
ASN.1
Copyright © 1997-2025 Ericsson AB. All Rights Reserved.

ASN.1 5.0.21.1
May 7, 2025

Copyright © 1997-2025 Ericsson AB. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance
with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless
required by applicable law or agreed to in writing, software distributed under the License is distributed on an
"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See
the License for the specific language governing permissions and limitations under the License. Ericsson AB. All
Rights Reserved..

May 7, 2025

1.1 Introduction

1 Asn1 User's Guide

The ASN.1 application contains modules with compile-time and runtime support for Abstract Syntax Notation One
(ASN.1).

1.1 Introduction
The ASN.1 application provides the following:

• An ASN.1 compiler for Erlang, which generates encode and decode functions to be used by Erlang programs
sending and receiving ASN.1 specified data.

• Runtime functions used by the generated code.

• Support for the following encoding rules:

• Basic Encoding Rules (BER)

• Distinguished Encoding Rules (DER), a specialized form of BER that is used in security-conscious
applications

• Packed Encoding Rules (PER), both the aligned and unaligned variant

1.1.1 Scope
This application covers all features of ASN.1 up to the 1997 edition of the specification. In the 2002 edition, new
features were introduced. The following features of the 2002 edition are fully or partly supported:

• Decimal notation (for example, "1.5e3) for REAL values. The NR1, NR2, and NR3 formats as explained in
ISO 6093 are supported.

• The RELATIVE-OID type for relative object identifiers is fully supported.

• The subtype constraint (CONTAINING/ENCODED BY) to constrain the content of an octet string or a bit string
is parsed when compiling, but no further action is taken. This constraint is not a PER-visible constraint.

• The subtype constraint by regular expressions (PATTERN) for character string types is parsed when compiling,
but no further action is taken. This constraint is not a PER-visible constraint.

• Multiple-line comments as in C, /* ... */, are supported.

1.1.2 Prerequisites
It is assumed that the reader is familiar with the Erlang programming language, concepts of OTP, and is familiar with
the ASN.1 notation. The ASN.1 notation is documented in the standard definition X.680, which is the primary text. It
can also be helpful, but not necessary, to read the standard definitions X.681, X.682, X.683, X.690, and X.691.

A good book explaining those reference texts is Dubuisson: ASN.1 - Communication Between Heterogeneous
Systems, is free to download at http://www.oss.com/asn1/dubuisson.html.

1.2 ASN.1
1.2.1 Introduction
ASN.1 is a formal language for describing data structures to be exchanged between distributed computer systems.
The purpose of ASN.1 is to have a platform and programming language independent notation to express types using a
standardized set of rules for the transformation of values of a defined type into a stream of bytes. This stream of bytes

Ericsson AB. All Rights Reserved.: ASN.1 | 1

href

1.3 Getting Started

can then be sent on any type of communication channel. This way, two applications written in different programming
languages running on different computers, and with different internal representation of data, can exchange instances
of structured data types.

1.3 Getting Started
1.3.1 Example
The following example demonstrates the basic functionality used to run the Erlang ASN.1 compiler.

Create a file named People.asn containing the following:

People DEFINITIONS AUTOMATIC TAGS ::=
BEGIN
 Person ::= SEQUENCE {
 name PrintableString,
 location INTEGER {home(0),field(1),roving(2)},
 age INTEGER OPTIONAL
 }
END

This file must be compiled before it can be used. The ASN.1 compiler checks that the syntax is correct and that the
text represents proper ASN.1 code before generating an abstract syntax tree. The code-generator then uses the abstract
syntax tree to generate code.

The generated Erlang files are placed in the current directory or in the directory specified with option
{outdir,Dir}.

The following shows how the compiler can be called from the Erlang shell:

1> asn1ct:compile("People", [ber]).
ok
2>

Option verbose can be added to get information about the generated files:

2> asn1ct:compile("People", [ber,verbose]).
Erlang ASN.1 compiling "People.asn"
--{generated,"People.asn1db"}--
--{generated,"People.hrl"}--
--{generated,"People.erl"}--
ok
3>

ASN.1 module People is now accepted and the abstract syntax tree is saved in file People.asn1db. The generated
Erlang code is compiled using the Erlang compiler and loaded into the Erlang runtime system. There is now an API
for encode/2 and decode/2 in module People, which is called like:
'People':encode(<Type name>, <Value>)
or
'People':decode(<Type name>, <Value>)

Assume that there is a network application that receives instances of the ASN.1 defined type Person, modifies, and
sends them back again:

2 | Ericsson AB. All Rights Reserved.: ASN.1

1.3 Getting Started

receive
 {Port,{data,Bytes}} ->
 case 'People':decode('Person',Bytes) of
 {ok,P} ->
 {ok,Answer} = 'People':encode('Person',mk_answer(P)),
 Port ! {self(),{command,Answer}};
 {error,Reason} ->
 exit({error,Reason})
 end
 end,

In this example, a series of bytes is received from an external source and the bytes are then decoded
into a valid Erlang term. This was achieved with the call 'People':decode('Person',Bytes), which
returned an Erlang value of the ASN.1 type Person. Then an answer was constructed and encoded using
'People':encode('Person',Answer), which takes an instance of a defined ASN.1 type and transforms it
to a binary according to the BER or PER encoding rules.

The encoder and decoder can also be run from the shell:

2> Rockstar = {'Person',"Some Name",roving,50}.
{'Person',"Some Name",roving,50}
3> {ok,Bin} = 'People':encode('Person',Rockstar).
{ok,<<243,17,19,9,83,111,109,101,32,78,97,109,101,2,1,2,
 2,1,50>>}
4> {ok,Person} = 'People':decode('Person',Bin).
{ok,{'Person',"Some Name",roving,50}}
5>

Module Dependencies
It is common that ASN.1 modules import defined types, values, and other entities from another ASN.1 module.

Earlier versions of the ASN.1 compiler required that modules that were imported from had to be compiled before the
module that imported. This caused problems when ASN.1 modules had circular dependencies.

Referenced modules are now parsed when the compiler finds an entity that is imported. No code is generated for the
referenced module. However, the compiled modules rely on that the referenced modules are also compiled.

1.3.2 ASN.1 Application User Interface
The ASN.1 application provides the following two separate user interfaces:

• The module asn1ct, which provides the compile-time functions (including the compiler)

• The module asn1rt_nif, which provides the runtime functions for the ASN.1 decoder for the BER back end

The reason for this division of the interfaces into compile-time and runtime is that only runtime modules (asn1rt*)
need to be loaded in an embedded system.

Compile-Time Functions
The ASN.1 compiler can be started directly from the command line by the erlc program. This is convenient when
compiling many ASN.1 files from the command line or when using Makefiles. Some examples of how the erlc
command can be used to start the ASN.1 compiler:

erlc Person.asn
erlc -bper Person.asn
erlc -bber ../Example.asn
erlc -o ../asnfiles -I ../asnfiles -I /usr/local/standards/asn1 Person.asn

Useful options for the ASN.1 compiler:

Ericsson AB. All Rights Reserved.: ASN.1 | 3

1.3 Getting Started

-b[ber | per | uper | jer]

Choice of encoding rules. If omitted, ber is the default.

-o OutDirectory

Where to put the generated files. Default is the current directory.

-I IncludeDir

Where to search for .asn1db files and ASN.1 source specs to resolve references to other modules. This option
can be repeated many times if there are several places to search in. The compiler searches the current directory
first.

+der

DER encoding rule. Only when using option -bber.

+jer

Functions jer_encode/2 and jer_decode/2 for JSON encoding rules are generated together with
functions for ber or per. Only to be used when the main encoding option is -bber, -bper or -buper

+maps

Use maps instead of records to represent the SEQUENCE and SET types. No .hrl files will be generated. See
the Section Map representation for SEQUENCE and SET for more information.

+asn1config

This functionality works together with option ber. It enables the specialized decodes, see Section Specialized
Decode.

+undec_rest

A buffer that holds a message being decoded can also have trailing bytes. If those trailing bytes are important, they
can be returned along with the decoded value by compiling the ASN.1 specification with option +undec_rest.
The return value from the decoder is {ok,Value,Rest} where Rest is a binary containing the trailing bytes.

+'Any Erlc Option'

Any option can be added to the Erlang compiler when compiling the generated Erlang files. Any option
unrecognized by the ASN.1 compiler is passed to the Erlang compiler.

For a complete description of erlc, see ERTS Reference Manual.

The compiler and other compile-time functions can also be started from the Erlang shell. Here follows a brief
description of the primary functions. For a complete description of each function, see module asn1ct in the ASN.1
Reference Manual.

The compiler is started by asn1ct:compile/1 with default options, or asn1ct:compile/2 if explicit options
are given.

Example:

asn1ct:compile("H323-MESSAGES.asn1").

This equals:

asn1ct:compile("H323-MESSAGES.asn1",[ber]).

If PER encoding is wanted:

4 | Ericsson AB. All Rights Reserved.: ASN.1

1.3 Getting Started

asn1ct:compile("H323-MESSAGES.asn1",[per]).

The generic encode and decode functions can be called as follows:

'H323-MESSAGES':encode('SomeChoiceType',{call,<<"octetstring">>}).
'H323-MESSAGES':decode('SomeChoiceType',Bytes).

Runtime Functions
When an ASN.1 specification is compiled with option ber, the asn1rt_nif module and the NIF library in asn1/
priv_dir are needed at runtime.

By calling function info/0 in a generated module, you get information about which compiler options were used.

Errors
Errors detected at compile-time are displayed on the screen together with line numbers indicating where in the source
file the respective error was detected. If no errors are found, an Erlang ASN.1 module is created.

The runtime encoders and decoders execute within a catch and return {ok, Data} or {error, {asn1,
Description}} where Description is an Erlang term describing the error.

Currently, Description looks like this: {ErrorDescription, StackTrace}. Applications should not
depend on the exact contents of Description as it could change in the future.

1.3.3 Multi-File Compilation
There are various reasons for using multi-file compilation:

• To choose the name for the generated module, for example, because you need to compile the same specs for
different encoding rules.

• You want only one resulting module.

Specify which ASN.1 specs to compile in a module with extension .set.asn. Choose a module name and provide
the names of the ASN.1 specs. For example, if you have the specs File1.asn, File2.asn, and File3.asn,
your module MyModule.set.asn looks as follows:

File1.asn
File2.asn
File3.asn

If you compile with the following, the result is one merged module MyModule.erl with the generated code from
the three ASN.1 specs:

~> erlc MyModule.set.asn

1.3.4 Remark about Tags
Tags used to be important for all users of ASN.1, because it was necessary to add tags manually to certain constructs
in order for the ASN.1 specification to be valid. Example of an old-style specification:

Tags DEFINITIONS ::=
BEGIN
 Afters ::= CHOICE { cheese [0] IA5String,
 dessert [1] IA5String }
END

Ericsson AB. All Rights Reserved.: ASN.1 | 5

1.3 Getting Started

Without the tags (the numbers in square brackets) the ASN.1 compiler refused to compile the file.

In 1994 the global tagging mode AUTOMATIC TAGS was introduced. By putting AUTOMATIC TAGS in the
module header, the ASN.1 compiler automatically adds tags when needed. The following is the same specification
in AUTOMATIC TAGS mode:

Tags DEFINITIONS AUTOMATIC TAGS ::=
BEGIN
 Afters ::= CHOICE { cheese IA5String,
 dessert IA5String }
END

Tags are not mentioned any more in this User's Guide.

1.3.5 ASN.1 Types
This section describes the ASN.1 types including their functionality, purpose, and how values are assigned in Erlang.

ASN.1 has both primitive and constructed types:

Primitive Types Constructed Types

BOOLEAN SEQUENCE

INTEGER SET

REAL CHOICE

NULL SET OF and SEQUENCE OF

ENUMERATED ANY

BIT STRING ANY DEFINED BY

OCTET STRING EXTERNAL

Character Strings EMBEDDED PDV

OBJECT IDENTIFIER CHARACTER STRING

Object Descriptor

TIME Types

Table 3.1: Supported ASN.1 Types

Note:

The values of each ASN.1 type have their own representation in Erlang, as described in the following sections.
Users must provide these values for encoding according to the representation, as shown in the following example:

Operational ::= BOOLEAN --ASN.1 definition

6 | Ericsson AB. All Rights Reserved.: ASN.1

1.3 Getting Started

In Erlang code it can look as follows:

Val = true,
{ok,Bytes} = MyModule:encode('Operational', Val),

BOOLEAN
Booleans in ASN.1 express values that can be either TRUE or FALSE. The meanings assigned to TRUE and FALSE
are outside the scope of this text.

In ASN.1 it is possible to have:

Operational ::= BOOLEAN

Assigning a value to type Operational in Erlang is possible by using the following Erlang code:

Myvar1 = true,

Thus, in Erlang the atoms true and false are used to encode a boolean value.

INTEGER
ASN.1 itself specifies indefinitely large integers. Erlang systems with version 4.3 and higher support very large
integers, in practice indefinitely large integers.

The concept of subtyping can be applied to integers and to other ASN.1 types. The details of subtyping are not explained
here; for more information, see X.680. Various syntaxes are allowed when defining a type as an integer:

T1 ::= INTEGER
T2 ::= INTEGER (-2..7)
T3 ::= INTEGER (0..MAX)
T4 ::= INTEGER (0<..MAX)
T5 ::= INTEGER (MIN<..-99)
T6 ::= INTEGER {red(0),blue(1),white(2)}

The Erlang representation of an ASN.1 INTEGER is an integer or an atom if a Named Number List (see T6 in
the previous list) is specified.

The following is an example of Erlang code that assigns values for the types in the previous list:

T1value = 0,
T2value = 6,
T6value1 = blue,
T6value2 = 0,
T6value3 = white

These Erlang variables are now bound to valid instances of ASN.1 defined types. This style of value can be passed
directly to the encoder for transformation into a series of bytes.

The decoder returns an atom if the value corresponds to a symbol in the Named Number List.

REAL
The following ASN.1 type is used for real numbers:

R1 ::= REAL

It is assigned a value in Erlang as follows:

Ericsson AB. All Rights Reserved.: ASN.1 | 7

1.3 Getting Started

R1value1 = "2.14",
R1value2 = {256,10,-2},

In the last line, notice that the tuple {256,10,-2} is the real number 2.56 in a special notation, which encodes faster than
simply stating the number as "2.56". The arity three tuple is {Mantissa,Base,Exponent}, that is, Mantissa
* Base^Exponent.

NULL
The type NULL is suitable where supply and recognition of a value is important but the actual value is not.

Notype ::= NULL

This type is assigned in Erlang as follows:

N1 = 'NULL',

The actual value is the quoted atom 'NULL'.

ENUMERATED
The type ENUMERATED can be used when the value you want to describe can only take one of a set of predefined
values. Example:

DaysOfTheWeek ::= ENUMERATED {
 sunday(1),monday(2),tuesday(3),
 wednesday(4),thursday(5),friday(6),saturday(7) }

For example, to assign a weekday value in Erlang, use the same atom as in the Enumerations of the type definition:

Day1 = saturday,

The enumerated type is similar to an integer type, when defined with a set of predefined values. The difference is that
an enumerated type can only have specified values, whereas an integer can have any value.

BIT STRING
The type BIT STRING can be used to model information that is made up of arbitrary length series of bits. It is
intended to be used for selection of flags, not for binary files.

In ASN.1, BIT STRING definitions can look as follows:

Bits1 ::= BIT STRING
Bits2 ::= BIT STRING {foo(0),bar(1),gnu(2),gnome(3),punk(14)}

The following two notations are available for representation of BIT STRING values in Erlang and as input to the
encode functions:

• A bitstring. By default, a BIT STRING with no symbolic names is decoded to an Erlang bitstring.

• A list of atoms corresponding to atoms in the NamedBitList in the BIT STRING definition. A BIT
STRING with symbolic names is always decoded to the format shown in the following example:

8 | Ericsson AB. All Rights Reserved.: ASN.1

1.3 Getting Started

Bits1Val1 = <<0:1,1:1,0:1,1:1,1:1>>,
Bits2Val1 = [gnu,punk],
Bits2Val2 = <<2#1110:4>>,
Bits2Val3 = [bar,gnu,gnome],

Bits2Val2 and Bits2Val3 denote the same value.

Bits2Val1 is assigned symbolic values. The assignment means that the bits corresponding to gnu and punk, that
is, bits 2 and 14 are set to 1, and the rest are set to 0. The symbolic values are shown as a list of values. If a named
value, which is not specified in the type definition, is shown, a runtime error occurs.

BIT STRINGs can also be subtyped with, for example, a SIZE specification:

Bits3 ::= BIT STRING (SIZE(0..31))

This means that no bit higher than 31 can be set.

Deprecated Representations for BIT STRING
In addition to the representations described earlier, the following deprecated representations are available if the
specification has been compiled with option legacy_erlang_types:

• Aa a list of binary digits (0 or 1). This format is accepted as input to the encode functions, and a BIT STRING
is decoded to this format if option legacy_bit_string is given.

• As {Unused,Binary} where Unused denotes how many trailing zero-bits 0-7 that are unused in the least
significant byte in Binary. This format is accepted as input to the encode functions, and a BIT STRING is
decoded to this format if compact_bit_string has been given.

• As a hexadecimal number (or an integer). Avoid this as it is easy to misinterpret a BIT STRING value in this
format.

OCTET STRING
OCTET STRING is the simplest of all ASN.1 types. OCTET STRING only moves or transfers, for example, binary
files or other unstructured information complying with two rules: the bytes consist of octets and encoding is not
required.

It is possible to have the following ASN.1 type definitions:

O1 ::= OCTET STRING
O2 ::= OCTET STRING (SIZE(28))

With the following example assignments in Erlang:

O1Val = <<17,13,19,20,0,0,255,254>>,
O2Val = <<"must be exactly 28 chars....">>,

By default, an OCTET STRING is always represented as an Erlang binary. If the specification has been compiled
with option legacy_erlang_types, the encode functions accept both lists and binaries, and the decode functions
decode an OCTET STRING to a list.

Character Strings
ASN.1 supports a wide variety of character sets. The main difference between an OCTET STRING and a character
string is that the OCTET STRING has no imposed semantics on the bytes delivered.

However, when using, for example, IA5String (which closely resembles ASCII), byte 65 (in decimal notation) means
character 'A'.

Ericsson AB. All Rights Reserved.: ASN.1 | 9

1.3 Getting Started

For example, if a defined type is to be a VideotexString and an octet is received with the unsigned integer value X, the
octet is to be interpreted as specified in standard ITU-T T.100, T.101.

The ASN.1 to Erlang compiler does not determine the correct interpretation of each BER string octet value with
different character strings. The application is responsible for interpretation of octets. Therefore, from the BER string
point of view, octets are very similar to character strings and are compiled in the same way.

When PER is used, there is a significant difference in the encoding scheme between OCTET STRINGs and other
strings. The constraints specified for a type are especially important for PER, where they affect the encoding.

Examples:

Digs ::= NumericString (SIZE(1..3))
TextFile ::= IA5String (SIZE(0..64000))

The corresponding Erlang assignments:

DigsVal1 = "456",
DigsVal2 = "123",
TextFileVal1 = "abc...xyz...",
TextFileVal2 = [88,76,55,44,99,121 a lot of characters here]

The Erlang representation for "BMPString" and "UniversalString" is either a list of ASCII values or a list of quadruples.
The quadruple representation associates to the Unicode standard representation of characters. The ASCII characters
are all represented by quadruples beginning with three zeros like {0,0,0,65} for character 'A'. When decoding a value
for these strings, the result is a list of quadruples, or integers when the value is an ASCII character.

The following example shows how it works. Assume the following specification is in file PrimStrings.asn1:

PrimStrings DEFINITIONS AUTOMATIC TAGS ::=
BEGIN
 BMP ::= BMPString
END

Encoding and decoding some strings:

1> asn1ct:compile('PrimStrings', [ber]).
ok
2> {ok,Bytes1} = 'PrimStrings':encode('BMP', [{0,0,53,53},{0,0,45,56}]).
{ok,<<30,4,53,54,45,56>>}
3> 'PrimStrings':decode('BMP', Bytes1).
{ok,[{0,0,53,53},{0,0,45,56}]}
4> {ok,Bytes2} = 'PrimStrings':encode('BMP', [{0,0,53,53},{0,0,0,65}]).
{ok,<<30,4,53,53,0,65>>}
5> 'PrimStrings':decode('BMP', Bytes2).
{ok,[{0,0,53,53},65]}
6> {ok,Bytes3} = 'PrimStrings':encode('BMP', "BMP string").
{ok,<<30,20,0,66,0,77,0,80,0,32,0,115,0,116,0,114,0,105,0,110,0,103>>}
7> 'PrimStrings':decode('BMP', Bytes3).
{ok,"BMP string"}

Type UTF8String is represented as a UTF-8 encoded binary in Erlang. Such binaries can be created
directly using the binary syntax or by converting from a list of Unicode code points using function
unicode:characters_to_binary/1.

The following shows examples of how UTF-8 encoded binaries can be created and manipulated:

10 | Ericsson AB. All Rights Reserved.: ASN.1

1.3 Getting Started

1> Gs = "Мой маленький Гном".
[1052,1086,1081,32,1084,1072,1083,1077,1085,1100,1082,1080,
 1081,32,1043,1085,1086,1084]
2> Gbin = unicode:characters_to_binary(Gs).
<<208,156,208,190,208,185,32,208,188,208,176,208,187,208,
 181,208,189,209,140,208,186,208,184,208,185,32,208,147,
 208,...>>
3> Gbin = <<"Мой маленький Гном"/utf8>>.
<<208,156,208,190,208,185,32,208,188,208,176,208,187,208,
 181,208,189,209,140,208,186,208,184,208,185,32,208,147,
 208,...>>
4> Gs = unicode:characters_to_list(Gbin).
[1052,1086,1081,32,1084,1072,1083,1077,1085,1100,1082,1080,
 1081,32,1043,1085,1086,1084]

For details, see the unicode module in STDLIB.

In the following example, this ASN.1 specification is used:

UTF DEFINITIONS AUTOMATIC TAGS ::=
BEGIN
 UTF ::= UTF8String
END

Encoding and decoding a string with Unicode characters:

5> asn1ct:compile('UTF', [ber]).
ok
6> {ok,Bytes1} = 'UTF':encode('UTF', <<"Гном"/utf8>>).
{ok,<<12,8,208,147,208,189,208,190,208,188>>}
7> {ok,Bin1} = 'UTF':decode('UTF', Bytes1).
{ok,<<208,147,208,189,208,190,208,188>>}
8> io:format("~ts\n", [Bin1]).
Гном
ok
9> unicode:characters_to_list(Bin1).
[1043,1085,1086,1084]

OBJECT IDENTIFIER
The type OBJECT IDENTIFIER is used whenever a unique identity is required. An ASN.1 module, a transfer syntax,
and so on, is identified with an OBJECT IDENTIFIER. Assume the following example:

Oid ::= OBJECT IDENTIFIER

Therefore, the following example is a valid Erlang instance of type 'Oid':

OidVal1 = {1,2,55},

The OBJECT IDENTIFIER value is simply a tuple with the consecutive values, which must be integers.

The first value is limited to the values 0, 1, or 2. The second value must be in the range 0..39 when the first value
is 0 or 1.

The OBJECT IDENTIFIER is an important type and it is widely used within different standards to identify
various objects uniquely. Dubuisson: ASN.1 - Communication Between Heterogeneous Systems includes an easy-to-
understand description of the use of OBJECT IDENTIFIER.

Ericsson AB. All Rights Reserved.: ASN.1 | 11

1.3 Getting Started

Object Descriptor
Values of this type can be assigned a value as an ordinary string as follows:

 "This is the value of an Object descriptor"

TIME Types
Two time types are defined within ASN.1: Generalized Time and Universal Time Coordinated (UTC). Both are
assigned a value as an ordinary string within double quotes, for example, "19820102070533.8".

For DER encoding, the compiler does not check the validity of the time values. The DER requirements upon those
strings are regarded as a matter for the application to fulfill.

SEQUENCE
The structured types of ASN.1 are constructed from other types in a manner similar to the concepts of array and struct
in C.

A SEQUENCE in ASN.1 is comparable with a struct in C and a record in Erlang. A SEQUENCE can be defined as
follows:

Pdu ::= SEQUENCE {
 a INTEGER,
 b REAL,
 c OBJECT IDENTIFIER,
 d NULL }

This is a 4-component structure called Pdu. By default, a SEQUENCE is represented by a record in Erlang. It can
also be represented as a map; see Map representation for SEQUENCE and SET. For each SEQUENCE and SET in an
ASN.1 module an Erlang record declaration is generated. For Pdu, a record like the following is defined:

-record('Pdu',{a, b, c, d}).

The record declarations for a module M are placed in a separate M.hrl file.

Values can be assigned in Erlang as follows:

MyPdu = #'Pdu'{a=22,b=77.99,c={0,1,2,3,4},d='NULL'}.

The decode functions return a record as result when decoding a SEQUENCE or a SET.

A SEQUENCE and a SET can contain a component with a DEFAULT keyword followed by the actual value, which
is the default value. The DEFAULT keyword means that the application doing the encoding can omit encoding of the
value, which results in fewer bytes to send to the receiving application.

An application can use the atom asn1_DEFAULT to indicate that the encoding is to be omitted for that position in
the SEQUENCE.

Depending on the encoding rules, the encoder can also compare the given value to the default value and automatically
omit the encoding if the values are equal. How much effort the encoder makes to compare the values depends on the
encoding rules. The DER encoding rules forbid encoding a value equal to the default value, so it has a more thorough
and time-consuming comparison than the encoders for the other encoding rules.

In the following example, this ASN.1 specification is used:

12 | Ericsson AB. All Rights Reserved.: ASN.1

1.3 Getting Started

File DEFINITIONS AUTOMATIC TAGS ::=
BEGIN
Seq1 ::= SEQUENCE {
 a INTEGER DEFAULT 1,
 b Seq2 DEFAULT {aa TRUE, bb 15}
}

Seq2 ::= SEQUENCE {
 aa BOOLEAN,
 bb INTEGER
}

Seq3 ::= SEQUENCE {
 bs BIT STRING {a(0), b(1), c(2)} DEFAULT {a, c}
}
END

Example where the BER encoder is able to omit encoding of the default values:

1> asn1ct:compile('File', [ber]).
ok
2> 'File':encode('Seq1', {'Seq1',asn1_DEFAULT,asn1_DEFAULT}).
{ok,<<48,0>>}
3> 'File':encode('Seq1', {'Seq1',1,{'Seq2',true,15}}).
{ok,<<48,0>>}

Example with a named BIT STRING where the BER encoder does not omit the encoding:

4> 'File':encode('Seq3', {'Seq3',asn1_DEFAULT).
{ok,<<48,0>>}
5> 'File':encode('Seq3', {'Seq3',<<16#101:3>>).
{ok,<<48,4,128,2,5,160>>}

The DER encoder omits the encoding for the same BIT STRING:

6> asn1ct:compile('File', [ber,der]).
ok
7> 'File':encode('Seq3', {'Seq3',asn1_DEFAULT).
{ok,<<48,0>>}
8> 'File':encode('Seq3', {'Seq3',<<16#101:3>>).
{ok,<<48,0>>}

SET
In Erlang, the SET type is used exactly as SEQUENCE. Notice that if BER or DER encoding rules are used, decoding
a SET is slower than decoding a SEQUENCE because the components must be sorted.

Extensibility for SEQUENCE and SET
When a SEQUENCE or SET contains an extension marker and extension components as the following, the type can
get more components in newer versions of the ASN.1 spec:

SExt ::= SEQUENCE {
 a INTEGER,
 ...,
 b BOOLEAN }

Ericsson AB. All Rights Reserved.: ASN.1 | 13

1.3 Getting Started

In this case it has got a new component b. Thus, incoming messages that are decoded can have more or fever
components than this one.

The component b is treated as an original component when encoding a message. In this case, as it is not an optional
element, it must be encoded.

During decoding, the b field of the record gets the decoded value of the b component, if present, otherwise the value
asn1_NOVALUE.

Map representation for SEQUENCE and SET
If the ASN.1 module has been compiled with option maps, the types SEQUENCE and SET are represented as maps.

In the following example, this ASN.1 specification is used:

File DEFINITIONS AUTOMATIC TAGS ::=
BEGIN
Seq1 ::= SEQUENCE {
 a INTEGER DEFAULT 42,
 b BOOLEAN OPTIONAL,
 c IA5String
}
END

Optional fields are to be omitted from the map if they have no value:

1> asn1ct:compile('File', [per,maps]).
ok
2> {ok,E} = 'File':encode('Seq1', #{a=>0,c=>"string"}).
{ok,<<128,1,0,6,115,116,114,105,110,103>>}

When decoding, optional fields will be omitted from the map:

3> 'File':decode('Seq1', E).
{ok,#{a => 0,c => "string"}}

Default values can be omitted from the map:

4> {ok,E2} = 'File':encode('Seq1', #{c=>"string"}).
{ok,<<0,6,115,116,114,105,110,103>>}
5> 'File':decode('Seq1', E2).
{ok,#{a => 42,c => "string"}}

Note:

It is not allowed to use the atoms asn1_VALUE and asn1_DEFAULT with maps.

CHOICE
The type CHOICE is a space saver and is similar to the concept of a 'union' in C.

Assume the following:

14 | Ericsson AB. All Rights Reserved.: ASN.1

1.3 Getting Started

SomeModuleName DEFINITIONS AUTOMATIC TAGS ::=
BEGIN
T ::= CHOICE {
 x REAL,
 y INTEGER,
 z OBJECT IDENTIFIER }
END

It is then possible to assign values as follows:

TVal1 = {y,17},
TVal2 = {z,{0,1,2}},

A CHOICE value is always represented as the tuple {ChoiceAlternative, Val} where
ChoiceAlternative is an atom denoting the selected choice alternative.

Extensible CHOICE
When a CHOICE contains an extension marker and the decoder detects an unknown alternative of the CHOICE, the
value is represented as follows:

{asn1_ExtAlt, BytesForOpenType}

Here BytesForOpenType is a list of bytes constituting the encoding of the "unknown" CHOICE alternative.

SET OF and SEQUENCE OF
The types SET OF and SEQUENCE OF correspond to the concept of an array in several programming languages.
The Erlang syntax for both types is straightforward, for example:

Arr1 ::= SET SIZE (5) OF INTEGER (4..9)
Arr2 ::= SEQUENCE OF OCTET STRING

In Erlang the following can apply:

Arr1Val = [4,5,6,7,8],
Arr2Val = ["abc",[14,34,54],"Octets"],

Notice that the definition of type SET OF implies that the order of the components is undefined, but in practice there
is no difference between SET OF and SEQUENCE OF. The ASN.1 compiler for Erlang does not randomize the order
of the SET OF components before encoding.

However, for a value of type SET OF, the DER encoding format requires the elements to be sent in ascending
order of their encoding, which implies an expensive sorting procedure in runtime. Therefore it is recommended to use
SEQUENCE OF instead of SET OF if possible.

ANY and ANY DEFINED BY
The types ANY and ANY DEFINED BY have been removed from the standard since 1994. It is recommended not to
use these types any more. They can, however, exist in some old ASN.1 modules. The idea with this type was to leave
a "hole" in a definition where it was possible to put unspecified data of any kind, even non-ASN.1 data.

A value of this type is encoded as an open type.

Instead of ANY and ANY DEFINED BY, it is recommended to use information object class, table
constraints, and parameterization. In particular the construct TYPE-IDENTIFIER.@Type accomplish
the same as the deprecated ANY.

Ericsson AB. All Rights Reserved.: ASN.1 | 15

1.3 Getting Started

See also Information object.

EXTERNAL, EMBEDDED PDV, and CHARACTER STRING
The types EXTERNAL, EMBEDDED PDV, and CHARACTER STRING are used in presentation layer negotiation.
They are encoded according to their associated type, see X.680.

The type EXTERNAL had a slightly different associated type before 1994. X.691 states that encoding must follow the
older associated type. So, generated encode/decode functions convert values of the newer format to the older format
before encoding. This implies that it is allowed to use EXTERNAL type values of either format for encoding. Decoded
values are always returned in the newer format.

Embedded Named Types
The structured types previously described can have other named types as their components. The general syntax to
assign a value to component C of a named ASN.1 type T in Erlang is the record syntax #'T'{'C'=Value}. Here
Value can be a value of yet another type T2, for example:

EmbeddedExample DEFINITIONS AUTOMATIC TAGS ::=
BEGIN
B ::= SEQUENCE {
 a Arr1,
 b T }

Arr1 ::= SET SIZE (5) OF INTEGER (4..9)

T ::= CHOICE {
 x REAL,
 y INTEGER,
 z OBJECT IDENTIFIER }
 END

SEQUENCE b can be encoded as follows in Erlang:

1> 'EmbeddedExample':encode('B', {'B',[4,5,6,7,8],{x,"7.77"}}).
{ok,<<5,56,0,8,3,55,55,55,46,69,45,50>>}

1.3.6 Naming of Records in .hrl Files
When the option maps is given, no .hrl files will be generated. The rest of this section describes the behavior of
the compiler when maps is not used.

When an ASN.1 specification is compiled, all defined types of type SET or SEQUENCE result in a corresponding record
in the generated .hrl file. This is because the values for SET and SEQUENCE are represented as records by default.

Some special cases of this functionality are presented in the next section.

Embedded Structured Types
In ASN.1 it is also possible to have components that are themselves structured types. For example, it is possible to
have the following:

16 | Ericsson AB. All Rights Reserved.: ASN.1

1.3 Getting Started

Emb ::= SEQUENCE {
 a SEQUENCE OF OCTET STRING,
 b SET {
 a INTEGER,
 b INTEGER DEFAULT 66},
 c CHOICE {
 a INTEGER,
 b FooType } }

FooType ::= [3] VisibleString

The following records are generated because of type Emb:

-record('Emb,{a, b, c}).
-record('Emb_b',{a, b = asn1_DEFAULT}). % the embedded SET type

Values of type Emb can be assigned as follows:

V = #'Emb'{a=["qqqq",[1,2,255]],
 b = #'Emb_b'{a=99},
 c ={b,"Can you see this"}}.

For an embedded type of type SEQUENCE/SET in a SEQUENCE/SET, the record name is extended with an underscore
and the component name. If the embedded structure is deeper with the SEQUENCE, SET, or CHOICE types in the line,
each component name/alternative name is added to the record name.

Example:

Seq ::= SEQUENCE{
 a CHOICE{
 b SEQUENCE {
 c INTEGER
 }
 }
}

This results in the following record:

-record('Seq_a_b',{c}).

If the structured type has a component with an embedded SEQUENCE OF/SET OF which embedded type in turn is
a SEQUENCE/SET, it gives a record with the SEQUENCE OF/SET OF addition as in the following example:

Seq ::= SEQUENCE {
 a SEQUENCE OF SEQUENCE {
 b
 }
 c SET OF SEQUENCE {
 d
 }
}

This results in the following records:

-record('Seq_a_SEQOF'{b}).
-record('Seq_c_SETOF'{d}).

Ericsson AB. All Rights Reserved.: ASN.1 | 17

1.3 Getting Started

A parameterized type is to be considered as an embedded type. Each time such a type is referenced, an instance of it
is defined. Thus, in the following example a record with name 'Seq_b' is generated in the .hrl file and is used
to hold values:

Seq ::= SEQUENCE {
 b PType{INTEGER}
}

PType{T} ::= SEQUENCE{
 id T
}

Recursive Types
Types that refer to themselves are called recursive types. Example:

Rec ::= CHOICE {
 nothing NULL,
 something SEQUENCE {
 a INTEGER,
 b OCTET STRING,
 c Rec }}

This is allowed in ASN.1 and the ASN.1-to-Erlang compiler supports this recursive type. A value for this type is
assigned in Erlang as follows:

V = {something,#'Rec_something'{a = 77,
 b = "some octets here",
 c = {nothing,'NULL'}}}.

1.3.7 ASN.1 Values
Values can be assigned to an ASN.1 type within the ASN.1 code itself, as opposed to the actions in the previous
section where a value was assigned to an ASN.1 type in Erlang. The full value syntax of ASN.1 is supported and X.680
describes in detail how to assign values in ASN.1. A short example:

TT ::= SEQUENCE {
 a INTEGER,
 b SET OF OCTET STRING }

tt TT ::= {a 77,b {"kalle","kula"}}

The value defined here can be used in several ways. It can, for example, be used as the value in some DEFAULT
component:

SS ::= SET {
 s OBJECT IDENTIFIER,
 val TT DEFAULT tt }

It can also be used from inside an Erlang program. If this ASN.1 code is defined in ASN.1 module Values, the ASN.1
value tt can be reached from Erlang as a function call to 'Values':tt() as in the following example:

18 | Ericsson AB. All Rights Reserved.: ASN.1

1.3 Getting Started

1> Val = 'Values':tt().
{'TT',77,["kalle","kula"]}
2> {ok,Bytes} = 'Values':encode('TT',Val).
{ok,<<48,18,128,1,77,161,13,4,5,107,97,108,108,101,4,4,
 107,117,108,97>>}
4> 'Values':decode('TT',Bytes).
{ok,{'TT',77,["kalle","kula"]}}
5>

This example shows that a function is generated by the compiler that returns a valid Erlang representation of the value,
although the value is of a complex type.

Furthermore, if the option maps is not used, a macro is generated for each value in the .hrl file. So, the defined
value tt can also be extracted by ?tt in application code.

1.3.8 Macros
The type MACRO is not supported. It is no longer part of the ASN.1 standard.

1.3.9 ASN.1 Information Objects (X.681)
Information Object Classes, Information Objects, and Information Object Sets (in the following called classes, objects,
and object sets, respectively) are defined in the standard definition X.681. Only a brief explanation is given here.

These constructs makes it possible to define open types, that is, values of that type can be of any ASN.1 type. Also,
relationships can be defined between different types and values, as classes can hold types, values, objects, object sets,
and other classes in their fields. A class can be defined in ASN.1 as follows:

GENERAL-PROCEDURE ::= CLASS {
 &Message,
 &Reply OPTIONAL,
 &Error OPTIONAL,
 &id PrintableString UNIQUE
}
WITH SYNTAX {
 NEW MESSAGE &Message
 [REPLY &Reply]
 [ERROR &Error]
 ADDRESS &id
}

An object is an instance of a class. An object set is a set containing objects of a specified class. A definition can look
as follows:

object1 GENERAL-PROCEDURE ::= {
 NEW MESSAGE PrintableString
 ADDRESS "home"
}

object2 GENERAL-PROCEDURE ::= {
 NEW MESSAGE INTEGER
 ERROR INTEGER
 ADDRESS "remote"
}

The object object1 is an instance of the class GENERAL-PROCEDURE and has one type field and one fixed type
value field. The object object2 has also an optional field ERROR, which is a type field. The field ADDRESS

Ericsson AB. All Rights Reserved.: ASN.1 | 19

1.3 Getting Started

is a UNIQUE field. Objects in an object set must have unique values in their UNIQUE field, as in GENERAL-
PROCEDURES:

GENERAL-PROCEDURES GENERAL-PROCEDURE ::= {
 object1 | object2}

You cannot encode a class, object, or object set, only refer to it when defining other ASN.1 entities. Typically you
refer to a class as well as to object sets by table constraints and component relation constraints (X.682) in ASN.1
types, as in the following:

StartMessage ::= SEQUENCE {
 msgId GENERAL-PROCEDURE.&id ({GENERAL-PROCEDURES}),
 content GENERAL-PROCEDURE.&Message ({GENERAL-PROCEDURES}{@msgId}),
 }

In type StartMessage, the constraint following field content tells that in a value of type StartMessage the
value in field content must come from the same object that is chosen by field msgId.

So, the value #'StartMessage'{msgId="home",content="Any Printable String"} is legal
to encode as a StartMessage value. However, the value #'StartMessage'{msgId="remote",
content="Some String"} is illegal as the constraint in StartMessage tells that when you have chosen a
value from a specific object in object set GENERAL-PROCEDURES in field msgId, you must choose a value from
that same object in the content field too. In this second case, it is to be any INTEGER value.

StartMessage can in field content be encoded with a value of any type that an object in object set GENERAL-
PROCEDURES has in its NEW MESSAGE field. This field refers to a type field &Message in the class. Field msgId
is always encoded as a PrintableString, as the field refers to a fixed type in the class.

In practice, object sets are usually declared to be extensible so that more objects can be added to the set later.
Extensibility is indicated as follows:

GENERAL-PROCEDURES GENERAL-PROCEDURE ::= {
 object1 | object2, ...}

When decoding a type that uses an extensible set constraint, it is always possible that the value in field UNIQUE is
unknown (that is, the type has been encoded with a later version of the ASN.1 specification). The unencoded data is
then returned wrapped in a tuple as follows:

{asn1_OPENTYPE,Binary}

Here Binary is an Erlang binary that contains the encoded data. (If option legacy_erlang_types has been
given, only the binary is returned.)

1.3.10 Parameterization (X.683)
Parameterization, which is defined in X.683, can be used when defining types, values, value sets, classes, objects, or
object sets. A part of a definition can be supplied as a parameter. For example, if a Type is used in a definition with
a certain purpose, you want the type name to express the intention. This can be done with parameterization.

When many types (or another ASN.1 entity) only differ in some minor cases, but the structure of the types is similar,
only one general type can be defined and the differences can be supplied through parameters.

Example of use of parameterization:

20 | Ericsson AB. All Rights Reserved.: ASN.1

1.4 Specialized Decodes

General{Type} ::= SEQUENCE
{
 number INTEGER,
 string Type
}

T1 ::= General{PrintableString}

T2 ::= General{BIT STRING}

An example of a value that can be encoded as type T1 is {12,"hello"}.

Notice that the compiler does not generate encode/decode functions for parameterized types, only for the instances of
the parameterized types. Therefore, if a file contains the types General{}, T1, and T2 as in the previous example,
encode/decode functions are only generated for T1 and T2.

1.4 Specialized Decodes
When performance is of highest priority and you are interested in a limited part of the ASN.1 encoded message before
deciding what to do with the rest of it, an option is to decode only this small part. The situation can be a server that
has to decide the addressee of a message. The addressee can be interested in the entire message, but the server can be
a bottleneck that you want to spare any unnecessary load.

Instead of making two complete decodes (the normal case of decode), one in the server and one in the addressee, it
is only necessary to make one specialized decode(in the server) and another complete decode(in the addressee). This
section describes the following two specialized decodes, which support to solve this and similar problems:

• Exclusive decode

• Selected decode

This functionality is only provided when using BER (option ber).

1.4.1 Exclusive Decode
The basic idea with exclusive decode is to specify which parts of the message you want to exclude from being decoded.
These parts remain encoded and are returned in the value structure as binaries. They can be decoded in turn by passing
them to a certain decode_part/2 function. The performance gain is high for large messages. You can do an
exclusive decode and later one or more decodes of the parts, or a second complete decode instead of two or more
complete decodes.

Procedure
To perform an exclusive decode:

• Step 1: Decide the name of the function for the exclusive decode.

• Step 2: Include the following instructions in a configuration file:

• The name of the exclusive decode function

• The name of the ASN.1 specification

• A notation that tells which parts of the message structure to be excluded from decode

• Step 3 Compile with the additional option asn1config. The compiler searches for a configuration file with
the same name as the ASN.1 specification but with extension .asn1config. This configuration file is not the
same as used for compilation of a set of files. See Section Writing an Exclusive Decode Instruction.

User Interface
The runtime user interface for exclusive decode consists of the following two functions:

Ericsson AB. All Rights Reserved.: ASN.1 | 21

1.4 Specialized Decodes

• A function for an exclusive decode, whose name the user decides in the configuration file

• The compiler generates a decode_part/2 function when exclusive decode is chosen. This function decodes
the parts that were left undecoded during the exclusive decode.

Both functions are described in the following.

If the exclusive decode function has, for example, the name decode_exclusive and an ASN.1 encoded message
Bin is to be exclusive decoded, the call is as follows:

{ok,Excl_Message} = 'MyModule':decode_exclusive(Bin)

The result Excl_Message has the same structure as a complete decode would have, except for the parts
of the top type that were not decoded. The undecoded parts are on their places in the structure on format
{Type_Key,Undecoded_Value}.

Each undecoded part that is to be decoded must be fed into function decode_part/2 as follows:

{ok,Part_Message} = 'MyModule':decode_part(Type_Key,Undecoded_Value)

Writing an Exclusive Decode Instruction
This instruction is written in the configuration file in the following format:

Exclusive_Decode_Instruction = {exclusive_decode,{Module_Name,Decode_Instructions}}.

Module_Name = atom()

Decode_Instructions = [Decode_Instruction]+

Decode_Instruction = {Exclusive_Decode_Function_Name,Type_List}

Exclusive_Decode_Function_Name = atom()

Type_List = [Top_Type,Element_List]

Element_List = [Element]+

Element = {Name,parts} |
 {Name,undecoded} |
 {Name,Element_List}

Top_Type = atom()

Name = atom()

The instruction must be a valid Erlang term ended by a dot.

In Type_List the "path" from the top type to each undecoded subcomponents is described. The top type of the path
is an atom, the name of it. The action on each component/type that follows is described by one of {Name,parts},
{Name,undecoded}, {Name,Element_List}.

The use and effect of the actions are as follows:

• {Name,undecoded} - Tells that the element is left undecoded during the exclusive decode. The type of
Name can be any ASN.1 type. The value of element Name is returned as a tuple (as mentioned in the previous
section) in the value structure of the top type.

• {Name,parts} - The type of Name can be one of SEQUENCE OF or SET OF. The action implies that the
different components of Name are left undecoded. The value of Name is returned as a tuple (as mentioned
in the previous section) where the second element is a list of binaries. This is because the representation of a

22 | Ericsson AB. All Rights Reserved.: ASN.1

1.4 Specialized Decodes

SEQUENCE OF or a SET OF in Erlang is a list of its internal type. Any of the elements in this list or the entire
list can be decoded by function decode_part.

• {Name,Element_List} - This action is used when one or more of the subtypes of Name is exclusive
decoded.

Name in these actions can be a component name of a SEQUENCE OF or a SET OF, or a name of an alternative
in a CHOICE.

Example
In this examples, the definitions from the following ASN.1 specification are used:

GUI DEFINITIONS AUTOMATIC TAGS ::=

BEGIN

Action ::= SEQUENCE
 {
 number INTEGER DEFAULT 15,
 handle [0] Handle DEFAULT {number 12, on TRUE}
 }

Key ::= [11] EXPLICIT Button
Handle ::= [12] Key
Button ::= SEQUENCE
 {
 number INTEGER,
 on BOOLEAN
 }

Window ::= CHOICE
 {
 vsn INTEGER,
 status E
 }

Status ::= SEQUENCE
 {
 state INTEGER,
 buttonList SEQUENCE OF Button,
 enabled BOOLEAN OPTIONAL,
 actions CHOICE {
 possibleActions SEQUENCE OF Action,
 noOfActions INTEGER
 }
 }

END

If Button is a top type and it is needed to exclude component number from decode, Type_List in
the instruction in the configuration file is ['Button',[{number,undecoded}]]. If you call the decode
function decode_Button_exclusive, Decode_Instruction is {decode_Button_exclusive,
['Button',[{number,undecoded}]]}.

Another top type is Window whose subcomponent actions in type Status and the parts of component buttonList
are to be left undecoded. For this type, the function is named decode__Window_exclusive. The complete
Exclusive_Decode_Instruction configuration is as follows:

{exclusive_decode,{'GUI',
 [{decode_Window_exclusive,['Window',[{status,[{buttonList,parts},{actions,undecoded}]}]]},
 {decode_Button_exclusive,['Button',[{number,undecoded}]]}]}}.

Ericsson AB. All Rights Reserved.: ASN.1 | 23

1.4 Specialized Decodes

The following figure shows the bytes of a Window:status message. The components buttonList and actions
are excluded from decode. Only state and enabled are decoded when decode__Window_exclusive is
called.

Figure 4.1: Bytes of a Window:status Message

Compiling GUI.asn including the configuration file is done as follows:

unix> erlc -bber +asn1config GUI.asn

erlang> asn1ct:compile('GUI', [ber,asn1config]).

The module can be used as follows:

24 | Ericsson AB. All Rights Reserved.: ASN.1

1.4 Specialized Decodes

1> Button_Msg = {'Button',123,true}.
{'Button',123,true}
2> {ok,Button_Bytes} = 'GUI':encode('Button',Button_Msg).
{ok,[<<48>>,
 [6],
 [<<128>>,
 [1],
 123],
 [<<129>>,
 [1],
 255]]}
3> {ok,Exclusive_Msg_Button} = 'GUI':decode_Button_exclusive(list_to_binary(Button_Bytes)).
{ok,{'Button',{'Button_number',<<28,1,123>>},
 true}}
4> 'GUI':decode_part('Button_number',<<128,1,123>>).
{ok,123}
5> Window_Msg =
{'Window',{status,{'Status',35,
 [{'Button',3,true},
 {'Button',4,false},
 {'Button',5,true},
 {'Button',6,true},
 {'Button',7,false},
 {'Button',8,true},
 {'Button',9,true},
 {'Button',10,false},
 {'Button',11,true},
 {'Button',12,true},
 {'Button',13,false},
 {'Button',14,true}],
 false,
 {possibleActions,[{'Action',16,{'Button',17,true}}]}}}}.
{'Window',{status,{'Status',35,
 [{'Button',3,true},
 {'Button',4,false},
 {'Button',5,true},
 {'Button',6,true},
 {'Button',7,false},
 {'Button',8,true},
 {'Button',9,true},
 {'Button',10,false},
 {'Button',11,true},
 {'Button',12,true},
 {'Button',13,false},
 {'Button',14,true}],
 false,
 {possibleActions,[{'Action',16,{'Button',17,true}}]}}}}
6> {ok,Window_Bytes}='GUI':encode('Window',Window_Msg).
{ok,[<<161>>,
 [127],
 [<<128>>, ...

8> {ok,{status,{'Status',Int,{Type_Key_SeqOf,Val_SEQOF},
BoolOpt,{Type_Key_Choice,Val_Choice}}}}=
'GUI':decode_Window_status_exclusive(list_to_binary(Window_Bytes)).
{ok,{status,{'Status',35,
 {'Status_buttonList',[<<48,6,128,1,3,129,1,255>>,
 <<48,6,128,1,4,129,1,0>>,
 <<48,6,128,1,5,129,1,255>>,
 <<48,6,128,1,6,129,1,255>>,
 <<48,6,128,1,7,129,1,0>>,
 <<48,6,128,1,8,129,1,255>>,
 <<48,6,128,1,9,129,1,255>>,

Ericsson AB. All Rights Reserved.: ASN.1 | 25

1.4 Specialized Decodes

 <<48,6,128,1,10,129,1,0>>,
 <<48,6,128,1,11,129,1,255>>,
 <<48,6,128,1,12,129,1,255>>,
 <<48,6,128,1,13,129,1,0>>,
 <<48,6,128,1,14,129,1,255>>]},
 false,
 {'Status_actions',
<<163,21,160,19,48,17,2,1,16,160,12,172,10,171,8,48,6,128,1,...>>}}}}
10> 'GUI':decode_part(Type_Key_SeqOf,Val_SEQOF).
{ok,[{'Button',3,true},
 {'Button',4,false},
 {'Button',5,true},
 {'Button',6,true},
 {'Button',7,false},
 {'Button',8,true},
 {'Button',9,true},
 {'Button',10,false},
 {'Button',11,true},
 {'Button',12,true},
 {'Button',13,false},
 {'Button',14,true}]}
11> 'GUI':decode_part(Type_Key_SeqOf,hd(Val_SEQOF)).
{ok,{'Button',3,true}}
12> 'GUI':decode_part(Type_Key_Choice,Val_Choice).
{ok,{possibleActions,[{'Action',16,{'Button',17,true}}]}}

1.4.2 Selective Decode
This specialized decode decodes a subtype of a constructed value and is the fastest method to extract a subvalue. This
decode is typically used when you want to inspect, for example, a version number, to be able to decide what to do with
the entire value. The result is returned as {ok,Value} or {error,Reason}.

Procedure
To perform a selective decode:

• Step 1: Include the following instructions in the configuration file:

• The name of the user function

• The name of the ASN.1 specification

• A notation that tells which part of the type to be decoded

• Step 2: Compile with the additional option asn1config. The compiler searches for a configuration file
with the same name as the ASN.1 specification, but with extension .asn1config. In the same file you can
also provide configuration specifications for exclusive decode. The generated Erlang module has the usual
functionality for encode/decode preserved and the specialized decode functionality added.

User Interface
The only new user interface function is the one provided by the user in the configuration file. The function is started
by the ModuleName:FunctionName notation.

For example, if the configuration file includes the specification {selective_decode,
{'ModuleName',[{selected_decode_Window,TypeList}]}} do the selective decode by
{ok,Result}='ModuleName':selected_decode_Window(EncodedBinary).

Writing a Selective Decode Instruction
One or more selective decode functions can be described in a configuration file. Use the following notation:

26 | Ericsson AB. All Rights Reserved.: ASN.1

1.4 Specialized Decodes

Selective_Decode_Instruction = {selective_decode,{Module_Name,Decode_Instructions}}.

Module_Name = atom()

Decode_Instructions = [Decode_Instruction]+

Decode_Instruction = {Selective_Decode_Function_Name,Type_List}

Selective_Decode_Function_Name = atom()

Type_List = [Top_Type|Element_List]

Element_List = Name|List_Selector

Name = atom()

List_Selector = [integer()]

The instruction must be a valid Erlang term ended by a dot.

• Module_Name is the same as the name of the ASN.1 specification, but without the extension.

• Decode_Instruction is a tuple with your chosen function name and the components from the top type that
leads to the single type you want to decode. Ensure to choose a name of your function that is not the same as
any of the generated functions.

• The first element of Type_List is the top type of the encoded message. In Element_List, it is followed
by each of the component names that leads to selected type.

• Each name in Element_List must be a constructed type except the last name, which can be any type.

• List_Selector makes it possible to choose one of the encoded components in a a SEQUENCE OF or a
SET OF. It is also possible to go further in that component and pick a subtype of that to decode. So, in the
Type_List: ['Window',status,buttonList,[1],number], component buttonList must be
of type SEQUENCE OF or SET OF.

In the example, component number of the first of the encoded elements in the SEQUENCE OF buttonList is
selected. This applies on the ASN.1 specification in Section Writing an Exclusive Decode Instruction.

Another Example
In this example, the same ASN.1 specification as in Section Writing an Exclusive Decode Instruction is used. The
following is a valid selective decode instruction:

{selective_decode,
 {'GUI',
 [{selected_decode_Window1,
 ['Window',status,buttonList,
 [1],
 number]},
 {selected_decode_Action,
 ['Action',handle,number]},
 {selected_decode_Window2,
 ['Window',
 status,
 actions,
 possibleActions,
 [1],
 handle,number]}]}}.

The first instruction, {selected_decode_Window1,['Window',status,buttonList,
[1],number]} is described in the previous section.

Ericsson AB. All Rights Reserved.: ASN.1 | 27

1.4 Specialized Decodes

The second instruction, {selected_decode_Action,['Action',handle,number]}, takes component
number in the handle component of type Action. If the value is ValAction = {'Action',17,
{'Button',4711,false}}, the internal value 4711 is to be picked by selected_decode_Action. In an
Erlang terminal it looks as follows:

ValAction = {'Action',17,{'Button',4711,false}}.
{'Action',17,{'Button',4711,false}}
7> {ok,Bytes}='GUI':encode('Action',ValAction).
...
8> BinBytes = list_to_binary(Bytes).
<<48,18,2,1,17,160,13,172,11,171,9,48,7,128,2,18,103,129,1,0>>
9> 'GUI':selected_decode_Action(BinBytes).
{ok,4711}
10>

The third instruction, ['Window',status,actions,possibleActions,[1],handle,number], works
as follows:

• Step 1: Starts with type Window.

• Step 2: Takes component status of Window that is of type Status.

• Step 3: Takes actions of type Status.

• Step 4: Takes possibleActions of the internally defined CHOICE type.

• Step 5: Goes into the first component of SEQUENCE OF by [1]. That component is of type Action.

• Step 6: Takes component handle.

• Step 7: Takes component number of type Button.

The following figure shows which components are in TypeList
['Window',status,actions,possibleActions,[1],handle,number]:

28 | Ericsson AB. All Rights Reserved.: ASN.1

1.4 Specialized Decodes

Figure 4.2: Elements Specified in Configuration File for Selective Decode of a Subvalue in a Window Message

In the following figure, only the marked element is decoded by selected_decode_Window2:

Ericsson AB. All Rights Reserved.: ASN.1 | 29

1.4 Specialized Decodes

Figure 4.3: Bytes of a Window:status Message

With the following example, you can examine that both selected_decode_Window2 and
selected_decode_Window1 decodes the intended subvalue of value Val:

1> Val = {'Window',{status,{'Status',12,
 [{'Button',13,true},
 {'Button',14,false},
 {'Button',15,true},
 {'Button',16,false}],
 true,
 {possibleActions,[{'Action',17,{'Button',18,false}},
 {'Action',19,{'Button',20,true}},
 {'Action',21,{'Button',22,false}}]}}}}
2> {ok,Bytes}='GUI':encode('Window',Val).
...
3> Bin = list_to_binary(Bytes).
<<161,101,128,1,12,161,32,48,6,128,1,13,129,1,255,48,6,128,1,14,129,1,0,48,6,128,1,15,129,...>>
4> 'GUI':selected_decode_Window1(Bin).
{ok,13}
5> 'GUI':selected_decode_Window2(Bin).
{ok,18}

Notice that the value fed into the selective decode functions must be a binary.

1.4.3 Performance
To give an indication on the possible performance gain using the specialized decodes, some measures have been
performed. The relative figures in the outcome between selective, exclusive, and complete decode (the normal case)
depend on the structure of the type, the size of the message, and on what level the selective and exclusive decodes
are specified.

30 | Ericsson AB. All Rights Reserved.: ASN.1

1.4 Specialized Decodes

ASN.1 Specifications, Messages, and Configuration
The specifications GUI and MEDIA-GATEWAY-CONTROL were used in the test.

For the GUI specification the configuration was as follows:

{selective_decode,
 {'GUI',
 [{selected_decode_Window1,
 ['Window',
 status,buttonList,
 [1],
 number]},
 {selected_decode_Window2,
 ['Window',
 status,
 actions,
 possibleActions,
 [1],
 handle,number]}]}}.
 {exclusive_decode,
 {'GUI',
 [{decode_Window_status_exclusive,
 ['Window',
 [{status,
 [{buttonList,parts},
 {actions,undecoded}]}]]}]}}.

The MEDIA-GATEWAY-CONTROL configuration was as follows:

{exclusive_decode,
 {'MEDIA-GATEWAY-CONTROL',
 [{decode_MegacoMessage_exclusive,
 ['MegacoMessage',
 [{authHeader,undecoded},
 {mess,
 [{mId,undecoded},
 {messageBody,undecoded}]}]]}]}}.
{selective_decode,
 {'MEDIA-GATEWAY-CONTROL',
 [{decode_MegacoMessage_selective,
 ['MegacoMessage',mess,version]}]}}.

The corresponding values were as follows:

Ericsson AB. All Rights Reserved.: ASN.1 | 31

href

1.4 Specialized Decodes

{'Window',{status,{'Status',12,
 [{'Button',13,true},
 {'Button',14,false},
 {'Button',15,true},
 {'Button',16,false},
 {'Button',13,true},
 {'Button',14,false},
 {'Button',15,true},
 {'Button',16,false},
 {'Button',13,true},
 {'Button',14,false},
 {'Button',15,true},
 {'Button',16,false}],
 true,
 {possibleActions,
 [{'Action',17,{'Button',18,false}},
 {'Action',19,{'Button',20,true}},
 {'Action',21,{'Button',22,false}},
 {'Action',17,{'Button',18,false}},
 {'Action',19,{'Button',20,true}},
 {'Action',21,{'Button',22,false}},
 {'Action',17,{'Button',18,false}},
 {'Action',19,{'Button',20,true}},
 {'Action',21,{'Button',22,false}},
 {'Action',17,{'Button',18,false}},
 {'Action',19,{'Button',20,true}},
 {'Action',21,{'Button',22,false}},
 {'Action',17,{'Button',18,false}},
 {'Action',19,{'Button',20,true}},
 {'Action',21,{'Button',22,false}},
 {'Action',17,{'Button',18,false}},
 {'Action',19,{'Button',20,true}},
 {'Action',21,{'Button',22,false}}]}}}}

{'MegacoMessage',asn1_NOVALUE,
 {'Message',1,
 {ip4Address,
 {'IP4Address',[125,125,125,111],55555}},
 {transactions,
 [{transactionReply,
 {'TransactionReply',50007,asn1_NOVALUE,
 {actionReplies,
 [{'ActionReply',0,asn1_NOVALUE,asn1_NOVALUE,
 [{auditValueReply,{auditResult,{'AuditResult',
 {'TerminationID',[],[255,255,255]},
 [{mediaDescriptor,
 {'MediaDescriptor',asn1_NOVALUE,
 {multiStream,
 [{'StreamDescriptor',1,
 {'StreamParms',
 {'LocalControlDescriptor',
 sendRecv,
 asn1_NOVALUE,
 asn1_NOVALUE,
 [{'PropertyParm',
 [0,11,0,7],
 [[52,48]],
 asn1_NOVALUE}]},
 {'LocalRemoteDescriptor',
 [[{'PropertyParm',
 [0,0,176,1],
 [[48]],
 asn1_NOVALUE},

32 | Ericsson AB. All Rights Reserved.: ASN.1

1.4 Specialized Decodes

 {'PropertyParm',
 [0,0,176,8],
 [[73,78,32,73,80,52,32,49,50,53,46,49,
 50,53,46,49,50,53,46,49,49,49]],
 asn1_NOVALUE},
 {'PropertyParm',
 [0,0,176,15],
 [[97,117,100,105,111,32,49,49,49,49,32,
 82,84,80,47,65,86,80,32,32,52]],
 asn1_NOVALUE},
 {'PropertyParm',
 [0,0,176,12],
 [[112,116,105,109,101,58,51,48]],
 asn1_NOVALUE}]]},
 {'LocalRemoteDescriptor',
 [[{'PropertyParm',
 [0,0,176,1],
 [[48]],
 asn1_NOVALUE},
 {'PropertyParm',
 [0,0,176,8],
 [[73,78,32,73,80,52,32,49,50,52,46,49,50,
 52,46,49,50,52,46,50,50,50]],
 asn1_NOVALUE},
 {'PropertyParm',
 [0,0,176,15],
 [[97,117,100,105,111,32,50,50,50,50,32,82,
 84,80,47,65,86,80,32,32,52]],
 asn1_NOVALUE},
 {'PropertyParm',
 [0,0,176,12],
 [[112,116,105,109,101,58,51,48]],
 asn1_NOVALUE}]]}}}]}}},
 {packagesDescriptor,
 [{'PackagesItem',[0,11],1},
 {'PackagesItem',[0,11],1}]},
 {statisticsDescriptor,
 [{'StatisticsParameter',[0,12,0,4],[[49,50,48,48]]},
 {'StatisticsParameter',[0,11,0,2],[[54,50,51,48,48]]},
 {'StatisticsParameter',[0,12,0,5],[[55,48,48]]},
 {'StatisticsParameter',[0,11,0,3],[[52,53,49,48,48]]},
 {'StatisticsParameter',[0,12,0,6],[[48,46,50]]},
 {'StatisticsParameter',[0,12,0,7],[[50,48]]},
 {'StatisticsParameter',[0,12,0,8],[[52,48]]}]}]}}}]}]}}}]}}}

The size of the encoded values was 458 bytes for GUI and 464 bytes for MEDIA-GATEWAY-CONTROL.

Results
The ASN.1 specifications in the test were compiled with options ber_bin, optimize, driver and
asn1config. Omitting option driver gives higher values for decode and decode_part. These tests have not
been rerun using NIFs, but are expected to perform about 5% better than the linked-in driver.

The test program runs 10000 decodes on the value, resulting in an output with the elapsed time in microseconds for
the total number of decodes.

Function Time (microseconds) Decode Type ASN.1 Specification % of Time versus
Complete Decode

decode_MegacoMessage_selective/1374045 Selective
MEDIA-GATEWAY-
CONTROL

8.3

Ericsson AB. All Rights Reserved.: ASN.1 | 33

1.4 Specialized Decodes

decode_MegacoMessage_exclusive/1621107 Exclusive
MEDIA-GATEWAY-
CONTROL

13.8

decode/2 4507457 Complete
MEDIA-GATEWAY-
CONTROL

100

selected_decode_Window1/1449585 Selective GUI 7.6

selected_decode_Window2/1890666 Selective GUI 15.1

decode_Window_status_exclusive/11251878 Exclusive GUI 21.3

decode/2 5889197 Complete GUI 100

Table 4.1: Results of Complete, Exclusive, and Selective Decode

It is also of interest to know the relation is between a complete decode, an exclusive decode followed by
decode_part of the excluded parts, and a selective decode followed by a complete decode. Some situations can be
compared to this simulation, for example, inspect a subvalue and later inspect the entire value. The following table
shows figures from this test. The number of loops and the time unit are the same as in the previous test.

Actions Function Time (microseconds) ASN.1 Specification % of Time vs.
Complete Decode

Complete decode/2 4507457
MEDIA-GATEWAY-
CONTROL

100

Selective and
Complete

decode_-
MegacoMessage_-
selective/1

4881502
MEDIA-GATEWAY-
CONTROL

108.3

Exclusive and
decode_part

decode_-
MegacoMessage_-
exclusive/1

5481034
MEDIA-GATEWAY-
CONTROL

112.3

Complete decode/2 5889197 GUI 100

Selective and
Complete

selected_-
decode_-
Window1/1

6337636 GUI 107.6

Selective and
Complete

selected_-
decode_-
Window2/1

6795319 GUI 115.4

Exclusive and
decode_part

decode_-
Window_-
status_-
exclusive/1

6249200 GUI 106.1

Table 4.2: Results of Complete, Exclusive + decode_part, and Selective + complete decodes

34 | Ericsson AB. All Rights Reserved.: ASN.1

1.4 Specialized Decodes

Other ASN.1 types and values can differ much from these figures. It is therefore important that you, in every case
where you intend to use either of these decodes, perform some tests that show if you will benefit your purpose.

Final Remarks
• The gain of using selective and exclusive decode instead of a complete decode is greater the bigger the value

and the less deep in the structure you have to decode.

• Use selective decode instead of exclusive decode if you are interested in only a single subvalue.

• Exclusive decode followed by decode_part decodes is attractive if the parts are sent to different servers for
decoding, or if you in some cases are not interested in all parts.

• The fastest selective decode is when the decoded type is a primitive type and not so deep in the structure of
the top type. selected_decode_Window2 decodes a high constructed value, which explains why this
operation is relatively slow.

• It can vary from case to case which combination of selective/complete decode or exclusive/part decode is the
fastest.

Ericsson AB. All Rights Reserved.: ASN.1 | 35

1.4 Specialized Decodes

2 Reference Manual

The ASN.1 application contains modules with compile-time and runtime support for ASN.1.

36 | Ericsson AB. All Rights Reserved.: ASN.1

asn1ct

asn1ct
Erlang module

The ASN.1 compiler takes an ASN.1 module as input and generates a corresponding Erlang module, which can encode
and decode the specified data types. Alternatively, the compiler takes a specification module specifying all input
modules, and generates a module with encode/decode functions. In addition, some generic functions can be used during
development of applications that handles ASN.1 data (encoded as BER or PER).

Note:

By default in OTP 17, the representation of the BIT STRING and OCTET STRING types as Erlang terms
were changed. BIT STRING values are now Erlang bit strings and OCTET STRING values are binaries. Also,
an undecoded open type is now wrapped in an asn1_OPENTYPE tuple. For details, see BIT STRING, OCTET
STRING, and ASN.1 Information Objects in the User's Guide.

To revert to the old representation of the types, use option legacy_erlang_types.

Note:

In OTP R16, the options were simplified. The back end is chosen using one of the options ber, per, uper or
jer. Options optimize, nif, and driver options are no longer necessary (and the ASN.1 compiler generates
a warning if they are used). Options ber_bin, per_bin, and uper_bin options still work, but generates a
warning.

Another change in OTP R16 is that the generated function encode/2 always returns a binary. Function
encode/2 for the BER back end used to return an iolist.

Exports

compile(Asn1module) -> ok | {error, Reason}
compile(Asn1module, Options) -> ok | {error, Reason}
Types:

Asn1module = atom() | string()

Options = [Option| OldOption]

Option = ber | per | uper | jer | der | compact_bit_string |
legacy_bit_string | legacy_erlang_types | noobj | {n2n, EnumTypeName} |
{outdir, Dir} | {i, IncludeDir} | asn1config | undec_rest | no_ok_wrapper
| {macro_name_prefix, Prefix} | {record_name_prefix, Prefix} | verbose |
warnings_as_errors | deterministic

OldOption = ber | per

Reason = term()

Prefix = string()

Compiles the ASN.1 module Asn1module and generates an Erlang module Asn1module.erl with encode and
decode functions for the types defined in Asn1module. For each ASN.1 value defined in the module, an Erlang
function that returns the value in Erlang representation is generated.

Ericsson AB. All Rights Reserved.: ASN.1 | 37

asn1ct

If Asn1module is a filename without extension, first ".asn1" is assumed, then ".asn", and finally ".py" (to
be compatible with the old ASN.1 compiler). Asn1module can be a full pathname (relative or absolute) including
filename with (or without) extension.

If it is needed to compile a set of ASN.1 modules into an Erlang file with encode/decode functions, ensure to list all
involved files in a configuration file. This configuration file must have a double extension ".set.asn" (".asn"
can alternatively be ".asn1" or ".py"). List the input file names within quotation marks (""), one at each row in the
file. If the input files are File1.asn, File2.asn, and File3.asn, the configuration file must look as follows:

File1.asn
File2.asn
File3.asn

The output files in this case get their names from the configuration file. If the configuration file is named
SetOfFiles.set.asn, the names of the output files are SetOfFiles.hrl, SetOfFiles.erl, and
SetOfFiles.asn1db.

Sometimes in a system of ASN.1 modules, different default tag modes, for example, AUTOMATIC, IMPLICIT, or
EXPLICIT. The multi-file compilation resolves the default tagging as if the modules were compiled separately.

Name collisions is another unwanted effect that can occur in multi file-compilation. The compiler solves this problem
in one of two ways:

• If the definitions are identical, the output module keeps only one definition with the original name.

• If the definitions have the same name and differs in the definition, they are renamed. The new names are the
definition name and the original module name concatenated.

If a name collision occurs, the compiler reports a "NOTICE: ..." message that tells if a definition was renamed,
and the new name that must be used to encode/decode data.

Options is a list with options specific for the ASN.1 compiler and options that are applied to the Erlang compiler.
The latter are not recognized as ASN.1 specific. The available options are as follows:

ber | per | uper | jer

The encoding rule to be used. The supported encoding rules are Basic Encoding Rules (ber), Packed Encoding
Rules (per) aligned, PER unaligned (uper) and JSON Encoding Rules (jer). The jer option can be
used by itself to generate a module that only supports encoding/decoding to JER or it can be used as a
supplementary option to ber, per and uper. In the latter case a module with for both the main encoding rules
and JER will be generated. The exported functions for JER will then be jer_encode(Type, Value) and
jer_decode(Type, Bytes).

The jer encoding rules (ITU-T X.697) are experimental in OTP 22. There is support for a subset of the X.697
standard, for example there is no support for:

• JER encoding instructions

• the REAL type

Also note that when using the jer encoding rules the generated module will get a dependency to an external json
component. The generated code is currently tested together with:

• jsx which currently is the default.

• jsone can be chosen instead of jsx by providing the option {d,jsone}.

If the encoding rule option is omitted, ber is the default.

The generated Erlang module always gets the same name as the ASN.1 module. Therefore, only one encoding
rule per ASN.1 module can be used at runtime.

38 | Ericsson AB. All Rights Reserved.: ASN.1

asn1ct

der

With this option the Distinguished Encoding Rules (der) is chosen. DER is regarded as a specialized variant of
the BER encoding rule. Therefore, this option only makes sense together with option ber. This option sometimes
adds sorting and value checks when encoding, which implies a slower encoding. The decoding routines are the
same as for ber.

maps

This option changes the representation of the types SEQUENCE and SET to use maps (instead of records). This
option also suppresses the generation of .hrl files.

For details, see Section Map representation for SEQUENCE and SET in the User's Guide.

compact_bit_string

The BIT STRING type is decoded to "compact notation". This option is not recommended for new code. This
option cannot be combined with the option maps.

For details, see Section BIT STRING in the User's Guide.

This option implies option legacy_erlang_types.

legacy_bit_string

The BIT STRING type is decoded to the legacy format, that is, a list of zeroes and ones. This option is not
recommended for new code. This option cannot be combined with the option maps.

For details, see Section BIT STRING in the User's Guide

This option implies option legacy_erlang_types.

legacy_erlang_types

Use the same Erlang types to represent BIT STRING and OCTET STRING as in OTP R16.

For details, see Section BIT STRING and Section OCTET STRING in the User's Guide.

This option is not recommended for new code. This option cannot be combined with the option maps.

{n2n, EnumTypeName}

Tells the compiler to generate functions for conversion between names (as atoms) and numbers and conversely for
the specified EnumTypeName. There can be multiple occurrences of this option to specify several type names.
The type names must be declared as ENUMERATIONS in the ASN.1 specification.

If EnumTypeName does not exist in the ASN.1 specification, the compilation stops with an error code.

The generated conversion functions are named name2num_EnumTypeName/1 and
num2name_EnumTypeName/1.

noobj

Do not compile (that is, do not produce object code) the generated .erl file. If this option is omitted, the
generated Erlang module is compiled.

{i, IncludeDir}

Adds IncludeDir to the search-path for .asn1db and ASN.1 source files. The compiler tries to open an
.asn1db file when a module imports definitions from another ASN.1 module. If no .asn1db file is found,
the ASN.1 source file is parsed. Several {i, IncludeDir} can be given.

{outdir, Dir}

Specifies directory Dir where all generated files are to be placed. If this option is omitted, the files are placed
in the current directory.

Ericsson AB. All Rights Reserved.: ASN.1 | 39

asn1ct

asn1config

When using one of the specialized decodes, exclusive or selective decode, instructions must be given in a
configuration file. Option asn1config enables specialized decodes and takes the configuration file in concern.
The configuration file has the same name as the ASN.1 specification, but with extension .asn1config.

For instructions for exclusive decode, see Section Exclusive Decode in the User's Guide.

For instructions for selective decode, see Section Selective Decode in the User's Guide.

undec_rest

A buffer that holds a message, being decoded it can also have some following bytes. Those following bytes can
now be returned together with the decoded value. If an ASN.1 specification is compiled with this option, a tuple
{ok, Value, Rest} is returned. Rest can be a list or a binary. Earlier versions of the compiler ignored
those following bytes.

no_ok_wrapper

With this option, the generated encode/2 and decode/2 functions do not wrap a successful return value in
an {ok,...} tuple. If any error occurs, an exception will be raised.

{macro_name_prefix, Prefix}

All macro names generated by the compiler are prefixed with Prefix. This is useful when multiple protocols
that contain macros with identical names are included in a single module.

{record_name_prefix, Prefix}

All record names generated by the compiler are prefixed with Prefix. This is useful when multiple protocols
that contain records with identical names are included in a single module.

verbose

Causes more verbose information from the compiler describing what it is doing.

warnings_as_errors

Causes warnings to be treated as errors.

deterministic

Causes all non-deterministic options to be stripped from the -asn1_info() attribute.

Any more option that is applied is passed to the final step when the generated .erl file is compiled.

The compiler generates the following files:

• Asn1module.hrl (if any SET or SEQUENCE is defined)

• Asn1module.erl - Erlang module with encode, decode, and value functions

• Asn1module.asn1db - Intermediate format used by the compiler when modules IMPORT definitions from
each other.

value(Module, Type) -> {ok, Value} | {error, Reason}
Types:

Module = Type = atom()

Value = term()

Reason = term()

Returns an Erlang term that is an example of a valid Erlang representation of a value of the ASN.1 type Type. The
value is a random value and subsequent calls to this function will for most types return different values.

40 | Ericsson AB. All Rights Reserved.: ASN.1

asn1ct

Note:

Currently, the value function has many limitations. Essentially, it will mostly work for old specifications
based on the 1997 standard for ASN.1, but not for most modern-style applications. Another limitation is that
the value function may not work if options that change code generations strategies such as the options
macro_name_prefix and record_name_prefix have been used.

test(Module) -> ok | {error, Reason}
test(Module, Type | Options) -> ok | {error, Reason}
test(Module, Type, Value | Options) -> ok | {error, Reason}
Types:

Module = Type = atom()

Value = term()

Options = [{i, IncludeDir}]

Reason = term()

Performs a test of encode and decode of types in Module. The generated functions are called by this function. This
function is useful during test to secure that the generated encode and decode functions as well as the general runtime
support work as expected.

Note:

Currently, the test functions have many limitations. Essentially, they will mostly work for old specifications
based on the 1997 standard for ASN.1, but not for most modern-style applications. Another limitation is
that the test functions may not work if options that change code generations strategies such as the options
macro_name_prefix and record_name_prefix have been used.

• test/1 iterates over all types in Module.

• test/2 tests type Type with a random value.

• test/3 tests type Type with Value.

Schematically, the following occurs for each type in the module:

{ok, Value} = asn1ct:value(Module, Type),
{ok, Bytes} = Module:encode(Type, Value),
{ok, Value} = Module:decode(Type, Bytes).

The test functions use the *.asn1db files for all included modules. If they are located in a different directory
than the current working directory, use the include option to add paths. This is only needed when automatically
generating values. For static values using Value no options are needed.

Ericsson AB. All Rights Reserved.: ASN.1 | 41

	ASN.1
	Asn1 User's Guide
	Introduction
	Scope
	Prerequisites

	ASN.1
	Introduction

	Getting Started
	Example
	Module Dependencies

	ASN.1 Application User Interface
	Compile-Time Functions
	Runtime Functions
	Errors

	Multi-File Compilation
	Remark about Tags
	ASN.1 Types
	BOOLEAN
	INTEGER
	REAL
	NULL
	ENUMERATED
	BIT STRING
	Deprecated Representations for BIT STRING

	OCTET STRING
	Character Strings
	OBJECT IDENTIFIER
	Object Descriptor
	TIME Types
	SEQUENCE
	SET
	Extensibility for SEQUENCE and SET
	Map representation for SEQUENCE and SET
	CHOICE
	Extensible CHOICE

	SET OF and SEQUENCE OF
	ANY and ANY DEFINED BY
	EXTERNAL, EMBEDDED PDV, and CHARACTER STRING
	Embedded Named Types

	Naming of Records in .hrl Files
	Embedded Structured Types
	Recursive Types

	ASN.1 Values
	Macros
	ASN.1 Information Objects (X.681)
	Parameterization (X.683)

	Specialized Decodes
	Exclusive Decode
	Procedure
	User Interface
	Writing an Exclusive Decode Instruction
	Example

	Selective Decode
	Procedure
	User Interface
	Writing a Selective Decode Instruction
	Another Example

	Performance
	ASN.1 Specifications, Messages, and Configuration
	Results
	Final Remarks

	Reference Manual
	asn1ct
	compile/1
	compile/2
	value/2
	test/1
	test/2
	test/3

