => [{filter_id(), filter()}],
 formatter => {module(), formatter_config()}}
Handler configuration data for Logger. The following default values apply:

• level => all

• filter_default => log

• filters => []

• formatter => {logger_formatter, DefaultFormatterConfig}

In addition to these, the following fields are automatically inserted by Logger, values taken from the two first
parameters to add_handler/3:

• id => HandlerId

• module => Module

These are read-only and cannot be changed in runtime.

Handler specific configuration data is inserted by the handler callback itself, in a sub structure associated with the
field named config. See the logger_std_h(3) and logger_disk_log_h(3) manual pages for information
about the specific configuration for these handlers.

See the logger_formatter(3) manual page for information about the default configuration for this formatter.

handler_id() = atom()
A unique identifier for a handler instance.

level() =
 emergency | alert | critical | error | warning | notice |
 info | debug
The severity level for the message to be logged.

log_event() =
 #{level := level(),
 msg :=
 {io:format(), [term()]} |
 {report, report()} |
 {string, unicode:chardata()},
 meta := metadata()}

metadata() =
 #{pid => pid(),
 gl => pid(),
 time => timestamp(),
 mfa => {module(), atom(), integer() >= 0},
 file => file:filename(),
 line => integer() >= 0,

Ericsson AB. All Rights Reserved.: Kernel | 255

logger

 domain => [atom()],
 report_cb => report_cb(),
 atom() => term()}
Metadata for the log event.

Logger adds the following metadata to each log event:

• pid => self()

• gl => group_leader()

• time => logger:timestamp()

When a log macro is used, Logger also inserts location information:

• mfa => {?MODULE, ?FUNCTION_NAME, ?FUNCTION_ARITY}

• file => ?FILE

• line => ?LINE

You can add custom metadata, either by:

• specifying a map as the last parameter to any of the log macros or the logger API functions.

• setting process metadata with set_process_metadata/1 or update_process_metadata/1.

• setting primary metadata with set_primary_config/1 or through the kernel configuration parameter
logger_metadata

Note:

When adding custom metadata, make sure not to use any of the keys mentioned above as that may cause a lot of
confusion about the log events.

Logger merges all the metadata maps before forwarding the log event to the handlers. If the same keys occur, values
from the log call overwrite process metadata, which overwrites the primary metadata, which in turn overwrite values
set by Logger.

The following custom metadata keys have special meaning:

domain

The value associated with this key is used by filters for grouping log events originating from, for example, specific
functional areas. See logger_filters:domain/2 for a description of how this field can be used.

report_cb

If the log message is specified as a report(), the report_cb key can be associated with a fun (report
callback) that converts the report to a format string and arguments, or directly to a string. See the type definition
of report_cb(), and section Log Message in the User's Guide for more information about report callbacks.

msg_fun() =
 fun((term()) ->
 msg_fun_return() | {msg_fun_return(), metadata()})

msg_fun_return() =
 {io:format(), [term()]} |
 report() |
 unicode:chardata() |
 ignore

olp_config() =
 #{sync_mode_qlen => integer() >= 0,

256 | Ericsson AB. All Rights Reserved.: Kernel

logger

 drop_mode_qlen => integer() >= 1,
 flush_qlen => integer() >= 1,
 burst_limit_enable => boolean(),
 burst_limit_max_count => integer() >= 1,
 burst_limit_window_time => integer() >= 1,
 overload_kill_enable => boolean(),
 overload_kill_qlen => integer() >= 1,
 overload_kill_mem_size => integer() >= 1,
 overload_kill_restart_after => integer() >= 0 | infinity}

primary_config() =
 #{level => level() | all | none,
 metadata => metadata(),
 filter_default => log | stop,
 filters => [{filter_id(), filter()}]}
Primary configuration data for Logger. The following default values apply:

• level => info

• filter_default => log

• filters => []

report() = map() | [{atom(), term()}]

report_cb() =
 fun((report()) -> {io:format(), [term()]}) |
 fun((report(), report_cb_config()) -> unicode:chardata())
A fun which converts a report() to a format string and arguments, or directly to a string. See section Log Message
in the User's Guide for more information.

report_cb_config() =
 #{depth := integer() >= 1 | unlimited,
 chars_limit := integer() >= 1 | unlimited,
 single_line := boolean()}

timestamp() = integer()
A timestamp produced with logger:timestamp().

Macros
The following macros are defined in logger.hrl, which is included in a module with the directive

 -include_lib("kernel/include/logger.hrl").

• ?LOG_EMERGENCY(StringOrReport[,Metadata])

• ?LOG_EMERGENCY(FunOrFormat,Args[,Metadata])

• ?LOG_ALERT(StringOrReport[,Metadata])

• ?LOG_ALERT(FunOrFormat,Args[,Metadata])

• ?LOG_CRITICAL(StringOrReport[,Metadata])

• ?LOG_CRITICAL(FunOrFormat,Args[,Metadata])

• ?LOG_ERROR(StringOrReport[,Metadata])

• ?LOG_ERROR(FunOrFormat,Args[,Metadata])

• ?LOG_WARNING(StringOrReport[,Metadata])

Ericsson AB. All Rights Reserved.: Kernel | 257

logger

• ?LOG_WARNING(FunOrFormat,Args[,Metadata])

• ?LOG_NOTICE(StringOrReport[,Metadata])

• ?LOG_NOTICE(FunOrFormat,Args[,Metadata])

• ?LOG_INFO(StringOrReport[,Metadata])

• ?LOG_INFO(FunOrFormat,Args[,Metadata])

• ?LOG_DEBUG(StringOrReport[,Metadata])

• ?LOG_DEBUG(FunOrFormat,Args[,Metadata])

• ?LOG(Level,StringOrReport[,Metadata])

• ?LOG(Level,FunOrFormat,Args[,Metadata])

All macros expand to a call to Logger, where Level is taken from the macro name, or from the first argument in the
case of the ?LOG macro. Location data is added to the metadata as described under the metadata() type definition.

The call is wrapped in a case statement and will be evaluated only if Level is equal to or below the configured log
level.

Exports

emergency(StringOrReport[,Metadata])
emergency(Format,Args[,Metadata])
emergency(Fun,FunArgs[,Metadata])
Equivalent to log(emergency,...).

alert(StringOrReport[,Metadata])
alert(Format,Args[,Metadata])
alert(Fun,FunArgs[,Metadata])
Equivalent to log(alert,...).

critical(StringOrReport[,Metadata])
critical(Format,Args[,Metadata])
critical(Fun,FunArgs[,Metadata])
Equivalent to log(critical,...).

error(StringOrReport[,Metadata])
error(Format,Args[,Metadata])
error(Fun,FunArgs[,Metadata])
Equivalent to log(error,...).

warning(StringOrReport[,Metadata])
warning(Format,Args[,Metadata])
warning(Fun,FunArgs[,Metadata])
Equivalent to log(warning,...).

258 | Ericsson AB. All Rights Reserved.: Kernel

logger

notice(StringOrReport[,Metadata])
notice(Format,Args[,Metadata])
notice(Fun,FunArgs[,Metadata])
Equivalent to log(notice,...).

info(StringOrReport[,Metadata])
info(Format,Args[,Metadata])
info(Fun,FunArgs[,Metadata])
Equivalent to log(info,...).

debug(StringOrReport[,Metadata])
debug(Format,Args[,Metadata])
debug(Fun,FunArgs[,Metadata])
Equivalent to log(debug,...).

log(Level, StringOrReport) -> ok
log(Level, StringOrReport, Metadata) -> ok
log(Level, Format, Args) -> ok
log(Level, Fun, FunArgs) -> ok
log(Level, Format, Args, Metadata) -> ok
log(Level, Fun, FunArgs, Metadata) -> ok
Types:

Level = level()
StringOrReport = unicode:chardata() | report()
Format = io:format()
Args = [term()]
Fun = msg_fun()
FunArgs = term()
Metadata = metadata()

Create a log event at the given log level, with the given message to be logged and metadata. Examples:

%% A plain string
logger:log(info, "Hello World").
%% A plain string with metadata
logger:log(debug, "Hello World", #{ meta => data }).
%% A format string with arguments
logger:log(warning, "The roof is on ~ts",[Cause]).
%% A report
logger:log(warning, #{ what => roof, cause => Cause }).

The message and metadata can either be given directly in the arguments, or returned from a fun. Passing a fun instead
of the message/metadata directly is useful in scenarios when the message/metadata is very expensive to compute. This
is because the fun is only evaluated when the message/metadata is actually needed, which may be not at all if the log
event is not to be logged. Examples:

Ericsson AB. All Rights Reserved.: Kernel | 259

logger

%% A plain string with expensive metadata
logger:info(fun([]) -> {"Hello World", #{ meta => expensive() }} end,[]).
%% An expensive report
logger:debug(fun(What) -> #{ what => What, cause => expensive() } end,roof).
%% A plain string with expensive metadata and normal metadata
logger:debug(fun([]) -> {"Hello World", #{ meta => expensive() }} end,[],
 #{ meta => data }).

When metadata is given both as an argument and returned from the fun they are merged. If equal keys exists the values
are taken from the metadata returned by the fun.

Exports

add_handler(HandlerId, Module, Config) -> ok | {error, term()}
Types:

HandlerId = handler_id()
Module = module()
Config = handler_config()

Add a handler with the given configuration.

HandlerId is a unique identifier which must be used in all subsequent calls referring to this handler.

add_handler_filter(HandlerId, FilterId, Filter) ->
 ok | {error, term()}
Types:

HandlerId = handler_id()
FilterId = filter_id()
Filter = filter()

Add a filter to the specified handler.

The filter fun is called with the log event as the first parameter, and the specified filter_args() as the second
parameter.

The return value of the fun specifies if a log event is to be discarded or forwarded to the handler callback:

log_event()

The filter passed. The next handler filter, if any, is applied. If no more filters exist for this handler, the log event
is forwarded to the handler callback.

stop

The filter did not pass, and the log event is immediately discarded.

ignore

The filter has no knowledge of the log event. The next handler filter, if any, is applied. If no more filters exist
for this handler, the value of the filter_default configuration parameter for the handler specifies if the log
event shall be discarded or forwarded to the handler callback.

See section Filters in the User's Guide for more information about filters.

Some built-in filters exist. These are defined in logger_filters(3).

add_handlers(Application) -> ok | {error, term()}
Types:

260 | Ericsson AB. All Rights Reserved.: Kernel

logger

Application = atom()
Reads the application configuration parameter logger and calls add_handlers/1 with its contents.

add_handlers(HandlerConfig) -> ok | {error, term()}
Types:

HandlerConfig = [config_handler()]
config_handler() =
 {handler, handler_id(), module(), handler_config()}

This function should be used by custom Logger handlers to make configuration consistent no matter which handler the
system uses. Normal usage is to add a call to logger:add_handlers/1 just after the processes that the handler
needs are started, and pass the application's logger configuration as the argument. For example:

-behaviour(application).
start(_, []) ->
 case supervisor:start_link({local, my_sup}, my_sup, []) of
 {ok, Pid} ->
 ok = logger:add_handlers(my_app),
 {ok, Pid, []};
 Error -> Error
 end.

This reads the logger configuration parameter from the my_app application and starts the configured handlers. The
contents of the configuration use the same rules as the logger handler configuration.

If the handler is meant to replace the default handler, the Kernel's default handler have to be disabled before the new
handler is added. A sys.config file that disables the Kernel handler and adds a custom handler could look like this:

[{kernel,
 [{logger,
 %% Disable the default Kernel handler
 [{handler, default, undefined}]}]},
 {my_app,
 [{logger,
 %% Enable this handler as the default
 [{handler, default, my_handler, #{}}]}]}].

add_primary_filter(FilterId, Filter) -> ok | {error, term()}
Types:

FilterId = filter_id()
Filter = filter()

Add a primary filter to Logger.

The filter fun is called with the log event as the first parameter, and the specified filter_args() as the second
parameter.

The return value of the fun specifies if a log event is to be discarded or forwarded to the handlers:

log_event()

The filter passed. The next primary filter, if any, is applied. If no more primary filters exist, the log event is
forwarded to the handler part of Logger, where handler filters are applied.

stop

The filter did not pass, and the log event is immediately discarded.

Ericsson AB. All Rights Reserved.: Kernel | 261

logger

ignore

The filter has no knowledge of the log event. The next primary filter, if any, is applied. If no more primary filters
exist, the value of the primary filter_default configuration parameter specifies if the log event shall be
discarded or forwarded to the handler part.

See section Filters in the User's Guide for more information about filters.

Some built-in filters exist. These are defined in logger_filters(3).

get_config() ->
 #{primary => primary_config(),
 handlers => [handler_config()],
 proxy => olp_config(),
 module_levels =>
 [{module(), level() | all | none}]}
Look up all current Logger configuration, including primary, handler, and proxy configuration, and module level
settings.

get_handler_config() -> [Config]
Types:

Config = handler_config()
Look up the current configuration for all handlers.

get_handler_config(HandlerId) -> {ok, Config} | {error, term()}
Types:

HandlerId = handler_id()
Config = handler_config()

Look up the current configuration for the given handler.

get_handler_ids() -> [HandlerId]
Types:

HandlerId = handler_id()
Look up the identities for all installed handlers.

get_primary_config() -> Config
Types:

Config = primary_config()
Look up the current primary configuration for Logger.

get_proxy_config() -> Config
Types:

Config = olp_config()
Look up the current configuration for the Logger proxy.

For more information about the proxy, see section Logger Proxy in the Kernel User's Guide.

262 | Ericsson AB. All Rights Reserved.: Kernel

logger

get_module_level() -> [{Module, Level}]
Types:

Module = module()
Level = level() | all | none

Look up all current module levels. Returns a list containing one {Module,Level} element for each module for
which the module level was previously set with set_module_level/2.

get_module_level(Modules) -> [{Module, Level}]
Types:

Modules = [Module] | Module
Module = module()
Level = level() | all | none

Look up the current level for the given modules. Returns a list containing one {Module,Level} element for each
of the given modules for which the module level was previously set with set_module_level/2.

get_process_metadata() -> Meta | undefined
Types:

Meta = metadata()
Retrieve data set with set_process_metadata/1 or update_process_metadata/1.

i() -> ok
i(What) -> ok
Types:

What = primary | handlers | proxy | modules | handler_id()
Pretty print the Logger configuration.

remove_handler(HandlerId) -> ok | {error, term()}
Types:

HandlerId = handler_id()
Remove the handler identified by HandlerId.

remove_handler_filter(HandlerId, FilterId) -> ok | {error, term()}
Types:

HandlerId = handler_id()
FilterId = filter_id()

Remove the filter identified by FilterId from the handler identified by HandlerId.

remove_primary_filter(FilterId) -> ok | {error, term()}
Types:

FilterId = filter_id()
Remove the primary filter identified by FilterId from Logger.

set_application_level(Application, Level) ->

Ericsson AB. All Rights Reserved.: Kernel | 263

logger

 ok | {error, not_loaded}
Types:

Application = atom()
Level = level() | all | none

Set the log level for all the modules of the specified application.

This function is a convenience function that calls logger:set_module_level/2 for each module associated with an
application.

set_handler_config(HandlerId, Config) -> ok | {error, term()}
Types:

HandlerId = handler_id()
Config = handler_config()

Set configuration data for the specified handler. This overwrites the current handler configuration.

To modify the existing configuration, use update_handler_config/2, or, if a more complex merge is needed,
read the current configuration with get_handler_config/1 , then do the merge before writing the new
configuration back with this function.

If a key is removed compared to the current configuration, and the key is known by Logger, the default value is used.
If it is a custom key, then it is up to the handler implementation if the value is removed or a default value is inserted.

set_handler_config(HandlerId, Key :: level, Level) -> Return
set_handler_config(HandlerId,
 Key :: filter_default,
 FilterDefault) ->
 Return
set_handler_config(HandlerId, Key :: filters, Filters) -> Return
set_handler_config(HandlerId, Key :: formatter, Formatter) ->
 Return
set_handler_config(HandlerId, Key :: config, Config) -> Return
Types:

HandlerId = handler_id()
Level = level() | all | none
FilterDefault = log | stop
Filters = [{filter_id(), filter()}]
Formatter = {module(), formatter_config()}
Config = term()
Return = ok | {error, term()}

Add or update configuration data for the specified handler. If the given Key already exists, its associated value will
be changed to the given value. If it does not exist, it will be added.

If the value is incomplete, which for example can be the case for the config key, it is up to the handler implementation
how the unspecified parts are set. For all handlers in the Kernel application, unspecified data for the config
key is set to default values. To update only specified data, and keep the existing configuration for the rest, use
update_handler_config/3.

See the definition of the handler_config() type for more information about the different parameters.

264 | Ericsson AB. All Rights Reserved.: Kernel

logger

set_primary_config(Config) -> ok | {error, term()}
Types:

Config = primary_config()
Set primary configuration data for Logger. This overwrites the current configuration.

To modify the existing configuration, use update_primary_config/1, or, if a more complex merge is needed,
read the current configuration with get_primary_config/0 , then do the merge before writing the new
configuration back with this function.

If a key is removed compared to the current configuration, the default value is used.

set_primary_config(Key :: level, Level) -> ok | {error, term()}
set_primary_config(Key :: filter_default, FilterDefault) ->
 ok | {error, term()}
set_primary_config(Key :: filters, Filters) ->
 ok | {error, term()}
set_primary_config(Key :: metadata, Meta) -> ok | {error, term()}
Types:

Level = level() | all | none
FilterDefault = log | stop
Filters = [{filter_id(), filter()}]
Meta = metadata()

Add or update primary configuration data for Logger. If the given Key already exists, its associated value will be
changed to the given value. If it does not exist, it will be added.

set_proxy_config(Config) -> ok | {error, term()}
Types:

Config = olp_config()
Set configuration data for the Logger proxy. This overwrites the current proxy configuration. Keys that are not specified
in the Config map gets default values.

To modify the existing configuration, use update_proxy_config/1, or, if a more complex merge is needed, read
the current configuration with get_proxy_config/0 , then do the merge before writing the new configuration
back with this function.

For more information about the proxy, see section Logger Proxy in the Kernel User's Guide.

set_module_level(Modules, Level) -> ok | {error, term()}
Types:

Modules = [module()] | module()
Level = level() | all | none

Set the log level for the specified modules.

The log level for a module overrides the primary log level of Logger for log events originating from the module in
question. Notice, however, that it does not override the level configuration for any handler.

For example: Assume that the primary log level for Logger is info, and there is one handler, h1, with level info
and one handler, h2, with level debug.

With this configuration, no debug messages will be logged, since they are all stopped by the primary log level.

Ericsson AB. All Rights Reserved.: Kernel | 265

logger

If the level for mymodule is now set to debug, then debug events from this module will be logged by the handler
h2, but not by handler h1.

Debug events from other modules are still not logged.

To change the primary log level for Logger, use set_primary_config(level, Level).

To change the log level for a handler, use set_handler_config(HandlerId, level, Level) .

Note:

The originating module for a log event is only detected if the key mfa exists in the metadata, and is associated
with {Module, Function, Arity}. When log macros are used, this association is automatically added to
all log events. If an API function is called directly, without using a macro, the logging client must explicitly add
this information if module levels shall have any effect.

set_process_metadata(Meta) -> ok
Types:

Meta = metadata()
Set metadata which Logger shall automatically insert in all log events produced on the current process.

Location data produced by the log macros, and/or metadata given as argument to the log call (API function or macro),
are merged with the process metadata. If the same keys occur, values from the metadata argument to the log call
overwrite values from the process metadata, which in turn overwrite values from the location data.

Subsequent calls to this function overwrites previous data set. To update existing data instead of overwriting it, see
update_process_metadata/1.

unset_application_level(Application) ->
 ok | {error, {not_loaded, Application}}
Types:

Application = atom()
Unset the log level for all the modules of the specified application.

This function is a utility function that calls logger:unset_module_level/2 for each module associated with an
application.

unset_module_level() -> ok
Remove module specific log settings. After this, the primary log level is used for all modules.

unset_module_level(Modules) -> ok
Types:

Modules = [module()] | module()
Remove module specific log settings. After this, the primary log level is used for the specified modules.

unset_process_metadata() -> ok
Delete data set with set_process_metadata/1 or update_process_metadata/1.

update_formatter_config(HandlerId, FormatterConfig) ->

266 | Ericsson AB. All Rights Reserved.: Kernel

logger

 ok | {error, term()}
Types:

HandlerId = handler_id()
FormatterConfig = formatter_config()

Update the formatter configuration for the specified handler.

The new configuration is merged with the existing formatter configuration.

To overwrite the existing configuration without any merge, use

set_handler_config(HandlerId, formatter,
 {FormatterModule, FormatterConfig}).

update_formatter_config(HandlerId, Key, Value) ->
 ok | {error, term()}
Types:

HandlerId = handler_id()
Key = atom()
Value = term()

Update the formatter configuration for the specified handler.

This is equivalent to

update_formatter_config(HandlerId, #{Key => Value})

update_handler_config(HandlerId, Config) -> ok | {error, term()}
Types:

HandlerId = handler_id()
Config = handler_config()

Update configuration data for the specified handler. This function behaves as if it was implemented as follows:

{ok, {_, Old}} = logger:get_handler_config(HandlerId),
logger:set_handler_config(HandlerId, maps:merge(Old, Config)).

To overwrite the existing configuration without any merge, use set_handler_config/2 .

update_handler_config(HandlerId, Key :: level, Level) -> Return
update_handler_config(HandlerId,
 Key :: filter_default,
 FilterDefault) ->
 Return
update_handler_config(HandlerId, Key :: filters, Filters) ->
 Return
update_handler_config(HandlerId, Key :: formatter, Formatter) ->
 Return
update_handler_config(HandlerId, Key :: config, Config) -> Return
Types:

Ericsson AB. All Rights Reserved.: Kernel | 267

logger

HandlerId = handler_id()
Level = level() | all | none
FilterDefault = log | stop
Filters = [{filter_id(), filter()}]
Formatter = {module(), formatter_config()}
Config = term()
Return = ok | {error, term()}

Add or update configuration data for the specified handler. If the given Key already exists, its associated value will
be changed to the given value. If it does not exist, it will be added.

If the value is incomplete, which for example can be the case for the config key, it is up to the handler implementation
how the unspecified parts are set. For all handlers in the Kernel application, unspecified data for the config key is
not changed. To reset unspecified data to default values, use set_handler_config/3.

See the definition of the handler_config() type for more information about the different parameters.

update_primary_config(Config) -> ok | {error, term()}
Types:

Config = primary_config()
Update primary configuration data for Logger. This function behaves as if it was implemented as follows:

Old = logger:get_primary_config(),
logger:set_primary_config(maps:merge(Old, Config)).

To overwrite the existing configuration without any merge, use set_primary_config/1 .

update_process_metadata(Meta) -> ok
Types:

Meta = metadata()
Set or update metadata to use when logging from current process

If process metadata exists for the current process, this function behaves as if it was implemented as follows:

logger:set_process_metadata(maps:merge(logger:get_process_metadata(), Meta)).

If no process metadata exists, the function behaves as set_process_metadata/1 .

update_proxy_config(Config) -> ok | {error, term()}
Types:

Config = olp_config()
Update configuration data for the Logger proxy. This function behaves as if it was implemented as follows:

Old = logger:get_proxy_config(),
logger:set_proxy_config(maps:merge(Old, Config)).

To overwrite the existing configuration without any merge, use set_proxy_config/1 .

For more information about the proxy, see section Logger Proxy in the Kernel User's Guide.

268 | Ericsson AB. All Rights Reserved.: Kernel

logger

Exports

compare_levels(Level1, Level2) -> eq | gt | lt
Types:

Level1 = Level2 = level() | all | none

Compare the severity of two log levels. Returns gt if Level1 is more severe than Level2, lt if Level1 is less
severe, and eq if the levels are equal.

format_report(Report) -> FormatArgs
Types:

Report = report()
FormatArgs = {io:format(), [term()]}

Convert a log message on report form to {Format, Args}. This is the default report callback used by
logger_formatter(3) when no custom report callback is found. See section Log Message in the Kernel User's
Guide for information about report callbacks and valid forms of log messages.

The function produces lines of Key: Value from key-value lists. Strings are printed with ~ts and other terms
with ~tp.

If Report is a map, it is converted to a key-value list before formatting as such.

timestamp() -> timestamp()
Return a timestamp that can be inserted as the time field in the meta data for a log event. It is produced with
os:system_time(microsecond).

Notice that Logger automatically inserts a timestamp in the meta data unless it already exists. This function is exported
for the rare case when the timestamp must be taken at a different point in time than when the log event is issued.

reconfigure() -> ok | {error, term()}
Reconfigure Logger using updated kernel configuration that was set after kernel application was loaded.

Beware, that this is meant to be run only by the build tools, not manually during application lifetime, as this may
cause missing log entries.

The following functions are to be exported from a handler callback module.

Exports

HModule:adding_handler(Config1) -> {ok, Config2} | {error, Reason}
Types:

Config1 = Config2 = handler_config()

Reason = term()

This callback function is optional.

The function is called on a temporary process when a new handler is about to be added. The purpose is to verify the
configuration and initiate all resources needed by the handler.

The handler identity is associated with the id key in Config1.

If everything succeeds, the callback function can add possible default values or internal state values to the
configuration, and return the adjusted map in {ok,Config2}.

Ericsson AB. All Rights Reserved.: Kernel | 269

logger

If the configuration is faulty, or if the initiation fails, the callback function must return {error,Reason}.

HModule:changing_config(SetOrUpdate, OldConfig, NewConfig) -> {ok, Config} |
{error, Reason}
Types:

SetOrUpdate = set | update

OldConfig = NewConfig = Config = handler_config()

Reason = term()

This callback function is optional.

The function is called on a temporary process when the configuration for a handler is about to change. The purpose
is to verify and act on the new configuration.

OldConfig is the existing configuration and NewConfig is the new configuration.

The handler identity is associated with the id key in OldConfig.

SetOrUpdate has the value set if the configuration change originates from a call to
set_handler_config/2,3, and update if it originates from update_handler_config/2,3. The
handler can use this parameter to decide how to update the value of the config field, that is, the handler specific
configuration data. Typically, if SetOrUpdate equals set, values that are not specified must be given their default
values. If SetOrUpdate equals update, the values found in OldConfig must be used instead.

If everything succeeds, the callback function must return a possibly adjusted configuration in {ok,Config}.

If the configuration is faulty, the callback function must return {error,Reason}.

HModule:filter_config(Config) -> FilteredConfig
Types:

Config = FilteredConfig = handler_config()

This callback function is optional.

The function is called when one of the Logger API functions for fetching the handler configuration is called, for
example logger:get_handler_config/1.

It allows the handler to remove internal data fields from its configuration data before it is returned to the caller.

HModule:log(LogEvent, Config) -> void()
Types:

LogEvent = log_event()

Config = handler_config()

This callback function is mandatory.

The function is called when all primary filters and all handler filters for the handler in question have passed for the
given log event. It is called on the client process, that is, the process that issued the log event.

The handler identity is associated with the id key in Config.

The handler must log the event.

The return value from this function is ignored by Logger.

HModule:removing_handler(Config) -> ok
Types:

270 | Ericsson AB. All Rights Reserved.: Kernel

logger

Config = handler_config()

This callback function is optional.

The function is called on a temporary process when a handler is about to be removed. The purpose is to release all
resources used by the handler.

The handler identity is associated with the id key in Config.

The return value is ignored by Logger.

The following functions are to be exported from a formatter callback module.

Exports

FModule:check_config(FConfig) -> ok | {error, Reason}
Types:

FConfig = formatter_config()

Reason = term()

This callback function is optional.

The function is called by a Logger when formatter configuration is set or modified. The formatter must validate the
given configuration and return ok if it is correct, and {error,Reason} if it is faulty.

The following Logger API functions can trigger this callback:

• logger:add_handler/3

• logger:set_handler_config/2,3

• logger:update_handler_config/2,3

• logger:update_formatter_config/2

See logger_formatter(3) for an example implementation. logger_formatter is the default formatter used
by Logger.

FModule:format(LogEvent, FConfig) -> FormattedLogEntry
Types:

LogEvent = log_event()

FConfig = formatter_config()

FormattedLogEntry = unicode:chardata()

This callback function is mandatory.

The function can be called by a log handler to convert a log event term to a printable string. The returned value can,
for example, be printed as a log entry to the console or a file using io:put_chars/1,2.

See logger_formatter(3) for an example implementation. logger_formatter is the default formatter used
by Logger.

See Also
config(4), erlang(3), io(3), logger_disk_log_h(3), logger_filters(3),
logger_formatter(3), logger_std_h(3), unicode(3)

Ericsson AB. All Rights Reserved.: Kernel | 271

logger_filters

logger_filters
Erlang module

All functions exported from this module can be used as primary or handler filters. See
logger:add_primary_filter/2 and logger:add_handler_filter/3 for more information about
how filters are added.

Filters are removed with logger:remove_primary_filter/1 and
logger:remove_handler_filter/2.

Exports

domain(LogEvent, Extra) -> logger:filter_return()
Types:

LogEvent = logger:log_event()
Extra = {Action, Compare, MatchDomain}
Action = log | stop
Compare = super | sub | equal | not_equal | undefined
MatchDomain = [atom()]

This filter provides a way of filtering log events based on a domain field in Metadata. This field is optional, and
the purpose of using it is to group log events from, for example, a specific functional area. This allows filtering or
other specialized treatment in a Logger handler.

A domain field must be a list of atoms, creating smaller and more specialized domains as the list grows longer. The
greatest domain is [], which comprises all possible domains.

For example, consider the following domains:

D1 = [otp]
D2 = [otp, sasl]

D1 is the greatest of the two, and is said to be a super-domain of D2. D2 is a sub-domain D1. Both D1 and D2 are
sub-domains of [].

The above domains are used for logs originating from Erlang/OTP. D1 specifies that the log event comes from Erlang/
OTP in general, and D2 indicates that the log event is a so called SASL report.

The Extra parameter to the domain/2 function is specified when adding the filter via
logger:add_primary_filter/2 or logger:add_handler_filter/3.

The filter compares the value of the domain field in the log event's metadata (Domain) against MatchDomain.
The filter matches if the value of Compare is:

sub

and Domain is equal to or a sub-domain of MatchDomain, that is, if MatchDomain is a prefix of Domain.

super

and Domain is equal to or a super-domain of MatchDomain, that is, if Domain is a prefix of MatchDomain.

equal

and Domain is equal to MatchDomain.

272 | Ericsson AB. All Rights Reserved.: Kernel

logger_filters

not_equal

and Domain differs from MatchDomain, or if there is no domain field in metadata.

undefined

and there is no domain field in metadata. In this case MatchDomain must be set to [].

If the filter matches and Action is log, the log event is allowed. If the filter matches and Action is stop, the
log event is stopped.

If the filter does not match, it returns ignore, meaning that other filters, or the value of the configuration parameter
filter_default, decide if the event is allowed or not.

Log events that do not contain any domain field, match only when Compare is equal to undefined or not_equal.

Example: stop all events with domain [otp, sasl | _]

logger:set_handler_config(h1, filter_default, log). % this is the default
Filter = {fun logger_filters:domain/2, {stop, sub, [otp, sasl]}}.
logger:add_handler_filter(h1, no_sasl, Filter).
ok

level(LogEvent, Extra) -> logger:filter_return()
Types:

LogEvent = logger:log_event()
Extra = {Action, Operator, MatchLevel}
Action = log | stop
Operator = neq | eq | lt | gt | lteq | gteq
MatchLevel = logger:level()

This filter provides a way of filtering log events based on the log level. It matches log events by comparing the log
level with a specified MatchLevel

The Extra parameter is specified when adding the filter via logger:add_primary_filter/2 or
logger:add_handler_filter/3.

The filter compares the value of the event's log level (Level) to MatchLevel by calling
logger:compare_levels(Level, MatchLevel). The filter matches if the value of Operator is:

neq

and the compare function returns lt or gt.

eq

and the compare function returns eq.

lt

and the compare function returns lt.

gt

and the compare function returns gt.

lteq

and the compare function returns lt or eq.

gteq

and the compare function returns gt or eq.

Ericsson AB. All Rights Reserved.: Kernel | 273

logger_filters

If the filter matches and Action is log, the log event is allowed. If the filter matches and Action is stop, the
log event is stopped.

If the filter does not match, it returns ignore, meaning that other filters, or the value of the configuration parameter
filter_default, will decide if the event is allowed or not.

Example: only allow debug level log events

logger:set_handler_config(h1, filter_default, stop).
Filter = {fun logger_filters:level/2, {log, eq, debug}}.
logger:add_handler_filter(h1, debug_only, Filter).
ok

progress(LogEvent, Extra) -> logger:filter_return()
Types:

LogEvent = logger:log_event()
Extra = log | stop

This filter matches all progress reports from supervisor and application_controller.

If Extra is log, the progress reports are allowed. If Extra is stop, the progress reports are stopped.

The filter returns ignore for all other log events.

remote_gl(LogEvent, Extra) -> logger:filter_return()
Types:

LogEvent = logger:log_event()
Extra = log | stop

This filter matches all events originating from a process that has its group leader on a remote node.

If Extra is log, the matching events are allowed. If Extra is stop, the matching events are stopped.

The filter returns ignore for all other log events.

See Also
logger(3)

274 | Ericsson AB. All Rights Reserved.: Kernel

logger_formatter

logger_formatter
Erlang module

Each Logger handler has a configured formatter specified as a module and a configuration term. The purpose of the
formatter is to translate the log events to a final printable string (unicode:chardata()) which can be written to
the output device of the handler. See sections Handlers and Formatters in the Kernel User's Guide for more information.

logger_formatter is the default formatter used by Logger.

Data Types
config() =
 #{chars_limit => integer() >= 1 | unlimited,
 depth => integer() >= 1 | unlimited,
 legacy_header => boolean(),
 max_size => integer() >= 1 | unlimited,
 report_cb => logger:report_cb(),
 single_line => boolean(),
 template => template(),
 time_designator => byte(),
 time_offset => integer() | [byte()]}
The configuration term for logger_formatter is a map, and the following keys can be set as configuration
parameters:

chars_limit = integer() > 0 | unlimited

A positive integer representing the value of the option with the same name to be used when calling
io_lib:format/3. This value limits the total number of characters printed for each log event. Notice that
this is a soft limit. For a hard truncation limit, see option max_size.

Defaults to unlimited.

depth = integer() > 0 | unlimited

A positive integer representing the maximum depth to which terms shall be printed by this formatter. Format
strings passed to this formatter are rewritten. The format controls ~p and ~w are replaced with ~P and ~W,
respectively, and the value is used as the depth parameter. For details, see io:format/2,3 in STDLIB.

Defaults to unlimited.

legacy_header = boolean()

If set to true a header field is added to logger_formatter's part of Metadata. The value of this field is a string
similar to the header created by the old error_logger event handlers. It can be included in the log event by
adding the list [logger_formatter,header] to the template. See the description of the template()
type for more information.

Defaults to false.

max_size = integer() > 0 | unlimited

A positive integer representing the absolute maximum size a string returned from this formatter can have. If the
formatted string is longer, after possibly being limited by chars_limit or depth, it is truncated.

Defaults to unlimited.

Ericsson AB. All Rights Reserved.: Kernel | 275

logger_formatter

report_cb = logger:report_cb()

A report callback is used by the formatter to transform log messages on report form to a format string and
arguments. The report callback can be specified in the metadata for the log event. If no report callback exists in
metadata, logger_formatter will use logger:format_report/1 as default callback.

If this configuration parameter is set, it replaces both the default report callback, and any report callback found
in metadata. That is, all reports are converted by this configured function.

single_line = boolean()

If set to true, each log event is printed as a single line. To achieve this, logger_formatter sets the field
width to 0 for all ~p and ~P control sequences in the format a string (see io:format/2), and replaces all
newlines in the message with ", ". White spaces following directly after newlines are removed. Notice that
newlines added by the template parameter are not replaced.

Defaults to true.

template = template()

The template describes how the formatted string is composed by combining different data values from the log
event. See the description of the template() type for more information about this.

time_designator = byte()

Timestamps are formatted according to RFC3339, and the time designator is the character used as date and time
separator.

Defaults to $T.

The value of this parameter is used as the time_designator option to
calendar:system_time_to_rfc3339/2.

time_offset = integer() | [byte()]

The time offset, either a string or an integer, to be used when formatting the timestamp.

An empty string is interpreted as local time. The values "Z", "z" or 0 are interpreted as Universal Coordinated
Time (UTC).

Strings, other than "Z", "z", or "", must be on the form ±[hh]:[mm], for example "-02:00" or "+00:00".

Integers must be in microseconds, meaning that the offset 7200000000 is equivalent to "+02:00".

Defaults to an empty string, meaning that timestamps are displayed in local time. However, for backwards
compatibility, if the SASL configuration parameter utc_log=true, the default is changed to "Z", meaning
that timestamps are displayed in UTC.

The value of this parameter is used as the offset option to calendar:system_time_to_rfc3339/2.

metakey() = atom() | [atom()]

template() =
 [metakey() |
 {metakey(), template(), template()} |
 unicode:chardata()]
The template is a list of atoms, atom lists, tuples and strings. The atoms level or msg, are treated as placeholders
for the severity level and the log message, respectively. Other atoms or atom lists are interpreted as placeholders for
metadata, where atoms are expected to match top level keys, and atom lists represent paths to sub keys when the
metadata is a nested map. For example the list [key1,key2] is replaced by the value of the key2 field in the
nested map below. The atom key1 on its own is replaced by the complete value of the key1 field. The values are
converted to strings.

276 | Ericsson AB. All Rights Reserved.: Kernel

logger_formatter

#{key1 => #{key2 => my_value,
 ...}
 ...}

Tuples in the template express if-exist tests for metadata keys. For example, the following tuple says that if key1
exists in the metadata map, print "key1=Value", where Value is the value that key1 is associated with in the
metadata map. If key1 does not exist, print nothing.

{key1, ["key1=",key1], []}

Strings in the template are printed literally.

The default value for the template configuration parameter depends on the value of the single_line and
legacy_header configuration parameters as follows.

The log event used in the examples is:

?LOG_ERROR("name: ~p~nexit_reason: ~p", [my_name, "It crashed"])

legacy_header = true, single_line = false

Default template: [[logger_formatter,header],"\n",msg,"\n"]

Example log entry:

=ERROR REPORT==== 17-May-2018::18:30:19.453447 ===
name: my_name
exit_reason: "It crashed"

Notice that all eight levels can occur in the heading, not only ERROR, WARNING or INFO as error_logger
produces. And microseconds are added at the end of the timestamp.

legacy_header = true, single_line = true

Default template: [[logger_formatter,header],"\n",msg,"\n"]

Notice that the template is here the same as for single_line=false, but the resulting log entry differs in
that there is only one line after the heading:

=ERROR REPORT==== 17-May-2018::18:31:06.952665 ===
name: my_name, exit_reason: "It crashed"

legacy_header = false, single_line = true

Default template: [time," ",level,": ",msg,"\n"]

Example log entry:

2018-05-17T18:31:31.152864+02:00 error: name: my_name, exit_reason: "It crashed"

legacy_header = false, single_line = false

Default template: [time," ",level,":\n",msg,"\n"]

Example log entry:

2018-05-17T18:32:20.105422+02:00 error:
name: my_name
exit_reason: "It crashed"

Ericsson AB. All Rights Reserved.: Kernel | 277

logger_formatter

Exports

check_config(Config) -> ok | {error, term()}
Types:

Config = config()
The function is called by Logger when the formatter configuration for a handler is set or modified. It returns ok if the
configuration is valid, and {error,term()} if it is faulty.

The following Logger API functions can trigger this callback:

• logger:add_handler/3

• logger:set_handler_config/2,3

• logger:update_handler_config/2

• logger:update_formatter_config/2

format(LogEvent, Config) -> unicode:chardata()
Types:

LogEvent = logger:log_event()
Config = config()

This the formatter callback function to be called from handlers. The log event is processed as follows:

• If the message is on report form, it is converted to {Format,Args} by calling the report callback. See section
Log Message in the Kernel User's Guide for more information about report callbacks and valid forms of log
messages.

• The message size is limited according to the values of configuration parameters chars_limit and depth.

• The full log entry is composed according to the template.

• If the final string is too long, it is truncated according to the value of configuration parameter max_size.

See Also
calendar(3), error_logger(3), io(3), io_lib(3), logger(3), maps(3), sasl(6), unicode(3)

278 | Ericsson AB. All Rights Reserved.: Kernel

logger_std_h

logger_std_h
Erlang module

This is the standard handler for Logger. Multiple instances of this handler can be added to Logger, and each instance
prints logs to standard_io, standard_error, or to file.

The handler has an overload protection mechanism that keeps the handler process and the Kernel application alive
during high loads of log events. How overload protection works, and how to configure it, is described in the User's
Guide .

To add a new instance of the standard handler, use logger:add_handler/3 . The handler configuration argument
is a map which can contain general configuration parameters, as documented in the User's Guide , and handler
specific parameters. The specific data is stored in a sub map with the key config, and can contain the following
parameters:

type = standard_io | standard_error | file | {device, io:device()}

Specifies the log destination.

The value is set when the handler is added, and it cannot be changed in runtime.

Defaults to standard_io, unless parameter file is given, in which case it defaults to file.

file = file:filename()

This specifies the name of the log file when the handler is of type file.

The value is set when the handler is added, and it cannot be changed in runtime.

Defaults to the same name as the handler identity, in the current directory.

modes = [file:mode()]

This specifies the file modes to use when opening the log file, see file:open/2. If modes are not specified,
the default list used is [raw,append,delayed_write]. If modes are specified, the list replaces the default
modes list with the following adjustments:

• If raw is not found in the list, it is added.

• If none of write, append or exclusive is found in the list, append is added.

• If none of delayed_write or {delayed_write,Size,Delay} is found in the list,
delayed_write is added.

Log files are always UTF-8 encoded. The encoding cannot be changed by setting the mode
{encoding,Encoding}.

The value is set when the handler is added, and it cannot be changed in runtime.

Defaults to [raw,append,delayed_write].

max_no_bytes = pos_integer() | infinity

This parameter specifies if the log file should be rotated or not. The value infinity means the log file will
grow indefinitely, while an integer value specifies at which file size (bytes) the file is rotated.

Defaults to infinity.

max_no_files = non_neg_integer()

This parameter specifies the number of rotated log file archives to keep. This has meaning only if
max_no_bytes is set to an integer value.

Ericsson AB. All Rights Reserved.: Kernel | 279

logger_std_h

The log archives are named FileName.0, FileName.1, ... FileName.N, where FileName is the name
of the current log file. FileName.0 is the newest of the archives. The maximum value for N is the value of
max_no_files minus 1.

Notice that setting this value to 0 does not turn off rotation. It only specifies that no archives are kept.

Defaults to 0.

compress_on_rotate = boolean()

This parameter specifies if the rotated log file archives shall be compressed or not. If set to true, all archives
are compressed with gzip, and renamed to FileName.N.gz

compress_on_rotate has no meaning if max_no_bytes has the value infinity.

Defaults to false.

file_check = non_neg_integer()

When logger_std_h logs to a file, it reads the file information of the log file prior to each write operation. This
is to make sure the file still exists and has the same inode as when it was opened. This implies some performance
loss, but ensures that no log events are lost in the case when the file has been removed or renamed by an external
actor.

In order to allow minimizing the performance loss, the file_check parameter can be set to a positive integer
value, N. The handler will then skip reading the file information prior to writing, as long as no more than N
milliseconds have passed since it was last read.

Notice that the risk of losing log events grows when the file_check value grows.

Defaults to 0.

filesync_repeat_interval = pos_integer() | no_repeat

This value, in milliseconds, specifies how often the handler does a file sync operation to write buffered data to
disk. The handler attempts the operation repeatedly, but only performs a new sync if something has actually been
logged.

If no_repeat is set as value, the repeated file sync operation is disabled, and it is the operating system settings
that determine how quickly or slowly data is written to disk. The user can also call the filesync/1 function
to perform a file sync.

Defaults to 5000 milliseconds.

Other configuration parameters exist, to be used for customizing the overload protection behaviour. The same
parameters are used both in the standard handler and the disk_log handler, and are documented in the User's Guide .

Notice that if changing the configuration of the handler in runtime, the type, file, or modes parameters must not
be modified.

Example of adding a standard handler:

logger:add_handler(my_standard_h, logger_std_h,
 #{config => #{file => "./system_info.log",
 filesync_repeat_interval => 1000}}).

To set the default handler, that starts initially with the Kernel application, to log to file instead of standard_io,
change the Kernel default logger configuration. Example:

erl -kernel logger '[{handler,default,logger_std_h,
 #{config => #{file => "./log.log"}}}]'

An example of how to replace the standard handler with a disk_log handler at startup is found in the
logger_disk_log_h manual.

280 | Ericsson AB. All Rights Reserved.: Kernel

logger_std_h

Exports

filesync(Name) -> ok | {error, Reason}
Types:

Name = atom()
Reason = handler_busy | {badarg, term()}

Write buffered data to disk.

See Also
logger(3), logger_disk_log_h(3)

Ericsson AB. All Rights Reserved.: Kernel | 281

logger_disk_log_h

logger_disk_log_h
Erlang module

This is a handler for Logger that offers circular (wrapped) logs by using disk_log. Multiple instances of this handler
can be added to Logger, and each instance prints to its own disk log file, created with the name and settings specified
in the handler configuration.

The default standard handler, logger_std_h, can be replaced by a disk_log handler at startup of the Kernel
application. See an example of this below.

The handler has an overload protection mechanism that keeps the handler process and the Kernel application alive
during high loads of log events. How overload protection works, and how to configure it, is described in the User's
Guide .

To add a new instance of the disk_log handler, use logger:add_handler/3 . The handler configuration argument
is a map which can contain general configuration parameters, as documented in the User's Guide , and handler
specific parameters. The specific data is stored in a sub map with the key config, and can contain the following
parameters:

file

This is the full name of the disk log file. The option corresponds to the name property in the dlog_option()
datatype.

The value is set when the handler is added, and it cannot be changed in runtime.

Defaults to the same name as the handler identity, in the current directory.

type

This is the disk log type, wrap or halt. The option corresponds to the type property in the dlog_option()
datatype.

The value is set when the handler is added, and it cannot be changed in runtime.

Defaults to wrap.

max_no_files

This is the maximum number of files that disk_log uses for its circular logging. The option corresponds to the
MaxNoFiles element in the size property in the dlog_option() datatype.

The value is set when the handler is added, and it cannot be changed in runtime.

Defaults to 10.

The setting has no effect on a halt log.

max_no_bytes

This is the maximum number of bytes that is written to a log file before disk_log proceeds with the next file in
order, or generates an error in case of a full halt log. The option corresponds to the MaxNoBytes element in the
size property in the dlog_option() datatype.

The value is set when the handler is added, and it cannot be changed in runtime.

Defaults to 1048576 bytes for a wrap log, and infinity for a halt log.

filesync_repeat_interval

This value, in milliseconds, specifies how often the handler does a disk_log sync operation to write buffered data
to disk. The handler attempts the operation repeatedly, but only performs a new sync if something has actually
been logged.

282 | Ericsson AB. All Rights Reserved.: Kernel

logger_disk_log_h

Defaults to 5000 milliseconds.

If no_repeat is set as value, the repeated sync operation is disabled. The user can also call the filesync/1
function to perform a disk_log sync.

Other configuration parameters exist, to be used for customizing the overload protection behaviour. The same
parameters are used both in the standard handler and the disk_log handler, and are documented in the User's Guide .

Notice that when changing the configuration of the handler in runtime, the disk_log options (file, type,
max_no_files, max_no_bytes) must not be modified.

Example of adding a disk_log handler:

logger:add_handler(my_disk_log_h, logger_disk_log_h,
 #{config => #{file => "./my_disk_log",
 type => wrap,
 max_no_files => 4,
 max_no_bytes => 10000,
 filesync_repeat_interval => 1000}}).

To use the disk_log handler instead of the default standard handler when starting an Erlang node, change the Kernel
default logger to use logger_disk_log_h. Example:

erl -kernel logger '[{handler,default,logger_disk_log_h,
 #{config => #{file => "./system_disk_log"}}}]'

Exports

filesync(Name) -> ok | {error, Reason}
Types:

Name = atom()
Reason = handler_busy | {badarg, term()}

Write buffered data to disk.

See Also
logger(3), logger_std_h(3), disk_log(3)

Ericsson AB. All Rights Reserved.: Kernel | 283

net

net
Erlang module

This module provides an API for the network interface.

Data Types
address_info() =
 #{family := socket:domain(),
 socktype := socket:type(),
 protocol := socket:protocol(),
 address := socket:sockaddr()}
ifaddrs() =
 #{name := string(),
 flags := ifaddrs_flags(),
 addr => socket:sockaddr(),
 netmask => socket:sockaddr(),
 broadaddr => socket:sockaddr(),
 dstaddr => socket:sockaddr()}
This type defines all addresses (and flags) associated with the interface.

Note:

Not all fields of this map has to be present. The flags field can be used to test for some of the fields. For example
broadaddr will only be present if the broadcast flag is present in flags.

ifaddrs_flag() =
 up | broadcast | debug | loopback | pointopoint | notrailers |
 running | noarp | promisc | master | slave | multicast |
 portsel | automedia | dynamic
ifaddrs_flags() = [ifaddrs_flag()]
ifaddrs_filter() =
 all | default | inet | inet6 | packet |
 ifaddrs_filter_map() |
 ifaddrs_filter_fun()
all

All interfaces
default

Interfaces with address family inet and inet6
inet | inet6 | packet

Interfaces with only the specified address family

ifaddrs_filter_map() =
 #{family := default | inet | inet6 | packet | all,
 flags := any | [ifaddrs_flag()]}
The family field can only have the (above) specified values (and not all the values of socket:domain()).

The use of the flags field is that any flag provided must exist for the interface.

For example, if family is set to inet and flags to [broadcast, multicast] only interfaces with address
family inet and the flags broadcast and multicast will be listed.

284 | Ericsson AB. All Rights Reserved.: Kernel

net

ifaddrs_filter_fun() = fun((ifaddrs()) -> boolean())
For each ifaddrs entry, return either true to keep the entry or false to discard the entry.

For example, to get an interface list which only contains non-loopback inet interfaces:

 net:getifaddrs(fun(#{addr := #{family := inet},
 flags := Flags}) ->
 not lists:member(loopback, Flags);
 (_) ->
 false
 end).

name_info() = #{host := string(), service := string()}
name_info_flags() = [name_info_flag() | name_info_flag_ext()]
name_info_flag() =
 namereqd | dgram | nofqdn | numerichost | numericserv
name_info_flag_ext() = idn
network_interface_name() = string()
network_interface_index() = integer() >= 0

Exports

gethostname() -> {ok, HostName} | {error, Reason}
Types:

HostName = string()
Reason = term()

Returns the name of the current host.

getnameinfo(SockAddr) -> {ok, Info} | {error, Reason}
getnameinfo(SockAddr, Flags) -> {ok, Info} | {error, Reason}
Types:

SockAddr = socket:sockaddr()
Flags = name_info_flags() | undefined
Info = name_info()
Reason = term()

Address-to-name translation in a protocol-independant manner.

This function is the inverse of getaddrinfo. It converts a socket address to a corresponding host and service.

getaddrinfo(Host) -> {ok, Info} | {error, Reason}
getaddrinfo(Host, Service :: undefined) ->
 {ok, Info} | {error, Reason}
getaddrinfo(Host :: undefined, Service) ->
 {ok, Info} | {error, Reason}
getaddrinfo(Host, Service) -> {ok, Info} | {error, Reason}
Types:

Ericsson AB. All Rights Reserved.: Kernel | 285

net

Host = Service = string()
Info = [address_info()]
Reason = term()

Network address and service translation.

This function is the inverse of getnameinfo. It converts host and service to a corresponding socket address.

One of the Host and Service may be undefined but not both.

getifaddrs() -> {ok, IfAddrs} | {error, Reason}
getifaddrs(Filter) -> {ok, IfAddrs} | {error, Reason}
getifaddrs(Namespace) -> {ok, IfAddrs} | {error, Reason}
getifaddrs(Filter, Namespace) -> {ok, IfAddrs} | {error, Reason}
Types:

Filter = ifaddrs_filter()
Namespace = file:filename_all()
IfAddrs = [ifaddrs()]
Reason = term()

Get interface addresses.

This function is used to get the machines interface addresses, possibly filtered according to Filter.

By default, a filter with the content: #{family => default, flags => any} is used. This will return all
interfaces with addresses in the inet and inet6 families.

if_name2index(Name) -> {ok, Idx} | {error, Reason}
Types:

Name = network_interface_name()
Idx = network_interface_index()
Reason = term()

Mappings between network interface names and indexes.

if_index2name(Idx) -> {ok, Name} | {error, Reason}
Types:

Idx = network_interface_index()
Name = network_interface_name()
Reason = term()

Mappings between network interface index and names.

if_names() -> {ok, Names} | {error, Reason}
Types:

Names = [{Idx, If}]
Idx = network_interface_index()
If = network_interface_name()
Reason = term()

Get network interface names and indexes.

286 | Ericsson AB. All Rights Reserved.: Kernel

net_adm

net_adm
Erlang module

This module contains various network utility functions.

Exports

dns_hostname(Host) -> {ok, Name} | {error, Host}
Types:

Host = atom() | string()
Name = string()

Returns the official name of Host, or {error, Host} if no such name is found. See also inet(3).

host_file() -> Hosts | {error, Reason}
Types:

Hosts = [Host :: atom()]
Reason =
 file:posix() |
 badarg | terminated | system_limit |
 {Line :: integer(), Mod :: module(), Term :: term()}

Reads file .hosts.erlang, see section Files. Returns the hosts in this file as a list. Returns {error, Reason}
if the file cannot be read or the Erlang terms on the file cannot be interpreted.

localhost() -> Name
Types:

Name = string()
Returns the name of the local host. If Erlang was started with command-line flag -name, Name is the fully qualified
name.

names() -> {ok, [{Name, Port}]} | {error, Reason}
names(Host) -> {ok, [{Name, Port}]} | {error, Reason}
Types:

Host = atom() | string() | inet:ip_address()
Name = string()
Port = integer() >= 0
Reason = address | file:posix()

Similar to epmd -names, see erts:epmd(1). Host defaults to the local host. Returns the names and associated
port numbers of the Erlang nodes that epmd registered at the specified host. Returns {error, address} if epmd
is not operational.

Example:

(arne@dunn)1> net_adm:names().
{ok,[{"arne",40262}]}

Ericsson AB. All Rights Reserved.: Kernel | 287

net_adm

ping(Node) -> pong | pang
Types:

Node = atom()
Sets up a connection to Node. Returns pong if it is successful, otherwise pang.

world() -> [node()]
world(Arg) -> [node()]
Types:

Arg = verbosity()
verbosity() = silent | verbose

Calls names(Host) for all hosts that are specified in the Erlang host file .hosts.erlang, collects the replies,
and then evaluates ping(Node) on all those nodes. Returns the list of all nodes that are successfully pinged.

Arg defaults to silent. If Arg == verbose, the function writes information about which nodes it is pinging
to stdout.

This function can be useful when a node is started, and the names of the other network nodes are not initially known.

Returns {error, Reason} if host_file() returns {error, Reason}.

world_list(Hosts) -> [node()]
world_list(Hosts, Arg) -> [node()]
Types:

Hosts = [atom()]
Arg = verbosity()
verbosity() = silent | verbose

Same as world/0,1, but the hosts are specified as argument instead of being read from .hosts.erlang.

Files
File .hosts.erlang consists of a number of host names written as Erlang terms. It is looked for in the current
work directory, the user's home directory, and $OTP_ROOT (the root directory of Erlang/OTP), in that order.

The format of file .hosts.erlang must be one host name per line. The host names must be within quotes.

Example:

'super.eua.ericsson.se'.
'renat.eua.ericsson.se'.
'grouse.eua.ericsson.se'.
'gauffin1.eua.ericsson.se'.
^ (new line)

288 | Ericsson AB. All Rights Reserved.: Kernel

net_kernel

net_kernel
Erlang module

The net kernel is a system process, registered as net_kernel, which must be operational for distributed Erlang to
work. The purpose of this process is to implement parts of the BIFs spawn/4 and spawn_link/4, and to provide
monitoring of the network.

An Erlang node is started using command-line flag -name or -sname:

$ erl -sname foobar

It is also possible to call net_kernel:start(foobar, #{}) directly from the normal Erlang shell prompt:

1> net_kernel:start(foobar, #{name_domain => shortnames}).
{ok,<0.64.0>}
(foobar@gringotts)2>

If the node is started with command-line flag -sname, the node name is foobar@Host, where Host is the short
name of the host (not the fully qualified domain name). If started with flag -name, the node name is foobar@Host,
where Host is the fully qualified domain name. For more information, see erl.

Normally, connections are established automatically when another node is referenced. This functionality can be
disabled by setting Kernel configuration parameter dist_auto_connect to never, see kernel(6). In this
case, connections must be established explicitly by calling connect_node/1.

Which nodes that are allowed to communicate with each other is handled by the magic cookie system, see section
Distributed Erlang in the Erlang Reference Manual.

Warning:

Starting a distributed node without also specifying -proto_dist inet_tls will expose the node to attacks that
may give the attacker complete access to the node and in extension the cluster. When using un-secure distributed
nodes, make sure that the network is configured to keep potential attackers out. See the Using SSL for Erlang
Distribution User's Guide for details on how to setup a secure distributed node.

Exports

allow(Nodes) -> ok | error
Types:

Nodes = [node()]
Permits access to the specified set of nodes.

Before the first call to allow/1, any node with the correct cookie can be connected. When allow/1 is called, a list
of allowed nodes is established. Any access attempts made from (or to) nodes not in that list will be rejected.

Subsequent calls to allow/1 will add the specified nodes to the list of allowed nodes. It is not possible to remove
nodes from the list.

Returns error if any element in Nodes is not an atom.

Ericsson AB. All Rights Reserved.: Kernel | 289

net_kernel

connect_node(Node) -> boolean() | ignored
Types:

Node = node()
Establishes a connection to Node. Returns true if a connection was established or was already established or if Node
is the local node itself. Returns false if the connection attempt failed, and ignored if the local node is not alive.

get_net_ticktime() -> Res
Types:

Res = NetTicktime | {ongoing_change_to, NetTicktime} | ignored
NetTicktime = integer() >= 1

Returns currently used net tick time in seconds. For more information see the net_ticktime kernel(6)
parameter.

Defined return values (Res):

NetTicktime

net_ticktime is NetTicktime seconds.

{ongoing_change_to, NetTicktime}

net_kernel is currently changing net_ticktime to NetTicktime seconds.

ignored

The local node is not alive.

getopts(Node, Options) ->
 {ok, OptionValues} | {error, Reason} | ignored
Types:

Node = node()
Options = [inet:socket_getopt()]
OptionValues = [inet:socket_setopt()]
Reason = inet:posix() | noconnection

Get one or more options for the distribution socket connected to Node.

If Node is a connected node the return value is the same as from inet:getopts(Sock, Options) where Sock
is the distribution socket for Node.

Returns ignored if the local node is not alive or {error, noconnection} if Node is not connected.

get_state() ->
 #{started => no | static | dynamic,
 name => atom(),
 name_type => static | dynamic,
 name_domain => shortnames | longnames}
Get the current state of the distribution for the local node.

Returns a map with (at least) the following key-value pairs:

started => Started

Valid values for Started:

290 | Ericsson AB. All Rights Reserved.: Kernel

net_kernel

no

The distribution is not started. In this state none of the other keys below are present in the map.

static

The distribution was started with command line arguments -name or -sname.

dynamic

The distribution was started with net_kernel:start/1 and can be stopped with
net_kernel:stop/0.

name => Name

The name of the node. Same as returned by erlang:node/0 except when name_type is dynamic in which
case Name may be undefined (instead of nonode@nohost).

name_type => NameType

Valid values for NameType:

static

The node has a static node name set by the node itself.

dynamic

The distribution was started in dynamic node name mode, and will get its node name assigned from the first
node it connects to. If key name has value undefined that has not happened yet.

name_domain => NameDomain

Valid values for NameDomain:

shortnames

The distribution was started to use node names with a short host portion (not fully qualified).

longnames

The distribution was started to use node names with a long fully qualified host portion.

monitor_nodes(Flag) -> ok | Error
monitor_nodes(Flag, Options) -> ok | Error
Types:

Flag = boolean()
Options = OptionsList | OptionsMap
OptionsList = [ListOption]
ListOption =
 connection_id | {node_type, NodeType} | nodedown_reason
OptionsMap =
 #{connection_id => boolean(),
 node_type => NodeType,
 nodedown_reason => boolean()}
NodeType = visible | hidden | all
Error = error | {error, term()}

The calling process subscribes or unsubscribes to node status change messages. A nodeup message is delivered
to all subscribing processes when a new node is connected, and a nodedown message is delivered when a node is
disconnected.

Ericsson AB. All Rights Reserved.: Kernel | 291

net_kernel

If Flag is true, a new subscription is started. If Flag is false, all previous subscriptions started with the same
Options are stopped. Two option lists are considered the same if they contain the same set of options.

Delivery guarantees of nodeup/nodedown messages:

• nodeup messages are delivered before delivery of any signals from the remote node through the newly
established connection.

• nodedown messages are delivered after all the signals from the remote node over the connection have been
delivered.

• nodeup messages are delivered after the corresponding node appears in results from erlang:nodes().

• nodedown messages are delivered after the corresponding node has disappeared in results from
erlang:nodes().

• As of OTP 23.0, a nodedown message for a connection being taken down will be delivered before a nodeup
message due to a new connection to the same node. Prior to OTP 23.0, this was not guaranteed to be the case.

The format of the node status change messages depends on Options. If Options is the empty list or if
net_kernel:monitor_nodes/1 is called, the format is as follows:

{nodeup, Node} | {nodedown, Node}
 Node = node()

When Options is the empty map or empty list, the caller will only subscribe for status change messages for visible
nodes. That is, only nodes that appear in the result of erlang:nodes/0.

If Options equals anything other than the empty list, the format of the status change messages is as follows:

{nodeup, Node, Info} | {nodedown, Node, Info}
 Node = node()
 Info = #{Tag => Val} | [{Tag, Val}]

Info is either a map or a list of 2-tuples. Its content depends on Options. If Options is a map, Info will also
be a map. If Options is a list, Info will also be a list.

When Options is a map, currently the following associations are allowed:

connection_id => boolean()

If the value of the association equals true, a connection_id => ConnectionId association will be
included in the Info map where ConnectionId is the connection identifier of the connection coming up or
going down. For more info about this connection identifier see the documentation of erlang:nodes/2.

node_type => NodeType

Valid values for NodeType:

visible

Subscribe to node status change messages for visible nodes only. The association node_type =>
visible will be included in the Info map.

hidden

Subscribe to node status change messages for hidden nodes only. The association node_type =>
hidden will be included in the Info map.

all

Subscribe to node status change messages for both visible and hidden nodes. The association node_type
=> visible | hidden will be included in the Info map.

292 | Ericsson AB. All Rights Reserved.: Kernel

net_kernel

If no node_type => NodeType association is included in the Options map, the caller will subscribe for
status change messages for visible nodes only, but no node_type => visible association will be included
in the Info map.

nodedown_reason => boolean()

If the value of the association equals true, a nodedown_reason => Reason association will be included
in the Info map for nodedown messages.

Reason can, depending on which distribution module or process that is used, be any term, but for the standard
TCP distribution module it is one of the following:

connection_setup_failed

The connection setup failed (after nodeup messages were sent).

no_network

No network is available.

net_kernel_terminated

The net_kernel process terminated.

shutdown

Unspecified connection shutdown.

connection_closed

The connection was closed.

disconnect

The connection was disconnected (forced from the current node).

net_tick_timeout

Net tick time-out.

send_net_tick_failed

Failed to send net tick over the connection.

get_status_failed

Status information retrieval from the Port holding the connection failed.

When Options is a list, currently ListOption can be one of the following:

connection_id

A {connection_id, ConnectionId} tuple will be included in Info where ConnectionId is the
connection identifier of the connection coming up or going down. For more info about this connection identifier
see the documentation of erlang:nodes/2.

{node_type, NodeType}

Valid values for NodeType:

visible

Subscribe to node status change messages for visible nodes only. The tuple {node_type, visible}
will be included in the Info list.

hidden

Subscribe to node status change messages for hidden nodes only. The tuple {node_type, hidden}
will be included in the Info list.

Ericsson AB. All Rights Reserved.: Kernel | 293

net_kernel

all

Subscribe to node status change messages for both visible and hidden nodes. The tuple {node_type,
visible | hidden} will be included in the Info list.

If no {node_type, NodeType} option has been given. The caller will subscribe for status change messages
for visible nodes only, but no {node_type, visible} tuple will be included in the Info list.

nodedown_reason

The tuple {nodedown_reason, Reason} will be included in the Info list for nodedown messages.

See the documentation of the nodedown_reason => boolean() association above for information about
possible Reason values.

Example:

(a@localhost)1> net_kernel:monitor_nodes(true, #{connection_id=>true, node_type=>all, nodedown_reason=>true}).
ok
(a@localhost)2> flush().
Shell got {nodeup,b@localhost,
 #{connection_id => 3067552,node_type => visible}}
Shell got {nodeup,c@localhost,
 #{connection_id => 13892107,node_type => hidden}}
Shell got {nodedown,b@localhost,
 #{connection_id => 3067552,node_type => visible,
 nodedown_reason => connection_closed}}
Shell got {nodedown,c@localhost,
 #{connection_id => 13892107,node_type => hidden,
 nodedown_reason => net_tick_timeout}}
Shell got {nodeup,b@localhost,
 #{connection_id => 3067553,node_type => visible}}
ok
(a@localhost)3>

set_net_ticktime(NetTicktime) -> Res
set_net_ticktime(NetTicktime, TransitionPeriod) -> Res
Types:

NetTicktime = integer() >= 1
TransitionPeriod = integer() >= 0
Res =
 unchanged | change_initiated |
 {ongoing_change_to, NewNetTicktime}
NewNetTicktime = integer() >= 1

Sets net_ticktime (see kernel(6)) to NetTicktime seconds. TransitionPeriod defaults to 60.

Some definitions:

Minimum transition traffic interval (MTTI)

minimum(NetTicktime, PreviousNetTicktime)*1000 div 4 milliseconds.

Transition period

The time of the least number of consecutive MTTIs to cover TransitionPeriod seconds following the call
to set_net_ticktime/2 (that is, ((TransitionPeriod*1000 - 1) div MTTI + 1)*MTTI
milliseconds).

294 | Ericsson AB. All Rights Reserved.: Kernel

net_kernel

If NetTicktime < PreviousNetTicktime, the net_ticktime change is done at the end of the transition
period; otherwise at the beginning. During the transition period, net_kernel ensures that there is outgoing traffic
on all connections at least every MTTI millisecond.

Note:

The net_ticktime changes must be initiated on all nodes in the network (with the same NetTicktime)
before the end of any transition period on any node; otherwise connections can erroneously be disconnected.

Returns one of the following:

unchanged

net_ticktime already has the value of NetTicktime and is left unchanged.

change_initiated

net_kernel initiated the change of net_ticktime to NetTicktime seconds.

{ongoing_change_to, NewNetTicktime}

The request is ignored because net_kernel is busy changing net_ticktime to NewNetTicktime
seconds.

setopts(Node, Options) -> ok | {error, Reason} | ignored
Types:

Node = node() | new
Options = [inet:socket_setopt()]
Reason = inet:posix() | noconnection

Set one or more options for distribution sockets. Argument Node can be either one node name or the atom new to
affect the distribution sockets of all future connected nodes.

The return value is the same as from inet:setopts/2 or {error, noconnection} if Node is not a connected
node or new.

If Node is new the Options will then also be added to kernel configuration parameters inet_dist_listen_options and
inet_dist_connect_options.

Returns ignored if the local node is not alive.

start(Name, Options) -> {ok, pid()} | {error, Reason}
Types:

Options =
 #{name_domain => NameDomain,
 net_ticktime => NetTickTime,
 net_tickintensity => NetTickIntensity,
 dist_listen => boolean(),
 hidden => boolean()}
Name = atom()
NameDomain = shortnames | longnames
NetTickTime = integer() >= 1
NetTickIntensity = 4..1000
Reason = {already_started, pid()} | term()

Turns a non-distributed node into a distributed node by starting net_kernel and other necessary processes.

Ericsson AB. All Rights Reserved.: Kernel | 295

net_kernel

If Name is set to undefined the distribution will be started to request a dynamic node name from the first node it
connects to. See Dynamic Node Name. Setting Name to undefined implies options dist_listen => false
and hidden => true.

Currently supported options:

name_domain => NameDomain

Determines the host name part of the node name. If NameDomain equals longnames, fully qualified domain
names will be used which also is the default. If NameDomain equals shortnames, only the short name of
the host will be used.

net_ticktime => NetTickTime

Net tick time to use in seconds. Defaults to the value of the net_ticktime kernel(6) parameter. For more
information about net tick time, see the kernel parameter. However, note that if the value of the kernel
parameter is invalid, it will silently be replaced by a valid value, but if an invalid NetTickTime value is passed
as option value to this function, the call will fail.

net_tickintensity => NetTickIntensity

Net tick intensity to use. Defaults to the value of the net_tickintensity kernel(6) parameter. For more
information about net tick intensity, see the kernel parameter. However, note that if the value of the kernel
parameter is invalid, it will silently be replaced by a valid value, but if an invalid NetTickIntensity value
is passed as option value to this function, the call will fail.

dist_listen => boolean()

Enable or disable listening for incoming connections. Defaults to the value of the -dist_listen erl
command line argument. Note that dist_listen => false implies hidden => true.

If undefined has been passed as Name, the dist_listen option will be overridden with dist_listen
=> false.

hidden => boolean()

Enable or disable hidden node. Defaults to true if the -hidden erl command line argument has been passed;
otherwise false.

If undefined has been passed as Name, or the option dist_listen equals false, the hidden option will
be overridden with hidden => true.

start(Options) -> {ok, pid()} | {error, Reason}
Types:

Options = [Name | NameDomain | TickTime, ...]
Name = atom()
NameDomain = shortnames | longnames
TickTime = integer() >= 1
Reason = {already_started, pid()} | term()

Warning:

start/1 is deprecated. Use start/2 instead.

Turns a non-distributed node into a distributed node by starting net_kernel and other necessary processes.

Options list can only be exactly one of the following lists (order is imporant):

296 | Ericsson AB. All Rights Reserved.: Kernel

net_kernel

[Name]

The same as net_kernel:start([Name, longnames, 15000]).

[Name, NameDomain]

The same as net_kernel:start([Name, NameDomain, 15000]).

[Name, NameDomain, TickTime]

The same as net_kernel:start(Name, #{name_domain => NameDomain, net_ticktime
=> ((TickTime*4-1) div 1000) + 1, net_tickintensity => 4}). Note that TickTime
is not the same as net tick time expressed in milliseconds. TickTime is the time between ticks when net tick
intensity equals 4.

stop() -> ok | {error, Reason}
Types:

Reason = not_allowed | not_found
Turns a distributed node into a non-distributed node. For other nodes in the network, this is the same as the node going
down. Only possible when the net kernel was started using start/2, otherwise {error, not_allowed} is
returned. Returns {error, not_found} if the local node is not alive.

Ericsson AB. All Rights Reserved.: Kernel | 297

os

os
Erlang module

The functions in this module are operating system-specific. Careless use of these functions results in programs that
will only run on a specific platform. On the other hand, with careful use, these functions can be of help in enabling
a program to run on most platforms.

Note:

The functions in this module will raise a badarg exception if their arguments contain invalid characters according
to the description in the "Data Types" section.

Data Types
env_var_name() = nonempty_string()
A string containing valid characters on the specific OS for environment variable names using
file:native_name_encoding() encoding. Null characters (integer value zero) are not allowed. On Unix, =
characters are not allowed. On Windows, a = character is only allowed as the very first character in the string.

env_var_value() = string()
A string containing valid characters on the specific OS for environment variable values using
file:native_name_encoding() encoding. Null characters (integer value zero) are not allowed.

env_var_name_value() = nonempty_string()
Assuming that environment variables has been correctly set, a strings containing valid characters on the specific OS for
environment variable names and values using file:native_name_encoding() encoding. The first = characters
appearing in the string separates environment variable name (on the left) from environment variable value (on the
right).

os_command() = atom() | io_lib:chars()
All characters needs to be valid characters on the specific OS using file:native_name_encoding() encoding.
Null characters (integer value zero) are not allowed.

os_command_opts() = #{max_size => integer() >= 0 | infinity}
Options for os:cmd/2

max_size

The maximum size of the data returned by the os:cmd/2 call. See the os:cmd/2 documentation for more
details.

Exports

cmd(Command) -> string()
cmd(Command, Options) -> string()
Types:

298 | Ericsson AB. All Rights Reserved.: Kernel

os

Command = os_command()
Options = os_command_opts()

Executes Command in a command shell of the target OS, captures the standard output of the command, and returns
this result as a string.

Examples:

LsOut = os:cmd("ls"), % on unix platform
DirOut = os:cmd("dir"), % on Win32 platform

Notice that in some cases, standard output of a command when called from another program (for example, os:cmd/1)
can differ, compared with the standard output of the command when called directly from an OS command shell.

os:cmd/2 was added in kernel-5.5 (OTP-20.2.1). It makes it possible to pass an options map as the second argument
in order to control the behaviour of os:cmd. The possible options are:

max_size

The maximum size of the data returned by the os:cmd call. This option is a safety feature that should be used
when the command executed can return a very large, possibly infinite, result.

> os:cmd("cat /dev/zero", #{ max_size => 20 }).
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]

env() -> [{env_var_name(), env_var_value()}]
Returns a list of all environment variables. Each environment variable is expressed as a tuple {VarName,Value},
where VarName is the name of the variable and Value its value.

If Unicode filename encoding is in effect (see the erl manual page), the strings can contain characters with codepoints
> 255.

find_executable(Name) -> Filename | false
find_executable(Name, Path) -> Filename | false
Types:

Name = Path = Filename = string()

These two functions look up an executable program, with the specified name and a search path, in the same way as
the underlying OS. find_executable/1 uses the current execution path (that is, the environment variable PATH
on Unix and Windows).

Path, if specified, is to conform to the syntax of execution paths on the OS. Returns the absolute filename of the
executable program Name, or false if the program is not found.

getenv() -> [env_var_name_value()]
Returns a list of all environment variables. Each environment variable is expressed as a single string on the format
"VarName=Value", where VarName is the name of the variable and Value its value.

If Unicode filename encoding is in effect (see the erl manual page), the strings can contain characters with codepoints
> 255.

Consider using env/0 for a nicer 2-tuple format.

getenv(VarName) -> Value | false
Types:

Ericsson AB. All Rights Reserved.: Kernel | 299

os

VarName = env_var_name()
Value = env_var_value()

Returns the Value of the environment variable VarName, or false if the environment variable is undefined.

If Unicode filename encoding is in effect (see the erl manual page), the strings VarName and Value can contain
characters with codepoints > 255.

getenv(VarName, DefaultValue) -> Value
Types:

VarName = env_var_name()
DefaultValue = Value = env_var_value()

Returns the Value of the environment variable VarName, or DefaultValue if the environment variable is
undefined.

If Unicode filename encoding is in effect (see the erl manual page), the strings VarName and Value can contain
characters with codepoints > 255.

getpid() -> Value
Types:

Value = string()
Returns the process identifier of the current Erlang emulator in the format most commonly used by the OS
environment. Returns Value as a string containing the (usually) numerical identifier for a process. On Unix,
this is typically the return value of the getpid() system call. On Windows, the process id as returned by the
GetCurrentProcessId() system call is used.

putenv(VarName, Value) -> true
Types:

VarName = env_var_name()
Value = env_var_value()

Sets a new Value for environment variable VarName.

If Unicode filename encoding is in effect (see the erl manual page), the strings VarName and Value can contain
characters with codepoints > 255.

On Unix platforms, the environment is set using UTF-8 encoding if Unicode filename translation is in effect. On
Windows, the environment is set using wide character interfaces.

set_signal(Signal, Option) -> ok
Types:

Signal =
 sighup | sigquit | sigabrt | sigalrm | sigterm | sigusr1 |
 sigusr2 | sigchld | sigstop | sigtstp
Option = default | handle | ignore

Enables or disables OS signals.

Each signal my be set to one of the following options:

ignore
This signal will be ignored.

300 | Ericsson AB. All Rights Reserved.: Kernel

os

default
This signal will use the default signal handler for the operating system.

handle
This signal will notify erl_signal_server when it is received by the Erlang runtime system.

system_time() -> integer()
Returns the current OS system time in native time unit.

Note:

This time is not a monotonically increasing time.

system_time(Unit) -> integer()
Types:

Unit = erlang:time_unit()
Returns the current OS system time converted into the Unit passed as argument.

Calling os:system_time(Unit) is equivalent to erlang:convert_time_unit(os:system_time(),
native, Unit).

Note:

This time is not a monotonically increasing time.

timestamp() -> Timestamp
Types:

Timestamp = erlang:timestamp()
Timestamp = {MegaSecs, Secs, MicroSecs}

Returns the current OS system time in the same format as erlang:timestamp/0. The tuple can be used
together with function calendar:now_to_universal_time/1 or calendar:now_to_local_time/1
to get calendar time. Using the calendar time, together with the MicroSecs part of the return tuple from this function,
allows you to log time stamps in high resolution and consistent with the time in the rest of the OS.

Example of code formatting a string in format "DD Mon YYYY HH:MM:SS.mmmmmm", where DD is the day of
month, Mon is the textual month name, YYYY is the year, HH:MM:SS is the time, and mmmmmm is the microseconds
in six positions:

-module(print_time).
-export([format_utc_timestamp/0]).
format_utc_timestamp() ->
 TS = {_,_,Micro} = os:timestamp(),
 {{Year,Month,Day},{Hour,Minute,Second}} =
calendar:now_to_universal_time(TS),
 Mstr = element(Month,{"Jan","Feb","Mar","Apr","May","Jun","Jul",
 "Aug","Sep","Oct","Nov","Dec"}),
 io_lib:format("~2w ~s ~4w ~2w:~2..0w:~2..0w.~6..0w",
 [Day,Mstr,Year,Hour,Minute,Second,Micro]).

This module can be used as follows:

Ericsson AB. All Rights Reserved.: Kernel | 301

os

1> io:format("~s~n",[print_time:format_utc_timestamp()]).
29 Apr 2009 9:55:30.051711

OS system time can also be retrieved by system_time/0 and system_time/1.

perf_counter() -> Counter
Types:

Counter = integer()
Returns the current performance counter value in perf_counter time unit. This is a highly optimized call that
might not be traceable.

perf_counter(Unit) -> integer()
Types:

Unit = erlang:time_unit()
Returns a performance counter that can be used as a very fast and high resolution timestamp. This counter is read
directly from the hardware or operating system with the same guarantees. This means that two consecutive calls to the
function are not guaranteed to be monotonic, though it most likely will be. The performance counter will be converted
to the resolution passed as an argument.

1> T1 = os:perf_counter(1000),receive after 10000 -> ok end,T2 = os:perf_counter(1000).
176525861
2> T2 - T1.
10004

type() -> {Osfamily, Osname}
Types:

Osfamily = unix | win32
Osname = atom()

Returns the Osfamily and, in some cases, the Osname of the current OS.

On Unix, Osname has the same value as uname -s returns, but in lower case. For example, on Solaris 1 and 2,
it is sunos.

On Windows, Osname is nt.

Note:

Think twice before using this function. Use module filename if you want to inspect or build filenames in a
portable way. Avoid matching on atom Osname.

unsetenv(VarName) -> true
Types:

VarName = env_var_name()
Deletes the environment variable VarName.

If Unicode filename encoding is in effect (see the erl manual page), the string VarName can contain characters
with codepoints > 255.

302 | Ericsson AB. All Rights Reserved.: Kernel

os

version() -> VersionString | {Major, Minor, Release}
Types:

VersionString = string()
Major = Minor = Release = integer() >= 0

Returns the OS version. On most systems, this function returns a tuple, but a string is returned instead if the system
has versions that cannot be expressed as three numbers.

Note:

Think twice before using this function. If you still need to use it, always call os:type() first.

Ericsson AB. All Rights Reserved.: Kernel | 303

pg

pg
Erlang module

This module implements process groups. A message can be sent to one, some, or all group members.

Up until OTP 17 there used to exist an experimental pg module in stdlib. This pg module is not the same module
as that experimental pg module, and only share the same module name.

A group of processes can be accessed by a common name. For example, if there is a group named foobar, there can
be a set of processes (which can be located on different nodes) that are all members of the group foobar. There are
no special functions for sending a message to the group. Instead, client functions are to be written with the functions
get_members/1 and get_local_members/1 to determine which processes are members of the group. Then
the message can be sent to one or more group members.

If a member terminates, it is automatically removed from the group.

A process may join multiple groups. It may join the same group multiple times. It is only allowed to join processes
running on local node.

Process Groups implement strong eventual consistency. Process Groups membership view may temporarily diverge.
For example, when processes on node1 and node2 join concurrently, node3 and node4 may receive updates in
a different order.

Membership view is not transitive. If node1 is not directly connected to node2, they will not see each other groups.
But if both are connected to node3, node3 will have the full view.

Groups are automatically created when any process joins, and are removed when all processes leave the group. Non-
existing group is considered empty (containing no processes).

Process groups can be organised into multiple scopes. Scopes are completely independent of each other. A process
may join any number of groups in any number of scopes. Scopes are designed to decouple single mesh into a set of
overlay networks, reducing amount of traffic required to propagate group membership information. Default scope pg
is started automatically when kernel(6) is configured to do so.

Note:

Scope name is used to register process locally, and to name an ETS table. If there is another process registered
under this name, or another ETS table exists, scope fails to start.

Local membership is not preserved if scope process exits and restarts.

A scope can be kept local-only by using a scope name that is unique cluster-wide, e.g. the node name:

pg:start_link(node()).

Data Types
group() = any()
The identifier of a process group.

Exports

start_link() -> {ok, pid()} | {error, any()}
Starts the default pg scope within supervision tree. Kernel may be configured to do it automatically, see kernel(6)
configuration manual.

304 | Ericsson AB. All Rights Reserved.: Kernel

pg

start(Scope :: atom()) -> {ok, pid()} | {error, any()}
start_link(Scope :: atom()) -> {ok, pid()} | {error, any()}
Starts additional scope.

join(Group :: group(), PidOrPids :: pid() | [pid()]) -> ok
join(Scope :: atom(),
 Group :: group(),
 PidOrPids :: pid() | [pid()]) ->
 ok
Joins single process or multiple processes to the group Group. A process can join a group many times and must then
leave the group the same number of times.

PidOrPids may contain the same process multiple times.

leave(Group :: group(), PidOrPids :: pid() | [pid()]) -> ok
leave(Scope :: atom(),
 Group :: group(),
 PidOrPids :: pid() | [pid()]) ->
 ok | not_joined
Makes the process PidOrPids leave the group Group. If the process is not a member of the group, not_joined
is returned.

When list of processes is passed as PidOrPids, function returns not_joined only when all processes of the list
are not joined.

monitor_scope() -> {reference(), #{group() => [pid()]}}
monitor_scope(Scope :: atom()) ->
 {reference(), #{group() => [pid()]}}
Subscribes the caller to updates from the specified scope. Returns content of the entire scope and a reference to match
the upcoming notifications.

Whenever any group membership changes, an update message is sent to the subscriber:

{Ref, join, Group, [JoinPid1, JoinPid2]}

{Ref, leave, Group, [LeavePid1]}

monitor(Group :: group()) -> {reference(), [pid()]}
monitor(Scope :: atom(), Group :: group()) ->
 {reference(), [pid()]}
Subscribes the caller to updates for the specified group. Returns list of processes currently in the group, and a reference
to match the upcoming notifications.

See monitor_scope/0 for the update message structure.

demonitor(Ref :: reference()) -> ok | false
demonitor(Scope :: atom(), Ref :: reference()) -> ok | false
Unsubscribes the caller from updates (scope or group). Flushes all outstanding updates that were already in the message
queue of the calling process.

Ericsson AB. All Rights Reserved.: Kernel | 305

pg

get_local_members(Group :: group()) -> [pid()]
get_local_members(Scope :: atom(), Group :: group()) -> [pid()]
Returns all processes running on the local node in the group Group. Processes are returned in no specific order. This
function is optimised for speed.

get_members(Group :: group()) -> [pid()]
get_members(Scope :: atom(), Group :: group()) -> [pid()]
Returns all processes in the group Group. Processes are returned in no specific order. This function is optimised for
speed.

which_groups() -> [Group :: group()]
which_groups(Scope :: atom()) -> [Group :: group()]
Returns a list of all known groups.

See Also
kernel(6)

306 | Ericsson AB. All Rights Reserved.: Kernel

rpc

rpc
Erlang module

This module contains services similar to Remote Procedure Calls. It also contains broadcast facilities and parallel
evaluators. A remote procedure call is a method to call a function on a remote node and collect the answer. It is used for
collecting information on a remote node, or for running a function with some specific side effects on the remote node.

Note:

rpc:call() and friends makes it quite hard to distinguish between successful results, raised exceptions, and
other errors. This cannot be changed due to compatibility reasons. As of OTP 23, a new module erpc was
introduced in order to provide an API that makes it possible to distinguish between the different results. The erpc
module provides a subset (however, the central subset) of the functionality available in the rpc module. The
erpc implementation also provides a more scalable implementation with better performance than the original rpc
implementation. However, since the introduction of erpc, the rpc module implements large parts of its central
functionality using erpc, so the rpc module won't not suffer scalability wise and performance wise compared
to erpc.

Data Types
key()
Opaque value returned by async_call/4.

Exports

abcast(Name, Msg) -> abcast
Types:

Name = atom()
Msg = term()

Equivalent to abcast([node()|nodes()], Name, Msg).

abcast(Nodes, Name, Msg) -> abcast
Types:

Nodes = [node()]
Name = atom()
Msg = term()

Broadcasts the message Msg asynchronously to the registered process Name on the specified nodes.

async_call(Node, Module, Function, Args) -> Key
Types:

Ericsson AB. All Rights Reserved.: Kernel | 307

rpc

Node = node()
Module = module()
Function = atom()
Args = [term()]
Key = key()

Implements call streams with promises, a type of RPC that does not suspend the caller until the result is finished.
Instead, a key is returned, which can be used later to collect the value. The key can be viewed as a promise to deliver
the answer.

In this case, the key Key is returned, which can be used in a subsequent call to yield/1 or nb_yield/1,2 to
retrieve the value of evaluating apply(Module, Function, Args) on node Node.

Note:

If you want the ability to distinguish between results, you may want to consider using the
erpc:send_request() function from the erpc module instead. This also gives you the ability retrieve the
results in other useful ways.

Note:

yield/1 and nb_yield/1,2 must be called by the same process from which this function was made otherwise
they will never yield correctly.

Note:

You cannot make any assumptions about the process that will perform the apply(). It may be an rpc server,
another server, or a freshly spawned process.

block_call(Node, Module, Function, Args) -> Res | {badrpc, Reason}
Types:

Node = node()
Module = module()
Function = atom()
Args = [term()]
Res = Reason = term()

The same as calling rpc:block_call(Node, Module, Function, Args, infinity).

block_call(Node, Module, Function, Args, Timeout) ->
 Res | {badrpc, Reason}
Types:

308 | Ericsson AB. All Rights Reserved.: Kernel

rpc

Node = node()
Module = module()
Function = atom()
Args = [term()]
Res = Reason = term()
Timeout = 0..4294967295 | infinity

The same as calling rpc:call(Node, Module, Function, Args, Timeout) with the exception that it
also blocks other rpc:block_call() operations from executing concurrently on the node Node.

Warning:

Note that it also blocks other operations than just rpc:block_call() operations, so use it with care.

call(Node, Module, Function, Args) -> Res | {badrpc, Reason}
Types:

Node = node()
Module = module()
Function = atom()
Args = [term()]
Res = Reason = term()

Evaluates apply(Module, Function, Args) on node Node and returns the corresponding value Res, or
{badrpc, Reason} if the call fails. The same as calling rpc:call(Node, Module, Function, Args,
infinity).

call(Node, Module, Function, Args, Timeout) ->
 Res | {badrpc, Reason}
Types:

Node = node()
Module = module()
Function = atom()
Args = [term()]
Res = Reason = term()
Timeout = 0..4294967295 | infinity

Evaluates apply(Module, Function, Args) on node Node and returns the corresponding value Res, or
{badrpc, Reason} if the call fails. Timeout is a time-out value in milliseconds. If the call times out, Reason
is timeout.

If the reply arrives after the call times out, no message contaminates the caller's message queue.

Note:

If you want the ability to distinguish between results, you may want to consider using the erpc:call() function
from the erpc module instead.

Ericsson AB. All Rights Reserved.: Kernel | 309

rpc

Note:

Here follows the details of what exactly is returned.

{badrpc, Reason} will be returned in the following circumstances:

• The called function fails with an exit exception.

• The called function fails with an error exception.

• The called function returns a term that matches {'EXIT', _}.

• The called function throws a term that matches {'EXIT', _}.

Res is returned in the following circumstances:

• The called function returns normally with a term that does not match {'EXIT',_}.

• The called function throws a term that does not match {'EXIT',_}.

Note:

You cannot make any assumptions about the process that will perform the apply(). It may be the calling process
itself, an rpc server, another server, or a freshly spawned process.

cast(Node, Module, Function, Args) -> true
Types:

Node = node()
Module = module()
Function = atom()
Args = [term()]

Evaluates apply(Module, Function, Args) on node Node. No response is delivered and the calling process
is not suspended until the evaluation is complete, as is the case with call/4,5.

Note:

You cannot make any assumptions about the process that will perform the apply(). It may be an rpc server,
another server, or a freshly spawned process.

eval_everywhere(Module, Function, Args) -> abcast
Types:

Module = module()
Function = atom()
Args = [term()]

Equivalent to eval_everywhere([node()|nodes()], Module, Function, Args).

eval_everywhere(Nodes, Module, Function, Args) -> abcast
Types:

310 | Ericsson AB. All Rights Reserved.: Kernel

rpc

Nodes = [node()]
Module = module()
Function = atom()
Args = [term()]

Evaluates apply(Module, Function, Args) on the specified nodes. No answers are collected.

multi_server_call(Name, Msg) -> {Replies, BadNodes}
Types:

Name = atom()
Msg = term()
Replies = [Reply :: term()]
BadNodes = [node()]

Equivalent to multi_server_call([node()|nodes()], Name, Msg).

multi_server_call(Nodes, Name, Msg) -> {Replies, BadNodes}
Types:

Nodes = [node()]
Name = atom()
Msg = term()
Replies = [Reply :: term()]
BadNodes = [node()]

Can be used when interacting with servers called Name on the specified nodes. It is assumed that the servers receive
messages in the format {From, Msg} and reply using From ! {Name, Node, Reply}, where Node is the
name of the node where the server is located. The function returns {Replies, BadNodes}, where Replies is
a list of all Reply values, and BadNodes is one of the following:

• A list of the nodes that do not exist

• A list of the nodes where the server does not exist

• A list of the nodes where the server terminated before sending any reply.

multicall(Module, Function, Args) -> {ResL, BadNodes}
Types:

Module = module()
Function = atom()
Args = [term()]
ResL = [Res :: term() | {badrpc, Reason :: term()}]
BadNodes = [node()]

Equivalent to multicall([node()|nodes()], Module, Function, Args, infinity).

multicall(Nodes, Module, Function, Args) -> {ResL, BadNodes}
Types:

Ericsson AB. All Rights Reserved.: Kernel | 311

rpc

Nodes = [node()]
Module = module()
Function = atom()
Args = [term()]
ResL = [Res :: term() | {badrpc, Reason :: term()}]
BadNodes = [node()]

Equivalent to multicall(Nodes, Module, Function, Args, infinity).

multicall(Module, Function, Args, Timeout) -> {ResL, BadNodes}
Types:

Module = module()
Function = atom()
Args = [term()]
Timeout = 0..4294967295 | infinity
ResL = [Res :: term() | {badrpc, Reason :: term()}]
BadNodes = [node()]

Equivalent to multicall([node()|nodes()], Module, Function, Args, Timeout).

multicall(Nodes, Module, Function, Args, Timeout) ->
 {ResL, BadNodes}
Types:

Nodes = [node()]
Module = module()
Function = atom()
Args = [term()]
Timeout = 0..4294967295 | infinity
ResL = [Res :: term() | {badrpc, Reason :: term()}]
BadNodes = [node()]

In contrast to an RPC, a multicall is an RPC that is sent concurrently from one client to multiple servers. This is useful
for collecting information from a set of nodes, or for calling a function on a set of nodes to achieve some side effects.
It is semantically the same as iteratively making a series of RPCs on all the nodes, but the multicall is faster, as all the
requests are sent at the same time and are collected one by one as they come back.

The function evaluates apply(Module, Function, Args) on the specified nodes and collects the answers.
It returns {ResL, BadNodes}, where BadNodes is a list of the nodes that do not exist, and ResL is a list of the
return values, or {badrpc, Reason} for failing calls. Timeout is a time (integer) in milliseconds, or infinity.

The following example is useful when new object code is to be loaded on all nodes in the network, and indicates some
side effects that RPCs can produce:

%% Find object code for module Mod
{Mod, Bin, File} = code:get_object_code(Mod),

%% and load it on all nodes including this one
{ResL, _} = rpc:multicall(code, load_binary, [Mod, File, Bin]),

%% and then maybe check the ResL list.

312 | Ericsson AB. All Rights Reserved.: Kernel

rpc

Note:

If you want the ability to distinguish between results, you may want to consider using the erpc:multicall()
function from the erpc module instead.

Note:

You cannot make any assumptions about the process that will perform the apply(). It may be the calling process
itself, an rpc server, another server, or a freshly spawned process.

nb_yield(Key) -> {value, Val} | timeout
Types:

Key = key()
Val = (Res :: term()) | {badrpc, Reason :: term()}

Equivalent to nb_yield(Key, 0).

nb_yield(Key, Timeout) -> {value, Val} | timeout
Types:

Key = key()
Timeout = 0..4294967295 | infinity
Val = (Res :: term()) | {badrpc, Reason :: term()}

Non-blocking version of yield/1. It returns the tuple {value, Val} when the computation is finished, or
timeout when Timeout milliseconds has elapsed.

See the note in call/4 for more details of Val.

Note:

This function must be called by the same process from which async_call/4 was made otherwise it will only
return timeout.

parallel_eval(FuncCalls) -> ResL
Types:

FuncCalls = [{Module, Function, Args}]
Module = module()
Function = atom()
Args = ResL = [term()]

Evaluates, for every tuple in FuncCalls, apply(Module, Function, Args) on some node in the network.
Returns the list of return values, in the same order as in FuncCalls.

pinfo(Pid) -> [{Item, Info}] | undefined
Types:

Ericsson AB. All Rights Reserved.: Kernel | 313

rpc

Pid = pid()
Item = atom()
Info = term()

Location transparent version of the BIF erlang:process_info/1 in ERTS.

pinfo(Pid, Item) -> {Item, Info} | undefined | []
pinfo(Pid, ItemList) -> [{Item, Info}] | undefined | []
Types:

Pid = pid()
Item = atom()
ItemList = [Item]
Info = term()

Location transparent version of the BIF erlang:process_info/2 in ERTS.

pmap(FuncSpec, ExtraArgs, List1) -> List2
Types:

FuncSpec = {Module, Function}
Module = module()
Function = atom()
ExtraArgs = [term()]
List1 = [Elem :: term()]
List2 = [term()]

Evaluates apply(Module, Function, [Elem|ExtraArgs]) for every element Elem in List1, in parallel.
Returns the list of return values, in the same order as in List1.

sbcast(Name, Msg) -> {GoodNodes, BadNodes}
Types:

Name = atom()
Msg = term()
GoodNodes = BadNodes = [node()]

Equivalent to sbcast([node()|nodes()], Name, Msg).

sbcast(Nodes, Name, Msg) -> {GoodNodes, BadNodes}
Types:

Name = atom()
Msg = term()
Nodes = GoodNodes = BadNodes = [node()]

Broadcasts the message Msg synchronously to the registered process Name on the specified nodes.

Returns {GoodNodes, BadNodes}, where GoodNodes is the list of nodes that have Name as a registered process.

The function is synchronous in the sense that it is known that all servers have received the message when the call
returns. It is not possible to know that the servers have processed the message.

Any further messages sent to the servers, after this function has returned, are received by all servers after this message.

314 | Ericsson AB. All Rights Reserved.: Kernel

rpc

server_call(Node, Name, ReplyWrapper, Msg) ->
 Reply | {error, Reason}
Types:

Node = node()
Name = atom()
ReplyWrapper = Msg = Reply = term()
Reason = nodedown

Can be used when interacting with a server called Name on node Node. It is assumed that the server receives messages
in the format {From, Msg} and replies using From ! {ReplyWrapper, Node, Reply}. This function
makes such a server call and ensures that the entire call is packed into an atomic transaction, which either succeeds
or fails. It never hangs, unless the server itself hangs.

The function returns the answer Reply as produced by the server Name, or {error, Reason}.

yield(Key) -> Res | {badrpc, Reason}
Types:

Key = key()
Res = Reason = term()

Returns the promised answer from a previous async_call/4. If the answer is available, it is returned immediately.
Otherwise, the calling process is suspended until the answer arrives from Node.

Note:

This function must be called by the same process from which async_call/4 was made otherwise it will never
return.

See the note in call/4 for more details of the return value.

Ericsson AB. All Rights Reserved.: Kernel | 315

seq_trace

seq_trace
Erlang module

Sequential tracing makes it possible to trace information flows between processes resulting from one initial transfer
of information. Sequential tracing is independent of the ordinary tracing in Erlang, which is controlled by the
erlang:trace/3 BIF. For more information about what sequential tracing is and how it can be used, see section
Sequential Tracing.

seq_trace provides functions that control all aspects of sequential tracing. There are functions for activation,
deactivation, inspection, and for collection of the trace output.

Data Types
token() = {integer(), boolean(), term(), term(), term()}
An opaque term (a tuple) representing a trace token.

Exports

set_token(Token) -> PreviousToken | ok
Types:

Token = PreviousToken = [] | token()

Sets the trace token for the calling process to Token. If Token == [] then tracing is disabled, otherwise
Token should be an Erlang term returned from get_token/0 or set_token/1. set_token/1 can be used to
temporarily exclude message passing from the trace by setting the trace token to empty like this:

OldToken = seq_trace:set_token([]), % set to empty and save
 % old value
% do something that should not be part of the trace
io:format("Exclude the signalling caused by this~n"),
seq_trace:set_token(OldToken), % activate the trace token again
...

Returns the previous value of the trace token.

set_token(Component, Val) -> OldVal
Types:

Component = component()
Val = OldVal = value()
component() = label | serial | flag()
flag() =
 send | 'receive' | print | timestamp | monotonic_timestamp |
 strict_monotonic_timestamp
value() =
 (Label :: term()) |
 {Previous :: integer() >= 0, Current :: integer() >= 0} |
 (Bool :: boolean())

Sets the individual Component of the trace token to Val. Returns the previous value of the component.

316 | Ericsson AB. All Rights Reserved.: Kernel

seq_trace

set_token(label, Label)

The label component is a term which identifies all events belonging to the same sequential trace. If several
sequential traces can be active simultaneously, label is used to identify the separate traces. Default is 0.

Warning:

Labels were restricted to small signed integers (28 bits) prior to OTP 21. The trace token will be silently
dropped if it crosses over to a node that does not support the label.

set_token(serial, SerialValue)

SerialValue = {Previous, Current}. The serial component contains counters which enables the
traced messages to be sorted, should never be set explicitly by the user as these counters are updated automatically.
Default is {0, 0}.

set_token(send, Bool)

A trace token flag (true | false) which enables/disables tracing on information sending. Default is false.

set_token('receive', Bool)

A trace token flag (true | false) which enables/disables tracing on information reception. Default is false.

set_token(print, Bool)

A trace token flag (true | false) which enables/disables tracing on explicit calls to seq_trace:print/1.
Default is false.

set_token(timestamp, Bool)

A trace token flag (true | false) which enables/disables a timestamp to be generated for each traced event.
Default is false.

set_token(strict_monotonic_timestamp, Bool)

A trace token flag (true | false) which enables/disables a strict monotonic timestamp to be
generated for each traced event. Default is false. Timestamps will consist of Erlang monotonic time
and a monotonically increasing integer. The time-stamp has the same format and value as produced by
{erlang:monotonic_time(nanosecond), erlang:unique_integer([monotonic])}.

set_token(monotonic_timestamp, Bool)

A trace token flag (true | false) which enables/disables a strict monotonic timestamp to be generated for
each traced event. Default is false. Timestamps will use Erlang monotonic time. The time-stamp has the same
format and value as produced by erlang:monotonic_time(nanosecond).

If multiple timestamp flags are passed, timestamp has precedence over strict_monotonic_timestamp
which in turn has precedence over monotonic_timestamp. All timestamp flags are remembered, so if two are
passed and the one with highest precedence later is disabled the other one will become active.

get_token() -> [] | token()
Returns the value of the trace token for the calling process. If [] is returned, it means that tracing is not active. Any
other value returned is the value of an active trace token. The value returned can be used as input to the set_token/1
function.

get_token(Component) -> {Component, Val}
Types:

Ericsson AB. All Rights Reserved.: Kernel | 317

seq_trace

Component = component()
Val = value()
component() = label | serial | flag()
flag() =
 send | 'receive' | print | timestamp | monotonic_timestamp |
 strict_monotonic_timestamp
value() =
 (Label :: term()) |
 {Previous :: integer() >= 0, Current :: integer() >= 0} |
 (Bool :: boolean())

Returns the value of the trace token component Component. See set_token/2 for possible values of Component
and Val.

print(TraceInfo) -> ok
Types:

TraceInfo = term()
Puts the Erlang term TraceInfo into the sequential trace output if the calling process currently is executing within
a sequential trace and the print flag of the trace token is set.

print(Label, TraceInfo) -> ok
Types:

Label = integer()
TraceInfo = term()

Same as print/1 with the additional condition that TraceInfo is output only if Label is equal to the label
component of the trace token.

reset_trace() -> true
Sets the trace token to empty for all processes on the local node. The process internal counters used to create the serial
of the trace token is set to 0. The trace token is set to empty for all messages in message queues. Together this will
effectively stop all ongoing sequential tracing in the local node.

set_system_tracer(Tracer) -> OldTracer
Types:

Tracer = OldTracer = tracer()
tracer() =
 (Pid :: pid()) |
 port() |
 (TracerModule :: {module(), term()}) |
 false

Sets the system tracer. The system tracer can be either a process, port or tracer module denoted by Tracer. Returns
the previous value (which can be false if no system tracer is active).

Failure: {badarg, Info}} if Pid is not an existing local pid.

get_system_tracer() -> Tracer
Types:

318 | Ericsson AB. All Rights Reserved.: Kernel

seq_trace

Tracer = tracer()
tracer() =
 (Pid :: pid()) |
 port() |
 (TracerModule :: {module(), term()}) |
 false

Returns the pid, port identifier or tracer module of the current system tracer or false if no system tracer is activated.

Trace Messages Sent to the System Tracer
The format of the messages is one of the following, depending on if flag timestamp of the trace token is set to
true or false:

{seq_trace, Label, SeqTraceInfo, TimeStamp}

or

{seq_trace, Label, SeqTraceInfo}

Where:

Label = int()
TimeStamp = {Seconds, Milliseconds, Microseconds}
 Seconds = Milliseconds = Microseconds = int()

SeqTraceInfo can have the following formats:

{send, Serial, From, To, Message}

Used when a process From with its trace token flag send set to true has sent information. To may be a process
identifier, a registered name on a node represented as {NameAtom, NodeAtom}, or a node name represented
as an atom. From may be a process identifier or a node name represented as an atom. Message contains the
information passed along in this information transfer. If the transfer is done via message passing, it is the actual
message.

{'receive', Serial, From, To, Message}

Used when a process To receives information with a trace token that has flag 'receive' set to true. To
may be a process identifier, or a node name represented as an atom. From may be a process identifier or a node
name represented as an atom. Message contains the information passed along in this information transfer. If the
transfer is done via message passing, it is the actual message.

{print, Serial, From, _, Info}

Used when a process From has called seq_trace:print(Label, TraceInfo) and has a trace token
with flag print set to true, and label set to Label.

Serial is a tuple {PreviousSerial, ThisSerial}, where:

• Integer PreviousSerial denotes the serial counter passed in the last received information that carried a trace
token. If the process is the first in a new sequential trace, PreviousSerial is set to the value of the process
internal "trace clock".

• Integer ThisSerial is the serial counter that a process sets on outgoing messages. It is based on the process
internal "trace clock", which is incremented by one before it is attached to the trace token in the message.

Ericsson AB. All Rights Reserved.: Kernel | 319

seq_trace

Sequential Tracing
Sequential tracing is a way to trace a sequence of information transfers between different local or remote processes,
where the sequence is initiated by a single transfer. The typical information transfer is an ordinary Erlang message
passed between two processes, but information is transferred also in other ways. In short, it works as follows:

Each process has a trace token, which can be empty or not empty. When not empty, the trace token can be seen as
the tuple {Label, Flags, Serial, From}. The trace token is passed invisibly when information is passed
between processes. In most cases the information is passed in ordinary messages between processes, but information
is also passed between processes by other means. For example, by spawning a new process. An information transfer
between two processes is represented by a send event and a receive event regardless of how it is passed.

To start a sequential trace, the user must explicitly set the trace token in the process that will send the first information
in a sequence.

The trace token of a process is set each time the process receives information. This is typically when the process
matches a message in a receive statement, according to the trace token carried by the received message, empty or not.

On each Erlang node, a process can be set as the system tracer. This process will receive trace messages each time
information with a trace token is sent or received (if the trace token flag send or 'receive' is set). The system
tracer can then print each trace event, write it to a file, or whatever suitable.

Note:

The system tracer only receives those trace events that occur locally within the Erlang node. To get the whole
picture of a sequential trace, involving processes on many Erlang nodes, the output from the system tracer on each
involved node must be merged (offline).

The following sections describe sequential tracing and its most fundamental concepts.

Different Information Transfers
Information flows between processes in a lot of different ways. Not all flows of information will be covered by
sequential tracing. One example is information passed via ETS tables. Below is a list of information paths that are
covered by sequential tracing:

Message Passing

All ordinary messages passed between Erlang processes.

Exit signals

An exit signal is represented as an {'EXIT', Pid, Reason} tuple.

Process Spawn

A process spawn is represented as multiple information transfers. At least one spawn request and one spawn
reply. The actual amount of information transfers depends on what type of spawn it is and may also change in
future implementations. Note that this is more or less an internal protocol that you are peeking at. The spawn
request will be represented as a tuple with the first element containing the atom spawn_request, but this is
more or less all that you can depend on.

Note:

If you do ordinary send or receive trace on the system, you will only see ordinary message passing, not the
other information transfers listed above.

320 | Ericsson AB. All Rights Reserved.: Kernel

seq_trace

Note:

When a send event and corresponding receive event do not both correspond to ordinary Erlang messages, the
Message part of the trace messages may not be identical. This since all information not necessarily are available
when generating the trace messages.

Trace Token
Each process has a current trace token which is "invisibly" passed from the parent process on creation of the process.

The current token of a process is set in one of the following two ways:

• Explicitly by the process itself, through a call to seq_trace:set_token/1,2

• When information is received. This is typically when a received message is matched out in a receive expression,
but also when information is received in other ways.

In both cases, the current token is set. In particular, if the token of a received message is empty, the current token of
the process is set to empty.

A trace token contains a label and a set of flags. Both the label and the flags are set in both alternatives above.

Serial
The trace token contains a component called serial. It consists of two integers, Previous and Current.
The purpose is to uniquely identify each traced event within a trace sequence, as well as to order the messages
chronologically and in the different branches, if any.

The algorithm for updating Serial can be described as follows:

Let each process have two counters, prev_cnt and curr_cnt, both are set to 0 when a process is created outside
of a trace sequence. The counters are updated at the following occasions:

• When the process is about to pass along information to another process and the trace token is not empty.
This typically occurs when sending a message, but also, for example, when spawning another process.

Let the serial of the trace token be tprev and tcurr.

curr_cnt := curr_cnt + 1
tprev := prev_cnt
tcurr := curr_cnt

The trace token with tprev and tcurr is then passed along with the information passed to the other process.

• When the process calls seq_trace:print(Label, Info), Label matches the label part of the trace
token and the trace token print flag is true.

The algorithm is the same as for send above.

• When information is received that also contains a non-empty trace token. For example, when a message is
matched out in a receive expression, or when a new process is spawned.

The process trace token is set to the trace token from the message.

Let the serial of the trace token be tprev and tcurr.

if (curr_cnt < tcurr)
 curr_cnt := tcurr
prev_cnt := tcurr

curr_cnt of a process is incremented each time the process is involved in a sequential trace. The counter can reach
its limit (27 bits) if a process is very long-lived and is involved in much sequential tracing. If the counter overflows,

Ericsson AB. All Rights Reserved.: Kernel | 321

seq_trace

the serial for ordering of the trace events cannot be used. To prevent the counter from overflowing in the middle of a
sequential trace, function seq_trace:reset_trace/0 can be called to reset prev_cnt and curr_cnt of all
processes in the Erlang node. This function also sets all trace tokens in processes and their message queues to empty,
and thus stops all ongoing sequential tracing.

Performance Considerations
The performance degradation for a system that is enabled for sequential tracing is negligible as long as no tracing
is activated. When tracing is activated, there is an extra cost for each traced message, but all other messages are
unaffected.

Ports
Sequential tracing is not performed across ports.

If the user for some reason wants to pass the trace token to a port, this must be done manually in the code of the port
controlling process. The port controlling processes have to check the appropriate sequential trace settings (as obtained
from seq_trace:get_token/1) and include trace information in the message data sent to their respective ports.

Similarly, for messages received from a port, a port controller has to retrieve trace-specific information, and set
appropriate sequential trace flags through calls to seq_trace:set_token/2.

Distribution
Sequential tracing between nodes is performed transparently. This applies to C-nodes built with Erl_Interface
too. A C-node built with Erl_Interface only maintains one trace token, which means that the C-node appears as
one process from the sequential tracing point of view.

Example of Use
This example gives a rough idea of how the new primitives can be used and what kind of output it produces.

Assume that you have an initiating process with Pid == <0.30.0> like this:

-module(seqex).
-compile(export_all).

loop(Port) ->
 receive
 {Port,Message} ->
 seq_trace:set_token(label,17),
 seq_trace:set_token('receive',true),
 seq_trace:set_token(print,true),
 seq_trace:print(17,"**** Trace Started ****"),
 call_server ! {self(),the_message};
 {ack,Ack} ->
 ok
 end,
 loop(Port).

And a registered process call_server with Pid == <0.31.0> like this:

loop() ->
 receive
 {PortController,Message} ->
 Ack = {received, Message},
 seq_trace:print(17,"We are here now"),
 PortController ! {ack,Ack}
 end,
 loop().

322 | Ericsson AB. All Rights Reserved.: Kernel

seq_trace

A possible output from the system's sequential_tracer can be like this:

17:<0.30.0> Info {0,1} WITH
"**** Trace Started ****"
17:<0.31.0> Received {0,2} FROM <0.30.0> WITH
{<0.30.0>,the_message}
17:<0.31.0> Info {2,3} WITH
"We are here now"
17:<0.30.0> Received {2,4} FROM <0.31.0> WITH
{ack,{received,the_message}}

The implementation of a system tracer process that produces this printout can look like this:

tracer() ->
 receive
 {seq_trace,Label,TraceInfo} ->
 print_trace(Label,TraceInfo,false);
 {seq_trace,Label,TraceInfo,Ts} ->
 print_trace(Label,TraceInfo,Ts);
 _Other -> ignore
 end,
 tracer().

print_trace(Label,TraceInfo,false) ->
 io:format("~p:",[Label]),
 print_trace(TraceInfo);
print_trace(Label,TraceInfo,Ts) ->
 io:format("~p ~p:",[Label,Ts]),
 print_trace(TraceInfo).

print_trace({print,Serial,From,_,Info}) ->
 io:format("~p Info ~p WITH~n~p~n", [From,Serial,Info]);
print_trace({'receive',Serial,From,To,Message}) ->
 io:format("~p Received ~p FROM ~p WITH~n~p~n",
 [To,Serial,From,Message]);
print_trace({send,Serial,From,To,Message}) ->
 io:format("~p Sent ~p TO ~p WITH~n~p~n",
 [From,Serial,To,Message]).

The code that creates a process that runs this tracer function and sets that process as the system tracer can look like this:

start() ->
 Pid = spawn(?MODULE,tracer,[]),
 seq_trace:set_system_tracer(Pid), % set Pid as the system tracer
 ok.

With a function like test/0, the whole example can be started:

test() ->
 P = spawn(?MODULE, loop, [port]),
 register(call_server, spawn(?MODULE, loop, [])),
 start(),
 P ! {port,message}.

Ericsson AB. All Rights Reserved.: Kernel | 323

socket

socket
Erlang module

This module provides an API for network socket. Functions are provided to create, delete and manipulate the sockets
as well as sending and receiving data on them.

The intent is that it shall be as "close as possible" to the OS level socket interface. The only significant addition is that
some of the functions, e.g. recv/3, have a time-out argument.

Note:

Some functions allow for an asynchronous call. This is achieved by setting the Timeout argument to nowait.
For instance, if calling the recv/3 function with Timeout set to nowait (recv(Sock, 0, nowait)) when
there is actually nothing to read, it will return with {select, SelectInfo} (SelectInfo contains the
SelectHandle). When data eventually arrives a 'select' message will be sent to the caller:

{'$socket', socket(), select, SelectHandle}

The caller can now call the recv function again and probably expect data (it is really up to the OS network protocol
implementation).

Note that all other users are locked out until the 'current user' has called the function (recv in this case) and its
return value shows that the operation has completed. An operation can also be cancelled with cancel/2.

Instead of Timeout = nowait it is equivalent to create a SelectHandle) with make_ref() and give as
Timeout. This will then be the SelectHandle in the 'select' message, which enables a compiler optimization
for receiving a message containing a newly created reference() (ignore the part of the message queue that had
arrived before the the reference() was created).

Another message the user must be prepared for (when making asynchronous calls) is the abort message:

{'$socket', socket(), abort, Info}

This message indicates that the (asynchronous) operation has been aborted. If, for instance, the socket has been
closed (by another process), Info will be {SelectHandle, closed}.

Note:

There is currently no support for Windows.

Support for IPv6 has been implemented but not tested.

SCTP has only been partly implemented (and not tested).

Data Types
invalid() = {invalid, What :: term()}
domain() = inet | inet6 | local | unspec
A lowercase atom() representing a protocol domain on the platform named AF_* (or PF_*).

The calls supports(), is_supported(ipv6) and is_supported(local) tells if the IPv6 protocol for
the inet6 protocol domain / address family, and if the local protocol domain / address family is supported by the
platform's header files.

324 | Ericsson AB. All Rights Reserved.: Kernel

socket

type() = stream | dgram | raw | rdm | seqpacket
A lowercase atom() representing a protocol type on the platform named SOCK_*.

protocol() = atom()
An atom() means any protocol as enumerated by the C library call getprotoent() on the platform, or at least
the supported ones of ip | ipv6 | tcp | udp | sctp.

See open/2,3,4

The call supports(protocols) returns which protocols are supported, and is_supported(protocols,
Protocol) tells if Protocol is among the enumerated.

socket() = {'$socket', socket_handle()}
As returned by open/1,2,3,4 and accept/1,2.

socket_handle()
An opaque socket handle unique for the socket.

select_tag()
A tag that describes the (select) operation, contained in the returned select_info().

select_handle() = reference()
A reference() that uniquely identifies the (select) operation, contained in the returned select_info().

select_info() =
 {select_info,
 SelectTag :: select_tag(),
 SelectHandle :: select_handle()}
Returned by an operation that requires the caller to wait for a select message containing the SelectHandle.

info() =
 #{counters := #{atom() := integer() >= 0},
 iov_max := integer() >= 0,
 use_registry := boolean()}
The smallest allowed iov_max value according to POSIX is 16, but check your platform documentation to be sure.

socket_counters() =
 #{read_byte := integer() >= 0,
 read_fails := integer() >= 0,
 read_pkg := integer() >= 0,
 read_pkg_max := integer() >= 0,
 read_tries := integer() >= 0,
 read_waits := integer() >= 0,
 write_byte := integer() >= 0,
 write_fails := integer() >= 0,
 write_pkg := integer() >= 0,
 write_pkg_max := integer() >= 0,
 write_tries := integer() >= 0,
 write_waits := integer() >= 0,
 sendfile => integer() >= 0,
 sendfile_byte => integer() >= 0,
 sendfile_fails => integer() >= 0,
 sendfile_max => integer() >= 0,
 sendfile_pkg => integer() >= 0,

Ericsson AB. All Rights Reserved.: Kernel | 325

socket

 sendfile_pkg_max => integer() >= 0,
 sendfile_tries => integer() >= 0,
 sendfile_waits => integer() >= 0,
 acc_success := integer() >= 0,
 acc_fails := integer() >= 0,
 acc_tries := integer() >= 0,
 acc_waits := integer() >= 0}
info_keys() =
 [domain | type | protocol | fd | owner | local_address |
 remote_address | recv | sent | state]
Defines the information elements of the table(s) printed by the i/0, i/1 and i/2 functions.

socket_info() =
 #{domain := domain() | integer(),
 type := type() | integer(),
 protocol := protocol() | integer(),
 owner := pid(),
 ctype := normal | fromfd | {fromfd, integer()},
 counters := socket_counters(),
 num_readers := integer() >= 0,
 num_writers := integer() >= 0,
 num_acceptors := integer() >= 0,
 writable := boolean(),
 readable := boolean(),
 rstates := [atom()],
 wstates := [atom()]}
in_addr() = {0..255, 0..255, 0..255, 0..255}
in6_addr() =
 {0..65535,
 0..65535,
 0..65535,
 0..65535,
 0..65535,
 0..65535,
 0..65535,
 0..65535}
sockaddr() =
 sockaddr_in() |
 sockaddr_in6() |
 sockaddr_un() |
 sockaddr_ll() |
 sockaddr_dl() |
 sockaddr_unspec() |
 sockaddr_native()
sockaddr_recv() = sockaddr() | binary()
sockaddr_in() =
 #{family := inet,
 port := port_number(),
 addr := any | broadcast | loopback | in_addr()}
sockaddr_in6() =
 #{family := inet6,

326 | Ericsson AB. All Rights Reserved.: Kernel

socket

 port := port_number(),
 addr := any | loopback | in6_addr(),
 flowinfo := in6_flow_info(),
 scope_id := in6_scope_id()}
sockaddr_un() = #{family := local, path := binary() | string()}
The path element will always be a binary when returned from this module. When supplied to an API function in
this module it may be a string(), which will be encoded into a binary according to the native file name encoding
on the platform.

A terminating zero character will be appended before the address path is given to the OS, and the terminating zero
will be stripped before giving the address path to the caller.

Linux's non-portable abstract socket address extension is handled by not doing any terminating zero processing in
either direction, if the first byte of the address is zero.

sockaddr_ll() =
 #{family := packet,
 protocol := integer() >= 0,
 ifindex := integer(),
 pkttype := packet_type(),
 hatype := hatype(),
 addr := binary()}
sockaddr_dl() =
 #{family := link,
 index := integer() >= 0,
 type := integer() >= 0,
 nlen := integer() >= 0,
 alen := integer() >= 0,
 slen := integer() >= 0,
 data := binary()}
sockaddr_unspec() = #{family := unspec, addr := binary()}
sockaddr_native() = #{family := integer(), addr := binary()}
packet_type() =
 host | broadcast | multicast | otherhost | outgoing |
 loopback | user | kernel | fastroute |
 integer() >= 0
hatype() =
 netrom | eether | ether | ax25 | pronet | chaos | ieee802 |
 arcnet | appletlk | dlci | atm | metricom | ieee1394 | eui64 |
 infiniband | tunnel | tunnel6 | loopback | localtlk | none |
 void |
 integer() >= 0
port_number() = 0..65535
in6_flow_info() = 0..1048575
in6_scope_id() = 0..4294967295
msg_flag() =
 cmsg_cloexec | confirm | ctrunc | dontroute | eor | errqueue |
 more | oob | peek | trunc
Flags corresponding to the message flag constants on the platform. The flags are lowercase and the constants are
uppercase with the prefix MSG_.

Ericsson AB. All Rights Reserved.: Kernel | 327

socket

Some flags are only used for sending, some only for receiving, some in received control messages, and some for several
of these. Not all flags are supported on all platforms. See the platform's documentation, supports(msg_flags),
and is_supported(msg_flags, MsgFlag).

level() = socket | protocol()
The OS protocol levels for, for example, socket options and control messages, with the following names in the OS
header files:

socket
SOL_SOCKET with options named SO_*.

ip
IPPROTO_IP a.k.a SOL_IP with options named IP_*.

ipv6
IPPROTO_IPV6 a.k.a SOL_IPV6 with options named IPV6_*.

tcp
IPPROTO_TCP with options named TCP_*.

udp
IPPROTO_UDP with options named UDP_*.

sctp
IPPROTO_SCTP with options named SCTP_*.

There are many other possible protocols, but the ones above are those for which this socket library implements socket
options and/or control messages.

All protocols known to the OS are enumerated when the Erlang VM is started. See the OS man page for protocols(5).
The protocol level 'socket' is always implemented as SOL_SOCKET and all the others mentioned in the list above are
valid, if supported by the platform, enumerated or not.

The calls supports() and is_supported(protocols, Protocol) can be used to find out if protocols
ipv6 and/or sctp are supported according to the platform's header files.

otp_socket_option() =
 debug | iow | controlling_process | rcvbuf | rcvctrlbuf |
 sndctrlbuf | meta | use_registry | fd | domain
These are socket options for the otp protocol level, that is {otp, Name} options, above all OS protocol levels.
They affect Erlang/OTP's socket implementation.

debug
boolean() - Activate debug printout.

iow
boolean() - Inform On Wrap of statistics counters.

controlling_process
pid() - The socket "owner". Only the current controlling process can set this option.

rcvbuf
BufSize :: (default | integer()>0) | {N :: integer()>0,
BufSize :: (default | integer()>0)} - Receive buffer size. The value default is only valid
to set. N specifies the number of read attempts to do in a tight loop before assuming no more data is pending.

rcvctrlbuf
BufSize :: (default | integer()>0) - Buffer size for received ancillary messages. The value
default is only valid to set.

sndctrlbuf
BufSize :: (default | integer()>0) - Buffer size for sent ancillary messages. The value
default is only valid to set.

328 | Ericsson AB. All Rights Reserved.: Kernel

socket

fd
integer() - Only valid to get. The OS protocol levels' socket descriptor. Functions open/1,2 can be used
to create a socket according to this module from an existing OS socket descriptor.

use_registry
boolean() - Only valid to get. The value is set when the socket is created with open/2 or open/4.

Options not described here are intentionally undocumented and for Erlang/OTP internal use only.

socket_option() =
 {Level :: socket,
 Opt ::
 acceptconn | acceptfilter | bindtodevice | broadcast |
 busy_poll | debug | domain | dontroute | error |
 keepalive | linger | mark | oobinline | passcred |
 peek_off | peercred | priority | protocol | rcvbuf |
 rcvbufforce | rcvlowat | rcvtimeo | reuseaddr |
 reuseport | rxq_ovfl | setfib | sndbuf | sndbufforce |
 sndlowat | sndtimeo | timestamp | type} |
 {Level :: ip,
 Opt ::
 add_membership | add_source_membership | block_source |
 dontfrag | drop_membership | drop_source_membership |
 freebind | hdrincl | minttl | msfilter | mtu |
 mtu_discover | multicast_all | multicast_if |
 multicast_loop | multicast_ttl | nodefrag | options |
 pktinfo | recvdstaddr | recverr | recvif | recvopts |
 recvorigdstaddr | recvtos | recvttl | retopts |
 router_alert | sndsrcaddr | tos | transparent | ttl |
 unblock_source} |
 {Level :: ipv6,
 Opt ::
 addrform | add_membership | authhdr | auth_level |
 checksum | drop_membership | dstopts | esp_trans_level |
 esp_network_level | faith | flowinfo | hopopts |
 ipcomp_level | join_group | leave_group | mtu |
 mtu_discover | multicast_hops | multicast_if |
 multicast_loop | portrange | pktoptions | recverr |
 recvhoplimit | hoplimit | recvpktinfo | pktinfo |
 recvtclass | router_alert | rthdr | tclass |
 unicast_hops | use_min_mtu | v6only} |
 {Level :: tcp,
 Opt ::
 congestion | cork | info | keepcnt | keepidle |
 keepintvl | maxseg | md5sig | nodelay | noopt | nopush |
 syncnt | user_timeout} |
 {Level :: udp, Opt :: cork} |
 {Level :: sctp,
 Opt ::
 adaption_layer | associnfo | auth_active_key |
 auth_asconf | auth_chunk | auth_key | auth_delete_key |
 autoclose | context | default_send_params |
 delayed_ack_time | disable_fragments | hmac_ident |
 events | explicit_eor | fragment_interleave |

Ericsson AB. All Rights Reserved.: Kernel | 329

socket

 get_peer_addr_info | initmsg | i_want_mapped_v4_addr |
 local_auth_chunks | maxseg | maxburst | nodelay |
 partial_delivery_point | peer_addr_params |
 peer_auth_chunks | primary_addr | reset_streams |
 rtoinfo | set_peer_primary_addr | status |
 use_ext_recvinfo}
Socket option on the form {Level, Opt} where the OS protocol Level = level() and Opt is a socket option
on that protocol level.

The OS name for an options is, except where otherwise noted, the Opt atom, in capitals, with prefix according to
level().

Note:

The IPv6 option pktoptions is a special (barf) case. It is intended for backward compatibility usage only.

Do not use this option.

Note:

See the OS documentation for every socket option.

An option below that has the value type boolean() will translate the value false to a C int with value 0, and
the value true to !!0 (not (not false)).

An option with value type integer() will be translated to a C int that may have a restricted range, for example
byte: 0..255. See the OS documentation.

The calls supports(options), supports(options, Level) and is_supported(options,
{Level, Opt}) can be used to find out which socket options that are supported by the platform.

Options for protocol level socket:

{socket, acceptconn}

Value = boolean()

{socket, bindtodevice}

Value = string()

{socket, broadcast}

Value = boolean()

{socket, debug}

Value = integer()

{socket, domain}

Value = domain()

Only valid to get.

The socket's protocol domain. Does not work on for instance FreeBSD.

{socket, dontroute}

Value = boolean()

330 | Ericsson AB. All Rights Reserved.: Kernel

socket

{socket, keepalive}

Value = boolean()

{socket, linger}

Value = abort | linger()

The value abort is shorthand for #{onoff => true, linger => 0}, and only valid to set.

{socket, oobinline}

Value = boolean()

{socket, passcred}

Value = boolean()

{socket, peek_off}

Value = integer()

Currently disabled due to a possible infinite loop when calling recv/1-4 with peek in Flags.

{socket, priority}

Value = integer()

{socket, protocol}

Value = protocol()

Only valid to get.

The socket's protocol. Does not work on for instance Darwin.

{socket, rcvbuf}

Value = integer()

{socket, rcvlowat}

Value = integer()

{socket, rcvtimeo}

Value = timeval()

This option is unsupported per default; OTP has to be explicitly built with the --enable-esock-
rcvsndtimeo configure option for this to be available.

Since our implementation uses nonblocking sockets, it is unknown if and how this option works, or even if it may
cause malfunction. Therefore, we do not recommend setting this option.

Instead, use the Timeout argument to, for instance, the recv/3 function.

{socket, reuseaddr}

Value = boolean()

{socket, reuseport}

Value = boolean()

{socket, sndbuf}

Value = integer()

{socket, sndlowat}

Value = integer()

Ericsson AB. All Rights Reserved.: Kernel | 331

socket

{socket, sndtimeo}

Value = timeval()

This option is unsupported per default; OTP has to be explicitly built with the --enable-esock-
rcvsndtimeo configure option for this to be available.

Since our implementation uses nonblocking sockets, it is unknown if and how this option works, or even if it may
cause malfunction. Therefore, we do not recommend setting this option.

Instead, use the Timeout argument to, for instance, the send/3 function.

{socket, timestamp}

Value = boolean()

{socket, type}

Value = type()

Only valid to get.

The socket's type.

Options for protocol level ip:

{ip, add_membership}

Value = ip_mreq()

Only valid to set.

{ip, add_source_membership}

Value = ip_mreq_source()

Only valid to set.

{ip, block_source}

Value = ip_mreq_source()

Only valid to set.

{ip, drop_membership}

Value = ip_mreq()

Only valid to set.

{ip, drop_source_membership}

Value = ip_mreq_source()

Only valid to set.

{ip, freebind}

Value = boolean()

{ip, hdrincl}

Value = boolean()

{ip, minttl}

Value = integer()

{ip, msfilter}

Value = null | ip_msfilter()

332 | Ericsson AB. All Rights Reserved.: Kernel

socket

Only valid to set.

The value null passes a NULL pointer and size 0 to the C library call.

{ip, mtu}

Value = integer()

Only valid to get.

{ip, mtu_discover}

Value = ip_pmtudisc() | integer()

An integer() value is according to the platform's header files.

{ip, multicast_all}

Value = boolean()

{ip, multicast_if}

Value = any | in_addr()

{ip, multicast_loop}

Value = boolean()

{ip, multicast_ttl}

Value = integer()

{ip, nodefrag}

Value = boolean()

{ip, pktinfo}

Value = boolean()

{ip, recvdstaddr}

Value = boolean()

{ip, recverr}

Value = boolean()

Warning! When this option is enabled, error messages may arrive on the socket's error queue, which should be
read using the message flag errqueue, and using recvmsg/1,2,3,4,5 to get all error information in the
message's ctrl field as a control message #{level := ip, type := recverr}.

A working strategy should be to first poll the error queue using recvmsg/2,3,4 with Timeout =:= 0 and
Flags containing errqueue (ignore the return value {error, timeout}) before reading the actual data
to ensure that the error queue gets cleared. And read the data using one of the nowait | select_handle()
recv functions: recv/3,4, recvfrom/3,4 or recvmsg/3,4,5. Otherwise you might accidentally cause
a busy loop in and out of 'select' for the socket.

{ip, recvif}

Value = boolean()

{ip, recvopts}

Value = boolean()

{ip, recvorigdstaddr}

Value = boolean()

Ericsson AB. All Rights Reserved.: Kernel | 333

socket

{ip, recvtos}

Value = boolean()

{ip, recvttl}

Value = boolean()

{ip, retopts}

Value = boolean()

{ip, router_alert}

Value = integer()

{ip, sendsrcaddr}

Value = boolean()

{ip, tos}

Value = ip_tos() | integer()

An integer() value is according to the platform's header files.

{ip, transparent}

Value = boolean()

{ip, ttl}

Value = integer()

{ip, unblock_source}

Value = ip_mreq_source()

Only valid to set.

Options for protocol level ipv6:

{ipv6, addrform}

Value = domain()

As far as we know the only valid value is inet and it is only allowed for an IPv6 socket that is connected and
bound to an IPv4-mapped IPv6 address.

{ipv6, add_membership}

Value = ipv6_mreq()

Only valid to set.

{ipv6, authhdr}

Value = boolean()

{ipv6, drop_membership}

Value = ipv6_mreq()

Only valid to set.

{ipv6, dstopts}

Value = boolean()

{ipv6, flowinfo}

Value = boolean()

334 | Ericsson AB. All Rights Reserved.: Kernel

socket

{ipv6, hoplimit}

Value = boolean()

{ipv6, hopopts}

Value = boolean()

{ipv6, mtu}

Value = integer()

{ipv6, mtu_discover}

Value = ipv6_pmtudisc() | integer()

An integer() value is according to the platform's header files.

{ipv6, multicast_hops}

Value = ipv6_hops()

{ipv6, multicast_if}

Value = integer()

{ipv6, multicast_loop}

Value = boolean()

{ipv6, recverr}

Value = boolean()

Warning! See the socket option {ip, recverr} regarding the socket's error queue. The same warning applies
for this option.

{ipv6, recvhoplimit}

Value = boolean()

{ipv6, recvpktinfo}

Value = boolean()

{ipv6, recvtclass}

Value = boolean()

{ipv6, router_alert}

Value = integer()

{ipv6, rthdr}

Value = boolean()

{ipv6, tclass}

Value = boolean()

{ipv6, unicast_hops}

Value = ipv6_hops()

{ipv6, v6only}

Value = boolean()

Options for protocol level sctp. See also RFC 6458.

Ericsson AB. All Rights Reserved.: Kernel | 335

socket

{sctp, associnfo}

Value = sctp_assocparams()

{sctp, autoclose}

Value = integer()

{sctp, disable_fragments}

Value = boolean()

{sctp, events}

Value = sctp_event_subscribe()

Only valid to set.

{sctp, initmsg}

Value = sctp_initmsg()

{sctp, maxseg}

Value = integer()

{sctp, nodelay}

Value = boolean()

{sctp, rtoinfo}

Value = sctp_rtoinfo()

Options for protocol level tcp:

{tcp, congestion}

Value = string()

{tcp, cork}

Value = boolean()

{tcp, maxseg}

Value = integer()

{tcp, nodelay}

Value = boolean()

Options for protocol level udp:

{udp, cork}

Value = boolean()

linger() = #{onoff := boolean(), linger := integer() >= 0}
Corresponds to the C struct linger for managing the socket option {socket, linger}.

timeval() = #{sec := integer(), usec := integer()}
Corresponds to the C struct timeval. The field sec holds seconds, and usec microseconds.

ip_mreq() = #{multiaddr := in_addr(), interface := in_addr()}
Corresponds to the C struct ip_mreq for managing multicast groups.

ip_mreq_source() =
 #{multiaddr := in_addr(),

336 | Ericsson AB. All Rights Reserved.: Kernel

socket

 interface := in_addr(),
 sourceaddr := in_addr()}
Corresponds to the C struct ip_mreq_source for managing multicast groups.

ip_msfilter() =
 #{multiaddr := in_addr(),
 interface := in_addr(),
 mode := include | exclude,
 slist := [in_addr()]}
Corresponds to the C struct ip_msfilter for managing multicast source filtering (RFC 3376).

ip_pmtudisc() = want | dont | do | probe
Lowercase atom() values corresponding to the C library constants IP_PMTUDISC_*. Some constant(s) may be
unsupported by the platform.

ip_tos() = lowdelay | throughput | reliability | mincost
Lowercase atom() values corresponding to the C library constants IPTOS_*. Some constant(s) may be unsupported
by the platform.

ip_pktinfo() =
 #{ifindex := integer() >= 0,
 spec_dst := in_addr(),
 addr := in_addr()}
ipv6_mreq() =
 #{multiaddr := in6_addr(), interface := integer() >= 0}
Corresponds to the C struct ipv6_mreq for managing multicast groups. See also RFC 2553.

ipv6_hops() = default | 0..255
The value default is only valid to set and is translated to the C value -1, meaning the route default.

ipv6_pmtudisc() = want | dont | do | probe
Lowercase atom() values corresponding to the C library constants IPV6_PMTUDISC_*. Some constant(s) may be
unsupported by the platform.

ipv6_pktinfo() = #{addr := in6_addr(), ifindex := integer()}
sctp_assocparams() =
 #{assoc_id := integer(),
 asocmaxrxt := 0..65535,
 numbe_peer_destinations := 0..65535,
 peer_rwnd := 0..4294967295,
 local_rwnd := 0..4294967295,
 cookie_life := 0..4294967295}
Corresponds to the C struct sctp_assocparams.

sctp_event_subscribe() =
 #{data_io := boolean(),
 association := boolean(),
 address := boolean(),
 send_failure := boolean(),
 peer_error := boolean(),
 shutdown := boolean(),
 partial_delivery := boolean(),
 adaptation_layer => boolean(),

Ericsson AB. All Rights Reserved.: Kernel | 337

socket

 sender_dry => boolean()}
Corresponds to the C struct sctp_event_subscribe.

Not all fields are implemented on all platforms; unimplemented fields are ignored, but implemented fields are
mandatory. Note that the '_event' suffixes have been stripped from the C struct field names, for convenience.

sctp_initmsg() =
 #{num_ostreams := 0..65535,
 max_instreams := 0..65535,
 max_attempts := 0..65535,
 max_init_timeo := 0..65535}
Corresponds to the C struct sctp_initmsg.

sctp_rtoinfo() =
 #{assoc_id := integer(),
 initial := 0..4294967295,
 max := 0..4294967295,
 min := 0..4294967295}
Corresponds to the C struct sctp_rtoinfo.

msg() = msg_send() | msg_recv()
msg_send() =
 #{addr => sockaddr(),
 iov := erlang:iovec(),
 ctrl =>
 [cmsg_send() |
 #{level := level() | integer(),
 type := integer(),
 data := binary()}]}
Message sent by sendmsg/2,3,4.

Corresponds to a C struct msghdr, see your platform documentation for sendmsg(2).

addr
Optional peer address, used on unconnected sockets. Corresponds to msg_name and msg_namelen fields of
a struct msghdr. If not used they are set to NULL, 0.

iov
Mandatory data as a list of binaries. The msg_iov and msg_iovlen fields of a struct msghdr.

ctrl
Optional list of control messages (CMSG). Corresponds to the msg_control and msg_controllen fields
of a struct msghdr. If not used they are set to NULL, 0.

The msg_flags field of the struct msghdr is set to 0.

msg_recv() =
 #{addr => sockaddr_recv(),
 iov := erlang:iovec(),
 ctrl :=
 [cmsg_recv() |
 #{level := level() | integer(),
 type := integer(),
 data := binary()}],
 flags := [msg_flag() | integer()]}
Message returned by recvmsg/1,2,3,5.

338 | Ericsson AB. All Rights Reserved.: Kernel

socket

Corresponds to a C struct msghdr, see your platform documentation for recvmsg(2).

addr
Optional peer address, used on unconnected sockets. Corresponds to msg_name and msg_namelen fields of
a struct msghdr. If NULL the map key is not present.

iov
Data as a list of binaries. The msg_iov and msg_iovlen fields of a struct msghdr.

ctrl
A possibly empty list of control messages (CMSG). Corresponds to the msg_control and
msg_controllen fields of a struct msghdr.

flags
Message flags. Corresponds to the msg_flags field of a struct msghdr. Unknown flags, if any, are
returned in one integer(), last in the containing list.

native_value() = integer() | boolean() | binary()
cmsg_send() =
 #{level := socket,
 type := timestamp,
 data => native_value(),
 value => timeval()} |
 #{level := socket, type := rights, data := native_value()} |
 #{level := socket,
 type := credentials,
 data := native_value()} |
 #{level := ip,
 type := tos,
 data => native_value(),
 value => ip_tos() | integer()} |
 #{level := ip,
 type := ttl,
 data => native_value(),
 value => integer()} |
 #{level := ip,
 type := hoplimit,
 data => native_value(),
 value => integer()} |
 #{level := ipv6,
 type := tclass,
 data => native_value(),
 value => integer()}
Control messages (ancillary messages) accepted by sendmsg/2,3,4.

A control message may for some message types have a value field with a symbolic value, or a data field with a
native value, that has to be binary compatible what is defined in the platform's header files.

cmsg_recv() =
 #{level := socket,
 type := timestamp,
 data := binary(),
 value => timeval()} |
 #{level := socket, type := rights, data := binary()} |
 #{level := socket, type := credentials, data := binary()} |
 #{level := ip,
 type := tos,

Ericsson AB. All Rights Reserved.: Kernel | 339

socket

 data := binary(),
 value => ip_tos() | integer()} |
 #{level := ip,
 type := recvtos,
 data := binary(),
 value := ip_tos() | integer()} |
 #{level := ip,
 type := ttl,
 data := binary(),
 value => integer()} |
 #{level := ip,
 type := recvttl,
 data := binary(),
 value := integer()} |
 #{level := ip,
 type := pktinfo,
 data := binary(),
 value => ip_pktinfo()} |
 #{level := ip,
 type := origdstaddr,
 data := binary(),
 value => sockaddr_recv()} |
 #{level := ip,
 type := recverr,
 data := binary(),
 value => extended_err()} |
 #{level := ipv6,
 type := hoplimit,
 data := binary(),
 value => integer()} |
 #{level := ipv6,
 type := pktinfo,
 data := binary(),
 value => ipv6_pktinfo()} |
 #{level := ipv6,
 type := recverr,
 data := binary(),
 value => extended_err()} |
 #{level := ipv6,
 type := tclass,
 data := binary(),
 value => integer()}
Control messages (ancillary messages) returned by recvmsg/1,2,3,5.

A control message has got a data field with a native (binary) value for the message data, and may also have a
decoded value field if this socket library successfully decoded the data.

icmp_dest_unreach() =
 net_unreach | host_unreach | port_unreach | frag_needed |
 net_unknown | host_unknown
icmpv6_dest_unreach() =
 noroute | adm_prohibited | not_neighbour | addr_unreach |

340 | Ericsson AB. All Rights Reserved.: Kernel

socket

 port_unreach | policy_fail | reject_route
ee_origin() = none | local | icmp | icmp6
extended_err() =
 #{error := posix(),
 origin := icmp,
 type := dest_unreach,
 code := icmp_dest_unreach() | 0..255,
 info := 0..4294967295,
 data := 0..4294967295,
 offender := sockaddr_recv()} |
 #{error := posix(),
 origin := icmp,
 type := time_exceeded | 0..255,
 code := 0..255,
 info := 0..4294967295,
 data := 0..4294967295,
 offender := sockaddr_recv()} |
 #{error := posix(),
 origin := icmp6,
 type := dest_unreach,
 code := icmpv6_dest_unreach() | 0..255,
 info := 0..4294967295,
 data := 0..4294967295,
 offender := sockaddr_recv()} |
 #{error := posix(),
 origin := icmp6,
 type := pkt_toobig | time_exceeded | 0..255,
 code := 0..255,
 info := 0..4294967295,
 data := 0..4294967295,
 offender := sockaddr_recv()} |
 #{error := posix(),
 origin := ee_origin() | 0..255,
 type := 0..255,
 code := 0..255,
 info := 0..4294967295,
 data := 0..4294967295,
 offender := sockaddr_recv()}
posix() = inet:posix()
The POSIX error codes originates from the OS level socket interface.

Exports

accept(ListenSocket) -> {ok, Socket} | {error, Reason}
accept(ListenSocket, Timeout :: infinity) ->
 {ok, Socket} | {error, Reason}
Types:

Ericsson AB. All Rights Reserved.: Kernel | 341

socket

ListenSocket = Socket = socket()
Reason = posix() | closed | invalid()

Accept a connection on a socket.

This call is used with connection oriented socket types (stream or seqpacket). It returns the first pending incoming
connection for a listen socket, or waits for one to arrive, and returns the (newly) connected socket.

accept(ListenSocket, Timeout :: integer() >= 0) ->
 {ok, Socket} | {error, Reason}
Types:

ListenSocket = Socket = socket()
Reason = posix() | closed | invalid() | timeout

The same as accept/1 but returns {error, timeout} if no connection has been accepted after Timeout
milliseconds.

Note:

Note that if multiple calls are made only the last call is "valid":

 {select, {select_info, _Handle}} = socket:accept(LSock, nowait),
 {error, timeout} = socket:accept(LSock, 500),
 .
 .
 .

In the example above, Handle is not valid once the second (accept-) call has been made (the first call is
automatically "cancelled" and an abort messaage sent, when the second call is made). After the (accept-) call
resulting in the timeout has been made, there is no longer an active accept call!

accept(ListenSocket, Timeout :: nowait) ->
 {ok, Socket} | {select, SelectInfo} | {error, Reason}
accept(ListenSocket, SelectHandle :: select_handle()) ->
 {ok, Socket} | {select, SelectInfo} | {error, Reason}
Types:

ListenSocket = Socket = socket()
SelectInfo = select_info()
Reason = posix() | closed | invalid()

The same as accept/1 but returns promptly.

When there is no pending connection to return, the function will return {select, SelectInfo}, and the
caller will later receive a select message, {'$socket', Socket, select, SelectHandle} (with the
SelectHandle contained in the SelectInfo) when a client connects. A subsequent call to accept/1,2 will
then return the socket.

If the time-out argument is SelectHandle, that term will be contained in a returned SelectInfo and the
corresponding select message. The SelectHandle is presumed to be unique to this call.

If the time-out argument is nowait, and a SelectInfo is returned, it will contain a select_handle() generated
by the call.

If the caller doesn't want to wait for a connection, it must immediately call cancel/2 to cancel the operation.

342 | Ericsson AB. All Rights Reserved.: Kernel

socket

Note:

Note that if multiple calls are made only the last call is "valid":

 {select, {select_info, _Handle1}} = socket:accept(LSock, nowait),
 {select, {select_info, _Handle2}} = socket:accept(LSock, nowait),
 receive
 {'$socket', LSock, select, Handle2} ->
 {ok, ASock} = socket:accept(LSock, nowait),
 .
 .
 .
 end

In the example above, only Handle2 is valid once the second (accept-) call has been made (the first call is
automatically "cancelled" and an abort messaage sent, when the second call is made).

bind(Socket, Addr) -> ok | {error, Reason}
Types:

Socket = socket()
Addr = sockaddr() | any | broadcast | loopback
Reason = posix() | closed | invalid()

Bind a name to a socket.

When a socket is created (with open), it has no address assigned to it. bind assigns the address specified by the
Addr argument.

The rules used for name binding vary between domains.

If you bind a socket to an address in for example the 'inet' or 'inet6' address families, with an ephemeral port number (0),
and want to know which port that was chosen, you can find out using something like: {ok, #{port := Port}}
= socket:sockname(Socket)

cancel(Socket, SelectInfo) -> ok | {error, Reason}
Types:

Socket = socket()
SelectInfo = select_info()
Reason = closed | invalid()

Cancel an asynchronous request.

Call this function in order to cancel a previous asynchronous call to, e.g. recv/3.

An ongoing asynchronous operation blocks the socket until the operation has been finished in good order, or until it
has been cancelled by this function.

Any other process that tries an operation of the same basic type (accept / send / recv) will be enqueued and notified
with the regular select mechanism for asynchronous operations when the current operation and all enqueued before
it has been completed.

If SelectInfo does not match an operation in progress for the calling process, this function returns
{error, {invalid, SelectInfo}}.

close(Socket) -> ok | {error, Reason}
Types:

Ericsson AB. All Rights Reserved.: Kernel | 343

socket

Socket = socket()
Reason = posix() | closed | timeout

Closes the socket.

Note:

Note that for e.g. protocol = tcp, most implementations doing a close does not guarantee that any data sent is
delivered to the recipient before the close is detected at the remote side.

One way to handle this is to use the shutdown function (socket:shutdown(Socket, write)) to signal
that no more data is to be sent and then wait for the read side of the socket to be closed.

connect(Socket, SockAddr) -> ok | {error, Reason}
connect(Socket, SockAddr, Timeout :: infinity) ->
 ok | {error, Reason}
Types:

Socket = socket()
SockAddr = sockaddr()
Reason = posix() | closed | invalid() | already

This function connects the socket to the address specified by the SockAddr argument, and returns when the
connection has been established or failed.

If a connection attempt is already in progress (by another process), {error, already} is returned.

connect(Socket, SockAddr, Timeout :: integer() >= 0) ->
 ok | {error, Reason}
Types:

Socket = socket()
SockAddr = sockaddr()
Reason = posix() | closed | invalid() | already | timeout

The same as connect/2 but returns {error, timeout} if no connection has been established after Timeout
milliseconds.

Note:

Note that when this call has returned {error, timeout} the connection state of the socket is uncertain since
the platform's network stack may complete the connection at any time, up to some platform specific time-out.

Repeating a connection attempt towards the same address would be ok, but towards a different address could end
up with a connection to either address.

The safe play would be to close the socket and start over.

Also note that all this applies to cancelling a connect call with a no-wait time-out described below.

connect(Socket, SockAddr, Timeout :: nowait) ->
 ok | {select, SelectInfo} | {error, Reason}
connect(Socket, SockAddr, SelectHandle :: select_handle()) ->

344 | Ericsson AB. All Rights Reserved.: Kernel

socket

 ok | {select, SelectInfo} | {error, Reason}
Types:

Socket = socket()
SockAddr = sockaddr()
SelectInfo = select_info()
Reason = posix() | closed | invalid() | already

The same as connect/2 but returns promptly.

If it is not possible to immediately establish a connection, the function will return {select, SelectInfo}, and
the caller will later receive a select message, {'$socket', Socket, select, SelectHandle} (with the
SelectHandle contained in the SelectInfo) when the connection has been completed or failed. A subsequent
call to connect/1 will then finalize the connection and return the result.

If the time-out argument is SelectHandle, that term will be contained in a returned SelectInfo and the
corresponding select message. The SelectHandle is presumed to be unique to this call.

If the time-out argument is nowait, and a SelectInfo is returned, it will contain a select_handle() generated
by the call.

If the caller doesn't want to wait for the connection to complete, it must immediately call cancel/2 to cancel the
operation.

connect(Socket) -> ok | {error, Reason}
Types:

Socket = socket()
Reason = posix() | closed | invalid()

This function finalizes a connection setup on a socket, after calling connect(_, _, nowait |
select_handle()) that returned {select, SelectInfo}, and receiving the select message {'$socket',
Socket, select, SelectHandle}, and returns whether the connection setup was successful or not.

Instead of calling this function, for backwards compatibility, it is allowed to call connect/2,3, but that incurs more
overhead since the connect address and time-out are processed in vain.

cancel_monitor(MRef) -> boolean()
Types:

MRef = reference()
If MRef is a reference that the calling process obtained by calling monitor/1, this monitor is turned off. If the
monitoring is already turned off, nothing happens.

The returned value is one of the following:

true

The monitor was found and removed. In this case, no 'DOWN' message corresponding to this monitor has been
delivered and will not be delivered.

false

The monitor was not found and could not be removed. This probably because a 'DOWN' message corresponding
to this monitor has already been placed in the caller message queue.

Failure: It is an error if MRef refers to a monitor started by another process.

getopt(X1 :: socket(),

Ericsson AB. All Rights Reserved.: Kernel | 345

socket

 SocketOption :: {Level :: otp, Opt :: otp_socket_option()}) ->
 {ok, Value :: term()} | {error, invalid() | closed}
Gets a socket option from the protocol level otp, which is this implementation's level above the OS protocol layers.

See the type otp_socket_option() for a description of the options on this level.

getopt(X1 :: socket(), SocketOption :: socket_option()) ->
 {ok, Value :: term()} |
 {error, posix() | invalid() | closed}
Gets a socket option from one of the OS's protocol levels. See the type socket_option() for which options that this
implementation knows about, how they are related to option names in the OS, and if there are known peculiarities
with any of them.

What options are valid depends on what kind of socket it is (domain(), type() and protocol()).

See the socket options chapter of the users guide for more info.

Note:

Not all options are valid, nor possible to get, on all platforms. That is, even if "we" support an option; it does not
mean that the underlying OS does.

getopt(Socket, Level, Opt) -> ok | {error, Reason}
Types:

Socket = socket()

Reason = inet:posix() | invalid() | closed

Backwards compatibility function.

The same as getopt(Socket, {Level, Opt})

getopt_native(X1 :: socket(),
 SocketOption ::
 socket_option() |
 {Level :: level() | (NativeLevel :: integer()),
 NativeOpt :: integer()},
 ValueType :: integer) ->
 {ok, Value :: integer()} |
 {error, posix() | invalid() | closed}
getopt_native(X1 :: socket(),
 SocketOption ::
 socket_option() |
 {Level :: level() | (NativeLevel :: integer()),
 NativeOpt :: integer()},
 ValueType :: boolean) ->
 {ok, Value :: boolean()} |
 {error, posix() | invalid() | closed}
getopt_native(X1 :: socket(),
 SocketOption ::
 socket_option() |
 {Level :: level() | (NativeLevel :: integer()),
 NativeOpt :: integer()},

346 | Ericsson AB. All Rights Reserved.: Kernel

socket

 ValueSize :: integer() >= 0) ->
 {ok, Value :: binary()} |
 {error, posix() | invalid() | closed}
getopt_native(X1 :: socket(),
 SocketOption ::
 socket_option() |
 {Level :: level() | (NativeLevel :: integer()),
 NativeOpt :: integer()},
 ValueSpec :: binary()) ->
 {ok, Value :: binary()} |
 {error, posix() | invalid() | closed}
Gets a socket option that may be unknown to our implementation, or that has a type not compatible with our
implementation, that is; in "native mode".

The socket option may be specified with an ordinary socket_option() tuple, with a known Level = level()
and an integer NativeOpt, or with both an integer NativeLevel and NativeOpt.

How to decode the option value has to be specified either with ValueType, by specifying the ValueSize for a
binary() that will contain the fetched option value, or by specifying a binary() ValueSpec that will be copied
to a buffer for the getsockopt() call to write the value in which will be returned as a new binary().

If ValueType is integer a C type (int) will be fetched, if it is boolean a C type (int) will be fetched and
converted into a boolean() according to the C implementation.

What options are valid depends on what kind of socket it is (domain(), type() and protocol()).

The integer values for NativeLevel and NativeOpt as well as the Value encoding has to be deduced from the
header files for the running system.

i() -> ok
Print all sockets in table format in the erlang shell.

i(InfoKeys) -> ok
Types:

InfoKeys = info_keys()
Print all sockets in table format in the erlang shell. What information is included is defined by InfoKeys.

i(Domain) -> ok
Types:

Domain = inet | inet6 | local
Print a selection, based on domain, of the sockets in table format in the erlang shell.

i(Proto) -> ok
Types:

Proto = sctp | tcp | udp
Print a selection, based on protocol, of the sockets in table format in the erlang shell.

i(Type) -> ok
Types:

Ericsson AB. All Rights Reserved.: Kernel | 347

socket

Type = dgram | seqpacket | stream
Print a selection, based on type, of the sockets in table format in the erlang shell.

i(Domain, InfoKeys) -> ok
Types:

Domain = inet | inet6 | local
InfoKeys = info_keys()

Print a selection, based on domain, of the sockets in table format in the erlang shell. What information is included
is defined by InfoKeys.

i(Proto, InfoKeys) -> ok
Types:

Proto = sctp | tcp | udp
InfoKeys = info_keys()

Print a selection, based on domain, of the sockets in table format in the erlang shell. What information is included
is defined by InfoKeys.

i(Type, InfoKeys) -> ok
Types:

Type = dgram | seqpacket | stream
InfoKeys = info_keys()

Print a selection, based on type, of the sockets in table format in the erlang shell. What information is included is
defined by InfoKeys.

info() -> info()
Get miscellaneous info about the socket library.

The function returns a map with each info item as a key-value binding.

Note:

In order to ensure data integrity, mutex'es are taken when needed. So, do not call this function often.

info(Socket) -> socket_info()
Types:

Socket = socket()
Get miscellaneous info about the socket.

The function returns a map with each info item as a key-value binding. It reflects the "current" state of the socket.

Note:

In order to ensure data integrity, mutex'es are taken when needed. So, do not call this function often.

348 | Ericsson AB. All Rights Reserved.: Kernel

socket

ioctl(Socket, GetRequest) -> {ok, IFConf} | {error, Reason}
Types:

Socket = socket()
GetRequest = gifconf
IFConf = [#{name := string, addr := sockaddr()}]
Reason = posix() | closed

Retrieve socket (device) parameters.

ioctl(Socket, GetRequest, NameOrIndex) ->
 {ok, Result} | {error, Reason}
Types:

Socket = socket()
GetRequest =
 gifname | gifindex | gifaddr | gifdstaddr | gifbrdaddr |
 gifnetmask | gifhwaddr | gifmtu | giftxqlen | gifflags
NameOrIndex = string() | integer()
Result = term()
Reason = posix() | closed

Retrieve socket (device) parameters. This function retrieves a specific parameter, according to GetRequest
argument. The third argument is the (lookup) "key", identifying the interface (usually the name of the interface).

gifname

Get the name of the interface with the specified index (integer()).

Result, name of the interface, is a string().

gifindex

Get the index of the interface with the specified name.

Result, interface index, is a integer().

gifaddr

Get the address of the interface with the specified name. Result, address of the interface, is a
socket:sockaddr().

gifdstaddr

Get the destination address of the point-to-point interface with the specified name.

Result, destination address of the interface, is a socket:sockaddr().

gifbrdaddr

Get the droadcast address for the interface with the specified name.

Result, broadcast address of the interface, is a socket:sockaddr().

gifnetmask

Get the network mask for the interface with the specified name.

Result, network mask of the interface, is a socket:sockaddr().

gifhwaddr

Get the hardware address for the interface with the specified name.

Ericsson AB. All Rights Reserved.: Kernel | 349

socket

Result, hardware address of the interface, is a socket:sockaddr(). The family field contains the 'ARPHRD'
device type (or an integer).

gifmtu

Get the MTU (Maximum Transfer Unit) for the interface with the specified name.

Result, MTU of the interface, is an integer().

giftxqlen

Get the transmit queue length of the interface with the specified name.

Result, transmit queue length of the interface, is an integer().

gifflags

Get the active flag word of the interface with the specified name.

Result, the active flag word of the interface, is an list of socket:ioctl_device_flag() | integer().

ioctl(Socket, SetRequest, Name, Value) -> ok | {error, Reason}
Types:

Socket = socket()
SetRequest =
 sifflags | sifaddr | sifdstaddr | sifbrdaddr | sifnetmask |
 sifhwaddr | gifmtu | siftxqlen
Name = string()
Value = term()
Reason = posix() | closed

Set socket (device) parameters. This function sets a specific parameter, according to SetRequest argument. The
third argument is the "key", identifying the interface (usually the name of the interface), and the fourth is the "new"
value.

These are privileged operation's.

sifflags

Set the the active flag word, #{Flag => boolean()}, of the interface with the specified name.

Each flag to be changed, should be added to the value map, with the value 'true' if the flag (Flag) should
be set and 'false' if the flag should be reset.

sifaddr

Set the address, sockaddr(), of the interface with the specified name.

sifdstaddr

Set the destination address, sockaddr(), of a point-to-point interface with the specified name.

sifbrdaddr

Set the broadcast address, sockaddr(), of the interface with the specified name.

sifnetmask

Set the network mask, sockaddr(), of the interface with the specified name.

sifmtu

Set the MTU (Maximum Transfer Unit), integer(), for the interface with the specified name.

350 | Ericsson AB. All Rights Reserved.: Kernel

socket

siftxqlen

Set the transmit queue length, integer(), of the interface with the specified name.

is_supported(Key1 :: term()) -> boolean()
is_supported(Key1 :: term(), Key2 :: term()) -> boolean()
This function retrieves information about what the platform supports, such as if SCTP is supported, or if a socket
options are supported.

For keys other than the known false is returned. Note that in a future version or on a different platform there might
be more supported items.

This functions returns a boolean corresponding to what supports/0-2 reports for the same Key1 (and Key2).

listen(Socket) -> ok | {error, Reason}
listen(Socket, Backlog) -> ok | {error, Reason}
Types:

Socket = socket()
Backlog = integer()
Reason = posix() | closed

Listen for connections on a socket.

monitor(Socket) -> reference()
Types:

Socket = socket()
Start monitor the socket Socket.

If the monitored socket does not exist or when the monitor is triggered, a 'DOWN' message is sent that has the following
pattern:

 {'DOWN', MonitorRef, socket, Object, Info}

In the monitor message MonitorRef and Type are the same as described earlier, and:

Object

The monitored entity, socket, which triggered the event.

Info

Either the termination reason of the socket or nosock (socket Socket did not exist at the time of monitor
creation).

Making several calls to socket:monitor/1 for the same Socket is not an error; it results in as many independent
monitoring instances.

number_of() -> integer() >= 0
Returns the number of active sockets.

open(FD) -> {ok, Socket} | {error, Reason}
open(FD, Opts) -> {ok, Socket} | {error, Reason}
Types:

Ericsson AB. All Rights Reserved.: Kernel | 351

socket

FD = integer()
Opts =
 #{domain => domain() | integer(),
 type => type() | integer(),
 protocol => default | protocol() | integer(),
 dup => boolean(),
 debug => boolean(),
 use_registry => boolean()}
Socket = socket()
Reason = posix() | domain | type | protocol

Creates an endpoint (socket) for communication based on an already existing file descriptor. The function attempts
to retrieve domain, type and protocol from the system. This is however not possible on all platforms, and they
should then be specified in Opts.

The Opts argument is intended for providing extra information for the open call:

domain

Which protocol domain is the descriptor of. See also open/2,3,4.

type

Which protocol type type is the descriptor of.

See also open/2,3,4.

protocol

Which protocol is the descriptor of. The atom default is equivalent to the integer protocol number 0 which
means the default protocol for a given domain and type.

If the protocol can not be retrieved from the platform for the socket, and protocol is not specified, the default
protocol is used, which may or may not be correct.

See also open/2,3,4.

dup

Shall the provided descriptor be duplicated (dup) or not.
Defaults to true.

debug

Enable or disable debug during the open call.
Defaults to false.

use_registry>

Enable or disable use of the socket registry for this socket. This overrides the global value.
Defaults to the global value, see use_registry/1.

Note:

This function should be used with care!

On some platforms it is necessary to provide domain, type and protocol since they cannot be retrieved from
the platform.

352 | Ericsson AB. All Rights Reserved.: Kernel

socket

open(Domain, Type) -> {ok, Socket} | {error, Reason}
open(Domain, Type, Opts) -> {ok, Socket} | {error, Reason}
Types:

Domain = domain() | integer()
Type = type() | integer()
Opts = map()
Socket = socket()
Reason = posix() | protocol

Creates an endpoint (socket) for communication.

The same as open(Domain, Type, default) and open(Domain, Type, default, Opts)
respectively.

open(Domain, Type, Protocol) -> {ok, Socket} | {error, Reason}
open(Domain, Type, Protocol, Opts) ->
 {ok, Socket} | {error, Reason}
Types:

Domain = domain() | integer()
Type = type() | integer()
Protocol = default | protocol() | integer()
Opts =
 #{netns => string(),
 debug => boolean(),
 use_registry => boolean()}
Socket = socket()
Reason = posix() | protocol

Creates an endpoint (socket) for communication.

Domain and Type may be integer()s, as defined in the platform's header files. The same goes for Protocol
as defined in the platform's services(5) database. See also the OS man page for the library call socket(2).

Note:

For some combinations of Domain and Type the platform has got a default protocol that can be selected with
Protocol = default, and the platform may allow or require selecting the default protocol, a specific protocol,
or either.

Examples:

socket:open(inet, stream, tcp)

It is common that for protocol domain and type inet,stream it is allowed to select the tcp protocol
although that mostly is the default.

socket:open(local, dgram)

It is common that for the protocol domain local it is mandatory to not select a protocol, that is; to select
the default protocol.

The Opts argument is intended for "other" options. The supported option(s) are described below:

Ericsson AB. All Rights Reserved.: Kernel | 353

socket

netns: string()

Used to set the network namespace during the open call. Only supported on the Linux platform.

debug: boolean()

Enable or disable debug during the open call.
Defaults to false.

use_registry: boolean()

Enable or disable use of the socket registry for this socket. This overrides the global value.
Defaults to the global value, see use_registry/1.

peername(Socket) -> {ok, SockAddr} | {error, Reason}
Types:

Socket = socket()
SockAddr = sockaddr_recv()
Reason = posix() | closed

Returns the address of the peer connected to the socket.

recv(Socket) ->
 {ok, Data} | {error, Reason} | {error, {Reason, Data}}
recv(Socket, Flags) ->
 {ok, Data} | {error, Reason} | {error, {Reason, Data}}
recv(Socket, Length) ->
 {ok, Data} | {error, Reason} | {error, {Reason, Data}}
recv(Socket, Flags, Timeout :: infinity) ->
 {ok, Data} | {error, Reason} | {error, {Reason, Data}}
recv(Socket, Length, Flags) ->
 {ok, Data} | {error, Reason} | {error, {Reason, Data}}
recv(Socket, Length, Timeout :: infinity) ->
 {ok, Data} | {error, Reason} | {error, {Reason, Data}}
recv(Socket, Length, Flags, Timeout :: infinity) ->
 {ok, Data} | {error, Reason} | {error, {Reason, Data}}
Types:

Socket = socket()
Length = integer() >= 0
Flags = [msg_flag() | integer()]
Data = binary()
Reason = posix() | closed | invalid()

Receives data from a socket, waiting for it to arrive.

The argument Length specifies how many bytes to receive, with the special case 0 meaning "all available".

For a socket of type stream this call will not return until all requested data can be delivered, or if "all available" data
was requested when the first data chunk arrives.

The message Flags may be symbolic msg_flag()s and/or integer()s, as in the platform's appropriate header
files. The values of all symbolic flags and integers are or:ed together.

When there is a socket error this function returns {error, Reason}, or if some data arrived before the error;
{error, {Reason, Data}}.

354 | Ericsson AB. All Rights Reserved.: Kernel

socket

recv(Socket, Flags, Timeout :: integer() >= 0) ->
 {ok, Data} | {error, Reason} | {error, {Reason, Data}}
recv(Socket, Length, Timeout :: integer() >= 0) ->
 {ok, Data} | {error, Reason} | {error, {Reason, Data}}
recv(Socket, Length, Flags, Timeout :: integer() >= 0) ->
 {ok, Data} | {error, Reason} | {error, {Reason, Data}}
Types:

Socket = socket()
Length = integer() >= 0
Flags = [msg_flag() | integer()]
Data = binary()
Reason = posix() | closed | invalid() | timeout

Receives data from a socket, waiting at most Timeout milliseconds for it to arrive.

The same as infinite time-out recv/1,2,3,4 but returns {error, timeout} or
{error, {timeout, Data}} after Timeout milliseconds, if the requested data has not been delivered.

recv(Socket, Flags, SelectHandle :: nowait) ->
 {ok, Data} |
 {select, SelectInfo} |
 {select, {SelectInfo, Data}} |
 {error, Reason} |
 {error, {Reason, Data}}
recv(Socket, Flags, SelectHandle :: select_handle()) ->
 {ok, Data} |
 {select, SelectInfo} |
 {select, {SelectInfo, Data}} |
 {error, Reason} |
 {error, {Reason, Data}}
recv(Socket, Length, SelectHandle :: nowait) ->
 {ok, Data} |
 {select, SelectInfo} |
 {select, {SelectInfo, Data}} |
 {error, Reason} |
 {error, {Reason, Data}}
recv(Socket, Length, SelectHandle :: select_handle()) ->
 {ok, Data} |
 {select, SelectInfo} |
 {select, {SelectInfo, Data}} |
 {error, Reason} |
 {error, {Reason, Data}}
recv(Socket, Length, Flags, SelectHandle :: nowait) ->
 {ok, Data} |
 {select, SelectInfo} |
 {select, {SelectInfo, Data}} |
 {error, Reason} |
 {error, {Reason, Data}}
recv(Socket, Length, Flags, SelectHandle :: select_handle()) ->
 {ok, Data} |

Ericsson AB. All Rights Reserved.: Kernel | 355

socket

 {select, SelectInfo} |
 {select, {SelectInfo, Data}} |
 {error, Reason} |
 {error, {Reason, Data}}
Types:

Socket = socket()
Length = integer() >= 0
Flags = [msg_flag() | integer()]
Data = binary()
SelectInfo = select_info()
Reason = posix() | closed | invalid()

Receives data from a socket, but returns a select continuation if the data could not be returned immediately.

The same as infinite time-out recv/1,2,3,4 but if the data cannot be delivered immediately, the
function returns {select, SelectInfo}, and the caller will then receive a select message,
{'$socket', Socket, select, SelectHandle} (with the SelectHandle contained in the
SelectInfo) when data has arrived. A subsequent call to recv/1,2,3,4 will then return the data.

If the time-out argument is SelectHandle, that term will be contained in a returned SelectInfo and the
corresponding select message. The SelectHandle is presumed to be unique to this call.

If the time-out argument is nowait, and a SelectInfo is returned, it will contain a select_handle() generated
by the call.

Note that for a socket of type stream, if Length > 0 and only part of that amount of data is available, the function
will return {ok, {Data, SelectInfo with partial data. If the caller doesn't want to wait for more data, it must
immediately call cancel/2 to cancel the operation.

recvfrom(Socket) -> {ok, {Source, Data}} | {error, Reason}
recvfrom(Socket, Flags) -> {ok, {Source, Data}} | {error, Reason}
recvfrom(Socket, BufSz) -> {ok, {Source, Data}} | {error, Reason}
recvfrom(Socket, Flags, Timeout :: infinity) ->
 {ok, {Source, Data}} | {error, Reason}
recvfrom(Socket, BufSz, Flags) ->
 {ok, {Source, Data}} | {error, Reason}
recvfrom(Socket, BufSz, Timeout :: infinity) ->
 {ok, {Source, Data}} | {error, Reason}
recvfrom(Socket, BufSz, Flags, Timeout :: infinity) ->
 {ok, {Source, Data}} | {error, Reason}
Types:

Socket = socket()
BufSz = integer() >= 0
Flags = [msg_flag() | integer()]
Source = sockaddr_recv()
Data = binary()
Reason = posix() | closed | invalid()

Receive a message from a socket, waiting for it to arrive.

The function returns when a message is received, or when there is a socket error. Argument BufSz specifies the
number of bytes for the receive buffer. If the buffer size is too small, the message will be truncated.

356 | Ericsson AB. All Rights Reserved.: Kernel

socket

If BufSz is not specified or 0, a default buffer size is used, which can be set by socket:setopt(Socket,
{otp,recvbuf}, BufSz).

If it is impossible to know the appropriate buffer size, it may be possible to use the receive message flag peek. When
this flag is used, the message is not "consumed" from the underlying buffers, so another recvfrom/1,2,3,4 call
is needed, possibly with an adjusted buffer size.

The message Flags may be symbolic msg_flag()s and/or integer()s, as in the platform's appropriate header
files. The values of all symbolic flags and integers are or:ed together.

recvfrom(Socket, Flags, Timeout :: integer() >= 0) ->
 {ok, {Source, Data}} | {error, Reason}
recvfrom(Socket, BufSz, Timeout :: integer() >= 0) ->
 {ok, {Source, Data}} | {error, Reason}
recvfrom(Socket, BufSz, Flags, Timeout :: integer() >= 0) ->
 {ok, {Source, Data}} | {error, Reason}
Types:

Socket = socket()
BufSz = integer() >= 0
Flags = [msg_flag() | integer()]
Source = sockaddr_recv()
Data = binary()
Reason = posix() | closed | invalid() | timeout

Receives a message from a socket, waiting at most Timeout milliseconds for it to arrive.

The same as infinite time-out recvfrom/1,2,3,4 but returns {error, timeout} after Timeout
milliseconds, if no message has been delivered.

recvfrom(Socket, Flags, SelectHandle :: nowait) ->
 {ok, {Source, Data}} |
 {select, SelectInfo} |
 {error, Reason}
recvfrom(Socket, Flags, SelectHandle :: select_handle()) ->
 {ok, {Source, Data}} |
 {select, SelectInfo} |
 {error, Reason}
recvfrom(Socket, BufSz, SelectHandle :: nowait) ->
 {ok, {Source, Data}} |
 {select, SelectInfo} |
 {error, Reason}
recvfrom(Socket, BufSz, SelectHandle :: select_handle()) ->
 {ok, {Source, Data}} |
 {select, SelectInfo} |
 {error, Reason}
recvfrom(Socket, BufSz, Flags, SelectHandle :: nowait) ->
 {ok, {Source, Data}} |
 {select, SelectInfo} |
 {error, Reason}
recvfrom(Socket, BufSz, Flags, SelectHandle :: select_handle()) ->
 {ok, {Source, Data}} |

Ericsson AB. All Rights Reserved.: Kernel | 357

socket

 {select, SelectInfo} |
 {error, Reason}
Types:

Socket = socket()
BufSz = integer() >= 0
Flags = [msg_flag() | integer()]
Source = sockaddr_recv()
Data = binary()
SelectInfo = select_info()
Reason = posix() | closed | invalid()

Receives a message from a socket, but returns a select continuation if no message could be returned immediately.

The same as infinite time-out recvfrom/1,2,3,4 but if no message cannot delivered immediately,
the function returns {select, SelectInfo}, and the caller will then receive a select message,
{'$socket', Socket, select, SelectHandle} (with the SelectHandle contained in the
SelectInfo) when data has arrived. A subsequent call to recvfrom/1,2,3,4 will then return the message.

If the time-out argument is SelectHandle, that term will be contained in a returned SelectInfo and the
corresponding select message. The SelectHandle is presumed to be unique to this call.

If the time-out argument is nowait, and a SelectInfo is returned, it will contain a select_handle() generated
by the call.

If the caller doesn't want to wait for the data, it must immediately call cancel/2 to cancel the operation.

recvmsg(Socket) -> {ok, Msg} | {error, Reason}
recvmsg(Socket, Flags) -> {ok, Msg} | {error, Reason}
recvmsg(Socket, Timeout :: infinity) ->
 {ok, Msg} | {error, Reason}
recvmsg(Socket, Flags, Timeout :: infinity) ->
 {ok, Msg} | {error, Reason}
recvmsg(Socket, BufSz, CtrlSz) -> {ok, Msg} | {error, Reason}
recvmsg(Socket, BufSz, CtrlSz, Timeout :: infinity) ->
 {ok, Msg} | {error, Reason}
recvmsg(Socket, BufSz, CtrlSz, Flags, Timeout :: infinity) ->
 {ok, Msg} | {error, Reason}
Types:

Socket = socket()
BufSz = CtrlSz = integer() >= 0
Flags = [msg_flag() | integer()]
Msg = msg_recv()
Reason = posix() | closed | invalid()

Receive a message from a socket, waiting for it to arrive.

The function returns when a message is received, or when there is a socket error. Arguments BufSz and CtrlSz
specifies the number of bytes for the receive buffer and the control message buffer. If the buffer size(s) is(are) too
small, the message and/or control message list will be truncated.

358 | Ericsson AB. All Rights Reserved.: Kernel

socket

If BufSz is not specified or 0, a default buffer size is used, which can be set by socket:setopt(Socket,
{otp,recvbuf}, BufSz). The same applies to CtrlSz and socket:setopt(Socket,
{otp,recvctrlbuf}, CtrlSz).

If it is impossible to know the appropriate buffer size, it may be possible to use the receive message flag peek. When
this flag is used, the message is not "consumed" from the underlying buffers, so another recvfrom/1,2,3,4,5
call is needed, possibly with an adjusted buffer size.

The message Flags may be symbolic msg_flag()s and/or integer()s, as in the platform's appropriate header
files. The values of all symbolic flags and integers are or:ed together.

recvmsg(Socket, Timeout :: integer() >= 0) ->
 {ok, Msg} | {error, Reason}
recvmsg(Socket, Flags, Timeout :: integer() >= 0) ->
 {ok, Msg} | {error, Reason}
recvmsg(Socket, BufSz, CtrlSz, Timeout :: integer() >= 0) ->
 {ok, Msg} | {error, Reason}
recvmsg(Socket, BufSz, CtrlSz, Flags,
 Timeout :: integer() >= 0) ->
 {ok, Msg} | {error, Reason}
Types:

Socket = socket()
BufSz = CtrlSz = integer() >= 0
Flags = [msg_flag() | integer()]
Msg = msg_recv()
Reason = posix() | closed | invalid() | timeout

Receives a message from a socket, waiting at most Timeout milliseconds for it to arrive.

The same as recvmsg/1,2,3,4,5 but returns {error, timeout} after Timeout milliseconds, if no message has
been delivered.

recvmsg(Socket, Timeout :: nowait) ->
 {ok, Msg} | {select, SelectInfo} | {error, Reason}
recvmsg(Socket, SelectHandle :: select_handle()) ->
 {ok, Msg} | {select, SelectInfo} | {error, Reason}
recvmsg(Socket, Flags, Timeout :: nowait) ->
 {ok, Msg} | {select, SelectInfo} | {error, Reason}
recvmsg(Socket, Flags, SelectHandle :: select_handle()) ->
 {ok, Msg} | {select, SelectInfo} | {error, Reason}
recvmsg(Socket, BufSz, CtrlSz, SelectHandle :: nowait) ->
 {ok, Msg} | {select, SelectInfo} | {error, Reason}
recvmsg(Socket, BufSz, CtrlSz, SelectHandle :: select_handle()) ->
 {ok, Msg} | {select, SelectInfo} | {error, Reason}
recvmsg(Socket, BufSz, CtrlSz, Flags, SelectHandle :: nowait) ->
 {ok, Msg} | {select, SelectInfo} | {error, Reason}
recvmsg(Socket, BufSz, CtrlSz, Flags,
 SelectHandle :: select_handle()) ->
 {ok, Msg} | {select, SelectInfo} | {error, Reason}
Types:

Ericsson AB. All Rights Reserved.: Kernel | 359

socket

Socket = socket()
BufSz = CtrlSz = integer() >= 0
Flags = [msg_flag() | integer()]
Msg = msg_recv()
SelectInfo = select_info()
Reason = posix() | closed | invalid()

Receives a message from a socket, but returns a select continuation if no message could be returned immediately.

The same as infinite time-out recvfrom/1,2,3,4 but if no message cannot delivered immediately,
the function returns {select, SelectInfo}, and the caller will then receive a select message,
{'$socket', Socket, select, SelectHandle} (with the SelectHandle contained in the
SelectInfo) when data has arrived. A subsequent call to recvmsg/1,2,3,4,5 will then return the data.

If the time-out argument is SelectHandle, that term will be contained in a returned SelectInfo and the
corresponding select message. The SelectHandle is presumed to be unique to this call.

If the time-out argument is nowait, and a SelectInfo is returned, it will contain a select_handle() generated
by the call.

If the caller doesn't want to wait for the data, it must immediately call cancel/2 to cancel the operation.

send(Socket, Data) ->
 ok |
 {ok, RestData} |
 {error, Reason} |
 {error, {Reason, RestData}}
send(Socket, Data, Flags) ->
 ok |
 {ok, RestData} |
 {error, Reason} |
 {error, {Reason, RestData}}
send(Socket, Data, Timeout :: infinity) ->
 ok |
 {ok, RestData} |
 {error, Reason} |
 {error, {Reason, RestData}}
send(Socket, Data, Flags, Timeout :: infinity) ->
 ok |
 {ok, RestData} |
 {error, Reason} |
 {error, {Reason, RestData}}
Types:

Socket = socket()
Data = iodata()
Flags = [msg_flag() | integer()]
RestData = binary()
Reason = posix() | closed | invalid()

Sends data on a connected socket, waiting for it to be sent.

This call will not return until the Data has been accepted by the platform's network layer, or it reports an error.

360 | Ericsson AB. All Rights Reserved.: Kernel

socket

The message Flags may be symbolic msg_flag()s and/or integer()s, matching the platform's appropriate
header files. The values of all symbolic flags and integers are or:ed together.

The Data, if it is not a binary(), is copied into one before calling the platform network API, because a single
buffer is required. A returned RestData is a sub binary of this data binary.

The return value indicates the result from the platform's network layer:

ok

All data has been accepted.

{ok, RestData}

Not all data has been accepted, but no error has been reported. RestData is the tail of Data that has not been
accepted.

This cannot happen for a socket of type stream where a partially successful send is retried until the data is
either accepted or there is an error.

For a socket of type dgram this should probably also not happen since a message that cannot be passed atomically
should render an error.

It is nevertheless possible for the platform's network layer to return this.

{error, Reason}

An error has been reported and no data has been accepted. The posix() Reasons are from the platform's
network layer. closed means that this socket library knows that the socket is closed, and invalid() means
that something about an argument is invalid.

{error, {Reason, RestData}}

An error has been reported but before that some data was accepted. RestData is the tail of Data that has not
been accepted. See {error, Reason} above.

This can only happen for a socket of type stream when a partially successful send is retried until there is an error.

send(Socket, Data, Timeout :: integer() >= 0) ->
 ok |
 {ok, RestData} |
 {error, Reason | timeout} |
 {error, {Reason | timeout, RestData}}
send(Socket, Data, Flags, Timeout :: integer() >= 0) ->
 ok |
 {ok, RestData} |
 {error, Reason | timeout} |
 {error, {Reason | timeout, RestData}}
Types:

Socket = socket()
Data = iodata()
Flags = [msg_flag() | integer()]
RestData = binary()
Reason = posix() | closed | invalid()

Sends data on a connected socket, waiting at most Timeout milliseconds for it to be sent.

The same as infinite time-out send/2,3,4 but returns {error, timeout} or
{error, {timeout, RestData}} after Timeout milliseconds, if no Data or only some of it was accepted
by the platform's network layer.

Ericsson AB. All Rights Reserved.: Kernel | 361

socket

send(Socket, Data, SelectHandle :: nowait) ->
 ok |
 {ok, RestData} |
 {select, SelectInfo} |
 {select, {SelectInfo, RestData}} |
 {error, Reason}
send(Socket, Data, SelectHandle :: select_handle()) ->
 ok |
 {ok, RestData} |
 {select, SelectInfo} |
 {select, {SelectInfo, RestData}} |
 {error, Reason}
send(Socket, Data, Flags, SelectHandle :: nowait) ->
 ok |
 {ok, RestData} |
 {select, SelectInfo} |
 {select, {SelectInfo, RestData}} |
 {error, Reason}
send(Socket, Data, Flags, SelectHandle :: select_handle()) ->
 ok |
 {ok, RestData} |
 {select, SelectInfo} |
 {select, {SelectInfo, RestData}} |
 {error, Reason}
Types:

Socket = socket()
Data = iodata()
Flags = [msg_flag() | integer()]
RestData = binary()
SelectInfo = select_info()
Reason = posix() | closed | invalid()

Sends data on a connected socket, but returns a select continuation if the data could not be sent immediately.

The same as infinite time-out send/2,3 but if the data is not immediately accepted by the platform network
layer, the function returns {select, SelectInfo}, and the caller will then receive a select message,
{'$socket', Socket, select, SelectHandle} (with the SelectHandle that was contained in the
SelectInfo) when there is room for more data. A subsequent call to send/2-4 will then send the data.

If SelectHandle is a select_handle(), that term will be contained in a returned SelectInfo and the
corresponding select message. The SelectHandle is presumed to be unique to this call.

If SelectHandle is nowait, and a SelectInfo is returned, it will contain a select_handle() generated
by the call.

If some of the data was sent, the function will return {ok, {RestData, SelectInfo}, which can only
happen for a socket of type stream. If the caller does not want to wait to send the rest of the data, it should immediately
cancel the operation with cancel/2.

send(Socket, Data, Cont) ->
 ok |
 {ok, RestData} |
 {error, Reason} |

362 | Ericsson AB. All Rights Reserved.: Kernel

socket

 {error, {Reason, RestData}}
send(Socket, Data, Cont, Timeout :: infinity) ->
 ok |
 {ok, RestData} |
 {error, Reason} |
 {error, {Reason, RestData}}
send(Socket, Data, Cont, Timeout :: integer() >= 0) ->
 ok |
 {ok, RestData} |
 {error, Reason | timeout} |
 {error, {Reason | timeout, RestData}}
send(Socket, Data, Cont, SelectHandle :: nowait) ->
 ok |
 {ok, RestData} |
 {select, SelectInfo} |
 {select, {SelectInfo, RestData}} |
 {error, Reason}
send(Socket, Data, Cont, SelectHandle :: select_handle()) ->
 ok |
 {ok, RestData} |
 {select, SelectInfo} |
 {select, {SelectInfo, RestData}} |
 {error, Reason}
Types:

Socket = socket()
Data = iodata()
Cont = select_info()
RestData = binary()
SelectInfo = select_info()
Reason = posix() | closed | invalid()

Continues sending data on a connected socket, where the send operation was initiated by send/3,4 that returned a
SelectInfo continuation. Otherwise like infinite time-out send/2,3,4 , limited time-out send/3,4 or nowait
send/3,4 respectively.

Cont is the SelectInfo that was returned from the previous send() call.

If Data is not a binary(), it will be copied into one, again.

The return value indicates the result from the platform's network layer. See send/2,3,4 and nowait send/3,4.

sendmsg(Socket, Msg) ->
 ok |
 {ok, RestData} |
 {error, Reason} |
 {error, {Reason, RestData}}
sendmsg(Socket, Msg, Flags) ->
 ok |
 {ok, RestData} |
 {error, Reason} |

Ericsson AB. All Rights Reserved.: Kernel | 363

socket

 {error, {Reason, RestData}}
sendmsg(Socket, Msg, Timeout :: infinity) ->
 ok |
 {ok, RestData} |
 {error, Reason} |
 {error, {Reason, RestData}}
sendmsg(Socket, Msg, Flags, Timeout :: infinity) ->
 ok |
 {ok, RestData} |
 {error, Reason} |
 {error, {Reason, RestData}}
Types:

Socket = socket()
Msg = msg_send()
Flags = [msg_flag() | integer()]
RestData = erlang:iovec()
Reason = posix() | closed | invalid()

Sends a message on a socket, waiting for it to be sent.

The destination, if needed, that is: if the socket is not connected, is provided in Msg, which also contains the data to
send as a list of binaries. Msg may also contain an list of optional control messages (depending on what the protocol
and platform supports).

For a connected socket no address field should be present in Msg, the platform may return an error or ignore one.

The message data is given to to the platform's network layer in the form of an I/O vector without copying the content.
If the number of elements in the I/O vector is larger than allowed on the platform (reported in the iov_max field from
info/0), on a socket of type stream the send is iterated over all elements, but for other socket types the call fails.

This call will not return until the data has been handed over to the platform's network layer, or when it reports an error.

The message Flags may be symbolic msg_flag()s and/or integer()s, matching the platform's appropriate
header files. The values of all symbolic flags and integers are or:ed together.

The return value indicates the result from the platform's network layer. See send/2,3,4.

sendmsg(Socket, Msg, Timeout :: integer() >= 0) ->
 ok |
 {ok, RestData} |
 {error, Reason | timeout} |
 {error, {Reason | timeout, RestData}}
sendmsg(Socket, Msg, Flags, Timeout :: integer() >= 0) ->
 ok |
 {ok, RestData} |
 {error, Reason | timeout} |
 {error, {Reason | timeout, RestData}}
Types:

364 | Ericsson AB. All Rights Reserved.: Kernel

socket

Socket = socket()
Msg = msg_send()
Flags = [msg_flag() | integer()]
RestData = erlang:iovec()
Reason = posix() | closed | invalid()

Sends a message on a socket, waiting at most Timeout milliseconds for it to be sent.

The same as infinite time-out sendmsg/2,3,4 but returns {error, timeout} or
{error, {timeout, RestData}} after Timeout milliseconds, if no data or only some of it was accepted
by the platform's network layer.

sendmsg(Socket, Msg, Timeout :: nowait) ->
 ok |
 {ok, RestData} |
 {select, SelectInfo} |
 {select, {SelectInfo, RestData}} |
 {error, Reason} |
 {error, {Reason, RestData}}
sendmsg(Socket, Msg, SelectHandle :: select_handle()) ->
 ok |
 {ok, RestData} |
 {select, SelectInfo} |
 {select, {SelectInfo, RestData}} |
 {error, Reason} |
 {error, {Reason, RestData}}
sendmsg(Socket, Msg, Flags, SelectHandle :: nowait) ->
 ok |
 {ok, RestData} |
 {select, SelectInfo} |
 {select, {SelectInfo, RestData}} |
 {error, Reason} |
 {error, {Reason, RestData}}
sendmsg(Socket, Msg, Flags, SelectHandle :: select_handle()) ->
 ok |
 {ok, RestData} |
 {select, SelectInfo} |
 {select, {SelectInfo, RestData}} |
 {error, Reason} |
 {error, {Reason, RestData}}
Types:

Socket = socket()
Msg = msg_send()
Flags = [msg_flag() | integer()]
RestData = erlang:iovec()
SelectInfo = select_info()
Reason = posix() | closed | invalid()

Sends a message on a socket, but returns a select continuation if the data could not be sent immediately.

Ericsson AB. All Rights Reserved.: Kernel | 365

socket

The same as infinity time-out sendmsg/2,3 but if the data is not immediately accepted by the platform network
layer, the function returns {select, SelectInfo}, and the caller will then receive a select message,
{'$socket', Socket, select, SelectHandle} (with the SelectHandle that was contained in the
SelectInfo) when there is room for more data. A subsequent call to sendmsg/2-4 will then send the data.

If SelectHandle, is a select_handle(), that term will be contained in a returned SelectInfo and the
corresponding select message. The SelectHandle is presumed to be unique to this call.

If SelectHandle is nowait, and a SelectInfo is returned, it will contain a select_handle() generated
by the call.

If some of the data was sent, the function will return {ok, {RestData, SelectInfo}, which can only
happen for a socket of type stream. If the caller does not want to wait to send the rest of the data, it should immediately
cancel the operation with cancel/2.

sendmsg(Socket, Data, Cont) ->
 ok |
 {ok, RestData} |
 {error, Reason} |
 {error, {Reason, RestData}}
sendmsg(Socket, Data, Cont, Timeout :: infinity) ->
 ok |
 {ok, RestData} |
 {error, Reason} |
 {error, {Reason, RestData}}
sendmsg(Socket, Data, Cont, Timeout :: integer() >= 0) ->
 ok |
 {ok, RestData} |
 {error, Reason | timeout} |
 {error, {Reason | timeout, RestData}}
sendmsg(Socket, Data, Cont, SelectHandle :: nowait) ->
 ok |
 {ok, RestData} |
 {select, SelectInfo} |
 {select, {SelectInfo, RestData}} |
 {error, Reason} |
 {error, {Reason, RestData}}
sendmsg(Socket, Data, Cont, SelectHandle :: select_handle()) ->
 ok |
 {ok, RestData} |
 {select, SelectInfo} |
 {select, {SelectInfo, RestData}} |
 {error, Reason} |
 {error, {Reason, RestData}}
Types:

366 | Ericsson AB. All Rights Reserved.: Kernel

socket

Socket = socket()
Data = msg_send() | erlang:iovec()
Cont = select_info()
RestData = erlang:iovec()
SelectInfo = select_info()
Reason = posix() | closed | invalid()

Continues sending a message data on a socket, where the send operation was initiated by sendmsg/3,4 that returned
a SelectInfo continuation. Otherwise like infinite time-out sendmsg/2,3,4 , limited time-out sendmsg/3,4
or nowait sendmsg/3,4 respectively.

Cont is the SelectInfo that was returned from the previous sendmsg() call.

The return value indicates the result from the platform's network layer. See send/2,3,4 and nowait
sendmsg/3,4.

sendto(Socket, Data, Dest) ->
 ok |
 {ok, RestData} |
 {error, Reason} |
 {error, {Reason, RestData}}
sendto(Socket, Data, Dest, Flags) ->
 ok |
 {ok, RestData} |
 {error, Reason} |
 {error, {Reason, RestData}}
sendto(Socket, Data, Dest, Timeout :: infinity) ->
 ok |
 {ok, RestData} |
 {error, Reason} |
 {error, {Reason, RestData}}
sendto(Socket, Data, Dest, Flags, Timeout :: infinity) ->
 ok |
 {ok, RestData} |
 {error, Reason} |
 {error, {Reason, RestData}}
Types:

Socket = socket()
Data = iodata()
Dest = sockaddr()
Flags = [msg_flag() | integer()]
RestData = binary()
Reason = posix() | closed | invalid()

Sends data on a socket, to the specified destination, waiting for it to be sent.

This call will not return until the data has been accepted by the platform's network layer, or it reports an error.

If this call is used on a connection mode socket or on a connected socket, the platforms's network layer may return
an error or ignore the destination address.

The message Flags may be symbolic msg_flag()s and/or integer()s, matching the platform's appropriate
header files. The values of all symbolic flags and integers are or:ed together.

Ericsson AB. All Rights Reserved.: Kernel | 367

socket

The return value indicates the result from the platform's network layer. See send/2,3,4.

sendto(Socket, Data, Dest, Timeout :: integer() >= 0) ->
 ok |
 {ok, RestData} |
 {error, Reason | timeout} |
 {error, {Reason | timeout, RestData}}
sendto(Socket, Data, Dest, Flags, Timeout :: integer() >= 0) ->
 ok |
 {ok, RestData} |
 {error, Reason | timeout} |
 {error, {Reason | timeout, RestData}}
Types:

Socket = socket()
Data = iodata()
Dest = sockaddr()
Flags = [msg_flag() | integer()]
RestData = binary()
Reason = posix() | closed | invalid()

Sends data on a socket, waiting at most Timeout milliseconds for it to be sent.

The same as infinite time-out sendto/3,4,5 but returns {error, timeout} or
{error, {timeout, RestData}} after Timeout milliseconds, if no Data or only some of it was accepted
by the platform's network layer.

sendto(Socket, Data, Dest, SelectHandle :: nowait) ->
 ok |
 {ok, RestData} |
 {select, SelectInfo} |
 {select, {SelectInfo, RestData}} |
 {error, Reason}
sendto(Socket, Data, Dest, SelectHandle :: select_handle()) ->
 ok |
 {ok, RestData} |
 {select, SelectInfo} |
 {select, {SelectInfo, RestData}} |
 {error, Reason}
sendto(Socket, Data, Dest, Flags, SelectHandle :: nowait) ->
 ok |
 {ok, RestData} |
 {select, SelectInfo} |
 {select, {SelectInfo, RestData}} |
 {error, Reason}
sendto(Socket, Data, Dest, Flags, SelectHandle :: select_handle()) ->
 ok |
 {ok, RestData} |
 {select, SelectInfo} |
 {select, {SelectInfo, RestData}} |

368 | Ericsson AB. All Rights Reserved.: Kernel

socket

 {error, Reason}
Types:

Socket = socket()
Data = iodata()
Dest = sockaddr()
Flags = [msg_flag() | integer()]
RestData = binary()
SelectInfo = select_info()
Reason = posix() | closed | invalid()

Sends data on a socket, but returns a select continuation if the data could not be sent immediately.

The same as infinity time-out sendto/3,4 but if the data is not immediately accepted by the platform network
layer, the function returns {select, SelectInfo}, and the caller will then receive a select message,
{'$socket', Socket, select, SelectHandle} (with the SelectHandle that was contained in the
SelectInfo) when there is room for more data. A subsequent call to sendto/3-5 will then send the data.

If SelectHandle is a select_handle(), that term will be contained in a returned SelectInfo and the
corresponding select message. The SelectHandle is presumed to be unique to this call.

If SelectHandle is nowait, and a SelectInfo is returned, it will contain a select_handle() generated
by the call.

If some of the data was sent, the function will return {ok, {RestData, SelectInfo}, which can only
happen for a socket of type stream. If the caller does not want to wait to send the rest of the data, it should immediately
cancel the operation with cancel/2.

sendto(Socket, Data, Cont) ->
 ok |
 {ok, RestData} |
 {error, Reason} |
 {error, {Reason, RestData}}
sendto(Socket, Data, Cont, Timeout :: infinity) ->
 ok |
 {ok, RestData} |
 {error, Reason} |
 {error, {Reason, RestData}}
sendto(Socket, Data, Cont, Timeout :: integer() >= 0) ->
 ok |
 {ok, RestData} |
 {error, Reason | timeout} |
 {error, {Reason | timeout, RestData}}
sendto(Socket, Data, Cont, SelectHandle :: nowait) ->
 ok |
 {ok, RestData} |
 {select, SelectInfo} |
 {select, {SelectInfo, RestData}} |
 {error, Reason}
sendto(Socket, Data, Cont, SelectHandle :: select_handle()) ->
 ok |
 {ok, RestData} |
 {select, SelectInfo} |

Ericsson AB. All Rights Reserved.: Kernel | 369

socket

 {select, {SelectInfo, RestData}} |
 {error, Reason}
Types:

Socket = socket()
Data = iodata()
Cont = select_info()
RestData = binary()
SelectInfo = select_info()
Reason = posix() | closed | invalid()

Continues sending data on a socket, where the send operation was initiated by sendto/4,5 that returned a
SelectInfo continuation. Otherwise like infinite time-out sendto/3,4,5 , limited time-out sendto/4,5 or
nowait sendto/4,5 respectively.

Cont is the SelectInfo that was returned from the previous sendto() call.

If Data is not a binary(), it will be copied into one, again.

The return value indicates the result from the platform's network layer. See send/2,3,4 and nowait sendto/4,5.

sendfile(Socket, FileHandle, Offset, Count, Timeout :: infinity) ->
 {ok, BytesSent} |
 {error, Reason} |
 {error, {Reason, BytesSent}}
Types:

Socket = socket()
FileHandle = file:fd()
Offset = integer()
Count = BytesSent = integer() >= 0
Reason = posix() | closed | invalid()

Sends file data on a socket, to the specified destination, waiting for it to be sent ("infinite" time-out).

The FileHandle must refer to an open raw file as described in file:open/2.

This call will not return until the data has been accepted by the platform's network layer, or it reports an error.

The Offset argument is the file offset to start reading from. The default value is 0.

The Count argument is the number of bytes to transfer from FileHandle to Socket. If Count =:= 0 (the
default) the transfer stops at the end of file.

The return value indicates the result from the platform's network layer:

{ok, BytesSent}

The transfer completed successfully after BytesSent bytes of data.

{error, Reason}

An error has been reported and no data has been transferred. The posix() Reasons are from the platform's
network layer. closed means that this socket library knows that the socket is closed, and invalid() means
that something about an argument is invalid.

{error, {Reason, BytesSent}}

An error has been reported but before that some data was transferred. See {error, Reason} and
{ok, BytesSent} above.

370 | Ericsson AB. All Rights Reserved.: Kernel

socket

sendfile(Socket, FileHandle, Offset, Count,
 Timeout :: integer() >= 0) ->
 {ok, BytesSent} |
 {error, Reason | timeout} |
 {error, {Reason | timeout, BytesSent}}
Types:

Socket = socket()
FileHandle = file:fd()
Offset = integer()
Count = BytesSent = integer() >= 0
Reason = posix() | closed | invalid()

Sends file data on a socket, waiting at most Timeout milliseconds for it to be sent (limited time-out).

The same as "infinite" time-out sendfile/5 but returns {error, timeout} or
{error, {timeout, BytesSent}} after Timeout milliseconds, if not all file data was transferred by the
platform's network layer.

sendfile(Socket, FileHandle, Offset, Count,
 SelectHandle :: nowait) ->
 {ok, BytesSent} |
 {select, SelectInfo} |
 {select, {SelectInfo, BytesSent}} |
 {error, Reason}
sendfile(Socket, FileHandle, Offset, Count,
 SelectHandle :: select_handle()) ->
 {ok, BytesSent} |
 {select, SelectInfo} |
 {select, {SelectInfo, BytesSent}} |
 {error, Reason}
Types:

Socket = socket()
FileHandle = file:fd()
Offset = integer()
Count = BytesSent = integer() >= 0
SelectInfo = select_info()
Reason = posix() | closed | invalid()

Sends file data on a socket, but returns a select continuation if the data could not be sent immediately (nowait).

The same as "infinite" time-out sendfile/5 but if the data is not immediately accepted by the platform
network layer, the function returns {select, SelectInfo}, and the caller will then receive a select message,
{'$socket', Socket, select, SelectHandle} (with the SelectHandle that was contained in the
SelectInfo) when there is room for more data. Then a call to sendfile/3 with SelectInfo as the second
argument will continue the data transfer.

If SelectHandle is a select_handle(), that term will be contained in a returned SelectInfo and the
corresponding select message. The SelectHandle is presumed to be unique to this call.

If SelectHandle is nowait, and a SelectInfo is returned, it will contain a select_handle() generated
by the call.

Ericsson AB. All Rights Reserved.: Kernel | 371

socket

If some file data was sent, the function will return {ok, {BytesSent, SelectInfo}. If the caller does not
want to wait to send the rest of the data, it should immediately cancel the operation with cancel/2.

sendfile(Socket, Cont, Offset, Count, Timeout :: infinity) ->
 {ok, BytesSent} |
 {error, Reason} |
 {error, {Reason, BytesSent}}
sendfile(Socket, Cont, Offset, Count,
 Timeout :: integer() >= 0) ->
 {ok, BytesSent} |
 {error, Reason | timeout} |
 {error, {Reason | timeout, BytesSent}}
sendfile(Socket, Cont, Offset, Count, SelectHandle :: nowait) ->
 {ok, BytesSent} |
 {select, SelectInfo} |
 {select, {SelectInfo, BytesSent}} |
 {error, Reason}
sendfile(Socket, Cont, Offset, Count,
 SelectHandle :: select_handle()) ->
 {ok, BytesSent} |
 {select, SelectInfo} |
 {select, {SelectInfo, BytesSent}} |
 {error, Reason}
Types:

Socket = socket()
Cont = select_info()
Offset = integer()
Count = BytesSent = integer() >= 0
SelectInfo = select_info()
Reason = posix() | closed | invalid()

Continues sending file data on a socket, where the send operation was initiated by sendfile/3,5 that returned a
SelectInfo continuation. Otherwise like "infinite" time-out sendfile/5 , limited time-out sendfile/5 or
nowait sendfile/5 respectively.

Cont is the SelectInfo that was returned from the previous sendfile() call.

The return value indicates the result from the platform's network layer. See "infinite" time-out sendfile/5.

sendfile(Socket, FileHandle, Offset, Count) -> Result
Types:

Socket = socket()

FileHandle = file:fd()

Offset = integer()

Count = integer() >= 0

The same as sendfile(Socket, FileHandle, Offset, Count, infinity), that is: send the file
data at Offset and Count to the socket, without time-out other than from the platform's network stack.

372 | Ericsson AB. All Rights Reserved.: Kernel

socket

sendfile(Socket, FileHandle, Timeout) -> Result
Types:

Socket = socket()

FileHandle = file:fd()

Timeout = timeout() | 'nowait' | select_handle()

Depending on the Timeout argument; the same as
sendfile(Socket, FileHandle, 0, 0, infinity),
sendfile(Socket, FileHandle, 0, 0, Timeout), or
sendfile(Socket, FileHandle, 0, 0, SelectHandle), that is: send all data in the file to the socket,
with the given Timeout.

sendfile(Socket, FileHandle) -> Result
Types:

Socket = socket()

FileHandle = file:fd()

The same as sendfile(Socket, FileHandle, 0, 0, infinity), that is: send all data in the file to
the socket, without time-out other than from the platform's network stack.

setopt(Socket :: socket(),
 SocketOption :: {Level :: otp, Opt :: otp_socket_option()},
 Value :: term()) ->
 ok | {error, invalid() | closed}
Sets a socket option in the protocol level otp, which is this implementation's level above the OS protocol layers.

See the type otp_socket_option() for a description of the options on this level.

setopt(Socket :: socket(),
 SocketOption :: socket_option(),
 Value :: term()) ->
 ok | {error, posix() | invalid() | closed}
Set a socket option in one of the OS's protocol levels. See the type socket_option() for which options that this
implementation knows about, how they are related to option names in the OS, and if there are known peculiarities
with any of them.

What options are valid depends on what kind of socket it is (domain(), type() and protocol()).

See the socket options chapter of the users guide for more info.

Note:

Not all options are valid, nor possible to set, on all platforms. That is, even if "we" support an option; it does not
mean that the underlying OS does.

setopt(Socket, Level, Opt, Value) -> ok | {error, Reason}
Types:

Socket = socket()

Value = term()

Reason = inet:posix() | invalid() | closed

Ericsson AB. All Rights Reserved.: Kernel | 373

socket

Backwards compatibility function.

The same as setopt(Socket, {Level, Opt}, Value)

setopt_native(Socket :: socket(),
 SocketOption ::
 socket_option() |
 {Level :: level() | (NativeLevel :: integer()),
 NativeOpt :: integer()},
 Value :: native_value()) ->
 ok | {error, posix() | invalid() | closed}
Sets a socket option that may be unknown to our implementation, or that has a type not compatible with our
implementation, that is; in "native mode".

If Value is an integer() it will be used as a C type (int), if it is a boolean() it will be used as a C type
(int) with the C implementations values for false or true, and if it is a binary() its content and size will
be used as the option value.

The socket option may be specified with an ordinary socket_option() tuple, with a known Level = level()
and an integer NativeOpt, or with both an integer NativeLevel and NativeOpt.

What options are valid depends on what kind of socket it is (domain(), type() and protocol()).

The integer values for NativeLevel and NativeOpt as well as the encoding of Value has to be deduced from
the header files for the running system.

shutdown(Socket, How) -> ok | {error, Reason}
Types:

Socket = socket()
How = read | write | read_write
Reason = posix() | closed

Shut down all or part of a full-duplex connection.

sockname(Socket) -> {ok, SockAddr} | {error, Reason}
Types:

Socket = socket()
SockAddr = sockaddr_recv()
Reason = posix() | closed

Returns the current address to which the socket is bound.

supports() ->
 [{Key1 :: term(),
 boolean() |
 [{Key2 :: term(),
 boolean() | [{Key3 :: term(), boolean()}]}]}]
supports(Key1 :: term()) ->
 [{Key2 :: term(),
 boolean() | [{Key3 :: term(), boolean()}]}]
supports(Key1 :: term(), Key2 :: term()) ->

374 | Ericsson AB. All Rights Reserved.: Kernel

socket

 [{Key3 :: term(), boolean()}]
These functions function retrieves information about what the platform supports, such which platform features or
which socket options, are supported.

For keys other than the known the empty list is returned, Note that in a future version or on a different platform there
might be more supported items.

supports()

Returns a list of {Key1, supports(Key1)} tuples for every Key1 described in supports/1 and {Key1,
boolean()} tuples for each of the following keys:

sctp
SCTP support

ipv6
IPv6 support

local
Unix Domain sockets support (AF_UNIX | AF_LOCAL)

netns
Network Namespaces support (Linux, setns(2))

sendfile
Sendfile support (sendfile(2))

supports(msg_flags = Key1)

Returns a list of {Flag, boolean()} tuples for every Flag in msg_flag() with the boolean()
indicating if the flag is supported on this platform.

supports(protocols = Key1)

Returns a list of {Name :: atom(), boolean()} tuples for every Name in protocol() with the
boolean() indicating if the protocol is supported on this platform.

supports(options = Key1)

Returns a list of {SocketOption, boolean()} tuples for every SocketOption in
socket_option() with the boolean() indicating if the socket option is supported on this platform.

supports(options = Key1, Key2)

For a Key2 in level() returns a list of {Opt, boolean()} tuples for all known socket options Opt on
that Level =:= Key2, and the boolean() indicating if the socket option is supported on this platform.
See setopt/3 and getopt/2.

use_registry(D :: boolean()) -> ok
Globally change if the socket registry is to be used or not. Note that its still possible to override this explicitly when
creating an individual sockets, see open/2 or open/4 for more info (use the Extra argument).

which_sockets() -> [socket()]
which_sockets(FilterRule) -> [socket()]
Types:

Ericsson AB. All Rights Reserved.: Kernel | 375

socket

FilterRule =
 inet | inet6 | local | stream | dgram | seqpacket | sctp |
 tcp | udp |
 pid() |
 fun((socket_info()) -> boolean())

Returns a list of all sockets, according to the filter rule.

There are several pre-made filter rule(s) and one general:

inet | inet6

Selection based on the domain of the socket.
Only a subset is valid.

stream | dgram | seqpacket

Selection based on the type of the socket.
Only a subset is valid.

sctp | tcp | udp

Selection based on the protocol of the socket.
Only a subset is valid.

pid()

Selection base on which sockets has this pid as Controlling Process.

fun((socket_info()) -> boolean())

The general filter rule.
A fun that takes the socket info and returns a boolean() (true if the socket could be included and false
if should not).

Examples
client(SAddr, SPort) ->
 {ok, Sock} = socket:open(inet, stream, tcp),
 ok = socket:connect(Sock, #{family => inet,
 addr => SAddr,
 port => SPort}),
 Msg = <<"hello">>,
 ok = socket:send(Sock, Msg),
 ok = socket:shutdown(Sock, write),
 {ok, Msg} = socket:recv(Sock),
 ok = socket:close(Sock).

server(Addr, Port) ->
 {ok, LSock} = socket:open(inet, stream, tcp),
 ok = socket:bind(LSock, #{family => inet,
 port => Port,
 addr => Addr}),
 ok = socket:listen(LSock),
 {ok, Sock} = socket:accept(LSock),
 {ok, Msg} = socket:recv(Sock),
 ok = socket:send(Sock, Msg),
 ok = socket:close(Sock),
 ok = socket:close(LSock).

376 | Ericsson AB. All Rights Reserved.: Kernel

user

user
Erlang module

user is a server that responds to all messages defined in the I/O interface. The code in user.erl can be used as
a model for building alternative I/O servers.

Ericsson AB. All Rights Reserved.: Kernel | 377

wrap_log_reader

wrap_log_reader
Erlang module

This module makes it possible to read internally formatted wrap disk logs, see disk_log(3). wrap_log_reader
does not interfere with disk_log activities; there is however a bug in this version of the wrap_log_reader, see
section Known Limitations.

A wrap disk log file consists of many files, called index files. A log file can be opened and closed. Also, a single index
file can be opened separately. If a non-existent or non-internally formatted file is opened, an error message is returned.
If the file is corrupt, no attempt is made to repair it, but an error message is returned.

If a log is configured to be distributed, it is possible that all items are not logged on all nodes. wrap_log_reader
only reads the log on the called node; it is up to the user to be sure that all items are read.

Data Types
continuation()
Continuation returned by open/1,2 or chunk/1,2.

Exports

chunk(Continuation) -> chunk_ret()
chunk(Continuation, N) -> chunk_ret()
Types:

Continuation = continuation()
N = infinity | integer() >= 1
chunk_ret() =
 {Continuation2, Terms :: [term()]} |
 {Continuation2,
 Terms :: [term()],
 Badbytes :: integer() >= 0} |
 {Continuation2, eof} |
 {error, Reason :: term()}

Enables to efficiently read the terms that are appended to a log. Minimises disk I/O by reading 64 kilobyte chunks
from the file.

The first time chunk() is called, an initial continuation returned from open/1 or open/2 must be provided.

When chunk/3 is called, N controls the maximum number of terms that are read from the log in each chunk. Defaults
to infinity, which means that all the terms contained in the 8K chunk are read. If less than N terms are returned,
this does not necessarily mean that end of file is reached.

Returns a tuple {Continuation2, Terms}, where Terms is a list of terms found in the log. Continuation2
is yet another continuation that must be passed on to any subsequent calls to chunk(). With a series of calls to
chunk(), it is then possible to extract all terms from a log.

Returns a tuple {Continuation2, Terms, Badbytes} if the log is opened in read only mode and the read
chunk is corrupt. Badbytes indicates the number of non-Erlang terms found in the chunk. Notice that the log is
not repaired.

Returns {Continuation2, eof} when the end of the log is reached, and {error, Reason} if an error occurs.

378 | Ericsson AB. All Rights Reserved.: Kernel

wrap_log_reader

The returned continuation either is or is not valid in the next call to this function. This is because the log can wrap
and delete the file into which the continuation points. To ensure this does not occur, the log can be blocked during
the search.

close(Continuation) -> ok | {error, Reason}
Types:

Continuation = continuation()
Reason = file:posix()

Closes a log file properly.

open(Filename) -> open_ret()
open(Filename, N) -> open_ret()
Types:

Filename = string() | atom()
N = integer()
open_ret() =
 {ok, Continuation :: continuation()} |
 {error, Reason :: tuple()}

Filename specifies the name of the file to be read.

N specifies the index of the file to be read. If N is omitted, the whole wrap log file is read; if it is specified, only the
specified index file is read.

Returns {ok, Continuation} if the log/index file is opened successfully. Continuation is to be used when
chunking or closing the file.

Returns {error, Reason} for all errors.

Known Limitations
This version of wrap_log_reader does not detect if disk_log wraps to a new index file between a call to
wrap_log_reader:open() and the first call to wrap_log_reader:chunk(). If this occurs, the call to
chunk() reads the last logged items in the log file, as the opened index file was truncated by disk_log.

See Also
disk_log(3)

Ericsson AB. All Rights Reserved.: Kernel | 379

zlib

zlib
Erlang module

This module is moved to the ERTS application.

380 | Ericsson AB. All Rights Reserved.: Kernel

	Kernel
	Kernel User's Guide
	Introduction
	Scope
	Prerequisites

	Socket Usage
	Introduction
	Asynchronous calls

	Socket Registry
	Socket Options

	Logging
	Overview
	Logger API
	Log Level
	Log Message
	Metadata

	Filters
	Handlers
	Formatters
	Configuration
	Primary Logger Configuration
	Handler Configuration
	Kernel Configuration Parameters
	Configuration Examples

	Backwards Compatibility with error_logger
	Error Handling
	Example: Add a handler to log info events to file
	Example: Implement a handler
	Protecting the Handler from Overload
	Message Queue Length
	Controlling Bursts of Log Requests
	Terminating an Overloaded Handler

	Logger Proxy
	See Also

	Logging Cookbook
	Get Logger information
	Print the primary Logger configurations.
	See also

	Print the configuration of all handlers.
	See also

	Configure the Logger
	Where did my progress reports go?

	Configure Logger formatter
	Single line configuration
	See also

	Add file and line number to log entries
	See also

	Configuring handlers
	Print logs to a file
	See also

	Debug only handler
	See also

	Logging
	What to log and how
	See also

	Report call-backs and printing of events
	See also

	Filters
	Process filters
	See also

	Domains
	See also

	EEP-48: Documentation storage and format
	the "Docs" storage
	the "Docs" format
	See Also

	Reference Manual
	kernel
	app
	application
	ensure_all_started/1
	ensure_all_started/2
	ensure_started/1
	ensure_started/2
	get_all_env/0
	get_all_env/1
	get_all_key/0
	get_all_key/1
	get_application/0
	get_application/1
	get_env/1
	get_env/2
	get_env/3
	get_key/1
	get_key/2
	load/1
	load/2
	loaded_applications/0
	set_env/1
	set_env/2
	permit/2
	set_env/3
	set_env/4
	start/1
	start/2
	start_type/0
	stop/1
	takeover/2
	unload/1
	unset_env/2
	unset_env/3
	which_applications/0
	which_applications/1
	Module:start/2
	Module:start_phase/3
	Module:prep_stop/1
	Module:stop/1
	Module:config_change/3

	auth
	cookie/0
	cookie/1
	is_auth/1
	node_cookie/1
	node_cookie/2

	code
	set_path/1
	get_path/0
	add_path/1
	add_pathz/1
	add_patha/1
	add_paths/1
	add_pathsz/1
	add_pathsa/1
	del_path/1
	replace_path/2
	load_file/1
	load_abs/1
	ensure_loaded/1
	load_binary/3
	atomic_load/1
	prepare_loading/1
	finish_loading/1
	ensure_modules_loaded/1
	delete/1
	purge/1
	soft_purge/1
	is_loaded/1
	all_available/0
	all_loaded/0
	which/1
	get_object_code/1
	get_doc/1
	root_dir/0
	lib_dir/0
	lib_dir/1
	lib_dir/2
	compiler_dir/0
	priv_dir/1
	objfile_extension/0
	stick_dir/1
	unstick_dir/1
	is_sticky/1
	where_is_file/1
	clash/0
	module_status/0
	module_status/1
	modified_modules/0
	is_module_native/1
	get_mode/0

	config
	disk_log
	all/0
	accessible_logs/0
	alog/2
	balog/2
	alog_terms/2
	balog_terms/2
	block/1
	block/2
	change_header/2
	change_notify/3
	change_size/2
	chunk/2
	chunk/3
	bchunk/2
	bchunk/3
	chunk_info/1
	chunk_step/3
	close/1
	format_error/1
	inc_wrap_file/1
	info/1
	lclose/1
	lclose/2
	log/2
	blog/2
	log_terms/2
	blog_terms/2
	open/1
	pid2name/1
	reopen/2
	reopen/3
	breopen/3
	sync/1
	truncate/1
	truncate/2
	btruncate/2
	unblock/1

	erl_boot_server
	add_slave/1
	delete_slave/1
	start/1
	start_link/1
	which_slaves/0

	erl_ddll
	demonitor/1
	format_error/1
	info/0
	info/1
	info/2
	load/2
	load_driver/2
	loaded_drivers/0
	monitor/2
	reload/2
	reload_driver/2
	try_load/3
	try_unload/2
	unload/1
	unload_driver/1

	erl_epmd
	start_link/0
	register_node/2
	register_node/3
	port_please/2
	port_please/3
	listen_port_please/2
	address_please/3
	names/1

	erl_prim_loader
	erlang
	erpc
	call/2
	call/3
	call/4
	call/5
	cast/2
	cast/4
	check_response/2
	check_response/3
	multicall/2
	multicall/3
	multicall/4
	multicall/5
	multicast/2
	multicast/4
	receive_response/1
	receive_response/2
	receive_response/3
	reqids_add/3
	reqids_new/0
	reqids_size/1
	reqids_to_list/1
	send_request/2
	send_request/4
	send_request/4
	send_request/6
	wait_response/1
	wait_response/2
	wait_response/3

	error_handler
	raise_undef_exception/3
	undefined_function/3
	undefined_lambda/3

	error_logger
	add_report_handler/1
	add_report_handler/2
	delete_report_handler/1
	error_msg/1
	error_msg/2
	format/2
	error_report/1
	error_report/2
	get_format_depth/0
	info_msg/1
	info_msg/2
	info_report/1
	info_report/2
	logfile/1
	logfile/1
	logfile/1
	tty/1
	warning_map/0
	warning_msg/1
	warning_msg/2
	warning_report/1
	warning_report/2

	file
	advise/4
	allocate/3
	change_group/2
	change_mode/2
	change_owner/2
	change_owner/3
	change_time/2
	change_time/3
	close/1
	consult/1
	copy/2
	copy/3
	datasync/1
	del_dir/1
	del_dir_r/1
	delete/1
	delete/2
	eval/1
	eval/2
	format_error/1
	get_cwd/0
	get_cwd/1
	list_dir/1
	list_dir_all/1
	make_dir/1
	make_link/2
	make_symlink/2
	native_name_encoding/0
	open/2
	path_consult/2
	path_eval/2
	path_open/3
	path_script/2
	path_script/3
	pid2name/1
	position/2
	pread/2
	pread/3
	pwrite/2
	pwrite/3
	read/2
	read_file/1
	read_file_info/1
	read_file_info/2
	read_line/1
	read_link/1
	read_link_all/1
	read_link_info/1
	read_link_info/2
	rename/2
	script/1
	script/2
	sendfile/2
	sendfile/5
	set_cwd/1
	sync/1
	truncate/1
	write/2
	write_file/2
	write_file/3
	write_file_info/2
	write_file_info/3

	gen_sctp
	abort/2
	close/1
	connect/3
	connect/4
	connect/4
	connect/5
	connect_init/3
	connect_init/4
	connect_init/4
	connect_init/5
	connectx_init/3
	connectx_init/4
	connectx_init/5
	controlling_process/2
	eof/2
	error_string/1
	listen/2
	listen/2
	open/0
	open/1
	open/1
	open/2
	peeloff/2
	recv/1
	recv/2
	send/3
	send/4

	gen_tcp
	accept/1
	accept/2
	close/1
	connect/2
	connect/3
	connect/3
	connect/4
	controlling_process/2
	listen/2
	recv/2
	recv/3
	send/2
	shutdown/2

	gen_udp
	close/1
	controlling_process/2
	connect/2
	connect/3
	open/1
	open/2
	recv/2
	recv/3
	send/2
	send/3
	send/4
	send/4
	send/4
	send/5

	global
	del_lock/1
	del_lock/2
	disconnect/0
	notify_all_name/3
	random_exit_name/3
	random_notify_name/3
	re_register_name/2
	re_register_name/3
	register_name/2
	register_name/3
	registered_names/0
	send/2
	set_lock/1
	set_lock/2
	set_lock/3
	sync/0
	trans/2
	trans/3
	trans/4
	unregister_name/1
	whereis_name/1

	global_group
	global_groups/0
	info/0
	monitor_nodes/1
	own_nodes/0
	registered_names/1
	send/2
	send/3
	sync/0
	whereis_name/1
	whereis_name/2

	heart
	set_cmd/1
	clear_cmd/0
	get_cmd/0
	set_callback/2
	clear_callback/0
	get_callback/0
	set_options/1
	get_options/0

	inet
	close/1
	cancel_monitor/1
	format_error/1
	get_rc/0
	getaddr/2
	getaddrs/2
	gethostbyaddr/1
	gethostbyname/1
	gethostbyname/2
	gethostname/0
	getifaddrs/0
	getifaddrs/1
	getopts/2
	getstat/1
	getstat/2
	i/0
	i/1
	i/2
	info/1
	monitor/1
	is_ip_address/1
	is_ipv4_address/1
	is_ipv6_address/1
	ntoa/1
	parse_address/1
	parse_ipv4_address/1
	parse_ipv4strict_address/1
	parse_ipv6_address/1
	parse_ipv6strict_address/1
	ipv4_mapped_ipv6_address/1
	parse_strict_address/1
	peername/1
	peernames/1
	peernames/2
	port/1
	setopts/2
	sockname/1
	socknames/1
	socknames/2

	inet_res
	getbyname/2
	getbyname/3
	gethostbyaddr/1
	gethostbyaddr/2
	gethostbyname/1
	gethostbyname/2
	gethostbyname/3
	lookup/3
	lookup/4
	lookup/5
	resolve/3
	resolve/4
	resolve/5
	nslookup/3
	nslookup/4
	nslookup/4
	nnslookup/4
	nnslookup/5

	init
	logger
	emergency/1
	emergency/2
	emergency/2
	alert/1
	alert/2
	alert/2
	critical/1
	critical/2
	critical/2
	error/1
	error/2
	error/2
	warning/1
	warning/2
	warning/2
	notice/1
	notice/2
	notice/2
	info/1
	info/2
	info/2
	debug/1
	debug/2
	debug/2
	log/2
	log/3
	log/3
	log/3
	log/4
	log/4
	add_handler/3
	add_handler_filter/3
	add_handlers/1
	add_handlers/1
	add_primary_filter/2
	get_config/0
	get_handler_config/0
	get_handler_config/1
	get_handler_ids/0
	get_primary_config/0
	get_proxy_config/0
	get_module_level/0
	get_module_level/1
	get_process_metadata/0
	i/0
	i/1
	remove_handler/1
	remove_handler_filter/2
	remove_primary_filter/1
	set_application_level/2
	set_handler_config/2
	set_handler_config/3
	set_handler_config/3
	set_handler_config/3
	set_handler_config/3
	set_handler_config/3
	set_primary_config/1
	set_primary_config/2
	set_primary_config/2
	set_primary_config/2
	set_primary_config/2
	set_proxy_config/1
	set_module_level/2
	set_process_metadata/1
	unset_application_level/1
	unset_module_level/0
	unset_module_level/1
	unset_process_metadata/0
	update_formatter_config/2
	update_formatter_config/3
	update_handler_config/2
	update_handler_config/3
	update_handler_config/3
	update_handler_config/3
	update_handler_config/3
	update_handler_config/3
	update_primary_config/1
	update_process_metadata/1
	update_proxy_config/1
	compare_levels/2
	format_report/1
	timestamp/0
	reconfigure/0
	HModule:adding_handler/1
	HModule:changing_config/3
	HModule:filter_config/1
	HModule:log/2
	HModule:removing_handler/1
	FModule:check_config/1
	FModule:format/2

	logger_filters
	domain/2
	level/2
	progress/2
	remote_gl/2

	logger_formatter
	check_config/1
	format/2

	logger_std_h
	filesync/1

	logger_disk_log_h
	filesync/1

	net
	gethostname/0
	getnameinfo/1
	getnameinfo/2
	getaddrinfo/1
	getaddrinfo/2
	getaddrinfo/2
	getaddrinfo/2
	getifaddrs/0
	getifaddrs/1
	getifaddrs/1
	getifaddrs/2
	if_name2index/1
	if_index2name/1
	if_names/0

	net_adm
	dns_hostname/1
	host_file/0
	localhost/0
	names/0
	names/1
	ping/1
	world/0
	world/1
	world_list/1
	world_list/2

	net_kernel
	allow/1
	connect_node/1
	get_net_ticktime/0
	getopts/2
	get_state/0
	monitor_nodes/1
	monitor_nodes/2
	set_net_ticktime/1
	set_net_ticktime/2
	setopts/2
	start/2
	start/1
	stop/0

	os
	cmd/1
	cmd/2
	env/0
	find_executable/1
	find_executable/2
	getenv/0
	getenv/1
	getenv/2
	getpid/0
	putenv/2
	set_signal/2
	system_time/0
	system_time/1
	timestamp/0
	perf_counter/0
	perf_counter/1
	type/0
	unsetenv/1
	version/0

	pg
	start_link/0
	start/1
	start_link/1
	join/2
	join/3
	leave/2
	leave/3
	monitor_scope/0
	monitor_scope/1
	monitor/1
	monitor/2
	demonitor/1
	demonitor/2
	get_local_members/1
	get_local_members/2
	get_members/1
	get_members/2
	which_groups/0
	which_groups/1

	rpc
	abcast/2
	abcast/3
	async_call/4
	block_call/4
	block_call/5
	call/4
	call/5
	cast/4
	eval_everywhere/3
	eval_everywhere/4
	multi_server_call/2
	multi_server_call/3
	multicall/3
	multicall/4
	multicall/4
	multicall/5
	nb_yield/1
	nb_yield/2
	parallel_eval/1
	pinfo/1
	pinfo/2
	pinfo/2
	pmap/3
	sbcast/2
	sbcast/3
	server_call/4
	yield/1

	seq_trace
	set_token/1
	set_token/2
	get_token/0
	get_token/1
	print/1
	print/2
	reset_trace/0
	set_system_tracer/1
	get_system_tracer/0

	socket
	accept/1
	accept/2
	accept/2
	accept/2
	accept/2
	bind/2
	cancel/2
	close/1
	connect/2
	connect/3
	connect/3
	connect/3
	connect/3
	connect/1
	cancel_monitor/1
	getopt/2
	getopt/2
	getopt/3
	getopt_native/3
	getopt_native/3
	getopt_native/3
	getopt_native/3
	i/0
	i/1
	i/1
	i/1
	i/1
	i/2
	i/2
	i/2
	info/0
	info/1
	ioctl/2
	ioctl/3
	ioctl/4
	is_supported/1
	is_supported/2
	listen/1
	listen/2
	monitor/1
	number_of/0
	open/1
	open/2
	open/2
	open/3
	open/3
	open/4
	peername/1
	recv/1
	recv/2
	recv/2
	recv/3
	recv/3
	recv/3
	recv/4
	recv/3
	recv/3
	recv/4
	recv/3
	recv/3
	recv/3
	recv/3
	recv/4
	recv/4
	recvfrom/1
	recvfrom/2
	recvfrom/2
	recvfrom/3
	recvfrom/3
	recvfrom/3
	recvfrom/4
	recvfrom/3
	recvfrom/3
	recvfrom/4
	recvfrom/3
	recvfrom/3
	recvfrom/3
	recvfrom/3
	recvfrom/4
	recvfrom/4
	recvmsg/1
	recvmsg/2
	recvmsg/2
	recvmsg/3
	recvmsg/3
	recvmsg/4
	recvmsg/5
	recvmsg/2
	recvmsg/3
	recvmsg/4
	recvmsg/5
	recvmsg/2
	recvmsg/2
	recvmsg/3
	recvmsg/3
	recvmsg/4
	recvmsg/4
	recvmsg/5
	recvmsg/5
	send/2
	send/3
	send/3
	send/4
	send/3
	send/4
	send/3
	send/3
	send/4
	send/4
	send/3
	send/4
	send/4
	send/4
	send/4
	sendmsg/2
	sendmsg/3
	sendmsg/3
	sendmsg/4
	sendmsg/3
	sendmsg/4
	sendmsg/3
	sendmsg/3
	sendmsg/4
	sendmsg/4
	sendmsg/3
	sendmsg/4
	sendmsg/4
	sendmsg/4
	sendmsg/4
	sendto/3
	sendto/4
	sendto/4
	sendto/5
	sendto/4
	sendto/5
	sendto/4
	sendto/4
	sendto/5
	sendto/5
	sendto/3
	sendto/4
	sendto/4
	sendto/4
	sendto/4
	sendfile/5
	sendfile/5
	sendfile/5
	sendfile/5
	sendfile/5
	sendfile/5
	sendfile/5
	sendfile/5
	sendfile/4
	sendfile/3
	sendfile/2
	setopt/3
	setopt/3
	setopt/4
	setopt_native/3
	shutdown/2
	sockname/1
	supports/0
	supports/1
	supports/2
	use_registry/1
	which_sockets/0
	which_sockets/1

	user
	wrap_log_reader
	chunk/1
	chunk/2
	close/1
	open/1
	open/2

	zlib

