ERLANG

ASN.1

Copyright © 1997-2025 Ericsson AB. All Rights Reserved.
ASN.15.0.21.1
May 7, 2025

Copyright © 1997-2025 Ericsson AB. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance
with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless
required by applicable law or agreed to in writing, software distributed under the License is distributed on an
"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See

the License for the specific language governing permissions and limitations under the License. Ericsson AB. All
Rights Reserved..

May 7, 2025

1.1 Introduction

1 Asnl User's Guide

The ASN. 1 application contains modules with compile-time and runtime support for Abstract Syntax Notation One
(ASN.1).

1.1 Introduction

The ASN.1 application provides the following:

e AnASN.1 compiler for Erlang, which generates encode and decode functions to be used by Erlang programs
sending and receiving ASN.1 specified data.

* Runtime functions used by the generated code.

e Support for the following encoding rules:
« Basic Encoding Rules (BER)
» Digtinguished Encoding Rules (DER), a specialized form of BER that is used in security-conscious

applications
» Packed Encoding Rules (PER), both the aligned and unaligned variant
1.1.1 Scope

This application covers all features of ASN.1 up to the 1997 edition of the specification. In the 2002 edition, new
features were introduced. The following features of the 2002 edition are fully or partly supported:

e Decimal notation (for example, " 1. 5e3) for REAL values. The NR1, NR2, and NR3 formats as explained in
I SO 6093 are supported.
e TheRELATI VE- O Dtypefor relative object identifiersis fully supported.

e The subtype constraint (CONTAI NI NGENCODED BY) to constrain the content of an octet string or a bit string
is parsed when compiling, but no further action is taken. This constraint is not a PER-visible constraint.

e The subtype constraint by regular expressions (PATTERN) for character string types is parsed when compiling,
but no further action is taken. This constraint is not a PER-visible constraint.

e Multiple-linecommentsasinC,/* ... */,aresupported.

1.1.2 Prerequisites

It is assumed that the reader is familiar with the Erlang programming language, concepts of OTP, and is familiar with
the ASN.1 notation. The ASN.1 notation is documented in the standard definition X.680, which isthe primary text. It
can also be helpful, but not necessary, to read the standard definitions X.681, X.682, X.683, X.690, and X.691.

A good book explaining those reference texts is Dubuisson: ASN.1 - Communication Between Heterogeneous
Systems, is free to download at http://www.oss.com/asn1l/dubuisson.html.

1.2 ASN.1

1.2.1 Introduction

ASN.1 is aformal language for describing data structures to be exchanged between distributed computer systems.
The purpose of ASN.1 isto have a platform and programming language independent notation to expresstypesusing a
standardized set of rulesfor the transformation of values of a defined type into a stream of bytes. This stream of bytes

Ericsson AB. All Rights Reserved.: ASN.1 | 1

href

1.3 Getting Started

can then be sent on any type of communication channel. Thisway, two applications written in different programming
languages running on different computers, and with different internal representation of data, can exchange instances
of structured data types.

1.3 Getting Started
1.3.1 Example

The following example demonstrates the basic functionality used to run the Erlang ASN.1 compiler.
Create afile named Peopl e. asn containing the following:

People DEFINITIONS AUTOMATIC TAGS ::=
BEGIN
Person ::= SEQUENCE {
name PrintableString,
location INTEGER {home(0),field(1l),roving(2)},
age INTEGER OPTIONAL

}
END

This file must be compiled before it can be used. The ASN.1 compiler checks that the syntax is correct and that the
text represents proper ASN.1 code before generating an abstract syntax tree. The code-generator then uses the abstract
syntax tree to generate code.

The generated Erlang files are placed in the current directory or in the directory specified with option
{outdir,Dir}.

The following shows how the compiler can be called from the Erlang shell:

1> asnlct:compile("People", [ber]).
ok
2>

Option ver bose can be added to get information about the generated files:

2> asnlct:compile("People", [ber,verbose]).
Erlang ASN.1 compiling "People.asn"
--{generated, "People.asnldb"}--
--{generated, "People.hrl"}--

--{generated, "People.erl"}--

ok

3>

ASN.1modulePeopl e isnow accepted and the abstract syntax treeissaved infilePeopl e. asnldb. Thegenerated
Erlang code is compiled using the Erlang compiler and loaded into the Erlang runtime system. There is now an API
for encode/ 2 and decode/ 2 in module Peopl e, whichis called like:

' Peopl €' : encode(<Type nanme>, <Val ue>)

or

' Peopl e' : decode(<Type nanme>, <Val ue>)

Assume that there is a network application that receives instances of the ASN.1 defined type Per son, modifies, and
sends them back again:

2 | Ericsson AB. All Rights Reserved.: ASN.1

1.3 Getting Started

receive
{Port, {data,Bytes}} ->
case 'People':decode('Person',Bytes) of
{ok,P} ->
{ok,Answer} = 'People':encode('Person',mk answer(P)),
Port ! {self(),{command,Answer}};
{error,Reason} ->
exit({error,Reason})
end
end,

In this example, a series of bytes is received from an external source and the bytes are then decoded
into a valid Erlang term. This was achieved with the cal ' Peopl e' : decode(' Person', Byt es), which
returned an Erlang value of the ASN.1 type Per son. Then an answer was constructed and encoded using
' Peopl e' : encode(' Person', Answer) , which takes an instance of a defined ASN.1 type and transforms it
to abinary according to the BER or PER encoding rules.

The encoder and decoder can also be run from the shell:

2> Rockstar = {'Person',"Some Name",roving,50}.

{'Person',"Some Name",roving,50}

3> {ok,Bin} = 'People':encode('Person',Rockstar).

{ok,<<243,17,19,9,83,111,109,101,32,78,97,109,101,2,1,2,
2,1,50>>}

4> {ok,Person} = 'People':decode('Person',Bin).

{ok,{'Person', "Some Name", roving,50}}

5>

Module Dependencies

It is common that ASN.1 modules import defined types, values, and other entities from another ASN.1 module.

Earlier versions of the ASN.1 compiler required that modules that were imported from had to be compiled before the
module that imported. This caused problems when ASN.1 modules had circular dependencies.

Referenced modules are now parsed when the compiler finds an entity that isimported. No code is generated for the
referenced module. However, the compiled modules rely on that the referenced modules are also compiled.

1.3.2 ASN.1 Application User Interface

The ASN. 1 application provides the following two separate user interfaces:

e Themoduleasnlct , which provides the compile-time functions (including the compiler)
e Themoduleasnlrt _ni f, which providesthe runtime functions for the ASN.1 decoder for the BER back end

The reason for thisdivision of the interfacesinto compile-time and runtime is that only runtime modules (asnlrt *)
need to be loaded in an embedded system.

Compile-Time Functions

The ASN.1 compiler can be started directly from the command line by the er | ¢ program. Thisis convenient when
compiling many ASN.1 files from the command line or when using Makefiles. Some examples of how the er | ¢
command can be used to start the ASN.1 compiler:

erlc Person.asn

erlc -bper Person.asn

erlc -bber ../Example.asn

erlc -o ../asnfiles -I ../asnfiles -I /usr/local/standards/asnl Person.asn

Useful options for the ASN.1 compiler:

Ericsson AB. All Rights Reserved.: ASN.1 | 3

1.3 Getting Started

-b[ber | per | uper | jer]

Choice of encoding rules. If omitted, ber isthe default.
-0 QutDirectory

Where to put the generated files. Default is the current directory.
-1 IncludebDir

Whereto search for . asnildb filesand ASN.1 source specs to resolve references to other modules. This option
can be repeated many times if there are several places to search in. The compiler searches the current directory
first.

+der
DER encoding rule. Only when using option - bber .
+j er
Functions j er _encode/ 2 and j er _decode/ 2 for JSON encoding rules are generated together with
functions for ber or per . Only to be used when the main encoding option is- bber , - bper or - buper
+maps

Use maps instead of records to represent the SEQUENCE and SET types. No . hr | fileswill be generated. See
the Section Map representation for SEQUENCE and SET for more information.

+asnlconfig

This functionality works together with option ber . It enables the specialized decodes, see Section Specialized
Decode.

+undec_r est

A buffer that holds amessage being decoded can also havetrailing bytes. If thosetrailing bytesareimportant, they
can bereturned along with the decoded value by compiling the ASN.1 specification with option +undec_r est .
Thereturn value from the decoder is{ ok, Val ue, Rest } whereRRest isabinary containing thetrailing bytes.

+' Any Erlc Option'

Any option can be added to the Erlang compiler when compiling the generated Erlang files. Any option
unrecognized by the ASN.1 compiler is passed to the Erlang compiler.

For a complete description of er | ¢, see ERTS Reference Manual.

The compiler and other compile-time functions can also be started from the Erlang shell. Here follows a brief
description of the primary functions. For a complete description of each function, see moduleasnlct inthe ASN.1
Reference Manual.

The compiler isstarted by asnlct : conpi | e/ 1 with default options, or asnlct : conpi | e/ 2 if explicit options
aregiven.

Example;

asnlct:compile("H323-MESSAGES.asnl").

Thisequals:

asnlct:compile("H323-MESSAGES.asnl", [ber]).

If PER encoding is wanted:

4 | Ericsson AB. All Rights Reserved.: ASN.1

1.3 Getting Started

asnlct:compile("H323-MESSAGES.asnl", [per]).

The generic encode and decode functions can be called as follows:

'"H323-MESSAGES' :encode('SomeChoiceType',{call,<<"octetstring">>}).
'"H323-MESSAGES' :decode('SomeChoiceType',Bytes).
Runtime Functions

When an ASN.1 specification is compiled with option ber ,theasnlrt ni f moduleandthe NIFlibrary inasnl/
priv_dir areneeded at runtime.

By calling functioni nf o/ 0 in agenerated module, you get information about which compiler options were used.

Errors

Errors detected at compile-time are displayed on the screen together with line numbersindicating where in the source
file the respective error was detected. If no errors are found, an Erlang ASN.1 moduleis created.

The runtime encoders and decoders execute within a catch and return { ok, Data} or {error, {asnil,
Descri ption}} whereDescri pti on isan Erlang term describing the error.

Currently, Descri pti on looks like this: { Error Descri ption, StackTrace}. Applications should not
depend on the exact contents of Descr i pt i on asit could change in the future.

1.3.3 Multi-File Compilation

There are various reasons for using multi-file compilation:

* To choose the name for the generated module, for example, because you need to compile the same specs for
different encoding rules.

e Youwant only one resulting module.

Specify which ASN.1 specs to compile in amodule with extension . set . asn. Choose a module name and provide
the names of the ASN.1 specs. For example, if you have the specsFi | el. asn, Fi | e2. asn, and Fi | 3. asn,
your module MyModul e. set . asn looks asfollows:

Filel.asn
File2.asn
File3.asn

If you compile with the following, the result is one merged module MyMbdul e. er | with the generated code from
the three ASN. 1 specs:

~> erlc MyModule.set.asn

1.3.4 Remark about Tags

Tags used to be important for all users of ASN.1, because it was necessary to add tags manually to certain constructs
in order for the ASN.1 specification to be valid. Example of an old-style specification:

Tags DEFINITIONS ::=

BEGIN
Afters ::= CHOICE { cheese [0] IA5String,
dessert [1] IA5String }
END

Ericsson AB. All Rights Reserved.: ASN.1 | 5

1.3 Getting Started

Without the tags (the numbers in square brackets) the ASN.1 compiler refused to compile thefile.

In 1994 the globa tagging mode AUTOVATI C TAGS was introduced. By putting AUTOVATI C TAGS in the
module header, the ASN.1 compiler automatically adds tags when needed. The following is the same specification
in AUTOVATI C TAGS mode:

Tags DEFINITIONS AUTOMATIC TAGS ::=

BEGIN
Afters ::= CHOICE { cheese IA5String,
dessert IA5String }
END

Tags are not mentioned any morein this User's Guide.

1.3.5 ASN.1 Types

This section describes the ASN.1 types including their functionality, purpose, and how values are assigned in Erlang.
ASN.1 has both primitive and constructed types:

Primitive Types Constructed Types
BOOLEAN SEQUENCE

INTEGER SET

REAL CHOICE

NULL SET OF and SEQUENCE OF
ENUMERATED ANY

BIT STRING ANY DEFINED BY
OCTET STRING EXTERNAL

Character Strings EMBEDDED PDV
OBJECT IDENTIFIER CHARACTER STRING
Object Descriptor

TIME Types

Table 3.1: Supported ASN.1 Types

The values of each ASN.1 type have their own representation in Erlang, as described in the following sections.
Users must provide these values for encoding according to the representation, as shown in the following example:

Operational ::= BOOLEAN --ASN.1 definition

6 | Ericsson AB. All Rights Reserved.: ASN.1

1.3 Getting Started

In Erlang code it can look as follows:

Val = true,
{ok,Bytes} = MyModule:encode('Operational', Val),

BOOLEAN

Booleans in ASN.1 express values that can be either TRUE or FALSE. The meanings assigned to TRUE and FALSE
are outside the scope of this text.

In ASN.1 it is possible to have:

Operational ::= BOOLEAN

Assigning avalue to type Qper at i onal in Erlang is possible by using the following Erlang code:
Myvarl = true,

Thus, in Erlang the atomst r ue and f al se are used to encode a boolean value.

INTEGER

ASN.1 itself specifies indefinitely large integers. Erlang systems with version 4.3 and higher support very large
integers, in practice indefinitely large integers.

The concept of subtyping can be applied tointegersand to other ASN.1 types. The detail sof subtyping are not explained
here; for more information, see X.680. Various syntaxes are allowed when defining a type as an integer:

T1 ::= INTEGER

T2 ::= INTEGER (-2..7)

T3 ::= INTEGER (0..MAX)

T4 ::= INTEGER (0<..MAX)

T5 ::= INTEGER (MIN<..-99)

T6 ::= INTEGER {red(0),blue(l),white(2)}

The Erlang representation of an ASN.1 | NTEGER is an integer or an atom if aNarmed Nunber Li st (seeT6 in
the previous list) is specified.

Thefollowing is an example of Erlang code that assigns values for the typesin the previous list:

Tlvalue = 0,
T2value = 6,
Tévaluel = blue,
Tévalue2 = 0,
Tévalue3 = white

These Erlang variables are now bound to valid instances of ASN.1 defined types. This style of value can be passed
directly to the encoder for transformation into a series of bytes.

The decoder returns an atom if the value correspondsto asymbol inthe Named Number Li st .

REAL
Thefollowing ASN.1 typeis used for real numbers:

R1 ::= REAL

It isassigned avalue in Erlang as follows:

Ericsson AB. All Rights Reserved.: ASN.1 | 7

1.3 Getting Started

Rlvaluel
Rlvalue2

"2.14",
{256,160, -2},

Inthelast line, notice that the tuple {256,10,-2} isthe real number 2.56 in a special notation, which encodesfaster than
simply stating the number as" 2. 56" . The arity three tupleis{ Mant i ssa, Base, Exponent }, that is, Mantissa
* BaseExponent.

NULL

The type NULL is suitable where supply and recognition of avalue isimportant but the actual value is not.

Notype ::= NULL

Thistypeisassigned in Erlang as follows:

N1 = 'NULL',
The actual value isthe quoted atom ' NULL' .

ENUMERATED

The type ENUMERATED can be used when the value you want to describe can only take one of a set of predefined
values. Example:

DaysOfTheWeek ::= ENUMERATED {
sunday(1),monday(2),tuesday(3),
wednesday(4),thursday(5),friday(6),saturday(7) }

For example, to assign aweekday valuein Erlang, usethe sameatom asinthe Enuner at i ons of thetype definition:

Dayl = saturday,

The enumerated typeis similar to an integer type, when defined with a set of predefined values. The differenceis that
an enumerated type can only have specified values, whereas an integer can have any value.

BIT STRING

Thetype BI T STRI NG can be used to model information that is made up of arbitrary length series of bits. It is
intended to be used for selection of flags, not for binary files.

INASN.1, BI T STRI NGdefinitions can look as follows:

Bitsl ::
Bits2 ::

BIT STRING
BIT STRING {foo(@),bar(1l),gnu(2),gnome(3),punk(14)}

The following two notations are available for representation of Bl T STRI NG values in Erlang and as input to the
encode functions:

» A bitstring. By default, aBl T STRI NGwith no symbolic names is decoded to an Erlang bitstring.

« Alist of atoms corresponding to atomsin the NanedBi t Li st intheBlI T STRI NGdefinition. A BI T
STRI NGwith symbolic names is always decoded to the format shown in the following example:

8 | Ericsson AB. All Rights Reserved.: ASN.1

1.3 Getting Started

BitslVall = <<0:1,1:1,0:1,1:1,1:1>>,
Bits2Vall = [gnu,punk],

Bits2Val2 = <<2#1110:4>>,

Bits2Val3 = [bar,gnu,gnome],

Bi t s2Val 2 and Bi t s2Val 3 denote the same value.

Bi t s2Val 1 isassigned symbolic values. The assignment means that the bits corresponding to gnu and punk, that
is, bits 2 and 14 are set to 1, and the rest are set to 0. The symbolic values are shown as a list of values. If a named
value, which is not specified in the type definition, is shown, a runtime error occurs.

Bl T STRI NGs can aso be subtyped with, for example, a SI ZE specification:

Bits3 ::= BIT STRING (SIZE(0..31))

This means that no bit higher than 31 can be set.
Deprecated Representations for BIT STRING

In addition to the representations described earlier, the following deprecated representations are available if the
specification has been compiled with option | egacy_er | ang_t ypes:

e Aaalist of binary digits (0 or 1). Thisformat is accepted as input to the encode functions, and aBl T STRI NG
is decoded to this format if option legacy bit_stringis given.
« As{Unused, Bi nary} where Unused denotes how many trailing zero-bits 0-7 that are unused in the least

significant bytein Bi nary. Thisformat is accepted as input to the encode functions, and aBl T STRI NGis
decoded to thisformat if conpact _bi t _st ri ng has been given.

* Asahexadecimal number (or an integer). Avoid thisasit iseasy to misinterpret aBl T STRI NGvalue in this
format.

OCTET STRING

OCTET STRI NGisthesimplest of all ASN.1types. OCTET STRI NGonly moves or transfers, for example, binary
files or other unstructured information complying with two rules: the bytes consist of octets and encoding is not
required.

Itis possible to have the following ASN.1 type definitions:

01 ::
02 ::

OCTET STRING
OCTET STRING (SIZE(28))

With the following example assignments in Erlang:

01val
02vVal

<<17,13,19,20,0,0,255,254>>,
<<"must be exactly 28 chars....">>,

By default, an OCTET STRI NGis always represented as an Erlang binary. If the specification has been compiled
withoption| egacy_er | ang_t ypes, the encode functions accept both lists and binaries, and the decode functions
decode an OCTET STRI NGto alist.

Character Strings

ASN.1 supports awide variety of character sets. The main difference between an OCTET STRI NG and a character
string isthat the OCTET STRI NG has no imposed semantics on the bytes delivered.

However, when using, for example, IA5String (which closely resembles ASCII), byte 65 (in decimal notation) means
character 'A'.

Ericsson AB. All Rights Reserved.: ASN.1 | 9

1.3 Getting Started

For example, if adefined typeisto be aVideotexString and an octet is received with the unsigned integer value X, the
octet isto be interpreted as specified in standard ITU-T T.100, T.101.

The ASN.1 to Erlang compiler does not determine the correct interpretation of each BER string octet value with
different character strings. The application is responsible for interpretation of octets. Therefore, from the BER string
point of view, octets are very similar to character strings and are compiled in the same way.

When PER is used, there is a significant difference in the encoding scheme between OCTET STRI NGs and other
strings. The constraints specified for atype are especially important for PER, where they affect the encoding.

Examples:
Digs ::= NumericString (SIZE(1..3))
TextFile ::= IA5String (SIZE(O..64000))

The corresponding Erlang assignments:

DigsVall = "456",

DigsVal2 = "123",

TextFileVall = "abc...xyz...",

TextFilevVal2 = [88,76,55,44,99,121 a lot of characters here]

TheErlang representation for "BMPString” and "Universal String" iseither alist of ASCII valuesor alist of quadruples.
The quadruple representation associates to the Unicode standard representation of characters. The ASCII characters
are al represented by quadruples beginning with three zeros like { 0,0,0,65} for character 'A'. When decoding avalue
for these strings, the result isalist of quadruples, or integers when the value is an ASCII character.

The following example shows how it works. Assume the following specification isin filePri nSt ri ngs. asnl:

PrimStrings DEFINITIONS AUTOMATIC TAGS ::=
BEGIN

BMP ::= BMPString
END

Encoding and decoding some strings:

1> asnlct:compile('PrimStrings', [ber]).

ok

2> {ok,Bytesl} = 'PrimStrings':encode('BMP', [{0,0,53,53},{0,0,45,56}]).
{ok,<<30,4,53,54,45,56>>}

3> 'PrimStrings':decode('BMP', Bytesl).

{ok, [{0,0,53,53},{0,0,45,56}1}

4> {ok,Bytes2} = 'PrimStrings':encode('BMP', [{0,0,53,53},{0,0,0,65}]).
{ok,<<30,4,53,53,0,65>>}

5> 'PrimStrings':decode('BMP', Bytes2).

{ok,[{0,0,53,53},65]1}

6> {ok,Bytes3} = 'PrimStrings':encode('BMP', "BMP string").
{ok,<<30,20,0,66,0,77,0,80,0,32,0,115,0,116,0,114,0,105,0,110,0,103>>}
7> 'PrimStrings':decode('BMP', Bytes3).

{ok,"BMP string"}

Type UTF8String is represented as a UTF-8 encoded binary in Erlang. Such binaries can be created
directly using the binary syntax or by converting from a list of Unicode code points using function
uni code: characters_to_binary/ 1.

The following shows examples of how UTF-8 encoded binaries can be created and manipulated:

10 | Ericsson AB. All Rights Reserved.: ASN.1

1.3 Getting Started

1> Gs = "MoW ManeHbkuin THOM".
[10652,1086,1081,32,1084,1072,1083,1077,1085,1100,1082,1080,
1081,32,1043,1085,1086,1084]
2> Gbin = unicode:characters to binary(Gs).
<<208,156,208,190,208,185,32,208,188,208,176,208,187,208,
181,208,189,209,140,208,186,208,184,208,185,32,208,147,
208, ...>>
3> Gbin = <<"Moi ManeHbkuit THoM"/utf8>>.
<<208,156,208,190,208,185,32,208,188,208,176,208,187,208,
181,208,189,209,140,208,186,208,184,208,185,32,208,147,
208, ...>>
4> Gs = unicode:characters to list(Gbin).
[10652,1086,1081,32,1084,1072,1083,1077,1085,1100,1082,1080,
1081,32,1043,1085,1086,1084]

For details, see the unicode modulein STDLIB.
In the following example, this ASN.1 specification is used:

UTF DEFINITIONS AUTOMATIC TAGS ::=
BEGIN

UTF ::= UTF8String
END

Encoding and decoding a string with Unicode characters:

5> asnlct:compile('UTF', [berl]).

ok

6> {ok,Bytesl} = 'UTF':encode('UTF', <<"THoM"/utf8>>).
{ok,<<12,8,208,147,208,189,208,190,208,188>>}
7> {ok,Binl} = 'UTF':decode('UTF', Bytesl).
{ok,<<208,147,208,189,208,190,208,188>>}

8> io:format("~ts\n", [Binl]).

HoM

ok

9> unicode:characters to list(Binl).
[1043,1085,1086,1084]

OBJECT IDENTIFIER

Thetype OBJECT | DENTI FI ERisused whenever auniqueidentity isrequired. An ASN.1 module, atransfer syntax,
and so on, isidentified with an OBJECT | DENTI FI ER. Assume the following example:

0id ::= OBJECT IDENTIFIER

Therefore, the following example isavalid Erlang instance of type'Oid'":

0idvall = {1,2,55},

The OBJECT | DENTI FI ER value is simply atuple with the consecutive values, which must be integers.

The first value is limited to the values O, 1, or 2. The second value must be in the range 0..39 when the first value
isOor1.

The OBJECT | DENTI FI ER is an important type and it is widely used within different standards to identify
various objects uniquely. Dubuisson: ASN.1 - Communication Between Heterogeneous Systems includes an easy-to-
understand description of the use of OBJECT | DENTI FI ER.

Ericsson AB. All Rights Reserved.: ASN.1 | 11

1.3 Getting Started

Object Descriptor

Values of thistype can be assigned a value as an ordinary string as follows:

"This is the value of an Object descriptor"

TIME Types

Two time types are defined within ASN.1: Generalized Time and Universal Time Coordinated (UTC). Both are
assigned a value as an ordinary string within double quotes, for example, "19820102070533.8".

For DER encoding, the compiler does not check the validity of the time values. The DER requirements upon those
strings are regarded as a matter for the application to fulfill.

SEQUENCE

The structured types of ASN.1 are constructed from other typesin amanner similar to the concepts of array and struct
inC.

A SEQUENCE in ASN.1 is comparable with a struct in C and a record in Erlang. A SEQUENCE can be defined as
follows:

Pdu ::= SEQUENCE {
a INTEGER,
b REAL,
c OBJECT IDENTIFIER,
d NULL }

This is a 4-component structure called Pdu. By default, a SEQUENCE is represented by a record in Erlang. It can
also be represented as a map; see Map representation for SEQUENCE and SET. For each SEQUENCE and SET in an
ASN.1 module an Erlang record declaration is generated. For Pdu, arecord like the following is defined:

-record('Pdu',{a, b, c, d}).

The record declarations for amodule Mare placed in aseparate M hr | file.
Values can be assigned in Erlang as follows:

MyPdu = #'Pdu'{a=22,b=77.99,c={0,1,2,3,4},d="NULL"'}.

The decode functions return arecord as result when decoding a SEQUENCE or a SET.

A SEQUENCE and a SET can contain a component with a DEFAULT keyword followed by the actual value, which
isthe default value. The DEFAULT keyword means that the application doing the encoding can omit encoding of the
value, which results in fewer bytesto send to the receiving application.

An application can use the atom asnl_DEFAULT to indicate that the encoding is to be omitted for that position in
the SEQUENCE.

Depending on the encoding rules, the encoder can also compare the given value to the default value and automatically
omit the encoding if the values are equal. How much effort the encoder makes to compare the values depends on the
encoding rules. The DER encoding rules forbid encoding a value equal to the default value, so it has a more thorough
and time-consuming comparison than the encoders for the other encoding rules.

In the following example, this ASN.1 specification is used:

12 | Ericsson AB. All Rights Reserved.: ASN.1

1.3 Getting Started

File DEFINITIONS AUTOMATIC TAGS ::=
BEGIN
Seql ::= SEQUENCE {

a INTEGER DEFAULT 1,

b Seq2 DEFAULT {aa TRUE, bb 15}

}

Seq2 ::= SEQUENCE {
aa BOOLEAN,
bb INTEGER

}

Seq3 ::= SEQUENCE {
bs BIT STRING {a(0), b(l), c(2)} DEFAULT {a, c}
}

END

Example where the BER encoder is able to omit encoding of the default values:

1> asnlct:compile('File', [ber]).

ok

2> 'File':encode('Seql', {'Seql',asnl DEFAULT,asnl DEFAULT}).
{ok,<<48,0>>}

3> 'File':encode('Seql', {'Seql',1,{'Seq2',6true,15}}).
{ok,<<48,0>>}

Example withanamed BI T STRI NGwhere the BER encoder does not omit the encoding:

4> 'File':encode('Seq3', {'Seq3',asnl DEFAULT).
{ok,<<48,0>>}

5> 'File':encode('Seq3', {'Seq3',<<16#101:3>>).
{ok,<<48,4,128,2,5,160>>}

The DER encoder omits the encoding for the same Bl T STRI NG

6> asnlct:compile('File', [ber,der]).

ok

7> 'File':encode('Seq3', {'Seq3',asnl DEFAULT).
{ok,<<48,0>>}

8> 'File':encode('Seq3', {'Seq3',<<16#101:3>>).
{ok,<<48,0>>}

SET

In Erlang, the SET typeis used exactly as SEQUENCE. Notice that if BER or DER encoding rules are used, decoding

a SET is slower than decoding a SEQUENCE because the components must be sorted.
Extensibility for SEQUENCE and SET

When a SEQUENCE or SET contains an extension marker and extension components as the following, the type can

get more components in newer versions of the ASN.1 spec:

SExt ::= SEQUENCE {
a INTEGER,

b BOOLEAN }

Ericsson AB. All Rights Reserved.: ASN.1 | 13

1.3 Getting Started

In this case it has got a new component b. Thus, incoming messages that are decoded can have more or fever
components than this one.

The component b is treated as an original component when encoding a message. In this case, as it is not an optional
element, it must be encoded.

During decoding, the b field of the record gets the decoded value of the b component, if present, otherwise the value
asnl_ NOVALUE.

Map representation for SEQUENCE and SET
If the ASN.1 module has been compiled with option naps, the types SEQUENCE and SET are represented as maps.
In the following example, this ASN.1 specification is used:

File DEFINITIONS AUTOMATIC TAGS ::=
BEGIN
Seql ::= SEQUENCE {

a INTEGER DEFAULT 42,

b BOOLEAN OPTIONAL,

¢ IA5String

}
END

Optional fields are to be omitted from the map if they have no value:

1> asnlct:compile('File', [per,maps]).

ok

2> {ok,E} = 'File':encode('Seql', #{a=>0,c=>"string"}).
{ok,<<128,1,0,6,115,116,114,105,110,103>>}

When decoding, optional fields will be omitted from the map:
3> 'File':decode('Seql', E).
{ok,#{a => 0,c => "string"}}

Default values can be omitted from the map:
4> {ok,E2} = 'File':encode('Seql', #{c=>"string"}).
{ok,<<0,6,115,116,114,105,110,103>>}

5> 'File':decode('Seql', E2).
{ok,#{a => 42,c => "string"}}

Itisnot allowed to usethe atomsasnl_VALUE and asnl_DEFAULT with maps.

CHOICE
Thetype CHO CE is aspace saver and is similar to the concept of a'union’ in C.
Assume the following:

14 | Ericsson AB. All Rights Reserved.: ASN.1

1.3 Getting Started

SomeModuleName DEFINITIONS AUTOMATIC TAGS ::=

BEGIN
T ::= CHOICE {

X REAL,

y INTEGER,

z OBJECT IDENTIFIER }
END

It isthen possible to assign values as follows:

Tvall = {y,17},
Tval2 = {z,{0,1,2}},
A CHO CE vaue is aways represented as the tuple {ChoiceAlternative, Val } where

Choi ceAl t er nat i ve isan atom denoting the selected choice aternative.
Extensible CHOICE

When a CHO CE contains an extension marker and the decoder detects an unknown aternative of the CHO CE, the
valueisrepresented as follows:

{asnl ExtAlt, BytesForOpenType}
Here Byt esFor OpenType isalist of bytes constituting the encoding of the "unknown" CHO CE alternative.

SET OF and SEQUENCE OF

The types SET OF and SEQUENCE OF correspond to the concept of an array in several programming languages.
The Erlang syntax for both typesis straightforward, for example:

Arrl ::
Arr2 ::

SET SIZE (5) OF INTEGER (4..9)
SEQUENCE OF OCTET STRING

In Erlang the following can apply:

ArrlVal
Arr2Val

[4,5,6,7,8],
["abc",[14,34,54],"Octets"],

Notice that the definition of type SET OF implies that the order of the components is undefined, but in practice there
isno difference between SET OF and SEQUENCE OF. The ASN.1 compiler for Erlang does not randomize the order
of the SET OF components before encoding.

However, for a value of type SET OF, the DER encoding format requires the elements to be sent in ascending
order of their encoding, which implies an expensive sorting procedure in runtime. Thereforeit is recommended to use
SEQUENCE OF instead of SET OF if possible.

ANY and ANY DEFINED BY

The types ANY and ANY DEFI NED BY have been removed from the standard since 1994. It is recommended not to
use these types any more. They can, however, exist in some old ASN.1 modules. Theideawith this type was to leave
a"hole" in a definition where it was possible to put unspecified data of any kind, even non-ASN.1 data.

A value of thistypeisencoded asan open type.

Instead of ANY and ANY DEFI NED BY, it is recommended to usei nf or mati on obj ect cl ass,table
constrai nt s, and par amet eri zat i on. In particular the construct TYPE- | DENTI FI ER. @'ype accomplish
the same as the deprecated ANY.

Ericsson AB. All Rights Reserved.: ASN.1 | 15

1.3 Getting Started

See a'so Information object.

EXTERNAL, EMBEDDED PDV, and CHARACTER STRING

The types EXTERNAL, EMBEDDED PDV, and CHARACTER STRI NG are used in presentation layer negotiation.
They are encoded according to their associated type, see X.680.

The type EXTERNAL had a slightly different associated type before 1994. X.691 states that encoding must follow the
older associated type. So, generated encode/decode functions convert values of the newer format to the older format
before encoding. Thisimpliesthat it is allowed to use EXTERNAL type values of either format for encoding. Decoded
values are always returned in the newer format.

Embedded Named Types

The structured types previously described can have other named types as their components. The general syntax to
assign a value to component C of anamed ASN.1 type T in Erlang isthe record syntax #' T' {' C =Val ue} . Here
Val ue can be avalue of yet another type T2, for example:

EmbeddedExample DEFINITIONS AUTOMATIC TAGS ::=
BEGIN
B ::= SEQUENCE {

a Arrl,

b T}

Arrl ::= SET SIZE (5) OF INTEGER (4..9)

T ::= CHOICE {
X REAL,
y INTEGER,
z OBJECT IDENTIFIER }
END

SEQUENCE b can be encoded as followsin Erlang:

1> 'EmbeddedExample':encode('B', {'B',[4,5,6,7,8],{x,"7.77"}}).
{ok,<<5,56,0,8,3,55,55,55,46,69,45,50>>}

1.3.6 Naming of Records in .hrl Files

When the option maps isgiven, no . hrl fileswill be generated. The rest of this section describes the behavior of
the compiler when maps is not used.

When an ASN.1 specificationiscompiled, all defined types of type SET or SEQUENCE result in acorresponding record
inthe generated . hr | file. Thisis because the values for SET and SEQUENCE are represented as records by default.

Some special cases of this functionality are presented in the next section.

Embedded Structured Types

In ASN.1 it is also possible to have components that are themselves structured types. For example, it is possible to
have the following:

16 | Ericsson AB. All Rights Reserved.: ASN.1

1.3 Getting Started

Emb ::= SEQUENCE {
a SEQUENCE OF OCTET STRING,
b SET {
a INTEGER,
b INTEGER DEFAULT 66},
¢ CHOICE {
a INTEGER,
b FooType } }

FooType ::= [3] VisibleString

The following records are generated because of type Enb:

-record('Emb,{a, b, c}).
-record('Emb b',{a, b = asnl DEFAULT}). % the embedded SET type

Values of type Enb can be assigned as follows:

V = #'Emb'{a=["qqqq",[1,2,255]],
b = #'Emb _b'{a=99},
c ={b,"Can you see this"}}.

For an embedded type of type SEQUENCE/SET in a SEQUENCE/SET, the record name is extended with an underscore
and the component name. If the embedded structure is deeper with the SEQUENCE, SET, or CHO CE typesintheline,
each component name/alternative name is added to the record name.

Example:

Seq ::= SEQUENCE{
a CHOICE{
b SEQUENCE {
c INTEGER
}

}

This resultsin the following record:

-record('Seq a b',{c}).

If the structured type has a component with an embedded SEQUENCE OF/SET OF which embedded typeinturnis
a SEQUENCE/SET, it gives arecord with the SEQUENCE OF/SET OF addition asin the following example:

Seq ::= SEQUENCE {
a SEQUENCE OF SEQUENCE {

b
}
¢ SET OF SEQUENCE {
d
}

}

Thisresultsin the following records:

-record('Seq a SEQOF'{b}).
-record('Seq c SETOF'{d}).

Ericsson AB. All Rights Reserved.: ASN.1 | 17

1.3 Getting Started

A parameterized type is to be considered as an embedded type. Each time such atypeis referenced, an instance of it
is defined. Thus, in the following example a record with name ' Seq_b' isgenerated in the . hr | file and is used
to hold vaues:

Seq ::= SEQUENCE {
b PType{INTEGER}

PType{T} ::= SEQUENCE{
id T
}

Recursive Types
Types that refer to themselves are called recursive types. Example:

Rec ::= CHOICE {
nothing NULL,
something SEQUENCE {
a INTEGER,
b OCTET STRING,
c Rec }}

Thisis alowed in ASN.1 and the ASN.1-to-Erlang compiler supports this recursive type. A value for this type is
assigned in Erlang asfollows:

V = {something,#'Rec_something'{a = 77,
"some octets here",

{nothing, '"NULL'}}}.

C

1.3.7 ASN.1 Values

Values can be assigned to an ASN.1 type within the ASN.1 code itself, as opposed to the actions in the previous
section where avaluewas assigned to an ASN.1 typein Erlang. Thefull value syntax of ASN.1 issupported and X.680
describesin detail how to assign valuesin ASN.1. A short example:

TT ::= SEQUENCE {
a INTEGER,
b SET OF OCTET STRING }

tt TT ::= {a 77,b {"kalle","kula"}}

The value defined here can be used in several ways. It can, for example, be used as the value in some DEFAULT
component:

SS ::= SET {
s OBJECT IDENTIFIER,
val TT DEFAULT tt }

It can also be used frominside an Erlang program. If thisASN.1 codeisdefinedin ASN.1 moduleVal ues, the ASN.1
valuet t can be reached from Erlang asafunction call to' Val ues' : tt () asinthefollowing example:

18 | Ericsson AB. All Rights Reserved.: ASN.1

1.3 Getting Started

1> Val = 'Values':tt().

{'TT',77,["kalle","kula"]}

2> {ok,Bytes} = 'Values':encode('TT',Val).

{ok,<<48,18,128,1,77,161,13,4,5,107,97,108,108,101,4,4,
107,117,108,97>>}

4> 'Values':decode('TT',Bytes).

{ok,{'TT"',77,["kalle","kula"]}}

5>

This example showsthat afunction is generated by the compiler that returns avalid Erlang representation of thevalue,
although the value is of acomplex type.

Furthermore, if the option maps is not used, a macro is generated for each value in the . hr | file. So, the defined
valuet t can also be extracted by ?t t in application code.

1.3.8 Macros
The type MACROis not supported. It is no longer part of the ASN.1 standard.

1.3.9 ASN.1 Information Objects (X.681)

Information Object Classes, I nformation Objects, and Information Object Sets (in thefollowing called classes, objects,
and object sets, respectively) are defined in the standard definition X.681. Only a brief explanation is given here.

These constructs makes it possible to define open types, that is, values of that type can be of any ASN.1 type. Also,
relationships can be defined between different types and values, as classes can hold types, values, objects, object sets,
and other classesin their fields. A class can be defined in ASN.1 asfollows:

GENERAL-PROCEDURE ::= CLASS {
&Message,
&Reply OPTIONAL,
&Error OPTIONAL,
&id PrintableString UNIQUE

}

WITH SYNTAX {
NEW MESSAGE &Message
[REPLY &Reply]
[ERROR &Error]
ADDRESS &id

}

An object is an instance of aclass. An object set is a set containing objects of a specified class. A definition can look
asfollows:

objectl GENERAL-PROCEDURE ::= {
NEW MESSAGE PrintableString
ADDRESS "home"

}

object2 GENERAL-PROCEDURE ::= {

NEW MESSAGE INTEGER
ERROR INTEGER
ADDRESS "remote"

}

The object obj ect 1 isan instance of the class GENERAL - PROCEDURE and has one type field and one fixed type
value field. The object obj ect 2 has aso an optional field ERROR, which is a type field. The field ADDRESS

Ericsson AB. All Rights Reserved.: ASN.1 | 19

1.3 Getting Started

is a UNI QUE field. Objects in an object set must have unique values in their UNI QUE field, as in GENERAL-
PROCEDURES:

GENERAL - PROCEDURES GENERAL-PROCEDURE ::= {
objectl | object2}

Y ou cannot encode a class, object, or object set, only refer to it when defining other ASN.1 entities. Typicaly you
refer to a class as well as to object sets by table constraints and component relation constraints (X.682) in ASN.1
types, asin the following:

StartMessage ::= SEQUENCE {
msgId GENERAL-PROCEDURE.&id ({GENERAL-PROCEDURES}),
content GENERAL-PROCEDURE.&Message ({GENERAL-PROCEDURES}{@msgId}),
b

Intype St art Message, the constraint following field cont ent tellsthat in avalue of type St ar t Message the
valueinfield cont ent must come from the same object that is chosen by field nsgl d.

So, the value #' St art Message' { nsgl d="hone", content="Any Printable String"} is lega
to encode as a StartMessage vaue. However, the value #' Start Message' { nsgl d="renote",

content="Sonme String"} isillega asthe congtraint in St art Message tells that when you have chosen a
value from a specific object in object set GENERAL - PROCEDURES in field msgl d, you must choose a value from
that same object in the content field too. In this second case, it isto be any | NTEGER value.

St art Message caninfield cont ent be encoded with avalue of any type that an object in object set GENERAL -
PROCEDURES hasinits NEW MESSAGE field. Thisfield refersto atype field &vessage intheclass. Field msgl d
isawaysencoded asaPri nt abl eSt ri ng, asthefield refersto afixed type in the class.

In practice, object sets are usually declared to be extensible so that more objects can be added to the set later.
Extensibility isindicated as follows:

GENERAL - PROCEDURES GENERAL-PROCEDURE ::= {
objectl | object2, ...}

When decoding a type that uses an extensible set constraint, it is always possible that the value in field UNI QUE is
unknown (that is, the type has been encoded with alater version of the ASN.1 specification). The unencoded datais
then returned wrapped in atuple as follows:

{asnl OPENTYPE,Binary}

Here Bi nary is an Erlang binary that contains the encoded data. (If option | egacy_er | ang_t ypes has been
given, only the binary isreturned.)

1.3.10 Parameterization (X.683)

Parameterization, which is defined in X.683, can be used when defining types, values, value sets, classes, objects, or
object sets. A part of adefinition can be supplied as a parameter. For example, if a Type isused in a definition with
acertain purpose, you want the type name to express the intention. This can be done with parameterization.

When many types (or another ASN.1 entity) only differ in some minor cases, but the structure of the typesis similar,
only one general type can be defined and the differences can be supplied through parameters.

Example of use of parameterization:

20 | Ericsson AB. All Rights Reserved.: ASN.1

1.4 Specialized Decodes

General{Type} ::= SEQUENCE
{
number INTEGER,
string Type
)
Tl ::= General{PrintableString}

T2 ::= General{BIT STRING}

An example of avalue that can be encoded astype T1 is{ 12, "hel | 0"}.

Notice that the compiler does not generate encode/decode functions for parameterized types, only for the instances of
the parameterized types. Therefore, if afile containsthetypes Gener al {}, T1, and T2 asin the previous example,
encode/decode functions are only generated for T1 and T2.

1.4 Specialized Decodes

When performanceis of highest priority and you are interested in alimited part of the ASN.1 encoded message before
deciding what to do with the rest of it, an option is to decode only this small part. The situation can be a server that
has to decide the addressee of a message. The addressee can be interested in the entire message, but the server can be
a bottleneck that you want to spare any unnecessary load.

Instead of making two complete decodes (the normal case of decode), one in the server and one in the addresseg, it
isonly necessary to make one specialized decode(in the server) and another compl ete decode(in the addressee). This
section describes the following two specialized decodes, which support to solve this and similar problems:

» Exclusive decode

e Selected decode

Thisfunctionality isonly provided when using BER (option ber).

1.4.1 Exclusive Decode

Thebasic ideawith exclusive decodeisto specify which parts of the message you want to exclude from being decoded.
These parts remain encoded and are returned in the value structure as binaries. They can be decoded in turn by passing
them to a certain decode_part/ 2 function. The performance gain is high for large messages. You can do an
exclusive decode and later one or more decodes of the parts, or a second complete decode instead of two or more
complete decodes.

Procedure
To perform an exclusive decode:

e Step 1: Decide the name of the function for the exclusive decode.
e Step 2: Include the following instructions in a configuration file:
e The name of the exclusive decode function
e The name of the ASN.1 specification
* A notation that tells which parts of the message structure to be excluded from decode

e Step 3 Compile with the additional option asnlconf i g. The compiler searches for a configuration file with
the same name as the ASN. 1 specification but with extension . asnlconf i g. This configuration fileis not the
same as used for compilation of a set of files. See Section Writing an Exclusive Decode I nstruction.

User Interface

The runtime user interface for exclusive decode consists of the following two functions:

Ericsson AB. All Rights Reserved.: ASN.1 | 21

1.4 Specialized Decodes

» A function for an exclusive decode, whose name the user decides in the configuration file

e Thecompiler generatesadecode_part/ 2 function when exclusive decode is chosen. This function decodes
the parts that were left undecoded during the exclusive decode.

Both functions are described in the following.

If the exclusive decode function has, for example, the namedecode_excl usi ve and an ASN.1 encoded message
Bi n isto be exclusive decoded, the call is as follows:

{ok,Excl Message} = 'MyModule':decode exclusive(Bin)

The result Excl _Message has the same structure as a complete decode would have, except for the parts
of the top type that were not decoded. The undecoded parts are on their places in the structure on format
{Type_Key, Undecoded_Val ue}.

Each undecoded part that is to be decoded must be fed into function decode_par t / 2 asfollows:

{ok,Part Message} = 'MyModule':decode part(Type Key,Undecoded Value)

Writing an Exclusive Decode Instruction

Thisinstruction is written in the configuration file in the following format:

Exclusive Decode Instruction = {exclusive decode, {Module Name,Decode Instructions}}.
Module Name = atom()
Decode Instructions = [Decode Instruction]+
Decode Instruction = {Exclusive Decode Function Name,Type List}
Exclusive Decode Function Name = atom()
Type List = [Top Type,Element List]
Element List = [Element]+
Element = {Name,parts} |
{Name,undecoded} |
{Name,Element List}
Top _Type = atom()
Name = atom()
Theinstruction must be avalid Erlang term ended by adot.

InType_Li st the"path" from the top type to each undecoded subcomponentsis described. The top type of the path
isan atom, the name of it. The action on each component/type that follows is described by one of { Nane, part s},
{ Nane, undecoded}, {Nane, El enent List}.

The use and effect of the actions are as follows:

* {Nane, undecoded} - Tellsthat the element isleft undecoded during the exclusive decode. The type of
Nare can be any ASN.1 type. The value of element Narme is returned as a tuple (as mentioned in the previous
section) in the value structure of the top type.

e« {Nane, part s} - Thetype of Nane can be one of SEQUENCE OF or SET OF. The action implies that the
different components of Nane are left undecoded. The value of Narre is returned as a tuple (as mentioned
in the previous section) where the second element isalist of binaries. Thisis because the representation of a

22 | Ericsson AB. All Rights Reserved.: ASN.1

1.4 Specialized Decodes

SEQUENCE OF or aSET OF in Erlangisalist of itsinternal type. Any of the elementsin thislist or the entire
list can be decoded by function decode_part .

e {Nane, El enent _Li st} - Thisaction isused when one or more of the subtypes of Nane isexclusive
decoded.

Nane in these actions can be a component name of a SEQUENCE OF or a SET OF, or a name of an aternative
inaCHO CE.

Example

In this examples, the definitions from the following ASN.1 specification are used:
GUI DEFINITIONS AUTOMATIC TAGS ::=
BEGIN
AEtion ::= SEQUENCE

number INTEGER DEFAULT 15,
handle [0] Handle DEFAULT {number 12, on TRUE}

)
Key ::= [11] EXPLICIT Button
Handle ::= [12] Key
Button ::= SEQUENCE
{
number INTEGER,
on BOOLEAN
}
Window ::= CHOICE
{
vsn INTEGER,
status E
}
Status ::= SEQUENCE
{

state INTEGER,

buttonList SEQUENCE OF Button,

enabled BOOLEAN OPTIONAL,

actions CHOICE {
possibleActions SEQUENCE OF Action,
noOfActions INTEGER

}

}

END

If Button is a top type and it is needed to exclude component nunmber from decode, Type_Li st in
the instruction in the configuration file is [' Butt on' , [{ nunber, undecoded}]]. If you cal the decode
function decode_Butt on_excl usi ve, Decode_l nstruction is {decode_Button_excl usive,
['Button',[{nunmber, undecoded}]]}.

Another top typeisW ndowwhose subcomponent actionsintype St at us and the parts of component but t onLi st
are to be left undecoded. For this type, the function is named decode__ W ndow_excl usi ve. The complete
Excl usi ve_Decode_I nstructi on configuration is asfollows:

{exclusive decode,{'GUI",
[{decode Window_exclusive, ['Window"', [{status, [{buttonList,parts},{actions,undecoded}]1}11},
{decode Button exclusive, ['Button', [{number,undecoded}]]}1}}.

Ericsson AB. All Rights Reserved.: ASN.1 | 23

1.4 Specialized Decodes

Thefollowing figure showsthebytesof aW ndow: st at us message. Thecomponentsbut t onLi st andact i ons
are excluded from decode. Only st at e and enabl ed are decoded when decode__ W ndow_excl usi ve is

called.

slate buttonList enabled actions: pussibleAclions

Figure 4.1: Bytes of a Window:status Message

Compiling GUI . asn including the configuration file is done as follows:

unix> erlc -bber +asnlconfig GUI.asn
erlang> asnlct:compile('GUI', [ber,asnlconfig]).

The module can be used as follows:

24 | Ericsson AB. All Rights Reserved.: ASN.1

1.4 Specialized Decodes

1> Button Msg = {'Button',123,true}.
{'Button',123,true}
2> {ok,Button Bytes} = 'GUI':encode('Button',Button Msg).
{ok, [<<48>>,

[6],

[<<128>>,

[1],

123],

[<<129>>,

[11,

25511}
3> {ok,Exclusive Msg Button} = 'GUI':decode Button exclusive(list to binary(Button Bytes)).
{ok,{'Button', {'Button number',<<28,1,123>>},

true}}

4> 'GUI':decode part('Button number',<<128,1,123>>).
{ok, 123}
5> Window Msg =
{'Window', {status, {'Status', 35,

[{'Button',3,true},
{'Button',4,false},
{'Button',5,true},

{'Button',6,true},
{'Button',7,false},
{'Button',8,true},
{'Button',9,true},
{'Button', 10, false},
{'Button',11,true},
{'Button',12,true},
{'Button',13, false},
{'Button',14,true}],

false,

{possibleActions, [{'Action',16,{'Button',17,true}}1}}}}.
{'Window', {status, {'Status', 35,

[{'Button',3,true},
{'Button',4,false},
{'Button',5,true},

{'Button',6,true},
{'Button',7,false},
{'Button',8,true},
{'Button',9,true},
{'Button', 10, false},
{'Button',11,true},
{'Button',12,true},
{'Button',13, false},
{'Button',14,true}],

false,

{possibleActions, [{'Action',16,{'Button',17,true}}]1}}}}
6> {ok,Window Bytes}='GUI':encode('Window',Window Msg).
{ok, [<<161>>,

[127],
[<<128>>,

8> {ok,{status,{'Status',Int,{Type Key SeqOf,Val SEQOF},

BoolOpt, {Type Key Choice,Val Choice}}}}=

'GUI':decode Window status exclusive(list to binary(Window Bytes)).
{ok, {status, {'Status', 35,

{'Status buttonList', [<<48,6,128,1,3,129,1,255>>,
<<48,6,128,1,4,129,1,0>>,
<<48,6,128,1,5,129,1,255>>,
<<48,6,128,1,6,129,1,255>>,
<<48,6,128,1,7,129,1,0>>,
<<48,6,128,1,8,129,1,255>>,
<<48,6,128,1,9,129,1,255>>,

Ericsson AB. All Rights Reserved.: ASN.1 | 25

1.4 Specialized Decodes

<<48,6,128,1,10,129,1,0>>,

<<48,6,128,1,11,129,1,255>>,

<<48,6,128,1,12,129,1,255>>,

<<48,6,128,1,13,129,1,0>>,

<<48,6,128,1,14,129,1,255>>1},
false,

{'Status_actions',
<<163,21,160,19,48,17,2,1,16,160,12,172,10,171,8,48,6,128,1, ...>>}}}}
10> 'GUI':decode part(Type Key SeqOf,Val SEQOF).

{ok, [{'Button',3,true},

{'Button',4,false},

{'Button',5,true},

{'Button',6,true},

{'Button',7,false},

{'Button',8,true},

{'Button',9,true},

{'Button', 10, false},

{'Button', 11, true},

{'Button',12,true},

{'Button', 13, false},

{'Button',14,true}]}
11> 'GUI':decode part(Type Key SeqOf,hd(Val SEQOF)).
{ok, {'Button',3,true}}
12> 'GUI':decode part(Type Key Choice,Val Choice).
{ok, {possibleActions, [{'Action',616,{'Button',17,true}}1}}

1.4.2 Selective Decode

This specialized decode decodes a subtype of a constructed value and is the fastest method to extract a subvaue. This
decodeistypically used when you want to inspect, for example, aversion number, to be able to decide what to do with
the entire value. Theresult isreturned as{ ok, Val ue} or{error, Reason}.

Procedure
To perform a selective decode:

e Step 1: Include the following instructions in the configuration file:

e The name of the user function
e Thename of the ASN.1 specification
» A notation that tells which part of the type to be decoded

e Step 2: Compile with the additional option asnlconf i g. The compiler searches for a configuration file
with the same name as the ASN.1 specification, but with extension . asnlconfi g. Inthe samefile you can
also provide configuration specifications for exclusive decode. The generated Erlang module has the usual
functionality for encode/decode preserved and the specialized decode functionality added.

User Interface

The only new user interface function is the one provided by the user in the configuration file. The function is started
by the Modul eName: Funct i onName notation.

For example, if the configuration file includes the specification {sel ective_decode,
{' Modul eNane' , [{sel ect ed_decode_W ndow, TypeList}]}} do the selective decode by
{ok, Resul t } =" Modul eNane' : sel ect ed_decode_W ndow EncodedBi nary).

Writing a Selective Decode Instruction

One or more selective decode functions can be described in a configuration file. Use the following notation:

26 | Ericsson AB. All Rights Reserved.: ASN.1

1.4 Specialized Decodes

Selective Decode Instruction = {selective decode, {Module Name,Decode Instructions}}.
Module Name = atom()

Decode Instructions = [Decode Instruction]+

Decode Instruction = {Selective Decode Function Name,Type List}
Selective Decode Function Name = atom()

Type List = [Top Type|Element List]

Element List = Name|List Selector

Name = atom()

List Selector = [integer()]

Theinstruction must be avalid Erlang term ended by adot.

« Mbdul e_Nan® isthe same as the name of the ASN.1 specification, but without the extension.

 Decode_l nstructi on isatuplewith your chosen function name and the components from the top type that
leads to the single type you want to decode. Ensure to choose a name of your function that is not the same as
any of the generated functions.

» Thefirst element of Type_Li st isthetop type of the encoded message. In El enrent _Li st , itisfollowed
by each of the component names that |eads to selected type.

e« EachnameinEl ement _Li st must be a constructed type except the last name, which can be any type.

e List_Sel ect or makesit possible to choose one of the encoded componentsin aa SEQUENCE OF or a
SET OF. Itisaso possible to go further in that component and pick a subtype of that to decode. So, in the
Type_List:[' Wndow , status, buttonList,[1], nunber], component butt onLi st must be
of type SEQUENCE OF or SET OF.

In the example, component nunber of the first of the encoded elements in the SEQUENCE OF but t onLi st is
selected. This applies on the ASN.1 specification in Section Writing an Exclusive Decode Instruction.

Another Example

In this example, the same ASN.1 specification as in Section Writing an Exclusive Decode Instruction is used. The
following isavalid selective decode instruction:

{selective decode,
{'GUI"',
[{selected decode Windowl,
['Window', status,buttonlList,
[1],
number]},
{selected decode Action,
['Action',handle,number]},
{selected decode Window2,
['Window',
status,
actions,
possibleActions,
[1],
handle,number]}1}}.

The first instruction, {sel ected_decode_W ndowd, [W ndow , st at us, butt onLi st,
[1], nunber]} isdescribed in the previous section.

Ericsson AB. All Rights Reserved.: ASN.1 | 27

1.4 Specialized Decodes

The second instruction, { sel ect ed_decode_Action, [' Action', handl e, nunber] }, takes component
nunber in the handl e component of type Acti on. If the value is Val Action = {'Action', 17,
{'Button', 4711, f al se}}, theinterna value 4711 is to be picked by sel ect ed_decode_Acti on. Inan
Erlang terminal it looks as follows:

ValAction = {'Action',17,{'Button',4711, false}}.
{'Action',17,{'Button', 4711, false}}
7> {ok,Bytes}='GUI':encode('Action',ValAction).

8> BinBytes = list to binary(Bytes).
<<48,18,2,1,17,160,13,172,11,171,9,48,7,128,2,18,103,129,1,0>>
9> 'GUI':selected decode Action(BinBytes).

{ok,4711}

10>

Thethirdinstruction,[' W ndow , st at us, acti ons, possi bl eActi ons, [1], handl e, nunber],works
asfollows:

e Step 1: Startswith type W ndow.

e Step 2: Takescomponent st at us of W ndowthat is of type St at us.

e Step 3: Takesactions of type St at us.

e Step 4: Takespossi bl eAct i ons of theinternally defined CHO CE type.

e Step 5: Goesinto the first component of SEQUENCE OF by [1] . That component is of type Act i on.

e Step 6: Takes component handl e.

e Step 7: Takes component nunber of type But t on.

The following figure shows which components are in TypelLi st
[' Wndow , status, acti ons, possi bl eActions, [1], handl e, nunber]:

28 | Ericsson AB. All Rights Reserved.: ASN.1

1.4 Specialized Decodes

Bulleh = SEQUEN

|
huober INTEGEE,
wh BOOLEA™

]

Window .= CHOICE

| d
vsh [NTEGER,
Status g

]

Slatus = SEQUENCE
ol |
slale INTEGER,
buttohList SEQUENCEOF Bution,
chabled BOOLEAN OPTIOMAL,
actions CHOLCE
14 possibleActions SEQUENCE OF Acticn
hoOfactions INTEGER

]
]

Figure 4.2: Elements Specified in Configuration File for Selective Decode of a Subvalue in a Window Message

In the following figure, only the marked element is decoded by sel ect ed_decode_W ndow2:

Ericsson AB. All Rights Reserved.: ASN.1 | 29

1.4 Specialized Decodes

Window stal us incssage [1

3 I N

state buttanlist enabléd aclions: pussibleAdions

nmober hand

humber wh

Figure 4.3: Bytes of a Window:status Message

With the following example, you can examine that both sel ected_decode_W ndow2 and
sel ect ed_decode_ W ndowl decodes the intended subvalue of value Val :

1> Val = {'Window', {status,{'Status', 12,

[{'Button',13,true},

{'Button', 14, false},
{'Button', 15, true},
{'Button', 16, false}],

true,

{possibleActions, [{'Action',17,{'Button', 18, false}},
{'Action',19,{'Button',20,true}},
{'Action',21,{'Button',22,false}}1}}}}

2> {ok,Bytes}='GUI':encode('Window',Val).

3> Bin = list to binary(Bytes).
<<161,101,128,1,12,161,32,48,6,128,1,13,129,1,255,48,6,128,1,14,129,1,0,48,6,128,1,15,129, .. .>>
4> 'GUI':selected decode Windowl(Bin).

{ok, 13}

5> 'GUI':selected decode Window2(Bin).

{ok, 18}

Notice that the value fed into the sel ective decode functions must be a binary.

1.4.3 Performance

To give an indication on the possible performance gain using the specialized decodes, some measures have been
performed. The relative figures in the outcome between selective, exclusive, and complete decode (the normal case)
depend on the structure of the type, the size of the message, and on what level the selective and exclusive decodes
are specified.

30 | Ericsson AB. All Rights Reserved.: ASN.1

1.4 Specialized Decodes

ASN.1 Specifications, Messages, and Configuration

The specifications GUI and MEDIA-GATEWAY-CONTROL were used in the test.

For the GUI specification the configuration was as follows:

{selective decode,
{'GUI",
[{selected decode Windowl,
['Window',
status,buttonList,
[11,
number]},
{selected decode Window2,
['Window',
status,
actions,
possibleActions,
[11,
handle,number]}1}}.
{exclusive decode,

{'GUT",
[{decode Window status exclusive,
['Window',
[{status,

[{buttonList,parts},
{actions,undecoded}1}11}1}}.

The MEDI A- GATEWAY- CONTROL configuration was as follows:

{exclusive decode,
{'MEDIA-GATEWAY-CONTROL"',
[{decode MegacoMessage exclusive,
['MegacoMessage',
[{authHeader,undecoded},
{mess,
[{mId,undecoded},
{messageBody,undecoded}]1}11}1}}.
{selective decode,
{'MEDIA-GATEWAY-CONTROL"',
[{decode MegacoMessage selective,
['MegacoMessage',mess,version]}]1}}.

The corresponding values were as follows:

Ericsson AB. All Rights Reserved.: ASN.1 | 31

href

1.4 Specialized Decodes

{'Window', {status,{'Status',12,
[{'Button',13,true},
{'Button', 14, false},
{'Button',15,true},
{'Button', 16, false},
{'Button',13,true},
{'Button', 14, false},
{'Button',15,true},
{'Button', 16, false},
{'Button',13,true},
{'Button', 14, false},
{'Button',15,true},
{'Button', 16, false}],
true,
{possibleActions,
[{'Action',17,{'Button', 18, false}},
{'Action',19,{'Button',20,true}},
{'Action',21,{'Button',22,false}},
{'Action',17,{'Button', 18, false}},
{'Action',19,{'Button',20,true}},
{'Action',21,{'Button',22,false}},
{'Action',17,{'Button', 18, false}},
{'Action',19,{'Button',20,true}},
{'Action',21,{'Button',22,false}},
{'Action',17,{'Button', 18, false}},
{'Action',19,{'Button',20,true}},
{'Action',21,{'Button',22,false}},
{'Action',17,{'Button', 18, false}},
{'Action',19,{'Button',20,true}},
{'Action',21,{'Button',22,false}},
{'Action',17,{'Button', 18, false}},
{'Action',19,{'Button',20,true}},
{'Action',21,{'Button',22,false}}1}}}}

{'MegacoMessage',asnl NOVALUE,

{'Message', 1,
{ip4Address,
{'IP4Address"',[125,125,125,111],55555}},
{transactions,
[{transactionReply,
{'TransactionReply',50007,asnl NOVALUE,
{actionReplies,

[{'ActionReply',0,asnl NOVALUE,asnl NOVALUE,
[{auditValueReply, {auditResult, {'AuditResult’,
{'TerminationID', [], [255,255,255]},
[{mediaDescriptor,
{'MediaDescriptor',asnl NOVALUE,
{multiStream,
[{'StreamDescriptor',1,
{'StreamParms',
{'LocalControlDescriptor’,
sendRecv,
asnl NOVALUE,
asnl NOVALUE,
[{'PropertyParm',
[0,11,0,7],
[[52,48]1,
asnl NOVALUE}]},
{'LocalRemoteDescriptor’,
[[{'PropertyParm',
[0,0,176,1],
[r4811,
asnl NOVALUE},

32 | Ericsson AB. All Rights Reserved.: ASN.1

1.4 Specialized Decodes

{'PropertyParm
[0,0,176,8],

[[73,78,32,73,80,52,32,49,50,53,46,49,
50,53,46,49,50,53,46,49,49,4911,
asnl NOVALUE},

{'PropertyParm

[0,0,176,15],

[[97,117,100,105,111,32,49,49,49,49,32,
82,84,80,47,65,86,80,32,32,52]1],
asnl NOVALUE},

{'PropertyParm

[0,0,176,12],

[[112,116,105,109,101,58,51,48]11,
asnl NOVALUE}]1},
{'LocalRemoteDescriptor’,

[[{'PropertyParm'

[0,6,176,1],
[r48ll,

asnl NOVALUE},

{'PropertyParm'

[0,0,176,8],

[(73,78,32,73,80,52,32,49,50,52, 46,49, 50,
52,46,49,50,52,46,50,50,50]],
asnl NOVALUE},

{'PropertyParm'
[0,0,176,15],

[[97,117,100,105,111,32,50,50,560,560,32,82,
84,80,47,65,86,80,32,32,52]1],
asnl NOVALUE},

{'PropertyParm'
[0,0,176,12],

[[112,116,105,109,101,58,51,48]1],
asnl_NOVALUE}11}}}131},
{packagesDescriptor,
[{'PackagesItem',[0,11],1},
{'PackagesItem',[0,11],1}]1},
{statisticsDescriptor,
[{'StatisticsParameter',[0,12,0,4],[[49,50,48,48]11},
{'StatisticsParameter',[0,11,0,2],[[54,50,51,48,48]11},
{'StatisticsParameter',[0,12,0,5],[[55,48,48]1},
{'StatisticsParameter',[0,11,0,3]1,[[52,53,49,48,48]1},
{'StatisticsParameter',[0,12,0,6],[[48,46,50]11},
{'StatisticsParameter',[0,12,0,7],[[50,48]11},
{'StatisticsParameter',[0,12,0,8]1,[[52,48]11}1}13}}131}}33133}

The size of the encoded values was 458 bytes for GUI and 464 bytes for MEDI A- GATEWAY- CONTROL.

Results

The ASN.1 specifications in the test were compiled with options ber _bi n,

optimize, driver and

asnlconfi g. Omitting optiondri ver giveshigher valuesfor decode and decode_part . Thesetests have not
been rerun using NIFs, but are expected to perform about 5% better than the linked-in driver.

The test program runs 10000 decodes on the value, resulting in an output with the elapsed time in microseconds for
the total number of decodes.

Function Time (microseconds) | Decode Type ASN.1 Specification | % of Time versus
Complete Decode
decode_MegacoMes3at®iSel ecti ve/|Bel ecti ve MEDI A- GATEVAY- 8.3

CONTRCL

Ericsson AB. All Rights Reserved.: ASN.1 | 33

1.4 Specialized Decodes

decode_MegacoMesgaiE) &xcl usi ve/|Excl usi ve (I\;EalilréElGATEV\AY- 13.8
decode/ 2 4507457 Conpl et e Egiﬁ:;fmTEMAY' 100
sel ect ed_decode A49ERAVL/ 1 Sel ective aul 7.6

sel ect ed_decode 8806RG2/ 1 Sel ective aul 151
decode_ W ndow stE2am3&xcl usi ve/|Excl usi ve caul 21.3
decode/ 2 5889197 Conpl et e aul 100
Table 4.1: Results of Complete, Exclusive, and Selective Decode

It is also of interest to know the relation is between a complete decode, an exclusive decode followed by
decode_part of the excluded parts, and a selective decode followed by a complete decode. Some situations can be
compared to this simulation, for example, inspect a subvalue and later inspect the entire value. The following table

shows figures from this test. The number of loops and the time unit are the same asin the previous test.

Actions Function Time (microseconds) | ASN.1 Specification | % of Timevs.
Complete Decode
MEDI A- GATEWAY-
Conpl et e decode/ 2 4507457 CONTROL 100
Sel ective and |d€code_- VEDI A- GATEWAY-
Conpl et e I\/Bgaco_l\/lessage_— 4881502 CONTROL 108.3
sel ectivel/l
Excl usi ve and |d€code_ MVEDI A- GATEWAY-
decode_part I\/Egaco!\/lassage_- 5481034 CONTROL 112.3
excl usive/ 1
Conpl et e decode/ 2 5889197 aul 100
Sel ective and |3l ected -
Compl et e decode_- 6337636 Gu 107.6
P W ndowd/ 1
Sel ective and |36l ected_-
Compl et e decode_- 6795319 GuU 1154
P W ndow2/ 1
decode_-
Excl usi ve and |W ndow_- 6249200 aul 106.1.
decode_part status_-
excl usive/1l

Table 4.2:

34 | Ericsson AB. All Rights Reserved.: ASN.1

Results of Complete, Exclusive + decode_part, and Selective + complete decodes

1.4 Specialized Decodes

Other ASN.1 types and vaues can differ much from these figures. It is therefore important that you, in every case
where you intend to use either of these decodes, perform some tests that show if you will benefit your purpose.

Final Remarks

The gain of using selective and exclusive decode instead of a complete decode is greater the bigger the value
and the less deep in the structure you have to decode.

Use selective decode instead of exclusive decode if you are interested in only a single subvalue.

Exclusive decode followed by decode_part decodesis attractive if the parts are sent to different serversfor
decoding, or if you in some cases are not interested in al parts.

The fastest selective decode is when the decoded type is a primitive type and not so deep in the structure of
thetop type. sel ect ed_decode_W ndow2 decodes a high constructed value, which explains why this
operation isrelatively slow.

It can vary from case to case which combination of selective/complete decode or exclusive/part decodeis the
fastest.

Ericsson AB. All Rights Reserved.: ASN.1 | 35

1.4 Specialized Decodes

2 Reference Manual

The ASN. 1 application contains modul es with compile-time and runtime support for ASN.1.

36 | Ericsson AB. All Rights Reserved.: ASN.1

asnlct

asnlct

Erlang module

The ASN.1 compiler takesan ASN.1 module asinput and generates a corresponding Erlang module, which can encode
and decode the specified data types. Alternatively, the compiler takes a specification module specifying all input
modul es, and generates amodul e with encode/decode functions. In addition, some generic functions can be used during
development of applications that handles ASN.1 data (encoded as BER or PER).

By default in OTP 17, the representation of the Bl T STRI NG and OCTET STRI NG types as Erlang terms
were changed. Bl T STRI NG values are now Erlang bit strings and OCTET STRI NG values are binaries. Also,
an undecoded open type is now wrapped in an asn1l_OPENTYPE tuple. For details, see BIT STRING, OCTET
STRING, and ASN.1 Information Objects in the User's Guide.

To revert to the old representation of the types, use option| egacy_er | ang_t ypes.

In OTP R16, the options were simplified. The back end is chosen using one of the options ber , per, uper or
j er.Optionsoptini ze,ni f,anddri ver optionsare nolonger necessary (and the ASN.1 compiler generates
awarning if they are used). Options ber _bi n, per _bi n, and uper _bi n options still work, but generates a
warning.

Another change in OTP R16 is that the generated function encode/ 2 always returns a binary. Function
encode/ 2 for the BER back end used to return aniolist.

Exports

compile(Asnlmodule) -> ok | {error, Reason}

compile(Asnlmodule, Options) -> ok | {error, Reason}

Types.
Asnlnodul e = aton() | string()
Options = [Option| A dOption]
Option = ber | per | uper | jer | der | conpact_bit_string
| egacy_bit_string | |egacy_erlang_types | noobj | {n2n, EnunTypeNane}
{outdir, Dir} | {i, IncludeDir} | asnlconfig | undec_rest | no_ok_ wrapper
| {macro_name_prefix, Prefix} | {record_nane_prefix, Prefix} | verbose
warnings_as_errors | determnistic

A dOption = ber | per
Reason term))
Prefix = string()

Compilesthe ASN. 1 module Asn1nodul e and generates an Erlang module Asnlnodul e. er | with encode and
decode functions for the types defined in Asnlnmodul e. For each ASN.1 value defined in the module, an Erlang
function that returns the value in Erlang representation is generated.

Ericsson AB. All Rights Reserved.: ASN.1 | 37

asnlct

If Asnlnodul e isafilename without extension, first " . asn1" isassumed, then". asn", and findly " . py" (to
be compatible with the old ASN.1 compiler). Asn1nodul e can be afull pathname (relative or absolute) including
filename with (or without) extension.

If it isneeded to compile a set of ASN. 1 modules into an Erlang file with encode/decode functions, ensure to list all
involved files in a configuration file. This configuration file must have a double extension " . set . asn" (". asn"
can alternatively be" . asnl" or". py"). List theinput file nameswithin quotation marks ("), one at each row inthe
file. If theinput filesareFi | el. asn, Fi | e2. asn,and Fi | e3. asn, the configuration file must look as follows:

Filel.asn
File2.asn
File3.asn

The output files in this case get their names from the configuration file. If the configuration file is named
Set Of Fi | es. set. asn, the names of the output filesare Set Of Fil es. hrl, SetOFiles.erl, and
Set O Fi | es. asnldb.

Sometimes in a system of ASN. 1 modules, different default tag modes, for example, AUTOVATI C, | MPLI CI T, or
EXPLI CI T. The multi-file compilation resolves the default tagging asif the modules were compiled separately.

Name collisionsis another unwanted effect that can occur in multi file-compilation. The compiler solves this problem
in one of two ways:

« |If the definitions are identical, the output module keeps only one definition with the original name.

» |If the definitions have the same name and differsin the definition, they are renamed. The new names are the
definition name and the original module name concatenated.

If a name collision occurs, the compiler reports a™ NOTI CE:
and the new name that must be used to encode/decode data.

message that tells if a definition was renamed,

Opt i ons isalist with options specific for the ASN. 1 compiler and options that are applied to the Erlang compiler.
The latter are not recognized as ASN. 1 specific. The available options are as follows:
ber | per | uper | jer

The encoding rule to be used. The supported encoding rules are Basic Encoding Rules (ber), Packed Encoding
Rules (per) aigned, PER unaligned (uper) and JSON Encoding Rules (j er). The j er option can be
used by itself to generate a module that only supports encoding/decoding to JER or it can be used as a
supplementary option to ber, per and uper. In the latter case a module with for both the main encoding rules
and JER will be generated. The exported functions for JER will then bej er _encode(Type, Val ue) and
j er _decode(Type, Bytes).

Thej er encoding rules (ITU-T X.697) are experimental in OTP 22. There is support for a subset of the X.697
standard, for example thereis no support for:

« JER encoding instructions
e the REAL type

Also notethat when using thej er encoding rulesthe generated module will get adependency to an external json
component. The generated code is currently tested together with:

e j sx which currently is the defaullt.
e] sone can bechoseninstead of | sx by providing the option{ d, j sone}.

If the encoding rule option is omitted, ber isthe default.

The generated Erlang module always gets the same name as the ASN. 1 module. Therefore, only one encoding
rule per ASN. 1 module can be used at runtime.

38 | Ericsson AB. All Rights Reserved.: ASN.1

asnlct

der

With this option the Distinguished Encoding Rules (der) is chosen. DER is regarded as a specialized variant of
the BER encoding rule. Therefore, this option only makes sensetogether with option ber . This option sometimes
adds sorting and value checks when encoding, which implies a slower encoding. The decoding routines are the
same asfor ber .

maps

This option changes the representation of the types SEQUENCE and SET to use maps (instead of records). This
option also suppresses the generation of . hr | files.

For details, see Section Map representation for SEQUENCE and SET in the User's Guide.
conpact _bit_string

TheBI T STRI NGtypeisdecoded to "compact notation™. Thisoption isnot recommended for new code. This
option cannot be combined with the option maps.

For details, see Section BIT STRING in the User's Guide.
Thisoptionimpliesoption| egacy_er| ang_t ypes.
| egacy _bit_string

The BI T STRI NGtype is decoded to the legacy format, that is, alist of zeroes and ones. This option is not
recommended for new code. This option cannot be combined with the option maps.

For details, see Section BIT STRING in the User's Guide

Thisoptionimpliesoption| egacy_er | ang_t ypes.
| egacy_erl ang_types

Use the same Erlang typesto represent Bl T STRI NGand OCTET STRI NGasin OTP R16.

For details, see Section BIT STRING and Section OCTET STRING in the User's Guide.

Thisoption isnot recommended for new code. This option cannot be combined with the option naps.
{n2n, EnunirypeNane}

Tellsthe compiler to generate functionsfor conversion between names (asatoms) and numbersand conversely for
the specified EnunTypeNarne. There can be multiple occurrences of this option to specify several type names.
The type names must be declared as ENUVERATI ONS in the ASN.1 specification.

If EnunTTypeNarre does not exist in the ASN.1 specification, the compilation stops with an error code.

The generated conversion functions are named nane2num EnuniTypeNane/1 and
nunname_EnunTypeNane/ 1.

noobj

Do not compile (that is, do not produce object code) the generated . er | file. If this option is omitted, the
generated Erlang module is compiled.

{i, I'ncludeDir}

Adds | ncl udeDi r to the search-path for . asnldb and ASN. 1 source files. The compiler tries to open an
. asnldb file when a module imports definitions from another ASN. 1 module. If no . asn1db file isfound,
the ASN. 1 sourcefileisparsed. Several {i, | ncl udeDir} canbegiven.

{outdir, Dir}

Specifies directory Di r where al generated files are to be placed. If this option is omitted, the files are placed
in the current directory.

Ericsson AB. All Rights Reserved.: ASN.1 | 39

asnlct

asnlconfig

When using one of the specialized decodes, exclusive or selective decode, instructions must be given in a
configuration file. Optionasnlconf i g enables specialized decodes and takes the configuration file in concern.
The configuration file has the same name as the ASN.1 specification, but with extension. asnlconfi g.

For instructions for exclusive decode, see Section Exclusive Decode in the User's Guide.
For instructions for selective decode, see Section Selective Decode in the User's Guide.

undec_rest

A buffer that holds a message, being decoded it can also have some following bytes. Those following bytes can
now be returned together with the decoded value. If an ASN.1 specification is compiled with this option, atuple
{ok, Value, Rest} isreturned. Rest can bealist or a binary. Earlier versions of the compiler ignored
those following bytes.

no_ok_w apper

With this option, the generated encode/ 2 and decode/ 2 functions do not wrap a successful return value in
an{ ok, ...} tuple If any error occurs, an exception will be raised.

{macro_nanme_prefix, Prefix}

All macro names generated by the compiler are prefixed with Pr ef i x. Thisis useful when multiple protocols
that contain macros with identical names are included in a single module.

{record_nane_prefix, Prefix}

All record names generated by the compiler are prefixed with Pr ef i x. Thisis useful when multiple protocols
that contain records with identical names are included in a single module.

ver bose

Causes more verbose information from the compiler describing what it is doing.

war ni ngs_as_errors

Causes warnings to be treated as errors.

deterministic

Causes all non-deterministic options to be stripped from the -asn1_info() attribute.

Any more option that is applied is passed to the final step when the generated . er | fileis compiled.

The compiler generates the following files:

Asnlnodul e. hrl (if any SET or SEQUENCE is defined)
Asnlnodul e. er| - Erlang module with encode, decode, and value functions

Asnlnodul e. asnldb - Intermediate format used by the compiler when modules | MPORT definitions from
each other.

value(Module, Type) -> {ok, Value} | {error, Reason}
Types.

Modul e = Type = aton()
Value = term)
Reason = term()

Returns an Erlang term that is an example of avalid Erlang representation of avalue of the ASN. 1 type Type. The
value is arandom value and subsequent calls to this function will for most types return different values.

40 | Ericsson AB. All Rights Reserved.: ASN.1

asnlct

Currently, the val ue function has many limitations. Essentially, it will mostly work for old specifications
based on the 1997 standard for ASN.1, but not for most modern-style applications. Ancther limitation is that
the val ue function may not work if options that change code generations strategies such as the options
macr o_nane_prefix andrecord_nane_pr ef i x have been used.

test(Module) -> ok | {error, Reason}
test(Module, Type | Options) -> ok | {error, Reason}
test(Module, Type, Value | Options) -> ok | {error, Reason}
Types:
Modul e = Type = aton()
Value = term))
Options = [{i, IncludeDir}]
Reason = term()
Performs a test of encode and decode of typesin Modul e. The generated functions are called by this function. This

function is useful during test to secure that the generated encode and decode functions as well as the general runtime
support work as expected.

Currently, the t est functions have many limitations. Essentialy, they will mostly work for old specifications
based on the 1997 standard for ASN.1, but not for most modern-style applications. Ancther limitation is
that the t est functions may not work if options that change code generations strategies such as the options
macr o_nane_prefix andrecord_nane_pr ef i x have been used.

e test/1iteratesover al typesin Modul e.
* test/2teststype Type with arandom value.
e test/3teststype Type with Val ue.

Schematically, the following occurs for each type in the module;

{ok, Value} = asnlct:value(Module, Type),
{ok, Bytes} = Module:encode(Type, Value),
{ok, Value} = Module:decode(Type, Bytes).

Thet est functions use the *. asnldb files for al included modules. If they are located in a different directory
than the current working directory, use thei ncl ude option to add paths. Thisis only needed when automatically
generating values. For static values using Val ue no options are needed.

Ericsson AB. All Rights Reserved.: ASN.1 | 41

	ASN.1
	Asn1 User's Guide
	Introduction
	Scope
	Prerequisites

	ASN.1
	Introduction

	Getting Started
	Example
	Module Dependencies

	ASN.1 Application User Interface
	Compile-Time Functions
	Runtime Functions
	Errors

	Multi-File Compilation
	Remark about Tags
	ASN.1 Types
	BOOLEAN
	INTEGER
	REAL
	NULL
	ENUMERATED
	BIT STRING
	Deprecated Representations for BIT STRING

	OCTET STRING
	Character Strings
	OBJECT IDENTIFIER
	Object Descriptor
	TIME Types
	SEQUENCE
	SET
	Extensibility for SEQUENCE and SET
	Map representation for SEQUENCE and SET
	CHOICE
	Extensible CHOICE

	SET OF and SEQUENCE OF
	ANY and ANY DEFINED BY
	EXTERNAL, EMBEDDED PDV, and CHARACTER STRING
	Embedded Named Types

	Naming of Records in .hrl Files
	Embedded Structured Types
	Recursive Types

	ASN.1 Values
	Macros
	ASN.1 Information Objects (X.681)
	Parameterization (X.683)

	Specialized Decodes
	Exclusive Decode
	Procedure
	User Interface
	Writing an Exclusive Decode Instruction
	Example

	Selective Decode
	Procedure
	User Interface
	Writing a Selective Decode Instruction
	Another Example

	Performance
	ASN.1 Specifications, Messages, and Configuration
	Results
	Final Remarks

	Reference Manual
	asn1ct
	compile/1
	compile/2
	value/2
	test/1
	test/2
	test/3

