ERLANG

FTP

Copyright © 1997-2025 Ericsson AB. All Rights Reserved.
FTP 1.1.4
May 7, 2025

Copyright © 1997-2025 Ericsson AB. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance
with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless
required by applicable law or agreed to in writing, software distributed under the License is distributed on an
"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See

the License for the specific language governing permissions and limitations under the License. Ericsson AB. All
Rights Reserved..

May 7, 2025

1.1 Introduction

1 FTP User's Guide

The FTP application provides an FTP client.

1.1 Introduction

1.1.1 Purpose
AnFTP client.

1.1.2 Prerequisites

It is assumed that the reader is familiar with the Erlang programming language, concepts of OTP, and has a basic
understanding of the FTP protocol.

1.2 FTP Client
1.2.1 Getting Started

FTP clients are considered to be rather temporary. Thus, they are only started and stopped during runtime and cannot
be started at application startup. The FTP client API isdesigned to allow some functionsto return intermediate results.
Thisimpliesthat only the processthat started the FTP client can access it with preserved sane semantics. If the process
that started the FTP session dies, the FTP client process terminates.

The client supports I Pv6 as long as the underlying mechanisms also do so.

The following is a simple example of an FTP session, where the user guest with password passwor d logs on to
theremote host er | ang. or g:

1> ftp:start().

ok

2> {ok, Pid} = ftp:open([{host, "erlang.org"}]).
{ok,<0.22.0>}

3> ftp:user(Pid, "guest", "password").
ok

4> ftp:pwd(Pid).

{ok, "/home/guest"}

5> ftp:cd(Pid, "appl/examples").

ok

6> ftp:lpwd(Pid).

{ok, "/home/fred"}.

7> ftp:lcd(Pid, "/home/eproj/examples").

8> ftp:recv(Pid, "appl.erl").
9> ftp:close(Pid).

10> ftp:stop().
ok

Thefileappl . er | istransferred from the remote to the local host. When the session is opened, the current directory
at the remote host is/ hone/ guest , and / hone/ f r ed at the local host. Before transferring the file, the current

Ericsson AB. All Rights Reserved.: FTP | 1

1.2 FTP Client

local directory ischangedto/ hone/ epr oj / exanpl es, andtheremotedirectory issetto/ hore/ guest / appl /
exanpl es.

2 | Ericsson AB. All Rights Reserved.: FTP

1.2 FTP Client

2 Reference Manual

An FTP client.

Ericsson AB. All Rights Reserved.: FTP | 3

ftp

ftp

Erlang module

This module implements a client for file transfer according to a subset of the File Transfer Protocol (FTP), see RFC
959.

The FTP client always tries to use passive FTP mode and only resort to active FTP mode if this fails. This default
behavior can be changed by start option mode.

AnFTPclientisalways started as part of the ftp application and legacy start_service function, isdeprecated in OTP-24
For asimple example of an FTP session, see FTP User's Guide.

In addition to the ordinary functions for receiving and sending files (seer ecv/ 2,recv/ 3,send/ 2, andsend/ 3)
there are functions for receiving remote files as binaries (see r ecv_bi n/ 2) and for sending binaries to be stored as
remote files (seesend_bi n/ 3).

A set of functions is provided for sending and receiving contiguous parts of a file to be stored in a remote
file. For send, see send_chunk_start/ 2, send_chunk/ 2, and send_chunk_end/ 1. For receive, see
recv_chunk_start/2andrecv_chunk/).

The return values of the following functions depend much on the implementation of the FTP server at the remote host.
In particular, the results from | s and nl i st varies. Often real errors are not reported as errors by | s, even if, for
example, afileor directory does not exist. nl i st isusually more strict, but some implementations have the peculiar
behaviour of responding with an error if the request is alisting of the contents of a directory that exists but is empty.

FTP CLIENT START/STOP

The FTP client can be started and stopped dynamically in runtime by calling the ftp application API
ftp:open(Host, Options) andftp:close(dient).

The available configuration options are as follows:
{host, Host}
Host=string() | ip_address()
{port, Port}
Port=integer() > 0
Default is0 which aliasesto 21 or 990 when used with{t | s_sec_nmet hod, ft ps}).
{mode, Mode}
Mode=active | passive
Default ispassi ve.
{verbose, Verbose}
Verbose = bool ean()
Determines if the FTP communication isto be verbose or not.
Defaultisf al se.
{ debug, Debug}
Debug=trace | debug | disable
Debugging using the dbg toolkit.
Default isdi sabl e.

4 | Ericsson AB. All Rights Reserved.: FTP

href
href

ftp

{ipfamily, IpFamily}
IpFamily =i net | inet6 | inet6fb4
Withi net 6f b4 theclient behavesasbefore, that is, triesto use | Pv6, and only if that doesnot work it uses | Pv4).
Defaultisi net (IPv4).
{timeout, Timeout}
Timeout = non_neg_i nt eger ()
Connection time-out.
Default is60000 (milliseconds).
{ dtimeout, DTimeout}
DTimeout=non_neg_integer() | infinity
Data connect time-out. The time the client waits for the server to connect to the data socket.
Defaultisi nfinity.
{progress, Progress}
Progress=i gnore | {CBMddul e, CBFunction, InitProgress}
CBMbdul e = aton(),CBFunction = atomn()
InitProgress = term))
Default isi gnor e.

Option pr ogr ess isintended to be used by applications that want to create some type of progress report, such asa
progress bar in a GUI. Default for the progress option isi gnor e, that is, the option is not used. When the progress
option is specified, the following happenswhenft p: send/ [3, 4] orftp:recv/[3, 4] arecdled:

« Before afileistransferred, the following call is made to indicate the start of the file transfer and how large the
fileis. The return value of the callback function isto be a new vaue for the User Pr ogr essTer mthat will be
used as input the next time the callback function is called.

CBModul e: CBFunction(lnitProgress, File, {file_size, FileSize})
* Every timeachunk of bytesis transferred the following call is made:

CBModul e: CBFunction(UserProgressTerm File, {transfer_size, TransferSize})
e Attheend of thefilethe following call is made to indicate the end of the transfer:

CBModul e: CBFunction(UserProgressTerm File, {transfer_size, 0})
The callback function is to be defined as follows:
CBModul e: CBFunction(User ProgressTerm File, Size) -> UserProgressTerm
CBModul e = CBFunction = atom)
User ProgressTerm = term)
File = string()

Size = {transfer_size, integer()} | {file_size, integer()} | {file_size,
unknown}

For remote files, f t p cannot determine the file size in a platform independent way. In this case the size becomes
unknown and it is left to the application to determine the size.

Ericsson AB. All Rights Reserved.: FTP | 5

ftp

The callback is made by a middleman process, hence the file transfer is not affected by the code in the progress
callback function. If the callback crashes, thisis detected by the FTP connection process, which then prints an info-
report and goes on asif the progress option was set to i gnor e.

Thefiletransfer typeis set to the default of the FTP server when the session is opened. Thisis usually ASCIl mode.

Thecurrent local working directory (comparel pwd/ 1) issettothevaluereportedbyfi | e: get _cwd/ 1,thewanted
local directory.

The return value Pi d is used as a reference to the newly created FTP client in al other functions, and they are to
be called by the process that created the connection. The FTP client process monitors the process that created it and
terminates if that process terminates.

DATA TYPES

The following type definitions are used by more than one function in the FTP client API:
pi d() =identifier of an FTP connection

string() =listof ASCII characters

shortage_reason() =etnospc | epnospc

restriction_reason() =epath | efnanena | elogin | enotbinary - al restrictions are not
alwaysrelevant to al functions

common_reason() =econn | eclosed | term() - someexplanation of what went wrong

Exports

account(Pid, Account) -> ok | {error, Reason}
Types:

Pid = pid()

Account = string()

Reason = eacct | common_reason()

Sets the account for an operation, if needed.

append(Pid, LocalFile) ->
append(Pid, LocalFile, RemoteFile) -> ok | {error, Reason}
Types.
Pid = pid()
LocalFile = RenoteFile = string()
Reason = epath | elogin | etnospc | epnospc | efnanena | common_reason

Transfers the file Local Fi | e to the remote server. If Renot eFi | e is specified, the name of the remote file that
thefileis appended to is set to Renot eFi | e, otherwiseto Local Fi | e. If thefile does not exists, it is created.

append bin(Pid, Bin, RemoteFile) -> ok | {error, Reason}

Types.
Pid = pid()
Bin = binary()

6 | Ericsson AB. All Rights Reserved.: FTP

ftp

RemoteFile = string()
Reason = restriction_reason()| shortage reason() | comon_reason()

Transfers the binary Bi n to the remote server and appends it to the file Renot eFi | e. If the file does not exist, it
is created.

append chunk(Pid, Bin) -> ok | {error, Reason}

Types:
Pid = pid()
Bin = binary()

Reason = echunk | restriction_reason() | comon_reason()

Transfers the chunk Bi n to the remote server, which appends it to the file specified in the cal to
append_chunk_start/2.

For some errors, for example, file system full, it is necessary to call append_chunk _end to get the proper reason.

append chunk start(Pid, File) -> ok | {error, Reason}
Types:
Pid = pid()
File = string()
Reason = restriction_reason() | conmon_reason()
Starts the transfer of chunks for appending to thefileFi | e at the remote server. If the file does not exigt, it is created.

append chunk end(Pid) -> ok | {error, Reason}
Types:
Pid = pid()
Reason = echunk | restriction_reason() | shortage_reason()

Stops transfer of chunks for appending to the remote server. The file at the remote server, specified in the call to
append_chunk_start/ 2, isclosed by the server.

cd(Pid, Dir) -> ok | {error, Reason}

Types:
Pid = pid()
Dir = string()

Reason = restriction_reason() | conmon_reason()

Changes the working directory at the remote serverto Di r .

close(Pid) -> ok
Types.
Pid = pid()

Ends an FTP session, created using function open.
delete(Pid, File) -> ok | {error, Reason}

Types:
Pid = pid()

Ericsson AB. All Rights Reserved.: FTP | 7

ftp

File = string()
Reason = restriction_reason() | conmon_reason()
Deletesthefile Fi | e at the remote server.

formaterror(Tag) -> string()
Types:
Tag = {error, atom()} | aton()
Given an error return value{ err or, At onReason}, thisfunction returns a readable string describing the error.

lcd(Pid, Dir) -> ok | {error, Reason}

Types.
Pid = pid()
Dir = string()

Reason = restriction_reason()

Changes the working directory to Di r for thelocal client.

lpwd(Pid) -> {ok, Dir}
Types:
Pid = pid()
Returns the current working directory at the local client.

1s(Pid) ->
ls(Pid, Pathname) -> {ok, Listing} | {error, Reason}
Types:

Pid = pid()

Pat hname = string()

Listing = string()

Reason = restriction_reason() | conmon_reason()
Returns alist of filesin long format.
Pat hname can be adirectory, agroup of files, or afile. The Pat hnane string can contain wildcards.
I s/ 1 impliesthe current remote directory of the user.

The format of Li st i ng depends on the operating system. On UNIX, it istypically produced from the output of the
s -1 shell command.

mkdir(Pid, Dir) -> ok | {error, Reason}

Types:
Pid = pid()
Dir = string()

Reason = restriction_reason() | common_reason()
Createsthe directory Di r at the remote server.

8 | Ericsson AB. All Rights Reserved.: FTP

ftp

nlist(Pid) ->
nlist(Pid, Pathname) -> {ok, Listing} | {error, Reason}
Types:
Pid = pid()
Pat hname = string()
Listing = string()
Reason = restriction_reason() | conmon_reason()
Returns alist of filesin short format.
Pat hname can be adirectory, agroup of files, or afile. The Pat hnane string can contain wildcards.
nl i st/ 1 impliesthe current remote directory of the user.

The format of Li sti ng isastream of filenames where each filename is separated by <CRLF> or <NL>. Contrary
tofunction| s, the purpose of nl i st isto enable a program to process filename information automatically.

open(Host) -> {ok, Pid} | {error, Reason}
open(Host, Opts) -> {ok, Pid} | {error, Reason}

Types:
Host = string() | ip_address()
Opts = options()

options() = [option()]

option() = start_option() | open_option()

start_option() = {verbose, verbose()} | {debug, debug()}

verbose() = boolean() (default is false)

debug() = disable | debug | trace (default is disable)

open_option() = {ipfamly, ipfamly()} | {port, port()} | {node,

mode()} | {tls, tls options()} | {tls_sec_method, tls_sec_mnethod()}

| {tls_ctrl_session_reuse, boolean() (default is false)} | {timeout,
timeout ()} | {dtimeout, dtineout()} | {progress, progress()}

{sock_ctrl, sock_opts()} | {sock_data_act, sock opts()} | {sock_data_ pass,
sock_opts()}

ipfamly() =inet | inet6 | inet6fb4 (default is inet)

port() = non_neg integer() (default is O which aliases to 21 or 990 when
used with {tls_sec_nethod, ftps})

node() = active | passive (default is passive)

tls_options() = [ssl:tls_option()]

tls_sec_nethod() = ftps | ftpes (default is ftpes)

sock_opts() = [gen_tcp:option() except for ipv6 véonly, active, packet,
node, packet _size and header

timeout () = integer() > 0 (default is 60000 milliseconds)

dtineout () = integer() >0 | infinity (default is infinity)

progress() = ignore | {nodule(), function(), initial _data()} (default is
i gnore)

nmodul e() = atom()
function() = atom)
initial _data() = term)

Ericsson AB. All Rights Reserved.: FTP | 9

ftp

Reason = ehost | term))
Starts a FTP client process and opens a session with the FTP server at Host .

If option{tls, tls_options()} ispresent,the FTP session istransported overtl s (f t ps, see RFC 4217).
Thelistt| s_opti ons() can be empty. The function ssl : connect/ 3 is used for securing both the control
connection and the data sessions.

Thesuboption{t| s_sec_nethod, tls_sec_nethod()} (defaultstoft pes)whensettoft ps will connect
immediately with SSL instead of upgrading with STARTTLS. This suboption is ignored unless the suboption t | s
isaso set.

Theoption{tls_ctrl _session_reuse, bool ean()} (defaultstof al se) whensettot r ue theclient will
re-use the TLS session from the control channel on the data channel as enforced by many FTP servers as (proposed
and implemented first by vsftpd).

The options sock_ctrl, sock _data_act and sock _dat a_pass passes options down to the underlying
transport layer (tcp). The default value for sock _ctrl is[].Both sock _data_act and sock_data_pass
usesthevalue of sock ctrl asdefault value.

A session opened in thisway is closed using function close.

pwd(Pid) -> {ok, Dir} | {error, Reason}
Types:
Pid = pid()
Reason = restriction_reason() | conmon_reason()

Returns the current working directory at the remote server.

recv(Pid, RemoteFile) ->
recv(Pid, RemoteFile, LocalFile) -> ok | {error, Reason}
Types:

Pid = pid()

RenmoteFile = Local File = string()

Reason = restriction_reason() | comon_reason() |
file_wite_ error_reason()

file_wite_ error_reason() = see file:wite/2

Transfers the file Renot eFi | e from the remote server to the file system of the local client. If Local Fil e is
specified, thelocal filewill be Local Fi | e, otherwise Renot eFi | e.

If the file write fals (for example, enospc), the command is aborted and {error,
file_wite_ error_reason()} isreturned. However, thefileisnot removed.

recv_bin(Pid, RemoteFile) -> {ok, Bin} | {error, Reason}

Types:
Pid = pid()
Bin = binary()

RemoteFile = string()
Reason = restriction_reason() | conmon_reason()

Transfersthe file Renot eFi | e from the remote server and receivesit asabinary.

10 | Ericsson AB. All Rights Reserved.: FTP

href
href
href

ftp

recv_chunk start(Pid, RemoteFile) -> ok | {error, Reason}
Types.

Pid = pid()

RenoteFile = string()

Reason = restriction_reason() | conmon_reason()

Starts transfer of the file Renot eFi | e from the remote server.

recv_chunk(Pid) -> ok | {ok, Bin} | {error, Reason}
Types.
Pid = pid()
Bin = binary()
Reason = restriction_reason() | conmon_reason()
Receives a chunk of theremotefile (Renot eFi | e of recv_chunk_st ar t). Thereturn values have the following
meaning:
e 0ok =thetransfer is complete.
 {ok, Bin} =justanother chunk of thefile.
e {error, Reason} =transfer failed.

rename(Pid, 0ld, New) -> ok | {error, Reason}
Types:

Pid = pid()

CurrFile = NewFile = string()

Reason = restriction_reason() | conmon_reason()

Renames A d to New at the remote server.

rmdir(Pid, Dir) -> ok | {error, Reason}

Types:
Pid = pid()
Dir = string()

Reason = restriction_reason() | conmon_reason()
Removes directory Di r at the remote server.

send(Pid, LocalFile) ->
send(Pid, LocalFile, RemoteFile) -> ok | {error, Reason}
Types.
Pid = pid()
Local File = RemoteFile = string()
Reason = restriction_reason() | conmmon_reason() | shortage_reason()

Transfersthefile Local Fi | e to the remote server. If Renot eFi | e is specified, the name of the remotefile is set
to Renot eFi | e, otherwiseto Local Fi | e.

send bin(Pid, Bin, RemoteFile) -> ok | {error, Reason}
Types.

Ericsson AB. All Rights Reserved.: FTP | 11

ftp

Pid pi d()

Bi n bi nary()

RenmoteFile = string()

Reason = restriction_reason() | conmon_reason() | shortage_reason()

Transfersthe binary Bi n into thefile Renot eFi | e at the remote server.

send chunk(Pid, Bin) -> ok | {error, Reason}

Types:
Pid = pid()
Bin = binary()

Reason = echunk | restriction_reason() | comon_reason()

Transfers the chunk Bin to the remote server, which writes it into the file specified in the cal to
send_chunk_start/ 2.

For some errors, for example, file system full, it is necessary to to call send_chunk _end to get the proper reason.

send chunk start(Pid, File) -> ok | {error, Reason}
Types:

Pid = pid()

File = string()

Reason = restriction_reason() | common_reason()
Starts transfer of chunksinto thefile Fi | e at the remote server.

send chunk end(Pid) -> ok | {error, Reason}
Types:
Pid = pid()
Reason = restriction_reason() | common_reason() | shortage_reason()

Stops transfer of chunks to the remote server. The file at the remote server, specified in the cal to
send_chunk_st art/ 2 isclosed by the server.

start service(ServiceConfig) -> {ok, Pid} | {error, Reason}
Types.

ServiceConfig = [{Option, Value}]

Option = property()

Value = term)
Dynamically starts an FTP session after the f t p application has been started.

Aslong asthef t p application is operational, the FTP sessions are supervised and can be soft code upgraded. |

stop service(Reference) -> ok | {error, Reason}
Types:
Reference = pid() | term() - service-specified reference

12 | Ericsson AB. All Rights Reserved.: FTP

ftp

Reason = term)
Stops a started FTP session.

type(Pid, Type) -> ok | {error, Reason}

Types:
Pid = pid()
Type = ascii | binary

Reason = etype | restriction_reason() | comon_reason()

Setsthefiletransfer typetoasci i or bi nar y. When an FTP session is opened, the default transfer type of the server
isused, most often asci i , which isdefault according to RFC 959.

user(Pid, User, Password) -> ok | {error, Reason}
Types:

Pid = pid()

User = Password = string()

Reason = euser | comon_reason()

Performslogin of User with Passwor d.

user(Pid, User, Password, Account) -> ok | {error, Reason}
Types:

Pid = pid()

User = Password = string()

Reason = euser | comon_reason()

Performslogin of User with Passwor d to the account specified by Account .

quote(Pid, Command) -> [FTPLine]

Types:
Pid = pid()
Command = string()

FTPLi ne = string()

The telnet end of line characters, from the FTP protocol definition, CRLF, for example, "\r\\n" has been removed.

Sends an arbitrary FTP command and returns verbatim a list of the lines sent back by the FTP server. This function
is intended to give application accesses to FTP commands that are server-specific or that cannot be provided by this
FTP client.

FTP commands requiring a data connection cannot be successfully issued with this function.

ERRORS

The possible error reasons and the corresponding diagnostic strings returned by f or mat err or / 1 are asfollows:

Ericsson AB. All Rights Reserved.: FTP | 13

href

ftp

echunk
Synchronization error during chunk sending according to one of the following:

e Acdlismadetosend_chunk/ 2 orsend_chunk_end/ 1 beforeacall tosend_chunk_start/ 2.

e A cdl has been made to another transfer function during chunk sending, that is, before a call to
send_chunk_end/ 1.

ecl osed
The session is closed.
econn
Connection to the remote server is prematurely closed.
ehost
Host is not found, FTP server is not found, or connection isrejected by FTP server.
el ogin
User isnot logged in.
enot bi nary
Termisnot abinary.
epat h
No such file or directory, or directory already exists, or permission denied.
etype
No such type.
euser
Invalid username or password.
et nospc
Insufficient storage space in system [452].
epnospc
Exceeded storage allocation (for current directory or dataset) [552].
ef namena
Filename not allowed [553].

SEE ALSO
file(3) filename(3) and J. Postel and J. Reynolds: File Transfer Protocol (RFC 959).

14 | Ericsson AB. All Rights Reserved.: FTP

href

	FTP
	FTP User's Guide
	Introduction
	Purpose
	Prerequisites

	FTP Client
	Getting Started

	Reference Manual
	ftp
	account/2
	append/2
	append/3
	append_bin/3
	append_chunk/2
	append_chunk_start/2
	append_chunk_end/1
	cd/2
	close/1
	delete/2
	formaterror/1
	lcd/2
	lpwd/1
	ls/1
	ls/2
	mkdir/2
	nlist/1
	nlist/2
	open/1
	open/2
	pwd/1
	recv/2
	recv/3
	recv_bin/2
	recv_chunk_start/2
	recv_chunk/1
	rename/3
	rmdir/2
	send/2
	send/3
	send_bin/3
	send_chunk/2
	send_chunk_start/2
	send_chunk_end/1
	start_service/1
	stop_service/1
	type/2
	user/3
	user/4
	quote/2

