ERLANG

crypto

Copyright © 1999-2025 Ericsson AB. All Rights Reserved.
crypto 5.1.4.3

May 7, 2025

Copyright © 1999-2025 Ericsson AB. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance
with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless
required by applicable law or agreed to in writing, software distributed under the License is distributed on an
"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See

the License for the specific language governing permissions and limitations under the License. Ericsson AB. All
Rights Reserved..

May 7, 2025

1.1 Licenses

1 Crypto User's Guide

The Crypto application provides functions for computation of message digests, and functions for encryption and
decryption.

This product includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit (http://
www.openssl.org/).

This product includes cryptographic software written by Eric Y oung (eay @cryptsoft.com).
This product includes software written by Tim Hudson (tjh@cryptsoft.com).
For full OpenSSL and SSL eay license texts, see Licenses.

1.1 Licenses

This chapter contains in extenso versions of the OpenSSL and SSLeay licenses.

Ericsson AB. All Rights Reserved.: crypto | 1

1.1 Licenses

1.1.1 OpenSSL License

~
*

Copyright (c) 1998-2011 The OpenSSL Project. All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in
the documentation and/or other materials provided with the
distribution.

3. All advertising materials mentioning features or use of this
software must display the following acknowledgment:
"This product includes software developed by the OpenSSL Project
for use in the OpenSSL Toolkit. (http://www.openssl.org/)"

4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
endorse or promote products derived from this software without
prior written permission. For written permission, please contact
openssl-core@openssl.org.

5. Products derived from this software may not be called "OpenSSL"
nor may "OpenSSL" appear in their names without prior written
permission of the OpenSSL Project.

6. Redistributions of any form whatsoever must retain the following
acknowledgment:
"This product includes software developed by the OpenSSL Project
for use in the OpenSSL Toolkit (http://www.openssl.org/)"

THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ""AS IS'' AND ANY
EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. 1IN NO EVENT SHALL THE OpenSSL PROJECT OR
ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT

NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;

LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)

HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
OF THE POSSIBILITY OF SUCH DAMAGE.

This product includes cryptographic software written by Eric Young
(eay@cryptsoft.com). This product includes software written by Tim
Hudson (tjh@cryptsoft.com).

¥ O K K X K X K X K K X K X K X K X K K X K K X X K X K X K K X K X K X K X K X X K X X X ¥ X ¥ X ¥ ¥

*
~

2 | Ericsson AB. All Rights Reserved.: crypto

1.2 FIPS mode

1.1.2 SSlLeay License

Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
All rights reserved.

~
*

This package is an SSL implementation written
by Eric Young (eay@cryptsoft.com).
The implementation was written so as to conform with Netscapes SSL.

This library is free for commercial and non-commercial use as long as
the following conditions are adhered to. The following conditions
apply to all code found in this distribution, be it the RC4, RSA,
lhash, DES, etc., code; not just the SSL code. The SSL documentation
included with this distribution is covered by the same copyright terms
except that the holder is Tim Hudson (tjh@cryptsoft.com).

Copyright remains Eric Young's, and as such any Copyright notices in

the code are not to be removed.

If this package is used in a product, Eric Young should be given attribution
as the author of the parts of the library used.

This can be in the form of a textual message at program startup or

in documentation (online or textual) provided with the package.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the copyright
notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
3. All advertising materials mentioning features or use of this software
must display the following acknowledgement:
"This product includes cryptographic software written by
Eric Young (eay@cryptsoft.com)"
The word 'cryptographic' can be left out if the routines from the library
being used are not cryptographic related :-).
4. If you include any Windows specific code (or a derivative thereof) from
the apps directory (application code) you must include an acknowledgement:
"This product includes software written by Tim Hudson (tjh@cryptsoft.com)"

THIS SOFTWARE IS PROVIDED BY ERIC YOUNG " “AS IS'' AND

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. 1IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

The licence and distribution terms for any publicly available version or
derivative of this code cannot be changed. i.e. this code cannot simply be
copied and put under another distribution licence

[including the GNU Public Licence.]

¥ O K K X K X K X K K K K X K X K X K K K K K K X K X K X K K K XK X K X K X K X K X K X X K X X X X ¥ X ¥ ¥

*
~

1.2 FIPS mode

This chapter describes FIPS mode support in the crypto application.

Ericsson AB. All Rights Reserved.: crypto | 3

1.2 FIPS mode

1.2.1 Background

OpenSSL can be built to provide FIPS 140-2 validated cryptographic services. It is not the OpenSSL application that
isvalidated, but a special software component called the OpenSSL FIPS Object Module. However applications do not
use this Object Module directly, but through the regular API of the OpenSSL library.

The crypto application supports using OpenSSL in FIPS mode. In this scenario only the validated algorithms provided
by the Object Module are accessible, other algorithms usually available in OpenSSL (like md5) or implemented in
the Erlang code (like SRP) are disabled.

1.2.2 Enabling FIPS mode
e Build or install the FIPS Object Module and a FIPS enabled OpenSSL library.
Y ou should read and precisely follow the instructions of the Security Policy and User Guide.

It is very easy to build a working OpenSSL FIPS Object Module and library from the source. However it
does not quaify as FIPS 140-2 validated if the numerous restrictions in the Security Policy are not properly
followed.

e Configure and build Erlang/OTP with FIPS support:

$ cd $ERL TOP
$./otp build configure --enable-fips

éﬁécking for FIPS mode set... yes
$ make

If FI PS_node_set returnsno the OpenSSL library is not FIPS enabled and crypto won't support FIPS mode
either.

» Setthefi ps_node configuration setting of the crypto applicationtot r ue beforeloading the crypto module.

Thebest placeisinthesys. conf i g system configuration file of the release.

e Start and use the crypto application as usual. However take care to avoid the non-FIPS validated algorithms,
they will al throw exception not _support ed.

Entering and leaving FIPS mode on a node aready running crypto is not supported. The reason is that OpenSSL is
designed to prevent an application requesting FIPS mode to end up accidentally running in non-FIPS mode. If entering
FIPS mode fails (e.g. the Object Module is not found or is compromised) any subsequent use of the OpenSSL API
would terminate the emulator.

An on-the-fly FIPS mode change would thus have to be performed in a critical section protected from any concurrently
running crypto operations. Furthermore in case of failure al crypto calls would have to be disabled from the Erlang
or nif code. Thiswould be too much effort put into this not too important feature.

1.2.3 Incompatibilities with regular builds

The Erlang API of the crypto application is identical regardless of building with or without FIPS support. However
the nif code internally uses a different OpenSSL API.

This means that the context (an opaque type) returned from streaming crypto functions (hash_(i nit |
update|final),hmac_(init|update|final) andstream (init|encrypt|decrypt))isdifferent
and incompatible with regular builds when compiling crypto with FIPS support.

4 | Ericsson AB. All Rights Reserved.: crypto

href
href

1.2 FIPS mode

1.2.4 Common caveats

In FIPS mode non-validated algorithms are disabled. This may cause some unexpected problemsin application relying
on crypto.

Do not try to work around these problems by using alternative implementations of the missing algorithms! An
application can only claim to be using a FIPS 140-2 validated cryptographic module if it uses it exclusively for
every cryptographic operation.

Restrictions on key sizes

Although public key algorithms are supported in FIPS mode they can only be used with secure key sizes. The Security
Policy requires the following minimum values:

RSA

1024 bit
DSS

1024 bit
EC algorithms

160 hit

Restrictions on elliptic curves

The Erlang API alows using arbitrary curve parameters, but in FIPS mode only those allowed by the Security Policy
shall be used.

Avoid md5 for hashing

Md5 isapopular choice as ahash function, but it is not secure enough to be validated. Try to use shainstead wherever
possible.

For exceptional, non-cryptographic use cases one may consider switchingtoer | ang: nd5/ 1 aswell.

Certificates and encrypted keys

Asmd5 is not available in FIPS mode it is only possible to use certificates that were signed using sha hashing. When
validating an entire certificate chain al certificates (including the root CA's) must comply with this rule.

For similar dependency on the md5 and des algorithms most encrypted private keys in PEM format do not work
either. However, the PBES2 encryption scheme allows the use of stronger FIPS verified algorithmswhich isaviable
alternative.

SNMP v3 limitations

It is only possible to use us THMACSHAAuUt hPr ot ocol and usmAesCf b128Pr ot ocol for authentication and
privacy respectively in FIPS mode. The snmp application however won't restrict selecting disabled protocols in any
way, and using them would result in run time crashes.

TLS 1.2 is required

All SSL and TLS versions prior to TLS 1.2 use a combination of md5 and shal hashes in the handshake for various
purposes:

e Authenticating the integrity of the handshake messages.

* Inthe exchange of DH parameters in cipher suites providing non-anonymous PFS (perfect forward secrecy).

* Inthe PRF (pseud-random function) to generate keying materials in cipher suites not using PFS.

Ericsson AB. All Rights Reserved.: crypto | 5

1.3 Engine Load

OpenSSL handles these corner cases in FIPS mode, however the Erlang crypto and ssl applications are not prepared
for them and therefore you are limited to TLS 1.2 in FIPS mode.

On the other hand it worth mentioning that at least all cipher suites that would rely on non-validated algorithms are
automatically disabled in FIPS mode.

Certificates using weak (md5) digests may aso cause problems in TLS. Although TLS 1.2 has an extension for
specifying which type of signatures are accepted, and in FIPS mode the ssl application will use it properly, most
TL S implementations ignore this extension and simply send whatever certificates they were configured with.

1.3 Engine Load

This chapter describes the support for loading encryption engines in the crypto application.

1.3.1 Background

OpenSSL exposes an Engine API, which makes it possible to plug in aternative implementations for some or all of
the cryptographic operations implemented by OpenSSL. When configured appropriately, OpenSSL calls the engine's
implementation of these operations instead of its own.

Typically, OpenSSL engines provide a hardware implementation of specific cryptographic operations. The hardware
implementation usually offers improved performance over its software-based counterpart, which is known as
cryptographic acceleration.

The file name requirement on the engine dynamic library can differ between SSL versions.

1.3.2 Use Cases

Dynamically load an engine from default directory
If the engine islocated in the OpenSSL/LibreSSL installation engi nes directory.

1> {ok, Engine} = crypto:engine load(<<"otp test engine">>, [], []).
{ok, #Ref}

Load an engine with the dynamic engine
Load an engine with the help of the dynamic engine by giving the path to the library.

2> {ok, Engine} = crypto:engine load(<<"dynamic">>,
[{<<"SO PATH">>,
<<"/some/path/otp test engine.so">>},
{<<"ID">>, <<"MD5">>},
<<"LOAD">>],
[1.
{ok, #Ref}

Load an engine and replace some methods

Load an engine with the help of the dynamic engine and just replace some engine methods.

6 | Ericsson AB. All Rights Reserved.: crypto

1.4 Engine Stored Keys

3> {ok, Engine} = crypto:engine load(<<"dynamic">>,
[{<<"SO PATH">>,
<<"/some/path/otp test engine.so">>},
{<<"ID">>, <<"MD5">>},

<<"LOAD">>],

[n.
{ok, #Ref}
4> ok = crypto:engine register(Engine, [engine method digests]).
ok

Load with the ensure loaded function

This function makes sure the engine is loaded just once and the ID is added to the internal engine list of OpenSSL.
The following callsto the function will check if the ID isloaded and then just get a new reference to the engine.

5> {ok, Engine} = crypto:ensure engine loaded(<<"MD5">>,
<<"/some/path/otp test engine.so">>).
{ok, #Ref}

To remove the tag from the OpenSSL enginelist usecr ypt o: engi ne_r enove/ 1.

6> crypto:engine remove(Engine).
ok

Tounload it usecr ypt o: engi ne_unl oad/ 1 which removes the references to the engine.

6> crypto:engine unload(Engine).
ok

List all engines currently loaded

8> crypto:engine list().
[<<"dynamic">>, <<"MD5">>]

1.4 Engine Stored Keys

This chapter describes the support in the crypto application for using public and private keys stored in encryption
engines.

1.4.1 Background

OpenSSL exposes an Engine API, which makes it possible to plug in alternative implementations for some of the
cryptographic operations implemented by OpenSSL. See the chapter Engine Load for details and how to load an
Engine.

An engine could among other tasks provide a storage for private or public keys. Such a storage could be made safer
than the normal file system. Those techniques are not described in this User's Guide. Here we concentrate on how to
use private or public keys stored in such an engine.

The storage engine must call ENG NE_set | oad_pri vkey_function and
ENG NE_set | oad_pubkey_functi on. Seethe OpenSSL cryptolib's manpages.

OTP/Crypto requires that the user provides two or three items of information about the key. The application used by
the user is usually on a higher level, for examplein SSL. If using the crypto application directly, it is required that:

e an Engineisloaded, seethe chapter on Engine Load or the Reference Manual

» areferenceto akey in the Engine is available. This should be an Erlang string or binary and depends on the
Engine loaded

Ericsson AB. All Rights Reserved.: crypto | 7

href
href

1.5 Algorithm Details

» an Erlang map is constructed with the Engine reference, the key reference and possibly akey passphrase if
needed by the Engine. See the Reference Manua for details of the map.

1.4.2 Use Cases

Sign with an engine stored private key

This example shows how to construct a key reference that is used in a sign operation. The actual key is stored in the
engine that is loaded at prompt 1.

1> {ok, EngineRef} = crypto:engine load(....).

{ok,#Ref<0.2399045421.3028942852.173962>}

2> PrivKey = #{engine => EngineRef,

key id => "id of the private key in Engine"}.
3> Signature = crypto:sign(rsa, sha, <<"The message">>, PrivKey).
<<65,6,125,254,54,233,84,77,83,63,168,28,169,214,121,76,
207,177,124,183,156,185,160,243,36,79,125,230,231,...>>

Verify with an engine stored public key

Here the signature and message in the last example is verifyed using the public key. The public key is stored in an
engine, only to exemplify that it is possible. The public key could of course be handled openly as usual.

4> PublicKey = #{engine => EngineRef,
key id => "id of the public key in Engine"}.

é;'crypto:verify(rsa, sha, <<"The message">>, Signature, PublicKey).
true
6>

Using a password protected private key

The same example as the first sign example, except that a password protects the key down in the Engine.

6> PrivKeyPwd = #{engine => EngineRef,
key id => "id of the pwd protected private key in Engine",
password => "password"}.

7> crypto:sign(rsa, sha, <<"The message">>, PrivKeyPwd).

<<140,80,168,101,234,211,146,183,231,190,160,82,85, 163,
175,106,77,241,141,120,72,149,181,181,194,154,175,76,
223,...>>

8>

1.5 Algorithm Details

This chapter describes details of algorithms in the crypto application.

Thetablesonly documentsthe supported cryptos and key lengths. The user should not draw any conclusion on security
from the supplied tables.

1.5.1 Ciphers

A cipher in the new api is categorized as either cipher_no_iv(), cipher_iv() or cipher_aead(). The letters 1V are short
for Initialization Vector and AEAD is an abbreviation of Authenticated Encryption with Associated Data.

Due to irregular naming conventions, some cipher names in the old api are substituted by new names in the new api.
For alist of retired names, see Retired cipher names.

8 | Ericsson AB. All Rights Reserved.: crypto

1.5 Algorithm Details

To dynamically check availability, check that the name in the Cipher and Mode column is present in the list returned
by crypto:supports(ciphers).

Ciphers without an IV - cipher_no_iv()

To be used with:

e crypto_one time/4

e crypto_init/3

The ciphers are:

Cipher and Mode E;{;ingth ﬁ:)cl)tc;]size
aes_128 ecb 16 16
aes_ 192 ech 24 16
aes_256_ech 32 16
bl owfi sh_ech 16 8
des_echb 8 8
rcad 16 1

Table 5.1: Ciphers without IV

Ciphers with an IV - cipher_iv()
To be used with:

e crypto_one time/5

e crypto_init/4

e crypto_dyn iv_init/3

The ciphers are:

Cipher and Mode E?/)t/ef]ngth I[E)/yltz]gth F,Icl)c/)tcl;]Si * I(_)ig]e:?glfoversions
aes 128 chc 16 16 16
aes 192 chbc 24 16 16
aes_256_chbc 32 16 16
aes_128 cfh8 16 16 1
aes_192 cfhb8 24 16 1
aes 256 cfb8 32 16 1

Ericsson AB. All Rights Reserved.: crypto | 9

1.5 Algorithm Details

aes 128 cfbl28 |16 16 1

aes_192 cfb128 |24 16 1

aes_256_cfbl128 |32 16 1

aes_128 ctr 16 16 1

aes_192 ctr 24 16 1

aes_256_ctr 32 16 1

aes 128 ofb 16 16 1

aes_ 192 ofb 24 16 1

aes_256 ofb 32 16 1

bl owfi sh_chc 16 8 8

bl owfi sh_cfb64 |16 8 1

bl owfi sh_of b64 |16 8 1

chacha20 32 16 1 #1.1.0d

des_cbhc 8 8 8

des_ede3 chc 24 8 8

des_cfb 8 8 1

des_ede3 cfb 24 8 1

rc2_chc 16 8 8

Table 5.2: Ciphers with IV

Ciphers with AEAD - cipher_aead()

To be used with:

e crypto_one time aead/6

e crypto_one time aead/7

The ciphersare:

3'533 and [@t/ eEngth |[;)/y![e:;]gth ,[Ak\stlzsl]ength [Tba;g: ;e]ngth [Bt:;tc;]size (L)ig"e;fg"gi"
versions

aes_128_ccil6 7-13 any ?éfegutlfz any #1.0.1

10 | Ericsson AB. All Rights Reserved.: crypto

1.5 Algorithm Details

aes_192_ccqod 7-13 any (ej‘éfegu‘l't’_lfz any #1.01

aes_256_cciB2 7-13 any g‘éfe;‘uﬁ'_lfz any #1.0.1
1-16

aes_128 gcml6 #1 any default: 16 any #1.0.1
1-16

aes_192 gcm4 #1 any default: 16 any #1.0.1
1-16

aes_256_gcm32 #1 any default: 16 any #1.0.1

chacha20_pgBY1305 1-16 any 16 any #1.1.0

Table 5.3: AEAD ciphers

1.5.2 Message Authentication Codes (MACs)
To be used in mac/4 and related functions,

CMAC

CMAC with the following ciphers are available with OpenSSL 1.0.1 or later if not disabled by configuration.

To dynamically check availahility, check that the name crmac is present in the list returned by crypto:supports(macs).
Also check that the name in the Cipher and Maode column is present in the list returned by crypto:supports(ciphers).

. Key length I\ﬂax Mac Length
Cipher and Mode [bytes] (= default length)
[bytes]
aes 128 chbc 16 16
aes_192 cbc 24 16
aes_256 cbc 32 16
aes_128 ech 16 16
aes 192 ecb 24 16
aes_ 256 _ech 32 16
bl owfi sh_cbc 16 8
bl owfi sh_ecb 16 8
des_cbc 8 8
des_ech 8 8

Ericsson AB. All Rights Reserved.: crypto | 11

1.5 Algorithm Details

des_ede3 cbc 24 8

rc2_chbc 16 8

Table 5.4: CMAC cipher key lengths

HMAC
Availablein all OpenSSL compatible with Erlang CRYPTO if not disabled by configuration.

To dynamically check availability, check that the name himac is present in the list returned by crypto:supports(macs)
and that the hash name is present in the list returned by crypto:supports(hashs).

Max Mac Length

Hash (= default length)
[bytes]

sha 20

sha224 28

sha256 32

sha384 48

shab12 64

sha3_ 224 28

sha3 256 32

sha3_384 48

sha3 512 64

bl ake2b 64

bl ake2s 32

nd4 16

md5 16

ri pend160 20

Table 5.5: HMAC output sizes

POLY1305
POLY 1305 is available with OpenSSL 1.1.1 or later if not disabled by configuration.

To dynamically check availability, check that the name pol y1305 is present in the list returned by
crypto:supports(macs).

12 | Ericsson AB. All Rights Reserved.: crypto

1.5 Algorithm Details

The poly1305 mac wants an 32 bytes key and produces a 16 byte MAC by default.
1.5.3 Hash

To dynamically check availability, check that the wanted name in the Names column is present in the list returned
by crypto:supports(hashs).

Type Names Limitated to .
OpenSSL versions

SHA1 sha

SHA?2 sha224, sha256, sha384, shab12

SHA3 iﬁ:ﬁg’ sha3_256, sha3_384, #1.1.1

MD4 md4

MD5 md5

RIPEMD ripemd160

Table 5.6:

1.5.4 Public Key Cryptography

RSA

RSA is available with al OpenSSL versions compatible with Erlang CRY PTO if not disabled by configuration. To
dynamically check availability, check that theatomr sa ispresent in thelist returned by crypto:supports(public_keys).

The RSA options are experimental.

The exact set of options and there syntax may be changed without prior notice.

. . . public encrypt private encrypt
Option signfverify private decrypt public decrypt
{rsa_padding,rsa x931 padging} X
{rsa_padding,rsa_pkcsl_pagiding} X X
{rsa_padding,rsa_pkcsl_pss yéayling}

{rsa_pss sdtlen, -2..} X (2)

{rsa_mgf1l_md, atom()} X (2)

{rsa_padding,rsa_pkcsl oagp padding} i%

{rsa_mgfl _md, atom()} X (3)

Ericsson AB. All Rights Reserved.: crypto | 13

1.6 New and Old API

{rsa_oaep labdl,
binary()} } X (3)
{rsa_oaep_md, atom()}

{rsa_padding,rsa_no_paddi +g} (@D}

Table 5.7:

Notes:
* (1) OpenssL #1.0.0
* (2) OpensSL #1.0.1
e (3)OpenssL #1.1.0
DSS

DSS is available with OpenSSL versions compatible with Erlang CRYPTO if not disabled by configuration. To
dynamically check availability, check that theatom ds s ispresent in thelist returned by crypto:supports(public_keys).

ECDSA

ECDSA isavailable with OpenSSL 0.9.80 or later if not disabled by configuration. To dynamically check availability,
check that the atom ecdsa is present in the list returned by crypto:supports(public_keys). If theatom ec_gf 2malso
is present, the characteristic two field curves are available.

The actual supported named curves could be checked by examining the list returned by crypto:supports(curves).

EdDSA

EdDSA is available with OpenSSL 1.1.1 or later if not disabled by configuration. To dynamically check availability,
check that the atom eddsa is present in the list returned by crypto:supports(public_keys).

Support for the curves ed25519 and ed448 is implemented. The actual supported named curves could be checked by
examining the list with the list returned by crypto:supports(curves).

Diffie-Hellman

Diffie-Hellman computations are available with OpenSSL versions compatible with Erlang CRYPTO if not disabled
by configuration. To dynamically check availability, check that the atom dh is present in the list returned by
crypto:supports(public_keys).

Elliptic Curve Diffie-Hellman

Elliptic Curve Diffie-Hellman is available with OpenSSL 0.9.80 or later if not disabled by configuration.
To dynamically check availability, check that the atom ecdh is present in the list returned by
crypto:supports(public_keys).

The Edward curves x25519 and x448 are supported with OpenSSL 1.1.1 or later if not disabled by configuration.
The actual supported named curves could be checked by examining the list returned by crypto:supports(curves).

1.6 New and Old API

This chapter describes the new api to encryption and decryption.

14 | Ericsson AB. All Rights Reserved.: crypto

1.6 New and Old API

1.6.1 Background

The CRYPTO app has evolved during its lifetime. Since also the OpenSSL cryptolib has changed the API several
times, there are parts of the CRYPTO app that uses a very old one internally and other parts that uses the latest one.
Theinternal definitions of e.g cipher names was a bit hard to maintain.

It turned out that using the old api in the new way (more about that later), and still keep it backwards compatible, was
not possible. Specially asmore precision in the error messagesisdesired it could not be combined with the old standard.

Therefore the old api (see next section) is kept for now but internally implemented with new primitives.

1.6.2 The old API

The old functions - deprecated from 23.0 and removed from OTP 24.0 - are for ciphers:

for lists of supported algorithms:

and for MACs (Message Authentication Codes):

1.6.3 The new API

Encryption and decryption

bl ock_encrypt/3
bl ock_encrypt/ 4
bl ock_decrypt/3
bl ock_decrypt/ 4
streaminit/2
stream.init/3

stream encrypt/2
stream decrypt/2

next iv/2
next _iv/3

supports/0

crmac/ 3

crmac/ 4

hmac/ 3

hmac/ 4
hmac_init/2
hmac_updat e/ 2
hmac_final/1
hmac_final _n/2
pol y1305/ 2

The new functions for encrypting or decrypting one single binary are:

crypto_one time/4
crypto_one_time/5

crypto_one_time _aead/6
crypto_one time aead/7

Ericsson AB. All Rights Reserved.: crypto | 15

1.6 New and Old API

In those functions the internal crypto state is first created and initialized with the cipher type, the key and possibly
other data. Then the single binary isencrypted or decrypted, the crypto state is de-allocated and the result of the crypto
operation is returned.

Thecrypt o_one_ti me_aead functionsarefor the ciphers of mode ccmor gcm and for the cipher chacha20-
pol y1305.

For repeated encryption or decryption of atext divided in parts, where the internal crypto state isinitialized once, and
then many binaries are encrypted or decrypted with the same state, the functions are:

e crypto_init/4

e crypto_init/3

e crypto_update/2
e crypto_fina/l

Thecrypto_init initidlies an interna cipher state, and one or more calls of cr ypt o_updat e does the actual
encryption or decryption. Note that AEAD ciphers can't be handled this way due to their nature.

For repeated encryption or decryption of atext divided in parts where the same cipher and same key is used, but anew
initialization vector (nounce) should be applied for each part, the functions are:

e crypto _dyn_iv_init/3

e crypto_dyn_iv_update/3

An exampl e of where those functions are needed, is when handling the TLS protocol.
If padding was not enabled, the call to crypto_final/1 may be excluded.

For information about available algorithms, use:

e supports/1

e hash_info/l

e cipher_info/1

Thenext _i v/ 2 and next _i v/ 3 are not needed sincethecrypt o_i nit and cr ypt o_updat e includes this
functionality.

MACs (Message Authentication Codes)

The new functions for calculating aMAC of asingle piece of text are:

e mac/3
e mac/d
« macN/4
* macN/5

For calculating aMAC of atext divided in parts use;
* mac_init/2

* mac_init/3

* mac_update/2

* mac final/l

mac_finalN/2

16 | Ericsson AB. All Rights Reserved.: crypto

1.6 New and Old API

1.6.4 Examples of the new api

Examples of crypto_init/4 and crypto_update/2

The functions crypto_init/4 and crypto_update/2 are intended to be used for encrypting or decrypting a sequence of
blocks. First one call of crypt o_i ni t/ 4 initialises the crypto context. One or more callscr ypt o_updat e/ 2
does the actual encryption or decryption for each block.

This example shows first the encryption of two blocks and then decryptions of the cipher text, but divided into three
blocksjust to show that it is possible to divide the plain text and cipher text differently for some ciphers:

1> crypto:start().

ok

2> Key = <<1:128>>.

<<0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1>>

3> IV = <<0:128>>.

<<0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0>>

4> StateEnc = crypto:crypto init(aes 128 ctr, Key, IV, true). % encrypt -> true

#Ref<0.3768901617.1128660993.124047>

5> crypto:crypto update(StateEnc, <<"First bytes">>).

<<67,44,216,166,25,130,203,5,66,6,162>>

6> crypto:crypto update(StateEnc, <<"Second bytes">>).

<<16,79,94,115,234,197,94,253,16,144,151,41>>

7>

7> StateDec = crypto:crypto init(aes 128 ctr, Key, IV, false). % decrypt -> false

#Ref<0.3768901617.1128660994.124255>

8> crypto:crypto update(StateDec, <<67,44,216,166,25,130,203>>).

<<"First b">>

9> crypto:crypto update(StateDec, <<5,66,6,162,16,79,94,115,234,197,
94,253,16,144,151>>) .

<<"ytesSecond byte">>

10> crypto:crypto update(StateDec, <<41>>).

<<"s">>

11>

Note that the internal data that the St at eEnc and St at eDec references are destructivly updated by the calls to
crypto_update/2. Thisisto gain timein the calls of the nifsinterfacing the cryptolib. In aloop where the state is saved
in the loop's state, it also saves one update of the loop state per crypto operation.

For example, a simple server receiving text parts to encrypt and send the result back to the one who sent them (the
Request er):

encode(Crypto, Key, IV) ->
crypto loop(crypto:crypto init(Crypto, Key, IV, true)).

crypto loop(State) ->
receive
{Text, Requester} ->
Requester ! crypto:crypto update(State, Text),
loop(State)
end.

Example of crypto_one_time/5
The same example as in the previous section, but now with one call to crypto_one time/5:

Ericsson AB. All Rights Reserved.: crypto | 17

1.6 New and Old API

1> Key = <<1:128>>.

<<0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1>>

2> IV = <<0:128>>.

<<0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0>>

3> Txt = [<<"First bytes">>,<<"Second bytes">>].

[<<"First bytes">>,<<"Second bytes">>]

4> crypto:crypto one time(aes 128 ctr, Key, IV, Txt, true).
<<67,44,216,166,25,130,203,5,66,6,162,16,79,94,115,234,
197,94,253,16,144,151,41>>

5>

The[<<"Fi rst byt es">>, <<"Second byt es" >>] could of coursehavebeenonesinglebinary: <<" Fi r st
byt esSecond byt es">>.

Example of crypto_one_time_aead/6

The same example as in the previous section, but now with one call to crypto_one time_aead/6:

1> Key = <<1:128>>.

<<0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1>>

2> IV = <<0:128>>.

<<0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0>>

3> Txt = [<<"First bytes">>,<<"Second bytes">>].
[<<"First bytes">>,<<"Second bytes">>]

4> AAD = <<"Some bytes">>.

<<"Some bytes">>

5> crypto:crypto one time aead(aes 128 gcm, Key, IV, Txt, AAD, true).
{<<240,130,38,96,130,241,189,52,3,190,179,213,132,1,72,
192,103,176,90,104,15,71,158>>,
<<131,47,45,91,142,85,9,244,21,141,214,71,31,135,2,155>>}
9>

The[<<"Fi rst bytes">>, <<"Second byt es" >>] could of coursehavebeenonesinglebinary: <<" Fi r st
byt esSecond byt es">>.

Example of mac_init mac_update and mac_final

1> Key = <<1:128>>.
<<0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1>>

2> StateMac = crypto:mac _init(cmac, aes 128 cbc, Key).
#Ref<0.2424664121.2781478916.232610>

3> crypto:mac_update(StateMac, <<"First bytes">>).
#Ref<0.2424664121.2781478916.232610>

4> crypto:mac_update(StateMac, " ").
#Ref<0.2424664121.2781478916.232610>

5> crypto:mac_update(StateMac, <<"last bytes">>).
#Ref<0.2424664121.2781478916.232610>

6> crypto:mac_final(StateMac).
<<68,191,219,128,84,77,11,193,197,238,107,6,214,141, 160,
249>>

7>

and compare the result with asingle calculation just for this example:

7> crypto:mac(cmac, aes 128 cbc, Key, "First bytes last bytes").
<<68,191,219,128,84,77,11,193,197,238,107,6,214,141, 160,

249>>

8> v(7) == v(6).

true

9>

18 | Ericsson AB. All Rights Reserved.: crypto

1.6 New and Old API

1.6.5 Retired cipher names

This table lists the retired cipher names in the first column and suggests names to replace them with in the second

column.

The new names follows the OpenSSL libcrypto names. The format isALGORITM_KEY SIZE MODE.

Examples of algorithms are aes, chacha20 and des. The keysize is the number of bits and examples of the mode are
cbc, ctr and gcm. The mode may be followed by anumber depending on the mode. An exampleisthe ccm mode which
has a variant called ccm8 where the so called tag has alength of eight bits.

The old names had by time lost any common naming convention which the new names now introduces. The new
names include the key length which improves the error checking in the lower levels of the crypto application.

Instead of: Use
aes_chcl128 aes_ 128 chc
aes_cbhc256 aes_256_chc
aes_cbc aes 128 cbc, aes 192 cbc, aes 256 cbc
aes_ccm aes_128 ccm aes_192 ccm aes_256_ccm
aes_cf b128 :22:;ég:gigi§g, aes 192 cfbl28,
aes cf b8 aes_ 128 cfh8, aes_ 192 cf b8,
- aes 256 cfb8
aes_ctr aes_128 ctr, aes_192 ctr, aes_256_ctr
aes_gcm aes_128 gcm aes_192 gcm aes_256_gcm
des3 chc des_ede3 cbc
des3_chbf des_ede3 cfb
des3 cfb des_ede3 cfb
des_ede3 des_ede3 _chc
des_ede3_cbf des_ede3 cfb

Table 6.1:

Ericsson AB. All Rights Reserved.: crypto | 19

1.6 New and Old API

2 Reference Manual

The Crypto Application provides functions for computation of message digests, and encryption and decryption
functions.

This product includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit (http://
www.openssl.org/).

This product includes cryptographic software written by Eric Y oung (eay @cryptsoft.com).
This product includes software written by Tim Hudson (tjh@cryptsoft.com).
For full OpenSSL and SSL eay license texts, see Licenses.

20 | Ericsson AB. All Rights Reserved.: crypto

crypto

crypto

Application

The purpose of the Crypto application isto provide an Erlang API to cryptographic functions, see crypto(3). Note that
the APl ison afairly low level and there are some corresponding API functionsavailablein public_key(3), on ahigher
abstraction level, that uses the crypto application in its implementation.

DEPENDENCIES

The current crypto implementation uses nifs to interface OpenSSLs crypto library and may work with limited
functionality with as old versions as OpenSSL 0.9.8c. FIPS mode support requires at least version 1.0.1 and a FIPS
capable OpenSSL installation. We recommend using a version that is officially supported by the OpenSSL project.
API compatible backends like LibreSSL should also work.

The crypto app istested daily with at least one version of each of the OpenSSL 1.0.1, 1.0.2, 1.1.0, 1.1.1 and 3.0. FIPS
modeis also tested for 1.0.1 and 1.0.2.

Using OpenSSL 3.0 with Engines or in FIPS mode is not yet supported by the OTP/crypto app.
Source releases of OpenSSL can be downloaded from the OpenSSL project home page, or mirror sites listed there.

CONFIGURATION

The following configuration parameters are defined for the crypto application. See app(3) for more information
about configuration parameters.

fi ps_nmode = bool ean()

Specifieswhether to run crypto in FIPS mode. This setting will take effect when the nif module isloaded. If FIPS
mode is requested but not available at run time the nif module and thus the crypto module will fail to load. This
mechanism prevents the accidental use of non-validated algorithms.

rand_cache_size = integer()

Sets the cache size in bytes to use by crypto:rand_seed al g(crypto_cache) and
crypto:rand_seed_al g_s(crypto_cache) . Thisparameter isread when aseed functioniscalled, and
then kept in generators state object. It has a rather small default value that causes reads of strong random bytes
about once per hundred calls for a random value. The set value is rounded up to an integral number of words
of the size these seed functions use.

SEE ALSO
application(3)

Ericsson AB. All Rights Reserved.: crypto | 21

href

crypto

crypto

Erlang module

This module provides a set of cryptographic functions.
Hash functions

SHA1, SHA2
Secure Hash Standard [FIPS PUB 180-4]
SHA3
SHA-3 Standard: Permutation-Based Hash and Extendable-Output Functions[FIPS PUB 202]
BLAKE2
BLAKE2 — fast secure hashing
MD5
The MD5 Message Digest Algorithm [RFC 1321]
MD4
The MD4 Message Digest Algorithm [RFC 1320]

MACs - Message Authentication Codes

Hmac functions

Keyed-Hashing for M essage Authentication [RFC 2104]
Cmac functions

The AES-CMAC Algorithm [RFC 4493]
POLY 1305

ChaCha20 and Poly1305 for IETF Protocols [RFC 7539]

Symmetric Ciphers

DES, 3DES and AES
Block Cipher Techniques[NIST]
Blowfish
Fast Software Encryption, Cambridge Security Workshop Proceedings (December 1993), Springer -
Verlag, 1994, pp. 191-204.
Chacha20
ChaCha20 and Poly1305 for IETF Protocols [RFC 7539]
Chacha20_poly1305
ChaCha20 and Poly1305 for IETF Protocols [RFC 7539]

Modes

ECB, CBC, CFB, OFB and CTR
Recommendation for Block Cipher Modes of Operation: Methods and Techniques[NIST SP
800-38A]

GCM
Recommendation for Block Cipher Modes of Operation: Galois’Counter Mode (GCM) and GMAC
[NIST SP 800-38D]

CCM
Recommendation for Block Cipher Modes of Operation: The CCM Mode for Authentication and
Confidentiality [NIST SP 800-38C]

22 | Ericsson AB. All Rights Reserved.: crypto

href
href
href
href
href
href
href
href
href
href
href
href
href
href
href
href
href
href
href

crypto

Asymmetric Ciphers - Public Key Techniques

RSA
PKCS#1: RSA Cryptography Specifications [RFC 3447]
DSS
Digital Signature Standard (DSS) [FIPS 186-4]
ECDSA
Elliptic Curve Digital Signature Algorithm [ECDSA]
SRP
The SRP Authentication and Key Exchange System [RFC 2945]

The actual supported algorithms and features depends on their availability in the actual libcrypto used. See the
crypto (App) about dependencies.

Enabling FIPS mode will also disable algorithms and features.

The CRY PTO User's Guide has more information on FIPS, Engines and Algorithm Details like key lengths.

Data Types

Ciphers
cipher() = cipher no iv() | cipher _iv() | cipher_aead()
cipher no iv() =
aes 128 ecb | aes 192 ecb | aes 256 ecb | aes ecb |
blowfish ecb | des ecb | rc4
cipher iv() =
aes 128 cbc | aes 192 cbc | aes 256 cbc | aes cbc |
aes 128 ofb | aes 192 ofb | aes 256 ofb | aes 128 cfbl28 |
aes 192 cfb128 | aes 256 cfb1l28 | aes cfbl28 | aes 128 cfb8 |
aes 192 cfb8 | aes 256 cfb8 | aes cfb8 | aes 128 ctr |
aes 192 ctr | aes 256 ctr | aes ctr | blowfish cbc |
blowfish cfb64 | blowfish ofb64 | chacha20 | des ede3 cbc |
des ede3 cfb | des cbc | des cfb | rc2 cbc
cipher aead() =
aes 128 ccm | aes 192 ccm | aes 256 ccm | aes ccm |
aes 128 gcm | aes 192 gcm | aes 256 gcm | aes gcm |
chacha20 polyl1305

Ciphers known by the CRY PTO application.

Note that thislist might be reduced if the underlying libcrypto does not support all of them.
crypto opts() = boolean() | [crypto opt()]

crypto opt() = {encrypt, boolean()} | {padding, padding()}
Selects encryption ({ encrypt , t rue}) or decryption ({ encrypt, f al se}).
padding() = cryptolib padding() | otp_padding()

This option handles padding in the last block. If not set, no padding is done and any bytes in the last unfilled block
issilently discarded.

Ericsson AB. All Rights Reserved.: crypto | 23

href
href
href
href

crypto

cryptolib padding() = none | pkcs padding

Thecrypt ol i b_paddi ng are paddings that may be present in the underlying cryptolib linked to the Erlang/OTP
crypto app.

For OpenSSL, seethe OpenSSL documentation. and find EVP_CI PHER_CTX_set _paddi ng() incryptolib for
your linked version.

otp padding() = zero | random

Erlang/OTP adds a either padding of zeroes or padding with random bytes.

Digests and hash

hash_algorithm() =
shal() |
sha2() |
sha3() |
blake2() |
ripemd160 |
compatibility only hash()

hmac_hash algorithm() =
shal() | sha2() | sha3()
cmac_cipher _algorithm() =
aes 128 cbc | aes 192 cbc | aes 256 cbc | aes cbc |
aes 128 cfb128 | aes 192 cfb128 | aes 256 cfbl28 |
aes cfb128 | aes 128 cfb8 | aes 192 cfb8 | aes 256 cfb8 |
aes cfb8 | blowfish cbc | des cbc | des ede3 cbc | rc2 cbc

| compatibility only hash()

rsa_digest type() = shal() | sha2() | md5 | ripemdl60
dss digest type() = shal() | sha2()

ecdsa digest type() = shal() | sha2()

shal() = sha

sha2() = sha224 | sha256 | sha384 | sha512

sha3() = sha3 224 | sha3 256 | sha3 384 | sha3 512

blake2() = blake2b | blake2s

compatibility only hash() = md5 | md4

The conpatibility_only_hash() agorithms are recommended only for compatibility with existing
applications.

Elliptic Curves

ec_named curve() =
brainpoolP160rl |
brainpoolP192t1 |
brainpoolP256rl |
brainpoolP320tl | brainpoolP384rl | brainpoolP384tl
brainpoolP512rl1 | brainpoolP512t1 | c2pnbl63vl | c2pnbl63v2 |
c2pnbl63v3 | c2pnbl76vl | c2pnb208wl | c2pnb272wl |

brainpoolP160t1 |
brainpoolP224rl |
brainpoolP256t1 |

brainpoolP192r1 |
brainpoolP224t1 |
brainpoolP320rl |

|

c2pnb304wl
c2tnb191v3
c2tnb359v1
primel92v?2
prime239v3

c2pnb368wl
c2tnb239v1
c2tnb431rl
primel92v3

prime256v1l |
secpl28r2 | secpl6Okl | secpl6Orl | secpl6Or2 | secpl9kl |

c2tnb191vl | c2tnbl9lv2 |
c2tnb239v2 | c2tnb239v3 |

ipsec3 | ipsec4 | primel92vl |
prime239v1 | prime239v2 |

secpll2rl | secpll2r2 | secpl28rl |

24 | Ericsson AB. All Rights Reserved.: crypto

href

crypto

secpl92rl | secp224kl | secp224rl | secp256kl |
secp384rl | secp521rl | sectll3rl | sectll3r2 |
sectl31r2 | sectl63kl | sectl63rl | sectl63r2 |
sectl193r2 | sect233kl | sect233rl | sect239kl |
sect283rl | sect409kl | sect409rl | sect571k1 |

wtlsl | wtlslO | wtlsll | wtlsl2 | wtls3 | wtls4 | wtls5 |

wtls6 | wtls7 | wtls8 | wtls9
edwards curve dh() = x25519 | x448
edwards curve ed() = ed25519 | ed448

Note that some curves are disabled if FIPSis enabled.

ec_explicit curve() =
{Field :: ec field(),
Curve :: ec _curve(),
BasePoint :: binary(),
Order :: binary(),
CoFactor :: none | binary()}

secp256rl
sectl31lrl
sect193rl
sect283kl
sect571rl

ec_field() = ec_prime field() | ec_characteristic two field()

ec curve() =
{A :: binary(), B ::

Parametric curve definition.

binary(), Seed ::

ec prime field() = {prime field, Prime ::
ec characteristic two field() =

{characteristic two field,
M :: integer(),

integer()}

Basis :: ec basis()}

ec_basis() =
{tpbasis, K :: integer() >= 0} |
{ppbasis,

K1 :: integer() >= 0,
K2 :: integer() >= 0,
K3 :: integer() >= 0} |
onbasis

Curve definition details.

Keys

key integer() = integer() | binary()
Alwaysbi nary() when used as return value

Public/Private Keys
rsa_public() = [key_integer()]
rsa_private() = [key integer()]
rsa params() =

{ModulusSizeInBits :: integer(),
PublicExponent :: key integer()}
rsa_public() = [E, N]
rsa private() = [E, N, D] | [E, N, D, P1, P2, E1, E2, C]

none | binary()}

Ericsson AB. All Rights Reserved.: crypto | 25

crypto

Where E is the public exponent, N is public modulus and D is the private exponent. The longer key format contains
redundant information that will make the calculation faster. P1 and P2 are first and second prime factors. E1 and E2
are first and second exponents. C isthe CRT coefficient. The terminology is taken from RFC 3447.

dss public() = [key integer()]

dss private() = [key integer()]
dss_public() = [P, Q, G, Y]

Where P, Q and G are the dss parameters and Y is the public key.
dss_private() = [P, Q, G, X]

Where P, Q and G are the dss parameters and X isthe private key.

ecdsa public() = key integer()

ecdsa private() = key integer()

ecdsa params() = ec_named curve() | ec_explicit curve()

eddsa public() key integer()
(
)

eddsa private() = key integer()
eddsa params() = edwards curve ed()
srp_public() key integer()
srp_private() = key integer()

srp_public() = key integer()
Whereis A or B from SRP design

srp private() = key integer()
Whereisa or b from SRP design
srp_gen params() =

{user, srp user gen params()} | {host, srp host gen params()}

srp_comp _params() =

{user, srp user comp params()} |

{host, srp host comp params()}
srp_user_gen params() = [DerivedKey::binary(), Prime::binary(),
Generator::binary(), Version::atom()]srp host gen params() =
[Verifier::binary(), Prime::binary(), Version::atom()]srp _user_comp_ params()
= [DerivedKey::binary(), Prime::binary(), Generator::binary(),
Version::atom() | ScramblerArg::list()]srp host comp params() =
[Verifier::binary(), Prime::binary(), Version::atom() | ScramblerArg::list()]

Where Verifier isv, Generator isg and Primeis N, DerivedKey is X, and Scrambler isu (optiona will be generated
if not provided) from SRP design Version="'3'|'6' | '6a

Public Key Ciphers

pk _encrypt decrypt algs() = rsa

Algorithms for public key encrypt/decrypt. Only RSA is supported.

pk_encrypt decrypt opts() = [rsa opt()] | rsa compat opts()

rsa opt() =

{rsa_padding, rsa padding()} |
{signature_md, atom()} |

26 | Ericsson AB. All Rights Reserved.: crypto

href
href
href
href

crypto

{rsa_mgfl md, sha} |
{rsa oaep label, binary()} |
{rsa oaep md, sha}
rsa_padding() =
rsa _pkcsl padding | rsa pkcsl oaep padding |
rsa sslv23 padding | rsa x931 padding | rsa no_padding

Options for public key encrypt/decrypt. Only RSA is supported.

The RSA options are experimental.

The exact set of options and there syntax may be changed without prior notice.

rsa_compat opts() = [{rsa pad, rsa padding()}] | rsa padding()
Those option forms are kept only for compatibility and should not be used in new code.

Public Key Sign and Verify

pk sign verify algs() = rsa | dss | ecdsa | eddsa
Algorithms for sign and verify.

[rsa sign verify opt()]

pk _sign verify opts()
rsa_sign verify opt()
{rsa _padding, rsa sign verify padding()} |
{rsa _pss saltlen, integer()} |
{rsa mgfl md, sha2()}
rsa sign verify padding() =
rsa pkcsl padding | rsa pkcsl pss padding | rsa x931 padding |
rsa no padding

Options for sign and verify.

The RSA options are experimental.
The exact set of options and there syntax may be changed without prior notice.

Diffie-Hellman Keys and parameters
dh public() = key integer()
dh private() = key integer()
dh _params() = [key integer()]
dh params() = [P, G] | [P, G, PrivateKeyBitLength]

ecdh public() = key integer()
ecdh private() = key integer()
ecdh params() =
ec_named curve() | edwards curve dh() | ec explicit curve()
Types for Engines
engine key ref() =

Ericsson AB. All Rights Reserved.: crypto | 27

crypto

#{engine := engine ref(),
key id key id(),
password => password(),
term() => term()}

engine ref() = term()

Theresult of acall to engine |load/3.
key id() = string() | binary()

Identifies the key to be used. The format depends on the loaded engine. It is passed to the
ENG NE_| oad_(pri vat e| publi c) _key functionsin libcrypto.

password() = string() | binary()
The password of the key stored in an engine.

engine method type() =
engine method rsa | engine method dsa | engine method dh |
engine method rand | engine method ecdh |
engine method ecdsa | engine method ciphers |
engine method digests | engine method store |
engine method pkey meths | engine method pkey asnl meths |
engine method ec

engine _cmnd() = {unicode:chardata(), unicode:chardata()}

Pre and Post commands for engine_|oad/3 and /4.

Internal data types

crypto_state()
hash state()
mac_state()

Contexts with an internal state that should not be manipulated but passed between function calls.

Exceptions

Atoms - the older style

The exception er r or : badar g signifiesthat one or more arguments are of wrong data type, or are otherwise badly
formed.

The exception er r or : not sup signifies that the algorithm is known but is not supported by current underlying
libcrypto or explicitly disabled when building that.

For alist of supported algorithms, see supports(ciphers).

3-tuples - the new style

The exceptioniis:

error:{Tag, C FileInfo, Description}
Tag = badarg | notsup | error

C FileInfo = term() Usually only useful for the OTP maintainer
Description = string() Clear text, sometimes only useful for the OTP maintainer

[
“
[

“°

The exception tags are:

28 | Ericsson AB. All Rights Reserved.: crypto

crypto

badar g
Signifies that one or more arguments are of wrong data type or are otherwise badly formed.
not sup

Signifies that the algorithm is known but is not supported by current underlying libcrypto or explicitly disabled
when building that one.

error

An error condition that should not occur, for example a memory allocation failed or the underlying cryptolib
returned an error code, for example" Can't initialize context, step 1".Thosetextusualy needs
searching the C-code to be understood.

Usually there are more information in the call stack about which argument caused the exception and what the values
where.

To catch the exception, use for example:

try crypto:crypto init(Ciph, Key, IV, true)
catch
error:{Tag, C FileInfo, Description} ->
do something(......)

end

Exports

crypto_init(Cipher, Key, FlagOrOptions) -> State
Types:
Cipher = cipher no iv()
Key = iodata()
FlagOrOptions = crypto opts() | boolean()
State = crypto state()
Uses the 3-tuple style for error handling.

Equivalent tothecall crypto_i nit (G pher, Key, <<>> Fl agO Options). Itisintended for ciphers
without an IV (nounce).

crypto_init(Cipher, Key, IV, FlagOrOptions) -> State
Types:
Cipher = cipher_iv()
Key = IV = iodata()
FlagOrOptions = crypto opts()
State = crypto state()
Uses the 3-tuple style for error handling.
Initializes a series of encryptions or decryptions and creates an internal state with areference that is returned.
IflV = <<>>nolV isused. Thisisintended for ciphers without an IV (nounce). See crypto_init/3.

If 1V = undefi ned, thelV must be added by callsto crypto_dyn_iv_update/3. Thisis intended for cases where
the 1V (nounce) need to be changed for each encryption and decryption. See crypto_dyn_iv_init/3.

The actual encryption or decryption is done by crypto_update/2 (or crypto_dyn iv_update/3).

Ericsson AB. All Rights Reserved.: crypto | 29

crypto

For encryption, set the Fl agOr Opti ons totrue or [{encrypt, true}]. For decryption, setittof al se or
[{encrypt, fal se}].

Padding could be enabled with the option { padding,Padding} . The cryptolib_padding enablespkcs_paddi ng or no
padding (hone). The paddings zer o or r andomfills the last part of the last block with zeroes or random bytes. If
the last block is already full, nothing is added.

In decryption, the cryptolib_padding removes such padding, if present. The otp_padding is not removed - it has to
be done elsewhere.

If padding is{ paddi ng, none} or not specified and the total datafrom all subsequent crypto_updates does not fill
the last block fully, that last dataislost. In case of { paddi ng, none} therewill be an error in this case. If padding
is not specified, the bytes of the unfilled block is silently discarded.

The actua padding is performed by crypto_final/1.
For blocksizes call cipher_info/1.
See examplesin the User's Guide.

crypto update(State, Data) -> Result
Types:

State = crypto state()

Data = iodata()

Result = binary()
Uses the 3-tuple style for error handling.

It does an actual crypto operation on apart of the full text. If the part is less than a number of full blocks, only the full
blocks (possibly none) are encrypted or decrypted and the remaining bytes are saved to the next cr ypt o_updat e
operation. The St at e should be created with crypto_init/3 or crypto_init/4.

See examplesin the User's Guide.

crypto dyn iv init(Cipher, Key, FlagOrOptions) -> State
Types.
Cipher = cipher iv()
Key = iodata()
FlagOrOptions = crypto opts() | boolean()
State = crypto state()
Usesthe 3-tuple style for error handling.
Initializes a series of encryptions or decryptions where the IV is provided later. The actual encryption or decryption
isdone by crypto_dyn_iv_update/3.
Thefunctionisequivalenttocrypt o_i ni t (C pher, Key, undefined, Fl agO Options).

crypto final(State) -> FinalResult
Types:
State = crypto state()
FinalResult = binary()
Uses the 3-tuple style for error handling.

Finalizes a series of encryptions or decryptions and delivers the final bytes of the final block. The data returned from
this function may be empty if no padding was enabled in crypto_init/3,4 or crypto_dyn_iv_init/3.

30 | Ericsson AB. All Rights Reserved.: crypto

crypto

crypto get data(State) -> Result
Types.

State = crypto state()

Result = map()

Uses the 3-tuple style for error handling.

Returns information about the State in the argument. The information is the form of a map, which currently contains
at least:
si ze
The number of bytes encrypted or decrypted so far.
paddi ng_si ze
After acall to crypto_final/1 it contains the number of bytes padded. Otherwise O.
paddi ng_t ype
The type of the padding as provided in the call to crypto_init/3,4.
encrypt
Ist rue if encryptionis performed. It isf al se otherwise.

crypto dyn iv update(State, Data, IV) -> Result
Types:

State = crypto state()

Data = IV = iodata()

Result = binary()
Uses the 3-tuple style for error handling.

Do an actual crypto operation on a part of the full text and the 1V is supplied for each part. The St at e should be
created with crypto_dyn_iv_init/3.

crypto one time(Cipher, Key, Data, FlagOrOptions) -> Result
Types:

Cipher = cipher no iv()

Key = Data = iodatal()

FlagOrOptions = crypto opts() | boolean()

Result = binary()

Uses the 3-tuple style for error handling.
Ascrypto_one_time/5 but for ciphers without 1Vs.

crypto one time(Cipher, Key, IV, Data, FlagOrOptions) -> Result
Types:

Cipher = cipher iv()

Key = IV = Data = iodata()

FlagOrOptions = crypto opts() | boolean()

Result = binary()
Uses the 3-tuple style for error handling.

Do a complete encrypt or decrypt of the full text in the argument Dat a.

Ericsson AB. All Rights Reserved.: crypto | 31

crypto

For encryption, set the Fl agOr Opt i ons to t r ue. For decryption, set it to f al se. For setting other options, see
crypto_init/4.

See examplesin the User's Guide.

crypto one time aead(Cipher, Key, IV, InText, AAD,
EncFlag :: true) ->
Result
crypto one time aead(Cipher, Key, IV, InText, AAD, TagOrTagLength,
EncFlag) ->
Result

Types:
Cipher = cipher_aead()

Key = IV = InText = AAD = iodata()
TagOrTagLength = EncryptTaglLength | DecryptTag

EncryptTagLength = integer() >= 0
DecryptTag = iodatal()

EncFlag = boolean()

Result = EncryptResult | DecryptResult

EncryptResult = {OutCryptoText, OutTag}
DecryptResult = OutPlainText | error
OQutCryptoText = OutTag = OutPlainText = binary()

Uses the 3-tuple style for error handling.
Do a complete encrypt or decrypt with an AEAD cipher of the full text.

For encryption, set the Encr ypt Fl ag tot r ue and set the TagOr TagLengt h to the wanted size (in bytes) of the
tag, that is, the tag length. If the default length iswanted, the cr ypt o_aead/ 6 form may be used.

For decryption, set theEncr ypt Fl ag tof al se and put thetag to be checked in theargument TagOr TagLengt h.

See examplesin the User's Guide.

supports(Type) -> Support
Types.

32 | Ericsson AB. All Rights Reserved.: crypto

crypto

Type = hashs | ciphers | public keys | macs | curves | rsa opts
Support = Hashs | Ciphers | PKs | Macs | Curves | RSAopts

Hashs =
[shal() |
sha2() |
sha3() |
blake2() |
ripemd160 |
compatibility only hash()]

Ciphers = [cipher()]
PKs = [rsa | dss | ecdsa | dh | ecdh | eddh | ec_gf2m]
Macs = [hmac | cmac | polyl305]

Curves =
[ec named curve() | edwards curve dh() | edwards curve ed()]

RSAopts = [rsa sign verify opt() | rsa opt()]
Can be used to determine which crypto algorithms that are supported by the underlying libcrypto library
See hash_info/1 and cipher_info/1 for information about the hash and cipher algorithms.

mac(Type :: polyl305, Key, Data) -> Mac

Types.
Key = Data = iodata()
Mac = binary()

Uses the 3-tuple style for error handling.
Short for mac(Type, undefined, Key, Data).

mac(Type, SubType, Key, Data) -> Mac

Types:
Type = hmac | cmac | polyl305
SubType =
hmac hash algorithm() | cmac cipher algorithm() | undefined
Key = Data = iodatal()
Mac = binary()

Uses the 3-tuple style for error handling.
Computes aMAC (Message Authentication Code) of type Type from Dat a.
SubType depends onthe MAC Type:

» For hmac it is ahash agorithm, see Algorithm Detailsin the User's Guide.

e Forcnac itisacipher suitable for cmac, see Algorithm Detailsin the User's Guide.

e For pol y1305 it should be set to undef i ned or the mac/2 function could be used instead, see Algorithm
Detailsin the User's Guide.

Key isthe authentication key with alength according to the Ty pe and SubTy pe. Thekey length could be found with
the hash_info/1 (hmac) for and cipher_info/1 (cmac) functions. For pol y1305 the key length is 32 bytes. Note that
the cryptographic quality of the key is not checked.

The Mac result will have adefault length depending on the Ty pe and SubTy pe. To set ashorter length, use macN/4
or macN/5 instead. The default length is documented in Algorithm Details in the User's Guide.

Ericsson AB. All Rights Reserved.: crypto | 33

crypto

macN(Type :: polyl305, Key, Data, MacLength) -> Mac

Types.
Key = Data = iodata()
Mac = binary()

MacLength = integer() >=1
Uses the 3-tuple style for error handling.
Short for macN(Type, undefined, Key, Data, MacL ength).

macN(Type, SubType, Key, Data, MacLength) -> Mac

Types:
Type = hmac | cmac | polyl305
SubType =
hmac_hash algorithm() | cmac cipher _algorithm() | undefined
Key = Data = iodata()
Mac = binary()

MacLength = integer() >=1

Computes a MAC (Message Authentication Code) as mac/3 and mac/4 but MacLengt h will limit the size of the
resultant Mac to at most MacLengt h bytes. Note that if MacLengt h is greater than the actual number of bytes
returned from the underlying hash, the returned hash will have that shorter length instead.

The max MacLengt h isdocumented in Algorithm Detailsin the User's Guide.

mac_init(Type :: polyl305, Key) -> State
Types:

Key = iodata()

State = mac_state()
Uses the 3-tuple style for error handling.

Short for mac_init(Type, undefined, Key).

mac_init(Type, SubType, Key) -> State
Types.
Type = hmac | cmac | polyl305

SubType =
hmac hash algorithm() | cmac cipher algorithm() | undefined

Key = iodata()
State = mac_state()
Uses the 3-tuple style for error handling.
Initializes the context for streaming MAC operations.
Ty pe determines which mac algorithm to use in the MAC operation.
SubType depends onthe MAC Type:

e For hnmac it isahash agorithm, see Algorithm Detailsin the User's Guide.
» Forcmac itisacipher suitable for cmac, see Algorithm Details in the User's Guide.

34 | Ericsson AB. All Rights Reserved.: crypto

crypto

e For pol y1305 it should be set to undef i ned or the mac/2 function could be used instead, see Algorithm
Detailsin the User's Guide.

Key isthe authentication key with alength according to the Ty pe and SubTy pe. Thekey length could be found with
the hash_info/1 (hmac) for and cipher_info/1 (cmac) functions. For pol y1305 the key length is 32 bytes. Note that
the cryptographic quality of the key is not checked.

The returned St at e should be used in one or more subsequent calls to mac_update/2. The MAC value is finally
returned by calling mac_final/1 or mac_finalN/2.

See examplesin the User's Guide.

mac_update(State®@, Data) -> State
Types:
Data = iodata()
State® = State = mac state()
Uses the 3-tuple style for error handling.
Updates the MAC represented by St at e0 using the given Dat a which could be of any length.

The St at e0 isthe State value originally from a MAC init function, that is mac_init/2, mac_init/3 or a previous call
of mac_updat e/ 2. Thevalue St at e0 is returned unchanged by the function as St at e.

mac_final(State) -> Mac
Types:
State = mac_state()
Mac = binary()

Uses the 3-tuple style for error handling.

Finalizes the MAC operation referenced by St at e. The Mac result will have a default length depending on the
Type and SubType in the mac_init/2,3 call. To set a shorter length, use mac_finalN/2 instead. The default length
is documented in Algorithm Details in the User's Guide.

mac_finalN(State, MacLength) -> Mac
Types.
State = mac_state()
MacLength = integer() >=1
Mac = binary()
Uses the 3-tuple style for error handling.
Finalizes the MAC operation referenced by St at e.

Mac will be abinary with at most MacLengt h bytes. Note that if MacLengt h is greater than the actual number of
bytes returned from the underlying hash, the returned hash will have that shorter length instead.

The max MacLengt h isdocumented in Algorithm Detailsin the User's Guide.

bytes to integer(Bin :: binary()) -> integer()
Convert hinary representation, of an integer, to an Erlang integer.

compute key(Type, OthersPublicKey, MyPrivateKey, Params) ->

Ericsson AB. All Rights Reserved.: crypto | 35

crypto

SharedSecret
Types:
Type = dh | ecdh | eddh | srp
SharedSecret = binary()
OthersPublicKey = dh public() | ecdh public() | srp_public()
MyPrivateKey =
dh private() | ecdh private() | {srp public(), srp private()}
Params = dh params() | ecdh params() | srp_comp params()

Uses the 3-tuple style for error handling.

Computes the shared secret from the private key and the other party's public key. See also public_key:compute _key/2

exor(Binl :: iodata(), Bin2 :: iodata()) -> binary()
Performs bit-wise XOR (exclusive or) on the data supplied.

generate key(Type, Params) -> {PublicKey, PrivKeyQut}

generate key(Type, Params, PrivKeyIn) -> {PublicKey, PrivKeyQut}
Types:

Type = dh | ecdh | eddh | eddsa | rsa | srp
PublicKey =

dh _public() | ecdh public() | rsa public() | srp public()
PrivKeyIn =

undefined |

dh private() |

ecdh private() |

rsa _private() |

{srp_public(), srp private()}
PrivKeyOut =

dh private() |

ecdh private() |

rsa private() |

{srp_public(), srp private()}
Params =

dh _params() |

ecdh params() |

eddsa params() |

rsa params() |

srp_comp_params ()

Uses the 3-tuple style for error handling.

Generates a public key of type Type. See also public_key:generate key/1.

36 | Ericsson AB. All Rights Reserved.: crypto

crypto

If the linked version of cryptolib is OpenSSL 3.0

* andtheType isdh (diffie-hellman)

e and the parameter P (in dh_params()) is one of the MODP groups (see RFC 3526)

» andtheoptiona Pri vat eKeyBi t Lengt h parameter (in dh_params()) is present,

then the optional key length parameter must be at least 224, 256, 302, 352 and 400 for group sizes of 2048, 3072,
4096, 6144 and 8192, respectively.

RSA key generation is only available if the runtime was built with dirty scheduler support. Otherwise, attempting
to generate an RSA key will raise the exception er r or : not sup.

hash(Type, Data) -> Digest

Types:
Type = hash _algorithm()
Data = iodata()

Digest = binary()
Uses the 3-tuple style for error handling.
Computes a message digest of type Type from Dat a.

hash _init(Type) -> State
Types:
Type = hash algorithm()
State = hash _state()
Uses the 3-tuple style for error handling.

Initializesthe context for streaming hash operations. Ty pe determineswhich digest to use. Thereturned context should
be used as argument to hash_update.

hash_update(State, Data) -> NewState
Types:
State = NewState = hash state()
Data = iodata()

Uses the 3-tuple style for error handling.

Updates the digest represented by Cont ext using the given Dat a. Cont ext must have been generated using
hash_init or aprevious call to thisfunction. Dat a can be any length. NewCont ext must be passed into the next call
tohash_updat e or hash final.

hash final(State) -> Digest
Types:

Ericsson AB. All Rights Reserved.: crypto | 37

href

crypto

State = hash state()
Digest = binary()
Uses the 3-tuple style for error handling.

Finalizes the hash operation referenced by Cont ext returned from a previous call to hash update. The size of
Di gest isdetermined by the type of hash function used to generate it.

info fips() -> not supported | not enabled | enabled

Providesinformation about the FIPS operating status of crypto and the underlying libcrypto library. If crypto was built
with FIPS support this can be either enabl ed (when running in FIPS mode) or not _enabl ed. For other builds
thisvalueisalwaysnot _support ed.

See enable fips mode/1 about how to enable FIPS mode.

In FIPS mode all non-FIPS compliant algorithms are disabled and raise exception err or : not sup. Check
supports(ciphers) that in FIPS mode returns the restricted list of available algorithms.

enable fips mode(Enable) -> Result
Types:
Enable = Result = boolean()

Enables (Enabl e = true) or disables (Enabl e = fal se) FIPS mode. Returnst r ue if the operation was
successful or f al se otherwise.

Note that to enable FIPS mode successfully, OTP must be built with the configure option - - enabl e- f i ps, and the
underlying libcrypto must also support FIPS.

See dsoinfo_fipg/0.

info() ->
#{compile type := normal | debug | valgrind | asan,
cryptolib version compiled => string() | undefined,
cryptolib version linked := string(),
link type := dynamic | static,
otp crypto version := string()}

Provides a map with information about the compilation and linking of crypto.
Example:

1> crypto:info().

#{compile type => normal,
cryptolib _version compiled => "OpenSSL
cryptolib version linked => "OpenSSL 3.
link _type => dynamic,
otp _crypto version => "5.0.2"}

2>

o w

.0.0 7 sep 2021",
.0 7 sep 2021"

More association types than documented may be present in the map.

info lib() -> [{Name, VerNum, VerStr}]
Types.

38 | Ericsson AB. All Rights Reserved.: crypto

crypto

Name = binary()
VerNum = integer()
VerStr binary()
Provides the name and version of the libraries used by crypto.

Nane isthe name of the library. Ver Numis the numeric version according to the library's own versioning scheme.
Ver St r contains atext variant of the version.

> info lib().
[{<<"OpenSSL">>,269484095,<<"0penSSL 1.1.0c 10 Nov 2016"">>}]

From OTP R16 the numeric version represents the version of the OpenSSL header files (openssl/
openssl v. h) used when crypto was compiled. The text variant represents the libcrypto library used at runtime.
In earlier OTP versions both numeric and text was taken from the library.

hash _info(Type) -> Result
Types.
Type = hash _algorithm()
Result =
#{size := integer(),
block size := integer(),
type := integer()}
Providesamap with information about block_size, size and possibly other properties of the hash algorithm in question.

For alist of supported hash algorithms, see supports(hashs).

cipher _info(Type) -> Result

Types:
Type = cipher()
Result =
#{key length := integer(),
iv_length := integer(),
block size := integer(),
mode := CipherModes,
type := undefined | integer(),
prop_aead := boolean()}
CipherModes =

undefined | cbc mode | ccm mode | cfb mode | ctr mode |

ecb mode | gcm mode | ige mode | ocb mode | ofb mode |

wrap mode | xts mode
Provides a map with information about block_size, key length, iv_length, aead support and possibly other properties
of the cipher algorithm in question.

Ericsson AB. All Rights Reserved.: crypto | 39

crypto

The ciphers aes_cbc, aes_cf b8, aes_cf b128, aes_ctr, aes_ecb, aes_gcmand aes_ccmhas no
keylength in the Type as opposed to for exampleaes_128 ct r . They adapt to the length of the key provided
in the encrypt and decrypt function. Therefore it isimpossible to return avalid keylength in the map.

Alwaysuse a Type with an explicit key length,

For alist of supported cipher algorithms, see supports(ciphers).

mod pow(N, P, M) -> Result

Types:
N=P=M= binary() | integer()
Result = binary() | error

Computes the function N*P nmod M

private decrypt(Algorithm, CipherText, PrivateKey, Options) ->
PlainText

Types:
Algorithm = pk encrypt decrypt algs()
CipherText = binary()
PrivateKey = rsa private() | engine key ref()
Options = pk encrypt decrypt opts()
PlainText = binary()

Uses the 3-tuple style for error handling.

Decryptsthe G pher Text , encrypted with public_encrypt/4 (or equivalent function) using the Pr i vat eKey, and
returns the plaintext (message digest). Thisis alow level signature verification operation used for instance by older
versions of the SSL protocol. See also public_key:decrypt_private/[2,3]

private encrypt(Algorithm, PlainText, PrivateKey, Options) ->
CipherText

Types.
Algorithm = pk encrypt decrypt algs()
PlainText = binary()
PrivateKey = rsa private() | engine key ref()
Options = pk _encrypt decrypt opts()
CipherText = binary()

Uses the 3-tuple style for error handling.

Encryptsthe Pl ai nText usingthe Pri vat eKey and returnsthe ciphertext. Thisisalow level signature operation
used for instance by older versions of the SSL protocol. See also public_key:encrypt_private/[2,3]

public decrypt(Algorithm, CipherText, PublicKey, Options) ->

PlainText
Types:

40 | Ericsson AB. All Rights Reserved.: crypto

crypto

Algorithm = pk encrypt decrypt algs()
CipherText = binary()
PublicKey = rsa_public() | engine_key ref()
Options = pk encrypt decrypt opts()
PlainText = binary()

Uses the 3-tuple style for error handling.

Decryptsthe G pher Text , encrypted with private_encrypt/4(or equivalent function) using the Pr i vat eKey, and
returns the plaintext (message digest). Thisis alow level signature verification operation used for instance by older
versions of the SSL protocol. See also public_key:decrypt_public/[2,3]

public encrypt(Algorithm, PlainText, PublicKey, Options) ->

CipherText
Types:
Algorithm = pk encrypt decrypt algs()
PlainText = binary()
PublicKey = rsa_public() | engine_key ref()

Options = pk encrypt decrypt opts()
CipherText = binary()
Uses the 3-tuple style for error handling.

Encryptsthe Pl ai nText (messagedigest) using thePubl i cKey andreturnsthe Ci pher Text . Thisisalow level
signature operation used for instance by older versions of the SSL protocol. See also public_key:encrypt_public/[2,3]

rand seed(Seed :: binary()) -> ok

Set the seed for PRNG to the given binary. This calls the RAND_seed function from openssl. Only use this if the
system you are running on does not have enough "randomness" built in. Normally thisis when strong_rand_bytes/1
raiseserror: | ow entropy

rand uniform(Lo, Hi) -> N
Types:
Lo, Hi, N = integer()

Generate arandom number N, Lo =< N < Hi. Usesthecrypt o library pseudo-random number generator.
H must be larger than Lo.

start() -> ok | {error, Reason :: term()}
Equivalent to application:start(crypto).

stop() -> ok | {error, Reason :: term()}
Equivalent to application:stop(crypto).

strong rand bytes(N :: integer() >= 0) -> binary()

Generates N bytes randomly uniform 0..255, and returns the result in a binary. Uses a cryptographically secure prng
seeded and periodically mixed with operating system provided entropy. By default thisisthe RAND byt es method
from OpenSSL.

May raiseexceptioner r or : | ow_ent r opy in casethe random generator failed dueto lack of secure"randomness’.

Ericsson AB. All Rights Reserved.: crypto | 41

crypto

rand seed() -> rand:state()

Creates state object for random number generation, in order to generate cryptographically strong random numbers
(based on OpenSSL's BN_r and_r ange), and savesit in the process dictionary before returning it as well. See also
rand:seed/1 and rand_seed &0.

When using the state object from thisfunction therand functionsusing it may raiseexceptioner r or : | ow_ent r opy
in case the random generator failed due to lack of secure "randomness’.

Example

= crypto:rand seed(),
_IntegerValue = rand:uniform(42), % [1; 42]
_FloatValue = rand:uniform(). % [0.0; 1.0]

rand seed s() -> rand:state()

Creates state object for random number generation, in order to generate cryptographically strongly random numbers
(based on OpenSSL'sBN _rand_r ange). Seeaso rand:seed /1.

When using the state object from thisfunction therand functionsusing it may raiseexceptioner r or : | ow_ent r opy
in case the random generator failed due to lack of secure "randomness’.

The state returned from this function cannot be used to get a reproducible random sequence as from the other rand
functions, since reproducibility does not match cryptographically safe.

The only supported usage is to generate one distinct random sequence from this start state.

rand seed alg(Alg) -> rand:state()
Types.
Alg = crypto | crypto_cache

Creates state object for random number generation, in order to generate cryptographically strong random numbers,
and savesit in the process dictionary before returning it as well. See also rand:seed/1 and rand_seed alg_g/1.

When using the state object from thisfunction the rand functionsusing it may raiseexceptioner r or : | ow_ent r opy
in case the random generator failed due to lack of secure "randomness’.

Example

~ = crypto:rand seed alg(crypto cache),
_IntegerValue = rand:uniform(42), % [1; 42]
_FloatValue = rand:uniform(). % [0.0; 1.0[

rand seed alg(Alg, Seed) -> rand:state()
Types:
Alg = crypto_aes

Creates a state object for random number generation, in order to generate cryptographically unpredictable random
numbers, and savesit in the process dictionary before returning it aswell. See also rand_seed ag_g/2.

Example

42 | Ericsson AB. All Rights Reserved.: crypto

crypto

= crypto:rand seed alg(crypto aes, "my seed"),
IntegerValue = rand:uniform(42), % [1; 42]

FloatValue = rand:uniform(), % [0.0; 1.0
= crypto:rand seed alg(crypto aes, "my seed"),
IntegerValue = rand:uniform(42), % Same values
FloatValue = rand:uniform(). % again

rand seed alg s(Alg) -> rand:state()
Types:
Alg = crypto | crypto_cache

Creates state object for random number generation, in order to generate cryptographically strongly random numbers.
See also rand:seed g/1.

If Al g iscrypt o thisfunction behaves exactly like rand_seed /0.

If Al giscrypt o_cache thisfunction fetches random data with OpenSSL's RAND byt es and cachesit for speed
using an internal word size of 56 bits that makes calculations fast on 64 bit machines.

When using the state object from thisfunction therand functionsusing it may raiseexceptioner r or : | ow_ent r opy
in case the random generator failed due to lack of secure "randomness’.

The cache size can be changed from its default value using the crypto app's configuration parameter
rand_cache_si ze.

When using the state object from this function the rand functions using it may throw exception | ow_ent r opy in
case the random generator failed due to lack of secure "randomness’.

The state returned from this function cannot be used to get a reproducible random sequence as from the other rand
functions, since reproducibility does not match cryptographically safe.

In fact since random data is cached some numbers may get reproduced if you try, but thisis unpredictable.
The only supported usage is to generate one distinct random sequence from this start state.

rand seed alg s(Alg, Seed) -> rand:state()
Types:
Alg = crypto_aes
Creates a state object for random number generation, in order to generate cryptographically unpredictable random
numbers. See also rand_seed alg/1.

To get along period the Xoroshiro928 generator from the rand module is used as a counter (with period 27928 - 1)
and the generator states are scrambled through AES to create 58-bit pseudo random values.

The result should be statistically completely unpredictable random values, since the scrambling is cryptographically
strong and the period isridiculously long. But the generated numbers are not to be regarded as cryptographically strong
since there is no re-keying schedule.

« If you need cryptographically strong random numbersuserand seed alg g1 withAlg =: = cryptoorAl g
== crypto_cache.

e |f you need to be able to repeat the sequence use this function.

« If you do not need the statistical quality of this function, there are faster algorithms in the rand module.

Ericsson AB. All Rights Reserved.: crypto | 43

crypto

Thanks to the used generator the state object supportsther and: j unp/ 0, 1 function with distance 2/512.

Numbers are generated in batches and cached for speed reasons. The cache size can be changed from its default value
using the crypto app's configuration parameter r and_cache_si ze.

ec_curves() -> [EllipticCurve]
Types:
EllipticCurve =
ec_named curve() | edwards curve dh() | edwards curve ed()

Can be used to determine which named elliptic curves are supported.

ec_curve(CurveName) -> ExplicitCurve
Types:
CurveName = ec named curve()
ExplicitCurve = ec_explicit curve()
Return the defining parameters of adliptic curve.

sign(Algorithm, DigestType, Msg, Key) -> Signature
sign(Algorithm, DigestType, Msg, Key, Options) -> Signature
Types:
Algorithm = pk sign verify algs()
DigestType =
rsa digest type() |
dss digest type() |
ecdsa digest type() |
none
Msg = iodata() | {digest, iodata()}
Key =
rsa private() |
dss private() |
[ecdsa private() | ecdsa params()] |
[eddsa private() | eddsa params()] |
engine key ref()

Options = Bk_sign_verify_opts()
Signature = binary()

Uses the 3-tuple style for error handling.

Creates adigital signature.

Themsgiseither thebinary "cleartext” datato besigned or it isthe hashed value of "cleartext” i.e. thedigest (plaintext).

Algorithm dss can only be used together with digest type sha.

See also public_key:sign/3.

verify(Algorithm, DigestType, Msg, Signature, Key) -> Result

verify(Algorithm, DigestType, Msg, Signature, Key, Options) ->
Result

Types:

44 | Ericsson AB. All Rights Reserved.: crypto

crypto

Algorithm = pk sign verify algs()
DigestType =
rsa_digest type() |
dss digest type() |
ecdsa digest type() |
none
Msg = iodata() | {digest, iodata()}
Signature = binary()
Key =
rsa public() |
dss public() |
[ecdsa public() | ecdsa params()] |
[eddsa public() | eddsa params()] |
engine key ref()
Options = pk sign verify opts()
Result = boolean()
Uses the 3-tuple style for error handling.
Verifiesadigital signature
Themsgiseither thebinary "cleartext” datato be signed or it isthe hashed value of "cleartext” i.e. thedigest (plaintext).
Algorithm dss can only be used together with digest type sha.

See also public_key:verify/4.
Exports

privkey to pubkey(Type, EnginePrivateKeyRef) -> PublicKey
Types.

Type = rsa | dss

EnginePrivateKeyRef = engine key ref()

PublicKey = rsa public() | dss public()

Fetches the corresponding public key from a private key stored in an Engine. The key must be of the type indicated
by the Type parameter.

engine get all methods() -> Result
Types:
Result = [engine method type()]
Returns alist of all possible engine methods.
May raise exception er r or : not sup in casethereis no engine support in the underlying OpenSSL implementation.

See also the chapter Engine Load in the User's Guide.

engine load(EngineId, PreCmds, PostCmds) -> Result
Types:

Ericsson AB. All Rights Reserved.: crypto | 45

crypto

EngineId = unicode:chardata()

PreCmds = PostCmds = [engine cmnd()]
Result =
{ok, Engine :: engine ref()} | {error, Reason :: term()}

Loads the OpenSSL engine given by Engi nel d if it is available and intialize it. Returns ok and an engine handle,
if the engine can't be loaded an error tupleis returned.

The function raises a er r or : badar g if the parameters are in wrong format. It may also raise the exception
error: not sup in case there is no engine support in the underlying OpenSSL implementation.

See also the chapter Engine Load in the User's Guide.

engine unload(Engine) -> Result

Types:
Engine = engine ref()
Result = ok | {error, Reason :: term()}

Unloads the OpenSSL engine given by Engi ne. An error tuple isreturned if the engine can't be unloaded.

The function raises a error: badar g if the parameter is in wrong format. It may aso raise the exception
error: not sup in case there is no engine support in the underlying OpenSSL implementation.

See also the chapter Engine Load in the User's Guide.

engine by id(EngineId) -> Result
Types:
Engineld = unicode:chardata()
Result =
{ok, Engine :: engine ref()} | {error, Reason :: term()}
Get areferenceto an aready loaded enginewith Engi nel d. Anerror tupleisreturned if the engine can't be unloaded.

The function raises a error: badar g if the parameter is in wrong format. It may also raise the exception
error: not sup in case there is no engine support in the underlying OpenSSL implementation.

See also the chapter Engine Load in the User's Guide.

engine ctrl cmd _string(Engine, CmdName, CmdArg) -> Result
Types:

Engine = term()

CmdName = CmdArg = unicode:chardata()

Result = ok | {error, Reason :: term()}

Sends ctrl commands to the OpenSSL engine given by Engi ne. This function is the same as calling
engine_ctrl _cnd_string/ 4 withOptional settof al se.

The function raises a er r or : badar g if the parameters are in wrong format. It may also raise the exception
error: not sup in case there is no engine support in the underlying OpenSSL implementation.

engine ctrl cmd string(Engine, CmdName, CmdArg, Optional) ->

Result
Types:

46 | Ericsson AB. All Rights Reserved.: crypto

crypto

Engine = term()

CmdName = CmdArg = unicode:chardata()
Optional = boolean()

Result = ok | {error, Reason :: term()}

Sends ctrl commands to the OpenSSL engine given by Engi ne. Opt i onal is a boolean argument that can relax
the semantics of the function. If settot r ue it will only return failure if the ENGINE supported the given command
name but failed while executing it, if the ENGINE doesn't support the command name it will simply return success
without doing anything. In this case we assume the user is only supplying commands specific to the given ENGINE
sowesetthistof al se.

The function raises a er r or ; badar g if the parameters are in wrong format. It may also raise the exception
error: not sup in case there is no engine support in the underlying OpenSSL implementation.

engine add(Engine) -> Result

Types.
Engine = engine ref()
Result = ok | {error, Reason :: term()}

Add the engine to OpenSSL 's internal list.

The function raises a er r or : badar g if the parameters are in wrong format. It may also raise the exception
error: not sup in case thereis no engine support in the underlying OpenSSL implementation.

engine remove(Engine) -> Result

Types:
Engine = engine ref()
Result = ok | {error, Reason :: term()}

Remove the engine from OpenSSL'sinternal list.

The function raises a er r or ;: badar g if the parameters are in wrong format. It may also raise the exception
error: not sup in case there is no engine support in the underlying OpenSSL implementation.

engine register(Engine, EngineMethods) -> Result
Types:
Engine = engine ref()
EngineMethods = [engine method type()]
Result = ok | {error, Reason :: term()}
Register engine to handle some type of methods, for example engine_method_digests.

The function raises a er r or : badar g if the parameters are in wrong format. It may also raise the exception
error: not sup in case there is no engine support in the underlying OpenSSL implementation.

engine unregister(Engine, EngineMethods) -> Result
Types:

Engine = engine ref()

EngineMethods = [engine method type()]

Result = ok | {error, Reason :: term()}

Unregister engine so it don't handle some type of methods.

Ericsson AB. All Rights Reserved.: crypto | 47

crypto

The function raises a er r or : badar g if the parameters are in wrong format. It may also raise the exception
error: not sup in case there is no engine support in the underlying OpenSSL implementation.

engine get id(Engine) -> Engineld
Types:
Engine = engine ref()
Engineld = unicode:chardata()
Return the ID for the engine, or an empty binary if thereisnoid set.

The function raises a er r or ;: badar g if the parameters are in wrong format. It may also raise the exception
error: not sup in case there is no engine support in the underlying OpenSSL implementation.

engine get name(Engine) -> EngineName
Types:
Engine = engine ref()
EngineName = unicode:chardata()
Return the name (eg a description) for the engine, or an empty binary if thereis no name set.

The function raises a er r or : badar g if the parameters are in wrong format. It may also raise the exception
error: not sup in case there is no engine support in the underlying OpenSSL implementation.

engine list() -> Result
Types:

Result = [Engineld :: unicode:chardata()]
List theid's of al enginesin OpenSSL'sinternal list.

It may also raise the exception er r or : not sup in case there is no engine support in the underlying OpenSSL
implementation.

See also the chapter Engine Load in the User's Guide.

May raise exception er r or : not sup in case engine functionality is not supported by the underlying OpenSSL
implementation.

ensure _engine loaded(EngineId, LibPath) -> Result
Types.
Engineld = LibPath = unicode:chardata()
Result =
{ok, Engine :: engine ref()} | {error, Reason :: term()}

Loads an engine given by Engi nel d and the path to the dynamic library implementing the engine. An error tuple
isreturned if the engine can't be loaded.

This function differs from the normal engine load in the sense that it also add the engine id to OpenSSL's internal
engine list. The difference between thefirst call and the following isthat the first |oads the engine with the dynamical
engine and the following calls fetch it from the OpenSSL's engine list. All references that is returned are equal.

Useengi ne_unl oad/ 1 function to remove the references. But remember that engi ne_unl oad/ 1 just removes
thereferencesto the engineand not thetag in OpenSSL 'senginelist. That hasto bedonewiththeengi ne_r enove/ 1
function when needed (just called once, from any of the references you got).

The function raises a er r or : badar g if the parameters are in wrong format. It may also raise the exception
error: not sup in case there is no engine support in the underlying OpenSSL implementation.

48 | Ericsson AB. All Rights Reserved.: crypto

crypto

See also the chapter Engine Load in the User's Guide.

hash _equals(BinA, BinB) -> Result
Types:
BinA = BinB = binary()
Result = boolean()
Constant time memory comparison for fixed length binaries, such as results of HMAC computations.

Returns true if the binaries are identical, false if they are of the same length but not identical. The function raises an
error: badar g exception if the binaries are of different size.

pbkdf2 hmac(Digest, Pass, Salt, Iter, KeyLen) -> Result
Types:
Digest = sha | sha224 | sha256 | sha384 | sha512

Pass = Salt = binary()
Iter KeyLen = integer() >=1
Result = binary()

Uses the 3-tuple style for error handling.
PKCS #5 PBKDF2 (Password-Based Key Derivation Function 2) in combination with HMAC.

Ericsson AB. All Rights Reserved.: crypto | 49

	crypto
	Crypto User's Guide
	Licenses
	OpenSSL License
	SSLeay License

	FIPS mode
	Background
	Enabling FIPS mode
	Incompatibilities with regular builds
	Common caveats
	Restrictions on key sizes
	Restrictions on elliptic curves
	Avoid md5 for hashing
	Certificates and encrypted keys
	SNMP v3 limitations
	TLS 1.2 is required

	Engine Load
	Background
	Use Cases
	Dynamically load an engine from default directory
	Load an engine with the dynamic engine
	Load an engine and replace some methods
	Load with the ensure loaded function
	List all engines currently loaded

	Engine Stored Keys
	Background
	Use Cases
	Sign with an engine stored private key
	Verify with an engine stored public key
	Using a password protected private key

	Algorithm Details
	Ciphers
	Ciphers without an IV - cipher_no_iv()
	Ciphers with an IV - cipher_iv()
	Ciphers with AEAD - cipher_aead()

	Message Authentication Codes (MACs)
	CMAC
	HMAC
	POLY1305

	Hash
	Public Key Cryptography
	RSA
	DSS
	ECDSA
	EdDSA
	Diffie-Hellman
	Elliptic Curve Diffie-Hellman

	New and Old API
	Background
	The old API
	The new API
	Encryption and decryption
	MACs (Message Authentication Codes)

	Examples of the new api
	Examples of crypto_init/4 and crypto_update/2
	Example of crypto_one_time/5
	Example of crypto_one_time_aead/6
	Example of mac_init mac_update and mac_final

	Retired cipher names

	Reference Manual
	crypto
	crypto
	crypto_init/3
	crypto_init/4
	crypto_update/2
	crypto_dyn_iv_init/3
	crypto_final/1
	crypto_get_data/1
	crypto_dyn_iv_update/3
	crypto_one_time/4
	crypto_one_time/5
	crypto_one_time_aead/6
	crypto_one_time_aead/7
	supports/1
	mac/3
	mac/4
	macN/4
	macN/5
	mac_init/2
	mac_init/3
	mac_update/2
	mac_final/1
	mac_finalN/2
	bytes_to_integer/1
	compute_key/4
	exor/2
	generate_key/2
	generate_key/3
	hash/2
	hash_init/1
	hash_update/2
	hash_final/1
	info_fips/0
	enable_fips_mode/1
	info/0
	info_lib/0
	hash_info/1
	cipher_info/1
	mod_pow/3
	private_decrypt/4
	private_encrypt/4
	public_decrypt/4
	public_encrypt/4
	rand_seed/1
	rand_uniform/2
	start/0
	stop/0
	strong_rand_bytes/1
	rand_seed/0
	rand_seed_s/0
	rand_seed_alg/1
	rand_seed_alg/2
	rand_seed_alg_s/1
	rand_seed_alg_s/2
	ec_curves/0
	ec_curve/1
	sign/4
	sign/5
	verify/5
	verify/6
	privkey_to_pubkey/2
	engine_get_all_methods/0
	engine_load/3
	engine_unload/1
	engine_by_id/1
	engine_ctrl_cmd_string/3
	engine_ctrl_cmd_string/4
	engine_add/1
	engine_remove/1
	engine_register/2
	engine_unregister/2
	engine_get_id/1
	engine_get_name/1
	engine_list/0
	ensure_engine_loaded/2
	hash_equals/2
	pbkdf2_hmac/5

