ERLANG

Secure Socket Layer

Copyright © 1999-2025 Ericsson AB. All Rights Reserved.
Secure Socket Layer 10.9.1.7
May 7, 2025

Copyright © 1999-2025 Ericsson AB. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance
with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless
required by applicable law or agreed to in writing, software distributed under the License is distributed on an
"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See

the License for the specific language governing permissions and limitations under the License. Ericsson AB. All
Rights Reserved..

May 7, 2025

1.1 Introduction

1 SSL User's Guide

The SSL application implements Transport Layer Security (TLS), formerly known as the Secure Socket Layer (SSL),
that isit provides secure communication over sockets.

1.1 Introduction

1.1.1 Purpose

Transport Layer Security (TLS) and its predecessor, the Secure Sockets Layer (SSL), are cryptographic protocols
designed to provide communications security over a computer network. The protocols use X.509 certificates and
hence public key (asymmetric) cryptography to authenticate the counterpart with whom they communicate, and to
exchange a symmetric key for payload encryption. The protocol provides data/message confidentiality (encryption),
integrity (through message authentication code checks) and host verification (through certificate path validation).
DTLS (Datagram Transport Layer Security) that is based on TLS but datagram oriented instead of stream oriented.

1.1.2 Prerequisites

It is assumed that the reader is familiar with the Erlang programming language, the concepts of OTP, and has a basic
understanding of TLS/DTLS.

1.2 TLS/DTLS and TLS Predecessor, SSL

The Erlang SSL application implements the TLS/DTLS protocol for the currently supported versions, see the ssl(3)
manual page.

By default TLS is run over the TCP/IP protocol even though you can plug in any other reliable transport protocol
with the same Application Programming Interface (API) asthegen_t cp modulein Kernel. DTLS is by default run
over UDP/IP, which means that application data has no delivery guarantees. Other transports, such as SCTP, may be
supported in future rel eases.

If aclient and a server wants to use an upgrade mechanism, such as defined by RFC 2817, to upgrade aregular TCP/
I P connection to a TLS connection, this is supported by the Erlang SSL application API. This can be useful for, for
example, supporting HTTP and HTTPS on the same port and implementing virtual hosting. Note thisisa TLS feature
only.

1.2.1 Security Overview

To achieve authentication and privacy, the client and server perform a TLS/DTLS handshake procedure before
transmitting or receiving any data. During the handshake, they agree on a protocol version and cryptographic
algorithms, generate shared secrets using public key cryptographies, and optionally authenticate each other with digital
certificates.

1.2.2 Data Privacy and Integrity

A symmetric key algorithm has one key only. The key is used for both encryption and decryption. These algorithms
are fast, compared to public key algorithms (using two keys, one public and one private) and are therefore typicaly
used for encrypting bulk data.

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 1

1.2 TLS/DTLS and TLS Predecessor, SSL

Thekeysfor the symmetric encryption are generated uniquely for each connection and are based on a secret negotiated
inthe TLS/DTLS handshake.

The TLS/DTLS handshake protocol and data transfer is run on top of the TLS/DTLS Record Protocol, which uses a
keyed-hash M essage A uthenticity Code (MAC), or aHash-based MAC (HMAC), to protect the message dataintegrity.
From the TLS RFC: "A Message Authentication Code is a one-way hash computed from a message and some secret
data. It is difficult to forge without knowing the secret data. Its purpose isto detect if the message has been altered.”

1.2.3 Digital Certificates

A certificate is similar to a driver's license, or a passport. The holder of the certificate is called the subject. The
certificate is signed with the private key of the issuer of the certificate. A chain of trust is built by having the issuer
in itsturn being certified by another certificate, and so on, until you reach the so called root certificate, which is self-
signed, that is, issued by itself.

Certificatesareissued by Certification Authorities (CAs) only. A handful of top CAsintheworld issueroot certificates.
Y ou can examine severa of these certificates by clicking through the menus of your web browser.

1.2.4 Peer Authentication

Authentication of the peer is done by public key path validation as defined in RFC 3280. This means basically the
following:

» Each certificate in the certificate chain isissued by the previous one.
* Thecertificates attributes are valid.
* Theroot certificate is atrusted certificate that is present in the trusted certificate database kept by the peer.

The server always sends a certificate chain as part of the TLS handshake, but the client only sends one if requested by
the server. If the client does not have an appropriate certificate, it can send an "empty" certificate to the server.

The client can choose to accept some path evaluation errors, for example, a web browser can ask the user whether
to accept an unknown CA root certificate. The server, if it requests a certificate, does however not accept any path
validation errors. It is configurable if the server isto accept or reject an "empty" certificate as response to a certificate
request.

1.2.5 TLS Sessions - PRE TLS-1.3

From the TLS RFC: "A TLS session is an association between a client and a server. Sessions are created by the
handshake protocol. Sessions define a set of cryptographic security parameters, which can be shared among multiple
connections. Sessions are used to avoid the expensive negotiation of new security parameters for each connection."

Session data is by default kept by the SSL application in a memory storage, hence session data is lost at application
restart or takeover. Users can define their own callback module to handle session data storage if persistent data storage
isrequired. Session datais also invalidated when session database exceedsits limit or 24 hours after being saved (RFC
max lifetime recommendation). The amount of time the session datais to be saved can be configured.

By default the TLS/DTL S clientstry to reuse an available session and by default the TLS/DTL S servers agree to reuse
sessions when clients ask for it. See also Session Reuse Pre TLS-1.3

1.2.6 TLS-1.3 session tickets

InTLS 1.3 the session reuseisreplaced by a new session tickets mechanism based on the pre shared key concept. This
mechanism also obsoletes the session tickets from RFC5077, not implemented by this application. See also Session
Tickets and Session Resumptionin TLS-1.3

2 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

1.3 Using SSL application API

1.3 Using SSL application API

To seerelevant version information for sd, call ssl : versi ons/ 0.

To see all supported cipher suites, call ssl : ci pher _suites(all, 'tlsvl.3") .Theavailablecipher suites
for a connection depend on the TLS version and pre TLS-1.3 aso on the certificate. To see the default cipher suite
list change al | to def aul t. Note that TLS 1.3 and previous versions do not have any cipher suites in common,
for listing cipher suitesfor aspecific versionusessl : ci pher _sui t es(excl usive, "tlsvl. 3") . Specific
cipher suites that you want your connection to use can aso be specified. Default is to use the strongest available.

The following sections shows small examples of how to set up client/server connections using the Erlang shell. The
returned value of thess| socket isabbreviatedwith|[. . .] asitcanbefairly large and is opague to the user except
for the purpose of pattern matching.

Note that client certificate verification is optional for the server and needs additional conguration on both sides to
work. The Certificate and keys, in the examples, are provided using the certs keys option introduced in OTP-25.

1.3.1 Basic Client

1 > ssl:start(), ssl:connect("google.com", 443, [{verify, verify peer},
{cacerts, public key:cacerts get()}]).
{ok, {sslsocket, [...1}}

1.3.2 Basic Connection
Step 1: Start the server side:

1 server> ssl:start().
ok

Step 2: with aternative certificates, in this example the EDDSA certificate will be preferred if TLS-1.3 is negotiated
and the RSA certificate will always be used for TLS-1.2 asit does not support the EDDSA agorithm:

2 server> {ok, ListenSocket} =
ssl:listen(9999, [{certs keys, [#{certfile => "eddsacert.pem",
keyfile => "eddsakey.pem"},
#{certfile => "rsacert.pem",
keyfile => "rsakey.pem",
password => "foobar"}
1},{reuseaddr, true}]).
{ok,{sslsocket, [...]1}}

Step 3: Do atransport accept on the TLS listen socket:

3 server> {ok, TLSTransportSocket} = ssl:transport accept(ListenSocket).
{ok, {sslsocket, [...]1}}

ssl:transport_accept/1 and ssl:handshake/2 are separate functions so that the handshake part can be called in anew
erlang process dedicated to handling the connection

Step 4: Start theclient side;

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 3

1.3 Using SSL application API

1 client> ssl:start().
ok

Be sure to configure trusted certificates to use for server certificate verification.

2 client> {ok, Socket} = ssl:connect("localhost", 9999,
[{verify, verify peer},
{cacertfile, "cacerts.pem"}, {active, once}], infinity).
{ok,{sslsocket, [...]1}}

Step 5: Do the TLS handshake:

4 server> {ok, Socket} = ssl:handshake(TLSTransportSocket).
{ok, {sslsocket, [...]1}}

A real server should use ssl:handshake/2 that has atimeout to avoid DoS attacks. | n the exampl e the timeout defaults
to infinty.

Step 6: Send amessage over TLS:

5 server> ssl:send(Socket, "foo").
ok

Step 7: Flush the shell message queue to see that the message sent on the server side isrecived by the client side:

3 client> flush().
Shell got {ssl,{sslsocket,[...]},"foo"}
ok

1.3.3 Upgrade Example - TLS only

Upgrading a a TCP/IP connection to a TLS connections is mostly used when there is a desire have unencrypted
communication first and then later securethe communication channel by using TL S. Notethat the client and server need
to agree to do the upgrade in the protocol doing the communication. Thisis concept is often referenced as STARTLS
and used in many protocols such as SMIP, FTPS and HTTPS via a proxy.

| Maximum security recommendations are however moving away from such solutions. |

To upgrade to a TL S connection:
Step 1: Start the server side:

1 server> ssl:start().
ok

Step 2: Createanormal TCPlisten socket and ensureact i ve issettof al se and not set to any activemode otherwise
TL S handshake messages can be delivered to the wrong process.
2 server> {ok, ListenSocket} = gen tcp:listen(9999, [{reuseaddr, true},
{active, false}l]).
{ok, #Port<0.475>}

Step 3: Accept client connection:

4 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

1.3 Using SSL application API

3 server> {ok, Socket}
{ok, #Port<0.476>}

gen_tcp:accept(ListenSocket).

Step 4: Start theclient side:

1 client> ssl:start().
ok

2 client> {ok, Socket}

gen_tcp:connect("localhost", 9999, [], infinity).
Step 5: Do the TLS handshake:

4 server> {ok, TLSSocket} = ssl:handshake(Socket, [{verify, verify peer},
{fail if no_peer cert, true},
{cacertfile, "cacerts.pem"},
{certs _keys, [#{certfile => "cert.pem", keyfile => "key.pem"}]1}]).
{ok, {sslsocket,[...]1}}

Step 6: Upgradeto aTL S connection. The client and server must agree upon the upgrade. The server must be prepared
to bea TLS server before the client can do a successful connect.

3 client>{ok, TLSSocket} = ssl:connect(Socket, [{verify, verify peer},
{cacertfile, "cacerts.pem"},
{certs _keys, [#{certfile => "cert.pem", keyfile => "key.pem"}]}], infinity).
{ok,{sslsocket,[...]1}}

Step 7: Send amessage over TLS:

4 client> ssl:send(TLSSocket, "foo").
ok

Step 8: Setacti ve once onthe TLS socket:

5 server> ssl:setopts(TLSSocket, [{active, once}]).
ok

Step 9: Flush the shell message queue to see that the message sent on the client side is recived by the server side:

5 server> flush().
Shell got {ssl,{sslsocket,[...]},"foo"}
ok

1.3.4 Customizing cipher suites
Fetch default cipher suite list for aTLS/DTLS version. Change default to all to get al possible cipher suites.

1> Default = ssl:cipher suites(default, 'tlsvl.2').
[#{cipher => aes 256 gcm,key exchange => ecdhe ecdsa,
mac => aead,prf => sha384},]

In OTP 20 it is desirable to remove all cipher suites that uses rsa key exchange (removed from default in 21)

2> NoRSA =
ssl:filter cipher suites(Default,
[{key exchange, fun(rsa) -> false;
() -> true
end}]).
[...]

Pick just afew suites

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 5

1.3 Using SSL application API

3> Suites =

ssl:filter cipher suites(Default,

[{key exchange, fun(ecdh ecdsa) -> true;

() -> false

end},
{cipher, fun(aes 128 cbc) -> true;
() ->false
end}]).

[#{cipher => aes 128 cbc,key exchange => ecdh ecdsa,
mac => sha256,prf => sha256},
#{cipher => aes 128 cbc,key exchange => ecdh ecdsa,mac => sha,
prf => default prf}]

Make some particular suites the most preferred, or least preferred by changing prepend to append.

4>ssl:prepend cipher suites(Suites, Default).
[#{cipher => aes 128 cbc,key exchange => ecdh ecdsa,
mac => sha256,prf => sha256},
#{cipher => aes 128 cbc,key exchange => ecdh ecdsa,mac => sha,
prf => default prf},
#{cipher => aes 256 cbc,key exchange => ecdhe ecdsa,
mac => sha384,prf => sha384}, ...]

1.3.5 Using an Engine Stored Key
Erlang sd application is able to use private keys provided by OpenSSL engines using the following mechanism:

1> ssl:start().
ok

Load a crypto engine, should be done once per engine used. For example dynamically load the engine called
MyEngi ne:

2> {ok, EngineRef} =
crypto:engine load(<<"dynamic">>,
[{<<"SO PATH">>, "/tmp/user/engines/MyEngine"},<<"LOAD">>],

(1.
{ok,#Ref<0.2399045421.3028942852.173962>}

Create a map with the engine information and the algorithm used by the engine:

3> PrivKey =
#{algorithm => rsa,
engine => EngineRef,
key id => "id of the private key in Engine"}.

Use the map in the sdl key option:

4> {ok, SSLSocket} =
ssl:connect("localhost", 9999,
[{cacertfile, "cacerts.pem"},
{certs keys, [#{certfile => "cert.pem", key => PrivKey}]}
1, infinity).

See also crypto documentation

1.3.6 Session Reuse pre TLS 1.3

Clients can request to reuse a session established by apreviousfull handshake between that client and server by sending
theid of the session in theinitial handshake message. The server may or may not agreeto reuseit. If agreed the server
will send back theid and if not it will send anew id. The ssl application has severa optionsfor handling session reuse.

6 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

1.3 Using SSL application API

On the client side the s3l application will save session data to try to automate session reuse on behalf of the client
processes on the Erlang node. Note that only verified sessions will be saved for security reasons, that is session
resumption relies on the certificate validation to have been run in the original handshake. To minimize memory
consumption only unique sessions will be saved unless the special save value is specified for the following option
{reuse_sessions, bool ean() | save} inwhichcaseafull handshake will be performed and that specific
session will have been saved before the handshake returns. The session id and even an opaque binary containing the
session data can be retrieved using ssl : connect i on_i nf or mat i on/ 1 function. A saved session (guaranteed
by the save option) can be explicitly reused using {r euse_sessi on, Sessi onl d}. Also it is possible for
the client to reuse a session that is not saved by the ssl application using { r euse_sessi on, {Sessionld,
Sessi onDat a}}.

When using explicit session reuse, it is up to the client to make sure that the session being reused is for the correct
server and has been verified.

Here follows a client side example, divide into several steps for readability.
Step 1 - Automated Session Reuse

1> ssl:start().
ok

2> {ok, C1} = ssl:connect("localhost", 9999, [{verify, verify peer},
{versions, ['tlsvl.2']l},
{cacertfile, "cacerts.pem"}]).

{ok, {sslsocket, {gen tcp,#Port<0.7>,tls connection,undefined}, ...}}

3> ssl:connection information(Cl, [session id]).

{ok, [{session_id,<<95,32,43,22,35,63,249,22,26,36, 106,
152,49,52,124,56,130,192,137,161,
146,145,164,232,...>>}1}

% Reuse session if possible, note that if C2 is really fast the session
% data might not be available for reuse.
4> {ok, C2} = ssl:connect("localhost", 9999, [{verify, verify peer},
{versions, ['tlsvl.2'l},
{cacertfile, "cacerts.pem"},
{reuse sessions, true}]).
{ok, {sslsocket, {gen tcp,#Port<0.8>,tls connection,undefined}, ...1}}

[
“©
[

“©

%% C2 got same session ID as client one, session was automatically reused.

5> ssl:connection information(C2, [session id]).

{ok, [{session_id,<<95,32,43,22,35,63,249,22,26,36,106,
152,49,52,124,56,130,192,137,161,
146,145,164,232,...>>}1}

Step 2- Using save Option

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 7

1.3 Using SSL application API

%% We want save this particular session for

%% reuse although it has the same basis as Cl

6> {ok, C3} = ssl:connect("localhost", 9999, [{verify, verify peer},
{versions, ['tlsvl.2']},
{cacertfile, "cacerts.pem"},
{reuse _sessions, save}]).

{ok, {sslsocket, {gen tcp,#Port<0.9>,tls connection,undefined}, ...1}}

%% A full handshake is performed and we get a new session ID
7> {ok, [{session _id, ID}]} = ssl:connection_information(C3, [session_id]).
{ok, [{session id,<<91,84,27,151,183,39,84,90,143, 141,
121,190,66,192,10,1,27,192,33,95,78,
8,34,180,...>>}1}

%% Use automatic session reuse
8> {ok, C4} = ssl:connect("localhost", 9999, [{verify, verify peer},
{versions, ['tlsvl.2'l},
{cacertfile, "cacerts.pem"},
{reuse _sessions, true}]).
{ok, {sslsocket, {gen_tcp,#Port<0.10>,tls connection,
undefined}, ...1}}

%% The "saved" one happened to be selected, but this is not a guarantee

9> ssl:connection _information(C4, [session id]).

{ok, [{session id,<<91,84,27,151,183,39,84,90,143, 141,
121,190,66,192,10,1,27,192,33,95,78,
8,34,180,...>>}]}

%% Make sure to reuse the "saved" session
10> {ok, C5} = ssl:connect("localhost", 9999, [{verify, verify peer},
{versions, ['tlsvl.2'l},
{cacertfile, "cacerts.pem"},
{reuse session, ID}]).
{ok, {sslsocket, {gen_tcp,#Port<0.11>,tls connection,
undefined}, ...1}}

11> ssl:connection_information(C5, [session id]).

{ok, [{session id,<<91,84,27,151,183,39,84,90,143, 141,
121,190,66,192,10,1,27,192,33,95,78,
8,34,180,...>>}1}

Step 3 - Explicit Session Reuse

8 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

1.3 Using SSL application API

%% Perform a full handshake and the session will not be saved for reuse
12> {ok, C9} =
ssl:connect("localhost", 9999, [{verify, verify peer},
{versions, ['tlsvl.2']l},
{cacertfile, "cacerts.pem"},
{reuse sessions, false},
{server name_indication, disable}]).
{ok, {sslsocket, {gen tcp,#Port<0.14>,tls connection, ...}}

%% Fetch session ID and data for C9 connection
12> {ok, [{session_id, ID1}, {session data, SessData}]} =
ssl:connection information(C9, [session id, session datal).
{ok, [{session id,<<9,233,4,54,170,88,170,180,17,96,202,
85,85,99,119,47,9,68,195,50,120,52,
130,239, ...>>},
{session data,<<131,104,13,100,0,7,115,1601,115,115,105,
111,110,109,0,0,0,32,9,233,4,54,170,...>>}]}

%% Explicitly reuse the session from C9
13> {ok, C10} = ssl:connect("localhost", 9999, [{verify, verify peer},
{versions, ['tlsvl.2']l},
{cacertfile, "cacerts.pem"},
{reuse session, {ID1, SessData}}]).
{ok, {sslsocket, {gen_tcp,#Port<0.15>,tls connection,
undefined}, ...}}

14> ssl:connection_information(C10, [session_id]).

{ok, [{session id,<<9,233,4,54,170,88,170,180,17,96,202,
85,85,99,119,47,9,68,195,50,120,52,
130,239, ...>>}]1}

Step 4 - Not Possible to Reuse Explicit Session by ID Only

%% Try to reuse the session from C9 using only the id
15> {ok, E} = ssl:connect("localhost", 9999, [{verify, verify peer},
{versions, ['tlsvl.2'l},
{cacertfile, "cacerts.pem"},
{reuse session, ID1}]).
{ok, {sslsocket, {gen tcp,#Port<0.18>,tls connection,
undefined}, ...}}

%% This will fail (as it is not saved for reuse)

%% and a full handshake will be performed, we get a new id.
16> ssl:connection information(E, [session id]).

{ok, [{session_id,<<87,46,43,126,175,68,160,153,37,29,
196,240,65,160,254,88,65,224,18,63,
18,17,174,39,...>>}1}

o°
Q -

On the server side thethe { r euse_sessi ons, bool ean()} option determinesif the server will save session
data and allow session reuse or not. This can be further customized by the option { r euse_sessi on, fun()}
that may introduce alocal policy for session reuse.

1.3.7 Session Tickets and Session Resumption in TLS 1.3

TLS 1.3introduces a new secure way of resuming sessions by using session tickets. A session ticket is an opaque data
structure that is sent inthe pre_shared key extension of a ClientHello, when aclient attempts to resume a session with
keying material from a previous successful handshake.

Session tickets can be stateful or stateless. A stateful session ticket isadatabase reference (session ticket store) and used
with stateful servers, while astatel essticket isaself-encrypted and self-authenticated data structure with cryptographic
keying material and state data, enabling session resumption with statel ess servers.

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 9

1.3 Using SSL application API

The choice between stateful or statel ess depends on the server requirements as the session tickets are opaque for the
clients. Generaly, stateful tickets are smaller and the server can guarantee that tickets are only used once. Stateless
tickets contain additional data, require less storage on the server side, but they offer different guarantees against anti-
replay. See also Anti-Replay Protectionin TLS 1.3

Session tickets are sent by servers on newly established TL S connections. The number of tickets sent and their lifetime
are configurable by application variables. See also SSL's configuration.

Session tickets are protected by application traffic keys, and in statel esstickets, the opague data structure itself is self-
encrypted.

An example with automatic and manual session resumption:

{ok, } = application:ensure all started(ssl).
LOpts = [{certs keys, [#{certfile => "cert.pem",
keyfile => "key.pem"}1},
{versions, ['tlsvl.2',6 'tlsvl.3']},
{session tickets, stateless}].
{ok, LSock} = ssl:listen(8001, LOpts).
{ok, CSock} = ssl:transport accept(LSock).

Step 2 (client): Start the client and connect to server:

{ok, _}
COpts =

= application:ensure all started(ssl).
[{cacertfile, "cert.pem"},

{versions, ['tlsvl.2',6 'tlsvl.3']1},
{log level, debug},

{session tickets, auto}].
ssl:connect("localhost", 8001, COpts).

Step 3 (server): Start the TLS handshake:
ssl:handshake(CSock) .

A connection is established using afull handshake. Below isa summary of the exchanged messages:
>>> TLS 1.3 Handshake, ClientHello ...
<<< TLS 1.3 Handshake, ServerHello ...
<<< Handshake, EncryptedExtensions ...
<<< Handshake, Certificate ...
<<< Handshake, CertificateVerify ...
<<< Handshake, Finished ...
>>> Handshake, Finished ...
<<< Post-Handshake, NewSessionTicket ...

At thispoint the client has stored the received session tickets and ready to use them when establishing new connections
to the same server.

Step 4 (server): Accept anew connection on the server:
{ok, CSock2} = ssl:transport accept(LSock).

Step 5 (client): Make a new connection:
ssl:connect("localhost", 8001, COpts).

Step 6 (server): Start the handshake:
ssl:handshake(CSock2).

The second connection is a session resumption using keying material from the previous handshake:

10 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

1.3 Using SSL application API

>>> TLS 1.3 Handshake, ClientHello ...
<<< TLS 1.3 Handshake, ServerHello ...
<<< Handshake, EncryptedExtensions ...
<<< Handshake, Finished ...

>>> Handshake, Finished ...

<<< Post-Handshake, NewSessionTicket ...

Manual handling of session tickets is also supported. In manual mode, it is the responsibility of the client to handle
received session tickets.

Step 7 (server): Accept anew connection on the server:
{ok, CSock3} = ssl:transport accept(LSock).

Step 8 (client): Make a new connection to server:

{ok, } = application:ensure all started(ssl).
COpts2 = [{cacertfile, "cacerts.pem"},
{versions, ['tlsvl.2',6 'tlsvl.3']},
{log level, debug},
{session tickets, manual}].
ssl:connect("localhost", 8001, COpts).

Step 9 (server): Start the handshake:
ssl:handshake(CSock3).

After the handshake is performed, the user process receivess messages with the tickets sent by the server.
Step 10 (client): Receive a new session ticket:

Ticket = receive {ssl, session ticket, { , TicketData}} -> TicketData end.
Step 11 (server): Accept a new connection on the server:

{ok, CSock4} = ssl:transport accept(LSock).
Step 12 (client): Initiate a new connection to the server with the session ticket received in Step 10:

{ok, } = application:ensure all started(ssl).

COpts2 = [{cacertfile, "cert.pem"},
{versions, ['tlsvl.2',6 'tlsvl.3']},
{log level, debug},
{session tickets, manual},
{use ticket, [Ticketl}].
ssl:connect("localhost", 8001, COpts).

Step 13 (server): Start the handshake:

ssl:handshake(CSock3).

1.3.8 Early Data in TLS 1.3

TLS 1.3 dlows clients to send data on the first flight if the endpoints have a shared crypographic secret (pre-shared
key). This means that clients can send early data if they have a valid session ticket received in a previous successful
handshake. For more information about session resumption see Session Tickets and Session Resumptionin TLS 1.3.

The security properties of Early Data are weaker than other kinds of TLS data. This datais not forward secret, and it
isvulnerable to replay attacks. For available mitigation strategies see Anti-Replay Protection in TLS 1.3.

In normal operation, clients will not know which, if any, of the available mitigation strategies servers actually
implement, and hence must only send early datawhich they deem safe to be replayed. For example, idempotent HTTP

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 11

1.3 Using SSL application API

operations, such asHEAD and GET, can usually be regarded as safe but even they can be exploited by alarge number
of replays causing resource limit exhaustion and other similar problems.

An example of sending early data with automatic and manual session ticket handling:

‘ The Early Datafeature is experimental in this version of OTP. ‘

Server (with NSS key logging)

early data server() ->
application:load(ssl),
{ok, } = application:ensure all started(ssl),
Port = 11029,
LOpts = [{certs keys, [#{certfile => "cert.pem", keyfile => "key.pem"}1},
{reuseaddr, true},
{versions, ['tlsvl.2',6 'tlsvl.3']},
{session tickets, stateless},
{early data, enabled},
{keep secrets, true} %% Enable NSS key log (debug option)

] ’

{ok, LSock} = ssl:listen(Port, LOpts),

%% Accept first connection

{ok, CSock0} = ssl:transport accept(LSock),
{ok, } = ssl:handshake(CSock0),

%% Accept second connection

{ok, CSockl} = ssl:transport accept(LSock),
{ok, Sock} = ssl:handshake(CSockl),

Sock.

Exporting the secrets (optional)

{ok, [{keylog, KeylogItems}]} = ssl:connection information(Sock, [keylogl).
file:write_file("key.log", [[KeylogItem,$\n] || KeylogItem <- KeylogItems]).

Client (automatic ticket handling):

early data auto() ->
%% First handshake 1-RTT - get session tickets
application:load(ssl),
{ok, } = application:ensure all started(ssl),
Port 11029,
Data <<"HEAD / HTTP/1.1\r\nHost: \r\nConnection: close\r\n">>,
COptsO® = [{cacertfile, "cacerts.pem"},
{versions, ['tlsvl.2',6 'tlsv1l.3'l},
{session tickets, auto}l],
{ok, Sock0} = ssl:connect("localhost", Port, COpts0),

%% Wait for session tickets
timer:sleep(500),
%% Close socket if server cannot handle multiple
%% connections e.g. openssl s server
ssl:close(Sock0),

%% Second handshake O-RTT
COptsl = [{cacertfile, "cacerts.pem"},
{versions, ['tlsvl.2',6 'tlsvl.3'l},
{session tickets, auto},
{early data, Data}l,
{ok, Sock} = ssl:connect("localhost", Port, COptsl),
Sock.

12 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

1.3 Using SSL application API

Client (manual ticket handling):

early data manual() ->
%% First handshake 1-RTT - get session tickets
application:load(ssl),
{ok, } = application:ensure all started(ssl),

Port = 11029,
Data = <<"HEAD / HTTP/1.1\r\nHost: \r\nConnection: close\r\n">>,
COptsO = [{cacertfile, "cacerts.pem"},
{versions, ['tlsvl.2', 'tlsvl.3']},
{session_ tickets, manual}l],
{ok, Sock0} = ssl:connect("localhost", Port, COptsO),

%% Wait for session tickets
Ticket =
receive
{ssl, session_ ticket, Ticket0} ->
Ticket0
end,

%% Close socket if server cannot handle multiple connections
%% e.g. openssl s server
ssl:close(Sock0),

%% Second handshake O-RTT
COptsl = [{cacertfile, "cacerts.pem"},
{versions, ['tlsvl.2', 'tlsvl.3'l},

{session tickets, manual},
{use ticket, [Ticketl]},
{early data, Data}],

{ok, Sock} = ssl:connect("localhost", Port, COptsl),

Sock.

1.3.9 Anti-Replay Protection in TLS 1.3

The TLS 1.3 protocol does not provide inherent protection for replay of O-RTT data but describes mechanisms
that SHOULD be implemented by compliant server implementations. The implementation of TLS 1.3 in the SSL
application employs all standard methods to prevent potential threats.

Single-usetickets

This mechanism is available with stateful session tickets. Session tickets can only be used once, subsequent use of
the same ticket resultsin afull handshake. Stateful servers enforce this rule by maintaining a database of outstanding
valid tickets.

Client Hello Recording

This mechanism is available with stateless session tickets. The server records a unique value derived from
the ClientHello (PSK binder) in a given time window. The ticket's age is verified by using both the
"obsfuscated_ticket_age" and an additional timestamp encrypted in the ticket data. Asthe used datastore allows false
positives, apparent replays will be answered by doing afull 1-RTT handshake.

Freshness Checks

Thismechanismisavailablewith the statel ess session tickets. Astheticket data has an embedded timestamp, the server
can determine if a ClientHello was sent reasonably recently and accept the O-RTT handshake, otherwise if falls back
toafull 1-RTT handshake. This mechanism istightly coupled with the previous one, it prevents storing an unlimited
number of ClientHellos.

The current implementation uses a pair of Bloom filters to implement the last two mechanisms. Bloom filters are fast,
memory-efficient, probabilistic data structures that can tell if an element may be in a set or if it is definitely not in
the set.

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 13

1.4 Using TLS for Erlang Distribution

If the option anti_replay isdefined in the server, apair of Bloom filters (current and old) are used to record incoming
ClientHello messages (it is the unique binder value that is actually stored). The current Bloom filter is used for
W ndowsSi ze secondsto store new elements. At the end of the time window the Bloom filters arerotated (the cur rent
Bloom filter becomes the old and an empty Bloom filter is set as current.

The Anti-Replay protection feature in stateless servers executes in the following steps when a new ClientHello is
received:
* Reported ticket age (obfuscated ticket age) shall be less than ticket lifetime.

» Actual ticket age shall belessthan theticket lifetime (statel ess session tickets contain the servers timestamp when
the ticket was issued).

e Ticket shall be used within specified time window (freshness checks).

» If al above checks passed both current and old Bloom filters are checked to detect if binder was already seen.
Being a probabilistic data structure, false positives can occur and they trigger a full handshake.

e |If the binder is not seen, the binder is validated. If the binder is valid, the server proceeds with the O-RTT
handshake.

1.3.10 Using DTLS
Using DTL S has basically the same APl as TLS. Y ou heed to add the option { protocol, dtls} to the connect and listen
functions. For example

client> {ok, Socket} = ssl:connect("localhost", 9999, [{protocol, dtls},
{verify, verify peer},{cacertfile, "cacerts.pem"}], infinity).
{ok,{sslsocket, [...]1}}

1.4 Using TLS for Erlang Distribution

This section describes how the Erlang distribution can use TLS to get extra verification and security.

The Erlang distribution can in theory use almost any connection-based protocol as bearer. However, a module
that implements the protocol-specific parts of the connection setup is needed. The default distribution module is
i net _tcp_dist inthe Kernel application. When starting an Erlang node distributed, net _ker nel uses this
module to set up listen ports and connections.

Inthe SSL application, an extradistribution module, i net _t | s_di st, canbeused asan aternative. All distribution
connectionswill use TLS and all participating Erlang nodes in adistributed system must use this distribution module.

The security level depends on the parameters provided to the TL'S connection setup. Erlang node cookies are however
always used, as they can be used to differentiate between two different Erlang networks.

To set up Erlang distribution over TLS:

* Step 1: Build boot scripts including the SSL application.

e Step 2: Specify the distribution module for net _ker nel .
e Step 3: Specify the security options and other SSL options.
* Step 4: Set up the environment to always use TLS.

The following sections describe these steps.

1.4.1 Building Boot Scripts Including the SSL Application

Boot scriptsare built using the sy st ool s utility in the SASL application. For moreinformation on syst ool s, see
the SASL documentation. Thisis only an example of what can be done.

14 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

1.4 Using TLS for Erlang Distribution

The simplest boot script possible includes only the Kernel and STDLIB applications. Such a script is located in the
bi n directory of the Erlang distribution. The source for the script is found under the Erlang installation top directory
under r el eases/ <OTP version>/start _clean.rel.

Do the following:

» Copy that script to another location (and preferably another name).

« Add the applications Crypto, Public Key, and SSL with their current version numbers after the STDLIB
application.

The following shows an example. r el filewith TLS added:

{release, {"OTP APN 181 01","R15A"}, {erts, "5.9"},
[{kernel,"2.15"},

{stdlib,"1.18"},

{crypto, "2.0.3"},

{public_key, "0.12"},

{asnl, "4.0"},

{ssl, "5.0"}

I}.

Theversion numbersdiffer inyour system. Whenever one of the applicationsincluded in the script isupgraded, change
the script.

Do the following:
e Build the boot script.

Assumingthe.rel fileisstoredinafilestart_ssl.rel inthe current directory, a boot script can be
built as follows:

1> systools:make script("start ssl",[]).

Thereisnow ast art _ssl . boot fileinthe current directory.
Do the following:

e Test theboot script. To do this, start Erlang with the - boot command-line parameter specifying this boot script
(with itsfull path, but without the . boot suffix). In UNIX it can look asfollows:

$ erl -boot /home/me/ssl/start ssl
Erlang (BEAM) emulator version 5.0

Eshell V5.0 (abort with ~G)
1> whereis(ssl manager).
<0.41.0>

Thewher ei s function-cal verifies that the SSL application is started.

Asan dternative to building a bootscript, you can explicitly add the path to the SSL ebi n directory on the command
line. Thisisdone with command-line option - pa. Thisworksasthe SSL application does not need to be started for the
distribution to come up, as a clone of the SSL application is hooked into the Kernel application. So, aslong asthe SSL
application code can be reached, the distribution starts. The - pa method is only recommended for testing purposes.

The clone of the SSL application must enable the use of the SSL code in such an early bootstage as needed to set
up the distribution. However, this makes it impossible to soft upgrade the SSL application.

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 15

1.4 Using TLS for Erlang Distribution

1.4.2 Specifying Distribution Module for net_kernel

The distribution module for TLSisnamed i net _tls_di st and is specified on the command line with option -
prot o_di st.Theargumentto- pr ot o_di st istobethe module namewithout suffix _di st . So, thisdistribution
moduleis specified with- prot o_di st i net _t| s onthecommand line.

Extending the command line gives the following:
$ erl -boot /home/me/ssl/start ssl -proto dist inet tls
For the distribution to be started, give the emulator a name as well:

$ erl -boot /home/me/ssl/start ssl -proto dist inet tls -sname ssl test
Erlang (BEAM) emulator version 5.0 [source]

Eshell V5.0 (abort with "G)
(ssl test@myhost)1>

However, a node started in this way refuses to talk to other nodes, as no TLS parameters are supplied (see the next
section).

1.4.3 Specifying TLS Options

The TL S distribution options can be written into afile that is consulted when the node is started. Thisfile nameisthen
specified with the command line argument - ssl _di st _optfile.

Any available TLS option can be specified in an options file, but note that options that take af un() hasto use the
syntax f un Mod: Func/ Ari t y since afunction body cannot be compiled when consulting afile.

Do not tamper with the socket options | i st, bi nary, acti ve, packet, nodel ay and del i ver since they
are used by the distribution protocol handler itself. Other raw socket options such as packet _si ze may interfere
severely, so beware!

For TLSto work, at least apublic key and a certificate must be specified for the server side. In the following example,
the PEM file" / home/ me/ ssl / er| server. pem' contains both the server certificate and its private key.

Create afile named for example” / home/ e/ ssl / ssl _t est @ryhost . conf":

[{server,
[{certfile, "/home/me/ssl/erlserver.pem"},
{secure renegotiate, true}l},

{client,
[{secure renegotiate, true}l}].

And then start the node like this (line breaks in the command are for readability, and shall not be there when typed):

$ erl -boot /home/me/ssl/start ssl -proto dist inet tls
-ssl dist optfile "/home/me/ssl/ssl test@myhost.conf"
-sname ssl_test

The options in the { server, Opt s} tuple are used when caling ssl : handshake/ 3, and the options in the
{client, Opts} tupleareused whencalingssl : connect/ 4.

For the client, the option { ser ver _nane_i ndi cati on, atomto_list(Target Node)} isadded when
connecting. This makes it possible to use the client option { veri fy, verify_peer}, andthe client will verify
that the certificate matches the node name you are connecting to. This only worksif the the server certificate isissued
tothenameat om to_I| i st (Tar get Node) .

For the server it is also possible to use the option { veri fy, verify_peer} and the server will only accept
client connections with certificates that are trusted by aroot certificate that the server knows. A client that presents

16 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

1.4 Using TLS for Erlang Distribution

an untrusted certificate will be rejected. This option is preferably combined with {fai |l _i f_no_peer _cert,
t rue} or aclient will still be accepted if it does not present any certificate.

A node started in thisway is fully functional, using TL S as the distribution protocol.

1.4.4 Specifying TLS Options (Legacy)

Asin the previous section the PEM file" / home/ e/ ssl / er | server. pem' contains both the server certificate
and its private key.

Ontheer| command line you can specify options that the TL S distribution adds when creating a socket.

The simplest TLS options in the following list can be specified by adding the prefix server _or cl i ent _ to the
option name:

« certfile

« keyfile

e password

 cacertfile

e verify

o verify_fun (writeas{ Modul e, Function, Initial UserState})

e crl_check

* crl _cache (write as Erlang term)

e reuse_sessions

e secure_renegotiate

 depth

e hibernate_after

* ci phers (useold string format)

Note that veri fy_f un needs to be written in a different form than the corresponding TLS option, since funs are
not accepted on the command line.

The server can also takethe optionsdhfil eandfail _i f_no_peer_cert (also prefixed).

cl i ent _-prefixed options are used when the distribution initiates a connection to another node. ser ver _-prefixed
options are used when accepting a connection from a remote node.

Raw socket options, such aspacket and si ze must not be specified on the command line.

The command-line argument for specifying the TLS optionsis named - ssl _di st _opt and is to be followed by
pairs of SSL options and their values. Argument - ssl _di st _opt can be repeated any number of times.

An example command line doing the same as the exampl e in the previous section can now look asfollows (line breaks
in the command are for readability, and shall not be there when typed):

$ erl -boot /home/me/ssl/start ssl -proto dist inet tls
-ssl _dist opt server certfile "/home/me/ssl/erlserver.pem"
-ssl dist opt server secure renegotiate true client secure renegotiate true
-sname ssl_test

Erlang (BEAM) emulator version 5.0 [source]

Eshell V5.0 (abort with "G)
(ssl test@myhost)1>

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 17

1.5 Standards Compliance

1.4.5 Setting up Environment to Always Use TLS (Legacy)

A convenient way to specify arguments to Erlang is to use environment variable ERL_FLAGS. All the flags needed
to use the TLS distribution can be specified in that variable and are then interpreted as command-line arguments for
all subsequent invocations of Erlang.

InaUnix (Bourne) shell, it can look as follows (line breaks are for readability, they are not to be there when typed):

$ ERL_FLAGS="-boot /home/me/ssl/start ssl -proto dist inet tls
-ssl dist opt server certfile /home/me/ssl/erlserver.pem
-ssl dist opt server secure renegotiate true client secure renegotiate true"
$ export ERL_FLAGS
$ erl -sname ssl test
Erlang (BEAM) emulator version 5.0 [source]

Eshell V5.0 (abort with ~G)

(ssl _test@myhost)1> init:get arguments().

[{root,["/usr/local/erlang"]},

{progname, ["erl "1},

{sname, ["ss1l test"]},

{boot, ["/home/me/ss1/start ssl"1},

{proto dist,["inet tls"]},

{ssl dist opt,["server certfile","/home/me/ssl/erlserver.pem"]},

{ssl dist opt,["server secure renegotiate","true",
"client secure renegotiate","true"]

{home, ["/home/me"]}]

Thei ni t: get _argunent s() cal verifiesthat the correct arguments are supplied to the emulator.

1.4.6 Using TLS distribution over IPv6

It is possible to use TLS distribution over 1Pv6 instead of IPv4. To do this, pass the option - prot o_di st
inet6_tls instead of - proto_di st inet_tls when starting Erlang, either on the command line or in the
ERL_FLAGS environment variable.

An example command line with this option would look like this:

$ erl -boot /home/me/ssl/start ssl -proto dist inet6 tls
-ssl dist optfile "/home/me/ssl/ssl test@myhost.conf"
-sname ssl_test

A node started in this way will only be able to communicate with other nodes using TL S distribution over |Pv6.

1.5 Standards Compliance

1.5.1 Purpose

This section describes the current state of standards compliance of the ssl application.

1.5.2 Common (pre TLS 1.3)

» For security reasons RSA key exchange cipher suites are no longer supported by default, but can be configured.
(OTP21)

» For security reasons DES cipher suites are no longer supported by default, but can be configured. (OTP 20)

» For security reasons 3DES cipher suites are no longer supported by default, but can be configured. (OTP 21)

* Renegotiation Indication Extension RFC 5746 is supported

« Ephemeral Diffie-Hellman cipher suites are supported, but not Diffie Hellman Certificates cipher suites.

» Elliptic Curve cipher suites are supported if the Crypto application supports it and named curves are used.

18 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

href

1.5 Standards Compliance

» Export cipher suites are not supported as the U.S. lifted its export restrictionsin early 2000.

« |DEA cipher suites are not supported as they have become deprecated by the TL S 1.2 specification so it is not
motivated to implement them.

e Compression is not supported.

1.5.3 Common

e CRL validation is supported.
» Policy certificate extensions are not supported.
* 'Server Name Indication’' extension (RFC 6066) is supported.

e Application Layer Protocol Negotiation (ALPN) and its successor Next Protocol Negotiation (NPN) are
supported.

* Itispossibleto use Pre-Shared Key (PSK) and Secure Remote Password (SRP) cipher suites, but they are not
enabled by default.

1.5.4 SSL 2.0
For security reasons SSL-2.0 is hot supported. Interoperability with SSL-2.0 enabled clients dropped. (OTP 21)

1.5.5 SSL 3.0

For security reasons SSL-3.0 is ho longer supported at all. (OTP 23)
For security reasons SSL-3.0 is ho longer supported by default, but can be configured. (OTP 19)

1.5.6 TLS 1.0
For security reasons TLS-1.0 is no longer supported by default, but can be configured. (OTP 22)

157 TLS 1.1
For security reasons TLS-1.1 is no longer supported by default, but can be configured. (OTP 22)

1.5.8 TLS 1.2
Supported

1.5.9 DTLS 1.0
For security reasons DTLS-1.0 (based on TLS 1.1) isno longer supported by default, but can be configured. (OTP 22)

1.5.10 DTLS 1.2
Supported (based on TLS 1.2)

1.5.11 DTLS 1.3
Not yet supported

1.5.12 TLS 1.3

OTP-22 introduces support for TLS 1.3. The current implementation supports a selective set of cryptographic
algorithms:

« Key Exchange: ECDHE

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 19

href

1.5 Standards Compliance

e Groups: dl standard groups supported for the Diffie-Hellman key exchange
e Ciphers: all cipher suites are supported

e Signature Algorithms: All algorithms form RFC 8446

* Caertificates: RSA, ECDSA and EDDSA keys

Other notable features:

e PSK and session resumption is supported (stateful and statel ess tickets)

« Anti-replay protection using Bloom-filters with statel ess tickets

* Early dataand O-RTT is supported

» Key and Initialization Vector Update is supported
For more detailed information see the Standards Compliance below.

The following table describes the current state of standards compliance for TLS 1.3.
(C = Compliant, NC = Non-Compliant, PC = Partially-Compliant, NA = Not Applicable)

Section Feature State Since
1.3. Updates
Affecting TLS 1.2 ¢ 241
Version downgrade
protection C 22
mechanism
RSASSA-PSS C 24.1
signature schemes
supported versions
(ClientHello) C 22
extension
s gnatgre_al gonthms_c&rt oa1
extension
2. Prot.ocol PC 2
Overview
(EC)DHE C 22
PSK-only NC
PSK with (EC)DHE | C 222
2.1. Incorrect DHE
hare HelloRetryRequest | C 22
2.2. Resumption
and Pre-Shared C 22.2
Key (PSK)
2.3.0-RTT Data PC 233

20 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

href
href
href
href
href
href
href
href
href
href

1.5 Standards Compliance

4.1.1.
Cryptographic C 22.2
Negotiation
supported_groups C 2
extension
signature_algorithms C 2
extension
pre_shared_key
extension c 222
4.1.2. Client Hello | Client PC 22.1
server_name
(RFC6066) c 232
max_fragment_length
(RFC6066) c 230
status_request
(RFC6066) NC
supported _groups
(RFC7919) ¢ 221
signature_algorithms
(RFC8446) c 22.1
use srtp (RFC5764) | NC
heartbeat (RFC6520) | NC
application_layer_profjocol_negotiation
(RFC7301) € 221
signed_certificate tim p
(RFC6962) eﬁén
client_certificate type NC
(RFC7250)
server_certificate type NC
(RFC7250)
padding (RFC7685) | NC
key share
(RFC8446) c 22.1
pre_shared_key
(RFC8446) c 22:2

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 21

href
href
href
href

1.5 Standards Compliance

psk_key exchange mpdes

(RFC8446) 8 22:2
early data

(RFC8446) c 233
cookie (RFCB8446) C 23.1
supported versions

(RFC8446) c 221
certificate_authorities

(RFC8446) ¢ 243
oid_filters

(RFC8446) NC

post_handshake auth NG

(RFC8446)

signature_algorithms_fert

(RFC8446) € 221
Server PC 22
server_name

(RFC6066) c 232
max_fragment_length

(RFC6066) c 230
status_request

(RFC6066) NC

supported _groups

(RFC7919) c 22
signature_algorithms

(RFC8446) c 22
use_srtp (RFC5764) [NC

heartbeat (RFC6520) | NC

application_layer J)rot0§ol_negoti aion 291
(RFC7301) ’
signed_certificate_tim p

(RFC6962) eﬁgﬂ

client_certificate _type NG

(RFC7250)

22 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

1.5 Standards Compliance

server_certificate_typ(la
(RFC7250)

NC

padding (RFC7685)

NC

key share
(RFC8446)

22

pre_shared_key
(RFC8446)

22.2

psk_key exchange m Jges

(RFC8446)

22.2

early data
(RFC8446)

233

cookie (RFC8446)

231

supported versions
(RFC8446)

22

oid filters
(RFC8446)

NC

post_handshake auth
(RFC8446)

NC

signature al gorithms_cgt

(RFC8446)

22

4.1.3. Server Hello

Client

22.2

Version downgrade
protection

221

key share
(RFC8446)

221

pre_shared_key
(RFC8446)

22.2

supported versions
(RFC8446)

22.1

Server

22.2

Version downgrade
protection

22

key_share
(RFC8446)

22

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 23

href

1.5 Standards Compliance

pre_shared_key
(RFC8446) ¢ 222
supported versions
(RFC8446) ¢ 22
4.1.4. Hello Retry
Request Server C 22
key share
(RFC8446) ¢ 22
cookie (RFC8446) C 231
supported versions
(RFC8446) ¢ 22
4.2.1.Supported | oy c 221
Versions
Server C 22
4.2.2. Cookie Client C 231
Server C 231
4.2.3. Signature .
Algorithms Client ¢ 24
rsa_pkcsl sha?56 C 22.1
rsa_pkcsl sha3g4 C 221
rsa_pkcsl_sha512 C 221
ecdsa secp256rl sha?%b 22.1
ecdsa secp384rl sha3®z 22.1
ecdsa secp521rl shab12 22.1
rsa pss rsae sha256 | C 22.1
rsa pss rsae sha3gd |C 22.1
rsa pss rsae shabl12 |C 22.1
ed25519 C 24
ed448 C 24
rsa pss pss sha2s6 |C 23

24 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

href
href
href
href
href
href
href

1.5 Standards Compliance

rsa pss pss sha3g4 | C 23
rsa pss pss shab12 |C 23
rsa_pkecsl shal C 22.1
ecdsa shal C 22.1
Server C 24
rsa_pkcsl sha?56 C 22
rsa_pkcsl _sha3g4 C 22
rsa_pkcsl _sha512 C 22
ecdsa secp256rl sha?%b 22.1
ecdsa secp384rl sha3&z 22.1
ecdsa secp521rl shab12 22.1
rsa pss rsae sha256 | C 22
rsa pss rsae sha3gd |C 22
rsa pss rsae shabl12 |C 22
ed25519 C 24
ed448 Cc 24
rsa pss pss sha256 |C 23
rsa pss pss sha3g4 | C 23
rsa pss pss shabl2 |C 23
rsa_pkecsl_shal C 22
ecdsa shal C 22

s cotiee | oo e
Server NC

4.25.0OID Filters Client NC
Server NC

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 25

href
href
href

1.5 Standards Compliance

4.2.6. Post-

Handshake Client | Client NC

Authentication
Server NC

éi‘)ﬁpss"ppo”ed Client c 221
secp256rl C 22.1
secp384rl C 22.1
secpb521rl C 22.1
x25519 C 221
X448 C 22.1
ffdhe2048 C 22.1
ffdhe3072 C 221
ffdhe4096 C 22.1
ffdhe6144 C 221
ffdhe8192 C 22.1
Server C 22
secp256r1 C 22
secp384rl C 22
secpb521rl C 22
x25519 C 22
x448 C 22
ffdhe2048 C 22
ffdhe3072 C 22
ffdhe4096 C 22
ffdhe6144 C 22
ffdhe8192 C 22

4.2.8. Key Share Client C 221

26 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

href
href
href
href
href
href

1.5 Standards Compliance

Server C 22
4.2.9. Pre-Shared
Key Exchange Client C 22.2
Modes

Server C 222
4.2.10. Barly Data | ooy c 233
Indication

Server C 233
4.211. Pre-_Shared Client c 29
Key Extension

Server C 22.2
4.2.11.1. Ticket Age | Client C 222

Server C 222
4._2.11.2. PSK Client C 299
Binder

Server C 22.2
4.2.11.3. Processing Client NC
Order

Server NC
431 Encrypted | oo PC 221
Extensions

server_name

(RFC6066) ¢ 232

max_fragment_length

(RFC6066) c 230

supported_groups NG

(RFC7919)

use srtp (RFC5764) | NC

heartbeat (RFC6520) | NC

application_layer _proi(ﬁ@_negoti ation

(RFC7301)

client_certificate type
(RFC7250)

NC

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 27

href
href
href
href
href
href
href
href
href
href
href
href
href
href

1.5 Standards Compliance

server_certifi cate_tpra

(RFC8446)

(RFC7250) NC
early data
(RFC8446) c 233
supported versions NC
(RFC8446)
Server PC 22
server_name
(RFC6066) c 232
max_fragment_length
(RFC6066) c 230
supported_groups NG
(RFC7919)
use_srtp (RFC5764) | NC
heartbeat (RFC6520) | NC
application_layer J)rot(ﬁg_negoti ation
(RFC7301)
client_certificate type NG
(RFC7250)
server_certificate type NG
(RFC7250)
early data
(RFC8446) c 233
supported versions NC
(RFC8446)

4.3.2. Certificate .

Request Client PC 221
status _request
(RFCB066) NC
signature_algorithms
(RFC8446) c 221
signed_certificate tim p
(RFC6962) eﬁgn
certificate_authorities c 243

28 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

href
href

1.5 Standards Compliance

oid filters
(RFC8446) NC
signature_algorithms_fert
(RFC8446) € 221
Server PC 22
status _request
(RFCB066) NC
signature_algorithms
(RFC8446) c 22
signed_certificate_tim p
(RFC6962) Eﬁgn
certificate_authorities
(RFC8446) c 243
oid filters
(RFC8446) NC
signature_algorithms_fert
(RFC8446) € 22
44.1. The
Transcript Hash ¢ 22
4.4.2. Certificate Client PC 22.1
Arbitrary certificate c 229
chain orderings '
Extraneous
certificatesin chain ¢ 232
status_request
(RFC6066) NC
signed_certificate tim p
(RFC6962) Eﬁgn
Server PC 22
status_request
(RFC6066) NC
signed_certificate ti rreﬁgnp

(RFC6962)

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 29

href
href
href

1.5 Standards Compliance

4421 OCSP
Statusand SCT
Extensions

Client

NC

Server

NC

4.4.2.2. Server
Certificate Selection

243

The certificate type
MUST be X.509v3,
unless explicitly
negotiated otherwise

22

The server's end-
entity certificate's
public key

(and associated
restrictions) MUST
be compatible

with the selected
authentication
agorithm from

the client's
"signature_algorithms
extension (currently
RSA, ECDSA, or
EdDSA).

22

The certificate
MUST allow

the key to be
used for signing
with a signature
scheme indicated
in the client's
"signature_algorithms
extensions

'/"signature_algorithmg

 cert

22

The
"server_name" and
"certificate_authorities
extensions are used
to guide certificate
selection. As servers
MAY requirethe
presence of the
"server_name"
extension, clients
SHOULD send this
extension, when

applicable.

24.3

30 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

href
href
href
href
href

1.5 Standards Compliance

4.4.2.3. Client
Certificate Selection

PC 221

The certificate type
MUST be X.509v3,
unless explicitly
negotiated otherwise

221

If the
"certificate_authorities
extension in the
CertificateRequest
message was present,
at least one of the
certificatesin the
certificate chain
SHOULD be issued
by one of the listed
CAs.

243

The certificates
MUST be signed
using an acceptable
signature algorithm

22.1

If the
CertificateRequest
message contained
anon-empty
"oid_filters'
extension, the end-
entity certificate
MUST match the
extension OIDs that
are recognized by the
client

NC

4.4.2.4. Receiving a
Certificate M essage

Client

221

Server

22

4.4.3. Certificate
Verify

Client

221

Server

22

4.4.4. Finished

Client

22.1

Server

22

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 31

href
href
href
href
href
href
href

1.5 Standards Compliance

4.5. End of Early

Data Client C 233
Server C 233
4.6.1. New Session .
Ticket Message Client C 233
early data
(RFCB446) c 233
Server C 233
early data
(RFC8446) c 233
4.6.2. Post-
Handshake Client NC
Authentication
Server NC
4.6.3. Key and
Initialization Vector | Client C 223
Update
Server C 223
5.1. Record L ayer C 22
MUST NOT be
interleaved with C 22
other record types
MUST NOT span C 2o
key changes
MUST NOT
send zero-length C 22
fragments
Alert messages
MUST NOT be C 22
fragmented
5.2. Record
Payload Protection ¢ 22
5.3. Per-Record C 2
Nonce

32 | Ericsson AB. All Rights Reserved

.. Secure Socket Layer

href
href
href
href
href
href
href
href
href
href
href
href
href
href
href

1.5 Standards Compliance

5.4. Record
Padding PC 22
MAY choosetopad |NC
MUST NOT send
Handshake and
Alert records that NC
have a zero-length
TL SInnerPlaintext.content
The padding sent
isautomatically C 22
verified
5.5. Limitson Key c 223
Usage
6.1. Closure Alerts 22
close notify C 22
user_cancelled C 22
6.2. Error Alerts PC 22
7.1. Key Schedule C 22
7.2. Updating
Traffic Secrets c 22
7.3. TrafficKey
Calculation c 22
7.5. Exporters NC
8. 0-RTT and Anti- C 222
Replay
8.1. Single-Use
Tickets c 22.2
8.2. Cllt_ant Hello c 222
Recording
8.3. Freshness
Checks C 222
9.1. Mandatory-to-
Implement Cipher C 221

Suites

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 33

href
href
href
href
href
href
href
href
href
href
href
href
href
href
href
href
href
href
href
href
href
href
href

1.5 Standards Compliance

MUST
implement the C 22
TLS_AES 128 GCM| SHA256
SHOULD
implement the C 22
TLS AES 256 _GCM| SHA384
SHOULD
implement the C 22
TLS CHACHA20 PQLY 1305 SHA256
Digital signatures |C 22.1
MUST support
rsa_pkcsl sha256 C 22
(for certificates)
MUST support
rsa pss rsae sha?56 c 2o
(for CertificateVerify
and certificates)
MUST support
ecdsa_secp256r1_sha’ &3 221
Key Exchange C 22
MUST support
key exchange with C 22
secp256r1
SHOULD support
key exchange with C 22
X25519
9.2. Mandatory-
to-lmplement C 23.2
Extensions
Supported Versions | C 22
Cookie C 231
Signature Algorithms| C 22
Signature Algorithms
Certificate ¢ 22
Negotiated Groups | C 22
Key Share C 22

34 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

href
href
href

1.5 Standards Compliance

Server Name
Indication

C 232

MUST send and use
these extensions

C 222

"supported_versions"
isREQUIRED

for ClientHéllo,
ServerHello and
HelloRetryRequest

C 221

"signature_algorithms
isREQUIRED

for certificate
authentication

"supported_groups"
is REQUIRED

for ClientHello
messages using
(EC)DHE key
exchange

"key share" is
REQUIRED for
(EC)DHE key
exchange

"pre_shared key" is
REQUIRED for PSK
key agreement

C 222

"psk_key_exchange n

hodes"

is REQUIRED for C 22.2
PSK key agreement
TLS1.3ClientHello |C 221

If not containing a
"pre_shared key"
extension, it MUST
contain both a
"signature_algorithms
extension and a
"supported_groups"
extension.

.C 22.1

If containing a
"supported_groups"
extension, it

C 221

MUST dso contain

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 35

1.5 Standards Compliance

a"key_share"
extension, and vice
versa. An empty
KeyShare.client_sharg
vector is permitted.

TLS1.3
ServerHello

23.2

MUST support
the use of the
"server_name"
extension

23.2

9.3. Protocol
Invariants

22.1

MUST correctly
handle extensible
fields

22.1

A client sending
aClientHello
MUST support
al parameters
advertised in it.
Otherwise, the
server may fail to
interoperate by
selecting one of
those parameters.

221

A server receiving a
ClientHello MUST
correctly ignore all
unrecognized cipher
suites, extensions,
and other parameters.
Otherwise, it may
fail to interoperate
with newer clients.
INTLS1.3,a

client receiving a
CertificateRequest or
NewsSessionTicket
MUST also ignore
al unrecognized
extensions.

221

36 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

A middlebox
which terminates
aTLS connection

MUST behave as

NA

href
href

1.5 Standards Compliance

acompliant TLS
server

A middlebox which
forwards ClientHello
parameters it does
not understand
MUST NOT process

any messages
beyond that
ClientHello. It NA
MUST forward
all subsequent
traffic unmodified.
Otherwise, it may
fail to interoperate
with newer clients
and servers.
B.4. Cipher Suites C 23
TLS AES 128 GCM| GHA256 22
TLS AES 256 GCM| GHA384 22
TLS CHACHA20 POLCY 1305 SHA256 22
TLS AES 128 CCM| 6HA256 22
TLS AES 128 CCM| 8 SHA?256 23
C.1. Random
Number Generation C 22
and Seeding
C.2. Certificates
and Authentication ¢ 22
C.3.
I mplementation PC 22
Pitfalls
C.4. Client
Tracking C 22.2
Prevention
C.5.
Unauthenticated C 22
Operation
D.1. Negotiating
with an Older C 22.2
Server

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 37

href
href
href
href
href
href
href
href
href
href
href
href
href
href
href
href
href
href

1.5 Standards Compliance

D.2. Negotiating
with an Older C
Client

22

D.3.0-RTT
Backward NC
Compaitibility

D.4. Middlebox
Compatibility Mode

23

D.5. Security
Restrictions Related
to Backward
Compatibility

22

Table 5.1: Standards Compliance

38 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

href
href
href
href
href
href
href
href
href
href
href
href

1.5 Standards Compliance

2 Reference Manual

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 39

ssl

ssl
Application

The sdl application is an implementation of the SSL, TLSand DTLS protocolsin Erlang.
For current statement of standards compliance see the User's Guide.

DEPENDENCIES

The SSL application uses the publ i ¢_key, asnl and Crypto application to handle public keys and encryption,
hence these applications must be loaded for the SSL application to work. In an embedded environment this means
they must be started with appl i cati on: start/[1, 2] beforethe SSL application is started.

CONFIGURATION

The application environment configuration parameters in this section are defined for the SSL application. For more
information about configuration parameters, see the application(3) manual page in Kernel.

The environment parameters can be set on the command line, for example:
erl -ssl protocol _version "["tlsvl.2", "tlsvl.1']"
prot ocol _version = sd:tls version() | [ssl:tls version()] <opt i onal >

Protocol supported by started clients and servers. If thisoption isnot set, it defaultsto all TLS protocols currently
supported, more might be configurable, by the SSL application. This option can be overridden by the version
optiontossl : connect/[2, 3] andssl :listen/2.

dtls_protocol version = sd:dtls version() | [sdl:dtls version()] <opti onal >

Protocol supported by started clientsand servers. If thisoptionisnot set, it defaultsto all DTL S protocolscurrently
supported, more might be configurable, by the SSL application. This option can be overridden by the version
optiontossl : connect/[2, 3] andssl:listen/2.

session_lifetinme = integer() <optional>

Maximum lifetime of the session data in seconds. Defaults to 24 hours which is the maximum recommended
lifetime by RFC 5246. However sessions may beinvalidated earlier due to the maximum limitation of the session
cache table.

session_cb = atom() <optional >
Deprecated Since OTP-23.3 replaced by cl i ent _sessi on_ch andserver _sessi on_cb
client_session_cb = aton() <optional >

Since OTP-23.3 Name client of the session cache calback module that implements the
ssl _session_cache_api behavior. Defaultstossl _cl i ent _sessi on_cache_db.

server_session_cb = atom() <optional >

Since OTP-23.3 Name of the server session cache calback module that implements the
ssl _sessi on_cache_api behavior. Defaultsto ssl _server _sessi on_cache_db.

session_cb_init_args = proplist:proplist() <optional>

Deprecated Since OTP-23.3 replaced by client_session _cb init_args and
server_session_cb _init_args

client_session_cb init_args = proplist:proplist() <optional>
List of extra user-defined argumentsto thei ni t function in the session cache callback module. Defaultsto[] .

40 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

href

ssl

server_session_cb_init_args = proplist:proplist() <optional>
List of extra user-defined argumentsto thei ni t function in the session cache callback module. Defaultsto[] .
session_cache_client _nmax = integer() <optional >

Limits the growth of the clients session cache, that is how many sessions towards servers that are cached to be
used by new client connections. If the maximum number of sessions is reached, the current cache entries will
be invalidated regardliess of their remaining lifetime. Defaults to 1000. Recommended sdl-8.2.1 or later for this
option to work as intended.

session_cache_server_nmax = integer() <optional >

Limits the growth of the servers session cache, that is how many client sessions are cached by the server. If the
maximum number of sessionsisreached, the current cache entrieswill beinvalidated regardless of their remaining
lifetime. Defaults to 1000. Recommended ssl-8.2.1 or later for this option to work as intended.

ssl _pem cache_cl ean = integer() <optional >
Number of milliseconds between PEM cache validations. Defaults to 2 minutes.
Note: The cache can be reloaded by calling ssl:clear_pem_cache/0.
bypass_pem cache = bool ean() <optional >

Introduced in s91-8.0.2. Disables the PEM-cache. Can be used as a workaround for the PEM-cache bottleneck
before ss1-8.1.1. Defaults to false.

alert_timeout = integer() <optional>

Number of milliseconds between sending of a fatal alert and closing the connection. Waiting a little while
improves the peers chances to properly receiving the alert so it may shutdown gracefully. Defaults to 5000
milliseconds.

internal _active_n = integer() <optional>

For TLS connections this value is used to handle the internal socket. As the implementation was changed from
an active onceto an active N behavior (N = 100), for performance reasons, this option exist for possible tweaking
or restoring of the old behavior (internal_active_n = 1) in unforeseen scenarios. The option will not affect erlang
distribution over TLS that will always run in active N mode. Added in ssl-9.1 (OTP-21.2).

server_session_tickets _amunt = integer() <optional >
Number of session tickets sent by the server. It must be greater than 0. Defaultsto 3.
server_session_ticket_lifetime = integer() <optional >

Lifetime of session tickets sent by the server. Servers must not use any value greater than 604800 seconds (7
days). Expired tickets are automatically removed. Defaults to 7200 seconds (2 hours).

server_session_ticket _store_size = integer() <optional>

Sets the maximum size of the server session ticket store (stateful tickets). Defaultsto 1000. Size limit is enforced
by dropping old tickets.

server_session_ticket _nmax_early data = integer() <optional>

Setsthe maximum size of the early datathat the server acceptsand al so configuresits NewSessionTicket messages
toinclude this same size limit in their early_data indication extension. Defaults to 16384. Size limit is enforced
by both client and server.

client_session_ticket_lifetime = integer() <optional>

Lifetime of session ticketsin the client ticket store. Expired tickets are automatically removed. Defaultsto 7200
seconds (2 hours).

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 41

ssl

client_session_ticket_store_size = integer() <optional>

Sets the maximum size of the client session ticket store. Defaults to 1000. Size limit is enforced by dropping
old tickets.

ERROR LOGGER AND EVENT HANDLERS

The SSL application uses OTP logger. TLS/DTLS alerts are logged on notice level. Unexpected errors are logged on
error level. These log entries will by default end up in the default Erlang log. The option | og_| evel may be used
toin run-time to set the log level of a specific TLS connection, which is handy when you want to use level debug to
inspect the TL S handshake setup.

SEE ALSO
application(3)

42 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

ssl

ssli

Erlang module

This module contains interface functions for the TLS/DTLS protocol. For detailed information about the supported
standards see sd(6).

Data Types

Types used in TLS/DTLS

socket() = gen tcp:socket()
sslsocket() = any()

An opaque reference to the TLS/DTL S connection, may be used for equality matching.

tls option() = tls client option() | tls server option()

tls client option()
client option()
common_option()
socket option()
transport option()

tls server option()
server _option()
common_option()
socket option()
transport option()

socket option() =
gen_tcp:connect_option() |
gen_tcp:listen option() |
gen _udp:option()

|
|
|
(
|
|
|
(

The default socket optionsare[{ node, | i st}, { packet, 0}, {header, 0},{active, true}].

For valid options, seetheinet(3), gen_tcp(3) and gen_udp(3) manual pagesin Kernel. Notethat stream oriented options
such as packet are only relevant for TLS and not DTLS

active msgs() =
{ssl, sslsocket(), Data :: binary() | list()} |
{ss1 closed, sslsocket()} |
{ssl error, sslsocket(), Reason :: any()} |
{ssl passive, sslsocket()}

When aTLS/DTL S socket isin active mode (the default), data from the socket is delivered to the owner of the socket
in the form of messages as described above.

Thessl _passi ve messageis sent only when the socket isin{ acti ve, N} mode and the counter dropped to 0.
It indicates that the socket has transitioned to passive ({ act i ve, fal se}) mode.

transport option() =
{cb_info,

{CallbackModule :: atom(),
DataTag :: atom(),
ClosedTag :: atom(),
ErrTag :: atom()}} |

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 43

ssl

{cb _info,

{CallbackModule :: atom(),
DataTag :: atom(),
ClosedTag :: atom(),
ErrTag :: atom(),
PassiveTag :: atom()}}

Defaults to { gen_tcp, tcp, tcp_closed, tcp_error, tcp_passive} for TLS (for backward
compatibility a four tuple will be converted to a five tuple with the last element "second_element”_passive) and
{gen_udp, udp, udp_closed, udp_error} for DTLS (might aso be changed to five tuplein the future).
Can be used to customize the transport layer. The tag values should be the values used by the underlying transport
in its active mode messages. For TLS the callback module must implement a reliable transport protocol, behave as
gen_t cp, and have functions corresponding to i net : set opt s/ 2,i net: get opts/ 2,i net: peer nane/ 1,
i net: socknane/ 1,andi net : port/ 1. Thecallback gen_t cp istreated specially and callsi net directly. For
DTL S this feature must be considered experimental .
host() = hostname() | ip address()
hostname() = string()
ip _address() = inet:ip address()
protocol version() = tls version() | dtls version()
tls version() = 'tlsvl.2' | 'tlsvl.3' | tls legacy version()
dtls version() = 'dtlsvl.2' | dtls legacy version()
tls legacy version() = tlsvl | 'tlsvl.1'
dtls legacy version() = dtlsvl
prf _random() = client random | server random
verify type() = verify none | verify peer
ciphers() = [erl cipher suite()] | string()
erl cipher suite() =

#{key exchange := kex algo(),

cipher := cipher(),
mac := hash() | aead,
prf := hash() | default prf}

cipher() =
aes 128 cbc | aes 256 cbc | aes 128 gcm | aes 256 gcm |
aes 128 ccm | aes 256 ccm | aes 128 ccm 8 | aes 256 ccm 8 |
chacha20 poly1305 |
legacy cipher()
legacy cipher() = rc4 128 | des cbc | '3des ede cbc'
cipher filters() =
[{key exchange | cipher | mac | prf, algo filter()}]
hash() = sha | sha2() | legacy hash()
sha2() = sha224 | sha256 | sha384 | sha512
legacy hash() = md5
old cipher suite() =
{kex _algo(), cipher(), hash()} |
{kex _algo(), cipher(), hash() | aead, hash()}
|

sign algo() = rsa | dsa | ecdsa | eddsa
sign scheme() =
eddsa ed25519 | eddsa ed448 | ecdsa secp256rl sha256 |

44 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

ssl

ecdsa secp384rl sha384 | ecdsa secp521rl sha512 |
rsassa pss _scheme() |
sign scheme legacy()

rsassa_pss_scheme() =
rsa _pss rsae sha256 | rsa pss rsae sha384 |
rsa _pss rsae sha512 | rsa pss pss _sha256 |
rsa _pss pss sha384 | rsa pss _pss_sha512

sign scheme legacy() =
rsa_pkcsl sha256 | rsa pkcsl sha384 | rsa pkcsl sha512 |
rsa _pkcsl shal | ecdsa shal

group() =
secp256rl | secp384rl | secp521rl | ffdhe2048 | ffdhe3072 |
ffdhed4096 | ffdhe6144 | ffdhe8192

kex algo() =
rsa | dhe rsa | dhe dss | ecdhe ecdsa | ecdh ecdsa |
ecdh rsa | srp rsa | srp _dss | psk | dhe psk | rsa psk |
dh_anon | ecdh anon | srp_anon | any

algo filter() =
fun((kex _algo() | cipher() | hash() | aead | default prf) ->

true | false)
named curve()

sect571rl | sect571kl | secp521rl | brainpoolP512rl |
sect409kl | sect409rl | brainpoolP384rl | secp384rl |
sect283kl | sect283rl | brainpoolP256rl | secp256kl |
secp256rl | sect239kl | sect233kl | sect233rl | secp224kl |
secp224rl | sectl93rl | sectl93r2 | secpl92kl | secpl9zrl |
sectle3kl | sectl63rl | sectl63r2 | secpl6Okl | secpl6Orl |
secpl6Or2

psk identity() = string()

srp_identity() = {Username :: string(), Password :: string()}

srp_param_type() =
srp 1024 | srp 1536 | srp 2048 | srp 3072 | srp 4096 |
srp_6144 | srp 8192

app_level protocol() = binary()

protocol extensions() =
#{renegotiation info => binary(),
signature algs => signature algs(),
alpn => app_level protocol(),
srp => binary(),
next protocol => app level protocol(),
max_frag enum => 1. .4,
ec_point formats => [0..2],
elliptic curves => [public_key:oid()],
sni => hostname()}
error_alert() =
{tls alert, {tls alert(), Description :: string()}}

tls alert() =
close notify | unexpected message | bad record mac |
record overflow | handshake failure | bad certificate |

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 45

ssl

unsupported certificate | certificate revoked |

certificate expired | certificate_unknown |

illegal parameter | unknown ca | access denied |

decode error | decrypt error | export restriction |
protocol version | insufficient security | internal error |
inappropriate fallback | user canceled | no _renegotiation |
unsupported extension | certificate unobtainable |
unrecognized name | bad certificate status response |

bad certificate hash value | unknown psk identity |
no_application protocol

reason() = any()

bloom filter window size() = integer()

bloom filter hash functions() = integer()

bloom filter bits() = integer()

client session tickets() = disabled | manual | auto
server_session tickets() = disabled | stateful | stateless

TLS/DTLS OPTION DESCRIPTIONS - COMMON for SERVER and CLIENT

common_option() =
{protocol, protocol()} |
{handshake, handshake completion()} |
{cert, cert() | [cert()]} |
{certfile, cert pem()} |
{key, key()} |
{keyfile, key pem()} |
{password, key pem password()} |
{certs_keys, certs keys()} |
{ciphers, cipher suites()} |
{eccs, [named curve()]} |
{signature algs, signature algs()} |
{signature algs cert, sign schemes()} |
{supported groups, supported groups()} |
{secure_renegotiate, secure renegotiation()} |
{keep secrets, keep secrets()} |
{depth, allowed cert chain length()} |
{verify fun, custom verify()} |
{allow_any ca purpose, allow any ca purpose()} |
{crl _check, crl check()} |
{crl _cache, crl cache opts()} |
{max_handshake size, handshake size()} |
{partial chain, root fun()} |
{versions, protocol versions()} |
{user_lookup fun, custom user lookup()} |
{log_level, logging level()} |
{log alert, log alert()} |
{hibernate after, hibernate after()} |
{padding check, padding check()} |
{beast mitigation, beast mitigation()} |
{ss1 imp, ssl imp()} |
{session tickets, session tickets()} |
{key update at, key update at()} |

46 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

ssl

{receiver spawn opts, spawn opts()} |
{sender_spawn opts, spawn opts()}
protocol() = tls | dtls

Choose TLS or DTLS protocol for the transport layer security. Defaultstot | s. For DTLS other transports than UDP
are not yet supported.

handshake completion() = hello | full

Defaults to ful | . If hello is specified the handshake will pause after the hello message and give the user a
possibility make decisions based on hello extensions before continuing or aborting the handshake by calling
handshake_continue/3 or handshake cancel/1

cert() = public key:der encoded()

The DER-encoded user certificate. Note that the cert option may also be a list of DER-encoded certificates where
the first one is the user certificate, and the rest of the certificates constitutes the certificate chain. For maximum
interoperability the certificatesin the chain should bein the correct order, the chain will be sent asistothe peer. If chain
certificates are not provided, certificates from client_cacerts(), server_cacerts(), or client_cafile(), server_cafile() are
used to construct the chain. If this option is supplied, it overrides optioncertfi |l e.

cert pem() = file:filename()

Path to a file containing the user certificate on PEM format or possible several certificates where the first one is the
user certificate and the rest of the certificates constitutes the certificate chain. For more details see cert(),

key() =

{'RSAPrivateKey' | 'DSAPrivateKey' | 'ECPrivateKey' |
'PrivateKeyInfo',
public key:der encoded()} |

#{algorithm := rsa | dss | ecdsa,
engine := crypto:engine ref(),
key id := crypto:key id(),
password => crypto:password()}

The DER-encoded user's private key or a map referring to a crypto engine and its key reference that optionally can
be password protected, see also crypto:engine_load/3 and Crypto's Users Guide. If this option is supplied, it overrides
optionkeyfil e.

key pem() = file:filename()

Path to the file containing the user's private PEM-encoded key. As PEM-files can contain several entries, this option
defaults to the samefile asgiven by optioncertfil e.

key pem password() = iodata() | fun(() -> iodata())

String containing the user's password or a function returning same type. Only used if the private keyfile is password-
protected.

certs keys() = [cert key conf()]

A list of a certificate (or possible a certificate and its chain) and the associated key of the certificate, that may be
used to authenticate the client or the server. The certificate key pair that is considered best and matches negotiated
parameters for the connection will be selected. Different signature algorithms are prioritized in the order eddsa,

ecdsa, rsa_pss_pss, rsa and dsa . If morethan one key is supplied for the same signing agorithm
(which is probably an unusual use case) they will prioritized by strength unlessit isa so called engi ne key that
will be favoured over other keys. As engine keys cannot be inspected, supplying more than one engine key will make
no sense. This offers flexibility to for instance configure a newer certificate that is expected to be used in most cases
and an older but acceptable certificate that will only be used to communicate with legacy systems. Note that thereis

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 47

ssl

atrade off between the induced overhead and the flexibility so alternatives should be chosen for good reasons. If the
certs_keys optionisspecified it overrides all single certificate and key options. For examples see the Users Guide

eddsa certificates are only supported by TLS-1.3 that does not support dsa certificates. r sa_pss_pss (RSA
certificates using Probabilistic Signature Scheme) are supported in TLS-1.2 and TLS-1.3, but some TLS-1.2
implementations may not support r sa_pss_pss.

cert key conf() =
#{cert => cert(),
key => key(),
certfile => cert pem(),
keyfile => key pem(),
password => key pem password()}

A certificate (or possibly acertificate and its chain) and its associated key on one of the possible formats. For the PEM
file format there may also be a password associated with the file containg the key.

cipher suites() = ciphers()
A list of cipher suites that should be supported

The function ssl:cipher_suites/2 can be used to find all cipher suites that are supported by default and all cipher suites
that may be configured.

If you compose your own cipher_suites() make sure they are filtered for cryptolib support
sdl:filter_cipher_suites/2 Additionally the functions sdl:append cipher_suites/2 , sd:prepend cipher_suites/2,
sdl:suite to_str/l, sdl:str_to_suite/1, and sdl:suite to_openss_str/1 also exist to help creating customized cipher suite
lists.

Note that TLS-1.3 and TLS-1.2 cipher suites are not overlapping sets of cipher suites so to support both these
versions cipher suites from both versions need to be included. Also if the supplied list does not comply with the
configured versions or cryptolib so that the list becomes empty, this option will fallback on its appropriate default
value for the configured versions.

Non-default cipher suitesincluding anonymous cipher suites (PRE TL S-1.3) are supported for interop/testing purposes
and may be used by adding them to your cipher suite list. Note that they must also be supported/enabled by the peer
to actually be used.

signature algs() = [{hash(), sign algo()} | sign scheme()]

Explicitly list acceptable signature algorithms for certificates and handshake messages in the preferred order. The
client will send itslist as the client hello si gnat ur e_al gori t hmextension introduced in TLS-1.2, see Section
7.4.1.4.1in RFC 5246. Previously these algorithms where implicitly chosen and partly derived from the cipher suite.

In TLS-1.2 a somewhat more explicit negotiation is made possible using a list of {hash(), sign_algo()} pairs.

In TLS-1.3 these algorithm pairs are replaced by so called signature schemessign_scheme() and completely decoupled
from the cipher suite.

Signature algorithms used for certificates may be overridden by the signature schemes (algorithms) supplied by the
si gnature_al gs_cert option.

TLS-1.2 default isDefault TLS 12 Alg Pairsinterleaved with rsa_pss _schemes since ssl-11.0 (OTP-25) pss pssis
prefered over pss_rsae that is prefered over rsa

48 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

href
href

ssl

Default _TLS 12 Al g_Pairs

[

%% SHA2
{sha512,
{sha512,
{sha384,
{sha384,
{sha256,
{sha256,
{sha224,
{sha224,
%% SHA
{sha, ecdsa},
{sha, rsa},
{sha, dsa}

1

Support for {md5, rsa} was removed from the the TLS-1.2 default in ssl-8.0 (OTP-22)
rsa_pss_schenes

ecdsa},
rsa},
ecdsa},
rsa},
ecdsa},
rsa},
ecdsa},
rsa},

[rsa pss pss sha512,
rsa_pss_pss _sha384,
rsa_pss_pss_sha256,
rsa_pss_rsae_sha512,
rsa_pss_rsae_sha384,
rsa_pss_rsae_sha256]

TLS 13 Legacy_Schenes

[

%% Legacy algorithms only applicable to certificate signatures

rsa_pkcsl sha512, %% Corresponds to {sha512, rsa}
rsa_pkcsl sha384, %% Corresponds to {sha384, rsa}
rsa_pkcsl sha256, %% Corresponds to {sha256, rsa}
ecdsa_shal, %% Corresponds to {sha, ecdsa}
rsa_pkcsl shal %% Corresponds to {sha, rsa}

]
Default _TLS 13 Schenes =

[

%% EDDSA
eddsa ed25519,
eddsa ed448

%% ECDSA

ecdsa secp521rl sha512,
ecdsa secp384rl sha384,
ecdsa secp256rl sha256] ++

%% RSASSA-PSS
rsa_pss_schemes()

EDDSA was made highest priority in ssl-11.0 (OTP-25)
TLS-1.3 defaultis

Default TLS 13 Schemes ++ Legacy TLS 13 Schemes
If both TLS-1.3 and TLS-1.2 are supported the default will be

Default TLS 13 Schemes ++ Default TLS 12 Alg Pairs

Ericsson AB. All Rights Reserved

.: Secure Socket Layer | 49

ssl

S0 appropriate algorithms can be chosen for the negotiated version.

TLS-1.2 algorithmswill not be negotiated for TLS-1.3, but TLS-1.3 RSASSA-PSSrsassa_pss_scheme() signature
schemes may be negotiated also for TLS-1.2 from 24.1 (fully working from 24.1.3). However if TLS-1.3 is
negotiated when both TLS-1.3 and TLS-1.2 is supported using defaults, the corresponding TLS-1.2 algorithms to
the TLS-1.3 legacy signature schemes will be considered as the legacy schemes and applied only to certificate
signatures.

sign schemes() = [sign_scheme()]

Explicitly list acceptable signature schemes (algorithms) in the preferred order. Overrides the algorithms supplied in
si gnhat ur e_al gs option for certificates.

Inadditiontothesi gnat ure_al gori t hns extensionfrom TLS 1.2, TLS 1.3 (RFC 5246 Section 4.2.3) addsthe
si gnature_al gorithms_cert extension which enables having specia requirements on the signatures used in
the certificates that differs from the requirements on digital signatures asawhole. If thisis not required this extension
is not need.

Theclient will sendasi gnat ur e_al gori t hnms_cert extension (intheclient hello message), if TLSversion 1.2
(back-portedto TLS 1.2 in 24.1) or later is used, and the signature_algs cert option isexplicitly specified. By default,
only the signature_algs extension is sent.

Note that supported signature schemes for TLS-1.2 are sign_scheme_legacy() and rsassa_pss_scheme() |

supported groups() = [group()]

TLS 1.3 introduces the "supported_groups' extension that is used for negotiating the Diffie-Hellman parametersin a
TLS 1.3 handshake. Both client and server can specify alist of parameters that they are willing to use.

If itisnot specifiedit will useadefault list ([x25519, X448, secp256r1, secp384rl]) that isfiltered based ontheinstalled
crypto library version.

secure_renegotiation() = boolean()

Specifiesif to reject renegotiation attempt that does not live up to RFC 5746. By default secur e_r enegot i at e is
settot r ue, that is, secure renegotiation isenforced. If settof al se secure renegotiation will still be used if possible,
but it falls back to insecure renegotiation if the peer does not support RFC 5746.

allowed cert chain length() = integer()

M aximum number of non-self-issued intermediate certificatesthat can follow the peer certificateinavalid certification
path. So, if depth is 0 the PEER must be signed by the trusted ROOT-CA directly; if 1 the path can be PEER, CA,
ROQOT-CA,; if 2 the path can be PEER, CA, CA, ROOT-CA, and so on. The default valueis 10.

custom verify() =
{Verifyfun :: function(), InitialUserState :: any()}

The verification fun is to be defined as follows:

50 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

href
href
href

ssl

fun(OtpCert :: #'OTPCertificate'{},

Event, InitialUserState :: term()) ->
{valid, UserState :: term()} |
{fail, Reason :: term()} | {unknown, UserState :: term()}.

fun(OtpCert :: #'OTPCertificate'{}, DerCert :: public key:der encoded(),
Event, InitialUserState :: term()) ->

{valid, UserState :: term()} |

{fail, Reason :: term()} | {unknown, UserState :: term()}.

Types:
Event = {bad cert, Reason :: atom() |
{revoked, atom()}} |
{extension, #'Extension'{}} |
valid |
valid peer

The verification fun is called during the X509-path validation when an error or an extension unknown to the SSL
application is encountered. It isalso called when acertificate is considered valid by the path validation to allow access
to each certificatein the path to the user application. It differentiates between the peer certificate and the CA certificates
by using val i d_peer orval i d asEvent argument to the verification fun. See the public_key User's Guide for
definitionof # OTPCertificate' {} and#' Extension'{}.

e |f theverify callback funreturns{f ai | , Reason}, the verification process is immediately stopped, an aert
is sent to the peer, and the TLS/DTL S handshake terminates.

« If theverify callback funreturns{ val i d, User St at e}, the verification process continues.

» If theverify calback fun alwaysreturns{ val i d, User St at e}, the TLS/DTL S handshake does not terminate
regarding verification failures and the connection is established.

e |f called with an extension unknown to the user application, return value { unknown, User St at e} isto be
used.

Note that if the fun returns unknown for an extension marked as critical, validation will fail.
Default optionveri fy_funinverify_peer node:

{fun(_,{bad cert, } = Reason,) ->
{fail, Reason};
(_,{extension, }, UserState) ->
{unknown, UserState};
(_, valid, UserState) ->
{valid, UserState};
(_, valid peer, UserState) ->
{valid, UserState}
end, []}

Default optionveri fy funinmodeverify none:

{fun(_,{bad cert, }, UserState) ->
{valid, UserState};
(_,{extension, #'Extension'{critical = true}}, UserState) ->
{valid, UserState};
(_,{extension, }, UserState) ->
{unknown, UserState};
(_, valid, UserState) ->
{valid, UserState};
(_, valid peer, UserState) ->
{valid, UserState}
end, [1}

The possible path validation errors are given on form{ bad_cert, Reason} whereReason is:

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 51

ssl

unknown_ca

No trusted CA was found in the trusted store. The trusted CA isnormally a so called ROOT CA, which isaself-
signed certificate. Trust can be claimed for an intermediate CA (trusted anchor does not have to be self-signed
according to X-509) by using option parti al _chai n.

sel f si gned_peer
The chain consisted only of one self-signed certificate.
{invalid_ext_keyusage, [public_key:oid()]}

If the peer certificate specifies the extended keyusage extension and does not include the purpose for either being
aTLSserver (i d- kp- Server Aut h) or TLSclient (i d- kp- C i ent Aut h) depending on the peersrole.

{ca_invalid_ext_keyusage, [public_key:oid()]}

If a CA certificate specifies the extended keyusage extension and does not include the purpose for either
being a TLS server (i d- kp- Ser ver Aut h) or TLS client (i d- kp- C i ent Aut h) depending on the role of
the peer chained with this CA, or the option alow_any_ca purpose is set to “true’ but the special any-value
(anyExt endedKeyUsage) isnot included in the CA cert purposes.

PKI X X-509-path validation error
For possible reasons, see public_key:pkix_path validation/3
allow any ca purpose() = boolean()

If aCA certificate has an extended key usage extension but it does not want to restrict the usages of thekey it caninclude
a special “anyExtendedKeyUsage purpose. If thisis option is set to “true’ all key usage purposes is automatically
accepted for the CA that includes this purpose, the option default to false.

crl check() = boolean() | peer | best effort

Perform CRL (Certificate Revocation List) verification (public_key:pkix_crls validate/3) on all the certificates during
the path validation (public_key:pkix_path_validation/3) of the certificate chain. Defaultstof al se.

peer
check is only performed on the peer certificate.

best _effort
if certificate revocation status cannot be determined it will be accepted as valid.

The CA certificates specified for the connection will be used to construct the certificate chain validating the CRLs.
The CRLswill be fetched from alocal or external cache. See ss_crl_cache api(3).

crl cache opts() =
{Module :: atom(),
{DbHandle :: internal | term(), Args :: list()}}

Specify how to perform lookup and caching of certificate revocation lists. Modul e defaults to ssl_crl_cache with
DbHandl e beingi nt er nal and an empty argument list.

There are two implementations available:
ssl _crl _cache

Thismodule maintainsacache of CRLs. CRLscan be added to the cacheusing thefunctionss_crl_cacheiinsert/1,
and optionally automatically fetched through HTTP if the following argument is specified:

{http, timeout()}

Enables fetching of CRLs specified as http URIs inX509 certificate extensions. Requires the OTP inets
application.

52 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

ssl

ssl _crl _hash dir
This module makes use of adirectory where CRLs are stored in files named by the hash of the issuer name.

Thefile names consist of eight hexadecimal digitsfollowed by . r N, where Nisan integer, e.g. 1a2b3c4d. r 0.
For thefirst version of the CRL, Nstartsat zero, and for each new version, Nisincremented by one. The OpenSSL
utility c_r ehash creates symlinks according to this pattern.

For a given hash value, this module finds all consecutive . r * files starting from zero, and those files taken
together make up the revocation list. CRL fileswhose next Updat e fields are in the past, or that are issued by
adifferent CA that happens to have the same name hash, are excluded.

The following argument is required:
{dir, string()}
Specifies the directory in which the CRLs can be found.
root fun() = function()

fun(Chain:: [public key:der encoded()]) ->
{trusted ca, DerCert::public key:der encoded()} | unknown ca}

Claim an intermediate CA in the chain as trusted. TLS then performs public_key:pkix_path_validation/3 with the
selected CA as trusted anchor and the rest of the chain.

protocol versions() = [protocol version()]

TLS protocol versions supported by started clients and servers. This option overrides the application environment
optionpr ot ocol _versionanddt|s_protocol versi on. If theenvironment option isnot set, it defaultsto
all versions, supported by the SSL application. See also sd(6).

custom user lookup() =
{Lookupfun :: function(), UserState :: any()}

The lookup funisto defined as follows:

fun(psk, PSKIdentity :: binary(), UserState :: term()) ->

{ok, SharedSecret :: binary()} | error;

fun(srp, Username :: binary(), UserState :: term()) ->

{ok, {SRPParams :: srp param type(), Salt :: binary(),
DerivedKey :: binary()}} | error.

For Pre-Shared Key (PSK) cipher suites, the lookup funiscalled by the client and server to determine the shared secret.
When called by the client, PSKI dent i t y is set to the hint presented by the server or to undefined. When called by
the server, PSKI dent i t y istheidentity presented by the client.

For Secure Remote Password (SRP), the fun is only used by the server to obtain parameters that it uses to generate
its session keys. Der i vedKey isto be derived according to RFC 2945 and RFC 5054: cr ypt o: sha([Sal t,
crypto: sha([User nane, <<$:>>, Password])])

session id() = binary()
Identifiesa TLS session.
log alert() = boolean()

If settof al se, TLS/DTLS Alert reports are not displayed. Deprecated in OTP 22, use {log_level, logging_level()}
instead.

logging level() = logger:level() | none | all

Specifies the log level for a TLS/DTLS connection. Alerts are logged on not i ce level, which is the default level.
Thelevel debug triggers verbose logging of TLS/DTLS protocol messages. See also ssl(6)

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 53

href
href

ssl

hibernate after() = timeout()

When an integer-value is specified, TLS/ DTLS- connect i on goes into hibernation after the specified number of
milliseconds of inactivity, thus reducing its memory footprint. When undef i ned is specified (this is the default),
the process never goes into hibernation.

handshake size() = integer()

Integer (24 bits unsigned). Used to limit the size of valid TLS handshake packets to avoid DoS attacks. Defaults to
256* 1024,

padding check() = boolean()

Affects TLS-1.0 connectionsonly. If settof al se, it disablesthe block cipher padding check to be ableto interoperate
with legacy software.

Using { paddi ng_check, bool ean()} makes TLS vulnerable to the Poodle attack. |

beast mitigation() = one n minus one | zero n | disabled

Affects TLS-1.0 connectionsonly. Used to changethe BEAST mitigation strategy tointeroperate with legacy software.
Defaultstoone_n_m nus_one.

one_n_m nus_one - Perform 1/n-1 BEAST mitigation.
zer o_n - Perform O/n BEAST mitigation.
di sabl ed - Disable BEAST mitigation.

Using{ beast _m ti gation, disabl ed} makesTLS-1.0 vulnerableto the BEAST attack.

ssl imp() = new | old
Deprecated since OTP-17, has no effect.

session tickets() =
client session tickets() | server session tickets()

Configures the session ticket functionality in TLS 1.3 client and server.
key update at() = integer() >=1

Configures the maximum amount of bytes that can be sent on a TLS 1.3 connection before an automatic key update
is performed.

There are cryptographic limits on the amount of plaintext which can be safely encrypted under a given set of keys.
The current default ensures that data integrity will not be breached with probability greater than 1/2°57. For more
information see Limits on Authenticated Encryption Usein TLS.

The default value of this option shall provide the above mentioned security guarantees and it shall be reasonable
for most applications (~353 TB).

middlebox comp mode() = boolean()
Configures the middlebox compatibility mode on a TLS 1.3 connection.

54 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

href

ssl

A significant number of middleboxes misbehave when a TLS 1.3 connection is negotiated. Implementations can
increase the chance of making connections through those middleboxes by making the TLS 1.3 handshake more like
aTLS 1.2 handshake.

The middlebox compatibility modeis enabled (t r ue) by default.
spawn_opts() = [erlang:spawn opt option()]
Configures spawn options of TLS sender and receiver processes.

Setting up garbage collection options can be helpful for trade-offs between CPU usage and Memory usage. See
erl ang: spawn_opt/ 2.

For dist connections, default sender optionis[...{priority, max}], thispriority option cannot be changed.
For all connections, . . . | i nk isadded to receiver and cannot be changed

keep secrets() = boolean()
Configuresa TLS 1.3 connection for keylogging

In order to retrieve keylog information on a TLS 1.3 connection, it must be configured in advance to keep the
client_random and various handshake secrets.

The keep_secrets functionality is disabled (f al se) by default.
Added in OTP 23.2

TLS/DTLS OPTION DESCRIPTIONS - CLIENT

client option() =
{verify, client verify type()} |
{reuse session, client reuse session()} |
{reuse sessions, client reuse sessions()} |
{cacerts, client cacerts()} |
{cacertfile, client cafile()} |
{alpn_advertised protocols, client alpn()} |
{client preferred next protocols,
client preferred next protocols()} |
{psk _identity, client psk identity()} |
{srp_identity, client srp identity()} |
{server _name_indication, sni()} |
{max_fragment length, max_ fragment length()} |
{customize hostname_check, customize hostname check()} |
{fallback, fallback()} |
{middlebox comp mode, middlebox comp mode()} |
{certificate authorities, client certificate authorities()} |
{session_tickets, client session_tickets()} |
{use_ ticket, use ticket()} |
{early data, client early data()}
client verify type() = verify type()
Defaults to veri f y_none as additiona options are needed to be able to perform the certificate verification. A
warningwill beemittedunlessver i f y_none isexplicitly configured. Usually the applicationswill want to configure
veri fy_peer together with an appropriatecacert orcacertfil e option. For examplean HTTPS client would
normally use the option { cacerts, public_key: cacerts_get ()} (avalable since OTP-25) to access the
CA certificates provided by the OS. Using verify _none means that all x509-certificate path validation errors will be
ignored. See also option verify_fun.

client reuse session() =

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 55

ssl

session id() | {session id(), SessionData :: binary()}

Reuses a specific session. The session should be referred by its session id if it is earlier saved with the option
{reuse_sessions, save} since OTP-21.3 or explicitly specified by its session id and associated data since
OTP-22.3. See dso SSL's Users Guide, Session Reuse pre TLS 1.3.

client reuse sessions() = boolean() | save

When save is specified anew connection will be negotiated and saved for later reuse. The session ID can be fetched
with connection_information/2 and used with the client option reuse_session The boolean value true specifies that if
possible, automated session reuse will be performed. If anew session is created, and is unique in regard to previous
stored sessions, it will be saved for possible later reuse. Since OTP-21.3.

client certificate authorities() = boolean()

If set to true, sends the certificate authorities extension in TLS-1.3 client hello. The default is false. Note that setting
it to true may result in abig overhead if you have many trusted CA certificates. Since OTP-24.3.

client cacerts() =
[public_key:der encoded()] | [public key:combined cert()]

The DER-encoded trusted certificates. If this option is supplied it overridesoption cacertfi | e.
client cafile() = file:filename()

Path to afile containing PEM-encoded CA certificates. The CA certificates are used during server authentication and
when building the client certificate chain.

When PEM caching is enabled, files provided with this option will be checked for updates at fixed time intervals
specified by the ss_pem_cache clean environment parameter.

Alternatively, CA certificates can be provided as a DER-encoded binary with client_cacerts option.

client alpn() = [app_level protocol()]

The list of protocols supported by the client to be sent to the server to be used for an Application-Layer Protocol
Negotiation (ALPN). If the server supports ALPN then it will choose a protocol from this list; otherwise it will fail
the connection with a"no_application_protocol" aert. A server that does not support ALPN will ignore this value.

Thelist of protocols must not contain an empty binary.
The negotiated protocol can be retrieved using the negot i at ed_pr ot ocol / 1 function.
client preferred next protocols() =

{Precedence :: server | client,
ClientPrefs :: [app_level protocol()]} |
{Precedence :: server | client,

ClientPrefs :: [app_level protocol()],
Default :: app level protocol()}

Indicates that the client isto try to perform Next Protocol Negotiation.

If precedence is server, the negotiated protocol is the first protocol to be shown on the server advertised list, which
isalso on the client preference list.

If precedence is client, the negotiated protocoal is the first protocol to be shown on the client preference list, which is
also on the server advertised list.

56 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

ssl

If the client does not support any of the server advertised protocols or the server does not advertise any protocols, the
client falls back to thefirst protocol initslist or to the default protocol (if adefault is supplied). If the server does not
support Next Protocol Negotiation, the connection terminates if no default protocol is supplied.

max_fragment length() = undefined | 512 | 1024 | 2048 | 4096

Specifies the maximum fragment length the client is prepared to accept from the server. See RFC 6066
client psk identity() = psk identity()

Specifies the identity the client presents to the server. The matching secret isfound by callinguser _| ookup_f un
client srp identity() = srp identity()

Specifies the username and password to use to authenticate to the server.

sni() = hostname() | disable

Specify the hostnameto be used in TLS Server Name Indication extension. If not specified it will default to the Host
argument of connect/[3,4] unlessit is of type inet:ipaddress().

The Host Name will aso be used in the hosthame verification of the peer certificate using
public_key:pkix_verify hostname/2.

Thespecia valuedi sabl e preventsthe Server Name Indication extension from being sent and disabl esthe hostname
verification check public_key:pkix_verify hostname/2

customize hostname check() = list()

Customizes the hostname verification of the peer certificate, as different protocols that use TLS such as HTTP or
LDAP may want to do it differently, for possible options see public_key:pkix_verify hostname/3

fallback() = boolean()
Send special cipher suite TLS FALLBACK_SCSV to avoid undesired TLS version downgrade. Defaults to false

Note this option is not needed in normal TLS usage and should not be used to implement new clients. But legacy
clients that retries connections in the following manner

ssl:connect(Host, Port, [...{versions, ['tlsv2', "tlsvl. 1", "tlsvl']}])
ssl:connect (Host, Port, [...{versions, [tlsvl.1', 'tlsvl']}, {fallback,
true}])

ssl:connect (Host, Port, [...{versions, ['tlsvl']}, {fallback, true}])

may useit to avoid undesired TL S version downgrade. Notethat TLS FALLBACK_SCSV must a so be supported
by the server for the prevention to work.

client session tickets() = disabled | manual | auto

Configuresthe session ticket functionality. Allowed valuesaredi sabl ed, manual andaut o. If itissettonanual
the client will send the ticket information to user processin a 3-tuple:

{ssl, session_ticket, {SNI, TicketData}}

where SNI isthe ServerNamelndication and Ti cket Dat a isthe extended ticket data that can be used in subsequent
Session resumptions.

If it is set to aut o, the client automatically handles received tickets and tries to use them when making new TLS
connections (session resumption with pre-shared keys).

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 57

href

ssl

This option is supported by TLS 1.3 and above. See also SSL's Users Guide, Session Tickets and Session
Resumptionin TLS 1.3

use ticket() = [binary()]

Configures the session tickets to be used for session resumption. It is a mandatory option in manual mode
(session_tickets = manual).

Session tickets are only sent to user if option session_ticketsis set to manual

This option is supported by TLS 1.3 and above. See also SSL's Users Guide, Session Tickets and Session
Resumptionin TLS 1.3

client early data() = binary()
Configures the early datato be sent by the client.

In order to be able to verify that the server has the intention to process the early data, the following 3-tuple is sent
to the user process:

{ssl, Ssl Socket, {early data, Result}}
where Resul t iseitheraccept ed orr ej ect ed

It isthe responsibility of the user to handle arejected Early Data and to resend when it is appropriate.

TLS/DTLS OPTION DESCRIPTIONS - SERVER

server _option() =
{cacerts, server cacerts()} |
{cacertfile, server cafile()} |
{dh, dh_der()} |
{dhfile, dh_file()} |
{verify, server verify type()} |
{fail if no peer cert, fail if no peer cert()} |
{certificate authorities, server certificate authorities()} |
{reuse sessions, server reuse sessions()} |
{reuse session, server reuse session()} |
{alpn preferred protocols, server alpn()} |
{next _protocols advertised, server next protocol()} |
{psk identity, server psk identity()} |
{sni hosts, sni hosts()} |
{sni fun, sni fun()} |
{honor cipher order, honor cipher order()} |
{honor _ecc order, honor ecc order()} |
{client renegotiation, client renegotiation()} |
{session tickets, server session tickets()} |
{anti replay, anti replay()} |
{cookie, cookie()} |

58 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

ssl

{early data, server early data()}

server cacerts() =
[public_key:der encoded()] | [public_key:combined cert()]

The DER-encoded trusted certificates. If this option is supplied it overrides optioncacertfi | e.
server certificate authorities() = boolean()

Determinesif a TLS-1.3 server should include the authorities extension in its certificate request message that will be
sent if theoptionveri fy issettoveri fy_ peer.Defaultstot r ue.

A reason to exclude the extension would be if the server wants to communicate with clients incapable of sending
complete certificate chains that adhere to the extension, but the server still has the capability to recreate a chain that
it can verify.

server cafile() = file:filename()

Path to a file containing PEM-encoded CA certificates. The CA certificates are used to build the server certificate
chain and for client authentication. The CAsare also used in thelist of acceptable client CAs passed to the client when
acertificate is requested. Can be omitted if there is no need to verify the client and if there are no intermediate CAs
for the server certificate.

When PEM caching is enabled, files provided with this option will be checked for updates at fixed time intervals
specified by the ssl_pem_cache clean environment parameter.

Alternatively, CA certificates can be provided as a DER-encoded binary with server_cacerts option.

dh _der() = binary()
The DER-encoded Diffie-Hellman parameters. If specified, it overrides option dhf i | e.

Thedh_der optionisnot supported by TLS 1.3. Usethe suppor t ed_gr oups option instead.

dh file() = file:filename()

Path to afile containing PEM-encoded Diffie Hellman parametersto be used by the server if acipher suite using Diffie
Hellman key exchange is negotiated. If not specified, default parameters are used.

Thedh_fi | e optionisnot supported by TLS 1.3. Usethe support ed_gr oups option instead. |

server verify type() = verify type()

Client certificates are an optional part of the TLS protocol. A server only does x509-certificate path validation
in mode veri fy_peer. By default the server isin veri f y_none mode an hence will not send an certificate
reguest to the client. When usingver i fy_peer you may also want to specify the optionsfail_if_no_peer cert and
certificate_authorities.

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 59

ssl

fail if no peer cert() = boolean()

Used together with {veri fy, verify_peer} by an TLSDTLS server. If set tot r ue, the server fails if the
client does not have a certificate to send, that is, sends an empty certificate. If settof al se, it failsonly if the client
sends an invalid certificate (an empty certificate is considered valid). Defaults to false.

server_reuse sessions() = boolean()

The boolean value true specifies that the server will agree to reuse sessions. Setting it to false will result in an empty
session table, that is no sessions will be reused. See also option reuse_session.

server reuse session() = function()

Enablesthe TLS/DTL S server to have alocal policy for deciding if a session isto be reused or not. Meaningful only
if reuse_sessions issettotrue. Suggest edSessi onl d isabi nary(), Peer Cert isaDER-encoded
certificate, Conpr essi on isan enumeration integer, and Ci pher Sui t e isof typeci phersuite().

server_alpn() = [app_level protocol()]
Indicates the server will try to perform Application-Layer Protocol Negotiation (ALPN).

The list of protocols is in order of preference. The protocol negotiated will be the first in the list that matches
one of the protocols advertised by the client. If no protocol matches, the server will fail the connection with a
"no_application_protocol™ aert.

The negotiated protocol can beretrieved using the negot i at ed_pr ot ocol / 1 function.
server next protocol() = [app level protocol()]

List of protocolsto send to the client if the client indicates that it supports the Next Protocol extension. The client can
select a protocol that is not on thislist. Thelist of protocols must not contain an empty binary. If the server negotiates
aNext Protocol, it can be accessed using the negot i at ed_next pr ot ocol / 1 method.

server psk identity() = psk identity()

Specifies the server identity hint, which the server presents to the client.

honor cipher order() = boolean()

If settot r ue, usethe server preference for cipher selection. If set to f al se (the default), use the client preference.

sni hosts() =
[{hostname(), [server option() | common option()]1}]

If the server receivesa SNI (Server Name I ndication) from the client matching ahost listedinthesni _host s option,
the specific options for that host will override previously specified options. The optionsni _f un,andsni _host s
are mutually exclusive.

sni fun() = function()

If the server receives a SNI (Server Name Indication) from the client, the given function will be called to retrieve
[server_option()] for the indicated server. These options will be merged into predefined [server_option()] list. The
function should be defined as: fun(ServerName :: string()) -> [server_option()] and can be specified as a fun or as
named f un nmodul e: functi on/ 1 Theoptionsni _fun,andsni _host s are mutually exclusive.

client renegotiation() = boolean()

In protocolsthat support client-initiated renegotiation, the cost of resources of such an operation ishigher for the server
than the client. This can act as a vector for denial of service attacks. The SSL application aready takes measures to
counter-act such attempts, but client-initiated renegotiation can be strictly disabled by setting this optionto f al se.
The default valueist r ue. Note that disabling renegotiation can result in long-lived connections becoming unusable
due to limits on the number of messages the underlying cipher suite can encipher.

60 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

ssl

honor cipher order() = boolean()

If true, use the server's preference for cipher selection. If false (the default), use the client's preference.
honor _ecc order() = boolean()

If true, use the server's preference for ECC curve selection. If false (the default), use the client's preference.
server_session tickets() = disabled | stateful | stateless
Configures the session ticket functionality. Allowed valuesaredi sabl ed, st at ef ul and st at el ess.

Ifitissettost at ef ul orst at el ess, session resumption with pre-shared keysis enabled and the server will send
stateful or statel ess session ticketsto the client after successful connections.

A stateful sessionticket isadatabasereferencetointernal stateinformation. A statelesssession ticket isaself-encrypted
binary that contains both cryptographic keying material and state data.

This option is supported by TLS 1.3 and above. See aso SSL's Users Guide, Session Tickets and Session
Resumptionin TLS 1.3

anti replay() =
"10k' | '100k"' |
{bloom filter window size(),
bloom filter hash functions(),
bloom filter bits()}

Configures the server's built-in anti replay feature based on Bloom filters.

Allowed values are the pre-defined ' 10k’ , ' 100k’ or a custom 3-tuple that defines the properties of the bloom

filters: { W ndowSi ze, HashFunctions, Bits}.W ndowSi ze isthe number of seconds after the current

Bloom filter is rotated and also the window size used for freshness checks. HashFunct i ons is the number hash

functionsand Bi t s isthe number of bitsinthe bit vector.' 10k' and' 100k' are simple defaultswith the following

properties:

e "10K': Bloom filters can hold 10000 elements with 3% probability of false positives. W ndowSi ze: 10,
HashFunctions: 5, Bi ts: 72985 (8.91 KiB).

e ' 100k' : Bloom filters can hold 100000 elements with 3% probability of false positives. W ndowSi ze: 10,
HashFuncti ons: 5, Bi t s: 729845 (89.09 KiB).

Thisoption is supported by TLS 1.3 and above and only with statel ess session tickets. Ticket lifetime, the number
of tickets sent by the server and the maximum number of tickets stored by the server in stateful mode are configured
by application variables. See also SSL's Users Guide, Anti-Replay Protectionin TLS 1.3

cookie() = boolean()
If t r ue (default), the server sends a cookie extension in its HelloRetryRequest messages.

Note:

The cookie extension has two main purposes. It allows the server to force the client to demonstrate reachability
at their apparent network address (thus providing a measure of DoS protection). This is primarily useful for non-
connection-oriented transports. It also allows to offload the server's state to the client. The cookie extension is
enabled by default asit is a mandatory extension in RFC8446.

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 61

ssl

server early data() = disabled | enabled

Configures if the server accepts (enabl ed) or rejects (r ej ect s) early data sent by a client. The default value is
di sabl ed.

Thisoption is aplaceholder, early datais not yet implemented on the server side. |

connection info() =
[common info() |
curve info() |
ssl options info() |
security info()]
common_info() =
{protocol, protocol version()} |
{session_id, session id()} |
{session_resumption, boolean()} |
{selected cipher suite, erl cipher suite()} |
{sni hostname, term()} |
{srp_username, term()}
curve info() = {ecc, {named curve, term()}}
ssl options info() = tls option()
security info() =
{client random, binary
{server _random, binary
{master secret, binary
connection info items() =
connection info item() =
protocol | session id | session resumption |
selected cipher suite | sni hostname | srp _username | ecc |
client random | server random | master secret | keylog |
tls options name()
tls options name() = atom()

Fo
P
}

)
)
)
connection info item()]

Exports

append cipher suites(Deferred, Suites) -> ciphers()
Types:
Deferred = ciphers() | cipher_filters()
Suites = ciphers()
Make Def er r ed suites become the least preferred suites, that is put them at the end of the cipher suitelist Sui t es

after removing them from Sui t es if present. Def er r ed may be alist of cipher suites or alist of filtersin which
casethefiltersare use on Sui t es to extract the Deferred cipher list.

cipher suites(Description, Version) -> ciphers()
Types.

62 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

ssl

Description =
default | all | exclusive | anonymous | exclusive anonymous
Version = protocol version()

Lists all possible cipher suites corresponding to Descri pti on that are available. The excl usi ve and
excl usi ve_anonynous option will exclusively list cipher suites first supported in Ver si on whereas the other
options are inclusive from the lowest possible version to Ver si on. Theal | options includes all suites except the
anonymous and no anonymous suites are supported by default.

TLS1.3 has no overlapping cipher suites with previous TLS versions, that is the result of
ci pher_suites(all, 'tlsvl.3"). contains a separate set of suites that can be used with TLS-1.3 an
other set that can be used if alower version is negotiated. PRE TLS-1.3 so called PSK and SRP suites need extra
configuration to work see user lookup function. No anonymous suites are supported by TLS-1.3.

Also note that the cipher suites returned by this function are the cipher suites that the OTP sdl application
can support provided that they are supported by the cryptolib linked with the OTP crypto application. Use
sdl:filter_cipher_suites(Suites, []). to filter the list for the current cryptolib. Note that cipher suites may be filtered
out because they are too old or too new depending on the cryptolib

cipher suites(Description, Version, StringType :: rfc | openssl) ->
[string()]
Types:
Description = default | all | exclusive | anonymous
Version = protocol version()

Same as cipher_suites/2 but lists RFC or OpenSSL string names instead of erl_cipher_suite()

eccs() -> NamedCurves
eccs(Version) -> NamedCurves
Types.
Version = protocol version()
NamedCurves = [named curve()]

Returns alist of supported ECCs. eccs() isequivaent to callingeccs(Pr ot ocol) with al supported protocols
and then deduplicating the output.

clear pem cache() -> ok

PEM files, used by ssl API-functions, are cached for performance reasons. The cache is automatically checked at
regular intervalsto see if any cache entries should be invalidated.

This function provides away to unconditionally clear the entire cache, thereby forcing a reload of previously cached
PEM files.

connect (TCPSocket, TLSOptions) ->

{ok, sslsocket()} |

{error, reason()} |

{option not a key value tuple, any()}
connect (TCPSocket, TLSOptions, Timeout) ->

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 63

ssl

{ok, sslsocket()} | {error, reason()}
Types.
TCPSocket = socket()
TLSOptions = [tls client option()]
Timeout = timeout()

Upgrades a gen_t cp, or equivalent, connected socket to a TLS socket, that is, performs the client-side TLS
handshake.

If theoptionverifyissettoverify_peer theoptionser ver _name_i ndi cat i on shall also be specified,
if itisnot no Server Name Indication extension will be sent, and public_key:pkix_verify hosthame/2 will becalled
with the IP-address of the connection as Ref er encel D, which is probably not what you want.

If the option { handshake, hel | o} isused the handshake is paused after receiving the server hello message and
the success responseis{ ok, Ssl| Socket, Ext} instead of { ok, Ssl Socket}. Thereafter the handshakeis
continued or canceled by calling handshake_cont i nue/ 3 or handshake _cancel / 1

If theoptionact i veissettoonce,t r ue or aninteger value, the process owning the sslsocket will receive messages
of type active_msgs()

connect(Host, Port, TLSOptions) ->
{ok, sslsocket()} |
{ok, sslsocket(), Ext :: protocol extensions()} |
{error, reason()} |
{option not a key value tuple, any()}
connect(Host, Port, TLSOptions, Timeout) ->
{ok, sslsocket()} |
{ok, sslsocket(), Ext :: protocol extensions()} |
{error, reason()} |
{option_not a key value tuple, any()}
Types:
Host host ()
Port = inet:port_number()
TLSOptions = [tls client option()]
Timeout = timeout()
Opensa TLS/DTLS connectionto Host , Port .

Whentheoptionveri fy issettoveri fy_ peer thecheck public_key:pkix_verify hostname/2 will be performed
in addition to the usual x509-path validation checks. If the check fails the error {bad_cert, hosthame_check_failed}
will be propagated to the path validation fun verify_fun, where it is possible to do customized checks by using the
full possibilities of the public_key:pkix_verify hostname/3 API. When the option ser ver _name_i ndi cati on
isprovided, its value (the DNS name) will be used as Ref er encel Dto public_key:pkix_verify hostname/2. When
no server _name_i ndi cati on option is given, the Host argument will be used as Server Name Indication
extension. The Host argument will also be used for the public_key:pkix_verify _hostname/2 check and if the Host

argument isani net: i p_address() the Ref er encel D used for the check will be{i p, Host} otherwise
dns_i d will be assumed with afallback toi p if that fails.

64 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

ssl

According to good practices certificates should not use | P-addresses as "server names'. It would be very surprising
if this happened outside a closed network.

If the option { handshake, hel | o} isused the handshake is paused after receiving the server hello message and
the successresponseis{ ok, Ssl| Socket, Ext} instead of { ok, Ssl Socket}. Thereafter the handshakeis
continued or canceled by calling handshake_cont i nue/ 3 or handshake _cancel /1

If theoptionact i veissettoonce,t r ue or aninteger value, the process owning the sslsocket will receive messages
of type active_ msgs()

close(SslSocket) -> ok | {error, Reason}
Types.

SslSocket = sslsocket()

Reason = any()

Closesa TLS/DTLS connection.

close(SslSocket, How) ->
ok | {ok, port()} | {ok, port(), Data} | {error, Reason}

Types:
SslSocket = sslsocket()
How = timeout() | {NewController :: pid(), timeout()}
Data = binary()
Reason = any()
Closes or downgrades a TLS connection. In the latter case the transport connection will be handed over to the

NewCont r ol | er process after receiving the TLS close alert from the peer. The returned transport socket will have
thefollowing options set: [{ acti ve, fal se}, {packet, 0}, {node, binary}].

In case of downgrade, the close function might return some binary data that should be treated by the user as the first
bytes received on the downgraded connection.

controlling process(SslSocket, NewOwner) -> ok | {error, Reason}
Types.

Ss1Socket = sslsocket()

NewOwner = pid()

Reason = any()

Assignsanew controlling processto the SSL socket. A controlling processisthe owner of an SSL socket, and receives
all messages from the socket.

connection information(SslSocket) ->

{ok, Result} | {error, reason()}
Types.

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 65

ssl

SslSocket = sslsocket()
Result = connection info()
Returns the most relevant information about the connection, sd options that are undefined will be filtered out.

Note that values that affect the security of the connection will only be returned if explicitly requested by
connection_information/2.

Thelegacy | tem = ci pher_sui t e was removed in OTP-23. Previously it returned the cipher suite on its
(undocumented) legacy format. It isreplaced by sel ect ed_ci pher _suite.

connection information(SslSocket, Items) ->
{ok, Result} | {error, reason()}

Types:
SslSocket = sslsocket()
Items = connection_info_items()
Result = connection_info()
Returns the requested information items about the connection, if they are defined.

Note that client_random, server_random, master_secret and keylog are values that affect the security of connection.
Meaningful atoms, not specified above, are the ssl option names.

In order to retrieve keylog and other secret information from a TLS 1.3 connection, keep_secrets must be configured
inadvanceand settot r ue.

| If only undefined options are requested the resulting list can be empty. |

filter cipher suites(Suites, Filters) -> Ciphers
Types:

Suites = ciphers()

Filters = cipher filters()

Ciphers = ciphers()
Removes cipher suitesif any of the filter functions returns false for any part of the cipher suite. If no filter functionis
supplied for some part the default behaviour regardsit asif there was afilter function that returned true. For examples
see Customizing cipher suites Additionally, this function aso filters the cipher suites to exclude cipher suites not

supported by the cryptolib used by the OTP crypto application. That is calling sdl:filter_cipher_suites(Suites, []) will
be equivalent to only applying the filters for cryptolib support.

format error(Reason :: Reason | {error, Reason}) -> string()
Types:

Reason = any()
Presents the error returned by an SSL function as a printable string.

getopts(SslSocket, OptionNames) ->

66 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

ssl

{ok, [gen tcp:option()]} | {error, reason()}
Types:
SslSocket = sslsocket()
OptionNames = [gen tcp:option name()]
Gets the values of the specified socket options.

getstat(SslSocket) -> {ok, OptionValues} | {error, inet:posix()}

getstat(SslSocket, Options) ->
{ok, OptionValues} | {error, inet:posix()}

Types.

Ss1Socket = sslsocket()

Options = [inet:stat option()]

OptionValues = [{inet:stat option(), integer()}]
Gets one or more statistic options for the underlying TCP socket.

See inet:getstat/2 for statistic options description.

handshake(HsSocket) ->
{ok, SslSocket} |
{ok, SslSocket, Ext} |
{error, Reason}

handshake(HsSocket, Timeout) ->
{ok, SslSocket} |
{ok, SslSocket, Ext} |
{error, Reason}

Types:

HsSocket = sslsocket()

Timeout = timeout()

SslSocket = sslsocket()

Ext = protocol extensions()

Reason = closed | timeout | error_alert()
Performs the TLS/DTLS server-side handshake.
Returnsanew TLS/DTLS socket if the handshake is successful.

If theoptionact i veissettoonce,t r ue or aninteger value, the process owning the sslsocket will receive messages
of type active_ msgs()

Not setting the timeout makes the server more vulnerable to DoS attacks.

handshake(Socket, Options) ->
{ok, SslSocket} |
{ok, SslSocket, Ext} |
{error, Reason}
handshake(Socket, Options, Timeout) ->
{ok, SslSocket} |

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 67

ssl

{ok, SslSocket, Ext} |
{error, Reason}

Types.
Socket = socket() | sslsocket()
SslSocket = sslsocket()
Options = [server option()]
Timeout = timeout()
Ext = protocol extensions()
Reason = closed | timeout | {options, any()} | error_alert()

If Socket isaordinary socket () : upgradesagen_t cp, or equivalent, socket to an SSL socket, that is, performs
the TL S server-side handshake and returns a TL'S socket.

The ordinary Socket shall bein passive mode ({ active, false}) before calling this function, and before the client
triesto connect with TLS, or el se the behavior of thisfunction is undefined. The best way to ensure thisisto create
the ordinary listen socket in passive mode.

If Socket isan sdsocket() : provides extra TLS/DTLS options to those specified in listen/2 and then performs the
TLS/DTLS handshake. Returnsanew TLS/DTLS socket if the handshake is successful.

Warning:

Not setting the timeout makes the server more vulnerable to DoS attacks. |

If option { handshake, hel | o} isspecified the handshake is paused after receiving the client hello message and
the successresponseis{ ok, Ssl| Socket, Ext} instead of { ok, Ssl Socket}. Thereafter the handshakeis
continued or canceled by calling handshake_cont i nue/ 3 or handshake _cancel /1

If theoptionact i veissettoonce,t r ue or aninteger value, the process owning the sslsocket will receive messages
of type active_ msgs()

handshake cancel(Sslsocket :: #sslsocket{}) -> any()
Cancel the handshake with afatal USER_CANCELED alert.

handshake continue(HsSocket, Options) ->
{ok, SslSocket} | {error, Reason}

handshake continue(HsSocket, Options, Timeout) ->
{ok, SslSocket} | {error, Reason}

Types:
HsSocket = sslsocket()
Options = [tls client option() | tls server option()]
Timeout = timeout()
SslSocket = sslsocket()
Reason = closed | timeout | error alert()

Continue the TL S handshake, possibly with new, additional or changed options.

68 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

ssl

listen(Port, Options) -> {ok, ListenSocket} | {error, reason()}
Types.

Port = inet:port number()

Options = [tls server option()]

ListenSocket = sslsocket()
Creates an SSL listen socket.

negotiated protocol(SslSocket) -> {ok, Protocol} | {error, Reason}
Types.

Ss1Socket = sslsocket()

Protocol = binary()

Reason = protocol not negotiated

Returns the protocol negotiated through ALPN or NPN extensions.

peercert(SslSocket) -> {ok, Cert} | {error, reason()}
Types:
Ss1Socket = sslsocket()
Cert = public key:der encoded()
The peer certificate is returned as a DER-encoded binary. The certificate can be decoded with

public_key:pkix_decode cert/2 Suggested further reading about certificatesis public_key User's Guide and ssl User's
Guide

peername(SslSocket) -> {ok, {Address, Port}} | {error, reason()}
Types:

Ss1Socket = sslsocket()

Address = inet:ip address()

Port = inet:port number()

Returns the address and port number of the peer.

prepend cipher suites(Preferred, Suites) -> ciphers()
Types:
Preferred = ciphers() | cipher_filters()
Suites = ciphers()
Make Pr ef er r ed suites become the most preferred suitesthat is put them at the head of the cipher suitelist Sui t es

after removing them from Sui t es if present. Pr ef er r ed may be alist of cipher suitesor alist of filtersin which
case thefiltersare use on Sui t es to extract the preferred cipher list.

prf(SslSocket, Secret, Label, Seed, WantedLength) ->

{ok, binary()} | {error, reason()}
Types.

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 69

ssl

SslSocket = sslsocket()

Secret = binary() | master_secret
Label = binary()

Seed = [binary() | prf random()]
WantedLength = integer() >= 0

Usesthe Pseudo-Random Function (PRF) of aTL S session to generate extrakey material. It either takes user-generated
valuesfor Secr et and Seed or atoms directing it to use a specific value from the session security parameters.

recv(SslSocket, Length) -> {ok, Data} | {error, reason()}
recv(SslSocket, Length, Timeout) -> {ok, Data} | {error, reason()}
Types:

Ss1Socket = sslsocket()

Length = integer() >= 0

Data = binary() | list() | HttpPacket

Timeout = timeout()

HttpPacket = any()

Seethedescription of Ht t pPacket inerl ang: decode_packet/ 3 in ERTS.

Receives a packet from a socket in passive mode. A closed socket isindicated by return value{ er r or, cl osed}.

Argument Lengt h is meaningful only when the socket isin mode r aw and denotes the number of bytes to read. If
Lengt h =0, al available bytesarereturned. If Lengt h >0, exactly Lengt h bytesarereturned, or an error; possibly
discarding lessthan Lengt h bytes of data when the socket gets closed from the other side.

Optiona argument Ti neout specifies atime-out in milliseconds. The default valueisi nfinity.

renegotiate(SslSocket) -> ok | {error, reason()}
Types:
Ss1Socket = sslsocket()
Initiates a new handshake. A notablereturn valueis{error, renegoti ati on_rej ect ed} indicating that the

peer refused to go through with the renegotiation, but the connection is still active using the previously negotiated
session.

update keys(SslSocket, Type) -> ok | {error, reason()}
Types:
SslSocket = sslsocket()
Type = write | read write
There are cryptographic limits on the amount of plaintext which can be safely encrypted under a given set of keys.

If the amount of data surpasses those limits, a key update is triggered and a new set of keys are installed. See also
the option key_update at.

This function can be used to explicitly start a key update on a TLS 1.3 connection. There are two types of the key
update: if Typeis set to write, only the writing key is updated; if Typeis set to read_write, both the reading and
writing keys are updated.

send(SslSocket, Data) -> ok | {error, reason()}
Types.

70 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

ssl

SslSocket = sslsocket()
Data = iodata()
Writes Dat a to Ss| Socket .

A notablereturn valueis{ error, cl osed} indicating that the socket is closed.

setopts(SslSocket, Options) -> ok | {error, reason()}
Types:

SslSocket = sslsocket()

Options = [gen tcp:option()]
Sets options according to Opt i ons for socket Ssl Socket .

shutdown (Ss1Socket, How) -> ok | {error, reason()}
Types:
Ss1lSocket = sslsocket()
How = read | write | read write
Immediately closes a socket in one or two directions.
How == wri t e means closing the socket for writing, reading from it is still possible.

To be able to handle that the peer has done a shutdown on the write side, option { exi t _on_cl ose, fal se}
isuseful.

sockname (SslSocket) -> {ok, {Address, Port}} | {error, reason()}
Types:

Ss1Socket = sslsocket()

Address = inet:ip address()

Port = inet:port number()

Returns the local address and port number of socket Ssl Socket .

start() -> ok | {error, reason()}

start(Type :: permanent | transient | temporary) ->
ok | {error, reason()}

Starts the SSL application. Default typeist enpor ar y.

stop() -> ok
Stops the SSL application.

str to suite(CipherSuiteName) ->
erl cipher suite() |
{error, {not recognized, CipherSuiteName}}

Types:
CipherSuiteName = string()

Convertsan RFC or OpenSSL name string to an erl_cipher_suite() Returns an error if the cipher suiteis not supported
or the nameis not avalid cipher suite name.

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 71

ssl

suite to openssl str(CipherSuite) -> string()
Types:
CipherSuite = erl cipher suite()
Converts erl_cipher_suite() to OpenSSL name string.
PRE TLS-1.3 these names differ for RFC names

suite to str(CipherSuite) -> string()
Types:

CipherSuite = erl cipher suite()
Converts erl_cipher_suite() to RFC name string.

transport accept(ListenSocket) ->
{ok, SslSocket} | {error, reason()}

transport accept(ListenSocket, Timeout) ->
{ok, SslSocket} | {error, reason()}

Types:
ListenSocket = sslsocket()
Timeout = timeout()
SslSocket = sslsocket()
Accepts an incoming connection request on alisten socket. Li st enSocket must be asocket returned from listen/2.

The socket returned is to be passed to handshake/[2,3] to complete handshaking, that is, establishing the TLS/DTLS
connection.

‘ Most API functions require that the TLS/DTL S connection is established to work as expected. ‘

The accepted socket inherits the options set for Li st enSocket in listen/2.

The default value for Ti meout isi nfinity. If Ti neout is specified and no connection is accepted within the
giventime, {error, tineout} isreturned.

versions() -> [VersionInfo]
Types.
VersionInfo =
{ssl app, string()} |
{supported | available | implemented, [tls version()]} |
{supported dtls | available dtls | implemented dtls,
[dtls version()1}

Listsinformation, mainly concerning TLS/DTLS versions, in runtime for debugging and testing purposes.

app_vsn
The application version of the SSL application.

supported
TL S versions supported with current application environment and crypto library configuration. Overridden
by aversion option on connect/[2,3,4], listen/2, and handshake/[2,3]. For the negotiated TLS version, see
connection_information/1 .

72 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

ssl

supported_dtls
DTLS versions supported with current application environment and crypto library configuration. Overridden
by aversion option on connect/[2,3,4], listen/2, and handshake/[2,3]. For the negotiated DTL S version, see
connection_information/1 .
avai | abl e
All TLS versions supported with the linked crypto library.
avail abl e _dtls
All DTLS versions supported with the linked crypto library.
i mpl emrent ed
All TLS versions supported by the SSL application if linked with a crypto library with the necessary support.
i mpl emented_dtl s
All DTLS versions supported by the SSL application if linked with a crypto library with the necessary support.

SEE ALSO
inet(3) and gen_tcp(3) gen_udp(3)

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 73

ssl_crl_cache

ssl_crl_cache

Erlang module

Implements an internal CRL (Certificate Revocation List) cache. In addition to implementing the ssl_crl_cache api
behaviour the following functions are available.

Data Types

DATA TYPES

crl src() =
{file, file:filename()} | {der, public key:der encoded()}

uri() = uri string:uri string()
Exports

delete(Entries) -> ok | {error, Reason}
Types.

Entries = crl _src()]}

Reason = crl _reason()

Delete CRLs from the ssl applications local cache.

insert(CRLSrc) -> ok | {error, Reason}
insert(URI, CRLSrc) -> ok | {error, Reason}

Types.
CRLSrc = crl _src()]}
URI = uri()

Reason = term()
Insert CRLs, available to fetch on DER format from URI , into the sdl applications local cache.

74 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

ssl_crl_cache_api

ssl_crl_cache_api

Erlang module

When TL S performs certificate path validation according to RFC 5280 it should also perform CRL validation checks.
To enable the CRL checks the application needs accessto CRLs. A database of CRLs can be set up in many different
ways. This module provides the behavior of the APl needed to integrate an arbitrary CRL cache with the erlang sdl
application. It isaso used by the application itself to provide a simple default implementation of a CRL cache.

Data Types
crl _cache ref() = any()
Reference to the CRL cache.
dist point() = #'DistributionPoint'{}
For description see X509 certificates records
logger _info() =
{logger:level(),

Report :: #{description => string(), reason => term()},
logger:metadata()}

Information for ssl applications use of Logger(3)

Exports

Module:fresh crl(DistributionPoint, CRL) -> FreshCRL
Module:fresh crl(DistributionPoint, CRL) -> FreshCRL | {LoggerInfo, FreshCRL}
Types:

Di stributionPoint = dist_point()

CRL = [public_key:der_encoded()]

FreshCRL = [public_key: der_encoded()]

Loggerinfo = {logger, |ogger_info() }}

fun fresh_crl/2 will beused asinput option updat e_cr | to public_key:pkix_crls validate/3
Itis possible to return logger info that will be used by the TL S connection to produce log events.

Module:lookup(DistributionPoint, Issuer, DbHandle) -> not available | CRLs |
{LoggerInfo, CRLs}

Module:lookup(DistributionPoint, Issuer, DbHandle) -> not available | CRLs
Module:lookup(DistributionPoint, DbHandle) -> not available | CRLs
Types:

Di stributionPoint = dist_point()

| ssuer = public_key:issuer_nane()

DbHandl e = crl _cache_ref ()

CRLs = [public_key: der_encoded()]

Loggerinfo = {logger, logger_info() }}

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 75

href

ssl_crl_cache_api

Lookup the CRLs belonging to the distribution point Di st ri but i onpoi nt . This function may choose to only
look in the cache or to follow distribution point links depending on how the cache is administrated.

Thel ssuer argument contains the issuer name of the certificate to be checked. Normally the returned CRL should
be issued by this issuer, except if the cRLI ssuer field of Di stri buti onPoi nt hasavalue, in which case that
value should be used instead.

In an earlier version of this API, thel ookup function received two arguments, omitting | ssuer . For compatibility,
thisis still supported: if thereisno| ookup/ 3 function in the callback module, | ookup/ 2 iscalled instead.

It is possible to return logger info that will be used by the TL 'S connection to produce log events.

Module:select(Issuer, DbHandle) -> CRLs | {LoggerInfo, CRLs}
Module:select(Issuer, DbHandle) -> CRLs
Types:

| ssuer = public_key:issuer_nane() | list()

DbHandl e = cache_ref ()

Loggerinfo = {l ogger, |ogger_info() }
Select the CRLs in the cache that are issued by | ssuer unless the value is a list of so called general names, see
X509 certificates records, originating form #' Di st ri buti onPoi nt' . cRLi ssuer and representing different

mechanism to obtain the CRLs. The cache callback needs to use the appropriate entry to retrieve the CRLs or return
an empty list if it does not exist.

It is possible to return logger info that will be used by the TL S connection to produce log events.

76 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

ssl_session_cache_api

ssl_session_cache_api

Erlang module

Definesthe API for the TLS session cache (pre TLS-1.3) so that the data storage scheme can be replaced by defining
anew callback module implementing this API.

Data Types

session_cache ref()
session_cache key()

any()
{partial_key(), ssl:session_id()}

A key to an entry in the session cache.

partial key()

The opaque part of the key. Does not need to be handled by the callback.
session()

The session data that is stored for each session.

Exports

Module:delete(Cache, Key) ->
Types:
Cache = session_cache_ref ()
Key = session_cache_key()

Deletes a cache entry. Isonly called from the cache handling process.

Module:foldl(Fun, Acc0®, Cache) -> Acc
Types.
Fun = fun()
AccO = Acc = term)
Cache = session_cache_ref()
CdlsFun(El em Accl n) on successive elements of the cache, starting with Accl n == AccO. Fun/ 2 must

return a new accumulator, which is passed to the next call. The function returns the fina value of the accumulator.
AccO isreturned if the cache is empty.

Since OTP-23.3 this functionsis only used on the client side and does not need to implemented for a server cache.

Module:init(Args) -> Cache
Types:
Cache = session_cache_ref()
Args = proplists:proplist()

Includes property {rol e, client | server}.Currently thisisthe only predefined property, there can also be
user-defined properties. See aso application environment variable session_cb_init_args.

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 77

ssl_session_cache_api

Performs possible initiaizations of the cache and returns a reference to it that is used as parameter to the other AP
functions. Is called by the cache handling processesi ni t function, hence putting the same requirements on it as a
normal processi ni t function. This function is called twice when starting the SSL application, once with the role
client and once with the role server, as the SSL application must be prepared to take on both roles.

Module: lookup(Cache, Key) -> Entry
Types:
Cache = session_cache_ref()
Key = session_cache_key()
Session = session() | undefined

Looks up a cache entry. Isto be callable from any process.

Module:select session(Cache, PartialKey) -> [Session]
Types:

Cache = session_cache_ref ()

Partial Key = partial _key()

Session = session()

Selects sessions that can be reused, that is sessions that include Par t i al Key initskey. Isto be callable from any
process.

Since OTP-23.3 Thisfunctionsis only used on the client side and does not need to implemented for a server cache.

Module:size(Cache) -> integer()
Types.
Cache = session_cache_ref()

Returnsthe number of sessionsin the cache. If size exceeds the maximum number of sessions, the current cache entries
will beinvalidated regardless of their remaining lifetime. Isto be callable from any process.

Module:terminate(Cache) ->
Types:
Cache = session_cache _ref()
As returned by init/0

Takes care of possible cleanup that is needed when the cache handling process terminates.

Module:update(Cache, Key, Session) ->
Types.

Cache = session_cache_ref()

Key = session_cache_key()

Sessi on = session()

Caches anew session or updates an already cached one. Is only called from the cache handling process.

78 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

	Secure Socket Layer
	SSL User's Guide
	Introduction
	Purpose
	Prerequisites

	TLS/DTLS and TLS Predecessor, SSL
	Security Overview
	Data Privacy and Integrity
	Digital Certificates
	Peer Authentication
	TLS Sessions - PRE TLS-1.3
	TLS-1.3 session tickets

	Using SSL application API
	Basic Client
	Basic Connection
	Upgrade Example - TLS only
	Customizing cipher suites
	Using an Engine Stored Key
	Session Reuse pre TLS 1.3
	Session Tickets and Session Resumption in TLS 1.3
	Early Data in TLS 1.3
	Anti-Replay Protection in TLS 1.3
	Using DTLS

	Using TLS for Erlang Distribution
	Building Boot Scripts Including the SSL Application
	Specifying Distribution Module for net_kernel
	Specifying TLS Options
	Specifying TLS Options (Legacy)
	Setting up Environment to Always Use TLS (Legacy)
	Using TLS distribution over IPv6

	Standards Compliance
	Purpose
	Common (pre TLS 1.3)
	Common
	SSL 2.0
	SSL 3.0
	TLS 1.0
	TLS 1.1
	TLS 1.2
	DTLS 1.0
	DTLS 1.2
	DTLS 1.3
	TLS 1.3

	Reference Manual
	ssl
	ssl
	append_cipher_suites/2
	cipher_suites/2
	cipher_suites/3
	eccs/0
	eccs/1
	clear_pem_cache/0
	connect/2
	connect/3
	connect/3
	connect/4
	close/1
	close/2
	controlling_process/2
	connection_information/1
	connection_information/2
	filter_cipher_suites/2
	format_error/1
	getopts/2
	getstat/1
	getstat/2
	handshake/1
	handshake/2
	handshake/2
	handshake/3
	handshake_cancel/1
	handshake_continue/2
	handshake_continue/3
	listen/2
	negotiated_protocol/1
	peercert/1
	peername/1
	prepend_cipher_suites/2
	prf/5
	recv/2
	recv/3
	renegotiate/1
	update_keys/2
	send/2
	setopts/2
	shutdown/2
	sockname/1
	start/0
	start/1
	stop/0
	str_to_suite/1
	suite_to_openssl_str/1
	suite_to_str/1
	transport_accept/1
	transport_accept/2
	versions/0

	ssl_crl_cache
	delete/1
	insert/1
	insert/2

	ssl_crl_cache_api
	Module:fresh_crl/2
	Module:fresh_crl/2
	Module:lookup/3
	Module:lookup/3
	Module:lookup/2
	Module:select/2
	Module:select/2

	ssl_session_cache_api
	Module:delete/2
	Module:foldl/3
	Module:init/1
	Module:lookup/2
	Module:select_session/2
	Module:size/1
	Module:terminate/1
	Module:update/3

