ERLANG

Erlang/OTP System Documentation

Copyright © 1997-2025 Ericsson AB. All Rights Reserved.
Erlang/OTP System Documentation 13.2.2.16
May 7, 2025

Copyright © 1997-2025 Ericsson AB. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance
with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless
required by applicable law or agreed to in writing, software distributed under the License is distributed on an
"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See

the License for the specific language governing permissions and limitations under the License. Ericsson AB. All
Rights Reserved..

May 7, 2025

1.1 Deprecations

1 General Information

1.1 Deprecations

1.1.1 Introduction

Thisdocument lists all deprecated functionality in Erlang/OTP. For more information regarding the strategy regarding
deprecations see the documentation of Support, Compatibility, Deprecations, and Removal.

1.1.2 OTP 25

Functions Deprecated in OTP 25

e crypto:crypto_dyn_iv_init/ 3 (seethedocumentation for details)

e crypto:crypto_dyn_iv_updat e/ 3 (seethe documentation for details)

e ct_slave: /_(use?CT_PEER(), or the 'peer' module instead)

e erts_alloc_config: /_(thismodulewill beremovedin OTP 26.0. See the documentation for details)
e httpd_util:decode_hex/ 1 (useuri_string:ungquote function instead)

e httpd_util:encode_hex/ 1 (useuri_string:quote function instead)

* slave: _/_ (usethe'peer module instead)

1.1.3 OTP 24
Erlang Distribution Without Large Node Container Support

Communication over the Erlang distribution without support for large node container data types (version 4) is as of
OTP 24 deprecated and is scheduled for removal in OTP 26. That is, as of OTP 26, support for large hode container
data types will become mandatory.

Old Link Protocol

The old link protocol used when communicating over the Erlang distribution is as of OTP 24 deprecated and support
for it is scheduled for removal in OTP 26. As of OTP 26, the new link protocol will become mandatory. That is,
Erlang nodes will then refuse to connect to nodes not implementing the new link protocol. If you implement the Erlang
distribution yourself, you are, however, encouraged to implement the new link protocol as soon as possible since the
old protocol can cause links to enter an inconsistent state.

?NO_APP macro
The 2NO_APP macro in the edoc include fileedoc_docl et . hr| has been deprecated.

Functions Deprecated in OTP 24

e« code:is_nodul e_native/ 1 (HiPE has been removed)

« disk_|og:accessible | ogs/0 (usedisk log:al/Oinstead)
e« disk_log:lclosell (usedisk_|log:.close/1 instead)

« disk_log:Ilclosel?2 (usedisk_log:close/1 instead)

e erl ang: phash/ 2 (use erlang:phash2/2 instead)

« ftp:start_service/1 (useftp:open/2 instead)

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 1

1.1 Deprecations

o ftp:stop_service/l (useftp:close/l instead)

e httpd_ util:flatlength/1 (useerlang:iolist_size/l instead)

e httpd_util:hexlist _to_integer/1 (useerlanglist_to integer/2 with base 16 instead)
e httpd util:integer _to _hexlist/1 (useerlang.integer to list/2 with base 16 instead)
e httpd_util:strip/1(usestring:trim/1 instead)

e httpd_util:suffix/1 (usefilenameextension/1 and string:trim/2 instead)

e zlib:adl er32/ 2 (useerlang:adler32/1 instead)

e zlib:adl er32/ 3 (useerlang:adler32/2 instead)

e zlib:adl er32_conbi ne/ 4 (use erlang:adler_combine/3 instead)

e zlib:crc32/ 1 (useerlang:crc32/1 on the uncompressed data instead)

e zlib:crc32/ 2 (useerlang:crc32/1 instead)

e zlib:crc32/ 3 (useerlang:.crc32/2 instead)

 zlib:crc32_conbi ne/ 4 (useerlang:crc32_combine/3 instead)

e zlib:getBufSize/1 (thisfunction will be removed in afuture rel ease)

e« zlib:inflateChunk/1 (usesafelnflate/2 instead)

e zlib:inflateChunk/ 2 (usesafelnflate/2 instead)

e zlib:setBufSize/ 2 (thisfunction will be removed in afuture release)

1.1.4 OTP 23

Crypto Old API
The Old API is deprecated as of OTP 23 and has been removed in OTP 24.
For replacement functions see the New API.

http_uri

Since OTP 21 the recommended module to handle URIs is uri_string. The module http_uri does not provide a
implementation that satisfies the RFC.

ssh

The public key algorithm ' ssh-r sa is regarded as insecure due to its usage of SHA1, and is therefore deprecated.
It will not be available by default from OTP-24.

The public key algorithm ' ssh- dss isregarded as insecure due to its usage of SHA1 and its short key length, and
is therefore deprecated. It is not available by default from OTP-23.

Distributed Disk Logs
Asof OTP 23, thedistributed di sk_| og feature has been deprecated and it has also been removed in OTP 24.

erl_interface registry

As of OTP 23, the r egi st ry functionality part of er| _i nt er f ace has been deprecated and it has also been
removed in OTP 24.

Functions Deprecated in OTP 23

e http_uri:decode/ 1 (useuri_string:unquote function instead)
e http_uri:encode/ 1 (useuri_string:quote function instead)
« httpd: parse_query/ 1 (useuri_string:dissect_query/1 instead)

2 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

1.1 Deprecations

1.1.5 OTP 22
VxWorks Support

Some parts of OTP has had limited VxWorks support, such asfor exampleer | _i nt er f ace. This support is as of
OTP 22 formally deprecated and has also been removed in OTP 23.

Legacy parts of erl_interface

Theold legacy er| _i nt er f ace library (functions with prefix er | _) is deprecated as of OTP 22. These parts of
erl _interface hasbeeninformally deprecated for a very long time. Y ou typically want to replace the usage of
theer| _i nt erface library with the use of theei library which alsoispart of theer | _i nt er f ace application.
Theoldlegacy er | _i nt er f ace library has also been removed in OTP 23.

System Events

The format of "System Events' as defined in the man page for sys has been clarified and cleaned up. Due to this,
code that relied on the internal badly documented previous (before this change) format of OTP's "System Events',
needs to be changed.

Inthewake of thisthefunction sys.get_debug/3 that returns datawith undocumented and internal format (and therefore
ispracticaly useless) has been deprecated, and anew function sys.get_log/1 has been added, that hopefully does what
the deprecated function was intended for.

Functions Deprecated in OTP 22

e net: broadcast/ 3 (userpc.eva_everywhere/3 instead)
 net:call/4 (userpc:cal/4instead)

e net:cast/ 4 (userpc:.cast/4 instead)

e net: ping/1l(usenet_adm:ping/linstead)

* net:sleep/1(use'receive after T -> ok end' instead)

e sys:get _debug/ 3 (incorrectly documented and only for internal use. Can often be replaced with
sys.get_log/1)

1.1.6 OTP 20

Functions Deprecated in OTP 20
e crypto:rand_uniform 2 (userand:uniform/1 instead)
« gen_fsm / (usethe'gen_statem' module instead)

1.1.7 OTP 19
SSL/TLS
For security reasons SSL-3.0 is no longer supported by default, but can be configured.

Functions Deprecated in OTP 19

e code: rehash/ 0 (the code path cache feature has been removed)
e queue: | ai t/ 1 (usequeueliat/l instead)

e« random _/ _ (usethe'rand' module instead)

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 3

1.2 Removed Functionality

1.1.8 OTP 18

erlang:now/0

New time functionality and a new time APl was introduced. For more information see the Time and Time
Correction chapter in the ERTS User's guide and specifically the Dos and Donts section on how to replace usage of
erl ang: now 0.

httpd_conf module

API functionsin the module ht t pd_conf was deprecated in favor of standard modulessuch asl i st s, stri ng,
filelib,anderl ang.

Functions Deprecated in OTP 18

* erlang: now 0O (seethe"Time and Time Correction in Erlang" chapter of the ERTS User's Guide for more
information)

1.1.9 OTP 16

Functions Deprecated in OTP 16
« wxCal endar Ctrl: enabl eYear Change/ 1 (not available in wxWidgets-2.9 and later)
« wxCal endar Ctrl: enabl eYear Change/ 2 (not available in wxWidgets-2.9 and later)

1.1.10 OTP 12
inets - httpd Apache config files

A new config file format was introduced.

Functions Deprecated in OTP 12

e aut h: cooki e/ 0 (use erlang:get_cookie/0 instead)

e aut h: cooki e/ 1 (use erlang:set_cookie/2 instead)

e« auth:is_auth/1 (usenet_adm:ping/1 instead)

* aut h: node_cooki e/ _ (use erlang:set_cookie/2 and net_adm:ping/1 instead)

 calendar:local _time_to_universal _tine/1 (usecaendar:local_time to_universal_time dst/1
instead)

1.2 Removed Functionality

1.2.1 Introduction

This document lists all removed functionality in Erlang/OTP. For more information regarding the strategy regarding
removals see the documentation of Support, Compatibility, Deprecations, and Removal.

1.2.2 OTP 25

Functions Removed in OTP 25

« filenane:safe relative_path/1 (usefileib:safe relative path/2 instead)
* http_uri: parse/ 1 (useuri_string functions instead)

e http_uri: parse/ 2 (useuri_string functions instead)

e http_uri:schene_defaul t s/ 0 (useuri_string functions instead)

4 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

1.2 Removed Functionality

 public_key:ssh_decode/ 2 (use ssh_file:decode/2 instead)
e« public_key:ssh_encode/ 2 (usessh_fileencode/2 instead)
e« public_key:ssh_hostkey fingerprint/1 (usessh:hostkey fingerprint/1 instead)
* public_key:ssh_hostkey_fingerprint/2 (usessh:hostkey fingerprint/2 instead)

1.2.3 OTP 24

erl_interface registry
Ther egi st ry functionality part of er | _i nt er f ace was as of OTP 23 deprecated and was removed in OTP 24.

Compilation of Latin-1 Encoded Erlang Files

The Erlang compiler now refuses to compile source files encoded in Latin-1 without a%% coding: latin-1
comment at the beginning of the file.

igor and erl_tidy modules in syntax_tools

Thei gor ander| _ti dy modules have been removed from OTP and is now maintained by their origina author
Richard Carlsson. They can be found at github.com/richcarl/igor and github.com/richcarl/er|_tidy, respectively.

Distributed Disk Logs
Thedistributed di sk_| og feature was as of OTP 23 deprecated and was removed in OTP 24.

Old Crypto API
The Old API was removed in OTP 24. The support was formally deprecated as of OTP 23.

For replacement functions see the New API.

Megaco version 3 encoding config

The pre-release version 3 encoding configs; pr ev3a, pr ev3b and pr ev3c was removed in OTP 24. Use the full
version instead.

The (encoding) config option for thefull version, { ver si on3, 3}, will till be supported, even though its no longer
necessary to specify it thisway.

Functions Removed in OTP 24

e crypto: bl ock_decrypt/ 3 (usecrypto:.crypto_one time/4 or crypto:crypto_init/3 +
crypto:crypto_update/2 + crypto:crypto_final/1 instead)

e« crypto: bl ock_decrypt/ 4 (usecrypto:crypto_one time/5, crypto:crypto_one_time_aead/6,7 or
crypto:crypto_(dyn_iv)?_init + crypto:crypto_(dyn_iv)? update + crypto:crypto_fina instead)

e crypto: bl ock_encrypt/ 3 (usecrypto:crypto_one time/4 or crypto:crypto_init/3 +
crypto:crypto_update/2 + crypto:crypto_final/1 instead)

e crypto: bl ock_encrypt/ 4 (usecrypto:crypto_one_time/5, crypto:crypto_one_time_aead/6,7 or
crypto:crypto_(dyn_iv)?_init + crypto:crypto_(dyn_iv)? _update + crypto:crypto_final instead)

e crypto: cmac/ 3 (use crypto:mac/4 instead)

e crypto: cmac/ 4 (use crypto:macN/5 instead)

e crypto: hmac/ 3 (use crypto:mac/4 instead)

e crypto: hmac/ 4 (use crypto:macN/5 instead)

e crypto: hmac_final /1 (use crypto:mac_final/1 instead)

e crypto: hmac_final n/2 (usecrypto:mac finalN/2 instead)

e crypto: hmac_i nit/ 2 (usecrypto:mac_init/3 instead)

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 5

href
href

1.2 Removed Functionality

e crypto: hmac_updat e/ 2 (use crypto:mac_update/2 instead)

e crypto:next _iv/_(seethe'New and Old API' chapter of the CRY PTO User's guide)
e crypto: pol y1305/ 2 (use crypto:mac/3 instead)

e crypto:stream decrypt/ 2 (usecrypto:crypto_update/2 instead)

e crypto:stream encrypt/ 2 (usecrypto:crypto_update/2 instead)

e crypto:stream.init/_ (usecrypto:.crypto init/3 + crypto:crypto_update/2 + crypto:crypto_final/1 or
crypto:crypto_one_time/4 instead)

e filenane:find_src/_(usefileib:find source/1,3 instead)
* pg2: _/_ (thismodule wasremoved in OTP 24. Use 'pg' instead)
e ssl:cipher_suites/O0 (usecipher_suites/2,3 instead)

e ssl:cipher_suites/1 (usecipher_suites/2,3 instead)

e ssl:ssl_accept/ _ (usesd_handshake/1,2,3 instead)

1.2.4 OTP 23

VxWorks Support

Some parts of OTP has had limited VxWorks support, suchaser | _i nt er f ace. Thissupport wasremoved in OTP
23. This limited support was formally deprecated as of OTP 22.

Legacy parts of erl_interface

The old legacy er| _i nt er f ace library (functions with prefix er| _) was removed in OTP 23. These parts of
erl _i nterface hasbeeninformally deprecated for avery long time, and was formally deprecated in OTP 22. Y ou
typically want to replace the usage of theer | _i nt er f ace library with the use of the ei library which alsois part
of theer| _i nt erface application.

httpd_conf module

API functions in the module called ht t pd_conf was deprecated in favor of standard modules such as | i st s,
string,filelib,anderl ang. Formally deprecated as of OTP 18.

inets - httpd Apache config files

Support for the Apache-compatible config files was removed in OTP 23. A new config file format was introduced
in OTP 12,

SSL/TLS

For security reasons SSL-3.0 is no longer supported at all.

Functions Removed in OTP 23

« erlang: get_ stacktrace/ 0 (usethenew try/catch syntax for retrieving the stack backtrace)
 httpd_conf: check_enun 2 (uselistssmember/2 instead)

« httpd_conf: cl ean/ 1 (usestring:strip/1 instead or possibly the re modul€)

e httpd_conf:custom cl ean/ 3 (use string:strip/1 instead or possibly the re module)

e httpd_conf:is_directory/1 (usefilelib:is dir/1instead)

e httpd conf:is filell (usefileib:is file/linstead)

« httpd_conf: make_i nteger/ 1 (useerlang:list_to_integer/1 instead)

6 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

1.3 Scheduled for Removal

1.2.5 OTP 22

Functions Removed in OTP 22

os_non_ni b: _/ _ (thismodule was removed in OTP 22.0)

1.2.6 OTP 20

Functions Removed in OTP 20

asnlct: decode/ _ (use Mod:decode/2 instead)

asnlct: encode/ _ (use Mod:encode/2 instead)

erl ang: hash/ 2 (use erlang:phash2/2 instead)

ssl: connection_i nfo/ 1 (usesd:connection information/[1,2] instead)

ssl : negoti at ed_next _pr ot ocol / 1 (use ss:negotiated protocol/1 instead)

1.2.7 OTP 19

Functions Removed in OTP 19

core_lib:get_anno/ 1 (usecerl:get_ann/1 instead)

core lib:is_literal/1 (usecerlis litera/linstead)

core_libris_literal _Iist/1(usecerlis litera_list/1 instead)
core_lib:literal _val ue/ 1 (usecerl:concrete/1 instead)
core_lib:set_anno/ 2 (usecerl:set_ann/2 instead)

erl _lint:nmodify_linel2 (useerl_parsemap _anno/2 instead)

erl _parse: get_attribute/2 (erl_anno:{column,linelocation,text}/1 instead)

erl _parse:get_attributes/ 1 (erl_anno:{column,linelocation,text}/1 instead)
erl _parse:set |ine/2 (useerl _anno:set_lineg/2)

erl _scan: attributes_info/_ (useerl_anno{column,linelocation,text}/1 instead)
erl _scan: set_attribute/ 3 (useerl_anno:set_line/2 instead)

erl _scan: token_i nfo/ _ (useerl _scan:{category,column,line,location,symbol,text} /1 instead)
rpc:safe_multi_server_cal |l /2 (userpc:multi_server call/2 instead)
rpc:safe_multi_server_cal |/ 3 (userpc:multi_server_call/3 instead)

1.3 Scheduled for Removal

1.3.1 Introduction

This document list al functionality in Erlang/OTP that currently are scheduled for removal. For more information
regarding the strategy regarding removal of functionality see the documentation of Support, Compatibility,
Deprecations, and Removal.

1.3.2 OTP 27

Functions Scheduled for Removal in OTP 27

crypto: crypto_dyn_iv_init/ 3 (seethedocumentation for details)
crypto:crypto_dyn_iv_updat e/ 3 (seethe documentation for details)
ct_slave: _/ _ (use 2CT_PEER(), or the 'peer' module instead)

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 7

1.3 Scheduled for Removal

 slave: _/_ (usethe'peer module instead)

e zlib:adl er32/ 2 (useerlang:adler32/1 instead)

e zlib:adl er32/ 3 (useerlang:adler32/2 instead)

e« zlib:adl er32_conbi ne/ 4 (use erlang:adler_combine/3 instead)

e zlib:crc32/ 1 (useerlang:crc32/1 on the uncompressed data instead)

e« zlib:crc32/ 2 (useerlang:crc32/1 instead)

e zlib:crc32/ 3 (useerlang:crc32/2 instead)

 zlib:crc32_conbi ne/ 4 (useerlang:crc32_combine/3 instead)

e zlib:getBufSize/1 (thisfunction will be removed in afuture rel ease)
e zlib:inflateChunk/1 (usesafelnflate/2 instead)

e« zlib:inflateChunk/ 2 (usesafelnflate/2 instead)

e zlib:setBufSize/ 2 (thisfunction will be removed in afuture release)

1.3.3 OTP 26
Erlang Distribution Without Large Node Container Support

Communication over the Erlang distribution without support for large node container data types (version 4) is as of
OTP 24 deprecated and support for it is scheduled for removal in OTP 26. That is, as of OTP 26, support for large
node container data types will become mandatory.

Old Link Protocol

The old link protocol used when communicating over the Erlang distribution is as of OTP 24 deprecated and support
for it is scheduled for removal in OTP 26. As of OTP 26 the new link protocol will become mandatory. That is,
Erlang nodes will then refuse to connect to nodes not implementing the new link protocol. If you implement the Erlang
distribution yourself, you are, however, encouraged to implement the new link protocol as soon as possible since the
old protocol can cause links to enter an inconsistent state.

Functions Scheduled for Removal in OTP 26

e code:is_nodul e_native/ 1 (HiPE has been removed)

e code: rehash/ 0 (the code path cache feature has been removed)
 disk_log:accessible_|ogs/0 (usedisk log:al/0instead)

« disk_log:lclosell (usedisk log:close/1 instead)

e disk_log:!lclosel/2 (usedisk log:close/l instead)

« erts_alloc_config: /_ (thismodulewill beremovedin OTP 26.0. See the documentation for details)
e ftp:start_service/1 (useftp:open/2 instead)

o ftp:stop_service/l (useftp:close/l instead)

e http_uri:decode/ 1 (useuri_string:unquote function instead)

e http_uri:encode/ 1 (useuri_string:quote function instead)

e httpd_util:decode_hex/ 1 (useuri_string:ungquote function instead)

e httpd_ util:encode_hex/ 1 (useuri_string:quote function instead)

e httpd_util:flatlength/1 (useerlang:iolist_size/1 instead)

e httpd util:hexlist to_ integer/1 (useerlanglist to integer/2 with base 16 instead)
e httpd_util:integer_to_hexlist/1 (useerlang:integer to list/2 with base 16 instead)
e httpd_util:strip/1(usestring:trim/1 instead)

e httpd_util:suffix/1 (usefilename:extension/1 and string:trim/2 instead)

8 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

1.4 Upcoming Potential Incompatibilities

1.4 Upcoming Potential Incompatibilities

1.4.1 Introduction
This document lists planned upcoming potential incompatibilitiesin Erlang/OTP.

1.4.2 OTP 25

Distribution flags will become mandatory

In OTP 25, more distribution flags will become mandatory. That is, Erlang nodes will refuse to connect to nodes
not implementing all of the mandatory distribution flags. If you implement the Erlang distribution protocol yourself,
you will need to implement support for all mandatory distribution flags in order to communicate with Erlang nodes
running OTP 25.

The following distribution flags will become mandatory in OTP 25:

DFLAG BI T_BI NARI ES
Support for bitstrings.
DFLAG_EXPORT_PTR_TAG
Support for external funs (f un Modul e: Nane/ Ari ty).
DFLAG_MAP_TAGS
Support for maps.
DFLAG_NEW FLOATS
Support for the new encoding of floats.
DFLAG_FUN_TAGS
Support for funs, but only in the new format (NEW FUN_EXT) because DFLAG_NEW FUN_TAGS isaso
mandatory.

1.4.3 OTP 26

The distribution flag DFLAG_V4_NC will become mandatory

Asof OTP 26, thedistribution flag DFLAG_V4 NC will become mandatory. If you implement the Erlang distribution
protocol yourself, you will need to implement support for DFLAG_V4_NCin order to communicate with Erlang nodes
running OTP 26.

The new link protocol will become mandatory

As of OTP 26, the new link protocol will become mandatory. That is, Erlang nodes will then refuse to connect to
nodes not implementing the new link protocol. If you implement the Erlang distribution yourself, you are, however,
encouraged to implement the new link protocol as soon as possible since the old protocol can cause links to enter an
inconsistent state.

Atoms will be encoded as UTF-8 by default

As of OTP 26, the functions erl ang:termto_binary/1,2 and erl ang:termto_iovec/1, 2 will
encode all atoms as UTF-8 by default. The current default behavior isto encode atoms as Latin-1 if possible.

If you implement your own decoding of the Erlang external format you must either:

e Make sure your implementation supports the UTF-8 encodings ATOM UTF8 _EXT and
SMALL_ATOM UTF8_ EXT.

« Cdl erlang:termto_binary/2 or erlang:termto_iovec/2 with option
{m nor _version, 1} toforce Latin-1 encoding. Thisis amore short-term solution as Latin-1 encoding may
be phased out and removed in later OTP rel eases.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 9

1.4 Upcoming Potential Incompatibilities

The default timewarp mode will change to multi-time warp mode

The default Time Warp Mode will be changed from no time warp mode to multi-time warp mode. See Time and Time
Correction in Erlang for details on how this will effect your system.

10 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

2.1 Installing the Binary Release

2 Installation Guide

This section describes how to install Erlang/OTP on UNIX and Windows.

2.1 Installing the Binary Release
2.1.1 Windows

The system is delivered as a Windows I nstaller executable. Get it from http://www.erlang.org/download.html

Installing
Theinstallation procedure is automated. Double-click the . exe fileicon and follow the instructions.
Verifying
e Start Erlang/OTP by double-clicking on the Erlang shortcut icon on the desktop.
Expect a command-line window to pop up with an output looking something like this:

Erlang/0TP 17 [erts-6.0] [64-bit] [smp:2:2]

Eshell V6.0 (abort with "G)
1>

» Exit by entering the command hal t () .

2> halt().

This closes the Erlang/OTP shell.

2.2 Building and Installing Erlang/OTP

2.2.1 Introduction

This document describes how to build and install Erlang/OTP-25. Erlang/OTP should be possible to build from source
on any Unix/Linux system, including OS X. Y ou are advised to read the whole document before attempting to build
and install Erlang/OTP.

The source code can be downloaded from the official site of Erlang/OTP or GitHub.

e http://Iwww.erlang.org
« https://github.com/erlang/otp

2.2.2 Required Utilities
These are the tools you need in order to unpack and build Erlang/OTP.

Unpacking
e GNU unzip, or amodern uncompress.
* A TAR program that understands the GNU TAR format for long filenames.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 11

href
href

2.2 Building and Installing Erlang/OTP

Building

GNU nake
Compiler -- GNU C Compiler, gcc or the C compiler frontend for LLVM, cl ang.
Perl 5

ncur ses,terncap,orterm i b -- The development headers and libraries are needed, often known as
ncur ses-devel .Use--w t hout - t er ntap to build without any of these libraries. Note that in this case
only the old shell (without any line editing) can be used.

sed -- Stream Editor for basic text transformation.

Building in Git
Build the same way as when building the unpacked tar file.
Building on OS X

Xcode -- Download and install viathe Mac App Store. Read about Building on a Mac before proceeding.

Installing

Aninstal | program that can take multiple file names.

2.2.3 Optional Utilities

Some applications are automatically skipped if the dependencies aren't met. Hereis alist of utilities needed for those
applications. You will also find the utilities needed for building the documentation.

Building

OpenSSL -- The opensource toolkit for Secure Socket Layer and Transport Layer Security. Required for building
the application cr ypt o. Further, ssl and ssh require a working crypto application and will also be skipped
if OpenSSL ismissing. The publ i c_key application is available without cr ypt o, but the functionality will
be very limited.

The development package of OpenSSL including the header files are needed as well as the binary command
program openssl . At least version 0.9.8 of OpenSSL is required. Read more and download from http://
www.openssl.org.

Oracle Java SE JDK -- The Java Development Kit (Standard Edition). Required for building the application
jinterface.Atleast version 1.6.0 of the JDK isrequired.

Download from http://www.or acle.com/technetwor k/java/javase/downloads. We have also tested with IBM's
JDK 1.6.0.

f | ex -- Headers and libraries are needed to build the flex scanner for the megaco application on Unix/Linux.
wxWidgets -- Toolkit for GUI applications. Required for building the wx application. At least version 3.0 of
wxWidgetsis required.

Download from http://sour cefor ge.net/projects/wxwindows/files/3.0.0/ or get it from GitHub: https://
github.com/wxWidgets'wxWidgets

Further instructions on wxWidgets, read Building with wxErlang.

Building Documentation

xsl t proc -- A command line XSLT processor.
A tool for applying XSLT stylesheets to XML documents. Download xsltproc from http://xmlsoft.org/XSL T/
xdltproc2.html.

f op -- Apache FOP print formatter (requires Java). Can be downloaded from http://xmlgraphics.apache.org/
fop.

12 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

href
href
href
href
href
href
href
href
href
href

2.2 Building and Installing Erlang/OTP

2.2.4 How to Build and Install Erlang/OTP

The following instructions are for building the released sourcetar ball.

The variable $ERL_TOP will be mentioned a lot of times. It refers to the top directory in the source tree. More
information about $ERL_ TOP can be found in the make and $ERL_TOP section below.

Unpacking

Start by unpacking the Erlang/OTP distribution file with your GNU compatible TAR program.
$ tar -zxf otp src 25.3.2.21.tar.gz # Assuming bash/sh

Now change directory into the base directory and set the $ERL_TOP variable.

$ cd otp_src_25.3.2.21
$ export ERL TOP="pwd" # Assuming bash/sh

Configuring
Run the following commands to configure the build:
$./configure [options]

By default, Erlang/OTP release will be installed in /usr/ 1 ocal /{bin,lib/erlang}. If you for instance
don't have the permission to install in the standard location, you can install Erlang/OTP somewhere else.
For example, to install in /opt/erlang/ 25.3.2.21/{bin,libl/erlang}, use the --prefix=/opt/
erl ang/ 25. 3. 2. 21 option.

On some platforms Perl may behave strangely if certain locales are set. If you get errors when building, try setting
the LANG variable:

$ export LANG=C # Assuming bash/sh
Building
Build the Erlang/OTP release.

$ make

Testing

Before installation you should test whether your build isworking properly by running our smoke test. The smoke test
isasubset of the complete Erlang/OTP test suites. First you will need to build and release the test suites.

$ make release tests
This creates an additional folder in $ERL_TOP/ r el ease calledt est s. Now, it'stime to start the smoke test.

$ cd release/tests/test server
$ $ERL TOP/bin/erl -s ts install -s ts smoke test batch -s init stop

To verify that everything is ok you should open $ERL_TOP/ r el ease/ t est s/t est_server/i ndex. htm
in your web browser and make sure that there are zero failed test cases.

On buildswithout cr ypt 0, ssl and ssh thereisafailed test case for undefined functions. Verify that the failed
test case log only shows calls to skipped applications.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 13

href

2.2 Building and Installing Erlang/OTP

Installing

Y ou are now ready to install the Erlang/OTP release! The following command will install the release on your system.
$ make install

Running

Y ou should now have aworking release of Erlang/OTP! Jump to System Principlesfor instructions on running Erlang/
OTP.

How to Build the Documentation
Make sure you're in the top directory in the source tree.
$ cd $ERL TOP

If you have just built Erlang/OTP in the current source tree, you have already ran conf i gur e and do not need to
do this again; otherwise, run conf i gur e.

$./configure [Configure Args]

When building the documentation you need afull Erlang/OTP-25.3.2.21 system in the SPATH.
$ export PATH=$ERL TOP/bin:$PATH # Assuming bash/sh

For the FOP print formatter, two steps must be taken:

* Adding thelocation of your installation of f op in $FOP_HOVE.

$ export FOP_HOME=/path/to/fop/dir # Assuming bash/sh

e Addingthef op script (in $FOP_HQVE) to your $PATH, either by adding $FOP_HOME to $PATH, or by copying
thef op script to adirectory aready in your $PATH.

Build the documentation.
$ make docs

It is possible to limit which types of documentation is build by passing the DOC_TARGETS environment variable to
make docs. Thecurrently availabletypesare: ht m , pdf , man and chunks. Example:

$ make docs DOC_ TARGETS=chunks

Build Issues

We have sometimes experienced problemswith Oracle's| ava running out of memory when running f op. Increasing
the amount of memory available as follows has in our case solved the problem.

$ export FOP_OPTS="-Xmx<Installed amount of RAM in MB>m"

More information can be found at
e http://xmigraphics.apache.or g/fop/0.95/r unning.html#memory.

How to Install the Documentation

The documentation can be installed either using thei nst al | - docs target, or using ther el ease_docs target.

14 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

href

2.2 Building and Installing Erlang/OTP

* If you have installed Erlang/OTP using the i nst al | target, install the documentation using the i nst al I -
docs target. Install locations determined by conf i gur e will be used. $DESTDI R can be used the same way
aswhen doing make install.

$ make install-docs

« Ifyouhaveinstalled Erlang/OTPusingther el ease target, install thedocumentationusingther el ease_docs
target. You typically want to use the same RELEASE _ROOT aswhen invoking meke r el ease.

$ make release docs RELEASE ROOT=<release dir>

It is possible to limit which types of documentation is released using the same DOC_TARCGETS environment variable
as when building documentation.

Accessing the Documentation
After installation you can access the documentation by

e Reading man pages. Make surethat er | isreferring to the installed version. For example/ usr /| ocal / bi n/
er | . Try viewing at the man page for Mnesia

$ erl -man mnesia

e Browsing the html pagesby loading thepage/ usr/ 1 ocal / 1'i b/ er| ang/ doc/ erl ang/ i ndex. ht m or
<BaseDir>/1i b/ erl ang/ doc/ erl ang/ i ndex. ht m if the prefix option has been used.

e Read the embedded documentation by using the built-in shell functionsh/ 1, 2, 3orht/ 1, 2, 3.
How to Install the Pre-formatted Documentation

Pre-formatted html documentation and man pages can be downloaded from

* http://www.erlang.or g/download.html.

Extract the html archive in the installation directory.

$ cd <ReleaseDir>
$ tar -zxf otp_html 25.3.2.21.tar.gz

Forerl -man <page> towork the Unix manual pages haveto beinstalled in the same way, i.e.

$ cd <ReleaseDir>
$ tar -zxf otp man 25.3.2.21.tar.gz

Where<Rel easeDir > is

e <PrefixDir>/1ib/erlangifyouhaveinstaled Erlang/OTP usingmake i nstal | .

* S$DESTDI R<PrefixDir>/1ib/erl ang if you haveinstaled Erlang/OTP using meke i nstal |
DESTDI R=<Tnpl nstal | Di r >.

e« RELEASE ROOT if you haveinstalled using make rel ease RELEASE ROOT=<Rel easeDi r>.

2.2.5 Advanced configuration and build of Erlang/OTP

If youwant totailor your Erlang/OTP build and installation, please read on for detailed information about theindividual
steps.

make and $ERL_TOP

All the makefiles in the entire directory tree use the environment variable ERL_ TOP to find the absolute path of the
installation. The conf i gur e script will figure this out and set it in the top level Makefile (which, when building, it

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 15

href
href
href

2.2 Building and Installing Erlang/OTP

will pass on). However, when developing it is sometimes convenient to be able to run make in a subdirectory. To do
this you must set the ERL_ TOP variable before you run make.

For example, assume your GNU make program is called mak e and you want to rebuild the application STDLI B, then
you could do:

$ cd lib/stdlib; env ERL_TOP=<Dir> make
where <Di r > would be what you find ERL_ TOP is set to in the top level Makefile.

otp_build vs configure/make

Building Erlang/OTP can be done either by using the $ERL_TOP/ ot p_bui | d script, or by invoking $ERL_TOP/

confi gure and make directly. Building using ot p_bui | d is easier since it involves fewer steps, but the
ot p_bui I d build procedure is not as flexible as the conf i gur e/make build procedure. The binary releases for
Windows that we deliver are built using ot p_bui | d.

Configuring
The configure script is created by the GNU autoconf utility, which checksfor system specific features and then creates
anumber of makefiles.

The configure script alows you to customize a number of parameters; type . / configure --help or./
configure --hel p=recursive for details. . / confi gure --hel p=recursive will give help for all
confi gur e scriptsin al applications.

One of the things you can specify iswhere Erlang/OTP should be installed. By default Erlang/OTP will beinstalled in
lusr/local/{bin,Iib/erlang}.Tokeepthesame structure but install in a different place, <Di r > say, use
the- - prefi x argument likethis: . / confi gure --prefix=<Dir>.

Some of the available conf i gur e options are:

e --prefix=PATH- Specify installation prefix.

e --disabl e-parallel-configure -Disableparalel execution of conf i gur e scripts (parallel
execution is enabled by default)

e --{enabl e, di sabl e}-jit -Forceenabling or disabling of the JIT.

e --{enabl e, di sabl e}-kernel - pol | -Kernel poll support (enabled by default if possible)

e --enabl e- nB4- bui | d - Build 64-bit binaries using the - n64 flagto (g) cc

e --enabl e-nB2- bui | d - Build 32-hit binariesusing the - nB2 flagto (g) cc

« --{enabl e, di sabl e} - pi e - Build position independent executable binaries.

e --wth-assuned-cache-1line-si ze=Sl| ZE - Set assumed cache-line size in bytes. Default is 64. Valid
values are powers of two between and including 16 and 8192. The runtime system use this value in order to
try to avoid false sharing. A too large value wastes memory. A to small value will increase the amount of false
sharing.

o --{with,w thout}-terntap - termcap (without impliesthat only the old Erlang shell can be used)

e --wth-javac=JAVAC- Specify Javacompiler to use

e --{with,wthout}-javac - Javacompiler (without impliesthat thej i nt er f ace application won't be
built)

e --{enabl e, disabl e}-builtin-zlib -Usethebuilt-in source for zlib.

e --{enabl e, di sabl e}-dynamni c-ssl -1i b - Enable or disable dynamic OpenSSL libraries when
linking the crypto NIF. By default dynamic linking is done unless it does not work or isif it isaWindows
system.

e --{with,w thout}-ssl -OpenSSL (without impliesthat thecr ypt 0, ssh, and ssl won't be built)
e --wth-ssl =PATH- Specify base location of OpenSSL include and lib directories.

16 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

2.2 Building and Installing Erlang/OTP

--w t h-ssl -i ncl =PATH - Specify base location of OpenSSL i ncl ude directory (if different than base
location specified by --with-ssl=PATH).

--W t h-ssl - zl i b=PATH - Path to static zlib library to link the crypto NIF with. This zlib library is most
often not necessary but might be needed in order to link the NIF in some cases.

--with-ssl-1ib-subdi r =RELATI VE_PATH - Specify extra OpenSSL lib sub-directory to searchin
(relative to base directory).

--w t h-ssl - r pat h=yes| no| PATHS - Runtime library path for OpenSSL. Default isyes, which equates
to a number of standard locations. If no, then no runtime library paths will be used. Anything else should be a
comma or colon separated list of paths.

--with-1ibatom c_ops=PATH- Usethel i bat oni c_ops library for atomic memory accesses. If
conf i gur e should inform you about no native atomic implementation available, you typically want to try
usingthel i bat om c_ops library. It can be downloaded from https://github.com/ivmai/libatomic_ops/.

--di sabl e-snp-requi re-nati ve-at om cs - By default conf i gur e will fail if an SMP runtime
system is about to be built, and no implementation for native atomic memory accesses can be found. If

this happens, you are encouraged to find a native atomic implementation that can be used, e.g., using

I'i bat omi c_ops, but by passing - - di sabl e-snp-requi re-native-atom cs you can build using a
fallback implementation based on mutexes or spinlocks. Performance of the SMP runtime system will however
suffer immensely without an implementation for native atomic memory accesses.

--enabl e-static-{nifs,drivers} - Toallow usage of nifsand drivers on OSs that do not support
dynamic linking of librariesit is possible to statically link nifs and drivers with the main Erlang VM binary.
Thisis done by passing acomma separated list to the archives that you want to statically link. e.g. - - enabl e-
static-nifs=/home/ $USER/ ny_ni f. a. The paths have to be absolute. For drivers, the driver name has
to be the same as the filename. Y ou also have to define STATI C_ ERLANG NI F_LI BNAMVE (seeer| _ni f
documentation) or STATI C_ERLANG_ DRI VER when compiling the .o files for the nif/driver. If your nif/driver
depends on some other dynamic library, you now have to link that to the Erlang VM binary. Thisis easily
achieved by passing L1 BS=- | | i bnane to configure.

--wi t hout - $app - By default all applicationsin Erlang/OTP will be included in arelease. If thisis not
wanted it is possible to specify that Erlang/OTP should be compiled without one or more applications, i.e. - -
wi t hout - wx. There is no automatic dependency handling between applications. If you disable an application
that another application depends on, you aso have to disable the dependent application.

--enabl e- getti neof day- as- os- systentti ne - Forceusage of get t i meof day() for OS system
time.

- -enabl e- pr ef er - el apsed- nonot oni c-ti me-duri ng- suspend - Prefer an OS monotonic time
source with elapsed time during suspend.

--di sabl e- prefer-el apsed- nonot oni c-ti me-duri ng-suspend - Do not prefer an OS
monatonic time source with elapsed time during suspend.

--wi th-cl ock-resol uti on=hi gh| | ow- Try tofind clock sources for OS system time, and OS
monatonic time with higher or lower resolution than chosen by default. Note that both alternatives may have a
negative impact on the performance and scalability compared to the default clock sources chosen.

- - enabl e- ensur e- 0s- nonot oni c- ti me - Enable functionality ensuring the monotonicity of
monotonic timestamps delivered by the OS. When a non-monotonic timestamp is detected, it will be replaced
by the last delivered monotonic timestamp before being used by Erlang's time functionality. Note that you

do not want to enable this unless the OS monotonic time source on the system fails to produce monotonic
timestamps. This since ensuring the monotonicity of OS monotonic timestamps will hurt scalability and
performance of the system.

--di sabl e- saved- conpi | e-ti ne - Disable saving of compile date and time in the emulator binary.

--enabl e- ei -dynami c-1i b -Makeerl_interface build a shared library in addition to the archive
normally built.

If you or your system has special regquirements please read the Makef i | e for additional configuration information.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 17

href

2.2 Building and Installing Erlang/OTP

Important Variables Inspected by configure

Compiler and Linker

e CC- Ccompiler.

e CFLAGS - C compiler flags. Defaultsto "-g -O2". If you set it, these will be removed.
* STATI C_CFLAGS - Static C compiler flags.

e« CFLAG _RUNTI ME_LI BRARY_PATH - Thisflag should set runtime library search path for the shared libraries.
Note that this actually isalinker flag, but it needs to be passed via the compiler.

e CPP- C pre-processor.

* CPPFLAGS - C pre-processor flags.
e CXX- C++ compiler.

o CXXFLAGS - C++ compiler flags.

* LD- Linker.

e LDFLAGS - Linker flags.

e LIBS- Libraries.

Dynamic Erlang Driver Linking

Either set all or none of the DED_LD* variables (with the exception of DED_LDFLAGS_CONFTEST). |

e« DED_LD- Linker for Dynamically loaded Erlang Drivers.
 DED LDFLAGS - Linker flagsto usewith DED LD.

» DED LDFLAGS_CONFTEST - Linker flagsto use with DED_LDin configurelink testsif DED_LDFLAGS
cannot be used in such tests. If not set, DED_LDFLAGS will be used in configure tests.

e DED LD FLAG RUNTI ME_LI BRARY_PATH - Thisflag should set runtime library search path for shared
libraries when linking with DED_LD.

Large File Support

Either set all or none of the LFS_* variables.

e LFS_CFLAGS - Largefile support C compiler flags.
* LFS_LDFLAGS - Largefile support linker flags.

e LFS LI BS- Largefilesupport libraries.

Other Tools

* RANLI B-ranli b archiveindex tool.

* AR-ar archiving tool.

e CETCONF - get conf system configuration inspection tool. get conf iscurrently used for finding out large
file support flags to use, and on Linux systems for finding out if we have an NPTL thread library or not.

Updating configure Scripts
Generated conf i gur e scripts are nowadays included in the git repository.

If you modify any confi gure.in filesor the ert s/ acl ocal . m4 file, you need to regenerate conf i gur e
scripts before the changes will take effect. First ensure that you have GNU aut oconf of version 2.69 in your
path. Then execute. / ot p_bui | d updat e_configure [--no-comm t] inthe$ERL_TOP directory. The

18 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

2.2 Building and Installing Erlang/OTP

ot p_bui I d script will verify that aut oconf isof correct version and will refuse to updatetheconf i gur e scripts
if it isof any other version.

Atomic Memory Operations and the VM

The VM with SMP support makes quite a heavy use of atomic memory operations. An implementation providing
native atomic memory operations is therefore very important when building Erlang/OTP. By default the VM wiill
refuse to build if native atomic memory operations are not available.

Erlang/OTP itself provides implementations of native atomic memory operations that can be used when compiling
with a gcc compatible compiler for 32/64-bit x86, 32/64-hit SPARC V9, 32-bit PowerPC, or 32-bit Tile. When
compiling with agcc compatible compiler for other architectures, the VM may be able to make use of native atomic
operationsusingthe __at omi ¢_* builtins (may be available when using agcc of at least version 4.7) and/or using
the __sync_* builtins (may be available when using agcc of at least version 4.1). If only thegcc's __sync_*
builtins are available, the performance will suffer. Such a configuration should only be used as a last resort. When
compiling on Windows using a MicroSoft Visual C++ compiler native atomic memory operations are provided by
Windows APls.

Native atomic implementation in the order preferred:

* Theimplementation provided by Erlang/OTP.
e TheAPI provided by Windows.
e Theimplementation based onthegcc __at omi ¢_* builtins.

« |If none of the above are available for your architecture/compiler, you are recommended to build and install
libatomic_ops before building Erlang/OTP. Thel i bat om ¢_ops library provides native atomic memory
operations for avariety of architectures and compilers. When building Erlang/OTP you need to inform the build
system of wherethel i bat omi ¢_ops library isinstalled using the- - wi t h-1 i bat onmi ¢_ops=PATH
confi gur e switch.

* Asalast resort, the implementation solely based onthegcc ___sync_* builtins. Thiswill however cause lots
of expensive and unnecessary memory barrier instructions to be issued. That is, performance will suffer. The
conf i gur e script will warn at the end of its execution if it cannot find any other alternative than this.

Building

Building Erlang/OTP on arelatively fast computer takes approximately 5 minutes. To speed it up, you can utilize
parallel make with the - j <num j obs> option.

$ export MAKEFLAGS=-j8 # Assuming bash/sh
$ make

If you've upgraded the source with a patch you may need to clean up from previous builds before the new build. Make
sure to read the Pre-built Source Release section below before doing amake cl ean.

Other useful information can be found at our GitHub wiki:
e https://github.com/erlang/otp/wiki

Within Git

Build the same way as when building the unpacked tar file.
OS X (Darwin)

Make sure that the command host nane returns a valid fully qualified host name (this is configured in / et ¢/
host conf i g). Otherwise you might experience problems when running distributed systems.

If you develop linked-in drivers (shared library) you need to link using gcc and the flags - bundl e -
flat_nanespace -undefined suppress. Youalsoinclude - f no- conmon in CFLAGS when compiling.
Use. so asthelibrary suffix.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 19

href
href

2.2 Building and Installing Erlang/OTP

If you have Xcode 4.3, or later, you will aso need to download "Command Line Tools" viathe Downloads preference
panein Xcode.

Building with wxErlang

If you want to build the wx application, you will need to get wxWidgets-3.0 (WwxW dget s- 3. 0. 3. tar. bz2 from
https://github.com/wxWidgetswxWidgets/r eleases/download/v3.0.3/wxWidgets-3.0.3.tar .bz2) or get it from
github with bug fixes:

$ git clone --branch WX 3 0 BRANCH git@github.com:wxWidgets/wxWidgets.git

The wxWidgets-3.1 version should also work if 2.8 compatibility is enabled, add - - enabl e- conpat 28 to
configure commands below.

Configure and build wxWidgets (shared library on linux):

$./configure --prefix=/usr/local
$ make && sudo make install
$ export PATH=/usr/local/bin:$PATH

Configure and build wxWidgets (static library on linux):

$ export CFLAGS=-fPIC

$ export CXXFLAGS=-fPIC

$./configure --prefix=/usr/local --disable-shared
$ make && sudo make install

$ export PATH=/usr/local/bin:$PATH

Configure and build wxWidgets (on Mavericks - 10.9):

$./configure --with-cocoa --prefix=/usr/local

or without support for old versions and with static libs

$./configure --with-cocoa --prefix=/usr/local --with-macosx-version-min=10.9 --disable-shared
$ make

$ sudo make install

$ export PATH=/usr/local/bin:$PATH

Check that you got the correct wx-config

$ which wx-config && wx-config --version-full
Build Erlang/OTP

$ export PATH=/usr/local/bin:$PATH
$ cd $ERL TOP

$./configure

$ make

$ sudo make install

Pre-built Source Release

The sourcereleaseisdelivered with alot of platform independent build results already pre-built. If you want to remove
these pre-built files, invoke . / ot p_bui |l d renpve_prebuilt_fil es fromthe $ERL_TOP directory. After
you have done this, you can build exactly the same way as before, but the build process will take a much longer time.

20 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

href

2.2 Building and Installing Erlang/OTP

Doing make cl ean in an arbitrary directory of the source tree, may remove files needed for bootstrapping the
build.

Doing . / ot p_bui | d save_boot st rap from the $ERL_TOP directory before doing make cl ean will
ensure that it will be possible to build after doing make cl ean../otp_buil d save_boot strap will be
invoked automatically when make isinvoked from $ERL_ TOP with either thecl ean target, or the default target.
Itisalso automatically invokedif . / ot p_bui | d renmove_prebuilt _fil es isinvoked.

If you need to verify the bootstrap beam files match the provided source files, use ./ ot p_build
updat e_pri mary to create anew commit that contains differences, if any exist.

How to Build a Debug Enabled Erlang RunTime System

After completing all the normal building steps described above a debug enabled runtime system can be built. To do
this you have to change directory to SERL_TOP/ er t s/ emul at or and execute:

$ (cd $ERL TOP/erts/emulator && make debug)

This will produce a beam.smp.debug executable. The file are installed along side with the normal (opt) version
beam snp.

To start the debug enabled runtime system execute;
$ $ERL TOP/bin/cerl -debug

The debug enabled runtime system features lock violation checking, assert checking and various sanity checksto help
adeveloper ensure correctness. Some of these features can be enabled on a normal beam using appropriate configure
options.

There are other types of runtime systems that can be built as well using the similar steps just described.
$ (cd $ERL TOP/erts/emulator && make $TYPE)

where $TYPE isopt , gcov, gpr of , debug, val gri nd, asan or | cnt . These different beam types are useful
for debugging and profiling purposes.
Installing
e Staged install using DESTDIR. You can perform the install phase in atemporary directory and later move the
installation into its correct location by use of the DESTDI R variable:
$ make DESTDIR=<tmp install dir> install

The installation will be created in a location prefixed by $DESTDI R. It can, however, not be run from there.
It needs to be moved into the correct location before it can be run. If DESTDI R have not been set but
| NSTALL_PREFI X has been set, DESTDI Rwill be setto | NSTALL_PREFI X. Notethat | NSTALL_PREFI X
in pre R13B04 was buggy and behaved as EXTRA PREFI X (see below). There are lots of areas of use for an

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 21

href

2.2 Building and Installing Erlang/OTP

installation procedure using DESTDI R, e.g. when creating a package, cross compiling, etc. Here is an example
where the installation should be located under / opt / | ocal :

$./configure --prefix=/opt/local
$ make
make DESTDIR=/tmp/erlang-build install
cd /tmp/erlang-build/opt/local

gnu-tar is used in this example
tar -zcf /home/me/my-erlang-build.tgz *
su -
Password: ik
$ cd /opt/local
$ tar -zxf /home/me/my-erlang-build.tgz

$
$
$
$

R

« Ingtal using ther el ease target. Instead of doing make i nst al | you can create the installation in whatever
directory you like using the r el ease target and run the | nst al | script yourself. RELEASE ROOT is used
for specifying the directory where the installation should be created. This is what by default ends up under /
usr/local /lib/erlangif youdotheinstall using make i nstal | .All installation paths provided in the
conf i gur e phaseareignored, aswell asDESTDI R, and | NSTALL_PREFI X. If you want links from a specific
bi n directory to the installation you have to set those up yourself. An example where Erlang/OTP should be
located at / horre/ me/ OTP:

$./configure

$ make

$ make RELEASE_ROO0T=/home/me/0TP release
$ cd /home/me/0TP

$./Install -minimal /home/me/0OTP

$ mkdir -p /home/me/bin

$ cd /home/me/bin

$ In -s /home/me/0TP/bin/erl erl

$ ln -s /home/me/0TP/bin/erlc erlc

$ In -s /home/me/0TP/bin/escript escript

Thel nst al | script should currently be invoked as followsin the directory where it resides (the top directory):
$./Install [-cross] [-minimal|-sasl] <ERL ROOT>

where:

* -mni mal Createsan installation that starts up aminimal amount of applications, i.e., only ker nel and
stdli b are started. The minimal system is normally enough, and iswhat make i nstal | uses.

e -sasl Createsaninstallation that also starts up the sas| application.

e -cross For cross compilation. Informsthe install script that it is run on the build machine.

e <ERL_ROOT> - The absolute path to the Erlang installation to use at run time. Thisis often the same as the
current working directory, but does not have to be. It can follow any other path through the file system to
the same directory.

If neither - m ni mal , nor - sasl is passed as argument you will be prompted.

e Testinstall using EXTRA_PREFI X. The content of the EXTRA PREFI X variablewill prefix al installation paths
when doing make i nst al | . Notethat EXTRA PREFI Xissimilar to DESTDI R, but it does not have the same
effect as DESTDI R. The installation can and have to be run from the location specified by EXTRA PREFI X.
That is, it can be useful if you want to try the system out, running test suites, etc, before doing the real install
without EXTRA_PREFI X.

Symbolic Links in --bindir

When doing make i nst al | and the default installation prefix is used, relative symbolic links will be created from
/usr/ | ocal / bi ntoal public Erlang/OTP executablesin/ usr/1 ocal /1i b/ er| ang/ bi n. Theinstalation

22 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

2.3 Cross Compiling Erlang/OTP

phase will try to create relative symbolic links aslong as - - bi ndi r and the Erlang bin directory, located under - -
I i bdi r, both have - - exec- pr ef i x as prefix. Where - - exec- prefi x defaultsto - - prefi x.--prefix,
--exec-prefix,--bindir,and--1i bdir areal argumentsthat can bepassedtoconfi gur e. Onecanforce
relative, or absolute links by passing Bl NDI R_SYM_I NKS=r el at i ve| absol ut e asargumentsto make during
theinstall phase. Note that such arequest might cause afailure if the request cannot be satisfied.

2.2.6 Erlang/OTP test architectures

Erlang/OTP are currently tested on the following hardware and operating systems. This is not an exhaustive list, but
wetry to keep it as up to date as possible.

Architecture

x86, x86-64
Aarch32, Aarch64
powerpc, powerpcedle

Operating system

Fedora 31

FreeBSD

macOS 10.4 - 11.2

MontaVista 4

NetBSD

OpenBSD

SLES 10, 11, 12

Sun0OS5.11

Ubuntu 10.04 - 20.04

Windows 10, Windows Server 2019

2.3 Cross Compiling Erlang/OTP

Table of Contents

Introduction
e otp_build Versus configure/make
e Cross Configuration
e What can be Cross Compiled?
e Compatibility
e Patches
Build and Install Procedure
» Building With configure/make Directly
e Building a Bootstrap System
e Cross Building the System
e Instaling
e Instaling Using Paths Determined by configure
e Installing Manually
e Building With the otp_build Script
Building and Installing the Documentation
Testing the cross compiled system

Ericsson AB. All Rights Reserved

.: Erlang/OTP System Documentation | 23

2.3 Cross Compiling Erlang/OTP

e Currently Used Configuration Variables
e Variablesfor otp_build Only
e Cross Compiler and Other Tools
e Cross System Root Locations
e Optiona Feature, and Bug Tests

2.3.1 Introduction

This document describes how to cross compile Erlang/OTP-25. Y ou are advised to read the whole document before
attempting to cross compile Erlang/OTP. However, before reading this document, you should read the $ERL_TOP/
HOWTO/INSTALL.md document which describes building and installing Erlang/OTP in general. $ERL_TOP isthe
top directory in the source tree.

otp_build Versus configure/make

Building Erlang/OTP can be done either by using the SERL_TOP/ ot p_bui | d script, or by invoking $ERL_ TOP/
confi gure and make directly. Building using ot p_bui | d is easier since it involves fewer steps, but the
ot p_bui I d build procedure is not as flexible as the conf i gur e/make build procedure. Note that ot p_bui | d
conf i gur e will produce a default configuration that differs from what conf i gur e will produce by default. For
example, currently - - di sabl e- dynami c-ssl -1 i bisaddedtotheconf i gur e command lineargumentsunless
- -enabl e- dynani c- ssl - 1i b has been explicitly passed. The binary releases that we deliver are built using
ot p_bui I d. The defaultsused by ot p_bui | d conf i gur e may change at any time without prior notice.

Cross Configuration

The $SERL_TOP/ xconp/ er | - xconp. conf . t enpl at e file contains all available cross configuration variables
and can be used as a template when creating a cross compilation configuration. All cross configuration
variables are aso listed at the end of this document. For examples of working cross configurations see the
$ERL_TOP/ xconp/ er| - xconp-Ti | eraMDE2. 0-ti | epro. conf file and the $ERL_TOP/ xconp/ er | -
xconp- x86_64-saf -1 i nux- gnu. conf file. If the default behavior of a variable is satisfactory, the variable
does not need to be set. However, the conf i gur e script will issue a warning when a default value is used. When
avariable has been set, no warning will be issued.

A cross configuration file can be passed to ot p_bui | d confi gur e using the - - xconp- conf command line
argument. Note that conf i gur e does not accept this command line argument. When using the conf i gur e script
directly, pass the configuration variables as arguments to conf i gur e using a <VARI ABLE>=<VALUE> syntax.
Variables can also be passed as environment variablesto conf i gur e. However, if you pass the configuration in the
environment, make sureto unset al of these environment variables beforeinvoking mak e; otherwise, the environment
variables might set make variables in some applications, or parts of some applications, and you may end up with an
erroneously configured build.

What can be Cross Compiled?

All Erlang/OTP applications except the wx application can be cross compiled. The build of thewx driver will currently
be automatically disabled when cross compiling.

Compatibility

The build system, including cross compilation configuration variables used, may be subject to non backward
compatible changeswithout prior notice. Current cross build system has been tested when cross compiling some Linux/
GNU systems, but has only been partly tested for more esoteric platforms.

Patches

Please submit any patches for cross compiling in away consistent with this system. All input is welcome as we have
avery limited set of cross compiling environments to test with. If a new configuration variable is needed, add it to

24 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

2.3 Cross Compiling Erlang/OTP

$ERL_TOP/ xconp/ er | - xconp. conf . t enpl at e, and useitinconfi gur e. i n. Other files that might need
to be updated are:

+ S$ERL_TOP/ xconp/ erl - xconmp-vars. sh
e $ERL TOP/erl-build-tool-vars. sh
e $ERL _TOP/erts/aclocal .

e $ERL_TOP/ xconp/ README. nd

e S$ERL_TOP/ xconp/ erl - xconp-*. conf

Note that this might be an incomplete list of files that need to be updated.

General information on how to submit patches can be found at: http://wiki.github.com/erlang/otp/submitting-
patches

2.3.2 Build and Install Procedure

If you are building in Git, you want to read the Building in Git section of $SERL_TOP/HOWTO/INSTALL.md before
proceeding.

We will first go through the conf i gur e/make build procedure which people probably are most familiar with.

Building With configure/make Directly
D
Change directory into the top directory of the Erlang/OTP source tree.

$ cd $ERL TOP

In order to compile Erlang code, asmall Erlang bootstrap system has to be built, or an Erlang/OTP system of the same
release as the one being built has to be provided in the $PATH. The Erlang/OTP for the target system will be built
using this Erlang system, together with the cross compilation tools provided.

If you want to build using a compatible Erlang/OTP system in the $PATH, jump to (3).
Building a Bootstrap System
@

$./configure --enable-bootstrap-only
$ make

The- - enabl e- boot st rap- onl y argument to conf i gur e isn't strictly necessary, but will speed things up. It
will only run conf i gur e in applications necessary for the bootstrap, and will disable alot of things not needed by
the bootstrap system. If you run conf i gur e without - - enabl e- boost r ap- onl y you also have to run make as
make boot st rap; otherwise, the whole system will be built.

Cross Building the System
©)

$./configure --host=<HOST> --build=<BUILD> [Other Config Args]
$ make

<HOST> is the host/target system that you build for. It does not have to be a full CPU- VENDOR- CS triplet, but can
be. The full canonicalized CPU- VENDOR- CS triplet will be created by executing $ERL_TOP/ make/ aut oconf /
config.sub <HOST>.If confi g. sub fails, you need to be more specific.

<BUI LD> should equal the CPU- VENDOR- OS triplet of the system that you build on. If you execute $ERL_TOP/
make/ aut oconf/ confi g. guess, it will in most cases print the triplet you want to use for this.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 25

href
href

2.3 Cross Compiling Erlang/OTP

The use of <HOST> and <BUI LD> values that differ will trigger cross compilation. Note that if <HOST> and
<BUI LD> differ, the canonicalized values of <HOST> and <BUI L D> must also differ. If they do not, the configuration
will fail.

Pass the cross compilation variables as command line arguments to conf i gur e using a<VARI ABLE>=<VALUE>
syntax.

Y ou can not passaconfigurationfileusingthe- - xconp- conf argument whenyouinvokeconf i gur e directly.
The- - xconp- conf argument can only be passedtoot p_bui | d confi gure.

make will verify that the Erlang/OTP system used when building is of the same release as the system being
built, and will fail if this is not the case. It is possible, however not recommended, to force the cross
compilation even though the wrong Erlang/OTP system is used. This by invoking make like this. nmake
ERL_XCOWP_FORCE_DI FFERENT_OTP=yes.

Invoking make ERL_XCOWP_FORCE_DI FFERENT_OTP=yes might fail, silently produce suboptimal code,
or silently produce erroneous code.

Installing
You can either install using the installation paths determined by conf i gur e (4), or install manually using (5).
Installing Using Paths Determined by configure
4)
$ make install DESTDIR=<TEMPORARY PREFIX>

make install will install at alocation specified when doing conf i gur e. conf i gur e arguments specifying
where the installation should reside are for example: - - prefi x, - - exec-prefi x,--1ibdir,--bindir,etc.
By default it will install under / usr /| ocal . You typically do not want to install your cross build under / usr/

| ocal onyour build machine. Using DESTDIR will cause the installation paths to be prefixed by $DESTDI R. This
makes it possible to install and package the installation on the build machine without having to place the installation
in the same directory on the build machine as it should be executed from on the target machine.

When make install hasfinished, change directory into $DESTDI R, package the system, move it to the target
machine, and unpack it. Note that theinstallation will only be working on the target machine at the location determined
by confi gure.

Installing Manually
®)
$ make release RELEASE ROOT=<RELEASE DIR>

make rel ease will copy what you have built for the target machine to <RELEASE DI R>. The | nst al | script
will not be run. The content of <RELEASE DI R> iswhat by default endsupin/ usr/ | ocal /1i b/ erl ang.

Thel nst al | script used when installing Erlang/OT P requires common Unix tools such assed to be present in your
$PATH. If your target system does not have such tools, you need to run the | nst al | script on your build machine
before packaging Erlang/OTP. The | nst al | script should currently be invoked as follows in the directory where
it resides (the top directory):

$./Install [-cross] [-minimal|-sasl] <ERL ROOT>

26 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

href

2.3 Cross Compiling Erlang/OTP

where:

 -m ni mal Createsan installation that starts up a minimal amount of applications, i.e., only ker nel and
st dl i b are started. The minimal system is normally enough, and iswhat make i nstal | uses.

* -sasl Createsan installation that also starts up the sas| application.
e -cross For cross compilation. Informsthe install script that it is run on the build machine.

e <ERL_ROOT> - The absolute path to the Erlang installation to use at run time. Thisis often the same asthe
current working directory, but does not have to be. It can follow any other path through the file system to the
same directory.

If neither - m ni mal , nor - sasl is passed as argument you will be prompted.
Y ou can how either do:
(6)

« Decide where the installation should be located on the target machine, run the | nst al | script on the build
machine, and package the installed installation. The installation just need to be unpacked at the right location on
the target machine:

$ cd <RELEASE_DIR>
$./Install -cross [-minimal]|-sasl] <ABSOLUTE INSTALL DIR ON TARGET>

or:

()

« Packagetheinstalation in <RELEASE DI R>, place it wherever you want on your target machine, and run the
I nst al | script onyour target machine;

$ cd <ABSOLUTE INSTALL DIR ON TARGET>
$./Install [-minimal|-sasl] <ABSOLUTE INSTALL DIR ON TARGET>

Building With the otp_build Script
)
$ cd $ERL TOP
C)
$./otp build configure --xcomp-conf=<FILE> [Other Config Args]
alternatively:
$./otp _build configure --host=<HOST> --build=<BUILD> [Other Config Args]

If you have your cross compilation configuration in afile, pass it using the - - xconp- conf =<FI LE> command
line argument. If not, pass - - host =<HOST>, - - bui | d=<BUI LD>, and the configuration variables using a
<VARI ABLE>=<VALUE> syntax on the command line (same asin (3)). Note that <HOST> and <BUI LD> haveto be
passed one way or the other; either by using er| _xconp_host =<HOST> and er | _xconp_bui | d=<BUI LD>
in the configuration file, or by using the - - host =<HOST>, and - - bui | d=<BUl LD> command line arguments.

ot p_bui Il d confi gure will configure both for the bootstrap system on the build machine and the cross host
system.

(10)

$./otp build boot -a

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 27

2.3 Cross Compiling Erlang/OTP

ot p_buil d boot -a will first build a bootstrap system for the build machine and then do the cross build of the
system.

(11)

$./otp build release -a <RELEASE DIR>
otp_build rel ease -a will dothe same as (5), and you will after this have to do a manual install either by
doing (6), or (7).
2.3.3 Building and Installing the Documentation
After the system has been cross built you can build and install the documentation the same way as after a native build
of the system. See the How to Build the Documentation section in the $SERL_TOP/HOWTO/INSTALL.md document
for information on how to build the documentation.
2.3.4 Testing the cross compiled system

Some of the tests that come with erlang use native code to test. This means that when cross compiling erlang you
also have to cross compile test suites in order to run tests on the target host. To do this you first have to release the
tests as usual .

$ make release tests

or
$./otp build tests

The tests will be released into SERL_TOP/ r el ease/ t est s. After releasing the tests you have to install the tests
on the build machine. Y ou supply the same xcomp fileasto . / ot p_bui | d in(9).

$ cd $ERL_TOP/release/tests/test server/
$ $ERL_TOP/bootstrap/bin/erl -eval 'ts:install([{xcomp,"<FILE>"}])' -s ts compile testcases -s init stop

Y ou should get alot of printouts as the testcases are compiled. Once done you should copy the entire SERL_ TOP/
rel ease/ t est s folder to the cross host system.

Then go to the cross host system and setup the erlang installed in (4) or (5) to be in your $PATH. Then go to what
previously was SERL_TOP/ r el ease/ t est s/t est _server and issue the following command.

$ erl -s ts install -s ts run all tests -s init stop
The configure should be skipped and all tests should hopefully pass. For more details about how to use tsrun er |

-s ts help -s init stop

2.3.5 Currently Used Configuration Variables

Note that you cannot define arbitrary variables in a cross compilation configuration file. Only the ones listed below
will be guaranteed to be visible throughout the whole execution of al conf i gur e scripts. Other variables needs to
be defined as argumentsto conf i gur e or exported in the environment.

Variables for otp_build Only

Variables in this section are only used, when configuring Erlang/OTP for cross compilation using $ERL_TOP/
otp_build configure.

28 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

2.3 Cross Compiling Erlang/OTP

These variables currently have no effect if you configure using the conf i gur e script directly.

e erl _xconp_buil d-Thebuild system used. This value will be passed as- - bui | d=$er| _xconp_bui I d
argument to the confi gure script. It does not have to be a full CPU- VENDOR- CS triplet, but can
be. The full CPU- VENDOR- OS triplet will be created by $ERL_TOP/ nake/ aut oconf/ confi g. sub
$erl _xconp_buil d. If st to guess, the build system will be guessed using $ERL_TOP/ nmake/
aut oconf/confi g. guess.

* erl_xconp_host - Cross host/target system to build for. This value will be passed as - - host =
$er| _xconp_host argument to the confi gur e script. It does not have to be a full CPU- VENDOR- OS
triplet, but can be. The full CPU- VENDOR- CS triplet will be created by $ERL_TOP/ make/ aut oconf/
config.sub $erl _xconp_host.

e erl_xconp_configure_fl ags - Extraconfigure flagsto passto theconf i gur e script.

Cross Compiler and Other Tools

If the cross compilation tools are prefixed by <HOST>- you probably do not need to set these variables (where
<HOST> is what has been passed as - - host =<HOST> argument to conf i gur e). Compiler and other tools can
otherwise be identified via variables passed as arguments on the command line to conf i gur e, in then xcomp file,
or as environment variables. For more information see the Important Variables Inspected by configure section of the
$ERL_TOP/HOWTO/INSTALL.md document.

Cross System Root Locations

e erl_xconp_sysroot - Theabsolute path to the system root of the cross compilation environment. Currently,
the cr ypt o, odbc, ssh and ssl applications need the system root. These applications will be skipped if the
system root has not been set. The system root might be needed for other things too. If this is the case and the
system root has not been set, conf i gur e will fail and request you to set it.

e erl_xconp_isysroot - The absolute path to the system root for includes of the cross compilation
environment. If not set, this value defaults to $erl _xconp_sysr oot , i.e, only set this value if the include
system root path is not the same as the system root path.

Optional Feature, and Bug Tests

Thesetests cannot (always) be done automatically when cross compiling. Y ou usually do not need to set thesevariables.

Setting these variables wrong may cause hard to detect runtime errors. If you need to change these values, really
make sure that the values are correct.

Note:

Some of these values will override results of tests performed by conf i gur e, and some will not be used until
conf i gur e issurethat it cannot figure the result out.

The conf i gur e script will issue awarning when a default value is used. When a variable has been set, no warning
will be issued.

 erl_xconp_after_norecore_hook - yes| no. Defaults to no. If yes, the target system must have a
working __after_norecore_hook that can be used for tracking used mal | oc() implementations core
memory usage. Thisis currently only used by unsupported features.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 29

2.4 How to Build Erlang/OTP on Windows

erl _xconp_bi gendi an - yes| no. No default. If yes, the target system must be big endian. If no, little
endian. This can often be automatically detected, but not always. If not automatically detected, conf i gur e will
fail unlessthisvariableisset. Since no default valueisused, conf i gur e will try to figure this out automatically.

erl _xconp_doubl e_ni ddl e - yes| no. Defaults to no. If yes, the target system must have doubles in
"middle-endian" format. If no, it has"regular" endianness.

erl _xconp_cl ock_gettime_cpu_tine-yes| no.Defaultsto no. If yes, the target system must have
aworkingcl ock_getti me() implementation that can be used for retrieving process CPU time.

erl _xconp_get addri nfo - yes| no. Defaults to no. If yes, the target system must have a working
get addri nf o() implementation that can handle both I1Pv4 and IPv6.

erl _xconp_get hrvtime_procfs_ioctl -yes| no.Defaultstono. If yes, thetarget system must have
aworking get hr vt i me() implementation and is used with procfsi oct | ().

erl _xconp_dl sym brk_wrappers - yes| no. Defaults to no. If yes, the target system must have a
working dl synm({ RTLD_NEXT, <S>) implementation that can be used on br k and sbr k symbols used by the
mal | oc() implementation in use, and by thistrack themal | oc() implementations core memory usage. This
iscurrently only used by unsupported features.

erl _xconp_kqueue - yes| no. Defaultsto no. If yes, the target system must have aworking kqueue()
implementation that returns a file descriptor which can be used by pol | () and/or sel ect (). If no and the
target system has not got epol | () or/ dev/ pol | , the kernel-poll feature will be disabled.

erl _xconp_linux_clock gettine_correction -yes| no. Defaults to yes on Linux; otherwise,
no. If yes, cl ock_getti me(CLOCK_MONOTONI C,) on the target system must work. This variable is
recommended to be set to no on Linux systems with kernel versions less than 2.6.

erl _xconp_linux_nptl -yes| no. Defaultsto yes on Linux; otherwise, no. If yes, the target system
must have NPTL (Native POSIX Thread Library). Older Linux systems have LinuxThreads instead of NPTL
(Linux kernel versionstypically lessthan 2.6).

erl _xconp_Ilinux_usabl e_si gal t st ack -yes| no. Defaultstoyes on Linux; otherwise, no. If yes,
si gal t st ack() must be usable on the target system. si gal t st ack() on Linux kernel versions less than
2.4 are broken.

erl _xconp_Ilinux_usabl e_si gusrx -yes| no. Defaultstoyes. If yes, the SI GUSR1 and SI GUSR2
signals must be usable by the ERTS. Old LinuxThreads thread libraries (Linux kernel versionstypically less than
2.2) used these signals and made them unusable by the ERTS.

erl _xconp_pol | -yes| no. Defaultsto no on Darwin/MacOSX; otherwise, yes. If yes, the target system
must have a working pol | () implementation that also can handle devices. If no, sel ect () will be used
instead of pol | ().

erl _xconp_put env_copy - yes| no. Defaultsto no. If yes, the target system must have a put env()
implementation that stores a copy of the key/value pair.

erl _xconp_reliable fpe-yes|no.Defaultstono. If yes, thetarget system must have reliable floating
point exceptions.

erl _xconp_posi x_memal i gn - yes| no. Defaults to yes if posi x_nemal i gn system call exists;
otherwise no. If yes, thetarget system must haveaposi x_nenal i gn implementation that accepts larger than
page size alignment.

erl _xconp_code_nodel snall - yes| no. Default to no. If yes, the target system must place the
beam.smp executable in the lower 2 GB of memory. That is it should not use position independent executable.

2.4 How to Build Erlang/OTP on Windows

Table of Contents

Introduction
Short Version

30 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

2.4 How to Build Erlang/OTP on Windows

e Toolsyou Need and Their Environment
e The Shell Environment

e Building and Installing

* Development

* Frequently Asked Questions

2.4.1 Introduction

This section describes how to build the Erlang emulator and the OTP libraries on Windows. Note that the Windows
binary releases are still a preferred alternative if one does not have Microsoft’ s development tools and/or don’t want
to install WSL.

The instructions apply to Windows 10 (v.1809 and later) supporting the WSL.1 (Windows Subsystem for Linux v.1)
and using Ubuntu 18.04 release.

The procedure described uses WSL as a build environment. Y ou run the bash shell in WSL and use the gnu configure/
make etc to do the build. The emulator C-source code is, however, mostly compiled with Microsoft Visual C++™,
producing a native Windows binary. Thisis the same procedure as we use to build the pre-built binaries. Why we use
VC++ and not gcc is explained further in the FAQ section.

These instructions apply for both 32-bit and 64-bit Windows. Note that even if you build a 64-bit version of Erlang,
most of the directories and files involved are till named win32. Some occurrences of the name win64 are however
present. The installation file for a 64-bit Windows version of Erlang, for example, isot p_w n64_25. exe.

If you feel comfortable with the environment and build system, and have all the necessary tools, you have a great
opportunity to make the Erlang/OTP distribution for Windows better. Please submit any suggestions or patches to
our git project to let them find their way into the next version of Erlang. If making changes to the build system (like
makefiles etc) please bear in mind that the same makefiles are used on Unix, so that your changes don't break other
platforms. That of course goes for C-code too; system specific code residesin the SERL_TOP/ ert s/ enul at or/
sys/w n32 and$ERL_TOP/ ert s/ et ¢/ wi n32 directoriesmostly. The$ERL_TOP/ er t s/ ermul at or / beam
directory isfor common code.

2.4.2 Short Version

In the following sections, we've described as much as we could about the installation of the tools needed. Once the
tools are installed, building is quite easy. We have also tried to make these instructions understandable for people
with limited Unix experience. WSL is awhole new environment to some Windows users, why careful explanation of
environment variables etc seemed to be in place.

Thisisthe short story though, for the experienced and impatient:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 31

href

2.4 How to Build Erlang/OTP on Windows

Get and install complete WSL environment

e Instal Visua Studio 2019

e Get and install windows JDK-8

e Get and install windows NSIS 3.05 or later (3.05 tried and working)

* Get, build and install OpenSSL v1.1.1d or later (up to 1.1.1d tried & working) with static libs.
e Get, build and install wxWidgets-3.1.3 or later (up to 3.1.3 tried & working) with static libs.

* Get the Erlang source distribution (from http://www.erlang.or g/download.html) and unpack witht ar to
the windows disk for example to: /mnt/c/src/

e Install mingw-gcc, and make: sudo apt install g++-m ngw w64 gcc- m ngw we4 nake
e $ cd UNPACK DIR

* Modify PATH and other environment variables so that all these tools are runnable from a bash shell. till
standing in SERL_ TOPR, issue the following commands (for 32-bit Windows, remove the x64 from the first
row and changeot p_wi n64_25toot p_w n32_25 onthelast row):

$ eval "./otp build env win32 x64°
$./otp build configure

$./otp build boot -a

$./otp build release -a

$./otp build installer win32

$ release/win32/otp win64 25 /S

Voilal St art - >Prograns->Erl ang OTP 25->Er| ang startsthe Erlang Windows shell.

2.4.3 Tools you Need and Their Environment

Y ou need sometoolsto be ableto build Erlang/OTP on Windows. Most notably you'll need WSL (with ubuntu), Visual
Studio and Microsofts Windows SDK, but you might also want a Java compiler, the NSIS install system, OpenSSL
and wxWidgets. Well, here's some information about the different tools:

WSL: Install WSL and Ubuntu in Windows 10 https://docs.micr osoft.com/en-us/windows/wsdl/install-win10

We have used and tested with WSL -1, WSL -2 was not available and may not be preferred when building Erlang/
OTP since access to the windows disk is (currently) slower WSL-2.

Visual Studio 2019 Download and run the installer from: http://visualstudio.micr osoft.com/downloads Install
C++ and SDK packages to the default installation directory.

Java JDK 8 or later (optional) If you don't care about Java, you can skip this step. The result will bethat jinterface
is not built.

Our Java code (jinterface, ic) is tested on windows with JDK 8. Get it for Windows and install it, the JRE is
not enough.

URL: http://www.or acle.com/java/technol ogies/j avase-downloads.html
Add javac to your path environment, in my case this means:

"PATH="/mnt/c/Program\ Files/Java/jdk1l.8.0 241/bin:$PATH"

No CLASSPATH or anything is needed. Type j avac. exe in the bash prompt and you should get a list of
available Java options.

32 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

href
href
href
href

2.4 How to Build Erlang/OTP on Windows

Nullsoft NSISinstaller system (optional) Y ou need this to build the self installing package.
Download and run the installer from: URL: http://nsis.sour cefor ge.net/download

Add 'makensis.exe' to your path environment:
“PATH="/mnt/c/Program\ Files/NSIS/Bin:$PATH"

Typewhi ch makensi s. exe inthe bash prompt and you should get the path to the program.
OpenSSL (optional) Y ou need thisto build crypto, ssh and sdl libs.

We recommend v1.1.1d or later. There are prebuilt available binaries, which you can just download and install,
available here: URL: http://wiki.openssl.or g/index.php/Binaries

Install into C: / OpenSSL- W n64 (or C. / OQpenSSL- W n32)
wxWidgets (optional) Y ou need this to build wx and use gui'sin debugger and observer.
We recommend v3.1.4 or later. Unpack intoc: / opt / | ocal 64/ pgnf wxW dget s-3. 1. 4

If the wxUSE_PQOSTSCRI PT isn't enabled in c: / opt /| ocal 64/ pgm wxW dget s- 3. 1. 4/ i ncl ude/
wx/ msw/ set up. h, enableit.

We recommend to enable for wxWebView wxUSEWEBVIEWEDGE.

* Download the nuget package 'Microsoft.Web.WebView?2' (Version 0.9.488 or newer)

» Extract the package (it's a zip archive) to wxWidgets/3rdparty/webview?2 (you should have 3rdparty/
webview2/build/native/include/WebView?2.h file after unpacking it)

e EnablewxUSEWEBVIEWEDGE inc: /opt/| ocal 64/ pgm wxW dget s- 3. 1. 4/ i ncl ude/ wx/
nsw set up. h

Build with:

C:\...\> cd c:\opt\local64\pgm\wxWidgets-3.1.4\build\msw
C:\...\> nmake TARGET CPU=amd64 BUILD=release SHARED=0 DIR SUFFIX CPU= -f makefile.vc
Remove the TARGET _CPU=antd64 for 32bit build.

Get the Erlang source distribution (from http://www.erlang.or g/download.html). The same as for Unix
platforms. Preferably use tar to unpack the source tar.gz (t ar zxf otp_src_25.tar. gz) to somewhere
onthewindowsdisk,/ mt/c/ path/to/otp_src

NOTE: It isimportant that source on the windows disk.

Set the environment ERL_ TOP to point to the root directory of the source distribution. Let'ssay | stood in/ it /
¢/ src andunpackedot p_src_25. tar. gz, | then add thefollowingto . profi | e:

ERL TOP=/mnt/c/src/otp src 25
export ERL_TOP

2.4.4 The Shell Environment

The path variable should now contain the windows paths to javac.exe and makensis.exe.

Setup the environment with:

$ export PATH
$ cd /mnt/c/path/to/otp src/
$ eval "./otp build env_win32 x64°

This should setup the additional environment variables.

This should do thefinal touch to the environment and building should be easy after this. Youcouldrun. / ot p_bui | d
env_w n32 without eval just to see what it does, and to see that the environment it sets seems OK. The path

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 33

href
href
href

2.4 How to Build Erlang/OTP on Windows

is cleaned of spaces if possible (using DOS style short names instead), the variables OVERRI DE_TARGET, CC,
CXX, AR and RANLI B are set to their respective wrappers and the directories SERL_TOP/ er t s/ et ¢/ wi n32/
wsl tools/vcand$ERL _TOP/ erts/etc/w n32/wsl _tool s areadded first in the PATH.

Now you can check which erlc you have by writingt ype er | ¢ inyour shell. It should residein SERL_TOP/ ert s/
et c/wi n32/ wsl _tools.

And running cl . exe should print the Microsoft compiler usage message.

The needed compiler environment variables are setup insideot p_bui | d viaert s/ et c/ wi n32/ wsl _t ool s/
Set upWBLcr oss. bat . It contains some hardcoded paths, if your installation path is different it can be added to
that file.

2.4.5 Building and Installing
Building is easiest using the ot p_bui | d script:

+ A A A

./otp build configure <optional configure options>

./otp build boot -a

./otp build release -a <installation directory>

./otp build installer win32 <installation directory> # optional

Now you will have a file called ot p_wi n32_25. exe or ot p_w n64_25. exe in the <instal |l ati on
directory>,i.e $ERL_TOP/ r el ease/ wi n32.

L ets get into more detail:

$./otp_build confi gure-Thisrunsthe newly generated configure scriptswith options making configure
behave nicely. Thetarget machinetypeisplainly wi n32, so alot of the configure-scripts recognize this awkward
target name and behave accordingly. The CC variable a so makes the compiler becc. sh, which wraps MSVC+
+, so al configure tests regarding the C compiler gets to run the right compiler. A lot of the tests are not needed
on Windows, but we thought it best to run the whole configure anyway.

$./otp_build boot -a - This uses the bootstrap directory (shipped with the source, $ERL_TOP/
boot st r ap) to build a complete OTP system. When this is done you can run erl from within the source tree;
just type SERL_TOP/ bi n/ er | and you should have the prompt.

$./otp_build rel ease -a - Buildsacommercial release tree from the source tree. The default is to
putitin SERL_TOP/ r el ease/ wi n32. You can give any directory as parameter, but it doesn't really matter
if you're going to build a self extracting installer too.

$./otp_build installer_w n32 - Creates the self extracting installer executable. The executable
ot p_w n32_25. exe or ot p_wi n64_25. exe will be placed in the top directory of the release created in
the previous step. If no release directory is specified, the release is expected to have been built to SERL_ TOP/
rel ease/ wi n32, which also will be the place where the installer executable will be placed. If you specified
some other directory for the release (i.e. . /otp_build release -a /tnp/erl _rel ease), youre
expected to givethe same parameter here, (i.e.. /ot p_buil d i nstall er_wi n32 /tnp/erl _rel ease).
You need to have a full NSIS installation and nakensi s. exe in your path for this to work. Once you have
created the installer, you can run it to install Erlang/OTP in the regular way, just run the executable and follow

34 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

2.4 How to Build Erlang/OTP on Windows

the stepsin the installation wizard. To get all default settings in the installation without any questions asked, you
run the executable with the parameter / S (capital S) likein:

$ cd $ERL_TOP
$ release/win32/otp win32 25 /S

or

$ cd $ERL TOP
$ release/win32/otp win64 25 /S

and after a while Erlang/OTP-25 will have been installed in C: \ Program Fi l es\er| 13. 2. 2. 16\, with
shortcuts in the menu etc.

2.4.6 Development

Once the system is built, you might want to change it. Having a test release in some nice directory might be useful,
but you can also run Erlang from within the sourcetree. Thetarget | ocal _set up, makesthe program $ERL_TOP/
bi n/ erl . exe usableand it also uses all the OTP librariesin the source tree.

If you hack the emulator, you can build the emulator executable by standing in $ERL_TOP/ er t s/ ermul at or and
doasimple

$ make opt

Note that you need to haverun (cd $ERL_TOP && eval ~./otp_build env_wi n32") intheparticular
shell before building anything on Windows. After doing a make opt you can test your result by running $SERL_ TOP/
bi n/ erl . If you want to copy the result to a release directory (say / t np/ er| _r el ease), you do this (still in
$ERL_TOP/ erts/ emul ator)

$ make TESTROOT=/tmp/erl release release

That will copy the emulator executables.
To make a debug build of the emulator, you need to recompile both beam dlI | (the actual runtime system) and
erl exec. dl | . Dolikethis

$ cd $ERL TOP

$ rm bin/win32/erlexec.dll
$ cd erts/emulator

$ make debug

$ cd ../etc

$ make debug

and sometimes

$ cd $ERL_TOP
$ make local setup

So now when you run $ERL_TOP/ er | . exe, you should have a debug compiled emulator, which you will see if
you do &

1> erlang:system info(system version).

in the erlang shell. If the returned string contains [debug] , you got a debug compiled emulator.
To hack the erlang libraries, you simply do anake opt inthe specific "applications’ directory, like:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 35

2.4 How to Build Erlang/OTP on Windows

$ cd $ERL TOP/lib/stdlib
$ make opt

or even in the source directory...

$ cd $ERL TOP/lib/stdlib/src
$ make opt

Note that you're expected to have a fresh Erlang in your path when doing this, preferably the plain 25 you have
built in the previous steps. You could also add $ERL_TOP/ boot st r ap/ bi n to your PATH before rebuilding
specific libraries. That would give you a good enough Erlang system to compile any OTP erlang code. Setting up the
path correctly is a little bit tricky. You still need to have $ERL_TOP/ ert s/ et ¢/ wi n32/ wsl _t ool s/ vc and
$ERL_TOP/ ert s/ et c/ wi n32/ wsl _t ool s beforethe actual emulator in the path. A typical setting of the path
for using the bootstrap compiler would be:

$ export PATH=$ERL TOP/erts/etc/win32/wsl tools/vc\
:$ERL TOP/erts/etc/win32/wsl tools:$ERL TOP/bootstrap/bin:$PATH

That should make it possible to rebuild any library without hassle...
If you want to copy alibrary (an application) newly built, to arelease area, you do like with the emul ator:

$ cd $ERL TOP/lib/stdlib
$ make TESTROOT=/tmp/erlang release release

Remember that:

* Windows specific C-code goes in the $ERL_TOP/ ert s/ enmul at or/ sys/ w n32, $ERL_TOP/ ert s/
ermul ator/drivers/w n32 or$ERL_TOP/ ert s/ et c/ wi n32.

» Windows specific erlang code should be used conditionally and the host OS tested in runtime, the exactly same
beam files should be distributed for every platform! So write code like:

case os:type() of
{win32, } ->
do windows specific();
Other ->
do fallback or exit()
end,

That's basically all you need to get going.

2.4.7 Frequently Asked Questions
e Q: So, now | can build Erlang using GCC on Windows?

A: No, unfortunately not. You'll need Microsoft's Visual C++ still. A Bourne-shell script (cc.sh) wraps the Visual
C++ compiler and runsit from within the WSL environment. All other tools needed to build Erlang are free-ware/
open source, but not the C compiler.

* Q: Why haven't you got rid of VC++ then, you ******?
A: Well, partly becauseit'sagood compiler - really! Actualy it'sbeen possiblein late R11-releasesto build using
mingw instead of visual C++ (you might see the remnants of that in some scripts and directories). Unfortunately
the development of the SMP version for Windows broke the mingw build and we chose to focus on the VC++
build as the performance has been much better in the VC++ versions. The mingw build will possibly be back, but
aslong as VC++ gives better performance, the commercial build will be aVC++ one.

e Q: Hah, I saw you, you used GCC even though you said you didn't!

A: OK, | admit, one of the filesis compiled using MinGW's GCC and the resulting object code is then converted
to MS VC++ compatible coff using a small C hack. It's because that particular file, beam enu. ¢ benefits

36 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

2.5 Patching OTP Applications

immensely from being able to use the GCC labels-as-values extension, which boosts emulator performance by
up to 50%. That does unfortunately not (yet) mean that all of OTP could be compiled using GCC. That particular
source code does not do anything system specific and actually is adopted to the fact that GCC is used to compile
it on Windows.

e Q: Sonow there¢'saMS VC++ project file somewhere and | can build OTP using the nifty VC++ GUI?

A: No, never. The hassle of keeping the project files up to date and do all the steps that constitute an OTP build
from within the VC++ GUI is simply not worth it, maybe even impossible. A VC++ project file for Erlang/OTP
will never happen.

¢ Q: Sohow doesit all work then?

A: WSL/Ubuntu is the environment, it's almost like you had a virtual Unix machine inside Windows. Configure,
given certain parameters, then creates makefiles that are used by the environment's gnu-make to built the system.
Most of the actual compilers etc are not, however, WSL tools, so we've written a couple of wrappers (Bourne-
shell scripts), which reside in $ERL_TOP/ et ¢/ wi n32/ wsl _t ool s. They all do conversion of parameters
and switches common in the Unix environment to fit the native Windowstools. Most notableisof coursethe paths,
which in WSL are Unix-like paths with "forward slashes" (/) and no drive letters. The WSL specific command
ws| pat h isused for most of the path conversionsin aWSL environment. Luckily most compilers accept forward
slashes instead of backslashes as path separators, but one till have to get the drive letters etc right, though. The
wrapper scriptsare not general inthe sense that, for example, cc.sh would understand and translate every possible
gcc option and pass correct optionsto cl.exe. The principleisthat the scriptsare powerful enough to allow building
of Erlang/OTP, no more, no less. They might need extensions to cope with changes during the development of
Erlang, and that's one of the reasons we made them into shell-scripts and not Perl-scripts. We believe they are
easier to understand and change that way.

IN$SERL_TOP, thereisascript calledot p_bui | d. That script handlesthe hassle of giving al theright parameters
toconfi gur e/make and aso helpsyou set up the correct environment variablesto work with the Erlang source
under WSL.

e Q: Canl build something that looks exactly asthe commercia release?

A: Yes, we use the exact same build procedure.
e Q: Which version of WSL and other tools do you use then?

A: We use WSL 1 with Ubuntu 18.04. The GCC we used for 25 was version 7.3-win32. We used Visua studio
2019, Sun's JDK 1.8.0_241, NSIS 3.05, Win32 OpenSSL 1.1.1d and wxWidgets-3.1.3.

2.5 Patching OTP Applications
2.5.1 Introduction

This document describes the process of patching an existing OTP instalation with one or more Erlang/OTP
applications of newer versions than aready installed. The tool ot p_pat ch_appl y is available for this specific
purpose. It resides in the top directory of the Erlang/OTP source tree.

Theot p_pat ch_appl y tool utilizestheruntime_dependenciestag in the application resourcefile. Thisinformation
isused to determine if the patch can be installed in the given Erlang/OTP installation directory.

Read more about the version handling introduced in Erlang/OTP release 17, which also describes how to determine
if an installation includes one or more patched applications.

If you want to apply patches of multiple OTP applications that resides in different OTP versions, you have to apply
these patches in multiple steps. It is only possible to apply multiple OTP applications from the same OTP version
at once.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 37

2.5 Patching OTP Applications

2.5.2 Prerequisites

It's assumed that the reader is familiar with building and installing Erlang/OTP. To be able to patch an application,
the following must exist:

* AnErlang/OTP installation.

» An Erlang/OTP source tree containing the updated applications that you want to patch into the existing Erlang/
OTPinstallation.

2.5.3 Using otp _patch_apply

Patching applicationsis a one-way process. Create a backup of your OTP installation directory before proceeding.

First of all, build the OTP source tree at $ERL_ TOP containing the updated applications.

| Before applying a patch you need to do afull build of OTP in the source directory. |

Configure and build all applicationsin OTP:

$ configure
$ make

or

$./otp build configure
$./otp build boot -a

If you have installed documentation in the OTP installation, also build the documentation:

$ make docs

After the successful build it's time to patch. The source tree directory, the directory of the installation and the
applications to patch are given as arguments to ot p_pat ch_appl y. The dependencies of each application are
validated against the applications in the installation and the other applications given as arguments. If a dependency
error is detected, the script will be aborted.

Theot p_pat ch_appl y syntax:

38 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

2.5 Patching OTP Applications

$ otp patch apply -s <Dir> -i <Dir> [-1 <Dir>] [-c] [-f] [-h] \
[-n] [-v] <Appl> [... <AppN>]

-s <Dir> -- OTP source directory that contains build results.
-1 <Dir> -- OTP installation directory to patch.
-1 <Dir> -- Alternative OTP source library directory path(s)

containing build results of OTP applications.
Multiple paths should be colon separated.

-C -- Cleanup (remove) old versions of applications
patched in the installation.
-f -- Force patch of application(s) even though

dependencies are not fulfilled (should only be
considered in a test environment).

-h -- Print help then exit.

-n -- Do not install documentation.
-V -- Print version then exit.
<AppX> -- Application to patch.

Environment Variable:
ERL LIBS -- Alternative OTP source library directory path(s)
containing build results of OTP applications.
Multiple paths should be colon separated.

Note:

The complete build environment is required while running ot p_pat ch_appl y.

Note:

All source directoriesidentified by - s and - | should contain build results of OTP applications.

For example, if the user wants to install patched versions of rmesi a and ssl builtin/ hone/ e/ gi t/ ot p into
the OTPinstallation located in/ opt / er | ang/ my_ot p type

$ otp patch apply -s /home/me/git/otp -i /opt/erlang/my otp \
mnesia ssl

Note:

If the list of applications contains core applications, i.eert s, kernel ,stdli b orsasl,thel nstal | script
in the patched Erlang/OTP installation must be rerun.

The patched applications are appended to the list of installed applications. Take a look at <I nstal | Di r >/
rel eases/ OTP- REL/ i nst al | ed_appl i cati on_versi ons.

2.5.4 Sanity check

The application dependencies can be checked using the Erlang shell. Application dependencies are verified among
installed applications by ot p_pat ch_appl y, but these are not necessarily those actually loaded. By calling
system. i nfornati on: sanity_check() onecan validate dependencies among applications actually loaded.

1> system information:sanity check().
ok

Please take alook at the reference of sanity _check() for more information.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 39

3.1 System Principles

3 System Principles

3.1 System Principles
3.1.1 Starting the System

An Erlang runtime system is started with command er | :

% erl
Erlang/0TP 17 [erts-6.0] [hipe] [smp:8:8]

Eshell V6.0 (abort with "G)
1>

er | understands a number of command-line arguments, see the erl(1) manual pagein ERTS. Some of them are also
described in this chapter.

Application programs can access the values of the command-line arguments by caling the function
i nit:get_argunent (Key) orinit:get_argunents().Seetheinit(3) manual pagein ERTS.

3.1.2 Restarting and Stopping the System
The runtime system is halted by calling hal t / 0, 1. For details, see the erlang(3) manual page in ERTS.
Themodulei ni t contains functions for restarting, rebooting, and stopping the runtime system:

init:restart()
init:reboot()
init:stop()

For details, see the init(3) manual pagein ERTS.
The runtime system terminates if the Erlang shell is terminated.

3.1.3 Boot Scripts

The runtime system is started using a boot script. The boot script contains instructions on which code to load and
which processes and applicationsto start.

A boot script file has the extension . scri pt . The runtime system uses a binary version of the script. This binary
boot script file has the extension . boot .

Which boot script to use is specified by the command-line flag - boot . The extension . boot isto be omitted. For
example, using the boot script st art _al | . boot :

% erl -boot start all

If no boot script is specified, it defaultsto ROOT/ bi n/ st ar t , see Default Boot Scripts.

The command-line flag - i ni t _debug makesthei ni t process write some debug information while interpreting
the boot script:

40 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

3.1 System Principles

% erl -init debug
{progress,preloaded}
{progress,kernel load completed}
{progress,modules loaded}
{start,heart}

{start, logger}

For a detailed description of the syntax and contents of the boot script, seethescri pt (4) manual pagein SASL.

Default Boot Scripts
Erlang/OTP comes with these boot scripts:
e« start_cl ean. boot - Loadsthe codefor and starts the applications Kernel and STDLIB.

e start_sasl . boot - Loadsthe codefor and starts the applications Kernel, STDLIB, and SASL.

* no_dot _erl ang. boot - Loadsthe code for and starts the applications Kernel and STDLIB. Skips
loading thefile . er | ang. Useful for scripts and other tools that are to behave the same irrespective of user
preferences.

Which of start_cl ean and st art _sasl to use as default is decided by the user when installing Erlang/OTP
using I nst al | . The user isasked "Do you want to use aminimal system startup instead of the SASL startup”. If the
answer isyes, thenst art _cl ean isused, otherwise st art _sasl| isused. A copy of the selected boot script is
made, named st art . boot and placed in directory ROOT/ bi n.

User-Defined Boot Scripts

It is sometimes useful or necessary to create a user-defined boot script. Thisis true especially when running Erlang
in embedded mode, see Code Loading Strategy.

A boot script can be written manually. However, it is recommended to create a boot script by generating it from a
releaseresourcefileName. r el , using thefunctionsyst ool s: make_scri pt/ 1, 2. Thisrequiresthat the source
code is structured as applications according to the OTP design principles. (The program does not have to be started
in terms of OTP applications, but can be plain Erlang).

For moreinformation about . r el files, see OTP Design Principles and the rel(4) manual pagein SASL.

The binary boot script file Nare. boot is generated from the boot script file Nane. scri pt, using the function
syst ool s: scri pt 2boot (Fil e).

3.1.4 Code Loading Strategy

The runtime system can be started in either embedded or inter active mode. Which one is decided by the command-
lineflag - node.

% erl -mode embedded

Default modeisi nt er act i ve and extra- node flags are ignored.
The mode properties are as follows:

* Inembedded mode, al code isloaded during system startup according to the boot script. (Code can also be
loaded |ater by explicitly ordering the code server to do so.)

* Ininteractive mode, the code is dynamically loaded when first referenced. When acall to afunction in amodule
is made, and the module is not loaded, the code server searches the code path and |oads the module into the
system.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 41

3.2 Error Logging

Initialy, the code path consists of the current working directory and all object code directories under ROOT/ | i b,
where ROOT is the installation directory of Erlang/OTP. Directories can be named Nare|[- Vsn] . The code server,
by default, chooses the directory with the highest version number among those which have the same Nane. The -

Vsn suffix is optiona. If an ebi n directory exists under the Narre[- Vsn] directory, this directory is added to the
code path.

The code path can be extended by using the command-line flags-pa Directories and-pz Directories.
Theseadd Di r ect ori es to the head or the end of the code path, respectively. Example:

% erl -pa /home/arne/mycode

The code server module code contains a number of functions for modifying and checking the search path, see the
code(3) manual pagein Kerndl.

3.1.5 File Types
The following file types are defined in Erlang/OTP:

File Type File Name/Extension Documented in

Module .erl Erlang Reference Manual
Includefile .hrl Erlang Reference Manual
Release resource file .rel rel(4) manual pagein SASL
Application resource file .app app(4) manual page in Kernel
Boot script .script script(4) manual pagein SASL
Binary boot script . boot -

Configuration file .config config(4) manual pagein Kernel
Application upgradefile . appup appup(4) manual pagein SASL
Release upgrade file relup relup(4) manual pagein SASL

Table 1.1: File Types

3.2 Error Logging

3.2.1 Error Information From the Runtime System

Error information from the runtime system, that is, information about a process terminating because of an uncaught
error exception, is by default written to terminal (tty):

=ERROR REPORT==== 9-Dec-2003::13:25:02 ===
Error in process <0.27.0> with exit value: {{badmatch,[1,2,3]},[{m,f,1},{shell,eval loop,2}]}

The error information is handled by Logger, which is part of the Kernel application.
The exit reasons (such asbadar g) used by the runtime system are described in Errors and Error Handling.

42 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

3.3 Creating and Upgrading a Target System

For information about Logger and its user interface, see the logger(3) manual page and the Logging section in the
Kernel User's Guide. The system can be configured so that log events are written to file or to tty, or both. In addition,
user-defined applications can send and format log events using Logger.

3.2.2 Log events from OTP behaviours

The standard behaviours (super vi sor, gen_ser ver, and so on) send progress and error information to Logger.
Progress reports are by default not logged, but can be enabled by setting the primary log level to i nf o, for example
by using the Kernel configuration parameter | ogger _| evel . Supervisor reports, crash reports and other error and
information reportsare by default logged through thelog handler which is set up when the Kernel application is started.

Prior to Erlang/OTP 21.0, supervisor, crash, and progress reports were only logged when the SASL application was
running. This behaviour can, for backwards compatibility, be enabled by setting the Kernel configuration parameter
ogger _sasl _conpati bl e tot r ue. For moreinformation, see SASL Error Logging inthe SASL User's Guide.

% erl -kernel logger level info
Erlang/0TP 21 [erts-10.0] [source-13c50db] [64-bit] [smp:4:4] [ds:4:4:10] [async-threads:1] [hipe]

=PROGRESS REPORT==== 8-Jun-2018::16:54:19.916404 ===
application: kernel
started at: nonode@nohost
=PROGRESS REPORT==== 8-Jun-2018::16:54:19.922908 ===
application: stdlib
started at: nonode@nohost
=PROGRESS REPORT==== 8-Jun-2018::16:54:19.925755 ===
supervisor: {local,kernel safe sup}
started: [{pid,<0.74.0>},
{id,disk log sup},
{mfargs,{disk log sup,start link,[]}},
{restart type,permanent},
{shutdown, 1000},
{child type,supervisor}]
=PROGRESS REPORT==== 8-Jun-2018::16:54:19.926056 ===
supervisor: {local,kernel safe sup}
started: [{pid,<0.75.0>},
{id,disk log server},
{mfargs,{disk log server,start link,[]}},
{restart type,permanent},
{shutdown, 2000},
{child type,worker}]
Eshell V10.0 (abort with "G)
1>

3.3 Creating and Upgrading a Target System

When creating a system using Erlang/OTP, the simplest way is to install Erlang/OTP somewhere, install the
application-specific code somewhere else, and then start the Erlang runtime system, making sure the code path includes
the application-specific code.

It is often not desirable to use an Erlang/OTP system as is. A developer can create new Erlang/OTP-compliant
applications for a particular purpose, and several original Erlang/OTP applications can be irrelevant for the purpose
in question. Thus, there is a need to be able to create a new system based on a given Erlang/OTP system, where
dispensable applications are removed and new applications are included. Documentation and source code isirrelevant
and is therefore not included in the new system.

This chapter is about creating such a system, which is called atarget system.
The following sections deal with target systems with different requirements of functionality:
e A basictarget system that can be started by calling the ordinary er | script.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 43

3.3 Creating and Upgrading a Target System

* A simpletarget system where aso code replacement in runtime can be performed.

« Anembedded target system where there is also support for logging output from the system to file for later
inspection, and where the system can be started automatically at boot time.

Hereisonly considered the case when Erlang/OTP is running on a UNIX system.

The sas| application includes the example Erlang module t ar get _syst em er |, which contains functions for
creating and installing atarget system. Thismodule is used in the following examples. The source code of the module
islisted in Listing of target_system.erl

3.3.1 Creating a Target System

It is assumed that you have aworking Erlang/OTP system structured according to the OTP design principles.

Step 1. Create a . r el file (see the rel(4) manual page in SASL), which specifies the ERTS version and lists all
applicationsthat are to beincluded in the new basic target system. An exampleisthefollowingnysyst em r el file

%% mysystem.rel

{release,
{"MYSYSTEM", "FIRST"},
{erts, "5.10.4"},
[{kernel, "2.16.4"},
{stdlib, "1.19.4"},
{sasl, "2.3.4"},
{pea, "1.0"}1}.

Thelisted applications are not only original Erlang/OTP applications but possibly also new applications that you have
written (here exemplified by the application Pea (pea)).

Step 2. Start Erlang/OTP from the directory wherethe nysyst em r el fileresides:

os> erl -pa /home/user/target system/myapps/pea-1.0/ebin

Here also the path to the pea- 1. 0 ebin directory is provided.
Step 3. Create the target system:

1> target system:create("mysystem").

Thefunctiont ar get _syst em cr eat e/ 1 performs the following:

* Readsthefilenysyst em r el and createsanew filepl ai n. r el that isidentical to the former, except that
it only liststhe Kernel and STDLIB applications.

 Fromthefilesnysystem rel andpl ai n. rel createsthefilesnmysyst em scri pt, mysyst em boot,
pl ai n.scri pt,andpl ai n. boot throughacall tosyst ool s: make_scri pt/ 2.

44 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

3.3 Creating and Upgrading a Target System

» Creates the file mysystem tar. gz by acal to syst ool s: make_t ar/ 2. That file has the following
contents:

erts-5.10.4/bin/
releases/FIRST/start.boot
releases/FIRST/mysystem.rel
releases/mysystem.rel
lib/kernel-2.16.4/
lib/stdlib-1.19.4/
lib/sasl-2.3.4/
lib/pea-1.0/

Thefiler el eases/ FI RST/ st art. boot isacopy of our nysyst em boot

The release resource file mysyst em r el is duplicated in the tar file. Originally, this file was only stored in
ther el eases directory to make it possible for the r el ease_handl er to extract this file separately. After
unpackingthetar file, r el ease_handl er would automatically copy thefiletor el eases/ FI RST. However,
sometimes the tar file is unpacked without involving ther el ease_handl er (for example, when unpacking
thefirst target system). The fileistherefore now instead duplicated in the tar file so no manual copying is needed.

e Createsthe temporary directory t mp and extractsthetar filemysyst em t ar . gz into that directory.

* Deletesthefileser| andstart fromt np/ erts-5. 10. 4/ bi n. Thesefiles are created again from source
when installing the release.

e Createsthedirectory t np/ bi n.

» Copiesthe previously created filepl ai n. boot tot np/ bi n/ start. boot .

e Copiesthefilesepnd,run_erl ,andt o_erl| fromthedirectory t mp/ ert s-5. 10. 4/ bi n to the directory
t np/ bi n.

e Createsthedirectory t np/ | og, which is used if the system is started as embedded with the bi n/ st ar t
script.

* Createsthefilet np/ rel eases/ start _er| . dat a with the contents "5.10.4 FIRST". Thisfileisto be
passed as datafiletothest art _er| script.

» Recreatesthefilenysyst em t ar. gz from the directoriesin the directory t np and removest np.

3.3.2 Installing a Target System
Step 4. Install the created target system in a suitable directory.

2> target system:install("mysystem", "/usr/local/erl-target").

Thefunctiont ar get _system i nstal | / 2 performsthe following:

» Extractsthetar filemysyst em t ar. gz into thetarget directory / usr/ 1 ocal / erl -t ar get.

¢ Inthetarget directory readsthefiler el eases/ start _erl . dat a to find the Erlang runtime system
version ("5.10.4").

* Substitutes %1 NAL_ROOTDI R%and %EMJ%for / usr/ 1 ocal / er| -t ar get and beam respectively, in
thefileser| . src,start.src,andstart _erl.src of thetargetert s-5. 10. 4/ bi n directory, and
putstheresulting fileser | ,start,andrun_er| inthetarget bi n directory.

e Findlythetargetr el eases/ RELEASES fileis created from datain thefiler el eases/ mysystemrel .

3.3.3 Starting a Target System

Now we have atarget system that can be started in various ways. We start it as abasic tar get system by invoking:

0os> /usr/local/erl-target/bin/erl

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 45

3.3 Creating and Upgrading a Target System

Here only the Kernel and STDLIB applications are started, that is, the system is started as an ordinary devel opment
system. Only two files are needed for all thisto work:

e bin/erl (obtainedfromerts-5.10.4/bin/erl.src)

e bin/start.boot (acopy of pl ai n. boot)

We can aso start a distributed system (requires bi n/ epnd).
To start all applications specified inthe original nysyst em r el file, useflag - boot asfollows:

0os> /usr/local/erl-target/bin/erl -boot /usr/local/erl-target/releases/FIRST/start

We start asimpletarget system asabove. The only differenceisthat also thefiler el eases/ RELEASES is present
for code replacement in runtime to work.

To start an embedded target system, the shell script bi n/ st art isused. The script callsbi n/ run_er | , which
inturncalsbi n/ start _er| (roughly,start _er| isanembedded variant of er |).

The shell script st ar t , which is generated from erts-5.10.4/bin/start.src during installation, is only an example. Edit
it to suite your needs. Typicaly it is executed when the UNIX system boots.

run_er!| isawrapper that provides logging of output from the runtime system to file. It also provides a simple
mechanism for attaching to the Erlang shell (t o_er |).

start _erl requires:

e Theroot directory ("/ usr/ 1l ocal /erl-target")
e Thereleasesdirectory ("/ usr/l ocal /erl -target/rel eases”
* Thelocation of thefilestart _erl . data

It performs the following:

* Readstheruntime system version (" 5. 10. 4") and release version (" FI RST") from thefile
start _erl.data.

» Startsthe runtime system of the version found.

* Providestheflag - boot specifying the boot file of the release version found (" r el eases/ FI RST/
start. boot™).

start _erl also assumes that there is sys. confi g in the release version directory (" r el eases/ FI RST/
sys. confi g"). That isthetopic of the next section.

Thestart _er| shel scriptisnormally not to be altered by the user.

3.3.4 System Configuration Parameters

As was mentioned in the previous section, st art _er| requiresasys. confi g in the release version directory
("rel eases/ FI RST/ sys. confi g"). If there is no such file, the system start fails. Such a file must therefore
also be added.

If you have system configuration datathat is neither file-location-dependent nor site-dependent, it can be convenient to
createsys. confi g early, soit becomespart of thetarget systemtar filecreatedby t ar get _system create/ 1.
Infact, if youinthe current directory create not only thefilenysyst em rel , but alsofilesys. confi g, thelatter
fileistacitly put in the appropriate directory.

However, it can also be convenient to replace variables in within asys. conf i g on the target after unpacking but
beforerunning therelease. If you haveasys. conf i g. sr c itwill beincluded andisnot required to beavalid Erlang
termfilelikesys. conf i g. Before running the release you must have avalid sys. conf i g in the same directory,
sousing sys. confi g. src requires having some tool to populate what is needed and write sys. conf i g to disk
before booting the release.

46 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

3.3 Creating and Upgrading a Target System

3.3.5 Differences From the Install Script

The previous i nst al | / 2 procedure differs somewhat from that of the ordinary | nst al | shell script. In fact,
cr eat e/ 1 makesthe release package as complete as possible, and leave to thei nst al | / 2 procedure to finish by
only considering |ocation-dependent files.

3.3.6 Creating the Next Version
In this example the Pea application has been changed, and so are the applications ERTS, Kernel, STDLIB and SASL.
Step 1. Create thefile. rel :

%% mysystem2.rel
{release,
{"MYSYSTEM", "SECOND"},
{erts, "6.0"},
[{kernel, "3.0"},
{stdlib, "2.0"},
{sasl, "2.4"},
{pea, "2.0"}1}.

Step 2. Create the application upgrade file (see the appup(4) manual pagein SASL) for Pea, for example:

%% pea.appup

{II2.0II’

[{"1.0",[{load module,pea 1lib}]}1,
[{"1.0",[{load module,pea lib}]}1}.

Step 3. From the directory where the file nysyst en®. r el resides, start the Erlang/OTP system, giving the path
to the new version of Pea:

os> erl -pa /home/user/target system/myapps/pea-2.0/ebin

Step 4. Create the release upgrade file (see the relup(4) manual pagein SASL):

1> systools:make relup("mysystem2",["mysystem"],["mysystem"],
[{path, ["/home/user/target system/myapps/pea-1.0/ebin",
"/my/old/erlang/lib/*/ebin"]1}1).

Here" nmysyst ent' isthebasereleaseand " mysyst enR" isthe release to upgrade to.

Thepat h option is used for pointing out the old version of all applications. (The new versions are already in the code
path - assuming of course that the Erlang node on which thisis executed is running the correct version of Erlang/OTP.)

Step 5. Create the new release;

2> target system:create("mysystem2").
Given that the filer el up generated in Step 4 is now located in the current directory, it is automatically included in
the rel ease package.

3.3.7 Upgrading the Target System

This part is done on the target node, and for this example we want the node to be running as an embedded system with
the- heart option, allowing automatic restart of the node. For more information, see Starting a Target System.

Weadd - heart tobin/start:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 47

3.3 Creating and Upgrading a Target System

#!/bin/sh
ROOTDIR=/usr/local/erl-target/

if [-z "$RELDIR"]
then
RELDIR=$RO0OTDIR/releases
fi
START ERL DATA=${1:-$RELDIR/start erl.data}

$ROOTDIR/bin/run_erl -daemon /tmp/ $ROOTDIR/log "exec $ROOTDIR/bin/start erl $ROOTDIR\
$RELDIR $START ERL DATA -heart"

We use the simplest possible sys. conf i g, whichwestoreinr el eases/ Fl RST:

%% sys.config
[1.

Finally, to prepare the upgrade, we must put the new release package in the r el eases directory of the first target
system:

0s> cp mysystem2.tar.gz /usr/local/erl-target/releases

Assuming that the node has been started as follows:

os> /usr/local/erl-target/bin/start

It can be accessed as follows:

os> /usr/local/erl-target/bin/to erl /tmp/erlang.pipe.l

Logscanbefoundin/ usr/ | ocal / erl -target/| og. Thisdirectory isspecified asanargumenttor un_er | in
the start script listed above.

Step 1. Unpack the release:

1> {ok,Vsn} = release handler:unpack release("mysystem2").

Step 2. Install the release:

2> release handler:install release(Vsn).

{continue after restart,"FIRST",[]}

heart: Tue Apr 1 12:15:10 2014: Erlang has closed.

heart: Tue Apr 1 12:15:11 2014: Executed "/usr/local/erl-target/bin/start /usr/local/erl-target/releases/new :
[End]

The above return value and output after the call tor el ease_handl er: i nstal | _r el ease/ 1 means that the
rel ease_handl er has restarted the node by using hear t . This is always done when the upgrade involves a
change of the applications ERTS, Kernel, STDLIB, or SASL. For more information, see Upgrade when Erlang/OTP
has Changed.

The node is accessible through a new pipe:

0os> /usr/local/erl-target/bin/to _erl /tmp/erlang.pipe.2

Check which releases there are in the system:

48 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

3.3 Creating and Upgrading a Target System

1> release handler:which releases().

[{"MYSYSTEM", "SECOND",
["kernel-3.0","stdlib-2.0","sasl-2.4","pea-2.0"],
current},

{"MYSYSTEM" , "FIRST",
["kernel-2.16.4","stdlib-1.19.4","sasl-2.3.4","pea-1.0"],
permanent}]

Our new release, "SECOND", isnow the current release, but we can al so seethat our "FIRST" rel easeis still permanent.
Thismeansthat if the node would be restarted now, it would come up running the "FIRST" release again.

Step 3. Make the new release permanent:

2> release handler:make permanent("SECOND").

Check the releases again:

3> release handler:which releases().

[{"MYSYSTEM", "SECOND",
["kernel-3.0","stdlib-2.0","sasl-2.4","pea-2.0"],
permanent},

{"MYSYSTEM", "FIRST",
["kernel-2.16.4","stdlib-1.19.4","sasl-2.3.4","pea-1.0"1,
old}]

We see that the new release version isper manent , so it would be safe to restart the node.

3.3.8 Listing of target_system.erl
This module can also be found in the exanpl es directory of the SASL application.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 49

3.3 Creating and Upgrading a Target System

-module(target system).
-export([create/1l, create/2, install/2]).

Note: RelFileName below is the *stem* without trailing .rel,
.script etc.

o o o°
o® o° o°

create(RelFileName)

o o°
o® o°

create(RelFileName) ->
create(RelFileName,[]).

create(RelFileName,SystoolsOpts) ->
RelFile = RelFileName ++ ".rel",
Dir = filename:dirname(RelFileName),
PlainRelFileName = filename:join(Dir,"plain"),
PlainRelFile = PlainRelFileName ++ ".rel",

io:fwrite("Reading file: ~ts ...~n", [RelFile]),
{ok, [RelSpec]} = file:consult(RelFile),
io:fwrite("Creating file: ~ts from ~ts ...~n",

[PlainRelFile, RelFile]),
{release,
{RelName, RelVsn},
{erts, ErtsVsn},
AppVsns} = RelSpec,
PlainRelSpec = {release,
{RelName, RelVsn},
{erts, ErtsVsn},
lists:filter(fun({kernel, }) ->
true;
({stdlib, }) ->
true;
() ->
false
end, AppVsns)
}I
{ok, Fd} = file:open(PlainRelFile, [write]),
io:fwrite(Fd, "~p.~n", [PlainRelSpec]),
file:close(Fd),
io:fwrite("Making \"~ts.script\" and \"~ts.boot\" files ...~n",
[PlainRelFileName,PlainRelFileName]),
make script(PlainRelFileName,SystoolsOpts),
io:fwrite("Making \"~ts.script\" and \"~ts.boot\" files ...~n",
[RelFileName, RelFileName]),
make script(RelFileName,SystoolsOpts),

TarFileName = RelFileName ++ ".tar.gz",
io:fwrite("Creating tar file ~ts ...~n", [TarFileName]),
make tar(RelFileName,SystoolsOpts),

TmpDir = filename:join(Dir,"tmp"),
io:fwrite("Creating directory ~tp ...~n",[TmpDir]),
file:make dir(TmpDir),

io:fwrite("Extracting ~ts into directory ~ts ...~n", [TarFileName,TmpDir]),
extract tar(TarFileName, TmpDir),

TmpBinDir = filename:join([TmpDir, "bin"1),

ErtsBinDir = filename:join([TmpDir, "erts-" ++ ErtsVsn, "bin"]),

io:fwrite("Deleting \"erl\" and \"start\" in directory ~ts ...~n",
[ErtsBinDir]),

file:delete(filename:join([ErtsBinDir, "erl"]))

file:delete(filename:join([ErtsBinDir, "start"])),

50 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

3.3 Creating and Upgrading a Target System

io:fwrite("Creating temporary directory ~ts ...~n", [TmpBinDir]),
file:make dir(TmpBinDir),

io:fwrite("Copying file \"~ts.boot\" to ~ts ...~n",
[PlainRelFileName, filename:join([TmpBinDir, "start.boot"])1),
copy file(PlainRelFileName++".boot",filename:join([TmpBinDir, "start.boot"])),

io:fwrite("Copying files \"epmd\", \"run_erl\" and \"to_erl\" from \n"
"~ts to ~ts ...~n",
[ErtsBinDir, TmpBinDir]),

copy file(filename:join([ErtsBinDir, "epmd"]),
filename:join([TmpBinDir, "epmd"]), [preservel),

copy file(filename:join([ErtsBinDir, "run_erl"]),
filename:join([TmpBinDir, "run erl"]), [preserve]),

copy file(filename:join([ErtsBinDir, "to erl"]),
filename:join([TmpBinDir, "to erl"]), [preserve]),

%% This is needed if 'start' script created from 'start.src' shall
%% be used as it points out this directory as log dir for 'run erl'
TmpLogDir = filename:join([TmpDir, "log"l),

io:fwrite("Creating temporary directory ~ts ...~n", [TmpLogDir]),
ok = file:make dir(TmpLogDir),

StartErlDataFile = filename:join([TmpDir, "releases", "start erl.data"]),
io:fwrite("Creating ~ts ...~n", [StartErlDataFile]),

StartErlData = io lib:fwrite("~s ~s~n", [ErtsVsn, RelVsn]),

write file(StartErlDataFile, StartErlData),

io:fwrite("Recreating tar file ~ts from contents in directory ~ts ...~n",
[TarFileName, TmpDir]),

{ok, Tar} = erl tar:open(TarFileName, [write, compressed]),

%% {0k, Cwd} = file:get cwd(),

%% file:set cwd("tmp"),

ErtsDir = "erts-"++ErtsVsn,

erl tar:add(Tar, filename:join(TmpDir,"bin"), "bin", [1),

erl tar:add(Tar, filename:join(TmpDir,ErtsDir), ErtsDir, []),

erl tar:add(Tar, filename:join(TmpDir,"releases"), "releases", []),

erl tar:add(Tar, filename:join(TmpDir,"lib"), "lib", [1),

erl tar:add(Tar, filename:join(TmpDir,"log"), "log", [1),

erl_tar:close(Tar),

%% file:set cwd(Cwd),

io:fwrite("Removing directory ~ts ...~n",[TmpDir]),

remove dir tree(TmpDir),

ok.

install(RelFileName, RootDir) ->
TarFile = RelFileName ++ ".tar.gz",

io:fwrite("Extracting ~ts ...~n", [TarFile]),
extract tar(TarFile, RootDir),
StartErlDataFile = filename:join([RootDir, "releases", "start erl.data"]),

{ok, StartErlData} = read txt file(StartErlDataFile),

[ErlVsn, RelVsn| 1 = string:tokens(StartErlData, " \n"),

ErtsBinDir = filename:join([RootDir, "erts-" ++ ErlVsn, "bin"]),

BinDir = filename:join([RootDir, "bin"]),

io:fwrite("Substituting in erl.src, start.src and start_erl.src to "

"form erl, start and start erl ...\n"),

subst src_scripts(["erl", "start", "start erl"], ErtsBinDir, BinDir,
[{"FINAL ROOTDIR", RootDir}, {"EMU", "beam"}],
[preserve]),

%%! Workaround for pre OTP 17.0: start.src and start erl.src did

%%! not have correct permissions, so the above 'preserve' option did not help
ok = file:change mode(filename:join(BinDir,"start"),b8#0755),

ok = file:change mode(filename:join(BinDir,"start erl"),8#0755),

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 51

3.3 Creating and Upgrading a Target System

io:fwrite("Creating the RELEASES file ...\n"),
create RELEASES(RootDir, filename:join([RootDir, "releases",
filename:basename(RelFileName)])).
%% LOCALS

% make script(RelFileName,Opts)

o o°
o°

make script(RelFileName,Opts) ->
systools:make script(RelFileName, [no_module tests,
{outdir, filename:dirname(RelFileName)}
|Opts]).

%% make_tar(RelFileName,Opts)

o°
o°

make tar(RelFileName,Opts) ->
RootDir = code:root dir(),
systools:make tar(RelFileName, [{erts, RootDir},
{outdir,filename:dirname(RelFileName)}
|Opts]).

extract tar(TarFile, DestDir)

o of
o° o°

extract tar(TarFile, DestDir) ->
erl tar:extract(TarFile, [{cwd, DestDir}, compressed]).

create RELEASES(DestDir, RelFileName) ->
release handler:create RELEASES(DestDir, RelFileName ++ ".rel").

subst src_scripts(Scripts, SrcDir, DestDir, Vars, Opts) ->
lists:foreach(fun(Script) ->
subst src_script(Script, SrcDir, DestDir,
Vars, Opts)
end, Scripts).

subst src_script(Script, SrcDir, DestDir, Vars, Opts) ->
subst file(filename:join([SrcDir, Script ++ ".src"]),
filename:join([DestDir, Scriptl]),
Vars, Opts).

subst file(Src, Dest, Vars, Opts) ->
{ok, Conts} = read txt file(Src),
NConts = subst(Conts, Vars),
write file(Dest, NConts),
case lists:member(preserve, Opts) of
true ->
{ok, FileInfo} = file:read file info(Src),
file:write file info(Dest, FileInfo);
false ->
ok
end.

% subst(Str, Vars)

Vars = [{Var, Val}]

Var = Val = string()

Substitute all occurrences of %Var% for Val in Str, using the list
of variables in Vars.

o d° o° o o of

o® o® o° o° o°

1]

ubst(Str, Vars) ->
subst(Str, Vars, []).

subst([$%, C| Rest], Vars, Result) when $A =< C, C =< $Z ->

subst var([C| Rest], Vars, Result, []);
subst([$%, C| Rest], Vars, Result) when $a =< C, C =< $z ->

52 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

3.3 Creating and Upgrading a Target System

subst var([C| Rest], Vars, Result, []);
subst([$%, C| Rest], Vars, Result) when C == $ ->

subst var([C| Rest], Vars, Result, []);
subst([C| Rest], Vars, Result) ->

subst(Rest, Vars, [C| Result]);
subst([], Vars, Result) ->

lists:reverse(Result).

subst var([$%| Restl], Vars, Result, VarAcc) ->
Key = lists:reverse(VarAcc),
case lists:keysearch(Key, 1, Vars) of
{value, {Key, Value}} ->
subst(Rest, Vars, lists:reverse(Value, Result));
false ->
subst(Rest, Vars, [$%| VarAcc ++ [$%| Result]])
end;
subst var([C| Rest], Vars, Result, VarAcc) ->
subst var(Rest, Vars, Result, [C| VarAcc]l);
subst var([], Vars, Result, VarAcc) ->
subst([], Vars, [VarAcc ++ [$%| Result]]).

copy_file(Src, Dest) ->
copy file(Src, Dest, []).

copy file(Src, Dest, Opts) ->
{ok, } = file:copy(Src, Dest),
case lists:member(preserve, Opts) of
true ->
{ok, FileInfo} = file:read file info(Src),
file:write file info(Dest, FileInfo);
false ->
ok
end.

write file(FName, Conts) ->
Enc = file:native name_encoding(),
{ok, Fd} = file:open(FName, [write]),
file:write(Fd, unicode:characters to binary(Conts,Enc,Enc)),
file:close(Fd).

read txt file(File) ->
{ok, Bin} = file:read file(File),
{ok, binary to list(Bin)}.

remove dir tree(Dir) ->
remove all files(".", [Dir]).

remove all files(Dir, Files) ->
lists:foreach(fun(File) ->
FilePath = filename:join([Dir, File]),
case filelib:is dir(FilePath) of
true ->
{ok, DirFiles} = file:list dir(FilePath),
remove all files(FilePath, DirFiles),
file:del dir(FilePath);
->
file:delete(FilePath)
end
end, Files).

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 53

3.4 Upgrade when Erlang/OTP has Changed

3.4 Upgrade when Erlang/OTP has Changed

3.4.1 Introduction

As of Erlang/OTP 17, most applications deliver a valid application upgrade file (appup). In earlier releases,
a majority of the applications in Erlang/OTP did not support upgrade. Many of the applications use the
restart_applicati oninstruction. These are applicationsfor whichit isnot crucial to support real soft upgrade,
for example, tools and library applications. Ther est art _appl i cat i on instruction ensures that all modulesin
the application are reloaded and thereby running the new code.

3.4.2 Upgrade of Core Applications

ThecoreapplicationsERTS, Kernel, STDLIB, and SASL never allow real soft upgrade, but requirethe Erlang emul ator
toberestarted. Thisisindicatedtother el ease_handl er by theupgradeinstructionr est art _new_enul at or.
Thisinstruction is always the very first instruction executed, and it restarts the emulator with the new versions of the
above mentioned core applications and the old versions of all other applications. When the node is back up, all other
upgrade instructions are executed, making sure each application is finally running its new version.

It might seem strange to do a two-step upgrade instead of just restarting the emulator with the new version of all
applications. The reason for this design decision is to alow code_change functions to have side effects, for
example, changing data on disk. It also guarantees that the upgrade mechanism for non-core applications does not
differ depending on whether or not core applications are changed at the same time.

If, however, the more brutal variant is preferred, the the rel ease upgrade file can be handwritten using only the single
upgradeinstructionr est art _ermul at or . Thisinstruction, in contrasttor est art _new_emnul at or , causesthe
emulator to restart with the new versions of all applications.

Note: If other instructions are included before r est art _enul at or in the handwritten r el up file, they are
executed in the old emulator. This is a big risk since there is no guarantee that new beam code can be loaded into
the old emulator. Adding instructions after r est art _erul at or has no effect asther el ease_handl er will
not execute them.

For information about the release upgrade file, see the relup(4) manual page in SASL. For more information about
upgrade instructions, see the appup(4) manual pagein SASL.

3.4.3 Applications that Still do Not Allow Code Upgrade

A few applications, such as HiPE, do not support upgrade. Thisisindicated by an application upgrade file containing
only {Vsn,[],[]}.Any attempt at creating arelease upgrade file with such input fails. The only way to force an
upgrade involving applications like thisis to handwrite the file r el up, preferably as described above with only the
restart_emul at or instruction.

3.5 Versions

3.5.1 OTP Version

Asof OTPrelease 17, the OTP release number corresponds to the major part of the OTP version. The OTP version as
aconcept was introduced in OTP 17. The version scheme used is described in detail in Version Scheme.

OTP of a specific version is a set of applications of specific versions. The application versions identified by an OTP
version corresponds to application versions that have been tested together by the Erlang/OTP team at Ericsson AB.
An OTP system can, however, be put together with applications from different OTP versions. Such a combination
of application versions has not been tested by the Erlang/OTP team. It is therefore always preferred to use OTP
applicationsfrom onesingle OTP version.

54 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

3.5 Versions

Release candidates have an - r c<N> suffix. The suffix - r cO is used during development up to the first release
candidate.

Retrieving Current OTP Version

Inan OTP source code tree, the OTP version can beread from the text file<OTP sour ce r oot >/ OTP_VERSI ON.
The absolute path to the file can be constructed by calling fil ename:join([code:root _dir(),
"OTP_VERSI ON']) .

In an installed OTP development system, the OTP version can be read from the text file <OTP
installation root>/releases/<OIP release nunber>/ OTP_VERSI ON. The absolute path
to the file can by constructed by caling fil enane:join([code:root _dir(), "rel eases"”,
erl ang: systeminfo(otp_release), "OIP_VERSION']).

If the version read from the OTP_VERSI ONfilein adevelopment system hasa* * suffix, the system has been patched
using the ot p_pat ch_appl y tool. In this case, the system consists of application versions from multiple OTP
versions. Theversion preceding the* * suffix correspondsto the OTP version of the base system that has been patched.
Notice that if a development system is updated by other meansthan ot p_pat ch_appl y, the file OTP_VERSI ON
can identify an incorrect OTP version.

No OTP_VERSI ONfileis placed in a target system created by OTP tools. This since one easily can create a target
system where it is hard to even determine the base OTP version. You can, however, place such afile there if you
know the OTP version.

OTP Versions Table

The text file <OTP source root>/otp_versions.table, whichis part of the source code, contains
information about all OTP versions from OTP 17.0 up to the current OTP version. Each line contains information
about application versions that are part of a specific OTP version, and has the following format:

<0tpVersion> : <ChangedAppVersions> # <UnchangedAppVersions> :

<Ot pVer si on> hasthe format OTP- <VSN>, that is, the same as the git tag used to identify the source.

<ChangedAppVer si ons> and <UnchangedAppVer si ons> are space-separated lists of application versions
and has the format <appl i cat i on>- <vsn>.

e <ChangedAppVer si ons> corresponds to changed applications with new version numbersin this OTP
version.

e <UnchangedAppVer si ons> corresponds to unchanged application versionsin this OTP version.

Both of them can be empty, but not at the sametime. If <ChangedAppVer si ons> isempty, no changes have been
made that change the build result of any application. This could, for example, be a pure bug fix of the build system.
The order of lines is undefined. All white-space characters in this file are either space (character 32) or line-break
(character 10).

By using ordinary UNIX toolslike sed and gr ep one can easily find answers to various questions like:
e Which OTPversionsareker nel - 3. 0 part of?

$ grep ' kernel-3\.0 ' otp_versions.table
¢ Inwhich OTPversionwasker nel - 3. 0 introduced?

$ sed 's/#.*//;] kernel-3\.0 /!d" otp_versions.table

The above commands give a bit more information than the exact answers, but adequate information when manually
searching for answers to these questions.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 55

3.5 Versions

Theformat of theot p_ver si ons. t abl e might be subject to changes during the OTP 17 release.

3.5.2 Application Version

Asof OTP 17.0 application versions use the same version scheme as the OTP version. Application versions part of a
release candidate will however not have an - r c<N> suffix as the OTP version. Also note that a major increment in
an application version does not necessarily imply amajor increment of the OTP version. This depends on whether the
major change in the application is considered as a major change for OTP as awhole or not.

3.5.3 Version Scheme

The version scheme was changed as of OTP 17.0. Thisimplies that application versions used prior to OTP 17.0
do not adhere to this version scheme. A list of application versions used in OTP 17.0 is included at the end of
this section

In the normal case, a version is constructed as <Maj or >. <M nor >. <Pat ch>, where <Maj or > is the most
significant part.

However, more dot-separated parts than this can exist. The dot-separated parts consist of non-negative
integers. If al parts less significant than <M nor > equas 0, they are omitted. The three normal parts
<Mnj or >. <M nor >. <Pat ch> are changed as follows:

e <Mnj or > - Increases when major changes, including incompatibilities, are made.
e <M nor > - Increases when new functionality is added.
e <Pat ch> - Increases when pure bug fixes are made.

When apart in the version number increases, all less significant parts are set to 0.

An application version or an OTP version identifies source code versions. That is, it implies nothing about how the
application or OTP has been built.

Order of Versions

Version numbersin general are only partially ordered. However, normal version numbers (with three parts) asof OTP
17.0 have atotal or linear order. This applies both to normal OTP versions and normal application versions.

When comparing two version numbers that have an order, one compare each part as ordinary integers from the most
significant part to less significant parts. The order is defined by the first parts of the same significance that differ.
An OTP version with alarger version includes all changes that are part of a smaller OTP version. The same goes for
application versions.

In general, versions can have more than three parts. The versions are then only partialy ordered. Such versions are
only used when branching off from another branch. When an extra part (out of the normal three parts) is added to
a version number, a new branch of versions is made. The new branch has a linear order against the base version.
However, versions on different branches have no order, and therefore one can only conclude that they all include what
isincluded in their closest common ancestor. When branching multiple times from the same base version, 0 parts are
added between the base version and the least significant 1 part until a unique version is found. Versions that have an
order can be compared as described in the previous paragraph.

Anexampleof branched versions: Theversion6. 0. 2. 1 isabranched versionfromthebaseversion6. 0. 2. Versions
ontheform 6. 0. 2. <X> can be compared with normal versions smaller than or equal to 6. 0. 2, and other versions
on the form 6. 0. 2. <X>. The version 6. 0. 2. 1 will include all changesin 6. 0. 2. However, 6. 0. 3 will most

56 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

3.5 Versions

likely not include @l changesin 6. 0. 2. 1 (note that these versions have no order). A second branched version from
the base version 6. 0. 2 will beversion 6. 0. 2. 0. 1, and athird branched version will be 6. 0. 2. 0. 0. 1.

3.5.4 Releases and Patches

When a new OTP release is released it will have an OTP version on the form <Maj or >. 0 where the major OTP
version number equal stherelease number. The major version number isincreased one step sincethelast major version.
All other OTP versions with the same major OTP version number are patches on that OTP release.

Patches are either released as maintenance patch packages or emergency patch packages. The only difference is
that maintenance patch packages are planned and usually contain more changes than emergency patch packages.
Emergency patch packages are released to solve one or more specific issues when such are discovered.

The release of a maintenance patch package usually imply an increase of the OTP <M nor > version while the
release of an emergency patch package usually imply an increase of the OTP <Pat ch> version. Thisis however not
necessarily always the case since changes of OTP versions are based on the actual changesin the code and not based
on whether the patch was planned or not. For more information see the Version Scheme section above.

3.5.5 OTP Versions Tree

All released OTP versions can be found in the OTP Versions Tree which is automatically updated whenever we
release a new OTP version. Note that every version number as such explicitly define its position in the version tree.
Nothing more than the version numbers are needed in order to construct the tree. The root of the tree is OTP version
17.0 which is when we introduced the new version scheme. The green versions are normal versions released on the
main track. Old OTP releases will be maintained for awhileon mai nt branchesthat have branched off from the main
track. Old mai nt branches always branch off from the main track when the next OTP release is introduced into the
main track. Versionson theseold mai nt branches are marked blue. Besidesthe green and blue versions, there are also
gray versions. These are versions on branches introduced in order to fix a specific problem for a specific customer on
aspecific base version. Brancheswith gray versionswill typically become dead ends very quickly if not immediately.

3.5.6 OTP 17.0 Application Versions

The following list details the application versions that were part of OTP 17.0. If the normal part of an application
version number compares as smaller than the corresponding application versionin thelist, the version number does not
adhere to the version scheme introduced in OTP 17.0 and is to be considered as not having an order against versions
used as of OTP 17.0.

e asnl-3.0

e conmmon_test-1.8

e conpiler-5.0

» cosEvent-2.1.15

 cosEvent Domain-1.1. 14

+ cosFileTransfer-1.1.16

e cosNotification-1.1.21

e cosProperty-1.1.17

e cosTine-1.1.14

 cosTransactions-1.2.14

e cCrypto-3.3

 debugger-4.0

e dialyzer-2.7

e dianeter-1.6

*+ edoc-0.7.13

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 57

href

3.5 Versions

e eldap-1.0.3
e erl_docgen-0.3.5
e erl_interface-3.7.16

e erts-6.0

e et-1.5

e eunit-2.2.7
e (@gs-1.5.16

* hipe-3.10.3
e ic-4.3.5

e inets-5.10

e jinterface-1.5.9
e kernel-3.0

e nmegaco-3.17.1

e mesia-4.12

e observer-2.0

e odbc-2.10.20

e orber-3.6.27

e 0S_non-2.2.15

e o0se-1.0

e otp_mbs-1.0.9

e parsetools-2.0.11
e percept-0.8.9

* public_key-0.22

e reltool-0.6.5

e runtime_tools-1.8.14
e sasl-2.4

e snnp-4.25.1

e ssh-3.0.1

e ssl-5.3.4

e stdlib-2.0

e syntax_tools-1.6.14
e test_server-3.7

e tools-2.6.14

e typer-0.9.6

e webtool -0.8.10

e wx-1.2

e xmerl-1.3.7

58 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

3.6 Support, Compatibility, Deprecations, and Removal

3.6 Support, Compatibility, Deprecations, and Removal

3.6.1 Introduction

This document describes strategy regarding supported Releases, compatibility, deprecations and removal of
functionality. This document was introduced in OTP 21. Actions taken regarding these issues before OTP 21 did not
adhere this document.

3.6.2 Supported Releases

In general, bugs are only fixed on the latest release, and new features are introduced in the upcoming release that is
under development. However, when we, due to internal reasons, fix bugs on older releases, these will be available
and announced as well.

Dueto the above, pull requests are only accepted on the mai nt andthemast er branchesin our git repository. The
mai nt branch contains changes planned for the next maintenance patch package on the latest OTP release and the
mast er branch contain changes planned for the upcoming OTP release.

3.6.3 Compatibility

We always strive to remain as compatible as possible even in the cases where we give no compatibility guarantees.

Different parts of the system will be handled differently regarding compatibility. The following items describe how
different parts of the system are handled.

Erlang Distribution
Erlang nodes can communicate across at least two preceding and two subsequent rel eases.
Compiled BEAM Code, NIF Libraries and Drivers
Compiled code can be loaded on at least two subsequent rel eases.
Loading on previous releases is not supported.
APIs
Compeatible between releases.
Compiler Warnings
New warnings may be issued between releases.
Command Line Arguments
Incompatible changes may occur between releases.
OTP Build Procedures
Incompatible changes may occur between releases.

Under certain circumstances incompatible changes might be introduced even in parts of the system that should be
compatible between releases. Things that might trigger incompatible changes like this are;

Security Issues

It might be necessary to introduce incompatible changes in order to solve a security issue. This kind of
incompatibility might occur in a patch.

Bug Fixes

We will not be bug-compatible. A bug fix might introduce incompatible changes. This kind of incompatibility
might occur in a patch.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 59

href

3.6 Support, Compatibility, Deprecations, and Removal

Severe Previous Design Issues

Some parts of OTP were designed a very long time ago and did not necessarily take today's computing
environmentsinto account. |n some cases the conseguences of those design decisions are too severe. Thismay be
performance wise, scalability wise, etc. If we deem the consequencestoo severe, we might introduceincompatible
changes. Thiskind of incompatibility will not be introduced in a patch, but instead in the next release.

Peripheral, trace, and debug functionality is at greater risk of being changed in an incompatible way than functionality
in the language itself and core libraries used during operation.

3.6.4 Deprecation

Functionality is deprecated when new functionality is introduced that is preferred to be used instead of the old
functionality that isbeing deprecated. The deprecation doesnaot imply removal of the functionality unlessan upcoming
removal is explicitly stated in the deprecation.

Deprecated functionality will be documented as deprecated, and compiler warnings will be issued, when appropriate,
asearly as possible. That is, the new preferred functionality will appear at the same time as the deprecation isissued.
A new deprecation will at least be announced in arelease note and the documentation.

3.6.5 Removal

Legacy solutions may eventually need to be removed. In such cases, they will be phased out on along enough time
period to give users the time to adapt. Before removal of functionality it will be deprecated at least during one release
with an explicit announcement about the upcoming removal. A new deprecation will at least be announced in arelease
note and the documentation.

Peripheral, trace, and debug functionality is at greater risk of removal than functionality in thelanguage itself and core
libraries used during operation.

60 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

4.1 Embedded Solaris

4 Embedded Systems User's Guide

This section describes the issues that are specific for running Erlang on an embedded system. It describes the
differencesin installing and starting Erlang compared to how it is done for a non-embedded system.

Thisis a supplementary section. Y ou also need to read Section 1 Installation Guide.

Thereis also target architecture-specific information in the top-level README file of the Erlang distribution.

4.1 Embedded Solaris

This section describes the operating system-specific parts of OTP that relate to Solaris.

4.1.1 Memory Use

Solaris takes about 17 MB of RAM on a system with 64 MB of total RAM. This leaves about 47 MB for the
applications. If the system uses swapping, these figures cannot be improved because unnecessary daemon processes
are swapped out. However, if swapping isdisabled, or if the swap spaceisof limited resourcein the system, it becomes
necessary to kill off unnecessary daemon processes.

4.1.2 Disk Space Use

The disk space required by Solaris can be minimized by using the Core User support installation. It requires about 80
MB of disk space. Thisinstalls only the minimum software required to boot and run Solaris. The disk space can be
further reduced by deleting unnecessary individual files. However, unless disk space is a critical resource the effort
required and the risks involved cannot be justified.

4.1.3 Installing an Embedded System
This section is about installing an embedded system. The following topics are considered:

* Creating user and installation directory

e Instaling an embedded system

« Configuring automatic start at boot

e Making a hardware watchdog available

* Changing permission for reboot

e Setting TERM environment variable

e Adding patches

e Installing module os_sup in application os_mon

Several of the procedures in this section require expert knowledge of the Solaris operating system. For most of them
super user privilege is needed.

Creating User and Installation Directory

It is recommended that the embedded environment is run by an ordinary user, that is, a user who does not have super
user privileges.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 61

4.1 Embedded Solaris

In this section, it is assumed that the username isot puser and that the home directory of that user is:

/export/home/otpuser

It is also assumed that in the home directory of ot puser , thereisadirectory named ot p, the full path of whichis:

/export/home/otpuser/otp
Thisdirectory istheinstallation directory of the embedded environment.

Installing an Embedded System

The procedure for installing an embedded system isthe same asfor an ordinary system (see I nstallation Guide), except
for the following:

* The (compressed) tape archivefile isto be extracted in the installation directory defined above.
e Itisnot needed to link the start script to a standard directory like/ usr /| ocal / bi n.
Configuring Automatic Start at Boot

A true embedded system must start when the system boots. This section accounts for the necessary configurations
needed to achieve that.

The embedded system and all the applications start automatically if the script file shown below is added to directory
/ et c/ rc3. d. Thefilemust be owned and readable by r oot . Its name cannot be arbitrarily assigned; the following
name is recommended:

S750tp.system

For more details on initialization (and termination) scripts, and naming thereof, see the Solaris documentation.

62 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

4.1 Embedded Solaris

#!/bin/sh
#
File name: S75o0tp.system
Purpose: Automatically starts Erlang and applications when the
system starts
Author: janne@erlang.ericsson.se
Resides in: /etc/rc3.d
#
if [! -d /usr/bin]
then # /usr not mounted
exit
fi
killproc() { # kill the named process(es)

pid="/usr/bin/ps -e |
/usr/bin/grep -w $1 |
/usr/bin/sed -e 's/~ *//' -e 's/ .*//"°
["$pid" !'= ""] && kill $pid
}

Start/stop processes required for Erlang

case "$1" in

'start')
Start the Erlang emulator
#

su - otpuser -c "/export/home/otpuser/otp/bin/start" &
'stop')

killproc beam
*) r

echo "Usage: $0 { start | stop }"

esac

File/ export/ hone/ ot puser/ ot p/ bi n/ st art referred to in the above script is precisely the st art script
described in Starting Erlang. The script variable OTP_ROOT in that st art script corresponds to the following
example path used in this section:

/export/home/otpuser/otp
Thest art scriptisto be edited accordingly.

Useof theki | | pr oc procedure in the above script can be combined withacall toer| _cal | , for example:

$SOME_PATH/erl call -n Node init stop

To take Erlang down gracefully, seetheer | _cal | (1) manual pageiner| _i nt er f ace for details on the use of
erl _cal I . However, that requires that Erlang runs as a distributed node, which is not always the case.

Theki | | pr oc procedureis not to be removed. The purpose is here to move from run level 3 (multi-user mode with
networking resources) to run level 2 (multi-user mode without such resources), in which Erlang is not to run.

Making Hardware Watchdog Available

For Solarisrunning on VM E boards from Force Computers, the onboard hardware watchdog can be activated, provided
aVME busdriver is added to the operating system (see a so Installation Problems).

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 63

4.1 Embedded Solaris

Seedsotheheart (3) manual pagein Kernel.

Changing Permissions for Reboot

If the HEART _COVMAND environment variable isto be set inthe st ar t script in Starting Erlang, and if the value
isto be set to the path of the Solarisr eboot command, that is:

HEART COMMAND=/usr/sbin/reboot

then the ownership and file permissionsfor / usr/ sbi n/ r eboot must be changed as follows:

chown 0 /usr/sbin/reboot
chmod 4755 /usr/sbin/reboot

Seedsotheheart (3) manual pagein Kernel.

Setting TERM Environment Variable

When the Erlang runtime system is automatically started from the S750t p. syst emscript, the TERMenvironment
variable must be set. The following isaminimal setting:

TERM=sun
Thisisto be added to thest ar t script.

Adding Patches

For proper functioning of flushing file system data to disk on Solaris 2.5.1, the version-specific patch with number
103640-02 must be added to the operating system. Other patches might be needed, see the release README file
<ERL_I NSTALL_DI R>/ README.

Installing Module os_sup in Application os_mon
The following four installation procedures require super user privilege:
Installation

e Makea copy of the Solaris standard configuration filefor sysl ogd:

» Make acopy of the Solaris standard configuration file for sysl ogd. Thisfileis usually named
sysl og. conf and foundin directory / et c.

» Thefilename of the copy must besysl og. conf . ORI G Thedirectory location is optional; usualy itis/
et c. A simple way to do thisisto issue the following command:

cp /etc/syslog.conf /etc/syslog.conf.ORIG

64 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

4.1 Embedded Solaris

« Makean Erlang-specific configuration filefor sysl ogd:
e Make an edited copy of the backup copy previously made.
» Thefilename must besysl og. conf . OTP. The path must be the same as the backup copy.

« Theformat of the configuration fileisfound inthesysl og. conf (5) manual page, by issuing the
command nan sysl og. conf.

e Usudly alineis added that isto state:
» Which types of information that is to be supervised by Erlang
e Thename of thefile (actually a named pipe) that is to receive the information

» If, for example, only information originating from the UNIX kernel isto be supervised, the lineisto begin
with ker n. LEVEL. For the possible values of LEVEL, seesysl og. conf (5).

e After at least one tab-character, the line added is to contain the full name of the named pipe where
sysl ogd writesitsinformation. The path must be the same as for thefilessysl og. conf . ORI Gand
sysl og. conf . OTP. Thefilename must be sysl og. ot p.

« If thedirectory for thefilessysl og. conf . ORI Gand sysl og. conf. OTPis/ et c, thelinein
sysl og. conf . OTPisasfollows:

kern.LEVEL /etc/syslog.otp

e Check thefileprivileges of the configuration files:
e Theconfiguration filesisto haver w-r - - r - - file privileges and be owned by root.
* A simpleway to do thisis to issue these commands:
chmod 644 /etc/syslog.conf

chmod 644 /etc/syslog.conf.ORIG
chmod 644 /etc/syslog.conf.OTP

* Noticethat if thefilessysl og. conf . ORI Gandsysl og. conf . OTP arenot in directory / et c, the
file path in the second and third command must be modified.
« Moadify file privileges and owner ship of thenod_sysl og utility:
e Thefile privileges and ownership of the mod_sysl og utility must be modified.

* Thefull name of the binary executable file is derived from the position of application os_non in the file
system by adding / pri v/ bi n/ nod_sysl og. The generic full name of the binary executable fileisthus:

<0TP_ROOT>/1lib/os_mon-<REV>/priv/bin/mod syslog

Example: If the pathto ot p- r oot is/ usr/ ot p, thenthepathtotheos _non applicationis/ usr/ ot p/
i b/ os_non-1. 0 (assuming revision 1.0) and the full name of the binary executablefileis/ usr/ ot p/
i b/os_non-1.0/priv/bin/nod_sysl og.

» Thebinary executable file must be owned by root, haver wsr - xr - x file privileges, in particular the
set ui d bit of the user must be set.

A simpleway to do thisisto issue the following commands:

cd <0TP_ROOT>/1ib/0os mon-<REV>/priv/bin/mod syslog
chmod 4755 mod _syslog
chown root mod syslog

Testing the Application Configuration File
The following procedure does not require root privilege:
« Ensurethat the configuration parameters for the os_sup module in the os_non application are correct.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 65

4.1 Embedded Solaris

* Browse the application configuration file (do not edit it). The full name of the application configuration file is
derived from the position of the os_non application in the file system by adding / ebi n/ os_non. app.

The generic full name of the fileisthus:
<0TP_ROOT>/1ib/0s_mon-<REV>/ebin/os_mon.app.

Example: If the path to ot p- r oot is/ usr/ ot p, then the path to the os_non application is/ usr/ ot p/
lib/os_non-1.0 (assuming revision 1.0) and the full name of the binary executable fileis/ usr/ ot p/
i b/ os_non-1. 0/ ebi n/ os_non. app.

« Ensurethat the following configuration parameters have correct values:

Par ameter Function Standard value

t r ue for thefirst instance on the
hardware; f al se for the other
instances

Specifiesif os_sup isto be started

start_os_sup of not

The directory for (1) back-up copy
0S_Ssup_own and (2) Erlang-specific configuration | "/ et c"
filefor sysl ogd

The full name for the Solaris

os_sup_sysl ogconf standard configuration file for "/etc/sysl og.conf"
sysl ogd
The tag for the messages that are

error_tag sent to the error logger inthe Erlang |std_error

runtime system

Table 1.1: Configuration Parameters

If the values listed in 0s_non. app do not suit your needs, do not edit that file. Instead override the values in a
system configuration file, the full pathname of which is given on the command linetoer | .

Example: Contents of an application configuration file:

[{os_mon, [{start os sup, true}, {os sup own, "/etc"},
{os_sup syslogconf, "/etc/syslog.conf"}, {os sup errortag, std error}]}].

Related Documents

Seetheos_non(3) application, theappl i cati on(3) manual pagein Kernel, andtheer| (1) manual pagein
ERTS.

Installation Problems

The hardware watchdog timer, which is controlled by the hear t port program, requires package FORCEv e, which
contains the VME bus driver, to be installed. However, this driver can clash with the Sun ncp driver and cause the
system to refuse to boot. To cure this problem, the following lines areto be added to / et ¢/ syst em

e« exclude: drv/ntp

e exclude: drv/ntpzsa

e exclude: drv/ntpp

66 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

4.1 Embedded Solaris

It is recommended to add these lines to avoid a clash. The clash can make it impossible to boot the system.

4.1.4 Starting Erlang

This section describes how an embedded system is started. Four programs are involved and they normally resideinthe
directory <ERL_| NSTALL_DI R>/ bi n. Theonly exceptionisthest ar t program, which can be located anywhere,
and is also the only program that must be modified by the user.

In an embedded system, thereis usually no interactive shell. However, an operator can attach to the Erlang system by
commandt o_er | . The operator is then connected to the Erlang shell and can give ordinary Erlang commands. All
interaction with the system through this shell islogged in a special directory.

Basically, the procedure is as follows:
* Thestart programiscaled when the machineis started.

e ltcalsrun_erl ,which setsup things so the operator can attach to the system.

* ltcdlsstart_erl ,whichcalsthe correct version of er | exec (whichislocated in
<ERL_|I NSTALL_DI R>/ ert s- EVsn/ bi n) with the correct boot and confi g files.

4.1.5 Programs

start

Thisprogram is called when the machineis started. It can be modified or rewritten to suit aspecia system. By defaullt,
it must be called st art and residein <ERL_| NSTALL_DI R>/ bi n. Another start program can be used, by using
configuration parameter st art _pr g in application SASL.

The start program must call r un_er | as shown below. It must also take an optional parameter, which defaults to
<ERL_I NSTALL_DI R>/rel eases/ start _erl . dat a.

This program is to set static parameters and environment variables such as - snanme Name and HEART_COMVAND
to reboot the machine.

The<RELDI R> directory iswhere new rel ease packets are installed, and where the rel ease handler keepsinformation
about releases. For more information, seether el ease_handl er (3) manual pagein SASL.

The following script illustrates the default behaviour of the program:

#!/bin/sh

Usage: start [DataFile]
#

ROOTDIR=/usr/local/otp

if [-z "$RELDIR"]
then
RELDIR=$RO0OTDIR/releases
fi
START ERL DATA=${1:-$RELDIR/start erl.data}

$ROOTDIR/bin/run_erl /tmp/ $ROOTDIR/log "exec $ROOTDIR/bin/start erl \
$ROOTDIR $RELDIR $START ERL DATA" > /dev/null 2>&1 &

The following script illustrates a modification where the node is given the name cp1, and where the environment
variables HEART_COMVAND and TERMhave been added to the previous script:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 67

4.1 Embedded Solaris

#!/bin/sh

Usage: start [DataFilel

#

HEART COMMAND=/usr/sbin/reboot
TERM=sun

export HEART COMMAND TERM
ROOTDIR=/usr/local/otp

if [-z "$RELDIR"]

then
RELDIR=$RO0OTDIR/releases

fi

START ERL DATA=${1:-$RELDIR/start erl.data}

$ROOTDIR/bin/run_erl /tmp/ $ROOTDIR/log "exec $ROOTDIR/bin/start erl \
$ROOTDIR $RELDIR $START ERL DATA -heart -sname cpl" > /dev/null 2>&1 &

If adiskless and/or read-only client node is about to start, filest art _er| . dat a islocated in the client directory
at the master node. Thus, the START _ERL_DATAlineisto look like:

CLIENTDIR=$ROOTDIR/clients/clientname
START ERL DATA=${1:-$CLIENTDIR/bin/start erl.data}

run_erl

This program is used to start the emulator, but you will not be connected to the shell. t o_er | is used to connect
to the Erlang shell.

Usage: run_erl pipe dir/ log dir "exec command [parameters ...]"

Here:

e pipe_dir/ istobe/tnp/ (to_erl usesthisname by default).

* | og_dir iswherethelog files are written.

e command [par anet er s] isexecuted.

* Everything writtento st di n and st dout isloggedinl og_di r.

Log filesarewrittenin | og_di r . Each log file has a name of the form er | ang. | og. N, where N is a generation

number, ranging from 1 to 5. Each log file holds up to 100 kB text. Astime goes by, the following log files are found
in the log file directory:

erlang.log.1

erlang.log.1l, erlang.log.?2

erlang.log.1l, erlang.log.2, erlang.log.3

erlang.log.1l, erlang.log.2, erlang.log.3, erlang.log.4
erlang.log.2, erlang.log.3, erlang.log.4, erlang.log.5
erlang.log.3, erlang.log.4, erlang.log.5, erlang.log.1l

The most recent log file is the rightmost in each row. That is, the most recent file is the one with the highest number,
or if there are already four files, the one before the skip.

When alog fileis opened (for appending or created), atime stamp iswritten to thefile. If nothing has been written to
thelog files for 15 minutes, arecord isinserted that says that we are still alive.

to_erl

This program is used to attach to arunning Erlang runtime system, started withr un_er | .

68 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

4.2 Windows NT

Usage: to erl [pipe name | pipe dir]
Herepi pe_nane defaultsto/ t np/ er | ang. pi pe. N.
To disconnect from the shell without exiting the Erlang system, typeCt r | - D.

start_erl

This program starts the Erlang emulator with parameters - boot and - conf i g set. It reads data about where these
filesarelocated fromafilenamedst art _er| . dat a, whichislocated in <RELDI R>. Each new release introduces
anew datafile. Thisfile is automatically generated by the release handler in Erlang.

The following script illustrates the behaviour of the program:
#!/bin/sh
This program is called by run erl. It starts
the Erlang emulator and sets -boot and -config parameters.

It should only be used at an embedded target system.

Usage: start erl RootDir RelDir DataFile [ErlFlags ...]

HHHHHHHR

ROOTDIR=%1
shift
RELDIR=$1
shift
DataFile=$1
shift

ERTS VSN="awk '{print $1}' ¢$DataFile’
VSN="awk '{print $2}' $DataFile’

BINDIR=$RO0OTDIR/erts-$ERTS VSN/bin
EMU=beam

PROGNAME="echo $0 | sed 's/.*\///'"
export EMU

export ROOTDIR

export BINDIR

export PROGNAME

export RELDIR

exec $BINDIR/erlexec -boot $RELDIR/$VSN/start -config $RELDIR/$VSN/sys $*

If adiskless and/or read-only client node with the SASL configuration parameter st ati c_enul at or settot rue
is about to start, the - boot and - conf i g flags must be changed.

Assuch aclient cannot read anew st art _er | . dat a file (the file cannot be changed dynamically). The boot and
config files are always fetched from the same place (but with new contents if a new release has been installed).

Ther el ease_handl er copiesthesefilestothebi n directory inthe client directory at the master nodes whenever
anew release is made permanent.

Assuming the same CLI ENTDI R as above, the last lineisto look like:

exec $BINDIR/erlexec -boot $CLIENTDIR/bin/start \
-config $CLIENTDIR/bin/sys $*

4.2 Windows NT

This section describes the operating system-specific parts of OTP that relate to Windows NT.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 69

4.2 Windows NT

A normal installation of Windows NT 4.0, with Service Pack 4 or later, is required for an embedded Windows NT
running OTP.

4.2.1 Memory Use

RAM memory of 96 MB is recommended to run OTP on Windows NT. A system with less than 64 MB of RAM is
not recommended.

4.2.2 Disk Space Use

A minimum Windows NT installation with networking needs 250 MB, and an extra 130 MB for the swap file.

4.2.3 Installing an Embedded System

Normal Windows NT installation is performed. No additional application programs are needed, such as Internet
Explorer or web server. Networking with TCP/IP isrequired.

Service Pack 4 or later must be installed.
Hardware Watchdog

For Windows NT running on standard PCs with ISA and/or PCI bus, an extension card with a hardware watchdog
can beinstalled.

For moreinformation, seethe hear t (3) manual pagein Kernel.

4.2.4 Starting Erlang

On an embedded system, theer | sr v moduleisto be used to install the Erlang process as a Windows system service.
This service can start after Windows NT has booted.

For more information, seetheer | sr v manual pagein ERTS.

70 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.1 Introduction

5 Getting Started With Erlang

5.1 Introduction

This section is a quick start tutorial to get you started with Erlang. Everything in this section is true, but only part
of the truth. For example, only the simplest form of the syntax is shown, not all esoteric forms. Also, parts that are
greatly simplified are indicated with * manual*. This means that alot more information on the subject is to be found
in the Erlang book or in Erlang Reference Manual .

5.1.1 Prerequisites
The reader of this section is assumed to be familiar with the following:

e Computersin general
e Basicson how computers are programmed

5.1.2 Omitted Topics

The following topics are not treated in this section:

* References.

e Local error handling (catch/throw).

e Singledirection links (monitor).

* Handling of binary data (binaries/ bit syntax).
e List comprehensions.

e How to communicate with the outside world and software written in other languages (ports); thisis described in
Interoperability Tutorial.

» Erlang libraries (for example, file handling).

e OTPand (in consequence) the Mnesia database.
* Hashtablesfor Erlang terms (ETS).

e Changing code in running systems.

5.2 Sequential Programming
5.2.1 The Erlang Shell

Most operating systems have acommand interpreter or shell, UNIX and Linux have many, Windows hasthe command
prompt. Erlang hasits own shell wherebits of Erlang code can bewritten directly, and be eval uated to see what happens
(see the shell(3) manual pagein STDLIB).

Start the Erlang shell (in Linux or UNIX) by starting a shell or command interpreter in your operating system and
typing er | . You will see something like this.

% erl
Erlang R15B (erts-5.9.1) [source] [smp:8:8] [rq:8] [async-threads:0] [hipe] [kernel-poll:false]

Eshell V5.9.1 (abort with "G)
1>

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 71

5.2 Sequential Programming

Type "2 + 5." in the shell and then press Enter (carriage return). Notice that you tell the shell you are done entering

code by finishing with afull stop "." and a carriage return.

1> 2 + 5.
7
2>

As shown, the Erlang shell numbers the lines that can be entered, (as 1> 2>) and that it correctly saysthat 2 + 5is 7.
If you make writing mistakes in the shell, you can delete with the backspace key, as in most shells. There are many
more editing commands in the shell (seetty - A command line interface in ERTS User's Guide).

(Notice that many line numbers given by the shell in the following examples are out of sequence. Thisis because this
tutorial was written and code-tested in separate sessions).

Hereis a bit more complex calculation:

2> (42 + 77) * 66 / 3.
2618.0

Notice the use of brackets, the multiplication operator "*", and the division operator "/, asin normal arithmetic (see
Expressions).

Press Control-C to shut down the Erlang system and the Erlang shell.

The following output is shown:

BREAK: (a)bort (c)ontinue (p)roc info (i)nfo (1)oaded
(v)ersion (k)ill (D)b-tables (d)istribution

°

Type"a' to leave the Erlang system.
Another way to shut down the Erlang systemis by entering hal t () :

3> halt().

)
)

5.2.2 Modules and Functions

A programming language is not much use if you only can run code from the shell. So hereisasmall Erlang program.
Enter itinto afilenamed t ut . er | using a suitable text editor. The filenamet ut . er | isimportant, and also that
it is in the same directory as the one where you started er |). If you are lucky your editor has an Erlang mode that
makes it easier for you to enter and format your code nicely (see The Erlang mode for Emacsin Tools User's Guide),
but you can manage perfectly well without. Here is the code to enter:

-module(tut).
-export([double/1]).

double(X

(->
2 x

)
X.
It is not hard to guess that this program doubles the value of numbers. The first two lines of the code are described
later. Let us compile the program. This can be done in an Erlang shell as follows, where ¢ means compile:

72 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.2 Sequential Programming

3> c(tut).
{ok, tut}

The{ ok, t ut } means that the compilation is OK. If it says "error" it means that there is some mistake in the text
that you entered. Additional error messages gives an idea to what is wrong so you can modify the text and then try
to compile the program again.

Now run the program:

4> tut:double(10).
20

As expected, double of 10is 20.

Now let us get back to thefirst two lines of the code. Erlang programs are written in files. Each file contains an Erlang
module. Thefirst line of code in the module is the module name (see Modules):

-module(tut).

Thus, the module is called tut. Notice the full stop "." at the end of the line. The files which are used to store the
module must have the same name as the module but with the extension ".erl”. In this case the filenameist ut . er | .
When using a function in another module, the syntax nodul e_nane: f uncti on_nane(ar gunment s) is used.
So the following means call function doubl e in modulet ut with argument "10".

4> tut:double(10).

The second line says that the module t ut contains a function called doubl e, which takes one argument (X in our
example):

-export([double/1]).

The second line also says that this function can be called from outside the modulet ut . More about thislater. Again,
noticethe"." at the end of theline.

Now for a more complicated example, the factorial of a number. For example, the factorial of 4is4* 3* 2* 1,
which eguals 24.

Enter the following codein afilenamedt ut 1. er | :

-module(tutl).
-export([fac/1]1).

fac(l) ->
1;
fac(N) ->
N * fac(N - 1).

So thisisamodule, called t ut 1 that contains afunction called f ac>, which takes one argument, N.
Thefirst part saysthat the factorial of 1is1.:

fac(l) ->
1;

Notice that this part ends with asemicolon ;" that indicates that there is more of the function f ac> to come.
The second part says that the factorial of N isN multiplied by the factorial of N - 1.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 73

5.2 Sequential Programming

fac(N) ->
N * fac(N - 1).

Notice that this part endswith a"." saying that there are no more parts of this function.

Compilethefile:

5> c(tutl).
{ok, tutl}

And now calculate the factorial of 4.

6> tutl:fac(4).
24

Here the function f ac> in modulet ut 1 is called with argument 4.
A function can have many arguments. Let us expand the modulet ut 1 with the function to multiply two numbers:

-module(tutl).
-export([fac/1, mult/2]).

fac(l) ->

1;
fac(N) ->

N * fac(N - 1).
mult(X, Y) ->
X *Y.
Notice that it is also required to expand the - expor t line with the information that there is another function nul t
with two arguments.

Compile:
7> c(tutl).
{ok, tutl}
Try out the new function mul t :
8> tutl:mult(3,4).
12

In this example the numbers areintegers and the argumentsin the functionsin the code N, X, and Y are called variables.
Variables must start with a capital letter (see Variables). Examples of variables are Nunber , ShoeSi ze, and Age.

5.2.3 Atoms

Atom is another data type in Erlang. Atoms start with a small letter (see Atom), for example, charl es,
centi met er,andi nch. Atomsare simply names, nothing else. They are not like variables, which can have avalue.

Enter the next program in afilenamed t ut 2. er |). It can be useful for converting from inches to centimeters and
conversely:

74 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.2 Sequential Programming

-module(tut2).
-export([convert/2]).

convert(M, inch) ->
M/ 2.54;

convert(N, centimeter) ->
N * 2.54,

Compile:

9> c(tut2).
{ok, tut2}

Test:

10> tut2:convert(3, inch).
1.1811023622047243

11> tut2:convert(7, centimeter).
17.78

Notice the introduction of decimals (floating point numbers) without any explanation. Hopefully you can cope with
that.

Let us see what happensif something other than cent i met er ori nch isenteredintheconvert function:

12> tut2:convert(3, miles).
** exception error: no function clause matching tut2:convert(3,miles) (tut2.erl, line 4)

The two parts of the conver t function are called its clauses. As shown, mi | es isnot part of either of the clauses.
The Erlang system cannot match either of the clauses so an error message f unct i on_cl ause isreturned. The
shell formats the error message nicely, but the error tuple is saved in the shell's history list and can be output by the
shell command v/ 1:

13> v(12).
{'EXIT',{function clause, [{tut2,convert,
[3,miles],
[{file, "tut2.erl"},{line,4}1},
{erl _eval,do apply,6,
[{file,"erl eval.erl"},{line,677}1},
{shell,exprs,7,[{file,"shell.erl"},{line,687}1},
{shell,eval exprs,7,[{file,"shell.erl"},{line,642}1},
{shell,eval loop,3,
[{file,"shell.erl"},{line,627}1}1}}
5.2.4 Tuples

Now thet ut 2 program is hardly good programming style. Consider:
tut2:convert(3, inch).

Does this mean that 3 isin inches? Or does it mean that 3 isin centimeters and is to be converted to inches? Erlang
has a way to group things together to make things more understandable. These are called tuples and are surrounded
by curly brackets, "{" and "}".

So, {i nch, 3} denotes 3 inchesand { centi met er, 5} denotes 5 centimeters. Now let us write a hew program
that converts centimeters to inches and conversely. Enter the following codein afilecaledt ut 3. er |):

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 75

5.2 Sequential Programming

-module(tut3).
-export([convert length/1]).

convert length({centimeter, X}) ->
{inch, X / 2.54};

convert length({inch, Y}) ->
{centimeter, Y * 2.54}.

Compile and test:

14> c(tut3).

{ok, tut3}

15> tut3:convert length({inch, 5}).

{centimeter,12.7}

16> tut3:convert length(tut3:convert length({inch, 5})).
{inch,5.0}

Notice on line 16 that 5 inches is converted to centimeters and back again and reassuringly get back to the
origina value. That is, the argument to a function can be the result of another function. Consider how line 16
(above) works. The argument given to the function {i nch, 5} is first matched against the first head clause of
convert | ength,thatis convert | ength({centinmeter, X}). It canbeseenthat {centineter, X}
does not match {i nch, 5} (the head is the bit before the "->"). This having failed, let us try the head of the next
clausethat is, convert _| engt h({i nch, Y}). Thismatches, and Y getsthe value 5.

Tuples can have more than two parts, in fact as many parts as you want, and contain any valid Erlang term. For
example, to represent the temperature of various cities of the world:

{moscow, {c, -10}}
{cape_town, {f, 70}}
{paris, {f, 28}}

Tuples have a fixed number of items in them. Each item in atuple is called an element. In the tuple { roscow,
{c,-10}},element 1lisnoscowand element 2is{ c, - 10} . Here c represents Celsiusand f Fahrenheit.

5.2.5 Lists

Whereas tuples group things together, it is a'so needed to represent lists of things. Listsin Erlang are surrounded by
square brackets, "[" and "]". For example, alist of the temperatures of various cities in the world can be;

[{moscow, {c, -10}}, {cape town, {f, 70}}, {stockholm, {c, -4}},
{paris, {f, 28}}, {london, {f, 36}}1]

Notice that this list was so long that it did not fit on one line. This does not matter, Erlang allows line breaks at all
"sensible places" but not, for example, in the middle of atoms, integers, and others.

A useful way of looking at parts of lists, isby using "[". Thisis best explained by an example using the shell:

17> [First |TheRest] = [1,2,3,4,5].
[1,2,3,4,5]

18> First.

1

19> TheRest.

[2,3,4,5]

To separate the first elements of the list from the rest of the list, | isused. Fi r st has got value 1 and TheRest
has got the value [2,3,4,5].

Another example:

76 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.2 Sequential Programming

20> [El1, E2 | R] = [1,2,3,4,5,6,7].
[1,2,3,4,5,6,7]

21> E1.

1

22> E2.

2

23> R.

[3,4,5,6,7]

Here you seethe use of | to get the first two elements from the list. If you try to get more elements from the list than
there are elementsin the list, an error is returned. Notice also the special case of the list with no elements, []:

24> [A, B | C] = [1, 2].
[1,2]

25> A.

1

26> B.

2

27> C.

[1

In the previous examples, new variable names are used, instead of reusing the old ones: Fi r st , TheRest , E1, E2,
R, A, B, and C. Thereason for thisisthat a variable can only be given avalue oncein its context (scope). More about
thislater.

The following example shows how to find the length of alist. Enter the following codein afilenamedt ut 4. er |):
-module(tut4).
-export([list length/1]).
list length([]) ->
1ist?{ength([First | Rest]) ->
1 + list length(Rest).

Compile and test:

28> c(tut4).

{ok, tut4d}

29> tut4:list length([1,2,3,4,5,6,7]).
7

Explanation:

list length([]) ->
0;

The length of an empty list is obviously 0.

list length([First | Rest]) ->
1 + list length(Rest).

Thelength of alist with thefirst element Fi r st and the remaining elements Rest is 1 + thelength of Rest .
(Advanced readers only: Thisisnot tail recursive, there is a better way to write this function.)

In general, tuples are used where "records’ or "structs' are used in other languages. Also, lists are used when
representing things with varying sizes, that is, where linked lists are used in other languages.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 77

5.2 Sequential Programming

Erlang does not have a string data type. Instead, strings can be represented by lists of Unicode characters. Thisimplies
for example that thelist [97, 98, 99] isequivalent to "abc". The Erlang shell is"clever" and guesses what list you
mean and outputsit in what it thinks is the most appropriate form, for example:

30> [97,98,99].
Ilabcll

5.2.6 Maps

Maps are a set of key to value associations. These associations are encapsulated with "#{" and "}". To create an
association from "key" to value 42:

> #{ "key" => 42 }.
#{"key" => 42}

Let usjump straight into the deep end with an example using some interesting features.

Thefollowing example shows how to cal culate al pha blending using mapsto reference color and a phachannels. Enter
thecodeinafilenamed col or. erl):

-module(color).
-export([new/4, blend/2]).
-define(is channel(V), (is float(V) andalso V >= 0.0 andalso V =< 1.0)).
new(R,G,B,A) when ?is channel(R), ?is channel(G),
?is _channel(B), ?is channel(A) ->

#{red => R, green => G, blue => B, alpha => A}.

blend(Src,Dst) ->
blend(Src,Dst,alpha(Src,Dst)).

blend(Src,Dst,Alpha) when Alpha > 0.0 ->

Dst#{
red = red(Src,Dst) / Alpha,
green := green(Src,Dst) / Alpha,
blue = blue(Src,Dst) / Alpha,
alpha := Alpha
+;
blend(,Dst,) ->
Dst#{
red = 0.0,
green := 0.0,
blue := 0.0,
alpha := 0.0
}.
alpha(#{alpha := SA}, #{alpha := DA}) ->

SA + DA*(1.0 - SA).

red(#{red := SV, alpha := SA}, #{red := DV, alpha := DA}) ->
SV*SA + DV*DA*(1.0 - SA).

green(#{green := SV, alpha := SA}, #{green := DV, alpha := DA}) ->
SV*SA + DV*DA*(1.0 - SA).

blue(#{blue := SV, alpha := SA}, #{blue := DV, alpha := DA}) ->
SV*SA + DV*DA*(1.0 - SA).

Compile and test:

78 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.2 Sequential Programming

> c(color).
{ok,color}
> Cl = color:new(0.3,0.4,

0.5,1.0).
#{alpha => 1.0,blue => 0.5,9

0.1

1,9

reen => 0.4,red => 0.3}
,0.3).
reen => 0.8,red => 1.0}

> C2 = color:new(1.0,0.8,
#{alpha => 0.3,blue => 0.
> color:blend(C1,C2).
#{alpha => 1.0,blue => 0.5,green => 0.4,red => 0.3}

> color:blend(C2,C1).

#{alpha => 1.0,blue => 0.38,green => 0.52,red => 0.51}

’

This example warrants some explanation:
-define(is channel(V), (is float(V) andalso V >= 0.0 andalso V =< 1.0)).

Firstamacroi s_channel isdefined to help with the guard tests. Thisis only here for convenience and to reduce
syntax cluttering. For more information about macros, see The Preprocessor.

new(R,G,B,A) when ?is channel(R), ?is channel(G),
?is channel(B), ?is channel(A) ->
#{red => R, green => G, blue => B, alpha => A}.

The function new 4 creates a new map term and lets the keysr ed, gr een, bl ue, and al pha be associated with
an initial value. In this case, only float values between and including 0.0 and 1.0 are alowed, as ensured by the ?
i s_channel / 1 macro for each argument. Only the => operator is allowed when creating a new map.

By calling bl end/ 2 on any color term created by new/ 4, the resulting color can be calculated as determined by
the two map terms.

Thefirst thing bl end/ 2 doesisto calculate the resulting alpha channel:

alpha(#{alpha := SA}, #{alpha := DA}) ->
SA + DA*(1.0 - SA).

The value associated with key al pha isfetched for both arguments using the : = operator. The other keysin the map
areignored, only the key al pha isrequired and checked for.

Thisisalso the case for functionsr ed/ 2, bl ue/ 2, and gr een/ 2.

red(#{red := SV, alpha := SA}, #{red := DV, alpha := DA}) ->
SV*SA + DV*DA*(1.0 - SA).

The difference hereisthat a check is made for two keysin each map argument. The other keys are ignored.

Finally, let us return the resulting color in bl end/ 3:

blend(Src,Dst,Alpha) when Alpha > 0.0 ->

Dst#{
red = red(Src,Dst) / Alpha,
green := green(Src,Dst) / Alpha,
blue := blue(Src,Dst) / Alpha,
alpha := Alpha

I8

The Dst map is updated with new channel values. The syntax for updating an existing key with a new value is with
the: = operator.

5.2.7 Standard Modules and Manual Pages

Erlang has many standard modules to help you do things. For example, the module i o contains many functions that
help in doing formatted input/output. To look up information about standard modules, the command er | - man can

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 79

5.2 Sequential Programming

be used at the operating shell or command prompt (the same place as you started er |). Try the operating system
shell command:

% erl -man io
ERLANG MODULE DEFINITION i0(3)

MODULE
io - Standard I/0 Server Interface Functions

DESCRIPTION
This module provides an interface to standard Erlang IO
servers. The output functions all return ok if they are suc-

If this does not work on your system, the documentation isincluded asHTML in the Erlang/OTP release. Y ou can also
read the documentation asHTML or download it as PDF from either of the sites www.erlang.se (commercial Erlang)
or www.erlang.org (open source). For example, for Erlang/OTP release R9B:

http://www.erlang.org/doc/r9b/doc/index.html

5.2.8 Writing Output to a Terminal

Itisniceto beableto do formatted output in exampl es, so the next example showsasimpleway tousethei o: f or mat
function. Like all other exported functions, you can test thei o: f or mat function in the shell:

31> io:format("hello world~n", []).

hello world

ok

32> io:format("this outputs one Erlang term: ~w~n", [hello]).

this outputs one Erlang term: hello

ok

33> io:format("this outputs two Erlang terms: ~w~w~n", [hello, world]).
this outputs two Erlang terms: helloworld

ok

34> io:format("this outputs two Erlang terms: ~w ~w~n", [hello, world]).
this outputs two Erlang terms: hello world

ok

The function f or mat / 2 (that is, f or mat with two arguments) takes two lists. The first one is nearly always alist
written between " ". Thislist is printed out as it is, except that each ~w is replaced by a term taken in order from the
second list. Each ~nisreplaced by anew line. Thei o: f or mat / 2 function itself returns the atom ok if everything
goes as planned. Like other functions in Erlang, it crashes if an error occurs. This is not a fault in Erlang, it isa
deliberate policy. Erlang has sophisticated mechanisms to handle errors which are shown later. As an exercise, try to
makei o: f or mat crash, it should not be difficult. But notice that although i o: f or mat crashes, the Erlang shell
itself does not crash.

5.2.9 A Larger Example

Now for a larger example to consolidate what you have learnt so far. Assume that you have a list of temperature
readings from a number of citiesin the world. Some of them arein Celsius and some in Fahrenheit (asin the previous
list). First let us convert them all to Celsius, then let us print the data neatly.

80 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.2 Sequential Programming

%% This module is in file tut5.erl

-module(tut5).
-export([format temps/1]).

%% Only this function is exported

format temps([])-> % No output for an empty list
ok;

format temps([City | Rest]) ->
print temp(convert to celsius(City)),
format temps(Rest).

convert to celsius({Name, {c, Temp}}) -> % No conversion needed
{Name, {c, Temp}};

convert to celsius({Name, {f, Temp}}) -> % Do the conversion
{Name, {c, (Temp - 32) * 5 / 9}}.

print _temp({Name, {c, Temp}}) ->
io:format("~-15w ~w c~n", [Name, Temp]).

35> c(tut5).

{ok, tut5}

36> tut5:format temps([{moscow, {c, -10}}, {cape town, {f, 70}},
{stockholm, {c, -4}}, {paris, {f, 28}}, {london, {f, 36}}1).

moscow -10 ¢

cape_town 21.11111111111111 ¢
stockholm -4 c

paris -2.2222222222222223 ¢
london 2.2222222222222223 ¢
ok

Before looking at how this program works, notice that afew comments are added to the code. A comment starts with
a %-character and goes on to the end of the line. Notice also that the- export ([f or mat _t enps/ 1]). lineonly
includes the function f or mat _t enps/ 1. The other functions are local functions, that is, they are not visible from
outside the module t ut 5.

Notice also that when testing the program from the shell, the input is spread over two lines as the line was too long.

When f or mat _t enps iscaledthefirsttime, Ci t y getsthevaue{ noscow, { ¢, - 10} } and Rest istherest of
thelist. Sothefunction pri nt _tenp(convert to_cel si us({noscow, {c,-10}})) iscaled.

Here is a function call as convert to_cel si us({nmoscow, {c, -10}}) as the argument to the function
print _t enp. When function calls are nested like this, they execute (evaluate) from the inside out. That is, first
convert _to_cel sius({noscow,{c,-10}}) is evauated, which gives the value { roscow, {c, - 10} }
as the temperature is aready in Celsius. Then pri nt _tenp({noscow, {c, - 10} }) isevauated. The function
convert to_cel si us worksinasimilar way totheconvert | engt h function in the previous example.

print_tenpsimply calsi o: f or mat inasimilar way to what has been described above. Notice that ~-15w says
to print the "term" with afield length (width) of 15 and left justify it. (see the io(3)) manual page in STDLIB.

Now f ormat _t enps(Rest) is caled with the rest of the list as an argument. This way of doing things is
similar to the loop constructs in other languages. (Y es, thisis recursion, but do not let that worry you.) So the same
format _t enps function is called again, thistime Ci t y gets the value { cape_t own, {f, 70} } and the same
procedure is repeated as before. This is done until the list becomes empty, that is [], which causes the first clause
format _tenps([]) tomatch. Thissimply returns (resultsin) the atom ok, so the program ends.

5.2.10 Matching, Guards, and Scope of Variables

It can be useful to find the maximum and minimum temperature in lists like this. Before extending the program to do
this, let uslook at functions for finding the maximum value of the elementsin alist:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 81

5.2 Sequential Programming

-module(tut6).
-export([list max/1]).

list max([Head|Rest]) ->
list max(Rest, Head).

list max([], Res) ->
Res;

list max([Head|Rest], Result so far) when Head > Result so far ->
list max(Rest, Head);

list max([Head|Rest], Result so far) ->
list max(Rest, Result so far).

37> c(tutb).

{ok, tut6}

38> tut6:list max([1,2,3,4,5,7,4,3,2,11).
7

First notice that two functions have the same name, | i st _nax. However, each of these takes a different number of
arguments (parameters). In Erlang these are regarded as completely different functions. Where you need to distinguish
between these functions, you write Name/Arity, where Name is the function name and Arity is the number of
arguments, inthiscasel i st _max/ 1 andli st_max/ 2.

In this example you walk through a list "carrying" avalue, in thiscase Result _so_far.list_max/ 1 simply
assumes that the max value of the list isthe head of the list and calls| i st _nax/ 2 with the rest of the list and the
value of the head of the list. In the above thiswould bel i st _max([2, 3,4,5,7, 4, 3,2,1],1).If you tried
tousel i st _nmax/ 1 with an empty list or tried to use it with something that is not alist at all, you would cause an
error. Notice that the Erlang philosophy is not to handle errors of this type in the function they occur, but to do so
elsewhere. More about this later.

In l'ist_max/2, you wak down the list and use Head instead of Result _so far when Head >
Resul t _so_far.when isaspecia word used before the -> in the function to say that you only use this part of
the function if the test that follows is true. A test of thistypeis caled guard. If the guard is false (that is, the guard
fails), the next part of the function istried. In this case, if Head is not greater than Resul t _so_f ar, then it must
be smaller or equal to it. This meansthat a guard on the next part of the function is not needed.

Some useful operators in guards are:

e <lessthan

e > greater than

e ==equd

e >=greater or equal
e =<lessorequa

e /=not equa

(see Guard Sequences).

To change the above program to one that works out the minimum value of the element in alist, you only need to write
<instead of >. (But it would be wise to change the name of the functiontol i st _ni n.)

Earlier it was mentioned that a variable can only be given a value once in its scope. In the above you see that
Resul t _so_far isgiven severa values. Thisis OK since every timeyou call | i st _max/ 2 you create a new
scope and one can regard Resul t _so_f ar asadifferent variable in each scope.

Another way of creating and giving a variable a value is by using the match operator = . So if you writeM = 5, a
variable called Mis created with the value 5. If, in the same scope, you then write M = 6, an error isreturned. Try
thisout in the shell:

82 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.2 Sequential Programming

39> M = 5.
5
40> M = 6.

** exception error: no match of right hand side value 6
41>M =M + 1.

** exception error: no match of right hand side value 6
42> N =M + 1.

6

The use of the match operator is particularly useful for pulling apart Erlang terms and creating new ones.

43> {X, Y} = {paris, {f, 28}}.
{paris, {f,28}}

44> X.

paris

45> Y,

{f,28}

Here X getsthevaluepari s and Y{f, 28}.

If you try to do the same again with another city, an error is returned:

46> {X, Y} = {london, {f, 36}}.
** exception error: no match of right hand side value {london,{f,36}}

Variables can also be used to improve the readability of programs. For example, in function | i st _nmax/ 2 above,
you can write:

list_max([Head|Rest], Result_so_far) when Head > Result_so far ->
New_result far = Head,
list_max(Rest, New_result far);

Thisis possibly alittle clearer.

5.2.11 More About Lists

Remember that the | operator can be used to get the head of alist:

47> [M1|T1] = [paris, london, rome].
[paris,london, rome]

48> M1.

paris

49> T1.

[london, rome]

The | operator can also be used to add ahead to alist:
50> L1 = [madrid | T1].
[madrid, london, rome]
51> L1.

[madrid, London, rome]

Now an example of thiswhen working with lists - reversing the order of alist:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 83

5.2 Sequential Programming

-module(tut8).
-export([reverse/1]).

reverse(List) ->
reverse(List, []).

reverse([Head | Rest], Reversed List) ->
reverse(Rest, [Head | Reversed List]);
reverse([], Reversed List) ->
Reversed List.

52> c(tut8).

{ok,tut8}

53> tut8:reverse([1,2,3]).
[3,2,1]

Consider how Rever sed_Li st is built. It starts as [], then successively the heads are taken off of the list to be

reversed and added to the the Rever sed_Li st , asshown in the following:

reverse([1]2,3], []) =>
reverse([2,3], [1]|[1])

reverse([2|3], [1]) =>
reverse([3], [2]|[1])

reverse([3|[11, [2,1]) =>
reverse([], [3][2,11])

reverse([], [3,2,1]) =>
[3,2,1]

Themodulel i st s contains many functionsfor manipulating lists, for example, for reversing them. So before writing
a list-manipulating function it is a good idea to check if one not aready is written for you (see the lists(3) manual

pagein STDLIB).

Now let us get back to the cities and temperatures, but take a more structured approach thistime. First let us convert

the whole list to Celsius as follows:

-module(tut?).
-export([format temps/1]).

format_temps(List_of cities) ->
convert_list to _c(List of cities).

convert list to c([{Name, {f, F}} | Rest]) ->
Converted City = {Name, {c, (F -32)* 5 / 9}},
[Converted City | convert list to c(Rest)];

convert list to c([City | Rest]) ->
[City | convert list to c(Rest)];

convert list to c([]) ->
[1.

Test the function:

84 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.2 Sequential Programming

54> c(tut7).
{ok, tut7}.
55> tut7:format temps([{moscow, {c, -10}}, {cape town, {f, 70}},
{stockholm, {c, -4}}, {paris, {f, 28}}, {london, {f, 36}}]).
[{moscow, {c,-10}},

{cape town,{c,21.11111111111111}},

{stockholm, {c,-4}},

{paris, {c,-2.2222222222222223}},

{london, {c,2.2222222222222223}}]

Explanation:

format temps(List of cities) ->
convert list to c(List of cities).

Heref ormat _tenps/ 1 callsconvert list_to_c/1.convert _|ist_to_c/1 takes off the head of the
Li st _of cities, converts it to Celsius if needed. The | operator is used to add the (maybe) converted to the
converted rest of thelist:

[Converted City | convert list to c(Rest)];
or:
[City | convert list to c(Rest)];
Thisisdone until the end of thelist isreached, that is, the list is empty:

convert list to c([]) ->
[1.

Now when the list is converted, afunction to print it is added:

-module(tut?).
-export([format temps/1]).

format temps(List of cities) ->
Converted List = convert list to c(List of cities),
print temp(Converted List).

convert list to c([{Name, {f, F}} | Rest]) ->
Converted City = {Name, {c, (F -32)* 5 / 9}},
[Converted City | convert list to c(Rest)];

convert list to c([City | Rest]) ->
[City | convert list to c(Rest)];

convert list to c([]) ->
[1.

print temp([{Name, {c, Temp}} | Restl]) ->
io:format("~-15w ~w c~n", [Name, Temp]),
print temp(Rest);

print temp([]) ->
ok.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 85

5.2 Sequential Programming

56> c(tut7).

{ok, tut7}

57> tut7:format temps([{moscow, {c, -10}}, {cape town, {f, 70}},
{stockholm, {c, -4}}, {paris, {f, 28}}, {london, {f, 36}}]).

moscow -10 ¢

cape_town 21.11111111111111 ¢
stockholm -4 ¢

paris -2.2222222222222223 ¢
london 2.2222222222222223 ¢
ok

Now afunction hasto be added to find the cities with the maxi mum and minimum temperatures. Thefollowing program
is not the most efficient way of doing this as you walk through thelist of citiesfour times. But it is better to first strive
for clarity and correctness and to make programs efficient only if needed.

86 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.2 Sequential Programming

-module(tut?7).
-export([format temps/1]).

format temps(List of cities) ->
Converted List = convert list to c(List of cities),
print temp(Converted List),
{Max_city, Min city} = find max and min(Converted List),
print max _and min(Max city, Min city).

convert list to c([{Name, {f, Temp}} | Rest]) ->
Converted City = {Name, {c, (Temp -32)* 5 / 9}},
[Converted City | convert list to c(Rest)];

convert list to c([City | Rest]) ->
[City | convert list to c(Rest)];

convert list to c([]) ->
[1.

print temp([{Name, {c, Temp}} | Rest]) ->
io:format("~-15w ~w c~n", [Name, Templ]),
print temp(Rest);

print _temp([]) ->
ok.

find max_and min([City | Rest]) ->
find max_and min(Rest, City, City).

find max_and min([{Name, {c, Temp}} | Rest],
{Max_Name, {c, Max Temp}},
{Min_Name, {c, Min Temp}}) ->

if
Temp > Max _Temp ->
Max_City = {Name, {c, Templ}}; % Change
true ->
Max City = {Max Name, {c, Max Temp}} % Unchanged
end,
if
Temp < Min Temp ->
Min City = {Name, {c, Templ}}; % Change
true ->
Min City = {Min Name, {c, Min Temp}} % Unchanged
end,

find max_and min(Rest, Max City, Min City);

find max_and min([], Max City, Min City) ->
{Max_City, Min City}.

print_max_and min({Max name, {c, Max temp}}, {Min_name, {c, Min temp}}) ->
io:format("Max temperature was ~w ¢ in ~w~n", [Max_temp, Max name]),
io:format("Min temperature was ~w ¢ in ~w~n", [Min_temp, Min name]).

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 87

5.2 Sequential Programming

58> c(tut7).

{ok, tut7}

59> tut7:format temps([{moscow, {c, -10}}, {cape town, {f, 70}},
{stockholm, {c, -4}}, {paris, {f, 28}}, {london, {f, 36}}]).

moscow -10 ¢

cape_town 21.11111111111111 ¢
stockholm -4 ¢

paris -2.2222222222222223 ¢
london 2.2222222222222223 ¢

Max temperature was 21.11111111111111 c in cape_town
Min temperature was -10 c in moscow
ok

5.2.12 If and Case

The function f i nd_nmax_and_mi n works out the maximum and minimum temperature. A new construct, i f , is
introduced here. If works as follows:
if
Condition 1 ->
Action 1;
Condition 2 ->
Action 2;
Condition 3 ->
Action 3;
Condition 4 ->
Action 4
end

Notice that there is no ";" before end. Conditions do the same as guards, that is, tests that succeed or fail. Erlang
starts at the top and tests until it finds a condition that succeeds. Then it evaluates (performs) the action following
the condition and ignores all other conditions and actions before the end. If no condition matches, arun-time failure
occurs. A condition that always succeeds isthe atomt r ue. Thisis often used last inani f, meaning, do the action
following thet r ue if al other conditions have failed.

The following is a short program to show the workings of i f .

-module(tut9).
-export([test if/2]).

test if(A, B) ->

if
A == ->
io:format("A == 5~n", []),
a_equals 5;
B == ->
io:format("B == 6~n", []),
b equals 6;
A==2,B==3-> %That is A equals 2 and B equals 3
io:format("A == 2, B == 3~n", [1]),
a_equals 2 b equals 3;
A == ; B=7 -> %That is A equals 1 or B equals 7
io:format("A == 1 ; B == 7~n", [1),
a equals 1 or b equals 7
end.

Testing this program gives:

88 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.2 Sequential Programming

60> c(tut9).

{ok, tut9}

61> tut9:test if(5,33).

A==

a_equals 5

62> tut9:test if(33,6).

B==

b equals 6

63> tut9:test if(2, 3).

A==2’B==3

a_equals 2 b equals 3

64> tut9:test if(1, 33).

A::]_;B==7

a_equals 1 or b equals 7

65> tut9:test if(33, 7).

A::]_;B==7

a_equals 1 or b equals 7

66> tut9:test if(33, 33).

** exception error: no true branch found when evaluating an if expression
in function tut9:test if/2 (tut9.erl, line 5)

Notice that t ut 9: test _i f (33, 33) does not cause any condition to succeed. This leads to the run time error
i f _cl ause, here nicely formatted by the shell. See Guard Sequences for details of the many guard tests available.

case isanother construct in Erlang. Recall that the convert _| engt h function was written as:

convert length({centimeter, X}) ->
{inch, X / 2.54};

convert length({inch, Y}) ->
{centimeter, Y * 2.54}.

The same program can also be written as:

-module(tutlo).
-export([convert length/1]).

convert length(Length) ->
case Length of
{centimeter, X} ->
{inch, X / 2.54};
{inch, Y} ->
{centimeter, Y * 2.54}
end.

67> c(tutlo).

{ok, tutl0}

68> tutl0:convert_length({inch, 6}).
{centimeter,15.24}

69> tutl0:convert length({centimeter, 2.5}).
{inch,0.984251968503937}

Both case and i f have return values, that is, in the above example case returned either {i nch, X/ 2. 54} or
{centineter, Y*2. 54} . The behaviour of case can aso be modified by using guards. The following example
clarifies this. It tells us the length of a month, given the year. The year must be known, since February has 29 days

inaleap year.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 89

5.2 Sequential Programming

-module(tutll).
-export([month length/2]).

month length(Year, Month)
All years divisible by 400 are leap

Years divisible by 100 are not leap (except the 400 rule above)
5 Years divisible by 4 are leap (except the 100 rule above)

o o of
° o° o°

Leap = if

trunc(Year / 400) *

trunc(Year / 100) *
not leap;
trunc(Year / 4) * 4

leap;

->

400 == Year ->

100 == Year ->

== Year ->

when Leap == leap -> 29;

leap;
true ->
not leap
end,
case Month of
sep -> 30;
apr -> 30;
jun -> 30;
nov -> 30;
feb
feb -> 28;
jan -> 31;
mar -> 31;
may -> 31;
jul -> 31;
aug -> 31;
oct -> 31;
dec -> 31
end.

70> c(tutll).

{ok, tutll}

71> tutll:month length(2004, feb).

29

72> tutll:month length(2003, feb).

28

73> tutll:month length (1947, aug).

31

5.2.13 Built-In Functions (BIFs)

BlFs are functionsthat for some reason are built-in to the Erlang virtual machine. BIFs often implement functionality
that isimpossible or istoo inefficient to implement in Erlang. Some BIFs can be called using the function name only
but they are by default belonging to theer | ang module. For example, thecall tothe BIFt r unc below isequivalent
toacdltoerl ang: trunc.

As shown, first it is checked if ayear isleap. If ayear is divisible by 400, it is aleap year. To determine this, first
divide the year by 400 and use the BIF t r unc (more about this later) to cut off any decimals. Then multiply by 400

again and see if the same value is returned again. For example, year 2004

2004 / 400 = 5.01

trunc(5.01)

=5

5 * 400 = 2000

2000 is not the same as 2004, so 2004 is not divisible by 400. Y ear 2000:

90 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.2 Sequential Programming

2000 / 400
trunc(5.0)
5 * 400 = 2

(<3|
o U1

0

That is, aleap year. The next two t r unc-tests evaluate if the year is divisible by 100 or 4 in the sasme way. The first
i f returns| eap or not _| eap, which lands up in the variable Leap. This variable is used in the guard for f eb in
the following case that tells us how long the month is.

This example showed the use of t r unc. It is easier to use the Erlang operator r emthat gives the remainder after
division, for example:

74> 2004 rem 400.
4

So instead of writing:

trunc(Year / 400) * 400 == Year ->
leap;

it can be written:

Year rem 400 == ->
leap;

There are many other BIFssuch ast r unc. Only afew BIFs can be used in guards, and you cannot use functions you
have defined yourself in guards. (see Guard Sequences) (For advanced readers. Thisis to ensure that guards do not
have side effects.) Let us play with afew of these functionsin the shell:

75> trunc(5.6).

5

76> round(5.6).

6

77> length([a,b,c,d]).

4

78> float(5).

5.0

79> is atom(hello).

true

80> is atom("hello").

false

81> is tuple({paris, {c, 30}}).
true

82> is tuple([paris, {c, 30}1).
false

All of these can be used in guards. Now for some BIFs that cannot be used in guards:

83> atom to list(hello).
"hello"

84> list to atom("goodbye").
goodbye

85> integer to list(22).
noon

These three BIFs do conversions that would be difficult (or impossible) to do in Erlang.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 91

5.2 Sequential Programming

5.2.14 Higher-Order Functions (Funs)

Erlang, like most modern functional programming languages, has higher-order functions. Here is an example using
the shell:

86> Xf = fun(X) -> X * 2 end.
#Fun<erl eval.5.123085357>
87> Xf(5).

10

Here is defined a function that doubles the value of a number and assigned this function to a variable. Thus Xf (5)
returns value 10. Two useful functions when working with listsaref or each and map, which are defined asfollows:

foreach(Fun, [First|Rest]) ->
Fun(First),
foreach(Fun, Rest);
foreach(Fun, []) ->
ok.

map(Fun, [First|Rest]) ->
[Fun(First)|map(Fun,Rest)];
map(Fun, [1) ->
[1.

These two functions are provided in the standard module | i st s. f or each takes alist and applies a fun to every
element in the list. map creates a new list by applying afun to every element in alist. Going back to the shell, map
isused and afun to add 3 to every element of alist:

88> Add_3 = fun(X) -> X + 3 end.
#Fun<erl eval.5.123085357>

89> lists:map(Add 3, [1,2,3]).
[4,5,6]

Let us (again) print the temperaturesin alist of cities:

90> Print City = fun({City, {X, Temp}}) -> io:format("~-15w ~w ~w~n",
[City, X, Temp]) end.

#Fun<erl eval.5.123085357>

91> lists:foreach(Print City, [{moscow, {c, -10}}, {cape town, {f, 70}},
{stockholm, {c, -4}}, {paris, {f, 28}}, {london, {f, 36}}]).

moscow c -10
cape_town f 70

stockholm c -4

paris f 28

london f 36

ok

L et usnow defineafun that can be used to go through alist of citiesand temperatures and transform them all to Celsius.

92 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.2 Sequential Programming

-module(tutl3).
-export([convert list to c/1]).

convert to c({Name, {f, Temp}}) ->

{Name, {c, trunc((Temp - 32) * 5 / 9)}};
convert to c({Name, {c, Temp}}) ->

{Name, {c, Temp}}.

convert list to c(List) ->
lists:map(fun convert to c/1, List).

92> tutl3:convert list to c([{moscow, {c, -10}}, {cape town, {f, 70}},
{stockholm, {c, -4}}, {paris, {f, 28}}, {london, {f, 36}}1).

[{moscow, {c,-10}},

{cape _town,{c,21}},

{stockholm, {c, -4}},

{paris,{c,-2}},

{london, {c,2}}1]

Theconvert _to_c functionisthe same as before, but here it is used as afun:

lists:map(fun convert to c/1, List)

When a function defined elsewhere is used as a fun, it can be referred to as Functi on/ Ari ty (remember that
Arity = number of arguments). So in the map-call | i sts: map(fun convert_to_c/1, List) iswritten.
Asshown, convert |i st _to_c becomesmuch shorter and easier to understand.

The standard modulel i st s also containsafunctionsort (Fun, Li st) where Fun isafun with two arguments.
Thisfun returnst r ue if the first argument is less than the second argument, or elsef al se. Sorting is added to the
convert list _to_c:

-module(tutl3).
-export([convert list to c/1]).

convert to c({Name, {f, Temp}}) ->

{Name, {c, trunc((Temp - 32) * 5 / 9)}};
convert to c({Name, {c, Temp}}) ->

{Name, {c, Temp}}.

convert_list to_c(List) ->
New list = lists:map(fun convert_to c/1, List),
lists:sort(fun({ , {c, Templ}}, { , {c, Temp2}}) ->
Templ < Temp2 end, New list).

93> c(tutl3).
{ok,tutl3}
94> tutl3:convert list to c([{moscow, {c, -10}}, {cape town, {f, 70}},
{stockholm, {c, -4}}, {paris, {f, 28}}, {london, {f, 36}}]).
[{moscow, {c,-10}},
{stockholm, {c, -4}},
{paris,{c, -2}},
{london, {c,2}},
{cape_town, {c,21}}]

Insort thefunisused:

fun({ , {c, Templ}}, { , {c, Temp2}}) -> Templ < Temp2 end,

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 93

5.3 Concurrent Programming

Here the concept of an anonymous variable " " isintroduced. This is simply shorthand for a variable that gets a

value, but the valueisignored. This can be used anywhere suitable, not just in funs. Tenpl < Tenp2 returnst r ue
if Tenpl islessthan Tenp2.

5.3 Concurrent Programming

5.3.1 Processes

One of themain reasonsfor using Erlang instead of other functional languagesis Erlang's ability to handle concurrency
and distributed programming. By concurrency is meant programs that can handle several threads of execution at the
same time. For example, modern operating systems allow you to use a word processor, a spreadsheet, a mail client,
and aprint job all running at the same time. Each processor (CPU) in the system is probably only handling one thread
(or job) at atime, but it swaps between the jobs at such arate that it gives theillusion of running them all at the same
time. It iseasy to create parallel threads of execution in an Erlang program and to allow these threads to communicate
with each other. In Erlang, each thread of execution is called a process.

(Aside: the term "process’ is usually used when the threads of execution share no data with each other and the term
"thread" when they share datain some way. Threads of execution in Erlang share no data, that is why they are called
processes).

The Erlang BIF spawn is used to create a new process: spawn(Modul e, Exported_Function, List of
Ar gurrent s) . Consider the following module:

-module(tutld).
-export([start/0, say something/2]).

say something(What, 0) ->
done;

say something(What, Times) ->
io:format("~p~n", [What]),
say something(What, Times - 1).

start() ->
spawn(tutl4, say something, [hello, 31),
spawn(tutl4, say something, [goodbye, 3]).

5> c(tutl4d).

{ok,tutl4}

6> tutl4:say something(hello, 3).
hello

hello

hello

done

Asshown, thefunctionsay_sormet hi ng writesitsfirst argument the number of times specified by second argument.
The function st ar t starts two Erlang processes, one that writes "hello" three times and one that writes "goodbye"
three times. Both processes use the function say_sonet hi ng. Notice that a function used in thisway by spawn,
to start a process, must be exported from the module (that is, in the - expor t at the start of the module).

94 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.3 Concurrent Programming

9> tutl4d:start().
hello

goodbye

<0.63.0>

hello

goodbye

hello

goodbye

Noticethat it did not write"hello" threetimesand then "goodbye" threetimes. Instead, thefirst processwrotea"hello",
the second a "goodbye", the first another "hello" and so forth. But where did the <0.63.0> come from? The return
value of afunction isthe return value of the last "thing" in the function. The last thing inthe functionst art is

spawn(tutl4, say something, [goodbye, 31).

spawn returnsaprocessidentifier, or pid, which uniquely identifiesthe process. So <0.63.0> isthe pid of thes pawn
function call above. The next example shows how to use pids.

Notice also that ~p is used instead of ~w ini o: f or mat . To quote the manual: "~p Writes the data with standard
syntax in the same way as ~w, but breaks terms whose printed representation is longer than one line into many lines
and indents each line sensibly. It also tries to detect lists of printable characters and to output these as strings”.

5.3.2 Message Passing

In the following example two processes are created and they send messages to each other a number of times.
-module(tutls).
-export([start/0, ping/2, pong/@]).

ping(0, Pong PID) ->
Pong PID ! finished,
io:format("ping finished~n", []);

ping(N, Pong PID) ->
Pong PID ! {ping, self()},
receive
pong ->
io:format("Ping received pong~n", [])
end,
ping(N - 1, Pong PID).

pong() ->
receive
finished ->
io:format("Pong finished~n", [1);
{ping, Ping PID} ->
io:format("Pong received ping~n", [1),
Ping PID ! pong,
pong ()
end.

start() ->

Pong PID = spawn(tutl5, pong, []),
spawn(tutl5, ping, [3, Pong_ PID]).

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 95

5.3 Concurrent Programming

1> c(tutls).
{ok,tutl5}

2> tutl5: start().
<0.36.0>

Pong received ping
Ping received pong
Pong received ping
Ping received pong
Pong received ping
Ping received pong
ping finished

Pong finished

Thefunction st art first creates a process, let us call it "pong":

Pong PID = spawn(tutl5, pong, [])

This process executes t ut 15: pong() . Pong_PI D is the process identity of the "pong" process. The function
st art now creates another process "ping":

spawn(tutl5, ping, [3, Pong PID]),
This process executes:
tutl5:ping (3, Pong PID)

<0.36.0> isthereturn value from the st ar t function.

The process "pong" now does:

receive
finished ->
io:format("Pong finished~n", [1);
{ping, Ping PID} ->
io:format("Pong received ping~n", [1),
Ping PID ! pong,
pong ()
end.

Ther ecei ve construct is used to allow processes to wait for messages from other processes. It has the following
format:

receive
patternl ->
actionsl;
pattern2 ->
actions2;

patternN
actionsN
end.

Noticethereisno";" beforetheend.

M essages between Erlang processes are simply valid Erlang terms. That is, they can be lists, tuples, integers, atoms,
pids, and so on.

Each process has its own input queue for messages it receives. New messages received are put at the end of the
gueue. When a process executes ar ecei ve, the first message in the queue is matched against the first pattern in
ther ecei ve. If this matches, the message is removed from the queue and the actions corresponding to the pattern
are executed.

96 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.3 Concurrent Programming

However, if the first pattern does not match, the second pattern istested. If this matches, the messageisremoved from
the queue and the actions corresponding to the second pattern are executed. If the second pattern does not match, the
third is tried and so on until there are no more patterns to test. If there are no more patterns to test, the first message
is kept in the queue and the second message is tried instead. If this matches any pattern, the appropriate actions are
executed and the second message is removed from the queue (keeping the first message and any other messages in
the queue). If the second message does not match, the third message is tried, and so on, until the end of the queue
is reached. If the end of the queue is reached, the process blocks (stops execution) and waits until a new message is
received and this procedure is repeated.

The Erlang implementation is "clever" and minimizes the number of times each message is tested against the patterns
ineachr ecei ve.

Now back to the ping pong example.

"Pong" iswaiting for messages. If theatom f i ni shed isreceived, "pong" writes"Pong finished" to the output and,
asit has nothing more to do, terminates. If it receives a message with the format:

{ping, Ping PID}

it writes "Pong received ping" to the output and sends the atom pong to the process "ping":
Ping PID ! pong

Notice how the operator "!" is used to send messages. The syntax of "!" is:
Pid ! Message

That is, Message (any Erlang term) is sent to the process with identity Pi d.

After sending the message pong to the process "ping", "pong" calls the pong function again, which causesit to get
back to ther ecei ve again and wait for another message.

Now let uslook at the process "ping". Recall that it was started by executing:
tutl5:ping(3, Pong PID)

Looking at the function pi ng/ 2, the second clause of pi ng/ 2 is executed since the value of the first argument is 3
(not 0) (first clause head is pi ng(0, Pong_PI D), second clause head is pi ng(N, Pong_PI D), so N becomes 3).

The second clause sends a message to "pong":
Pong PID ! {ping, self()},

sel f () returns the pid of the process that executes sel f (), in this case the pid of "ping". (Recall the code for
"pong", thislands up in the variable Pi ng_PI Dinther ecei ve previously explained.)

"Ping" now waits for areply from "pong":
receive
pong ->
io:format("Ping received pong~n", [])
end,
It writes "Ping received pong" when this reply arrives, after which "ping" callsthe pi ng function again.
ping(N - 1, Pong PID)

N- 1 causes the first argument to be decremented until it becomes 0. When this occurs, the first clause of pi ng/ 2
is executed:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 97

5.3 Concurrent Programming

ping(0, Pong_ PID) ->
Pong PID ! finished,
io:format("ping finished~n", [1);

Theatomfi ni shed issent to "pong" (causing it to terminate as described above) and "ping finished" is written to
the output. "Ping" then terminates as it has nothing left to do.

5.3.3 Registered Process Names

In the above example, "pong" wasfirst created to be able to give the identity of "pong" when "ping" was started. That
is, in some way "ping" must be able to know the identity of "pong" to be able to send a message to it. Sometimes
processes which need to know each other's identities are started independently of each other. Erlang thus provides a
mechanism for processes to be given names so that these names can be used as identitiesinstead of pids. Thisisdone
by using ther egi st er BIF:

register(some atom, Pid)
Let us now rewrite the ping pong example using this and give the name pong to the "pong" process:

-module(tutl6).
-export([start/0, ping/1l, pong/0]).

ping(0) ->
pong ! finished,
io:format("ping finished~n", [1);

ping(N) ->
pong ! {ping, self()},
receive
pong ->
io:format("Ping received pong~n", [])
end,
ping(N - 1).

pong() ->
receive
finished ->
io:format("Pong finished~n", []);
{ping, Ping PID} ->
io:format("Pong received ping~n", [1),
Ping PID ! pong,
pong ()
end.

start() ->
register(pong, spawn(tutl6, pong, [1)),
spawn(tutl6, ping, [3]1).

2> c(tutle).

{ok, tutl6}

3> tutl6:start().
<0.38.0>

Pong received ping
Ping received pong
Pong received ping
Ping received pong
Pong received ping
Ping received pong
ping finished

Pong finished

98 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.3 Concurrent Programming

Herethest ar t / O function,
register(pong, spawn(tutl6é, pong, [])),

both spawns the "pong" process and givesit the name pong. In the "ping" process, messages can be sent to pong by:

pong ! {ping, self()},
pi ng/ 2 now becomes pi ng/ 1 astheargument Pong_PI Dis not needed.

5.3.4 Distributed Programming

Let us rewrite the ping pong program with "ping" and "pong" on different computers. First afew things are needed to
set up to get thisto work. The distributed Erlang implementation provides a very basic authentication mechanism to
prevent unintentional access to an Erlang system on another computer. Erlang systems which talk to each other must
have the same magic cookie. The easiest way to achieve thisis by having afile caled . er| ang. cooki e in your
home directory on all machines on which you are going to run Erlang systems communicating with each other:

» On Windows systems the home directory is the directory pointed out by the environment variable SHOME -
you may need to set this.

e OnLinux or UNIX you can safely ignore thisand smply create afilecalled . er | ang. cooki e inthe
directory you get to after executing the command cd without any argument.

The. er | ang. cooki e fileisto contain alinewith the same atom. For example, on Linux or UNIX, inthe OS shell:

$ cd

$ cat > .erlang.cookie
this is very secret

$ chmod 400 .erlang.cookie

The chnod above makesthe. er | ang. cooki e file accessible only by the owner of thefile. Thisisarequirement.
When you start an Erlang system that is going to talk to other Erlang systems, you must give it aname, for example:

$ erl -sname my name

We will see more details of this later. If you want to experiment with distributed Erlang, but you only have one
computer to work on, you can start two separate Erlang systems on the same computer but give them different names.
Each Erlang system running on a computer is called an Erlang node.

(Note: er | - sname assumes that all nodes are in the same IP domain and we can use only the first component of
the IP address, if we want to use nodes in different domains we use - nane instead, but then all 1P address must be
giveninfull))

Here is the ping pong example modified to run on two separate nodes:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 99

5.3 Concurrent Programming

-module(tutl?).
-export([start ping/1l, start pong/0, ping/2, pong/0]).

ping(0, Pong Node) ->
{pong, Pong Node} ! finished,
io:format("ping finished~n", [1);

ping(N, Pong Node) ->
{pong, Pong Node} ! {ping, self()},
receive
pong ->
io:format("Ping received pong~n", [])
end,
ping(N - 1, Pong Node).

pong() ->
receive
finished ->
io:format("Pong finished~n", [1);
{ping, Ping PID} ->
io:format("Pong received ping~n", [1),
Ping PID ! pong,
pong ()
end.

start pong() ->
register(pong, spawn(tutl7, pong, [1])).

start ping(Pong Node) ->
spawn(tutl7, ping, [3, Pong_ Node]).

Let us assume there are two computers called gollum and kosken. First a node is started on kosken, called ping, and
then a node on gollum, called pong.

On kosken (on a Linux/UNIX system):
kosken> erl -sname ping
Erlang (BEAM) emulator version 5.2.3.7 [hipe] [threads:0]

Eshell V5.2.3.7 (abort with "G)
(ping@kosken)1>

On gollum:
gollum> erl -sname pong
Erlang (BEAM) emulator version 5.2.3.7 [hipe] [threads:0]

Eshell V5.2.3.7 (abort with "G)
(pong@gollum)1>

Now the "pong" process on gollum is started:
(pong@gollum)1> tutl7:start pong().
true

And the "ping" process on kosken is started (from the code above you can see that a parameter of thest art _pi ng
function is the node name of the Erlang system where "pong" is running):

100 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.3 Concurrent Programming

(ping@kosken)1> tutl7:start ping(pong@gollum).
<0.37.0>

Ping received pong

Ping received pong

Ping received pong

ping finished

As shown, the ping pong program has run. On the "pong" side:

(pong@gollum)2>
Pong received ping
Pong received ping
Pong received ping
Pong finished
(pong@gollum)2>

Looking at thet ut 17 code, you see that the pong function itself is unchanged, the following lineswork in the same
way irrespective of on which node the "ping" processis executes:

{ping, Ping PID} ->
io:format("Pong received ping~n", [1),
Ping PID ! pong,

Thus, Erlang pids contain information about where the process executes. So if you know the pid of a process, the "!"
operator can be used to send it a message disregarding if the processis on the same node or on a different node.

A differenceis how messages are sent to aregistered process on another node:

{pong, Pong Node} ! {ping, self()},

Atuple{regi st ered_name, node_nane} isusedinstead of just ther egi st er ed_nane.

In the previous example, "ping" and "pong" were started from the shells of two separate Erlang nodes. spawn can
also be used to start processes in other nodes.

The next example is the ping pong program, yet again, but thistime "ping" is started in another node:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 101

5.3 Concurrent Programming

-module(tutl8).
-export([start/1, ping/2, pong/0]).

ping(0, Pong Node) ->
{pong, Pong Node} ! finished,
io:format("ping finished~n", [1);

ping(N, Pong Node) ->
{pong, Pong Node} ! {ping, self()},
receive
pong ->
io:format("Ping received pong~n", [])
end,
ping(N - 1, Pong Node).

pong() ->
receive
finished ->
io:format("Pong finished~n", [1);
{ping, Ping PID} ->
io:format("Pong received ping~n", [1),
Ping PID ! pong,
pong ()
end.

start(Ping Node) ->
register(pong, spawn(tutl8, pong, [1])),
spawn(Ping Node, tutl8, ping, [3, node()]).

Assuming an Erlang system called ping (but not the " ping" process) has already been started on kosken, then on gollum
thisis done:

(pong@gollum)1> tutl8:start(ping@kosken).
<3934.39.0>

Pong received ping

Ping received pong

Pong received ping

Ping received pong

Pong received ping

Ping received pong

Pong finished

ping finished

Noticethat al the output is received on gollum. Thisis because the I/O system finds out where the processis spawned
from and sends all output there.

5.3.5 A Larger Example

Now for a larger example with a simple "messenger”. The messenger is a program that allows users to log in on
different nodes and send simple messages to each other.

Before starting, notice the following:
» Thisexample only shows the message passing logic - no attempt has been made to provide a nice graphical user
interface, although this can also be donein Erlang.

e Thissort of problem can be solved easier by use of thefacilitiesin OTP, which also provide methods for updating
code on the fly and so on (see OTP Design Principles).

e Thefirst program contains some inadequacies regarding handling of nodes which disappear. These are corrected
in alater version of the program.

102 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.3 Concurrent Programming

The messenger is set up by allowing "clients' to connect to a central server and say who and wherethey are. That is,
auser does not need to know the name of the Erlang node where another user islocated to send a message.

Filemessenger. erl :

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 103

5.3 Concurrent Programming

% Message passing utility.

% User interface:

% logon (Name)

% One user at a time can log in from each Erlang node in the
% system messenger: and choose a suitable Name. If the Name
% is already logged in at another node or if someone else is
% already logged in at the same node, login will be rejected
% with a suitable error message.

% Logoff()

% Logs off anybody at that node

%% message(ToName, Message)

% sends Message to ToName. Error messages if the user of this
% function is not logged on or if ToName is not logged on at
% any node.

One node in the network of Erlang nodes runs a server which maintains

data about the logged on users. The server is registered as "messenger"
Each node where there is a user logged on runs a client process registered
as "mess client"

Protocol between the client processes and the server

To server: {ClientPid, logon, UserName}
Reply {messenger, stop, user exists at other node} stops the client
Reply {messenger, logged on} logon was successful

To server: {ClientPid, logoff}
Reply: {messenger, logged off}

% To server: {ClientPid, logoff}
%% Reply: no reply

% To server: {ClientPid, message to, ToName, Message} send a message
% Reply: {messenger, stop, you are not logged on} stops the client

Reply: {messenger, receiver not found} no user with this name logged on
Reply: {messenger, sent} Message has been sent (but no guarantee)

To client: {message from, Name, Message},

Protocol between the "commands" and the client

% Started: messenger:client(Server Node, Name)
% To client: logoff
%% To client: {message to, ToName, Message}

Configuration: change the server node() function to return the
name of the node where the messenger server runs

-module(messenger) .
-export([start server/0, server/1l, logon/1l, logoff/0, message/2, client/2]).

%% Change the function below to return the name of the node where the
%% messenger server runs
erver_node() ->

messenger@super.

o o°

w

%% This is the server process for the "messenger"
%% the user list has the format [{ClientPidl, Namel}, {ClientPid22, Name2}, ...
server(User List) ->
receive
{From, logon, Name} ->
New User List = server logon(From, Name, User List),
server(New User List);

o o°

104 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.3 Concurrent Programming

{From, logoff} ->
New User List server logoff(From, User List),
server(New User List);

{From, message to, To, Message} ->
server_transfer(From, To, Message, User List),
io:format("list is now: ~p~n", [User List]),
server(User List)

end.

%%% Start the server
start _server() ->

register(messenger, spawn(messenger, server, [[]])).

%%% Server adds a new user to the user list
server_logon(From, Name, User List) ->
check if logged on anywhere else

case lists:keymember(Name, 2, User List) of

[
6%

true ->
From ! {messenger, stop, user exists at other node},
User List;

false ->

From ! {messenger, logged on},
[{From, Name} | User List] %add user to the list

end.

%%% Server deletes a user from the user list
server_logoff(From, User List) ->
lists:keydelete(From, 1, User List).

%%% Server transfers a message between user
server_transfer(From, To, Message, User List) ->
%% check that the user is logged on and who he is
case lists:keysearch(From, 1, User List) of
false ->
From ! {messenger, stop, you are not logged on};
{value, {From, Name}} ->
server_transfer(From, Name, To, Message, User List)
end.
%%% If the user exists, send the message
server_transfer(From, Name, To, Message, User List) ->
%% Find the receiver and send the message
case lists:keysearch(To, 2, User List) of
false ->
From ! {messenger, receiver not found};
{value, {ToPid, To}} ->
ToPid ! {message from, Name, Message},
From ! {messenger, sent}
end.

)
676

% User Commands

logon(Name) ->
case whereis(mess client) of
undefined ->

register(mess client,
spawn(messenger, client,
_ -> already logged on
end.

[server node(), Name]))

logoff() ->
mess_client ! logoff.

message(ToName, Message) ->

%reject logon

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 105

5.3 Concurrent Programming

case whereis(mess client) of % Test if the client is running
undefined ->
not logged on;
_ -> mess_client ! {message to, ToName, Message},
ok
end.

%%% The client process which runs on each server node
client(Server Node, Name) ->
{messenger, Server Node} ! {self(), logon, Name},
await result(),
client(Server Node).

client(Server Node) ->
receive
logoff ->
{messenger, Server Node} ! {self(), logoff},
exit(normal);
{message to, ToName, Message} ->
{messenger, Server Node} ! {self(), message to, ToName, Message},
await result();
{message from, FromName, Message} ->
io:format("Message from ~p: ~p~n", [FromName, Message])
end,
client(Server Node).

%%% wait for a response from the server
await result() ->
receive
{messenger, stop, Why} -> % Stop the client
io:format("~p~n", [Whyl),
exit(normal);
{messenger, What} -> 9% Normal response
io:format("~p~n", [What])
end.

To use this program, you need to:

* Configuretheser ver _node() function.
e Copy the compiled code (messenger . beam to the directory on each computer where you start Erlang.

In the following example using this program, nodes are started on four different computers. If you do not have that
many machines available on your network, you can start several hodes on the same machine.

Four Erlang nodes are started up: messenger@super, c1@bilbo, c2@kosken, c3@gollum.
First the server at messenger@super is started up:

(messenger@super)1l> messenger:start server().
true
Now Peter logs on at c1@bilbo:
(cl@bilbo)1> messenger:logon(peter).
true
logged on
James logs on at c2@kosken:

106 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.3 Concurrent Programming

(c2@kosken) 1> messenger:logon(james).
true
logged on

And Fred logs on at c3@gollum:

(c3@gollum) 1> messenger:logon(fred).
true
logged on

Now Peter sends Fred a message:

(cl@bilbo)2> messenger:message(fred, "hello").
ok
sent

Fred receives the message and sends a message to Peter and logs off:

Message from peter: "hello"

(c3@gollum)2> messenger:message(peter, "go away, I'm busy").
ok

sent

(c3@gollum)3> messenger:logoff().

logoff

James now tries to send a message to Fred:
(c2@kosken)2> messenger:message(fred, "peter doesn't like you").
ok

receiver not found

But thisfails as Fred has already logged off.
First let uslook at some of the new concepts that have been introduced.

There are two versions of the ser ver _t ransf er function: one with four arguments (ser ver _transfer/ 4)
and one with five (ser ver _transf er/ 5). These are regarded by Erlang as two separate functions.

Notice how to write the ser ver function so that it calls itself, through ser ver (User _Li st), and thus creates
aloop. The Erlang compiler is "clever" and optimizes the code so that this really is a sort of loop and not a proper
function call. But this only works if there is no code after the call. Otherwise, the compiler expects the call to return
and make a proper function call. This would result in the process getting bigger and bigger for every loop.

Functionsinthel i st s moduleare used. Thisisavery useful module and astudy of the manual page isrecommended
(erl -man lists).lists: keymenber (Key, Position, Li sts) looksthrough alist of tuples and looks
at Posi tionineachtupleto seeif itisthe same asKey. Thefirst element is position 1. If it finds a tuple where the

element at Posi ti on isthesameasKey, it returnst r ue, otherwisef al se.

3> lists:keymember(a, 2, [{x,y,z},{b,b,b},{b,a,c},{q,r,s}]).
true
4> lists:keymember(p, 2, [{x,y,z},{b,b,b},{b,a,c},{q,r,s}]).
false

lists: keydel et e worksin the same way but deletes the first tuple found (if any) and returns the remaining list:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 107

5.3 Concurrent Programming

5> lists:keydelete(a, 2, [{x,y,z},{b,b,b},{b,a,c},{q,r,s}]).
[{x,y,z},{b,b,b},{q,r,s}]

lists: keysearchislikel i sts: keynenber, butitreturns{val ue, Tupl e_Found} ortheatomf al se.
There are many very useful functionsinthel i st s module.

An Erlang process (conceptually) runs until it doesar ecei ve and there is no message which it wants to receivein
the message queue. "conceptually" is used here because the Erlang system shares the CPU time between the active
processes in the system.

A process terminates when there is nothing more for it to do, that is, the last function it calls simply returns and does
not call another function. Another way for a process to terminate isfor it to call exi t/ 1. Theargumenttoexi t/ 1
has a special meaning, which is discussed later. In thisexample, exi t (nor mal) isdone, which has the same effect
as aprocess running out of functionsto call.

The BIF wher ei s(Regi st er edNane) checks if a registered process of name Regi st er edNane exists. If it
exists, the pid of that processis returned. If it does not exist, the atom undef i ned isreturned.

Y ou should by now be able to understand most of the code in the messenger-module. Let us study one case in detail:
amessage is sent from one user to another.

Thefirst user "sends" the message in the example above by:
messenger:message(fred, "hello")
After testing that the client process exists:
whereis(mess client)
And amessageissenttonmess_cl i ent:
mess client ! {message to, fred, "hello"}
The client sends the message to the server by:
{messenger, messenger@super} ! {self(), message to, fred, "hello"},

And waits for areply from the server.
The server receives this message and calls:

server_transfer(From, fred, "hello", User List),

This checksthat the pid Fr omisintheUser _Li st :
lists:keysearch(From, 1, User List)

If keysear ch returnsthe atom f al se, some error has occurred and the server sends back the message:
From ! {messenger, stop, you are not logged on}

Thisisreceived by the client, whichinturn doesexi t (nor mal) andterminates. If keysear ch returns{ val ue,
{ From Nane}} itiscertain that the user islogged on and that his name (peter) isin variable Nane.

Let usnow call:
server_transfer(From, peter, fred, "hello", User List)

Notice that asthisisser ver _t r ansf er/ 5, it is not the same as the previous function ser ver _t r ansf er/ 4.
Another keysear ch isdoneon User _Li st tofind the pid of the client corresponding to fred:

108 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.4 Robustness

lists:keysearch(fred, 2, User List)

This time argument 2 is used, which is the second element in the tuple. If this returns the atom f al se, fred is not
logged on and the following message is sent:

From ! {messenger, receiver not found};
Thisisreceived by the client.
If keysear ch returns:
{value, {ToPid, fred}}
The following message is sent to fred's client:
ToPid ! {message from, peter, "hello"},
The following message is sent to peter's client:
From ! {messenger, sent}
Fred's client receives the message and printsiit:

{message from, peter, "hello"} ->
io:format("Message from ~p: ~p~n", [peter, "hello"])

Peter's client receives the messageintheawai t _r esul t function.

5.4 Robustness

Several things are wrong with the messenger example in A Larger Example. For example, if a node where a user is
logged on goes down without doing a logoff, the user remainsin the server'sUser _Li st , but the client disappears.
This makesit impossible for the user to log on again as the server thinks the user already islogged on.

Or what happensif the server goesdown in the middle of sending amessage, leaving the sending client hanging forever
intheawai t _resul t function?

5.4.1 Time-outs

Before improving the messenger program, let us look at some general principles, using the ping pong program as an
example. Recall that when "ping" finishes, it tells "pong" that it has done so by sending the atom f i ni shed asa
message to "pong" so that "pong" can aso finish. Another way to let "pong"” finish isto make "pong" exit if it does
not receive a message from ping within a certain time. This can be done by adding atime-out to pong as shown in
the following example:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 109

5.4 Robustness

-module(tutl9).
-export([start ping/1l, start pong/0, ping/2, pong/0]).

ping(0, Pong Node) ->
io:format("ping finished~n", [1);

ping(N, Pong Node) ->
{pong, Pong Node} ! {ping, self()},
receive
pong ->
io:format("Ping received pong~n", [])
end,
ping(N - 1, Pong Node).

pong() ->
receive
{ping, Ping PID} ->
io:format("Pong received ping~n", [1),
Ping PID ! pong,
pong ()

after 5000 ->
io:format("Pong timed out~n", [])
end.

start _pong() ->
register(pong, spawn(tutl9, pong, [1])).

start ping(Pong Node) ->
spawn(tutl9, ping, [3, Pong_ Node]).

After this is compiled and the file t ut 19. beamis copied to the necessary directories, the following is seen on
(pong@kosken):

(pong@kosken)1> tutl9:start pong().
true

Pong received ping

Pong received ping

Pong received ping

Pong timed out

And the following is seen on (ping@gollum):

(ping@gollum)1> tutl9:start ping(pong@kosken).
<0.36.0>

Ping received pong

Ping received pong

Ping received pong

ping finished

Thetime-out isset in:

pong() =
receive
{ping, Ping PID} ->

io:format("Pong received ping~n", [1),
Ping PID ! pong,
pong()

after 5000 ->
io:format("Pong timed out~n", [1])

end.

110 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.4 Robustness

Thetime-out (af t er 5000) isstarted whenr ecei ve isentered. Thetime-out iscanceled if { pi ng, Pi ng_PI D}
is received. If {ping, Pi ng_PI D} is not received, the actions following the time-out are done after 5000
milliseconds. af t er must belastinther ecei ve, that is, preceded by all other message reception specificationsin
ther ecei ve. Itisalso possible to call afunction that returned an integer for the time-out:

after pong timeout() ->

In general, there are better ways than using time-outs to supervise parts of adistributed Erlang system. Time-outs are
usually appropriate to supervise external events, for example, if you have expected a message from some external
system within a specified time. For example, atime-out can be used to log a user out of the messenger system if they
have not accessed it for, say, ten minutes.

5.4.2 Error Handling

Before going into details of the supervision and error handling in an Erlang system, let us see how Erlang processes
terminate, or in Erlang terminology, exit.

A process which executesexi t (nor mal) or simply runs out of things to do has anormal exit.

A process which encounters aruntime error (for example, divide by zero, bad match, trying to call afunction that does
not exist and so on) exits with an error, that is, has an abnor mal exit. A process which executes exit(Reason) where
Reason isany Erlang term except the atom nor nal , also has an abnormal exit.

An Erlang process can set up linksto other Erlang processes. If aprocess callslink(Other_Pid) it setsup abidirectional
link between itself and the process called O her _Pi d. When aprocess terminates, it sends something called asignal
to al the processesit has links to.

The signal carries information about the pid it was sent from and the exit reason.
The default behaviour of a process that receives anormal exit isto ignore the signal.
The default behaviour in the two other cases (that is, abnormal exit) aboveis to:

* Bypassal messagesto the receiving process.
» Kill the receiving process.
* Propagate the same error signal to the links of the killed process.

In thisway you can connect all processesin atransaction together using links. If one of the processes exits abnormally,
all the processes in the transaction are killed. Asit is often wanted to create a process and link to it at the same time,
thereis a specia BIF, spawn_link that does the same as s pawn, but also creates alink to the spawned process.

Now an example of the ping pong example using links to terminate "pong":

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 111

5.4 Robustness

-module(tut20).
-export([start/1, ping/2, pong/0]).

ping(N, Pong Pid) ->
link(Pong Pid),
pingl(N, Pong Pid).

pingl(0,) ->
exit(ping);

pingl(N, Pong Pid) ->
Pong Pid ! {ping, self()},
receive
pong ->
io:format("Ping received pong~n", [])
end,
pingl(N - 1, Pong Pid).

pong() ->
receive
{ping, Ping PID} ->
io:format("Pong received ping~n", [1),
Ping PID ! pong,
pong ()
end.

start(Ping Node) ->
PongPID = spawn(tut20, pong, []),
spawn(Ping Node, tut20, ping, [3, PongPID]).

(s1@bill)3> tut20:start(s2@kosken).
Pong received ping

<3820.41.0>

Ping received pong

Pong received ping

Ping received pong

Pong received ping

Ping received pong

Thisis a dlight modification of the ping pong program where both processes are spawned from the samestart/ 1
function, and the "ping" process can be spawned on a separate node. Notice the use of the | i nk BIF. "Ping" calls
exi t (pi ng) when it finishes and this causes an exit signal to be sent to "pong", which also terminates.

It is possible to modify the default behaviour of a process so that it does not get killed when it receives abnormal
exit signals. Instead, all signals are turned into normal messagesontheformat {' EXI T' , Fr onPI D, Reason} and
added to the end of the receiving process message queue. This behaviour is set by:

process flag(trap exit, true)

There are several other process flags, see erlang(3). Changing the default behaviour of aprocessin thisway is usually
not done in standard user programs, but is|eft to the supervisory programsin OTP. However, the ping pong program
ismodified to illustrate exit trapping.

112 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.4 Robustness

-module(tut2l).
-export([start/1, ping/2, pong/0]).

ping(N, Pong Pid) ->
link(Pong Pid),
pingl(N, Pong Pid).

pingl(0,) ->
exit(ping);

pingl(N, Pong Pid) ->
Pong Pid ! {ping, self()},
receive
pong ->
io:format("Ping received pong~n", [])
end,
pingl(N - 1, Pong Pid).

pong() ->
process flag(trap exit, true),
pongl().

pongl() ->
receive
{ping, Ping PID} ->
io:format("Pong received ping~n", [1),
Ping PID ! pong,
pongl();
{'EXIT', From, Reason} ->
io:format("pong exiting, got ~p~n", [{'EXIT', From, Reason}])
end.

start(Ping Node) ->
PongPID = spawn(tut2l, pong, []),
spawn(Ping Node, tut2l, ping, [3, PongPID]).

(sl@bill) 1> tut2l:start(s2@gollum).
<3820.39.0>

Pong received ping

Ping received pong

Pong received ping

Ping received pong

Pong received ping

Ping received pong

pong exiting, got {'EXIT',<3820.39.0>,ping}

5.4.3 The Larger Example with Robustness Added

Let usreturn to the messenger program and add changes to make it more robust:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 113

5.4 Robustness

% Message passing utility.

% User interface:

% login(Name)

% One user at a time can log in from each Erlang node in the
% system messenger: and choose a suitable Name. If the Name
% is already logged in at another node or if someone else is
% already logged in at the same node, login will be rejected
% with a suitable error message.

% Logoff()

% Logs off anybody at that node

%% message(ToName, Message)

% sends Message to ToName. Error messages if the user of this
% function is not logged on or if ToName is not logged on at
% any node.

One node in the network of Erlang nodes runs a server which maintains

data about the logged on users. The server is registered as "messenger"
Each node where there is a user logged on runs a client process registered
as "mess client"

Protocol between the client processes and the server

To server: {ClientPid, logon, UserName}
Reply {messenger, stop, user exists at other node} stops the client
Reply {messenger, logged on} logon was successful

When the client terminates for some reason
To server: {'EXIT', ClientPid, Reason}

Reply: {messenger, stop, you are not logged on} stops the client
Reply: {messenger, receiver not found} no user with this name logged on
Reply: {messenger, sent} Message has been sent (but no guarantee)

To client: {message from, Name, Message},

Qe
Cl
Qe
o
Qe
Cl
Qe
o
Qe
Cl
Qe
Cl
Qe
Cl
Qe
Cl
%% To server: {ClientPid, message to, ToName, Message} send a message
o
o
Cl
Qe
Cl
Qe
Cl
Qe
o
Qe
Cl
% Protocol between the "commands" and the client
0

% Started: messenger:client(Server Node, Name)
% To client: logoff
%% To client: {message to, ToName, Message}

Configuration: change the server node() function to return the
name of the node where the messenger server runs

-module(messenger) .
-export([start server/0, server/0,
logon/1, logoff/0, message/2, client/2]).

% Change the function below to return the name of the node where the
% messenger server runs

erver_node() ->

messenger@super.

o o°

)
"0
)

"0

wv

%% This is the server process for the "messenger"

%% the user list has the format [{ClientPidl, Namel}, {ClientPid22, Name2},...]
server() ->

process flag(trap exit, true),

server([]).

o o°

server(User List) ->
receive
{From, logon, Name} ->

114 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.4 Robustness

New User List = server logon(From, Name, User List),
server(New User List);

{'EXIT', From, } ->
New User List = server logoff(From, User List),
server(New User List);

{From, message to, To, Message} ->
server_transfer(From, To, Message, User List),
io:format("list is now: ~p~n", [User List]),
server(User List)

end.

%%% Start the server
start _server() ->
register(messenger, spawn(messenger, server, [])).

%%% Server adds a new user to the user list
server_logon(From, Name, User List) ->

%% check if logged on anywhere else

case lists:keymember(Name, 2, User List) of

true ->
From ! {messenger, stop, user exists at other node}, %reject logon
User List;
false ->
From ! {messenger, logged on},
link(From),
[{From, Name} | User List] %add user to the list

end.

%%% Server deletes a user from the user list
server_logoff(From, User List) ->
lists:keydelete(From, 1, User List).

%%% Server transfers a message between user
server_transfer(From, To, Message, User List) ->
%% check that the user is logged on and who he is
case lists:keysearch(From, 1, User List) of
false ->
From ! {messenger, stop, you are not logged on};
{value, { , Name}} ->
server_transfer(From, Name, To, Message, User List)
end.

%%% If the user exists, send the message
server_transfer(From, Name, To, Message, User List) ->
%% Find the receiver and send the message
case lists:keysearch(To, 2, User List) of
false ->
From ! {messenger, receiver not found};
{value, {ToPid, To}} ->
ToPid ! {message from, Name, Message},
From ! {messenger, sent}
end.

%%% User Commands
logon(Name) ->
case whereis(mess client) of
undefined ->
register(mess client,
spawn(messenger, client, [server node(), Name]));
_ -> already logged on
end.

logoff() ->
mess_client ! logoff.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 115

5.4 Robustness

message(ToName, Message) ->
case whereis(mess client) of % Test if the client is running
undefined ->
not logged on;
-> mess_client ! {message to, ToName, Message},
ok

end.

%%% The client process which runs on each user node
client(Server Node, Name) ->
{messenger, Server Node} ! {self(), logon, Name},
await result(),
client(Server Node).

client(Server Node) ->
receive
logoff ->
exit(normal);
{message to, ToName, Message} ->
{messenger, Server Node} ! {self(), message to, ToName, Message},
await result();
{message from, FromName, Message} ->
io:format("Message from ~p: ~p~n", [FromName, Message])
end,
client(Server Node).

%%% wait for a response from the server
await result() ->
receive
{messenger, stop, Why} -> % Stop the client
io:format("~p~n", [Whyl),
exit(normal);
{messenger, What} -> 9% Normal response
io:format("~p~n", [What])
after 5000 ->
io:format("No response from server~n", []),
exit(timeout)
end.

The following changes are added:

The messenger server traps exits. If it receives an exit signal, {' EXI T' , Fr om Reason}, this means that a client
process has terminated or is unreachable for one of the following reasons:

* Theuser haslogged off (the "logoff" message is removed).

e The network connection to the client is broken.

* The node on which the client process resides has gone down.

» Theclient processes has done someillegal operation.

If an exit signal is received as above, the tuple { Fr om Nane} is deleted from the servers User _Li st using the
server _| ogof f function. If the node on which the server runs goes down, an exit signal (automatically generated

by the system) is sent to al of the client processes: {' EXI T' , Messenger Pl D, noconnect i on} causing al the
client processes to terminate.

Also, atime-out of five seconds has been introduced intheawai t _r esul t function. That is, if the server does not
reply within five seconds (5000 ms), the client terminates. Thisis only needed in the logon sequence before the client
and the server are linked.

An interesting case is if the client terminates before the server links to it. This is taken care of because linking to a
non-existent process causes an exit signal, { ' EXI T' , Fr om nopr oc}, to be automatically generated. Thisis asif
the process terminated immediately after the link operation.

116 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.5 Records and Macros

5.5 Records and Macros

Larger programs are usually written as a collection of files with awell-defined interface between the various parts.

5.5.1 The Larger Example Divided into Several Files

To illustrate this, the messenger example from the previous section is divided into the following five files:

e nmess_config. hrl

Header file for configuration data

e nmess_interface. hrl

Interface definitions between the client and the messenger

e user_interface.erl

Functions for the user interface

e mess_client.erl

Functions for the client side of the messenger

e nmess_server.erl

Functions for the server side of the messenger

While doing this, the message passing interface between the shell, the client, and the server is cleaned up and is defined
using records. Also, macr os are introduced:

%%%- - - -FILE mess_config.hrl----

%%% Configure the location of the server node,
-define(server node, messenger@super).

%%%- - - -END FILE----

o°

@ of

0.0
“670
0.0

“670

messenger program

o

%%- - --FILE mess interface.hrl----

Message interface between client and server and client shell for

%%Messages from Client to server received in server/1 function.
record(logon, {client pid, username}).

-record(message, {client pid, to name, message}).
%%% {'EXIT', ClientPid, Reason} (client terminated or unreachable.

()
"

o
o°

o
"
o

"

1o o
o°® o°

sent

%
%
%
%

1P P o o
o o o° o°

o
"
o

"

1o o
o o°

[X)
676

o°

logoff

%%%- - - -END FILE----

Messages from Server to Client, received in await result/0 function
record(abort _client, {message}).
Messages are: user exists at other node,
you are not logged on
record(server_reply, {message}).
Messages are: logged on
receiver not found

(Message has been sent (no guarantee)

Messages from Server to Client received in client/1 function
record(message from,{from name, message}).

Messages from shell to Client received in client/1 function
spawn(mess_client, client, [server node(), Name])
record(message to,{to name, message}).

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 117

5.5 Records and Macros

oP

%%----FILE user interface.erl----

%%% User interface to the messenger program

%%% login(Name)

%% One user at a time can log in from each Erlang node in the
%% system messenger: and choose a suitable Name. If the Name
%% is already logged in at another node or if someone else is
%% already logged in at the same node, login will be rejected
%%% with a suitable error message.

logoff()
Logs off anybody at that node

%% message(ToName, Message)

%

%%% sends Message to ToName. Error messages if the user of this
%% function is not logged on or if ToName is not logged on at
%%% any node.

-module(user_interface).
-export([logon/1, logoff/0, message/2]).
-include("mess interface.hrl").
-include("mess config.hrl").

logon(Name) ->
case whereis(mess client) of
undefined ->
register(mess client,
spawn(mess_client, client, [?server node, Name]));
_ -> already logged on
end.

logoff() ->
mess client ! logoff.

message(ToName, Message) ->
case whereis(mess client) of % Test if the client is running
undefined ->
not logged on;
_ -> mess_client ! #message to{to name=ToName, message=Message},
ok
end.

%%%- - - -END FILE----

118 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.5 Records and Macros

%%%----FILE mess client.erl----
%%% The client process which runs on each user node

-module(mess client).
-export([client/2]).
-include("mess interface.hrl").

client(Server Node, Name) ->
{messenger, Server Node} ! #logon{client pid=self(), username=Name},
await result(),
client(Server Node).

client(Server Node) ->
receive

logoff ->
exit(normal);

#message to{to name=ToName, message=Message} ->
{messenger, Server Node} !

#message{client pid=self(), to name=ToName, message=Message},

await result();

{message from, FromName, Message} ->

io:format("Message from ~p: ~p~n", [FromName, Messagel)
end,

client(Server Node).

%%% wait for a response from the server
await result() ->
receive
#abort client{message=Why} ->
io:format("~p~n", [Whyl),
exit(normal);
#server reply{message=What} ->
io:format("~p~n", [What])
after 5000 ->
io:format("No response from server~n", []),
exit(timeout)
end.

%%%- - - -END FILE---

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 119

5.5 Records and Macros

%%%----FILE mess server.erl----
%%% This is the server process of the messenger service

-module(mess_server).
-export([start server/0, server/0]).
-include("mess interface.hrl").

server() ->

process flag(trap exit, true),
server([]).

%%% the user list has the format [{ClientPidl, Namel}, {ClientPid22, Name2},...]
server(User List) ->

io:format("User list = ~p~n", [User List]),

receive

#logon{client pid=From, username=Name} ->
New User List = server logon(From, Name, User List),
server(New User List);

{'EXIT', From, } ->
New User List = server logoff(From, User List),
server(New User List);

#message{client pid=From, to name=To, message=Message} ->
server_transfer(From, To, Message, User List),
server(User List)

end.

%%% Start the server
start _server() ->
register(messenger, spawn(?MODULE, server, [])).

%%% Server adds a new user to the user list
server_logon(From, Name, User List) ->

%% check if logged on anywhere else

case lists:keymember(Name, 2, User List) of

true ->
From ! #abort client{message=user exists at other node},
User List;
false ->
From ! #server reply{message=logged on},
link(From),
[{From, Name} | User List] %add user to the list

end.

%%% Server deletes a user from the user list
server_logoff(From, User List) ->
lists:keydelete(From, 1, User List).

%%% Server transfers a message between user
server_transfer(From, To, Message, User List) ->
%% check that the user is logged on and who he is
case lists:keysearch(From, 1, User List) of
false ->
From ! #abort client{message=you are not logged on};
{value, { , Name}} ->
server_transfer(From, Name, To, Message, User List)
end.
%%% If the user exists, send the message
server_transfer(From, Name, To, Message, User List) ->
%% Find the receiver and send the message
case lists:keysearch(To, 2, User List) of
false ->
From ! #server reply{message=receiver not found};
{value, {ToPid, To}} ->
ToPid ! #message from{from name=Name, message=Message},

120 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.5 Records and Macros

From ! #server reply{message=sent}
end.

%%%- - - -END FILE---

5.5.2 Header Files

As shown above, some files have extension . hr | . These are header filesthat areincluded inthe . er | filesby:
-include("File Name").

for example:
-include("mess interface.hrl").

Inthe case abovethefileisfetched from the samedirectory asall the other filesin the messenger example. (* manual*).

.hrl files can contain any valid Erlang code but are most often used for record and macro definitions.

5.5.3 Records
A record is defined as:

-record(name_of record,{field namel, field name2, field name3, 1.
For example:
-record(message to,{to name, message}).
Thisisequivalent to:
{message to, To Name, Message}
Creating arecord is best illustrated by an example:
#message to{message="hello", to name=fred)
This creates:
{message to, fred, "hello"}

Notice that you do not have to worry about the order you assign values to the various parts of the records when you
create it. The advantage of using recordsisthat by placing their definitionsin header files you can conveniently define
interfaces that are easy to change. For example, if you want to add a new field to the record, you only have to change
the code where the new field is used and not at every place the record is referred to. If you leave out a field when
creating arecord, it gets the value of the atom undef i ned. (*manual*)

Pattern matching with records is very similar to creating records. For example, insideacase or r ecei ve:
#message to{to name=ToName, message=Message} ->
Thisisthe same as:

{message to, ToName, Message}

5.5.4 Macros

Another thing that has been added to the messenger isamacro. Thefilemess_confi g. hr| containsthe definition:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 121

5.5 Records and Macros

%%% Configure the location of the server node,
-define(server node, messenger@super).

Thisfileisincluded inmess_server. erl:

-include("mess config.hrl").

Every occurrence of ?ser ver _node inness_server. erl isnow replaced by nessenger @uper .

A macro is also used when spawning the server process:

spawn (?MODULE, server, [])

Thisis a standard macro (that is, defined by the system, not by the user). ?MODULE is always replaced by the name
of the current module (that is, the - nodul e definition near the start of the file). There are more advanced ways of
using macros with, for example, parameters (* manual*).

Thethree Erlang (. er |) filesin the messenger example are individually compiled into object codefile (. bean)j. The
Erlang system loads and links these files into the system when they are referred to during execution of the code. In
this case, they are simply put in our current working directory (that is, the place you have done "cd" to). There are
ways of putting the . beamfilesin other directories.

In the messenger example, no assumptions have been made about what the message being sent is. It can be any valid
Erlang term.

122 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

6.1 Introduction

6 Erlang Reference Manual

6.1 Introduction

This section is the Erlang reference manual. It describes the Erlang programming language.

6.1.1 Purpose

Thefocusof the Erlang reference manual ison thelanguageitself, not theimplementation of it. Thelanguage constructs
are described in text and with examples rather than formally specified. Thisisto make the manual more readable. The
Erlang reference manual is not intended as a tutorial.

Information about implementation of Erlang can, for example, be found, in the following:
e System Principles
Starting and stopping, boot scripts, code loading, logging, creating target systems
» Efficiency Guide
Memory consumption, system limits
* ERTSUser'sGuide

Crash dumps, drivers

6.1.2 Prerequisites

It is assumed that the reader has done some programming and is familiar with concepts such as data types and
programming language syntax.

6.1.3 Document Conventions

In this section, the following terminology is used:

* A sequenceisoneor more items. For example, a clause body consists of a sequence of expressions. This means
that there must be at least one expression.

e Alist isany number of items. For example, an argument list can consist of zero, one, or more arguments.
If afeature has been added in R13A or later, thisis mentioned in the text.

6.1.4 Complete List of BIFs

For acomplete list of BIFs, their arguments and return values, see erlang(3) manual pagein ERTS.

6.1.5 Reserved Words

The following are reserved wordsin Erlang:

after and andal so band begi n bnot bor bsl bsr bxor case catch cond div end fun
if let not of or orelse receive remtry when xor

Note: cond and | et , whilereserved, are currently not used by the language.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 123

6.2 Character Set and Source File Encoding

6.2 Character Set and Source File Encoding

6.2.1 Character Set

The syntax of Erlang tokens allow the use of the full 1SO-8859-1 (Latin-1) character set. This is noticeable in the
following ways:

e All the Latin-1 printable characters can be used and are shown without the escape backslash convention.
e Atomsand variables can use al Latin-1 |etters.

Octal Decimal Class
200 - 237 128 - 159 Control characters
240 - 277 160 - 191 - ¢ | Punctuation characters
300 - 326 192- 214 A-0 Uppercase letters

327 215 x Punctuation character
330 - 336 216 - 222 a-p Uppercase letters
337 - 366 223 - 246 k-0 Lowercase letters

367 247 + Punctuation character
370- 377 248 - 255 g-y Lowercase letters

Table 2.1: Character Classes

In Erlang/OTP R16B the syntax of Erlang tokens was extended to handle Unicode. The support was limited to string
literalsand comments. More about the usage of Unicodein Erlang source files can befoundin STDLIB's User's Guide.

From Erlang/OTP 20, atoms and function names are also allowed to contain Unicode characters outside the |SO-
Latin-1 range. Module names, application names, and node names are still restricted to the | SO-Latin-1 range.

6.2.2 Source File Encoding

The Erlang source file encodi ng is selected by a comment in one of the first two lines of the source file. The first
string that matches the regular expression codi ng\ s*[: =]\ s* ([- a- zA- Z0- 9]) + selects the encoding. If the
matching string is an invalid encoding, it isignored. The valid encodings are Lat i n- 1 and UTF- 8, where the case
of the characters can be chosen fredly.

The following example selects UTF-8 as default encoding:

%% coding: utf-8

Two more examples, both selecting Latin-1 as default encoding:

%% For this file we have chosen encoding = Latin-1

%% -*- coding: latin-1 -*-

124 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

6.3 Data Types

The default encoding for Erlang source filesis changed from Latin-1 to UTF-8 since Erlang/OTP 17.0.

6.3 Data Types

Erlang provides a number of data types, which are listed in this section.

Note that Erlang has no user defined types, only composite types (data structures) made of Erlang terms. This means
that any function testing for a composite type, typically named i s_t ype/ 1, might return t r ue for a term that
coincides with the chosen representation. The corresponding functions for built in types do not suffer from this.

6.3.1 Terms
A piece of data of any datatypeis called aterm.

6.3.2 Number

There are two types of numeric literals, integer s and floats. Besides the conventional notation, there are two Erlang-
specific notations:

* S$char
ASCII value or unicode code-point of the character char .

* base#val ue
Integer with the base base, that must be an integer in the range 2..36.

Leading zeroes are ignored. Single underscore _ can be inserted between digits as a visual separator.
Examples:

1> 42.

42

2> -1 234 567 890.
-1234567890

3> $A.

65

4> $\n.

10

5> 2#101.

5

6> 16#1f.

31

7> 16#4865 316F 774F 6C64.
5216630098191412324
8> 2.3.

2.3

9> 2.3e3.

2.3e3

10> 2.3e-3.

0.0023

11> 1 234.333 333
1234.333333

Representation of Floating Point Numbers

When working with floats you may not see what you expect when printing or doing arithmetic operations. This is
because floats are represented by afixed number of bitsin abase-2 system while printed floats are represented with
abase-10 system. Erlang uses 64-hit floats. Here are examples of this phenomenon:;

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 125

6.3 Data Types

> 0.1+0.2.
0.30000000000000004

Thereal numbers0. 1 and 0. 2 cannot be represented exactly as floats.

> {36028797018963968.0, 36028797018963968 == 36028797018963968.0,
36028797018963970.0, 36028797018963970 == 36028797018963970.0}.
{3.602879701896397e16, true,
3.602879701896397el16, false}.

The value 36028797018963968 can be represented exactly as a float value but Erlang's pretty printer rounds
36028797018963968. 0 to 3. 602879701896397e16 (=36028797018963970. 0) as al values in the
range[36028797018963966. 0, 36028797018963972. 0] arerepresented by 36028797018963968. 0.

For more information about floats and issues with them see:

e What Every Programmer Should Know About Floating-Point Arithmetic,
« 0.30000000000000004.com/, and
* Floating Point Arithmetic: Issuesand Limitations.

If you need to work with decimal fractions, for instance if you need to represent money, then you should use alibrary
that handles that or work in cents instead of euros so that you do not need decimal fractions.

6.3.3 Atom

An atom is aliteral, a constant with name. An atom is to be enclosed in single quotes (') if it does not begin with a
lower-case |etter or if it contains other characters than alphanumeric characters, underscore (), or @.

Examples:

hello

phone number
'Monday'
'phone number'

6.3.4 Bit Strings and Binaries

A bit string is used to store an area of untyped memory.

Bit strings are expressed using the bit syntax.

Bit strings that consist of a number of bitsthat are evenly divisible by eight, are called binaries
Examples:

1> <<10,20>>.
<<10,20>>

2> <<"ABC">>,
<<"ABC">>

1> <<1:1,0:1>>,
<<2:2>>

For more examples, see Programming Examples.

126 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

href
href
href

6.3 Data Types

6.3.5 Reference

A term that is unique among connected nodes. A reference can be created by calling the make_ref/ 0 BIF. The
i s_reference/ 1 BIFcanbeusedtotestif atermisareference.

6.3.6 Fun

A funisafunctional object. Funs make it possible to create an anonymous function and pass the function itself -- not
its name -- as argument to other functions.

Example:

1> Funl = fun (X) -> X+1 end.
#Fun<erl eval.6.39074546>

2> Funl(2).

3

Read more about funs in Fun Expressions. For more examples, see Programming Examples.

6.3.7 Port Identifier

A port identifier identifies an Erlang port.
open_port/ 2, whichisused to create ports, returns a value of this data type.
Read more about ports in Ports and Port Drivers.

6.3.8 PID

PID is an abbreviation for process identifier. Each process has a PID which identifies the process. PIDs are unique
among processes that are alive on connected nodes. However, a PID of aterminated process may be reused as a PID
for anew process after awhile.

TheBIFsel f/ 0 returnsthe PID of the calling process. When creating a new process, the parent process will be able
to get the PID of the child process either via the return value, asis the case when calling the spawn/ 3 BIF, or viaa
message, which is the case when calling the spawn_r equest / 5 BIF. A PID istypically used when when sending
aprocessasigna. Thei s_pi d/ 1 BIF can be used to test whether atermisaPID.

Example:

-module(m).
-export([loop/0]).

loop() ->
receive
who are you ->
io:format("I am ~p~n", [self()]),
loop()
end.

1> P = spawn(m, loop, []).
<0.58.0>

2> P ! who are you.

I am <0.58.0>

who are you

Read more about processes in Processes.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 127

6.3 Data Types

6.3.9 Tuple

A tupleis acompound data type with a fixed number of terms:

{Terml, ..., TermN}

Each term Ter min the tupleis called an element. The number of elementsis said to be the size of the tuple.
There exists anumber of BIFs to manipulate tuples.
Examples:

1> P = {adam,24,{july,29}}.
{adam, 24, {july,29}}

2> element(1,P).

adam

3> element(3,P).

{july,29}

4> P2 = setelement(2,P,25).
{adam, 25, {july,29}}

5> tuple size(P).

3

6> tuple size({}).

0

6.3.10 Map

A map is acompound data type with a variable number of key-value associations:

#{Keyl=>Valuel, ...,KeyN=>ValueN}

Each key-value association in the map is called an association pair. The key and value parts of the pair are called
elements. The number of association pairsis said to be the size of the map.

There exists anumber of BIFs to manipul ate maps.
Examples:

1> M1 = #{name=>adam,age=>24,date=>{july,29}}.
#{age => 24,date => {july,29},name => adam}
2> maps:get(name,M1).

adam

3> maps:get(date,M1).

{july,29}

4> M2 = maps:update(age,25,M1).

#{age => 25,date => {july,29},name => adam}
5> map size(M).

3

6> map size(#{}).

0

A collection of maps processing functions can be found in maps manual pagein STDLIB.
Read more about maps in Map Expressions.

Maps are considered to be experimental during Erlang/OTP R17.

128 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

6.3 Data Types

6.3.11 List

A list isa compound data type with a variable number of terms.

[Terml, ..., TermN]

Each term Ter min thelist is called an element. The number of elementsis said to be the length of thelist.
Formally, alist is either the empty list [] or consists of ahead (first element) and atail (remainder of the list). The

tail isalso alist. The latter can be expressed as[H| T] . The notation [Ter mil, . . ., Ter nl\] aboveis equivalent
withthelist[Term| [...|[TermN/ []]]1].

Example:

[1 isaligt, thus

[cl[]] isalist, thus
[bl[cl[]1]] isalig, thus
[al[b][c|[]11]] isalist,orinshort| a, b, c]

A list where the tail isalist is sometimes called a proper list. It is allowed to have alist where the tail is not alist,
for example, [a| b] . However, thistype of list is of little practical use.

Examples:

1> L1 = [a,2,{c,4}].
[a,2,{c,4}]

2> [H|T] = LL1.
[a,2,{c,4}]

3> H.

a

4> T.
[2,{c,4}]

5> L2 = [d|T].
[d,2,{c,4}]

6> length(L1).
3

7> length([1).
0

A collection of list processing functions can be found in the lists manual pagein STDLIB.

6.3.12 String

Strings are enclosed in double quotes ("), but is not adatatype in Erlang. Instead, astring " hel | 0" is shorthand for
thelist[$h, $e, $I , $I , $0] , that is, [104, 101, 108, 108, 111].

Two adjacent string literal s are concatenated into one. Thisis donein the compilation, thus, does not incur any runtime
overhead.
Example:

"String“ g

isequivalent to

"string42"

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 129

6.3 Data Types

6.3.13 Record

A record is a data structure for storing a fixed number of elements. It has named fields and is similar to a struct in
C. However, arecord is not a true data type. Instead, record expressions are translated to tuple expressions during
compilation. Therefore, record expressions are not understood by the shell unless special actions are taken. For details,
see the shell(3) manual pagein STDLIB).

Examples:
-module(person).
-export([new/21).
-record(person, {name, age}).

new(Name, Age) ->
#person{name=Name, age=Age}.

1> person:new(ernie, 44).
{person,ernie, 44}

Read more about records in Records. More examples can be found in Programming Examples.

6.3.14 Boolean

There is no Boolean data type in Erlang. Instead the atomst r ue and f al se are used to denote Boolean values.

Examples:

1> 2 =< 3.

true

2> true or false.
true

6.3.15 Escape Sequences
Within strings and quoted atoms, the following escape sequences are recognized:

Sequence Description

\b Backspace

\d Delete

\e Escape

\f Form feed

\n Newline

\r Carriage return
\s Space

\t Tab

\v Vertical tab

130 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

6.3 Data Types

\XYZ,\YZ,\Z Character with octal representation XYZ, YZ or Z

\XXY Character with hexadecimal representation XY

WX} Character with hgxadeci mal representation; X... isone
or more hexadecimal characters

&2\;\"22 Control A to control Z

\' Single quote

\" Double quote

\ Backslash

Table 3.1: Recognized Escape Sequences

6.3.16 Type Conversions
There are anumber of BIFsfor type conversions.
Examples:

1> atom to list(hello).

"hello"

2> list to atom("hello").

hello

3> binary to list(<<"hello">>).
"hello"

4> binary to list(<<104,101,108,108,111>>).
"hello"

5> list to binary("hello").
<<104,101,108,108,111>>

6> float to list(7.0).
"7.00000000000000000000e+00"

7> list to float("7.000e+00").

7.0

8> integer to list(77).
w7

9> list to integer("77").
77

10> tuple to list({a,b,c}).
[a,b,c]

11> list to tuple([a,b,c]).
{a,b,c}

12> term_to binary({a,b,c}).
<<131,104,3,100,0,1,97,100,0,1,98,100,0,1,99>>
13> binary to term(<<131,104,3,100,0,1,97,100,0,1,98,100,0,1,99>>).
{a,b,c}

14> binary to integer(<<"77">>).

77

15> integer to binary(77).

<<"77">>

16> float to binary(7.0).
<<"7.00000000000000000000e+00">>

17> binary to float(<<"7.000e+00">>).

7.0

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 131

6.4 Pattern Matching

6.4 Pattern Matching
6.4.1 Pattern Matching

Variables are bound to values through the patter n matching mechanism. Pattern matching occurs when evaluating a
function call, case-r ecei ve-t r y- expressions and match operator (=) expressions.

In apattern matching, aleft-hand side pattern is matched against aright-hand side term. If the matching succeeds, any
unbound variables in the pattern become bound. If the matching fails, arun-time error occurs.

Examples:

1> X.

RS : variable 'X' is unbound **
2> X = 2.

2

3> X + 1.

3

4> {X, Y} = {1, 2}.

** exception error: no match of right hand side value {1,2}
5> {X, Y} = {2, 3}.

{2,3}

6> Y.

3

[}
=

6.5 Modules
6.5.1 Module Syntax

Erlang code is divided into modules. A module consists of a sequence of attributes and function declarations, each
terminated by period (.).

Example:

module attribute
module attribute

-module(m).
-export([fact/1]).

o® o°

beginning of function declaration

end of function declaration

) when N>0 ->
* fact(N-1);
)

->

fact(N

fact (0

(
N
(
1

o® o° o° o°

For a description of function declarations, see Function Declaration Syntax.

6.5.2 Module Attributes

A module attribute defines a certain property of a module.
A module attribute consists of atag and avalue:

-Tag(Value).

Tag must be an atom, while Val ue must be a literal term. As a convenience in user-defined attributes, if the literal
term Val ue hasthe syntax Nane/ Ari t y (where Nane isan atom and Ar i t y apositive integer), the term Nane/
Arity istransated to { Name, Arity}.

132 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

6.5 Modules

Any module attribute can be specified. The attributes are stored in the compiled code and can be retrieved by calling
Modul e: modul e_i nfo(attri butes), or by using the module beam _lib(3) in STDLIB.

Several module attributes have predefined meanings. Some of them have arity two, but user-defined modul e attributes
must have arity one.

Pre-Defined Module Attributes
Pre-defined module attributes is to be placed before any function declaration.
- nodul e(Modul e) .

Modul e declaration, defining the name of the module. The name Mbdul e, an atom, isto be same asthe file name
minus the extension . er | . Otherwise code loading does not work as intended.

This attribute is to be specified first and is the only mandatory attribute.
-export (Functions).

Exported functions. Specifies which of the functions, defined within the module, that are visible from outside
the module.

Functions isalist [Namel/ Arityl, ..., NameN ArityN], where each Nanel is an atom and
Arityl aninteger.

-i mport (Modul e, Functi ons).

Imported functions. Can be called the same way aslocal functions, that is, without any module prefix.

Modul e, anatom, specifieswhich moduletoimport functionsfrom. Funct i ons isalistsimilar asforexport .
-conpi | e(Options).

Compiler options. Opt i ons isasingle option or alist of options. This attribute is added to the option list when
compiling the module. See the compile(3) manual page in Compiler.

-vsn(Vsn).

Module version. Vsn is any literal term and can be retrieved using beam | i b: versi on/ 1, see the
beam_lib(3) manual pagein STDLIB.

If this attribute is not specified, the version defaults to the MD5 checksum of the module.
-on_|l oad(Function).

This attribute names a function that is to be run automatically when a module is loaded. For more information,
see Running a Function When aModule is Loaded.

-ni fs(Functions).

Specifies which of the functions, defined within the module, that may be loaded as NIFs with
erlang: |l oad _nif/2.

Functions isalist [Namel/ Arityl, ..., NameN ArityN], where each Nanel is an atom and
Arityl aninteger.

The- ni f s() attributewasintroduced in OTP 25.0. For older Erlang source code without it, any functionsin
the module may beloaded as NIFs. However, it isrecommended to declarethe NIFswith the - ni f s attribute.
This allows the compiler to make better decisions regarding optimizations for example.

There is no need to add -ni fs([]) in modules that do not load NIFs. The lack of any call to
erl ang: | oad_ni f/ 2, from within the module, is enough for the compiler to draw the same conclusion.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 133

6.5 Modules

Behaviour Module Attribute
It is possible to specify that the module is the callback module for abehaviour:

-behaviour(Behaviour).

TheatomBehavi our givesthe name of the behaviour, which can be auser-defined behaviour or one of thefollowing
OTP standard behaviours:

* gen_server
* gen_statem
*+ gen_event

e supervisor

The spelling behavi or isalso accepted.
The callback functions of the module can be specified either directly by the exported functionbehavi our _i nf o/ 1:

behaviour info(callbacks) -> Callbacks.

or by a- cal | back attribute for each callback function:

-callback Name(Arguments) -> Result.

Here, Ar gunent s isalist of zero or more arguments. The - cal | back attribute is to be preferred since the extra
type information can be used by tools to produce documentation or find discrepancies.

Read more about behaviours and callback modulesin OTP Design Principles.

Record Definitions

The same syntax as for module attributes is used for record definitions:

-record(Record, Fields).
Record definitions are allowed anywhere in amodule, also among the function declarations. Read more in Records.

Preprocessor

The same syntax as for module attributes is used by the preprocessor, which supports file inclusion, macros, and
conditional compilation:

-include("SomeFile.hrl").
-define(Macro,Replacement).
Read more in Preprocessor.

Setting File and Line

The same syntax as for module attributes is used for changing the pre-defined macros ?FI LE and ?LI NE:

-file(File, Line).

This attribute is used by tools, such as Y ecc, to inform the compiler that the source program is generated by another
tool. It also indicates the correspondence of sourcefilesto lines of the original user-written file, from which the source
program is produced.

134 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

6.5 Modules

Types and function specifications

A similar syntax as for module attributes is used for specifying types and function specifications:

-type my type() :: atom() | integer().
-spec my function(integer()) -> integer().

Read more in Types and Function specifications.
The description is based on EEP8 - Types and function specifications, which is not to be further updated.

6.5.3 The feature directive

Whilenot amodule attribute, but rather adirective (sinceit might affect syntax), thereisthe- f eat ur e(. .) directive
used for enabling and disabling features.

The syntax is similar to that of an attribute, but has two arguments:

-feature(FeatureName, enable | disable).

Note that the feature directive can only appear in a prefix of the module.

6.5.4 Comments

Comments can be placed anywhere in a module except within strings and quoted atoms. A comment begins with the
character "%", continues up to, but does not include the next end-of-line, and has no effect. Notice that the terminating
end-of-line has the effect of white space.

6.5.5 module_info/0 and module_info/1 functions
The compiler automatically inserts the two special, exported functions into each module:

e« Mbodul e: nodul e_info/0
e Modul e: nodul e_info/l

These functions can be called to retrieve information about the module.

module_info/0
The nodul e_i nf o/ 0 function in each module, returns alist of { Key, Val ue} tupleswith information about the
module. Currently, the list contain tuples with the following Keys: nodul e, attri but es, conpi | e, exports,
nd5 and nat i ve. The order and number of tuples may change without prior notice.
module_info/1
Thecall nodul e_i nf o(Key) , where Key is an atom, returns a single piece of information about the module.
The following values are allowed for Key:
nodul e
Returns an atom representing the module name.
attributes

Returns a list of { Att ri but eNane, Val uelLi st} tuples, where Att ri but eNane is the name of an
attribute, and Val ueLi st isalist of values. Notice that a given attribute can occur more than once in the list
with different values if the attribute occurs more than once in the module.

Thelist of attributes becomes empty if the module is stripped with the beam_lib(3) module (in STDLIB).

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 135

href

6.6 Functions

conpile

Returns a list of tuples with information about how the module was compiled. Thislist is empty if the module
has been stripped with the beam_lib(3) module (in STDLIB).

nd5

Returns a binary representing the MD5 checksum of the module. If the module has native code loaded, this will
be the MD5 of the native code, not the BEAM bytecode.

exports

Returnsalist of { Name, Ari t y} tupleswith al exported functions in the module.
functions

Returnsalist of { Nare, Ari ty} tupleswith all functionsin the module.
nifs

Returnsalist of { Nane, Ari t y} tupleswith all NIF functionsin the module.
native

Return t r ue if the module has native compiled code. Return f al se otherwise. In a system compiled without
HiPE support, theresult isalwaysf al se

6.6 Functions

6.6.1 Function Declaration Syntax
A function declaration is a sequence of function clauses separated by semicolons, and terminated by period (.).
A function clause consists of a clause head and a clause body, separated by - >.

A clause head consists of the function name, an argument list, and an optional guard sequence beginning with the
keyword when:

Name(Patternll,...,PatternlN) [when GuardSeql] ->
Body1l;

Name (PatternKl, ...,PatternKN) [when GuardSegK] ->
BodyK.

The function name is an atom. Each argument is a pattern.

The number of arguments Nisthe arity of the function. A function is uniquely defined by the module name, function
name, and arity. That is, two functions with the same name and in the same module, but with different arities are two
different functions.

A function named f in the module mand with arity Nis often denoted asm f / N.
A clause body consists of a sequence of expressions separated by comma. (,):

Exprl,
Expr
Valid Erlang expressions and guard sequences are described in Expressions.

Example:

136 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

6.6 Functions

first clause head
first clause body

fact(N) when N>0 ->
N * fact(N-1);

o o°

second clause head

fact(0) ->
1. second clause body

o o°

6.6.2 Function Evaluation

When afunctionm f / Niscalled, first the code for the function islocated. If the function cannot be found, an undef
runtime error occurs. Notice that the function must be exported to be visible outside the module it is defined in.

If the function is found, the function clauses are scanned sequentially until a clause is found that fulfills both of the
following two conditions:

* The patternsin the clause head can be successfully matched against the given arguments.

e Theguard sequence, if any, istrue.

If such a clause cannot be found, af unct i on_cl ause runtime error occurs.

If such aclauseisfound, the corresponding clause body is evaluated. That is, the expressionsin the body are evaluated
sequentially and the value of the last expression is returned.

Consider the function f act :

-module(m).
-export([fact/1]).

fact(N) when N>0 ->
N * fact(N-1);
(0)
1

fact(0) ->

Assume that you want to calculate the factoria for 1:

1> m:fact(1l).

Evaluation starts at thefirst clause. The pattern Nis matched against argument 1. The matching succeeds and the guard
(N>0) istrue, thus Nis bound to 1, and the corresponding body is evaluated:

N * fact(N-1) => (N is bound to 1)
1 * fact(0)

Now, f act (0) is caled, and the function clauses are scanned sequentially again. First, the pattern N is matched
against 0. The matching succeeds, but the guard (N>0) isfal se. Second, the pattern 0 ismatched against 0. The matching
succeeds and the body is evaluated:

Evaluation has succeed and m f act (1) returns 1.

Ifm f act/ 1 iscalled with anegative number asargument, no clause head matches. A f unct i on_cl ause runtime
€rror occurs.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 137

6.7 Types and Function Specifications

6.6.3 Tail recursion

If the last expression of a function body is a function call, atail recursive cal is done. This is to ensure that no
system resources, for example, call stack, are consumed. This means that an infinite loop can be done if it uses tail-
recursive calls.

Example:

loop(N) ->
io:format("~w~n", [N]),
loop (N+1).

The earlier factorial example can act as a counter-example. It is not tail-recursive, since a multiplication is done on
the result of therecursivecall tof act (N-1) .

6.6.4 Built-In Functions (BIFs)

BIFs are implemented in C code in the runtime system. BIFs do things that are difficult or impossible to implement
in Erlang. Most of the BIFs belong to the module er | ang but there are also BIFs belonging to afew other modules,
for examplel i st s and et s.

The most commonly used BIFs belonging to er | ang(3) are auto-imported. They do not need to be prefixed with
the module name. Which BIFs that are auto-imported is specified in the erlang(3) module in ERTS. For example,
standard-type conversion BIFslikeat om t o_| i st and BIFs allowed in guards can be called without specifying
the module name.

Examples:

1> tuple size({a,b,c}).

3

2> atom to list('Erlang').
"Erlang"

Noticethat it isnormally the set of auto-imported BIFsthat are referred to when talking about 'BIFS.

6.7 Types and Function Specifications

6.7.1 The Erlang Type Language

Erlang is a dynamically typed language. Still, it comes with a notation for declaring sets of Erlang terms to form a
particular type. This effectively forms specific subtypes of the set of all Erlang terms.

Subsequently, these types can be used to specify types of record fields and also the argument and return types of
functions.

Type information can be used for the following:

e Todocument function interfaces
e To provide moreinformation for bug detection tools, such as Dialyzer
e To be exploited by documentation tools, such as EDac, for generating program documentation of various forms

It is expected that the type language described in this section supersedes and replaces the purely comment-based
@ ype and @ pec declarations used by EDaoc.

138 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

6.7 Types and Function Specifications

6.7.2 Types and their Syntax

Types describe sets of Erlang terms. Types consist of, and are built from, a set of predefined types, for example,
i nteger(),atonm(),andpi d() . Predefined types represent atypically infinite set of Erlang terms that belong to
thistype. For example, thetype at on{) denotesthe set of al Erlang atoms.

For integers and atoms, it isallowed for singleton types; for example, theintegers- 1 and 42, or theatoms' f oo’ and
"bar' . All other types are built using unions of either predefined types or singleton types. In atype union between a
type and one of its subtypes, the subtype is absorbed by the supertype. Thus, the union isthen treated asif the subtype
was not a constituent of the union. For example, the type union:

atom() | 'bar' | integer() | 42
describes the same set of terms as the type union:
atom() | integer()

Because of subtyperelationsthat exist between types, typesform alattice where the top-most element, any() , denotes
the set of all Erlang terms and the bottom-most element, none() , denotes the empty set of terms.

The set of predefined types and the syntax for types follows:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 139

6.7 Types and Function Specifications

he top type,
he bottom typ

any()
none()
pid()
port()
reference()
[

Atom
Bitstring
float()

Fun

Integer
List

Map

Tuple

Union
UserDefined

Type ::

—

oP

% described in T

Atom ::
I

Bitstring

atom()
Erlang Atom

o°

'foo', 'bar',
To<<>>
<<_:M>>
<< : *N>>

<<_:M, _: *N>>

M is an Intege
N is an Intege

@ of
o° o°

any function
any arity, ret

@ of
o® o°

.) -> Type)
-> Type)
List) -> Type)

Integer :: integer()

| Integer Value

| Integer Value..Integer Value 6%
Integer Value :: Erlang Integer
Erlang Character
Integer Value BinaryOp Integer
UnaryOp Integer Value

@ of
o° o°

BinaryOp :: '*' | ‘'div' | 'rem' | 'band' | '+'
UnaryOp :: '+' | '-' | 'bnot'
List list(Type)

maybe improper list(Typel, Type2)
nonempty improper list(Typel, Type2)
nonempty list(Type)

Map :: #{} %%
| #{AssociationList}
Tuple :: tuple() %%
| {}
| {TList}
AssociationlList :: Association
| Association, AssociationlList
Association :: Type := Type %%
| Type => Type %%
TList :: Type
| Type, TList

the set of all Erlang terms
e, contains no terms

ype Declarations of User-Defined Types

r Value that evaluates to a positive integer
r Value that evaluates to a positive integer

urning Type

specifies an integer range

..., -1, 0,
$a, $b ...
~Value

1, . 42

| | 'bor' | 'bxor' | 'bsl' | 'bsr

Proper list ([]-terminated)
Typel=contents, Type2=termination
Typel and Type2 as above

Proper non-empty list

denotes the empty map

denotes a tuple of any size

denotes a mandatory association
denotes an optional association

140 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

6.7 Types and Function Specifications

Union :: Typel | Type2

Integer values are either integer or character literals or expressions consisting of possibly nested unary or binary
operations that evaluate to an integer. Such expressions can also be used in bit strings and ranges.

The general form of bit stringsis<<_: M _: _*N>>, where Mand N must evaluate to positive integers. It denotes
abit string that isM + (k*N) bitslong (that is, a bit string that starts with Mbits and continues with k segments
of N bits each, where k is also apositive integer). The notations<<_: _*N>>, <<_: M>>, and <<>> are convenient
shorthands for the cases that Mor N, or both, are zero.

Because lists are commonly used, they have shorthand type notations. The types list(T) and
nonenpty_|ist(T) havetheshorthands[T] and[T, ...], respectively. The only difference between the two
shorthandsisthat [T] canbeanempty listbut[T, ...] cannot.

Notice that the shorthand for | i st (), that is, the list of elements of unknown type, is[_] (or[any()]),not[].
Thenotation [] specifies the singleton type for the empty list.

The general form of map typesis#{ Associ ati onLi st}. Thekey typesin Associ ati onLi st arealowed to
overlap, andif they do, theleftmost association takes precedence. A map associationhasakeyinAssoci at i onLi st
if it belongs to this type. Associ at i onLi st can contain both mandatory (: =) and optional (=>) association
types. If an association type is mandatory, an association with that type needs to be present. In the case of an optional
association typeit is not required for the key type to be present.

The notation #{} specifies the singleton type for the empty map. Note that this notation is not a shorthand for the
map() type.

For convenience, the following types are also built-in. They can be thought as predefined aliases for the type unions
also shown in the table.

Built-in type Defined as

term) any()

bi nary() << 1 *8>>
nonenpty_bi nary() << 18, _:1_*8>>
bitstring() << *1>>
nonenpty_bitstring() << 1, 1 *1>>
bool ean() ‘false' | '"true'
byt e() 0..255

char () 0..16#10ffff
nil() []

nunber () integer() | float()
list() [any()]

maybe_i nproper _list()

maybe_i nproper _list(any(), any())

nonenpty list()

nonenpty | i st (any())

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 141

6.7 Types and Function Specifications

string() [char ()]

nonenpty_string() [char(),...]

i odat a() iolist() | binary()

B ot ey | e
map() #{any() => any()}

function() fun()

modul e() at on()

nfa() {modul e(),atom(),arity()}
arity() 0..255

identifier() pid() | port() | reference()
node() at om()

timeout () "infinity' | non_neg_integer()
no_return() none()

Table 7.1: Built-in types, predefined aliases

In addition, the following three built-in types exist and can be thought as defined below, though strictly their "type
definition” is not valid syntax according to the type language defined above.

Built-in type Can bethought defined by the syntax
non_neg_i nt eger () 0..

pos_i nteger () 1.

neg_i nteger () -1

Table 7.2: Additional built-in types

Users are not allowed to define types with the same names as the predefined or built-in ones. This is checked by the
compiler and its violation results in a compilation error.

| The following built-in list types also exist, but they are expected to be rarely used. Hence, they have long names: |

142 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

6.7 Types and Function Specifications

nonempty maybe improper list() :: nonempty maybe improper list(any(), any())
nonempty improper list(Typel, Type2)
nonempty maybe improper list(Typel, Type2)

where the last two types define the set of Erlang terms one would expect.
Also for convenience, record notation is allowed to be used. Records are shorthands for the corresponding tuples:

Record :: #Erlang Atom{}
| #Erlang Atom{Fields}

Records are extended to possibly contain type information. This is described in Type Information in Record
Declarations.

6.7.3 Type Declarations of User-Defined Types

As seen, the basic syntax of atypeisan atom followed by closed parentheses. New types are declared using - t ype
and - opaque attributes asin the following:

-type my struct type() :: Type.
-opaque my opaq_type() :: Type.

Thetype nameistheatomny_struct _t ype, followed by parentheses. Type is atype as defined in the previous
section. A current restriction is that Ty pe can contain only predefined types, or user-defined types which are either
of the following:

e Modulelocal type, that is, with adefinition that is present in the code of the module
* Remotetype, that is, type defined in, and exported by, other modules; more about this soon.

For module-local types, the restriction that their definition existsin the module is enforced by the compiler and results
in acompilation error. (A similar restriction currently exists for records.)

Type declarations can also be parameterized by including type variables between the parentheses. The syntax of type
variables is the same as Erlang variables, that is, starts with an upper-case letter. Naturally, these variables can - and
isto - appear on the RHS of the definition. A concrete example follows:

-type orddict(Key, Val) :: [{Key, Val}l].

A module can export some types to declare that other modules are allowed to refer to them as remote types. This
declaration has the following form:

-export type([T1/A1, ..., Tk/AK]).

Here the Ti's are atoms (the name of the type) and the Ai's are their arguments
Example:

-export type([my struct type/0, orddict/2]).
Assuming that these types are exported from module' nod' , you can refer to them from other modul es using remote

type expressions like the following:

mod:my struct type()
mod:orddict(atom(), term())

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 143

6.7 Types and Function Specifications

It isnot allowed to refer to types that are not declared as exported.

Types declared as opaque represent sets of terms whose structureis not supposed to be visible from outside of their
defining module. That is, only the module defining them is allowed to depend on their term structure. Consequently,
such types do not make much sense as module local - module local types are not accessible by other modules anyway
- and is always to be exported.

Read more on Opaques

6.7.4 Type Information in Record Declarations

The types of record fields can be specified in the declaration of the record. The syntax for thisis as follows:

-record(rec, {fieldl :: Typel, field2, field3 :: Type3}).

For fields without type annotations, their type defaults to any(). That is, the previous example is a shorthand for the
following:

-record(rec, {fieldl :: Typel, field2 :: any(), field3 :: Type3}).

In the presence of initial values for fields, the type must be declared after the initialization, as follows:

-record(rec, {fieldl = [] :: Typel, field2, field3 = 42 :: Type3}).

Theinitial valuesfor fields are to be compatible with (that is, a member of) the corresponding types. Thisis checked
by the compiler and resultsin a compilation error if aviolation is detected.

Before Erlang/OTP 19, for fieldswithout initial values, thesingletontype' undef i ned' wasaddedtoall declared
types. In other words, the following two record declarations had identical effects:

-record(rec, {fl = 42 :: integer(),
2 :: float(),
f3 i 'a' | 'b'}).
-record(rec, {fl = 42 :: integer(),
2 :: 'undefined' | float(),
f3 :: 'undefined' | 'a' | 'b'}).

Thisis no longer the case. If you require ' undef i ned' inyour record field type, you must explicitly add it to
the typespec, as in the 2nd example.

Any record, containing type information or not, once defined, can be used as a type using the following syntax:

#rec{}

In addition, the record fields can be further specified when using a record type by adding type information about the
field asfollows:

#rec{some field :: Type}

Any unspecified fields are assumed to have the type in the original record declaration.

144 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

6.7 Types and Function Specifications

When records are used to create patterns for ETS and Mnesia match functions, Dialyzer may need some help not
to emit bad warnings. For example:

-type height() :: pos integer().
-record(person, {name :: string(), height :: height()}).

lookup(Name, Tab) ->
ets:match object(Tab, #person{name = Name, ="' '}).

Dialyzer will emit awarning since' ' isnot in the type of record field hei ght .

The recommended way of dealing with thisis to declare the smallest record field types to accommodate all your
needs, and then create refinements as needed. The modified example:

-record(person, {name :: string(), height :: height() | ' '}).
-type person() :: #person{height :: height()}.

In specifications and type declarations the type per son() isto be preferred before #per son{ }.

6.7.5 Specifications for Functions

A specification (or contract) for afunction is given using the - spec attribute. The general format is as follows:

-spec Function(ArgTypel, ..., ArgTypeN) -> ReturnType.

An implementation of the function with the same name Funct i on must exist in the current module, and the arity of
the function must match the number of arguments, else a compilation error occurs.

The following longer format with module name is also valid as long as Mbdul e is the hame of the current module.
This can be useful for documentation purposes.

-spec Module:Function(ArgTypel, ..., ArgTypeN) -> ReturnType.

Also, for documentation purposes, argument names can be given:

-spec Function(ArgNamel :: Typel, ..., ArgNameN :: TypeN) -> RT.
A function specification can be overloaded. That is, it can have several types, separated by a semicolon (;):
-spec foo(T1l, T2) -> T3
; (T4, T5) -> T6.

A current restriction, which currently resultsin awarning by Dialyzer, isthat the domains of the argument types cannot
overlap. For example, the following specification resultsin awarning:

-spec foo(pos integer()) -> pos integer()
; (integer()) -> integer().

Type variables can be used in specifications to specify relations for the input and output arguments of a function. For
example, the following specification defines the type of a polymorphic identity function:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 145

6.7 Types and Function Specifications

-spec id(X) -> X.

Noticethat the above specification does not restrict theinput and output typein any way. Thesetypescan be constrained
by guard-like subtype constraints and provide bounded quantification:

-spec id(X) -> X when X :: tuple().

Currently, the: : constraint (read as «is a subtype of») is the only guard constraint that can be used in the when part
of a- spec attribute.

The above function specification uses multiple occurrences of the same type variable. That provides more type
information than the following function specification, where the type variables are missing:

-spec id(tuple()) -> tuple().

The latter specification says that the function takes some tuple and returns some tuple. The specification with the
X type variable specifies that the function takes a tuple and returns the same tuple.

However, it is up to the tools that process the specifications to choose whether to take this extra information into
account or not.

Thescopeof a:: constraintisthe(...) -> Ret Type specification after which it appears. To avoid confusion,
it is suggested that different variables are used in different constituents of an overloaded contract, as shown in the
following example:

-spec foo({X, integer()}) -> X when X :: atom()
; ([Y]) -> Y when Y :: number().

Some functionsin Erlang are not meant to return; either because they define servers or because they are used to throw
exceptions, as in the following function:

my _error(Err) -> erlang:throw({error, Err}).

For such functions, it is recommended to use the special no_r et ur n() type for their "return”, through a contract
of the following form:

-spec my error(term()) -> no_return().

Erlang usesthe shorthand version _ asan anonymoustype variableequivalenttot er n() orany() . For example,
the following function

-spec Function(string(),) -> string().
is equivalent to:

-spec Function(string(), any()) -> string().

146 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

6.8 Opaques

6.8 Opaques
6.8.1 Opaque Type Aliases

The main use case for opacity in Erlang is to hide the implementation of a datatype, enabling evolving the APl while
minimizing the risk of breaking consumers. The runtime does not check opacity. Dialyzer provides some opacity-
checking, but the rest is up to convention.

This document explains what Erlang opacity is (and the trade-offsinvolved) viathe example of OTP'sset s: set ()
datatype. Thistype was defined in “sets” module like this:

-opaque set(Element) :: #set{segs :: segs(Element)}.
OTP 24 changed the definition to the following, in this commit
-opaque set(Element) :: #set{segs :: segs(Element)} | #{Element => ?VALUE}.

And this change was safer and more backwards-compatible than if the type had been defined with - t ype instead of
- opaque . Here's why: when a module defines an - opaque , the contract is that only the defining module should
rely on the definition of the type: no other modules should rely on the definition.

This means that code that pattern-matched on set as a record/tuple technically broke the contract, and opted in to
being potentially broken when the definition of set () changed. Before OTP 24, this code printed ok . In OTP 24
it may error:

case sets:new() of
Set when is tuple(Set) ->
io:format("ok")
end.

When working with an opaque defined in another module, her e are some recommendations:

» Don't examine the underlying type using pattern-matching, guards, or functions that reveal the type, such as
tuple_sizell.

» Instead, use functions provided by the module for working with the type. For example, set s module provides
sets:new 0,sets:add/2,sets:is_elenment/2,etc.

e sets:set(a) isasubtypeof sets:set(a | b) andnotthe other way around. Generally, you can rely
on the property that t he_opaque(T) isasubtypeof t he_opaque(U) when T isa subtype of U.

When defining your own opaques, her e are some recommendations:

e Since consumers are expected to not rely on the definition of the opaque type, you must provide functions for
constructing and querying/deconstructing intances of your opague type. For example, sets can be constructed
withsets: new 0,sets:fromlist/1,sets: add/ 2, queriedwithsets:is_el ement/ 2,and
deconstructed withset s: to_Iist/ 1.

« Don't define an opagque with atype variable in parameter position. This breaks the normal and expected
behavior that (for example) my_t ype(a) isasubtypeof my_type(a | b)
» Add specs to exported functions that use the opaque type

Note that opagues can be harder to work with for consumers, since the consumer is expected not to pattern-match and
must instead use functions that the author of the opaque type provides to use instances of the type.

Also, opacity in Erlang is skin-deep: the runtime does not enforce opacity-checking. So now that sets are implemented
in terms of maps, an i s_map check on a set will pass. The opacity rules are only enforced by convention and by
additional tooling such as Dialyzer. And this enforcement is not total: For example, determined consumer of set s
can still do thingsthat reveal the structure of the set, such asby printing, serializing, or using aset ast er m() andthen
inspecting viafunctionslikei s_map or maps: get/ 2 . And Dialyzer must make some approximations . Opacity
checking has limitations, but is still avital tool in scalable Erlang devel opment.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 147

href
href

6.9 Expressions

6.9 Expressions

In this section, all valid Erlang expressions are listed. When writing Erlang programs, it is also allowed to use macro-
and record expressions. However, these expressions are expanded during compilation and are in that sense not true
Erlang expressions. Macro- and record expressions are covered in separate sections:

e Preprocessor
* Records

6.9.1 Expression Evaluation

All subexpressions are evaluated before an expression itself is evaluated, unless explicitly stated otherwise. For
example, consider the expression:

Exprl + Expr2

Expr 1 and Expr 2, which are also expressions, are evaluated first - in any order - before the addition is performed.

Many of the operators can only be applied to arguments of a certain type. For example, arithmetic operators can only
be applied to numbers. An argument of the wrong type causes abadar g runtime error.

6.9.2 Terms

The simplest form of expression is aterm, that is an integer, float, atom, string, list, map, or tuple. The return value
istheterm itself.

6.9.3 Variables

A variable is an expression. If a variable is bound to a value, the return value is this value. Unbound variables are
only allowed in petterns.

Variables start with an uppercase letter or underscore (). Variables can contain alphanumeric characters, underscore
and @

Examples:

X

Namel
PhoneNumber
Phone number

_Height
Variables are bound to values using pattern matching. Erlang uses single assignment, that is, a variable can only be
bound once.

The anonymous variableis denoted by underscore (_) and can be used when avariable is required but its value can
be ignored.

Example:

[HI_T = [1,2,3]

Variables starting with underscore (), for example, _Hei ght , are normal variables, not anonymous. However, they
areignored by the compiler in the sense that they do not generate warnings.

Example:

The following code:

148 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

6.9 Expressions

member(_, []) ->
[1.

can be rewritten to be more readabl e:

member(Elem, []) ->
[1.

This causes a warning for an unused variable, El em if the code is compiled with the flag war n_unused_var s
set. Instead, the code can be rewritten to:

member(Elem, []) ->
[1.

Notice that since variables starting with an underscore are not anonymous, this matches:

{.,_}=1{12}
But thisfails;

{_N,_N} = {1,2}

The scope for avariableisitsfunction clause. Variables bound in abranch of ani f, case, or r ecei ve expression
must be bound in all branches to have a value outside the expression. Otherwise they are regarded as 'unsafe' outside
the expression.

For thet r y expression variable scoping islimited so that variables bound in the expression are always 'unsafe’ outside
the expression.

6.9.4 Patterns

A pattern has the same structure as aterm but can contain unbound variables.

Example:

Namel

[H|T]

{error,Reason}
Patterns are allowed in clause heads, case and r ecei ve expressions, and match expressions.
Match Operator = in Patterns

If Pat t er n1 and Pat t er n2 are valid patterns, the following is also avalid pattern:

Patternl = Pattern2

When matched against aterm, both Pat t er n1 and Pat t er n2 are matched against the term. The idea behind this
feature is to avoid reconstruction of terms.

Example:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 149

6.9 Expressions

f({connect,From,To,Number,Options}, To) ->
Signal = {connect,From,To,Number,Options},

f(Signal, To) ->
ignore.

can instead be written as

f({connect, ,To, , } = Signal, To) ->
f(signal, To) ->
ignore.
String Prefix in Patterns
When matching strings, the following isavalid pattern:

f("prefix" ++ Str) -> ...

Thisis syntactic sugar for the equivalent, but harder to read:

f(I$p,$r,$e,$f,$1,$x | Str]) -> ...

Expressions in Patterns
An arithmetic expression can be used within a pattern if it meets both of the following two conditions:

e |t usesonly numeric or bitwise operators.
» Itsvalue can be evaluated to a constant when complied.

Example:

case {Value, Result} of
{?THRESHOLD+1, ok} -> ...

6.9.5 Match
The following matches Expr 1, a pattern, against Expr 2:

Exprl = Expr2
If the matching succeeds, any unbound variable in the pattern becomes bound and the value of Expr 2 is returned.

If the matching fails, abadmat ch run-time error occurs.

Examples:

1> {A, B} = {answer, 42}.

{answer, 42}

2> A.

answer

3> {C, D} = [1, 2].

** exception error: no match of right-hand side value [1,2]

150 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

6.9 Expressions

6.9.6 Function Calls

ExprF(Exprl,...,ExprN)
ExprM:ExprF(Exprl,...,ExprN)

In the first form of function calls, Expr M Expr F(Expr 1, ..., Expr N), each of Expr Mand Expr F must be an
atom or an expression that evaluates to an atom. The function is said to be called by using the fully qualified function
name. Thisis often referred to asaremote or external function call.

Example:
lists:keysearch(Name, 1, List)

In the second form of function calls, Expr F(Expr 1, . .., Expr N), Expr F must be an atom or evaluate to a fun.

If Expr F is an atom, the function is said to be called by using the implicitly qualified function name. If the
function Expr F is localy defined, it is called. Alternatively, if Expr F is explicitly imported from the Mmodule,
M Expr F(Expr1, ..., ExprN) iscaled. If Expr F is neither declared locally nor explicitly imported, Expr F
must be the name of an automatically imported BIF.

Examples:

handle(Msg, State)
spawn(m, init, [])

Exampleswhere Expr F isafun:

1> Funl = fun(X) -> X+1 end,
Funl(3).

4

2> fun lists:append/2([1,2]1, [3,4]).
[1,2,3,4]

3>

Notice that when calling alocal function, there is a difference between using the implicitly or fully qualified function
name. The latter always refers to the latest version of the module. See Compilation and Code Loading and Function
Evaluation.

Local Function Names Clashing With Auto-Imported BIFs

If alocal function has the same name as an auto-imported BIF, the semanticsisthat implicitly qualified function calls
are directed to the locally defined function, not to the BIF. To avoid confusion, thereisacompiler directive available,
-conpi l e({no_auto_inport, [F/ A]}),that makesaBIF not being auto-imported. In certain situations, such
acompile-directive is mandatory.

Before OTP R14A (ERTSversion 5.8), an implicitly qualified function call to afunction having the same name as
an auto-imported BIF always resulted in the BIF being called. In newer versions of the compiler, the local function
iscalled instead. Thisisto avoid that future additions to the set of auto-imported BIFs do not silently change the
behavior of old code.

However, to avoid that old (pre R14) code changed its behavior when compiled with OTP version R14A or later,
the following restriction applies: If you override the name of a BIF that was auto-imported in OTP versions prior
to R14A (ERTS version 5.8) and have an implicitly qualified call to that function in your code, you either need to
explicitly remove the auto-import using a compiler directive, or replace the call with afully qualified function call.
Otherwise you get a compilation error. See the following example:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 151

6.9 Expressions

-export([length/1,f/1]).
-compile({no_auto import, [length/1]}). % erlang:length/1 no longer autoimported
length([]) ->

length([H|T]) ->
1 + length(T). %% Calls the local function length/1

f(X) when erlang:length(X) > 3 -> %% Calls erlang:length/1,

% which is allowed in guards

%
%

long.

The same logic applies to explicitly imported functions from other modules, as to locally defined functions. It is not
allowed to both import afunction from another module and have the function declared in the modul e at the sametime:

-export([f/1]).
-compile({no auto import, [length/1]}). % erlang:length/1 no longer autoimported
-import(mod, [length/1]).

f(X) when erlang:length(X) > 33 -> %% Calls erlang:length/1,

% which is allowed in guards

o of

o°

erlang:length(X); % Explicit call to erlang:length in body

f(X) ->
length(X).

o°

% mod:length/1 is called

For auto-imported BIFsadded in Erlang/OTP R14A and thereafter, overriding the namewith alocal function or explicit
import is aways allowed. However, if the - conpi | e({no_aut o_i nport, [F/ A]) directiveis not used, the
compiler issues awarning whenever the function is called in the module using the implicitly qualified function name.

6.9.7 If

if
GuardSeql ->
Body1;
GuardSegN ->
BodyN
end

The branches of an i f -expression are scanned sequentially until a guard sequence Guar dSeq that evaluates to true
isfound. Then the corresponding Body (sequence of expressions separated by ',') is evaluated.

Thereturn value of Body isthereturn value of thei f expression.

If no guard sequence is evaluated astrue, ani f _cl ause run-time error occurs. |f necessary, the guard expression
t r ue can be used in the last branch, as that guard sequence is awaystrue.

Example:

152 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

6.9 Expressions

is greater _than(X, Y) ->
if
X>Y ->
true;
true -> % works as an 'else' branch
false
end

6.9.8 Case

case Expr of
Patternl [when GuardSeql] ->
Body1;

PatternN [when GuardSegN] ->
BodyN
end

The expression Expr is evauated and the patterns Pat t er n are sequentially matched against the result. If amatch
succeeds and the optional guard sequence Guar dSeq istrue, the corresponding Body is evaluated.

Thereturn value of Body isthe return value of the case expression.
If there is no matching pattern with atrue guard sequence, acase_cl ause run-time error occurs.
Example:

is valid signal(Signal) ->
case Signal of
{signal, What, From, To} ->
true;
{signal, What, To} ->
true;
_Else ->
false
end.

6.9.9 Maybe

maybe is an experimental new feature introduced in OTP 25. By default, it is disabled. To enable maybe,
either usethe - f eat ur e(maybe_expr, enabl e) directive (from within source code), or the compiler option
{feature, maybe_expr, enabl e}. The feature must aso be enabled in runtime using the - enabl e-
feature optiontoerl .

maybe
Exprl,

ExprN
end

The expressionsin anaybe block are evaluated sequentialy. If all expressions are evaluated successfully, the return
value of the maybe block is Expr N. However, execution can be short-circuited by a conditional match expression:

Exprl ?= Expr2

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 153

6.9 Expressions

?=iscalled the conditional match operator. It isonly allowed to be used at the top-level of armaybe block. It matches
the pattern Expr 1 against Expr 2. If the matching succeeds, any unbound variable in the pattern becomes bound.
If the expression is the last expression in the maybe block, it aso returns the value of Expr 2. If the matching is
unsuccessful, the rest of the expressions in the maybe block are skipped and the return value of the naybe block
isExpr 2.

None of the variables bound in amaybe block must be used in the code that follows the block.

Hereisan example:

maybe
{ok, A} 7= a(),
true = A >= 0,
{ok, B} 7= b(),
A+ B

end

Let usfirst assumethat a() returns{ ok, 42} andb() returns{ ok, 58} . With those return values, al of the match
operators will succeed, and the return value of the maybe block isA + B, whichisequal to42 + 58 = 100.

Now let us assumethat a() returnser r or . The conditional match operator in{ ok, A} ?= a() failsto match,
and the return value of the may be block isthe value of the expression that failed to match, namely er r or . Similarly,
if b() returnswr ong, the return value of the maybe block iswr ong.

Finally, let us assume that a() returns - 1. Because true = A >= 0 uses the match operator =", a
{badmat ch, f al se} run-time error occurs when the expression fails to match the pattern.

The example can be written in aless succient way using nested case expressions:

case a() of
{ok, A} ->
true = A >= 0,
case b() of
{ok, B} ->
A + B;
Otherl ->
Otherl
end;
Other2 ->
Other2
end

The maybe block can be augmented with el se clauses:

maybe
Exprl,

ExprN
else

Patternl [when GuardSeql] ->
Body1;

PatternN [when GuardSegN] ->
BodyN
end

If a conditional match operator fails, the failed expression is matched against the patternsin all clauses between the
el se and end keywords. If amatch succeeds and the optional guard sequence Guar dSeq istrue, the corresponding
Body isevauated. The value returned from the body is the return value of the maybe block.

If there is no matching pattern with atrue guard sequence, an el se_cl ause run-time error occurs.

154 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

6.9 Expressions

None of the variables bound in anmaybe block must be used in the el se clauses. None of the variables bound in the
el se clauses must be used in the code that follows the may be block.

Here is the previous example augmented with ael se clauses:

maybe
{Okr A} ?= a():
true = A >= 0,
{ok, B} ?= Db(),
A+ B

else
error -> error;
wrong -> error

end

The el se clauses tranglate the failing value from the conditional match operatorsto the value er r or . If the failing
value is not one of the recognized values, ael se_cl ause run-time error occurs.

6.9.10 Send

Exprl ! Expr2

Sends the value of Expr 2 as a message to the process specified by Expr 1. The value of Expr 2 is aso the return
value of the expression.

Expr 1 must evaluateto apid, an alias (reference), a port, aregistered name (atom), or atuple{ Nane, Node} . Nane

isan atom and Node is a node name, also an atom.

* |If Expr 1 evaluatesto a name, but this nameis not registered, abadar g run-time error occurs.

» Sending amessage to areference never fails, even if the reference is no longer (or never was) an alias.

e Sending amessage to a pid never fails, even if the pid identifies a non-existing process.

» Distributed message sending, that is, if Expr 1 evaluatesto atuple { Narre, Node} (or apid located at another
node), also never fails.

6.9.11 Receive

receive
Patternl [when GuardSeql] ->
Body1;

PatternN [when GuardSegN] ->
BodyN
end

Fetches a received message present in the message queue of the process. The first message in the message queue is
matched sequentially against the patternsfrom top to bottom. If no match was found, the matching sequenceisrepeated
for the second message in the queue, and so on. Messages are queued in the order they were received. If a match
succeeds, that is, if the Pat t er n matches and the optional guard sequence Guar dSeq is true, then the message is
removed from the message queue and the corresponding Body is evaluated. All other messagesin the message queue
remain unchanged.

Thereturn value of Body isthe return value of ther ecei ve expression.

r ecei ve never fails. The execution is suspended, possibly indefinitely, until a message arrives that matches one of
the patterns and with a true guard sequence.

Example:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 155

6.9 Expressions

wait for onhook() ->
receive
onhook ->
disconnect(),
idle();
{connect, B} ->
B ! {busy, self()},
wait for_onhook()
end.

Ther ecei ve expression can be augmented with a timeout:

receive
Patternl [when GuardSeql] ->
Body1;

PatternN [when GuardSegN] ->
BodyN
after
ExprT ->
BodyT
end

recei ve. . af t er works exactly asrecei ve, except that if no matching message has arrived within Expr T
milliseconds, then BodyT is evaluated instead. The return value of Body T then becomes the return value of the
recei ve. . af t er expression. Expr T isto evaluate to an integer, or the atom i nf i ni t y. The allowed integer
range is from 0 to 4294967295, that is, the longest possible timeout is ailmost 50 days. With a zero value the timeout
occursimmediately if there is no matching message in the message queue.

Theatomi nfi ni ty will make the process wait indefinitely for a matching message. Thisis the same as not using
atimeout. It can be useful for timeout values that are calculated at runtime.

Example:

wait for onhook() ->
receive

onhook ->
disconnect(),
idle();

{connect, B} ->
B ! {busy, self()},
wait for onhook()

after
60000 ->
disconnect(),
error()
end.

Itislegal tousear ecei ve. . af t er expression with no branches:

receive
after
ExprT ->
BodyT
end

This construction does not consume any messages, only suspends execution in the process for Expr T milliseconds.
This can be used to implement simple timers.

156 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

6.9 Expressions

Example:

timer() ->
spawn(m, timer, [self()]).

timer(Pid) ->
receive
after
5000 ->
Pid ! timeout
end.

6.9.12 Term Comparisons

Exprl op Expr2

Description

Equal to

Not equa to

Lessthan or equal to

Less than

Greater than or equal to

\%

Greater than

Exactly equal to

=/=

Exactly not equal to

Table 9.1: Term Comparison Operators.

The arguments can be of different data types. The following order is defined:

number < atom < reference < fun < port < pid < tuple < map < nil < list < bit string

ni | in the previous expression represents the empty list ([]), which is regarded as a separate type from | i st/ 0.

Thatiswhynil < |ist.

Listsare compared element by element. Tuplesare ordered by size, two tupleswith the same size are compared el ement

by element.

Bit strings are compared bit by bit. If one bit string is a prefix of the other, the shorter bit string is considered smaller.

Maps are ordered by size, two maps with the same size are compared by keys in ascending term order and then by

valuesin key order. In maps key order integers types are considered |ess than floats types.

Atoms are compared using their string value, codepoint by codepoint.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 157

6.9 Expressions

When comparing an integer to a float, the term with the lesser precision is converted into the type of the other term,
unless the operator is one of =: = or =/ =. A float is more precise than an integer until al significant figures of the
float are to the left of the decimal point. This happens when the float is larger/smaller than +/-9007199254740992.0.
The conversion strategy is changed depending on the size of the float because otherwise comparison of large floats

and integers would lose their transitivity.

Term comparison operators return the Boolean value of the expression, t r ue or f al se.

Examples:

1> 1==1.0.

true

2> 1=:=1.0.

false

3> 1> a.

false

4> #{c => 3} > #{a => 1, b => 2}.
false

5> #{a => 1, b => 2} == #{a => 1.0, b => 2.0}.
true

6> <<2:2>> < <<128>>.

true

7> <<3:2>> < <<128>>.,

false

6.9.13 Arithmetic Expressions

op Expr
Exprl op Expr2

Operator Description Argument Type
+ Unary + Number
- Unary - Number
+ number
- Number
* Number
/ Floating point division Number
bnot Unary bitwise NOT Integer
div Integer division Integer
rem Integer remainder of X/Y Integer
band Bitwise AND Integer
bor Bitwise OR Integer
bxor Arithmetic bitwise XOR Integer

158 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

6.9 Expressions

bsl Arithmetic bitshift left Integer

bsr Bitshift right Integer

Table 9.2: Arithmetic Operators.
Examples:

1> +1.
1
2> -1.
-1
3> 1+1.
2
4> 4/2.
2.0
5> 5 div 2.
2
6> 5 rem 2.
1
7> 2#10 band 2#01.
0
8> 2#10 bor 2#01.
3
9> a + 10.
** exception error: an error occurred when evaluating an arithmetic expression
in operator +/2
called as a + 10
10> 1 bsl (1 bsl 64).
** exception error: a system limit has been reached
in operator bsl/2
called as 1 bsl 18446744073709551616

6.9.14 Boolean Expressions

op Expr
Exprl op Expr2

Operator Description

not Unary logical NOT
and Logica AND

or Logica OR

xor Logical XOR

Table 9.3: Logical Operators.

Examples:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 159

6.9 Expressions

1> not true.
false
2> true and false.
false
3> true xor false.
true
4> true or garbage.
** exception error: bad argument
in operator or/2
called as true or garbage

6.9.15 Short-Circuit Expressions

Exprl orelse Expr2
Exprl andalso Expr2

Expr 2 isevaluated only if necessary. That is, Expr 2 isevauated only if:

e« Exprlevauatestof al seinanorel se expression.

or

* Exprlevauatestot r ue inanandal so expression.

Returns either the value of Expr 1 (thatis, t rue or f al se) or the value of Expr 2 (if Expr 2 is evaluated).
Example 1:

case A >= -1.0 andalso math:sqrt(A+1) > B of

Thisworkseven if Aislessthan- 1. 0, sincein that case, mat h: sqrt/ 1 is never evaluated.

Example 2:

OnlyOne = is atom(L) orelse
(is list(L) andalso length(L) == 1),

From Erlang/OTP R13A, Expr 2 isno longer required to evaluate to a Boolean value. As a consequence, andal so
and or el se are now tail-recursive. For instance, the following function is tail-recursive in Erlang/OTP R13A and
later:

all(Pred, [Hd|Taill]) ->

Pred(Hd) andalso all(Pred, Tail);
ali(., [1) ->

true.

6.9.16 List Operations

Exprl ++ Expr2
Exprl -- Expr2

The list concatenation operator ++ appends its second argument to its first and returns the resulting list.

The list subtraction operator - - produces a list that is a copy of the first argument. The procedure is as follows: for
each element in the second argument, the first occurrence of this element (if any) is removed.

Example:

160 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

6.9 Expressions

1> [1,2,3]++[4,5].
[1,2,3,4,5]

2> [11213121112]"[21112]-
[3,1,2]

6.9.17 Map Expressions

Creating Maps

Constructing a new map is done by letting an expression K be associated with another expression V:
#H K=V}

New maps can include multiple associations at construction by listing every association:
#{ KL => V1, .., Kn => Vn }

An empty map is constructed by not associating any terms with each other:

#{}

All keys and values in the map are terms. Any expression is first evaluated and then the resulting terms are used as
key and value respectively.

Keys and values are separated by the => arrow and associations are separated by acomma, .

Examples:
MO = #{}, % empty map
M1 = #{a => <<"hello">>}, % single association with literals
M2 = #{1 => 2, b => b}, % multiple associations with literals
M3 = #{k => {A,B}}, % single association with variables
M4 = #{{"w", 1} => f()}. % compound key associated with an evaluated expression

Here, A and B are any expressions and MD through M4 are the resulting map terms.
If two matching keys are declared, the latter key takes precedence.

Example:

1> #{1 => a, 1 => b}.
#{1 => b }

2> #{1.0 => a, 1 => b}.
#{1 =>b, 1.0 => a}

The order in which the expressions constructing the keys (and their associated values) are evaluated is not defined.
The syntactic order of the key-value pairsin the construction is of no relevance, except in the recently mentioned case
of two matching keys.

Updating Maps
Updating a map has asimilar syntax as constructing it.

An expression defining the map to be updated, is put in front of the expression defining the keys to be updated and
their respective values:

M#{ K => V }

Here Mis aterm of type map and K and V are any expression.
If key K does not match any existing key in the map, a new association is created from key K to value V.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 161

6.9 Expressions

If key K matches an existing key in map M its associated value is replaced by the new value V. In both cases, the
evaluated map expression returns a new map.

If Mis not of type map, an exception of type badmap isthrown.
To only update an existing value, the following syntax is used:

M#{ K :=V }

Here Mis aterm of type map, V is an expression and K is an expression that evaluates to an existing key in M

If key K does not match any existing keysin map M an exception of typebadar g istriggered at runtime. If amatching
key K is present in map M its associated value is replaced by the new value V, and the evaluated map expression
returns a new map.

If Mis not of type map, an exception of type badmap isthrown.

Examples:
MO = #{},
M1 = Mo#{a => 0},
M2 = Ml#{a => 1, b => 2},
M3 = M2#{"function" => fun() -> f() end},
M4 = M3#{a := 2, b :=3}. % 'a' and 'b' was added in "M1® and "M2".

Here MD isany map. It followsthat ML .. M4 are maps aswell.
More examples:

1> M = #{1 => a}.

#{1 => a }

2> M#{1.0 => b}.

#{1 => a, 1.0 => b}.

3> M#{l := b}.

#{1 => b}

4> M#{1.0 := b}.

** exception error: bad argument

As in construction, the order in which the key and value expressions are evaluated is not defined. The syntactic order
of the key-value pairs in the update is of no relevance, except in the case where two keys match. In that case, the
latter value is used.

Maps in Patterns
Matching of key-value associations from mapsis done as follows:
#HK:i=V}I=M

Here Mis any map. The key K must be a guard expression, with all variables already bound. V can be any pattern with
either bound or unbound variables.

If the variable V is unbound, it becomes bound to the value associated with the key K, which must exist in the map M
If the variable V is bound, it must match the value associated with Kin M

| Before OTP 23, the expression defining the key K was restricted to be either asingle variable or aliteral . |

Example:

162 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

6.9 Expressions

1> M = #{"tuple" => {1,2}}.
#{"tuple" => {1,2}}

2> #{"tuple" := {1,B}} = M.
#{"tuple" => {1,2}}

3> B.

2.

Thisbinds variable B to integer 2.
Similarly, multiple values from the map can be matched:

#{ KL :=Vl, .., Kn :=Vn } =M
HerekeysKl .. Kn areany expressionswith literals or bound variables. If all key expressions evaluate successfully

and all keysexistinmap M all variablesinVV1 .. Vn ismatched to the associated values of their respective keys.

If the matching conditions are not met, the match fails, either with:
* A badnmat ch exception.

Thisisif it is used in the context of the match operator asin the example.
e Or resulting in the next clause being tested in function heads and case expressions.

Matching in maps only alowsfor : = as delimiters of associations.
The order in which keys are declared in matching has no relevance.
Duplicate keys are allowed in matching and match each pattern associated to the keys:
#{ K :=Vl, K:=V2} =M
Matching an expression against an empty map literal, matches its type but no variables are bound:
#{} = Expr
This expression matches if the expression Expr is of type map, otherwise it fails with an exception badnat ch.
Here the key to be retrieved is constructed from an expression:
#{{tag, length(List)} := V} = Map

Li st must be an already bound variable.
Matching Syntax
Matching of literals as keys are alowed in function heads:

%% only start if not started
handle call(start, From, #{ state := not started } =5S) ->

{reply, ok, S#{ state := start }};

%% only change if started
handle call(change, From, #{ state := start } =5S) ->

{reply, ok, S#{ state := changed }};

Maps in Guards

Maps are allowed in guards as long as all subexpressions are valid guard expressions.
The following guard BIFs handle maps:

e is map/lintheer| ang module

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 163

6.9 Expressions

e is map key/2intheer| ang module
 map_get/2intheer | ang module
* map_size/lintheer| ang module

6.9.18 Bit Syntax Expressions

<<>>
<<El,...,En>>

Each element Ei specifies a segment of the bit string. Each element Ei is a value, followed by an optional size
expression and an optional type specifier list.

Ei = Value |
Value:Size |
Value/TypeSpecifierList |
Value:Size/TypeSpecifierList

Used in a bit string construction, Val ue is an expression that is to evaluate to an integer, float, or bit string. If the
expression is not asingle literal or variable, it isto be enclosed in parentheses.

Used in a bit string matching, Val ue must be avariable, or an integer, float, or string.
Notice that, for example, using a string literal asin <<" abc" >> is syntactic sugar for <<$a, $b, $c>>.
Used in abit string construction, Si ze is an expression that isto evaluate to an integer.

Used in abit string matching, Si ze must be aguard expression that evaluatesto an integer. All variablesin the guard
expression must be already bound.

Before OTP 23, Si ze was restricted to be an integer or a variable bound to an integer.

The value of Si ze specifies the size of the segment in units (see below). The default value depends on the type (see
below):

e Forinteger itis8.

 Forfloat itis64.

e Forbinary andbi t stri ng itisthewholebinary or bit string.

In matching, this default valueisonly valid for the last element. All other bit string or binary elementsin the matching
must have a size specification.

Fortheut f 8, ut f 16, and ut f 32 types, Si ze must not be given. The size of the segment isimplicitly determined
by the type and value itself.

TypeSpeci fi erLi st isalist of type specifiers, in any order, separated by hyphens (-). Default values are used
for any omitted type specifiers.

Type=integer |float |binary |bytes |bitstring|bits|utf8|utfl6|utf32
Thedefaultisi nt eger . byt es isashorthand for bi nary and bi t s isashorthand for bi t st ri ng. See
below for more information about the ut f types.

Si gnedness=si gned |unsi gned
Only matters for matching and when thetypeisi nt eger . Thedefault isunsi gned.

164 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

6.9 Expressions

Endi anness=big|little|native
Native-endian means that the endianness is resolved at load time to be either big-endian or little-endian,
depending on what is native for the CPU that the Erlang machine is run on. Endianness only matters when the
Typeiseitheri nt eger,utf 16, ut f 32, or f | oat . Thedefaultisbi g.

Unit=unit:IntegerlLiteral
The allowed rangeis 1..256. Defaultsto 1 fori nt eger, fl oat ,andbi t st ri ng, andto 8for bi nary. No
unit specifier must be given for the typesut f 8, ut f 16, and ut f 32.

The value of Si ze multiplied with the unit gives the number of bits. A segment of type bi nar y must have asize
that is evenly divisible by 8. For a segment of typef | oat the size must be either 64, 32, or 16.

When constructing binaries, if the size N of an integer segment is too small to contain the given integer, the most
significant bits of the integer are silently discarded and only the N |east significant bits are put into the binary.

Thetypesut f 8, ut f 16, and ut f 32 specifies encoding/decoding of the Unicode Transformation FormatsUTF-8,
UTF-16, and UTF-32, respectively.

When constructing a segment of a utf type Val ue must be an integer in the range 0..16#D7FF or
16#E000....16#10FFFF. Construction failswith abadar g exceptionif Val ue isoutside the allowed ranges. Thesize
of the resulting binary segment depends on the type or Val ue, or both:

e Forutf 8, Val ue isencoded in 1-4 bytes.
e« Forutf 16, Val ue isencodedin 2 or 4 bytes.
e Forutf32,Val ue isaways be encoded in 4 bytes.

When constructing, aliteral string can be given followed by one of the UTF types, for example: <<" abc"/ ut f 8>>
which is syntactic sugar for <<$a/ ut f 8, $b/ ut f 8, $c/ ut f 8>>.

A successful match of asegment of aut f type, resultsin aninteger intherange 0..16#D7FF or 16#E000..16#10FFFF.
The match fails if the returned value falls outside those ranges.

A segment of type ut f 8 matches 1-4 bytesin the binary, if the binary at the match position contains a valid UTF-8
sequence. (See RFC-3629 or the Unicode standard.)

A segment of type ut f 16 can match 2 or 4 bytes in the binary. The match fails if the binary at the match position
does not contain alegal UTF-16 encoding of a Unicode code point. (See RFC-2781 or the Unicode standard.)

A segment of type ut f 32 can match 4 bytesin the binary in the sasmeway asani nt eger segment matches 32 bits.
The match failsif the resulting integer is outside the legal ranges mentioned above.

Examples:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 165

6.9 Expressions

1> Binl = <<1,17,42>>.
<<1,17,42>>

2> Bin2 = <<"abc">>.

<<97,98,99>>

3> Bin3 = <<1,17,42:16>>.
<<1,17,0,42>>

4> <<A,B,C:16>> = <<1,17,42:16>>.
<<1,17,0,42>>

5> C.

42

6> <<D:16,E,F>> = <<1,17,42:16>>.
<<1,17,0,42>>

7> D.

273

8> F.

42

9> <<G,H/binary>> = <<1,17,42:16>>.
<<1,17,0,42>>

10> H.

<<17,0,42>>

11> <<G,J/bitstring>> = <<1,17,42:12>>.
<<1,17,2,10:4>>

12> J.

<<17,2,10:4>>

13> <<1024/utf8>>.

<<208,128>>

Notice that bit string patterns cannot be nested.

Notice also that "B=<<1>>" isinterpreted as"B =< <1>>" which isasyntax error. The correct way isto write a
space after '=". "B = <<1>>,

More examples are provided in Programming Examples.

6.9.19 Fun Expressions

fun
[Name] (Patternll,...,PatternlN) [when GuardSeql] ->
Body1;
[Name] (PatternKl,...,PatternKN) [when GuardSeqgK] ->
BodyK
end

A fun expression begins with the keyword f un and ends with the keyword end. Between them is to be a function
declaration, similar to aregular function declaration, except that the function nameis optional and isto be avariable,
if any.

Variables in afun head shadow the function name and both shadow variables in the function clause surrounding the
fun expression. Variables bound in afun body are local to the fun body.

The return value of the expression is the resulting fun.

Examples:

166 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

6.9 Expressions

1> Funl = fun (X) -> X+1 end.

#Fun<erl eval.6.39074546>

2> Funl(2).

3

3> Fun2 = fun (X) when X>=5 -> gt; (X) -> 1t end.
#Fun<erl eval.6.39074546>

4> Fun2(7).

gt

5> Fun3 = fun Fact(l) -> 1; Fact(X) when X > 1 -> X * Fact(X - 1) end.
#Fun<erl eval.6.39074546>

6> Fun3(4).

24

The following fun expressions are also allowed:

fun Name/Arity
fun Module:Name/Arity

InNanme/ Arity, Name isanatomand Ari ty isaninteger. Nane/ Ari t y must specify an existing local function.
The expression is syntactic sugar for:

fun (Argl,...,ArgN) -> Name(Argl,...,ArgN) end

InModul e: Nare/ Ari ty, Modul e, and Nane areatomsand Ar i t y isaninteger. Starting from Erlang/OTP R15,
Modul e, Name, and Ari t y can also be variables. A fun defined in this way refers to the function Name with arity
Ari ty inthelatest version of module Modul e. A fun defined in thisway isnot dependent on the code for the module
in which it is defined.

More examples are provided in Programming Examples.

6.9.20 Catch and Throw

catch Expr

Returns the value of Expr unless an exception occurs during the evaluation. In that case, the exception is caught.
For exceptions of classer r or , that is, run-timeerrors, {' EXI T' , { Reason, St ack}} isreturned.

For exceptions of classexi t , that is, thecodecalledexi t (Term),{' EXI T' , Ter n} isreturned.

For exceptions of classt hr ow, that isthe code called t hr ow(Ter nj , Ter misreturned.

Reason depends on the type of error that occurred, and St ack isthe stack of recent function calls, see Exit Reasons.
Examples:

1> catch 1+2.

3

2> catch l+a.
{'EXIT',{badarith,[...]1}}

TheBIFt hr ow(Any) can be used for non-local return from afunction. It must be evaluated within acat ch, which
returns the value Any.

Example:

5> catch throw(hello).
hello

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 167

6.9 Expressions

If t hr ow 1 isnot evaluated within a catch, anocat ch run-time error occurs.

6.9.21 Try
try Exprs
catch
Classl:ExceptionPatternl[:Stacktrace] [when ExceptionGuardSeql] ->
ExceptionBody1l;
ClassN:ExceptionPatternN[:Stacktrace] [when ExceptionGuardSegN] ->
ExceptionBodyN
end

Thisis an enhancement of catch. It gives the possibility to:

» Distinguish between different exception classes.

e Chooseto handle only the desired ones.

e Passing the othersonto anenclosingt ry or cat ch, or to default error handling.

Notice that although the keyword cat ch isused inthet r y expression, thereisnot acat ch expression within the
t ry expression.

It returns the value of Expr s (a sequence of expressions Expr1, ..., ExprN) unless an exception occurs
during the evaluation. In that case the exception is caught and the patterns Except i onPat t er n with the right
exception class Cl ass are sequentially matched against the caught exception. If a match succeeds and the optional
guard sequence Except i onGuar dSeq is true, the corresponding Except i onBody is evaluated to become the
return value.

St ackt race, if specified, must be the name of a variable (not a pattern). The stack trace is bound to the variable
when the corresponding Except i onPat t er n matches.

If an exception occurs during evaluation of Expr s but there is no matching Except i onPat t er n of the right
d ass with atrue guard sequence, the exception ispassed on asif Expr s had not been enclosedinat r y expression.

If an exception occurs during evaluation of Except i onBody, it isnot caught.
It isalowed to omit Cl ass and St ackt r ace. An omitted O ass is shorthand for t hr ow:

try Exprs
catch
ExceptionPatternl [when ExceptionGuardSeql] ->
ExceptionBody1l;
ExceptionPatternN [when ExceptionGuardSeqN] ->
ExceptionBodyN
end

Thet ry expression can have an of section:

try Exprs of
Patternl [when GuardSeql] ->

Body1l;
PatternN [when GuardSegN] ->
BodyN
catch
Classl:ExceptionPatternl[:Stacktrace] [when ExceptionGuardSeql] ->
ExceptionBody1l;

ClassN:ExceptionPatternN[:Stacktrace] [when ExceptionGuardSegN] ->
ExceptionBodyN
end

168 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

6.9 Expressions

If the evaluation of Expr s succeeds without an exception, the patterns Pat t er n are sequentially matched against
the result in the same way as for a case expression, except that if the matching fails, at ry_cl ause run-time error
occursinstead of acase_cl ause.

Only exceptions occurring during the eval uation of Expr s can be caught by the cat ch section. Exceptions occurring
inaBody or dueto afailed match are not caught.

Thet r y expression can also be augmented with an af t er section, intended to be used for cleanup with side effects:

try Exprs of
Patternl [when GuardSeql] ->
Body1;

PatternN [when GuardSeqN]
BodyN

'
\

catch
Classl:ExceptionPatternl[:Stacktrace] [when ExceptionGuardSeql] ->
ExceptionBodyl;

ClassN:ExceptionPatternN[:Stacktrace] [when ExceptionGuardSegN] ->
ExceptionBodyN
after
AfterBody
end

Af t er Body is evaluated after either Body or Except i onBody, no matter which one. The evaluated value of
Af t er Body islost; thereturn value of thet r y expression is the same with an af t er section as without.

Even if an exception occurs during evaluation of Body or Except i onBody, Af t er Body isevaluated. In this case
the exception is passed on after Af t er Body has been evaluated, so the exception from the t r y expression is the
same with an af t er section as without.

If an exception occursduring evaluation of Af t er Body itself, itisnot caught. Soif Af t er Body isevaluated after an
exceptionin Expr s, Body, or Except i onBody, that exceptionislost and masked by theexceptionin Af t er Body.

Theof, cat ch,and af t er sectionsare all optional, aslong asthereisat least acat ch or anaf t er section. So
thefollowing arevalidt r y expressions:

try Exprs of
Pattern when GuardSeq ->
Body
after
AfterBody
end

try Exprs
catch
ExpressionPattern ->
ExpressionBody
after
AfterBody
end

try Exprs after AfterBody end

Next is an example of using af t er . This closes the file, even in the event of exceptionsinfil e:read/ 2 orin
bi nary_t o_t ernf 1. The exceptions are the same as without thet r y...af t er ...end expression:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 169

6.9 Expressions

termize file(Name) ->

{ok,F} = file:open(Name, [read,binaryl]),

try
{ok,Bin} = file:read(F, 1024*1024),
binary to term(Bin)

after
file:close(F)

end.

Next isan example of usingt r y to emulate cat ch Expr:

try Expr
catch
throw:Term -> Term;
exit:Reason -> {'EXIT',Reason}
error:Reason:Stk -> {'EXIT',{Reason,Stk}}
end

6.9.22 Parenthesized Expressions

(Expr)

Parenthesized expressions are useful to override operator precedences, for example, in arithmetic expressions:

1> 1+ 2 * 3.

7

2> (1 + 2) * 3.
9

6.9.23 Block Expressions

begin
Exprl,

ExprN
end
Block expressions provide away to group a sequence of expressions, similar to aclause body. The return valueisthe
value of the last expression Expr N.
6.9.24 List Comprehensions

List comprehensions is a feature of many modern functional programming languages. Subject to certain rules, they
provide a succinct notation for generating elementsin alist.

List comprehensions are anal ogousto set comprehensionsin Zermel o-Frankel set theory and are called ZF expressions
in Miranda. They are analogous to the set of andfi ndal | predicatesin Prolog.

List comprehensions are written with the following syntax:

[Expr || Qualifierl,...,QualifierN]

Here, Expr isan arbitrary expression, and each Qual i f i er iseither agenerator or afilter.

170 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

6.9 Expressions

* A generator iswritten as:
Pattern <- ListExpr.
Li st Expr must be an expression, which evaluatesto alist of terms.
e A bit string generator iswritten as:
BitstringPattern <= BitStringExpr.
Bi t St ri ngExpr must be an expression, which evaluates to a bitstring.
e Afilter isan expression, which evaluatestot r ue or f al se, or aguard expression. If the filter is not a guard

expression and evaluates to a non-Boolean value Val , an exception{ bad_fil ter, Val} istriggered at
runtime.

The variables in the generator patterns shadow previously bound variables, including variables bound in a previous
generator pattern.

A list comprehension returns a list, where the elements are the result of evaluating Expr for each combination of
generator list elements and hit string generator elements, for which all filters are true.

Example:
1> [X*2 || X <- [1,2,31].
[2,4,6]

When there are no generators or bit string generators, alist comprehension returns either alist with one element (the
result of evaluating Expr) if al filters are true or an empty list otherwise.

Example:
1> [2 || is_integer(2)].
[2]
2> [x || is_integer(x)].

More examples are provided in Programming Examples.

6.9.25 Bit String Comprehensions

Bit string comprehensions are analogous to List Comprehensions. They are used to generate bit strings efficiently and
succinctly.

Bit string comprehensions are written with the following syntax:

<< BitStringExpr || Qualifierl,...,QualifierN >>

Bi t St ri ngExpr isan expression that evaluates to abit string. If Bi t St ri ngExpr isafunction cal, it must be
enclosed in parentheses. Each Qual i fi er iseither agenerator, abit string generator or afilter.

e A generator iswritten as.
Pattern <- ListExpr.
Li st Expr must be an expression that evaluatesto alist of terms.
e A bit string generator iswritten as:
BitstringPattern <= BitStringExpr.
Bi t St ri ngExpr must be an expression that evaluates to a bitstring.
« Afilter isan expression, which evaluatestot r ue or f al se, or aguard expression. If the filter is not a guard
expression and evaluates to anon-Boolean value Val , an exception{ bad_filter, Val} istriggered at
runtime.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 171

6.9 Expressions

The variables in the generator patterns shadow previously bound variables, including variables bound in a previous
generator pattern.

A bit string comprehension returnsabit string, which is created by concatenating the results of evaluatingBi t St r i ng
for each combination of bit string generator elements, for which all filters are true.

Example:

1> << << (X*¥2) >> ||
<<X>> <= << 1,2,3 >> >>,
<<2,4,6>>

More examples are provided in Programming Examples.

6.9.26 Guard Sequences

A guard sequence is a sequence of guards, separated by semicolon (;). The guard sequenceis true if at least one of
the guards istrue. (The remaining guards, if any, are not evaluated.)

Guardl; ... ; GuardK

A guar d isasequence of guard expressions, separated by commay(,). Theguardistrueif all guard expressionsevauate
totrue.

Guar dExpr1, ..., GuardExprN

6.9.27 Guard Expressions

The set of valid guard expressionsis a subset of the set of valid Erlang expressions. The reason for restricting the
set of valid expressions is that evaluation of a guard expression must be guaranteed to be free of side effects. Valid
guard expressions are the following:

e Vaiables

» Constants (atoms, integer, floats, lists, tuples, records, binaries, and maps)

« Expressionsthat construct atoms, integer, floats, lists, tuples, records, binaries, and maps

* Expressionsthat update a map

* Therecord expressions Expr #Nane. Fi el d and#Nane. Fi el d

» Cadllstothe BIFs specified in tables Type Test Bl Fs and Other BIFs Allowed in Guard Expressions

e Term comparisons

e Arithmetic expressions

* Boolean expressions

» Short-circuit expressions (andal so/or el se)

is atom 1

is_binary/1

is bitstring/1

i s_bool ean/ 1

is_float/1

is_function/1

172 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

6.9 Expressions

is function/2

is_integer/1

is list/1

is_map/1

is_nunber/1

is_pid/1

is_port/1

is record/2

is record/3

is_reference/l

is_ tuplel/l

Table 9.4: Type Test BIFs

Notice that most type test BIFs have older equivaents, without the i s_ prefix. These old BIFs are retained for
backwards compatibility only and are not to be used in new code. They are also only allowed at top level. For example,
they are not allowed in Boolean expressions in guards.

abs(Nunmber)

bit_size(Bitstring)

byte size(Bitstring)

el ement (N, Tupl e)

float(Term

hd(Li st)

i s_map_key(Key, Map)

| engt h(Li st)

map_get (Key, Map)

map_si ze(Map)

node()

node(Pi d| Ref | Port)

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 173

6.9 Expressions

round(Nurber)

sel f ()

size(Tupl e| Bitstring)

t1(List)

t runc(Nunber)

tupl e_size(Tupl e)

Table 9.5: Other BIFs Allowed in Guard Expressions

If an arithmetic expression, a Boolean expression, a short-circuit expression, or acall to aguard BIF fails (because of
invalid arguments), the entire guard fails. If the guard was part of a guard sequence, the next guard in the sequence
(that is, the guard following the next semicolon) is evaluated.

6.9.28 Operator Precedence
Operator precedence in falling priority:

#

Unary + - bnot not

/ * div rem band and L eft associative

+ - bor bxor bsl bsr or xor L eft associative

++ -- Right associative

== /==<<>=>===/=

andalso

orelse

=1 Right associative

7=

catch

Table 9.6: Operator Precedence

When evaluating an expression, the operator with the highest priority isevaluated first. Operatorswith the samepriority
are evaluated according to their associativity.

Example:

174 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

6.10 Preprocessor

The left associative arithmetic operators are evaluated | eft to right:

6 +5 *4 - 3/ 2 evaluates to
6 + 20 - 1.5 evaluates to

26 - 1.5 evaluates to

24.5

6.10 Preprocessor

6.10.1 File Inclusion

A file can be included as follows:

-include(File).
-include lib(File).

Fi | e, astring, isto point out afile. The contents of thisfile are included asis, at the position of the directive.

Include filesare typically used for record and macro definitionsthat are shared by several modules. It isrecommended
to use the file name extension . hr | for includefiles.

Fi | e can start with a path component $VAR, for some string VAR. If that is the case, the value of the environment
variable VAR as returned by os: get env(VAR) is substituted for $VAR. If os: get env(VAR) returns f al se,
$VARIs|eft asis.

If the filename Fi | e is absolute (possibly after variable substitution), the include file with that name is included.
Otherwise, the specified file is searched for in the following directories, and in this order:

e The current working directory

e Thedirectory where the module is being compiled

e Thedirectories given by thei ncl ude option

For details, see the erlc(1) manua pagein ERTS and compile(3) manual pagein Compiler.
Examples:

-include
-include
-include
-include

"my records.hrl").

"incdir/my records.hrl").
"/home/user/proj/my records.hrl").
"$PROJ _ROOT/my records.hrl").

—_——~—

ncl ude_l i b issimilar to i ncl ude, but is not to point out an absolute file. Instead, the first path component
(possibly after variable substitution) is assumed to be the name of an application.

Example:

-include_lib("kernel/include/file.hrl").

The code server usescode: | i b_di r (ker nel) tofind the directory of the current (latest) version of Kernel, and
then the subdirectory i ncl ude issearched for thefilefil e. hrl .

6.10.2 Defining and Using Macros

A macro is defined as follows:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 175

6.10 Preprocessor

-define(Const, Replacement).
-define(Func(Varl,...,VarN), Replacement).

A macro definition can be placed anywhere among the attributes and function declarations of a module, but the
definition must come before any usage of the macro.

If amacro isused in several modules, it is recommended that the macro definition is placed in an includefile.

A macro is used as follows:

?Const
?Func(Argl,...,ArgN)

Macros are expanded during compilation. A simple macro ?Const isreplaced with Repl acenent .

Example:
-define(TIMEOUT, 200).

call(Request) ->
server:call(refserver, Request, ?TIMEOUT).

Thisis expanded to:

call(Request) ->
server:call(refserver, Request, 200).

A macro ?Func(Argl, ..., ArgN) isreplaced with Repl acenent , where al occurrences of a variable Var
from the macro definition are replaced with the corresponding argument Ar g.

Example:
-define(MACRO1(X, Y), {a, X, b, Y}).
bar(X) ->
?MACRO1(a, b),
?MACRO1 (X, 123)

Thisis expanded to:

bar(X) ->
{alalblb}l
{a,X,b,123}.

Itisgood programming practice, but not mandatory, to ensure that amacro definition isavalid Erlang syntactic form.

To view the result of macro expansion, a module can be compiled with the' P' option. conpi l e: fil e(Fil e,
['P']).Thisproducesalisting of the parsed code after preprocessing and parse transforms, in thefileFi | e. P.

6.10.3 Predefined Macros

The following macros are predefined:

?MODULE

The name of the current module.
?MODULE_STRI NG

The name of the current module, as a string.
?FI LE.

Thefile name of the current module.
?LI1 NE.

The current line number.

176 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

6.10 Preprocessor

?MACHI NE.
The machine name, ' BEAM .
?FUNCTI ON_NAME
The name of the current function.
?FUNCTI ON_ARI TY
The arity (number of arguments) for the current function.
?0TP_RELEASE
The OTP release that the currently executing ERTS application is part of, as an integer. For details, see
erl ang: system i nfo(ot p_rel ease). Thismacrowasintroduced in OTP release 21.
?FEATURE_AVAI LABLE(Feat ur e)
Expandstot r ue if the feature Feat ur e is available. The feature might or might not be enabled. This macro
was introduced with OTP release 25.
?FEATURE_ENABLED(Feat ur e)
Expandstot r ue if the feature Feat ur e is enabled. This macro was introduced with OTP release 25.

6.10.4 Macros Overloading

It is possible to overload macros, except for predefined macros. An overloaded macro has more than one definition,
each with a different number of arguments.

The feature was added in Erlang 5.7.5/0TP R13B04.

A macro ?Func(Argl, ..., ArgN) witha(possibly empty) list of arguments results in an error message if there
isat least one definition of Func with arguments, but none with N arguments.

Assuming these definitions:

-define(FO(), c).
-define(F1(A), A).
-define(C, m:f).

the following does not work:

fo() ->
?FO. % No, an empty list of arguments expected.

f1(A) ->
?F1(A, A). % No, exactly one argument expected.

On the other hand,

() ->
?7C().

is expanded to

f() ->
m:f().

6.10.5 Flow Control in Macros
The following macro directives are supplied:

- undef (Macr o) .

Causes the macro to behave asif it had never been defined.
-i fdef (Macro).

Evaluate the following lines only if Macr o is defined.
-i f ndef (Macro).

Evaluate the following lines only if Macr o is not defined.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 177

6.10 Preprocessor

- el se.
Only allowed after ani f def ori f ndef directive. If that condition isfalse, thelinesfollowing el se are
evaluated instead.
-endif.
Specifiestheend of ani f def ,ani f ndef directive, ortheendof ani f orel i f directive.
-if(Condition).
Evaluates the following lines only if Condi t i on evaluatesto true.
-elif(Condition).
Only allowed after ani f or another el i f directive. If theprecedingi f or el i f directivesdo not evaluate to
true, and the Condi t i on evaluatesto true, the linesfollowing theel i f are evaluated instead.

The macro directives cannot be used inside functions.

Example:

-module(m).

-ifdef(debug).

-define(LOG(X), io:format("{~p,~p}: ~p~n", [?MODULE,?LINE,X])).
-else.

-define(LOG(X), true).

-endif.

When trace output is desired, debug isto be defined when the module mis compiled:

% erlc -Ddebug m.erl
or

1> c(m, {d, debug}).
{ok,m}

?LOG Ar g) isthenexpandedto acall toi o: f or mat / 2 and provide the user with some simple trace outpuit.
Example:

-module(m)

-ifdef(OTP_RELEASE).
%% OTP 21 or higher
-if(?0TP_RELEASE >= 22).
%% Code that will work in OTP 22 or higher
-elif (?0TP_RELEASE >= 21).
%% Code that will work in OTP 21 or higher
-endif.
-else.
%% OTP 20 or lower.
-endif.

The code uses the OTP_REL EASE macro to conditionally select code depending on release.

178 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

6.10 Preprocessor

6.10.6 The -feature() directive

Thedirective - f eat ur e(Feat ur eNanme, enabl e | di sabl e) can be used to enable or disable the feature
Feat ur eNane. Thisisthe preferred way of enabling (disabling) features, although it is possibleto do it with options
to the compiler as well.

Note that the - f eat ur e(. .) directive may only appear before any syntax is used. In practice this means it should
appear beforeany - export (. .) orrecord definitions.

6.10.7 -error() and -warning() directives
Thedirective- er r or (Ter m) causes acompilation error.

Example:

-module(t).
-export([version/0]).

-ifdef (VERSION).

version() -> ?VERSION.

-else.

-error("Macro VERSION must be defined.").
version() -> "".

-endif.

The error message will look like this:

% erlc t.erl
t.erl:7: -error("Macro VERSION must be defined.").

The directive - war ni ng(Ter m) causes a compilation warning.

Example:

-module(t).
-export([version/0]).

-ifndef (VERSION) .
-warning("Macro VERSION not defined -- using default version.").
-define(VERSION, "0").

-endif.
version() -> ?VERSION.

The warning message will ook like this;
% erlc t.erl
t.erl:5: Warning: -warning("Macro VERSION not defined -- using default version.").

The-error () and-warni ng() directiveswere added in OTP 19.

6.10.8 Stringifying Macro Arguments

The construction ??Ar g, where Ar g is a macro argument, is expanded to a string containing the tokens of the
argument. Thisis similar to the #ar g stringifying construction in C.

Example:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 179

6.11 Records

-define(TESTCALL(Call), io:format("Call ~s: ~w~n", [??Call, Calll)).

?TESTCALL (myfunction(1,2)),
?TESTCALL (you: function(2,1)).

resultsin

io:format("Call ~s: ~w~n",["myfunction (1 , 2)",myfunction(1,2)]),
io:format("Call ~s: ~w~n",["you : function (2 , 1)",you:function(2,1)]).

That is, atrace output, with both the function called and the resulting value.

6.11 Records

A record is a data structure for storing a fixed number of elements. It has named fields and is similar to a struct in
C. Record expressions are translated to tuple expressions during compilation. Therefore, record expressions are not
understood by the shell unless special actions are taken. For details, see the shell(3) manual pagein STDLIB.

More examples are provided in Programming Examples.

6.11.1 Defining Records

A record definition consists of the name of therecord, followed by thefield names of therecord. Record and field names
must be atoms. Each field can be given an optional default value. If no default valueis supplied, undef i ned isused.

-record(Name, {Fieldl [= Valuel],
FieldN [= ValueN]}).

A record definition can be placed anywhere among the attributes and function declarations of a module, but the
definition must come before any usage of the record.

If arecord isused in several modules, it is recommended that the record definition is placed in an include file.

6.11.2 Creating Records

Thefollowing expression creates anew Nane record where the value of each field Fi el dl isthe value of evaluating
the corresponding expression Expr | :

#Name{Fieldl=Exprl,...,FieldK=ExprK}

The fields can be in any order, not necessarily the same order as in the record definition, and fields can be omitted.
Omitted fields get their respective default value instead.

If severa fields are to be assigned the same value, the following construction can be used:

#Name{Fieldl=Exprl,...,FieldK=ExprK, =ExprL}

Omitted fieldsthen get the value of evaluating Expr L instead of their default values. Thisfeatureis primarily intended
to be used to create patterns for ETS and Mnesia match functions.

Example:

180 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

6.11 Records

-record(person, {name, phone, address}).

lookup(Name, Tab) ->
ets:match object(Tab, #person{name=Name, =' '}).

6.11.3 Accessing Record Fields

Expr#Name.Field

Returns the value of the specified field. Expr isto evaluate to a Name record.
The following expression returns the position of the specified field in the tuple representation of the record:

#Name.Field

Example:

-record(person, {name, phone, address}).

lookup(Name, List) ->
lists:keysearch(Name, #person.name, List).

6.11.4 Updating Records

Expr#Name{Fieldl=Exprl, ..., FieldK=ExprK}

Expr istoevaluateto aNarme record. A copy of thisrecord isreturned, with the value of each specified field Fi el dl
changed to the value of evaluating the corresponding expression Expr | . All other fields retain their old values.

6.11.5 Records in Guards

Since record expressions are expanded to tuple expressions, creating records and accessing record fields are allowed
in guards. However all subexpressions, for example, for field initiations, must be valid guard expressions as well.

Examples:

handle(Msg, State) when Msg==#msg{to=void, no=3} ->
handle(Msg, State) when State#state.running==true ->

Thereisaso atypetest BIFi s_record(Term RecordTag).

Example:

is person(P) when is record(P, person) ->
true;

is person(P) ->
false.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 181

6.11 Records

6.11.6 Records in Patterns

A pattern that matches a certain record is created in the same way as arecord is created:

#Name{Fieldl=Exprl, ...,FieldK=ExprK}

In this case, one or more of Expr 1...Expr K can be unbound variables.

6.11.7 Nested Records

Beginning with Erlang/OTP R14, parentheses when accessing or updating nested records can be omitted. Assume the
following record definitions:

-record(nrecO, {name
-record(nrecl, {name
-record(nrec2, {name

"nested0"}).
"nestedl", nrecO=#nrec0{}}).
"nested2", nrecl=#nrecl{}}).

N2 = #nrec2{},
Before R14, parentheses were needed as follows:

"nested0" = ((N2#nrec2.nrecl)#nrecl.nrec0)#nrecO.name,
NOn = ((N2#nrec2.nrecl)#nrecl.nrec0)#nrec0{name = "nested0a"},

Since R14, the following can also be written:

"nested0@" = N2#nrec2.nrecl#nrecl.nrecO@#nrec0.name,
NOn = N2#nrec2.nrecl#nrecl.nrecO#nrecO{name = "nested@a"},

6.11.8 Internal Representation of Records

Record expressions are translated to tuple expressions during compilation. A record defined as:

-record(Name, {Fieldl,...,FieldN}).

isinternally represented by the tuple:

{Name,Valuel,...,ValueN}

Here each Val uel isthedefault valuefor Fi el dI .

To each module using records, a pseudo function is added during compilation to obtain information about records:

record info(fields, Record) -> [Field]
record info(size, Record) -> Size

Si ze isthe size of the tuple representation, that is, one more than the number of fields.
In addition, #Recor d. Nane returns the index in the tuple representation of Nane of the record Recor d.
Narme must be an atom.

182 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

6.12 Errors and Error Handling

6.12 Errors and Error Handling
6.12.1 Terminology

Errors can roughly be divided into four different types:

Compile-time errors
When the compiler fails to compile the program, for example a syntax error.

Logical errors
When a program does not behave as intended, but does not crash. An example is that nothing happens when a
button in a graphical user interfaceis clicked.

Run-time errors
When acrash occurs. An example is when an operator is applied to arguments of the wrong type. The Erlang
programming language has built-in features for handling of run-time errors. A run-time error can also be
emulated by calling er r or (Reason) . Run-time errors are exceptions of classer r or .

Generated errors
When the code itself callsexi t/ 1 ort hr ow/ 1. Generated errors are exceptions of classexi t ort hr ow.

When an exception occursin Erlang, execution of the process that evaluated the erroneous expression is stopped. This
isreferred to as afailure, that execution or evaluation fails, or that the process fails, ter minates, or exits. Notice that
aprocess can terminate/exit for other reasons than afailure.

A processthat terminatesemitsan exit signal with an exit r eason that describeswhy the processterminated. Normally,
someinformation about any erroneous termination is printed to the terminal. See Process Termination in the Processes
chapter for more details on termination.

6.12.2 Exceptions

Exceptions are run-time errors or generated errors and are of three different classes, with different origins. The try
expression can distinguish between the different classes, whereas the catch expression cannot. t ry and cat ch are
described in Expressions.

Class Origin
Run-time error, for example, 1+a, or the process called
error
error/1,2
exit The processcaledexi t/ 1
t hr ow The processcalledt hr ow 1

Table 12.1: Exception Classes.

All of the above exceptions can also be generated by calling er | ang: r ai se/ 3.

An exception consists of its class, an exit reason (see Exit Reason), and a stack trace (which aids in finding the code
location of the exception).

The stack trace can be bound to avariable from within at r y expression for any exception class, or as part of the exit
reason when arun-time error is caught by acat ch. Example:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 183

6.12 Errors and Error Handling

> {'EXIT',{test,Stacktrace}} = (catch error(test)), Stacktrace.
[{shell,apply fun,3,[1},

{erl _eval,do apply,6,[]},

.
> try throw(test) catch Class:Reason:Stacktrace -> Stacktrace end.
[{shell,apply fun,3,[1]},

{erl _eval,do apply,6,[]},

.

The call-stack back trace (stacktrace)

The stack back-trace (stacktrace) is alist contains { Modul e, Function, Arity, Extralnfo} andor
{Fun, Arity, Extralnfo} tuples. Thefield Ari ty in thetuple can bethe argument list of that function call
instead of an arity integer, depending on the exception.

Ext r al nf o isa(possibly empty) list of two-element tuplesin any order that provides additional information about
the exception. The first element is an atom describing the type of information in the second element. The following
items can occur:

error_info
The second element of the tuple is amap providing additional information about what caused the exception.
Thisinformation can be created by callingerror/ 3 andisusedby er| _error: format_excepti on/ 4.
file
The second element of the tupleisastring (list of characters) representing the filename of the source file of the
function.
line
The second element of the tuple is the line number (an integer > 0) in the source file where the exception
occurred or the function was called.

Developers should rely on stacktrace entries only for debugging purposes.

TheVM performstail call optimization, which doesnot add new entriesto the stacktrace, and al so limits stacktraces
to a certain depth. Furthermore, compiler options, optimizations and future changes may add or remove stacktrace
entries, causing any code that expects the stacktrace to be in a certain order or contain specific items to fail.

The only exception to this rule is the class er r or with the reason undef which is guaranteed to include the
Modul e, Functi on and Ari t y of the attempted function as the first stacktrace entry.

6.12.3 Handling of Run-time Errors in Erlang

Error Handling Within Processes

It is possible to prevent run-time errors and other exceptions from causing the process to terminate by using cat ch
or t ry, see Expressions about catch and try.

Error Handling Between Processes

Processes can monitor other processes and detect process terminations, see Processes.

6.12.4 Exit Reasons

When arun-time error occurs, that is an exception of class er r or . The exit reason is atuple { Reason, St ack},
where Reason isaterm indicating the type of error:

184 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

6.12 Errors and Error Handling

Reason Typeof Error

badar Bad argument. The argument is of wrong datatype, or is
g otherwise badly formed.

badarith Bad argument in an arithmetic expression.

{badmat ch, V} Evaluation of a match expression failed. The value V

did not match.

function_cl ause

No matching function clause is found when evaluating a
function call.

{case_cl ause, V}

No matching branch is found when evaluating acase
expression. The value V did not match.

i f_clause

No true branch is found when evaluating an i f
expression.

{try_cl ause, V}

No matching branch is found when evaluating the of-
section of at r y expression. The value V did not match.

undef

The function cannot be found when evaluating a
function call.

{badf un, F}

Something iswrong with afun F.

{badarity, F}

A funisapplied to the wrong number of arguments. F
describes the fun and the arguments.

ti meout _val ue

Thetimeout valueinar ecei ve. . af t er expression
is evaluated to something else than an integer or
infinity.

nopr oc

Trying to link or monitor to a non-existing process or
port.

noconnecti on

A link or monitor to a remote process was broken
because a connection between the nodes could not be
established or was severed.

{nocatch, V}

Trying to evaluate at hr ow outsideacat ch. Visthe
thrown term.

systeml|limt

A system limit has been reached. See Efficiency Guide
for information about system limits.

Table 12.2: Exit Reasons

St ack is the stack of function calls being evaluated when the error occurred, given as a list of tuples
{ Modul e, Nane, Ari ty, Extral nf o} withthemaost recent function call first. The most recent function call tuple
can in some cases be { Modul e, Nane, [Arg] , Ext r al nf o}.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 185

6.13 Features

6.13 Features

Introduced in OTP 25, Erlang has the concept of selectable features. A feature can change, add or remove behaviour
of the language and/or runtime system. Examples can include

* Adding new syntactical constructs to the language
* Change the semantics of an existing construct
e Change the behaviour of some runtime aspect

A feature will start out with a status of experimenta part of OTP, making it possible to try out for users and give
feedback. The possibility to try out featuresis enabled by options to the compiler, directivesin a module and options
to the runtime system. Even when a feature is not experimental it will still be possible to enable or disable it. This
makes it possible to adapt a code base at a suitable pace instead of being forced when changing to anew release.

The status of a feature will eventually end up as being either a permanent part of OTP or rejected, being removed
and no longer selectable.

6.13.1 Life cycle of features
A feature isin one of four possible states:

Experimental
Theinitial state, is meant for trying out and collecting feedback. The feature can be enabled but is disabled by
default.
Approved
The feature has been finalised and is how part of OTP. By default it is enabled, but can be disabled.
Permanent
The feature is now a permanent part of OTP. It can no longer be disabled.
Rejected
The feature never reached the approved state and will not be part of OTP. It cannot be enabled.

After leaving the experimental state, afeature can enter any of the other three states, and if the next state is approved,
the feature will eventually end up in the permanent state. A feature can change state only in connection with arelease.

A feature may bein the approved state for several releases.

State Default Configurable Available
Experimental disabled yes yes
Approved enabled yes yes
Permanent enabled no yes
Rejected disabled no no

Table 13.1: Feature States

» Being configurable means the possibility to enable or disable the feature by means of compiler options and
directivesin the file being compiled.

« Being available can be seen using the FEATURE_ AVAI LABL E macro.

186 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

6.14 Processes

6.13.2 Enabling and Disabling Features

To use afeaturethat isin the experimental state, it has to be enabled during compilation. This can be done in anumber
of different ways:

Optionstoerl c
Options - enabl e- f eat ur e and - di sabl e-f eat ur e can be used to enable or disableindividal features.
Compiler options
The compiler option { f eat ure, <feature>, enabl e| di sabl e} canbeused either asa+<t er n»
optionto er | ¢ or in the options argument to functionsin the conpi | e module.
The feature directive
Inside aprefix of amodule, one can usea- f eat ur e(<f eat ure>, enabl e| di sabl e) directive. This
isthe preferred method of enabling and disabling features.

Note that to load a module compiled with features enabled, the corresponding features must be enabled in the runtime.
Thisisdoneusing options- enabl e- f eat ur e and - di sabl e-f eat uretoer! . Thisisto alow the possibility
to prevent the use of experimental featuresin, e.g., production. Thiswill catch experimental features used in both own
and third party components. An active choice to use experimental features must be done.

6.13.3 Preprocessor Additions

To alow for conditional compilation during transitioning of a code base and/or trying out experimental features
feature pr edef i ned macr os ?FEATURE_AVAI LABLE(Feat ur e) and ?FEATURE_ENABLED(Feat ur e)
are available.

6.13.4 Information about Existing Features

Themoduleer | _featureserl _feat ures exportsanumber of functionsthat can be used to obtain information
about current features as well as the features used when compiling a module.

One can aso use the erl ¢ options -1 i st-features and -descri be-feature <feature> to get
information about existing features.

Additionally, thereisthe compiler optionwar n_keywor ds that can be used to find atomsin the code base that might
collide with keywords in features not yet enabled.

6.13.5 Existing Features
The following configurable features exist:

maybe_expr (experimental)
Implementation of the may be expression proposed in EEP 49.

6.14 Processes

6.14.1 Processes

Erlang is designed for massive concurrency. Erlang processes are lightweight (grow and shrink dynamically) with
small memory footprint, fast to create and terminate, and the scheduling overhead is low.

6.14.2 Process Creation
A processis created by calling spawn() :

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 187

href

6.14 Processes

spawn (Module, Name, Args) -> pid()
Module = Name = atom()
Args = [Argl,...,ArgN]
Argl = term()

spawn() createsanew process and returns the pid.

The new process starts executing in Modul e: Name(Ar g1, . .., ArgN) where the arguments are the elements of
the (possible empty) Ar gs argument list.

There exist anumber of different spawn BIFs:
e spawn/1,2,3,4

e spawn_link/1,2,3,4

e spawn_nonitor/1,2,3,4

e spawn_opt/2,3,4,5

e spawn_request/1,2,3,4,5

6.14.3 Registered Processes

Besides addressing a process by using its pid, there are also BIFs for registering a process under a name. The name
must be an atom and is automatically unregistered if the process terminates:

BIF Description

Associates the name Nane, an atom, with the process

regi ster(Name, Pid) Pi d

Returns alist of names that have been registered using

r egi st er ed() egister/ 2.

Returns the pid registered under Nane, or undef i ned

wher ei s(Narre) if the nameis not registered.

Table 14.1: Name Registration BIFs

6.14.4 Process Aliases

When sending amessage to a process, the receiving process can beidentified by aPID, aregistered name, or aprocess
alias which is aterm of the type reference. The typical use case that process aliases were designed for is a request/
reply scenario. Using a process alias when sending the reply makesit possible for the receiver of the reply to prevent
the reply from reaching its message queue if the operation times out or if the connection between the processesis|ost.

A process dlias can be used as identifier of the receiver when sending a message using the send operator ! or send
BIFs such as er | ang: send/ 2. As long as the process dlias is active, messages will be delivered the same way
as if the process identifier of the process that created the alias had been used. When the alias has been deactivated,
messages sent using the alias will be dropped before entering the message queue of the receiver. Note that messages
that at deactivation time already have entered the message queue will not be removed.

A process dlias is created either by calling one of the al i as/ 0, 1 BIFs or by creating an alias and a monitor
simultaneoudly. If the aliasiscreated together with amonitor, the same reference will be used both asmonitor reference
and alias. Creating a monitor and an alias at the same time is done by passing the {al i as, _} option to the
noni tor/ 3 BIF. The{al i as, _} option can aso be passed when creating a monitor via spawn_opt (), or
spawn_request ().

188 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

6.14 Processes

A process alias can be deactivated by the process that created it by calling theunal i as/ 1 BIF. It isalso possible to
automatically deactivate an alias on certain events. See the documentation of theal i as/ 1 BIF, and the{ al i as,
_} option of the moni t or / 3 BIF for more information about automatic deactivation of aliases.

It isnot possible to:

» create an dlias identifying another process than the caller.
e deactivate an dlias unlessit identifies the caller.

e look upanadlias.

* look up the processidentified by an alias.

e checkif analiasisactiveor not.

e checkif areferenceisan alias.

These are all intentional design decisions relating to performance, scalability, and distribution transparency.

6.14.5 Process Termination
When a process terminates, it always terminates with an exit reason. The reason can be any term.

A process is said to terminate normally, if the exit reason is the atom nor mal . A process with no more code to
execute terminates normally.

A process terminates with an exit reason { Reason, St ack} when arun-time error occurs. See Exit Reasons.
A process can terminate itself by calling one of the following BIFs:

e exit(Reason)
* erlang: error(Reason)
e erlang: error(Reason, Args)

The process then terminates with reason Reason for exi t / 1 or { Reason, St ack} for the others.

A process can also beterminated if it receivesan exit signal with another exit reason than nor mal , see Error Handling.

6.14.6 Signals

All communication between Erlang processes and Erlang portsis done by sending and receiving asynchronous signals.
The most common signals are Erlang message signals. A message signal can be sent using the send operator ! . A
received message can be fetched from the message queue by the receiving process using ther ecei ve expression.

Synchronous communication can be broken down into multiple asynchronous signals. An example of such a
synchronous communication is a call to the er | ang: process_i nf o/ 2 BIF when the first argument does not
equal the process identifier of the calling process. The caller sends an asynchronous signal requesting information,
and then blocks waiting for the reply signal containing the requested information. When the request signal reachesits
destination, the destination process replies with the requested information.

Sending Signals

There are many signals that processes and ports use to communicate. The list below contains the most important
signals. In al the cases of request/reply signal pairs, the request signal is sent by the process calling the specific BIF,
and thereply signal is sent back to it when the requested operation has been performed.

nessage
Sent when using the send operator ! , or when calling one of theer | ang: send/ 2, 3 or
erl ang: send_nosuspend/ 2, 3 BIFs.

l'i nk
Sent when calling the link/1 BIF.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 189

6.14 Processes

unl i nk
Sent when calling the unlink/1 BIF.
exit
Sent either when explicitly sending an exi t signal by calling the exit/2 BIF, or when alinked process
terminates. If the signal is sent due to alink, the signal is sent after all directly visible Erlang resources used by
the process have been released.
noni t or
Sent when calling one of the monitor/2,3 BIFs.
denoni t or
Sent when calling one of the demonitor/1,2 BIFs, or when a process monitoring another process terminates.
down
Sent by a monitored process or port that terminates. The signal is sent after al directly visible Erlang resources
used by the process or the port have been released.
change
Sent by the clock service on the local runtime system, when the time offset changes, to processes which have
monitored thet i me_of f set.
group_| eader
Sent when calling the group_leader/2 BIF.
spawn_r equest /spawn_repl y,open_port _request/open_port_reply
Sent dueto acall to one of thespawn/ 1, 2, 3, 4,spawn_l i nk/ 1, 2, 3, 4,
spawn_nonitor/1, 2,3, 4,spawn_opt/ 2, 3,4, 5,spawn_request/ 1, 2, 3,4,5,o0r
erl ang: open_port/ 2 BlIFs. Therequest signal is sent to the spawn service which responds with the reply
signal.
alive_request/alive_reply
Sent dueto acall to theis process alive/l BIF.
gar bage_col | ect _request/garbage col |l ect_reply,
check_process_code_request/check_process_code_reply,
process_i nfo_request/process_info_reply
Sent due to acall to one of the garbage _collect/1,2, erlang:check_process code/2,3, or process info/1,2 BIFs.
Note that if the request is directed towards the caller itself and it is a synchronous request, no signaling will be
performed and the caller will instead synchronously perform the request before returning from the BIF.
port_comrand, port_connect,port_cl ose
Sent by a processto a port on the local node using the send operator ! , or by calling one of the send()
BIFs. The signa is sent by passing aterm on the format { Omer, {comuand, Data}},{Oaner,
{connect, Pid}},or{Omer, close} asmessage.
port_comrand_r equest/port _comrand_reply,
port_connect _request/port_connect _reply,port_cl ose request/port_close_reply,
port_control _request/port_control reply,port_call _request/port_call _reply,
port _info_request/port_info_reply
Sent dueto acall tooneof theer | ang: port _comand/ 2, 3,erl ang: port_connect/ 2,
erl ang: port_close/ 1,erlang: port_control/3,erl ang: port_call/3,
erl ang: port _i nfo/ 1, 2 BIFs. Therequest signal is sent to a port on the local node which responds with
thereply signal.
regi ster_name_request/regi ster_name_reply,
unr egi st er _nane_r equest /unregi ster_nane_reply,
wher ei s_nane_r equest /wherei s_name_reply
Sent dueto acall tooneof ther egi st er/ 2,unregi ster/ 1, orwher ei s/ 1 BIFs. Therequest signal is
sent to the name service, which responds with the reply signal.
timer_start_request/timer_start_reply,timer_cancel request/ti mer_cancel _reply
Sent dueto acal tooneof theer | ang: send_after/3, 4,erlang: start _timer/3,4,or
erl ang: cancel _tinmer/ 1, 2 BIFs. Therequest signal is sent to the timer service which responds with the

reply signal.

190 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

6.14 Processes

The clock service, the name service, the timer service, and the spawn service mentioned previously are services
provided by the runtime system. Each of these services consists of multiple independently executing entities. Such a
service can be viewed as agroup of processes, and could actually beimplemented like that. Since each service consists
of multiple independently executing entities, the order between multiple signals sent from one service to one process
isnot preserved. Note that this does not violate the signal ordering guarantee of the language.

Therealization of the signals described above may change both at runtime and due to changesin implementation. Y ou
may be able to detect such changes using r ecei ve tracing or by inspecting message queues. However, these are
internal implementation details of the runtime system that you should not rely on. As an example, many of the reply
signals above are ordinary message signals. When the operation is synchronous, the reply signals do not have to be
message signals. The current implementation takes advantage of this and, depending on the state of the system, use
alternative ways of delivering the reply signals. The implementation of these reply signals may also, at any time, be
changed to not use message signals where it previously did.

Receiving Signals

Signals are received asynchronously and automatically. There is nothing a process must do to handle the reception of
signals, or can do to prevent it. In particular, signal reception is not tied to the execution of ar ecei ve expression,
but can happen anywhere in the execution flow of a process.

When asignal is received by a process, some kind of action is taken. The specific action taken depends on the signal
type, contents of the signal, and the state of the receiving process. Actions taken for the most common signals:

nmessage
If the message signal was sent using a process alias that is no longer active, the message signal will be dropped;
otherwise, if the diasis till active or the message signal was sent by other means, the message is added to the
end of the message queue. When the message has been added to the message queue, the receiving process can
fetch the message from the message queue using ther ecei ve expression.

i nk,unlink
Very simplified it can be viewed as updating process local information about the link. A detailed description of
the link protocol can be found in the Distribution Protocol chapter of the ERTS User's Guide.

exi t
Set the receiver in an exiting state, drop the signal, or convert the signal into a message and add it to the end
of the message queue. If thereceiver is set in an exiting state, no more Erlang code will be executed and the
processis scheduled for termination. The section Receiving Exit Sgnals below gives more details on the action
taken when an exi t signal isreceived.

noni t or, denmoni t or
Update process local information about the monitor.

down, change
Convert into a message if the corresponding monitor is still active; otherwise, drop the signal. If the signal is
converted into amessage, it is also added to the end of the message queue.

group_| eader
Change the group leader of the process.

spawn_reply
Convert into a message, or drop the signal depending on the reply and how the spawn_r equest signa was
configured. If the signal is converted into amessage it is also added to the end of the message queue. For more
information seethe spawn_r equest () BIF.

al i ve_request
Schedule execution of theis alive test. If the processisin an exiting state, the is alive test will not be executed
until after al directly visible Erlang resources used by the process have been released. Theal i ve_repl y
will be sent after the is alive test has executed.

process_i nfo_request,garbage_col |l ect _request,check _process_code_request
Schedule execution of the requested operation. The reply signal will be sent when the operation has been
executed.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 191

6.14 Processes

Note that some actions taken when asignal is received involves scheduling further actionswhich will result in areply
signal when these scheduled actions have completed. This implies that the reply signals may be sent in a different
order than the order of the incoming signalsthat triggered these operations. This does, however, not violate the signal
ordering guarantee of the language.

The order of messages in the message queue of a process reflects the order in which the signals corresponding to
the messages has been received since all signals that add messages to the message queue add them at the end of the
message queue. Messages corresponding to signals from the same sender are also ordered in the same order as the
signals were sent due to the signal ordering guarantee of the language.

Directly Visible Erlang Resources

As described above, exi t signals due to links, down signals, and reply signals from an exiting process due to
al i ve_r equest sarenot sent until al directly visible Erlang resources held by the terminating process have been
released. With directly visible Erlang resources we here mean all resources made available by the language excluding
resources held by heap data, dirty native code execution and the processidentifier of theterminating process. Examples
of directly visible Erlang resources are registered name and ET S tables.

The Excluded Resources

The process identifier of the process cannot be released for reuse until everything regarding the process has been
released.

A process executing dirty native code in a NIF when it receives an exit signal will be set into an exiting state even
if it is still executing dirty native code. Directly visible Erlang resources will be released, but the runtime system
cannot force the native code to stop executing. The runtime system tries to prevent the execution of the dirty native
code from effecting other processes by, for example, disabling functionality suchaseni f _send() when used from
aterminated process, but if the NIF is not well behaved it can still effect other processes. A well behaved dirty NIF
should test if the processit is executing in has exited, and if so stop executing.

In the general case, the heap of a process cannot be removed before all signals that it needs to send have been sent.
Resources held by heap data are the memory blocks containing the heap, but also include things referred to from the
heap such as off heap binaries, and resources held via NIF resource objects on the heap.

Delivery of Signals

The amount of time that passes between the time a signal is sent and the arrival of the signal at the destination is
unspecified but positive. If the recelver has terminated, the signal does not arrive, but it can trigger another signal.
For example, al i nk signal sent to a non-existing process triggers an exi t signal, which is sent back to where the
| i nk signal originated from. When communicating over the distribution, signals can belost if the distribution channel
goes down.

The only signal ordering guarantee given is the following: if an entity sends multiple signals to the same destination
entity, the order is preserved; that is, if Asendsasigna S1 to B, and later sends signal S2 to B, S1 is guaranteed not
to arrive after S2. Note that S1 may, or may not have been lost.

Irregularities

Synchronous Error Checking

Some functionality that send signals have synchronous error checking when sending locally on a node and fail
if the receiver is not present at the time when the signal is sent:

e Thesendoperator ! , erl ang: send/ 2, 3, BlFsand er | ang: send_nosuspend/ 2, 3 BIFswhen
the receiver isidentified by a name that is expected to be registered locally.

e erlang:link/1

 erlang: group_| eader/2

192 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

6.14 Processes

Unexpected Behaviours of Exit Signals

When a process sends an exit signal with exit reason nor mal to itself by calling er | ang: exi t (sel f (),
nor mal) itwill beterminated when theexi t signal isreceived. In all other cases when an exit signal with exit
reason nor mal isreceived, it isdropped.

When an exi t signal with exit reason ki | | isreceived, the action taken is different depending on whether the
signal was sent due to a linked process terminating, or the signal was explicitly sent using the exi t / 2 BIF.
When sent using the exi t / 2 BIF, the signal cannot be trapped, while it can be trapped if the signal was sent
dueto alink.

Blocking Signaling Over Distribution

When sending asignal over adistribution channel, the sending process may be suspended even though the signal
is supposed to be sent asynchronoudly. This is due to the built in flow control over the channel that has been
present more or lessfor ever. When the size of the output buffer for the channel reach the distribution buffer busy
limit, processes sending on the channel will be suspended until the size of the buffer shrinks below the limit. The
sizeof thelimit can beinspected by callinger | ang: syst em i nfo(di st_buf busy_|i mt).Sincethis
functionality has been present for so long, it is not possible to remove it, but it is possible to increase the limit
to a point where it more or less never is reached using the er | command line argument +zdbbl . Note that
if you do raise the limit like this, you need to take care of flow control yourself to ensure that you do not get
into a situation with excessive memory usage. As of OTP 25.3 it is also possible to enable fully asynchronous
distributed signaling on a per processlevel using pr ocess_fl ag(async_di st, Bool).Alsointhiscase
you need to take care of flow control yourself.

The irregularities mentioned above cannot be fixed as they have been part of Erlang too long and it would break a
lot of existing code.

6.14.7 Links

Two processes can belinked to each other. Also aprocess and aport that reside on the same node can be linked to each
other. A link between two processes can be created if one of them callsthel i nk/ 1 BIF with the process identifier
of the other process as argument. Links can aso be created using one the following spawn BIFs spawn_I i nk(),
spawn_opt (), or spawn_r equest () . The spawn operation and the link operation will be performed atomically,
in these cases.

If one of the participants of alink terminates, it will send an exit signal to the other participant. The exit signal will
contain the exit reason of the terminated participant.

A link can be removed by calling theunl i nk/ 1 BIF.

Links are bidirectional and there can only be one link between two processes. Repeated callsto | i nk() have no
effect. Either one of the involved processes may create or remove alink.

Links are used to monitor the behavior of other processes, see Error Handling.

6.14.8 Error Handling

Erlang has a built-in feature for error handling between processes. Terminating processes emit exit signals to all
linked processes, which can terminate as well or handle the exit in some way. This feature can be used to build
hierarchical program structures where some processes are supervising other processes, for example, restarting them
if they terminate abnormally.

See OTP Design Principles for more information about OTP supervision trees, which use this feature.
Sending Exit Signals

When aprocess or port terminatesit will send exit signalsto all processes and portsthat it islinked to. The exit signal
will contain the following information:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 193

6.14 Processes

Sender identifier
The process or port identifier of the process or port that terminated.
Receiver identifier
The process or port identifier of the process or port which the exit signal is sent to.
Thel i nk flag
Thisflag will be set indicating that the exit signal was sent due to alink.
Exit reason
The exit reason of the process or port that terminated or the atom:

e noproc in case no process or port was found when setting up a link in a preceding call to the
I'i nk(Pi dOrPort) BIF. The process or port identified as sender of the exit signal will equal the
Pi dOr Port argument passedtol i nk/ 1.

e noconnecti on in case the linked processes resides on different nodes and the connection between the
nodes was lost or could not be established. The process or port identified as sender of the exit signal might
in this case still be alive.

Exit signals can also be sent explicitly by callingtheexi t (Pi dOr Port, Reason) BIF. Theexit signal issentto
theprocessor port identified by thePi dOr Por t argument. The exit signal sent will contain thefollowinginformation:

Sender identifier

The process identifier of the processthat called exi t / 2.
Receiver identifier

The process or port identifier of the process or port which the exit signal is sent to.
Thel i nk flag

Thisflag will not be set, indicating that this exit signal was not sent due to alink.
Exit reason

The term passed as Reason inthecal toexi t/ 2. If Reason istheatom ki | | , the receiver cannot trap the
exit signal and will unconditionally terminate when it receives the signal.

Receiving Exit Signals

What happens when a process receives an exit signal depends on:

* Thetrap exit state of the receiver at the time when the exit signal is received.
* Theexit reason of the exit signal.

e The sender of the exit signal.

* Thestateof thel i nk flag of theexitsignd. If thel i nk flagisset, theexit signal was sent dueto alink; otherwise,
the exit signal was sent by acall totheexi t/ 2 BIF.

« Ifthel i nk flag is set, what happens also depends on whether the link is still active or not when the exit signal
isreceived.

Based on the above states, the following will happen when an exit signal is received by a process:
e Theexit signa issilently dropped if:
» theli nk flag of the exit signal is set and the corresponding link has been deactivated.

« theexit reason of the exit signal isthe atom nor nal , the receiver is not trapping exits, and the receiver and
sender are not the same process.

194 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

6.15 Distributed Erlang

* Thereceiving processis terminated if:
« thel i nk flag of theexit signal isnot set, and the exit reason of theexit signal istheatomKki | | . Thereceiving
process will terminate with the atom ki | | ed as exit reason.

« thereceiver isnot trapping exits, and the exit reason is something other than the atom nor el . Also, if the
I i nk flag of the exit signal is set, the link also needs to be active otherwise the exit signal will be dropped.
The exit reason of the receiving process will equal the exit reason of the exit signal. Note that if the | i nk
flag is set, an exit reason of ki | | will not be convertedtoki | | ed.

» the exit reason of the exit signal is the atom nor mal and the sender of the exit signal is the same process
as the receiver. The |l i nk flag cannot be set in this case. The exit reason of the receiving process will be
the atom nor nal .

» Theexit signa is converted to amessage signal and added to the end of the message queue of the receiver, if the
receiver istrapping exits, thel i nk flag of the exit signd is:

* not set, and the exit reason of the signal isnot theatomki | | .

e sat, and the corresponding link is active. Note that an exit reason of ki | | will not terminate the processin
this case and it will not be convertedto ki | | ed.

The converted message will be on the form {' EXI T', Sender | D, Reason} where Reason equals the
exit reason of the exit signal and Sender | Disthe identifier of the process or port that sent the exit signal.

6.14.9 Monitors

An dternative to links are monitors. A process Pi d1 can create a monitor for Pi d2 by caling the BIF
erl ang: noni t or (process, Pi d2). Thefunction returns areference Ref .

If Pi d2 terminates with exit reason Reason, a'DOWN' messageis sent to Pi d1:
{'DOWN', Ref, process, Pid2, Reason}

If Pi d2 doesnot exist, the ' DOWN' message is sent immediately with Reason set to nopr oc.

Monitors are unidirectional. Repeated callsto er | ang: noni t or (process, Pi d) creates severa independent
monitors, and each one sends a'DOWN' message when Pi d terminates.

A monitor can be removed by calling er | ang: denoni t or (Ref) .

Monitors can be created for processes with registered names, also at other nodes.

6.14.10 Process Dictionary

Each process has its own process dictionary, accessed by calling the following BIFs:

put(Key, Value)
get(Key)

get()

get keys(Value)
erase(Key)
erase()

6.15 Distributed Erlang
6.15.1 Distributed Erlang System

A distributed Erlang system consists of a number of Erlang runtime systems communicating with each other. Each
such runtime system is called a node. Message passing between processes at different nodes, as well as links and

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 195

6.15 Distributed Erlang

monitors, are transparent when pids are used. Registered names, however, arelocal to each node. This means that the
node must be specified as well when sending messages, and so on, using registered names.

Thedistribution mechanismisimplemented using TCP/I P sockets. How to implement an alternative carrier isdescribed
in the ERTS User's Guide.

Starting adistributed node without also specifying - pr ot o_di st i net _t | s will exposethenodeto attacksthat
may give the attacker complete access to the node and in extension the cluster. When using un-secure distributed
nodes, make sure that the network is configured to keep potential attackers out. See the Using SSL for Erlang
Distribution User's Guide for details on how to setup a secure distributed node.

6.15.2 Nodes

A nodeisan executing Erlang runtime system that has been given aname, using the command-lineflag - name (long
names) or - snarre (short names).

The format of the node name is an atom name@ost . nane is the name given by the user. host isthe full host
name if long names are used, or the first part of the host name if short names are used. Function node() returns
the name of the node.

Example:

% erl -name dilbert
(dilbert@uab.ericsson.se)1> node().
'dilbert@uab.ericsson.se'

% erl -sname dilbert
(dilbert@uab)1> node().
dilbert@uab

The node name can also be given in runtime by calling net _ker nel : start/ 1.
Example:

% erl

1> node().

nonode@nohost

2> net_kernel:start([dilbert,shortnames]).
{o0k,<0.102.0>}

(dilbert@uab)3> node().

dilbert@uab

A node with along node name cannot communicate with a node with a short node name.

6.15.3 Node Connections

The nodes in a distributed Erlang system are loosely connected. The first time the name of another node is used,
for example, if spawn(Node, M F, A) or net _adm pi ng(Node) is called, a connection attempt to that node
is made.

196 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

6.15 Distributed Erlang

Connectionsare by default transitive. If anode A connectsto node B, and node B has a connection to node C, then node
A also tries to connect to node C. This feature can be turned off by using the command-line flag - connect _al |
f al se, seethe erl(1) manual pagein ERTS.

If a node goes down, all connections to that node are removed. Calling er | ang: di sconnect _node(Node)
forces disconnection of anode.

Thelist of (visible) nodes currently connected to isreturned by nodes() .

6.15.4 epmd

The Erlang Port Mapper Daemon epmd is automatically started at every host where an Erlang node is started. It is
responsible for mapping the symbolic node names to machine addresses. See the epmd(1) manual pagein ERTS.

6.15.5 Hidden Nodes

In adistributed Erlang system, it is sometimes useful to connect to a node without also connecting to al other nodes.
An example is some kind of O& M functionality used to inspect the status of a system, without disturbing it. For this
purpose, a hidden node can be used.

A hidden node is a node started with the command-lineflag - hi dden. Connections between hidden nodes and other
nodesare not transitive, they must be set up explicitly. Also, hidden nodes does not show up in thelist of nodesreturned
by nodes() . Instead, nodes(hi dden) or nodes(connect ed) must be used. This means, for example, that
the hidden node is not added to the set of nodes that gl obal iskeeping track of.

6.15.6 Dynamic Node Name

If the node nameis set to undef i ned the node will be started in a special mode to be the temporary client of another
node. The node will then request adynamic node name from the first node it connectsto. In addition these distribution
settings will be set:

-dist listen false -hidden -kernel dist auto connect never

As -di st _auto_connect is set to never, net_kernel : connect _node/ 1 must be caled in order
to setup connections. If the first established connection is closed (which gave the node its dynamic name),
then any other connections will also be closed and the node will lose its dynamic node name. A new call to
net _kernel : connect _node/ 1 can be made to get a new dynamic node name. The node name may change if
the distribution is dropped and then set up again.

Thedynamic node namefeatureis supported from OTP 23. Both the temporary client node and thefirst connected
peer node (supplying the dynamic node name) must be at least OTP 23 for it to work.

6.15.7 C Nodes

A C nodeis a C program written to act as a hidden node in a distributed Erlang system. The library Erl_Interface
contains functions for this purpose. For more information about C nodes, see the Erl_Interface application and
Interoperability Tutorial..

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 197

6.15 Distributed Erlang

6.15.8 Security

"Security" here does not mean cryptographically secure, but rather security against accidental misuse, such as
preventing a node from connecting to a cluster with which it is not intended to communicate.

Furthermore, the communication between nodes is per default in clear text. If you need strong security, please see
Using TLSfor Erlang Distribution in the SSL application’'s User's Guide.

Also, the default random cookie mentioned in the following text is not very unpredictable. A better one can
be generated using primitives in the cr ypt o module, though this still does not make the initial handshake
cryptographically secure. And inter-node communication is still in clear text.

Authentication determines which nodes are allowed to communicate with each other. In anetwork of different Erlang
nodes, it is built into the system at the lowest possible level. All nodes use a magic cookie, which is an Erlang atom,
when connecting another node.

During the connection setup, after node names have been exchanged, the magic cookies the nodes present to each
other are compared. If they do not match, the connection is rejected. The cookies themselves are never transferred,
instead they are compared using hashed challenges, although not in a cryptographically secure manner.

At start-up, a node has a random atom assigned as its default magic cookie and the cookie of other nodes is assumed
to be nocooki e. The first action of the Erlang network authentication server (aut h) is then to search for afile
named . er | ang. cooki e in the user's home directory and then in fi | enane: basedi r (user _confi g,

"erlang"). If none of the files exist, a . erl ang. cooke file is created in the user's home directory. The
UNIX permissions mode of the file is set to octal 400 (read-only by user) and its content is a random string.
An atom Cooki e is created from the contents of the file and the cookie of the local node is set to this using
erl ang: set _cooki e(Cooki e) . This sets the default cookie that the local node will use for al other nodes.

Thus, groups of userswith identical cookiefiles get Erlang hodes that can communicate freely since they use the same
magic cookie. Users who want to run nodes where the cookie files are on different file systems must make certain
that their cookie files are identical.

For anode Node1 using magic cookie Cooki e to be ableto connect to, and to accept a connection from, another node
Node? that usesadifferent cookieDi f f Cooki e, thefunctioner | ang: set _cooki e(Node2, Diff Cooki e)
must first be called at Nodel. Distributed systems with multiple home directories (differing cookie files) can be
handled in thisway.

With this setup Nodel and Node2 agree on which cookie to use: Nodel uses its explicitly configured
Di f f Cooki e for Node2, and Node2 usesits default cookie Di f f Cooki e.

You can aso use a Di ff Cooki e that neither Nodel nor Node2 has as its default cookie, if you also call
erl ang: set _cooki e(Nodel, Diff Cookie) inNode2 before establishing connection

Because node names are exchanged during connection setup before cookies are selected, connection setup works
regardless of which node that initiatesiit.

Note that to configure Node1 to use Node?2's default cookie when communicating with Node2, and vice versa
results in a broken configuration (if the cookies are different) because then both nodes use the other node's
(differing) cookie.

The default when a connection is established between two nodes, isto immediately connect all other visible nodes as
well. Thisway, thereis always a fully connected network. If there are nodes with different cookies, this method can

198 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

6.15 Distributed Erlang

be inappropriate (since it may not be feasible to configure different cookies for all possible nodes) and the command-
lineflag- connect _al | f al se must be set, see the erl(1) manual pagein ERTS.

The magic cookie of the local node can be retrieved by callinger | ang: get _cooki e() .

6.15.9 Distribution BIFs
Some useful BIFs for distributed programming (for more information, see the erlang(3) manua pagein ERTS:

BIF Description

er| ang: di sconnect _node(Node) Forces the disconnection of anode.

erl ang: get _cooki e() Returns the magic cookie of the current node.
erl ang: get _cooki e(Node) Returns the magic cookie for node Node.

Returnst r ue if the runtime system is anode and can

Is_alive() connect to other nodes, f al se otherwise.

Monitors the status of Node. A message{ nodedown,

moni tor_node(Node, true|false) Node} isreceived if the connectionto it islost.

Returns the name of the current node. Allowed in
node()

guards.

Returns the node where Ar g, apid, reference, or port, is
node(Arg) located. %P P

Returns alist of all visible nodes this node is connected
nodes()

to.

Depending on Ar g, this function can return alist
nodes(Arg) not only of visible nodes, but also hidden nodes and
previously known nodes, and so on.

Sets the magic cookie, Cooki e to use when connecting
erl ang: set _cooki e(Cooki e) all nodes that have no explicit cookie set with
erl ang: set _cooki e/ 2.

Sets the magic cookie used when connecting Node.
If Node isthe current node, Cooki e isused when
connecting al nodes that have no explicit cookie set
with this function.

erl ang: set _cooki e(Node, Cooki e)

spawn|[_| i nk| _opt] (Node, Fun) Creates a process at a remote node.

spawn[_| i nk| opt] (Node, Mbdul e,

Funct i onName, Args) Creates a process at a remote node.

Table 15.1: Distribution BIFs

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 199

6.15 Distributed Erlang

6.15.10 Distribution Command-Line Flags

Examples of command-line flags used for distributed programming (for more information, see the erl(1) manual page

in ERTS:

Command-LineFlag

Description

-connect _all false Only explicit connection set-ups are used.
- hi dden Makes a node into a hidden node.
“name Name Makes a runtime system into a node, using long node

names.

-set cooki e Cooki e

Sameascalinger | ang: set _cooki e(Cooki e) .

-set cooki e Node Cooki e

Sameascalinger | ang: set _cooki e(Node,
Cooki e) .

-snane Nane

Makes a runtime system into a node, using short node
names.

Table 15.2: Distribution Command-Line Flags

6.15.11 Distribution Modules

Examples of modules useful for distributed programming:
In the Kernel application:

Module Description

gl obal A global name registration facility.

gl obal _group Grouping nodes to global name registration groups.
net _adm Various Erlang net administration routines.

net ker nel Erlang networking kernel.

Table 15.3: Kernel Modules Useful For Distribution.

Inthe STDLIB application:

Module

Description

sl ave

Start and control of slave nodes.

Table 15.4: STDLIB Modules Useful For Distribution.

200 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

6.16 Compilation and Code Loading

6.16 Compilation and Code Loading

How codeis compiled and loaded is not alanguage issue, but is system-dependent. This section describes compilation
and code loading in Erlang/OTP with references to relevant parts of the documentation.

6.16.1 Compilation

Erlang programs must be compiled to object code. The compiler can generate anew file that contains the object code.
The current abstract machine, which runs the object code, is called BEAM, therefore the object files get the suffix
. beam The compiler can also generate a binary which can be loaded directly.

The compiler islocated in the module conpi | e (see the compile(3) manual page in Compiler).

compile: file(Module)
compile:file(Module, Options)

The Erlang shell understands the command ¢ (Modul e) which both compiles and loads Mbdul e.

There is also a module make, which provides a set of functions similar to the UNIX type Make functions, see the
make(3) manual pagein Toals.

The compiler can aso be accessed from the OS prompt, see the erl(1) manual pagein ERTS.

erl -compile Modulel...ModuleN
erl -make

[
“©
[

“©

The er | ¢ program provides an even better way to compile modules from the shell, see the erlc(1) manual pagein
ERTS. It understands a number of flags that can be used to define macros, add search paths for include files, and more.

% erlc <flags> Filel.erl...FileN.erl

6.16.2 Code Loading

The object code must be loaded into the Erlang runtime system. Thisis handled by the code server, see the code(3)
manual pagein Kernel.

The code server loads code according to a code loading strategy, which is either inter active (default) or embedded.
In interactive mode, code is searched for in a code path and loaded when first referenced. In embedded mode, code
isloaded at start-up according to aboot script. Thisis described in System Principles.

6.16.3 Code Replacement
Erlang supports change of code in arunning system. Code replacement is done on module level.

The code of amodule can exist in two variantsin asystem: current and old. When amodule isloaded into the system
for the first time, the code becomes 'current'. If then a new instance of the module is loaded, the code of the previous
instance becomes 'old' and the new instance becomes ‘current'.

Both old and current code is valid, and can be evaluated concurrently. Fully qualified function calls always refer to
current code. Old code can still be evaluated because of processes lingering in the old code.

If athird instance of the module isloaded, the code server removes (purges) the old code and any processes lingering
in it isterminated. Then the third instance becomes 'current’ and the previously current code becomes 'old'.

To change from old code to current code, a process must make a fully qualified function call.

Example:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 201

6.16 Compilation and Code Loading

-module(m).
-export([loop/0]).

loop() ->
receive
code switch ->
m:Lloop();
Msg ->

Loop()
end.

To make the process change code, send the message code_swi t ch to it. The process then makes afully qualified
cal tom | oop() and changesto current code. Notice that m | oop/ 0 must be exported.

For code replacement of funsto work, use the syntax f un Modul e: Funct i onNanme/ Arity.

6.16.4 Running a Function When a Module is Loaded
The- on_| oad() directive namesafunction that isto be run automatically when a module isloaded.
Its syntax is as follows:

-on_load(Name/0) .
It is not necessary to export the function. It is called in a freshly spawned process (which terminates as soon as the
function returns).
The function must return ok if the module is to become the new current code for the module and become callable.

Returning any other value or generating an exception causes the new code to be unloaded. If the return value is not
an atom, awarning error report is sent to the error logger.

If there already is current code for the module, that code will remain current and can be called until the on_| oad
function hasreturned. If theon_| oad function fails, the current code (if any) will remain current. If thereisno current
code for amodule, any process that makes an external call to the module before the on_| oad function has finished
will be suspended until the on_| oad function have finished.

Before OTP 19, if theon_| oad function failed, any previously current code would becomeold, essentially leaving
the system without any working and reachabl e instance of the module. That problem hasbeen eliminated in OTP 19.

In embedded mode, first all modules are loaded. Then all on_I| oad functions are called. The system is terminated
unlessall of theon_| oad functions return ok.

Example:

-module(m).
-on_load(load my nifs/0).

load my nifs() ->
NifPath = ..., %Set up the path to the NIF library.
Info = ... %Initialize the Info term

erlang:load nif(NifPath, Info).

If thecall toer | ang: | oad_ni f/ 2 fails, the module is unloaded and awarning report is sent to the error loader.

202 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

6.17 Ports and Port Drivers

6.17 Ports and Port Drivers

Examples of how to use ports and port drivers are provided in Interoperability Tutorial. For information about the
BIFs mentioned, see the erlang(3) manual pagein ERTS.

6.17.1 Ports

Ports provide the basic mechanism for communication with the external world, from Erlang's point of view. They
provide a byte-oriented interface to an external program. When a port has been created, Erlang can communicate with
it by sending and receiving lists of bytes, including binaries.

The Erlang process creating a port is said to be the port owner, or the connected process of the port. All
communication to and from the port must go through the port owner. If the port owner terminates, so does the port
(and the external program, if it iswritten correctly).

The external program resides in another OS process. By default, it reads from standard input (file descriptor 0) and
writes to standard output (file descriptor 1). The external program is to terminate when the port is closed.

6.17.2 Port Drivers

Itispossibleto writeadriver in C according to certain principles and dynamically link it to the Erlang runtime system.
The linked-in driver looks like a port from the Erlang programmer's point of view and iscalled aport driver.

An erroneous port driver causes the entire Erlang runtime system to leak memory, hang or crash.

For information about port drivers, seethe erl_driver(4) manual pagein ERTS, driver_entry(1) manual pagein ERTS,
and erl_ddll(3) manual pagein Kernel.

6.17.3 Port BIFs

To create a port:

Returns a port identifier Por t asthe result of opening a
new Erlang port. Messages can be sent to, and received
open_port (PortNanme, PortSettings from, aport identifier, just like apid. Port identifiers
canasobelinkedtousing | i nk/ 1, or registered under
anameusingr egi ster/ 2.

Table 17.1: Port Creation BIF

Por t Name isusualy atuple{ spawn, Command} , where the string Command is the name of the external program.
The external program runs outside the Erlang workspace, unless a port driver with the name Command is found. If
Comand isfound, that driver is started.

Port Setti ngs isalist of settings (options) for the port. The list typically contains at least atuple { packet , N},
which specifies that data sent between the port and the external program are preceded by an N-byte length indicator.
Validvaluesfor N arel, 2, or 4. If binariesare to be used instead of lists of bytes, the option bi nar y must beincluded.

The port owner Pi d can communicate with the port Por t by sending and receiving messages. (In fact, any process
can send the messages to the port, but the port owner must be identified in the message).

As of Erlang/OTP R16, messages sent to ports are delivered truly asynchronously. The underlying implementation
previously delivered messages to ports synchronously. Message passing has however always been documented as an

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 203

6.17 Ports and Port Drivers

asynchronous operation. Hence, this is not to be an issue for an Erlang program communicating with ports, unless
fal se assumptions about ports have been made.

In the following tables of examples, Dat a must bean 1/Olist. An1/Olistisabinary or a(possibly deep) list of binaries
or integersin the range 0..255:

M essage Description

{Pi d, {command, Dat a}} Sends Dat a to the port.

Closes the port. Unless the port is already closed, the
{Pid, cl ose} port replieswith{ Por t , cl osed} when al buffers
have been flushed and the port really closes.

Setsthe port owner of Port to NewPi d.

Unlessthe port is already closed, the port replies

{Pi d, {connect, NewPi d}} with{ Por t , connect ed} totheold port owner. Note
that the old port owner is still linked to the port, but the
new port owner is not.

Table 17.2: Messages Sent To a Port

M essage Description

{Port,{data, Data}} Dat a isreceived from the external program.
{Port, cl osed} ReplytoPort ! {Pid, cl ose}.

{Port, connect ed} ReplytoPort ! {Pid, {connect, NewPi d}}.
{"EXIT, Port, Reason} If the port has terminated for some reason.

Table 17.3: Messages Received From a Port

Instead of sending and receiving messages, there are also a number of BIFs that can be used:

Port BIF Description
port _conmand(Port, Dat a) Sends Dat a to the port.
port _cl ose(Port) Closes the port.

Sets the port owner of Por t to NewPi d. The old
port_connect (Port, NewPi d) port owner Pi d stays linked to the port and must call
unl i nk(Port) if thisisnot desired.

erl ang: port_info(Port,Ilten Returnsinformation as specified by | t em

204 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

6.17 Ports and Port Drivers

erl ang: ports() Returnsalist of all ports on the current node.

Table 17.4: Port BIFs

Some additional BIFsthat apply to port drivers: port _control /3 anderl ang: port_cal | /3.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 205

7.1 Records

7 Programming Examples

This section contains examples on using records, funs, list comprehensions, and the bit syntax.

7.1 Records
7.1.1 Records and Tuples

The main advantage of using records rather than tuplesisthat fieldsin arecord are accessed by name, whereas fields
in atuple are accessed by position. To illustrate these differences, suppose that you want to represent a person with
thetuple{ Nane, Address, Phone}.

To write functions that manipulate this data, remember the following:

» TheNane field isthefirst element of the tuple.
e TheAddr ess field is the second element.
e ThePhone field isthe third element.

For example, to extract data from a variable P that contains such a tuple, you can write the following code and then
use pattern matching to extract the relevant fields:

Name = element(1l, P),
Address = element(2, P),

Such codeisdifficult to read and understand, and errors occur if the numbering of the elementsin the tupleiswrong. If
the data representation of thefieldsis changed, by re-ordering, adding, or removing fields, al referencesto the person
tuple must be checked and possibly modified.

Records allow references to the fields by name, instead of by position. In the following example, a record instead of
atupleis used to store the data:

-record(person, {name, phone, address}).

This enables references to the fields of the record by name. For example, if P isavariable whose valueisaper son
record, the following code access the name and address fields of the records:

Name = P#person.name,
Address = P#person.address,

Internally, records are represented using tagged tuples:

{person, Name, Phone, Address}

7.1.2 Defining a Record

This following definition of aper son isused in several examples in this section. Three fields are included, nane,
phone, and addr ess. The default values for name and phone is"" and [], respectively. The default value for
addr ess istheatom undef i ned, since no default value is supplied for thisfield:

206 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

7.1 Records

-record(person, {name = , phone = [], address}).

The record must be defined in the shell to enable use of the record syntax in the examples:

> rd(person, {name = "", phone = [], address}).
person

Thisisbecause record definitions are only available at compile time, not at runtime. For details on recordsin the shell,
see the shell(3) manual pagein STDLIB.

7.1.3 Creating a Record

A new per son record is created as follows:

> #person{phone=[0,8,2,3,4,3,1,2], name="Robert"}.
#person{name = "Robert",phone = [0,8,2,3,4,3,1,2],address = undefined}

Astheaddr ess field was omitted, its default value is used.

From Erlang 5.1/OTP R8B, a vaue to al fields in a record can be set with the specia field . means "al fields
not explicitly specified".

Example:
> #person{name = "Jakob", ="' '}.
#person{name = "Jakob",phone = ' ',address = ' '}

It is primarily intended to be used in et s: mat ch/ 2 and rmesi a: mat ch_obj ect / 3, to set record fields to the
atom' ' .(Thisisawildcardinet s: mat ch/ 2.)

7.1.4 Accessing a Record Field

The following example shows how to access arecord field:

> P = #person{name = "Joe", phone = [0,8,2,3,4,3,1,2]}.
#person{name = "Joe",phone = [0,8,2,3,4,3,1,2],address = undefined}
> P#person.name.

"Joe"

7.1.5 Updating a Record

The following example shows how to update a record:

> P1 = #person{name="Joe", phone=[1,2,3], address="A street"}.
#person{name = "Joe",phone = [1,2,3],address = "A street"}

> P2 = Pl#person{name="Robert"}.

#person{name = "Robert",phone = [1,2,3],address = "A street"}

7.1.6 Type Testing

The following example shows that the guard succeeds if P is record of type per son:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 207

7.1 Records

foo(P) when is record(P, person) -> a person;
foo(_) -> not_a person.

7.1.7 Pattern Matching

Matching can be used in combination with records, as shown in the following example:

> P3 = #person{name="Joe", phone=[0,0,7], address="A street"}.

#person{name = "Joe",phone = [0,0,7],address = "A street"}
> #person{name = Name} = P3, Name.
"Joe"

Thefollowing function takesalist of per son records and searches for the phone number of aperson with a particular
name:

find phone([#person{name=Name, phone=Phone} | 1, Name) ->
{found, Phone};

find phone([| T1, Name) ->
find phone(T, Name);

find phone([], Name) ->
not found.

Thefields referred to in the pattern can be given in any order.

7.1.8 Nested Records

The value of afield in arecord can be an instance of arecord. Retrieval of nested data can be done stepwise, or in
asingle step, as shown in the following example:

-record(name, {first = "Robert", last = "Ericsson"}).

-record(person, {name = #name{}, phone}).

demo() ->
P = #person{name= #name{first="Robert",last="Virding"}, phone=123},

First = (P#person.name)#name.first.

Here, deno() evaluatesto” Robert ™.

7.1.9 A Longer Example

Comments are embedded in the following example:

o°

% File: person.hrl

Data Type: person

where:
name: A string (default is undefined).
age: An integer (default is undefined).

phone: A list of integers (default is []).

dict: A dictionary containing various information
about the person.
A {Key, Value} list (default is the empty list).

% 0° o° o° o° o o° o° o° o°

record(person, {name, age, phone = [], dict = [1}).

1 0P 0P AP AP d° P od° d° o° o°

208 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

7.2 Funs

-module(person).
-include("person.hrl").
-compile(export all). % For test purposes only.

This creates an instance of a person.
Note: The phone number is not supplied so the
default value [] will be used.

o o of
o o o°

make hacker without phone(Name, Age) ->
#person{name = Name, age = Age,
dict = [{computer knowledge, excellent},
{drinks, coke}]}.

%% This demonstrates matching in arguments

print(#person{name = Name, age = Age,
phone = Phone, dict = Dict}) ->
io:format("Name: ~s, Age: ~w, Phone: ~w ~n"
"Dictionary: ~w.~n", [Name, Age, Phone, Dict]).

%% Demonstrates type testing, selector, updating.

birthday(P) when is record(P, person) ->
P#person{age = P#person.age + 1}.

register two hackers() ->
Hackerl = make hacker without phone("Joe", 29),
OldHacker = birthday(Hackerl),
% The central register server should have
% an interface function for this.
central register server ! {register person, Hackerl},
central register server ! {register person,
OldHacker#person{name = "Robert",
phone = [0,8,3,2,4,5,3,11}}.

7.2 Funs
7.2.1 map

The following function, doubl e, doubles every element in alist:

double(

[H|T]) -> [2*H|double(T)];
double([

Hl
o > 1.

Hence, the argument entered as input is doubled as follows:
> double([1,2,3,4]).
[2,4,6,8]
Thefollowing function, add_one, adds oneto every element in alist:

|T1) -> [H+1l|add one(T)];
) -> [1].

The functions doubl e and add_one have a similar structure. This can be used by writing a function map that
expresses this similarity:

add one([H
add one([]

map(F, [H|T1) -> [F(H)|map(F, T)1;
map(F, [1) -> [1.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 209

7.2 Funs

The functionsdoubl e and add_one can now be expressed in terms of map asfollows:

double(L) -> map(fun(X) -> 2*X end, L).
add one(L) -> map(fun(X) -> 1 + X end, L).

map(F, List) isafunction that takes afunction F and alist L as arguments and returns a new list, obtained by
applying F to each of the elementsin L.

The process of abstracting out the common features of a number of different programs is called procedural
abstraction. Procedural abstraction can be used to write several different functions that have a similar structure, but
differ in some minor detail. Thisis done as follows:

* Step 1. Write one function that represents the common features of these functions.
e Step 2. Parameterize the difference in terms of functions that are passed as arguments to the common function.

7.2.2 foreach

This section illustrates procedural abstraction. Initialy, the following two examples are written as conventional
functions.

This function prints all elements of alist onto a stream:

print list(Stream, [H|T]) ->
io:format(Stream, "~p~n", [H]),
print list(Stream, T);
print_list(Stream, []) ->
true.

This function broadcasts a message to alist of processes:

broadcast(Msg, [Pid|Pids]) ->
Pid ! Msg,
broadcast(Msg, Pids);
broadcast(, []1) ->
true.

These two functions have asimilar structure. They both iterate over alist and do something to each element in thelist.
The "something" is passed on as an extra argument to the function that does this.

Thefunction f or each expresses this similarity:
foreach(F, [H|T]) ->
F(H),
foreach(F, T);
foreach(F, []) ->
ok.
Using the function f or each, thefunctionpri nt | i st becomes:
foreach(fun(H) -> io:format(S, "~p~n",[H]) end, L)
Using the function f or each, the function br oadcast becomes:
foreach(fun(Pid) -> Pid ! M end, L)

f or each is evaluated for its side-effect and not its value. f or each(Fun , L) cals Fun(X) for each element
Xin L and the processing occurs in the order that the elements were defined in L. map does not define the order in
which its elements are processed.

210 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

7.2 Funs

7.2.3 Syntax of Funs

Funs are written with the following syntax (see Fun Expressions for full description):
F = fun (Argl, Arg2, ... ArgN) ->
end B

This creates an anonymous function of N arguments and binds it to the variable F.

Another function, Funct i onName, written in the same module, can be passed as an argument, using the following
syntax:

F = fun FunctionName/Arity

With this form of function reference, the function that is referred to does not need to be exported from the module.

It isalso possible to refer to afunction defined in a different module, with the following syntax:

F = fun Module:FunctionName/Arity

In this case, the function must be exported from the module in question.
The following program illustrates the different ways of creating funs:

-module(fun test).
-export([tl/0, t2/0]).
-import(lists, [map/2]).
t1() -> map(fun(X) -> 2 * X end, [1,2,3,4,5]).
t2() -> map(fun double/1, [1,2,3,4,5]).
double(X) -> X * 2.
The fun F can be evaluated with the following syntax:
F(Argl, Arg2, ..., Argn)
To check whether atermisafun, usethetesti s_f uncti on/ 1 inaguard.

Example:

f(F, Args) when is function(F) ->
apply(F, Args);

f(N,) when is integer(N) ->
N.

Funs are a distinct type. The BIFser | ang: f un_i nf o/ 1, 2 can be used to retrieve information about a fun, and
theBlIFerl ang: fun_to_|i st/ 1 returnsatextual representation of afun. Thecheck _process_code/ 2 BIF
returnst r ue if the process contains funs that depend on the old version of amodule.

7.2.4 Variable Bindings Within a Fun

The scope rules for variables that occur in funs are as follows:

« All variables that occur in the head of afun are assumed to be "fresh" variables.

* Variablesthat are defined before the fun, and that occur in function calls or guard tests within the fun, have the
values they had outside the fun.

e Variables cannot be exported from afun.
The following examplesillustrate these rules:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 211

7.2 Funs

print list(File, List) ->
{ok, Stream} = file:open(File, write),
foreach(fun(X) -> io:format(Stream,"~p~n",[X]) end, List),
file:close(Stream).

Here, the variable X, defined in the head of the fun, is a new variable. The variable St r eam which is used within
thefun, getsitsvaluefromthefi | e: open line.

Asany variable that occursin the head of afunis considered a new variable, it is equally valid to write as follows:

print list(File, List) ->
{ok, Stream} = file:open(File, write),
foreach(fun(File) ->
io:format(Stream, "~p~n", [File])
end, List),
file:close(Stream).

Here, Fi | e isused asthe new variable instead of X. Thisis not so wise because code in the fun body cannot refer to
thevariable Fi | e, which is defined outside of the fun. Compiling this example gives the following diagnostic:

./FileName.erl:Line: Warning: variable 'File'
shadowed in 'fun'

This indicates that the variable Fi | e, which is defined inside the fun, collides with the variable Fi | e, which is
defined outside the fun.

The rules for importing variables into a fun has the consequence that certain pattern matching operations must be
moved into guard expressions and cannot be written in the head of the fun. For example, you might write the following
codeif you intend the first clause of F to be evaluated when the value of itsargument is Y:

f(...) ->
Y = ...
map (fun(X) when X == ->
() ->
end, :::)

instead of writing the following code:

f(...) ->

Y= ...
map (fun(Y) ->

7.2.5 Funs and Module Lists

The following examples show a dialogue with the Erlang shell. All the higher order functions discussed are exported
fromthemodulel i st s.

map
map takes a function of one argument and alist of terms:

map(F, [H|T]) -> [F(H)[map(F, T)1;
map (F, [1) -> [].

212 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

7.2 Funs

It returns the list obtained by applying the function to every argument in the list.

When anew fun is defined in the shell, the value of the fun is printed as Fun#<er | _eval >:

> Double = fun(X) -> 2 * X end.
#Fun<erl eval.6.72228031>

> lists:map(Double, [1,2,3,4,5]).
[2,4,6,8,10]

any

any takes a predicate P of one argument and alist of terms:

any(Pred, [H|T]) ->
case Pred(H) of
true -> true;
false -> any(Pred, T)
end;
any(Pred, [1) ->
false.

A predicate is afunction that returnst r ue or f al se. any istr ue if thereisaterm X in the list such that P(X)
istrue.

A predicate Bi g(X) isdefined, whichist r ue if its argument is greater that 10:

> Big = fun(X) -> if X > 10 -> true; true -> false end end.
#Fun<erl eval.6.72228031>

> lists:any(Big, [1,2,3,4]).

false

> lists:any(Big, [1,2,3,12,5]).

true

all

al | hasthe same argumentsasany:

all(Pred, [H|T]) ->
case Pred(H) of
true -> all(Pred, T);
false -> false
end;
all(Pred, []1) ->
true.

Itist r ue if the predicate applied to all elementsin thelistist r ue.
> lists:all(Big, [1,2,3,4,12,6]).
false

> lists:all(Big, [12,13,14,15]).
true

foreach

f or each takes afunction of one argument and alist of terms:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 213

7.2 Funs

foreach(F, [H|T]) ->
F(H),
foreach(F, T);
foreach(F, []) ->
ok.

The function is applied to each argument in thelist. f or each returnsok. It isonly used for its side-effect:

> lists:foreach(fun(X) -> io:format("~w~n",[X]) end, [1,2,3,4]).
1

2

3

4

ok

foldl

f ol dl takesafunction of two arguments, an accumulator and a list:

foldl(F, Accu, [Hd|Taill) ->
foldl(F, F(Hd, Accu), Tail);
foldl(F, Accu, []) -> Accu.

The function is called with two arguments. The first argument is the successive elements in the list. The second
argument is the accumulator. The function must return a new accumulator, which is used the next time the function
iscalled.

If you havealistof lisssL = ["I","like","Erlang"], then you can sum the lengths of all the stringsin L
asfollows:

> L = [”I”,Illike","Erlang"].

[IIIII’II'LikeII,IIEr'Langll]

10> lists:foldl(fun(X, Sum) -> length(X) + Sum end, 0, L).
11

f ol dI workslikeawhi | e loop in an imperative language:

L= ["I","like","Erlang"],
Sum = 0,
while(L !'= []1){
Sum += length(head(L)),
L = tail(L)
end

mapfoldl

mapf ol dl simultaneously maps and folds over alist:

mapfoldl(F, Accu®, [Hd|Taill) ->
{R,Accul} = F(Hd, Accu0),
{Rs,Accu2} = mapfoldl(F, Accul, Tail),
{[R|Rs], Accu2};

mapfoldl(F, Accu, []) -> {[], Accu}.

The following example shows how to change al lettersin L to upper case and then count them.
First the change to upper case:

214 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

7.2 Funs

> Upcase = fun(X) when $a =< X, X =< $z -> X + $A - $%$a;
(X) -> X

end.

#Fun<erl eval.6.72228031>

> Upcase word =

fun(X) ->
lists:map(Upcase, X)
end.

#Fun<erl eval.6.72228031>

> Upcase word("Erlang").
"ERLANG"

> lists:map(Upcase word, L).
["I","LIKE","ERLANG"]

Now, the fold and the map can be done at the same time;

> lists:mapfoldl(fun(Word, Sum) ->
{Upcase word(Word), Sum + length(Word)}
end, 0, L).

{["I","LIKE","ERLANG"], 11}

filter
filter takesapredicate of one argument and alist and returns all elementsin thelist that satisfy the predicate:

filter(F, [H|T]) ->
case F(H) of
true -> [H|filter(F, T)I;
false -> filter(F, T)
end;
filter(F, [1) -> [].

> lists:filter(Big, [500,12,2,45,6,7]).
[500,12,45]

Combining maps and filters enables writing of very succinct code. For example, to define a set difference function
di ff (L1, L2) tobethedifference betweenthelistsL1 and L2, the code can be written asfollows:

diff(Ll, L2) ->
filter(fun(X) -> not member(X, L2) end, L1).

Thisgivesthelist of all elementsin L1 that are not contained in L2.
The AND intersection of thelist L1 and L2 is also easily defined:

intersection(L1l,L2) -> filter(fun(X) -> member(X,L1l) end, L2).

takewhile
t akewhi | e(P, L) takeselements X from alist L aslong asthe predicate P(X) istrue:

takewhile(Pred, [H|T]) ->
case Pred(H) of
true -> [H|takewhile(Pred, T)1;
false -> []
end;
takewhile(Pred, []) ->
[1.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 215

7.2 Funs

> lists:takewhile(Big, [200,500,45,5,3,45,6]).
[200,500,45]

dropwhile
dr opwhi | e isthe complement of t akewhi | e:

dropwhile(Pred, [H|T]) ->
case Pred(H) of
true -> dropwhile(Pred, T);
false -> [H|TI]
end;
dropwhile(Pred, []) ->
[1.

> lists:dropwhile(Big, [200,500,45,5,3,45,6]).
[5,3,45,6]

splitwith

splitwith(P, L) splitsthelistL intothetwo sublists{L1, L2},whereL = takewhile(P, L) andL2
= dropwhil e(P, L):

splitwith(Pred, L) ->
splitwith(Pred, L, [1).

splitwith(Pred, [H|T], L) ->
case Pred(H) of
true -> splitwith(Pred, T, [H|L]);
false -> {reverse(L), [H|TI}
end;
splitwith(Pred, [], L) ->
{reverse(L), [1}.

> lists:splitwith(Big, [200,500,45,5,3,45,6]).
{[200,500,45],[5,3,45,6]}

7.2.6 Funs Returning Funs

So far, only functions that take funs as arguments have been described. More powerful functions, that themselves
return funs, can also be written. The following examplesillustrate these type of functions.

Simple Higher Order Functions
Adder (X) isafunction that given X, returns a new function Gsuch that G(K) returnsK + X:

> Adder = fun(X) -> fun(Y) -> X + Y end end.
#Fun<erl eval.6.72228031>

> Add6 = Adder(6).

#Fun<erl eval.6.72228031>

> Add6(10).

16

Infinite Lists

Theideaisto write something like:

216 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

7.2 Funs

-module(lazy).
-export([ints_ from/1]).
ints from(N) ->
fun() ->
[N]ints from(N+1)]
end.

Then proceed as follows:

> XX = lazy:ints from(1).
#Fun<lazy.0.29874839>

> XX().
[1|#Fun<lazy.0.29874839>]
> hd(XX()).

1

> Y = tL(XX()).

#Fun<lazy.0.29874839>

> hd(Y()).

2
And so on. Thisis an example of "lazy embedding”.
Parsing

The following examples show parsers of the following type:

Parser(Toks) -> {ok, Tree, Toksl} | fail

Toks isthelist of tokensto be parsed. A successful parsereturns{ ok, Tree, Toks1l}.

e Treeisaparsetree.

 Tokslisatail of Tr ee that contains symbols encountered after the structure that was correctly parsed.

An unsuccessful parse returnsf ai | .

The following example illustrates a simple, functional parser that parses the grammar:

(a | b) & (c | d)

The following code defines afunction pconst (X) in the module f
of tokens:

pconst(X) ->

fun (T) ->
case T of
[X|T1] -> {ok, {const, X}, T1};
. -> fail
end
end.

This function can be used as follows:

> P1 = funparse:pconst(a).
#Fun<funparse.0.22674075>
> P1([a,b,c]).

{ok, {const,a}, [b,c]}

> P1([x,y,z]).

fail

Ericsson AB. All Rights Reserved

unpar se, which returns afun that parsesalist

.: Erlang/OTP System Documentation | 217

7.2 Funs

Next, the two higher order functions pand and por are defined. They combine primitive parsers to produce more
complex parsers.

First pand:

pand(P1, P2) ->
fun (T) ->
case P1(T) of
{ok, R1, T1} ->
case P2(T1l) of
{ok, R2, T2} ->
{ok, {'and', R1, R2}};

fail ->
fail
end;
fail ->
fail
end
end.

Given a parser P1 for grammar Gl, and a parser P2 for grammar G2, pand(P1, P2) returns a parser for the
grammar, which consists of sequences of tokens that satisfy GL1, followed by sequences of tokens that satisfy G2.

por (P1, P2) returnsa parser for the language described by the grammar Gl or &2:

por(P1, P2) ->
fun (T) ->
case P1(T) of
{ok, R, T1} ->
{ok, {'or',1,R}, T1};
fail ->
case P2(T) of
{ok, R1, T1} ->
{ok, {'or',2,R1}, T1};
fail ->
fail
end
end
end.

The original problem wasto parsethegrammar (a | b) & (c¢ | d).Thefollowing code addressesthis problem:
grammar() ->
pand (
por(pconst(a), pconst(b)),
por(pconst(c), pconst(d))).
The following code adds a parser interface to the grammar:

parse(List) ->
(grammar()) (List).

The parser can be tested as follows:

218 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

7.3 List Comprehensions

> funparse:parse([a,c]).
{ok,{'and',{'or',1,{const,a}},{'or',1,{const,c}}}}
> funparse:parse([a,d]).
{ok,{'and',{'or',1,{const,a}},{'or',2,{const,d}}}}
> funparse:parse([b,c]).
{ok,{'and',{'or',2,{const,b}},{'or',1,{const,c}}}}
> funparse:parse([b,d]).
{ok,{'and',{'or',2,{const,b}},{'or',2,{const,d}}}}
> funparse:parse([a,b]).

fail

7.3 List Comprehensions

7.3.1 Simple Examples

This section starts with a ssmple example, showing a generator and afilter:

= [X || X <- [1121al3r4rb1516], X > 3].
[a,4,b,5,6]

Thisisread asfollows: Thelist of X such that X istaken fromthelist[1, 2, a, . . .] and X isgreater than 3.
Thenotation X <- [1, 2, a, ...] isagenerator and the expression X > 3 isafilter.

An additional filter,i s_i nt eger (X) , can be added to restrict the result to integers:

> [X || X <- [1,2,a,3,4,b,5,6], is integer(X), X > 3].
[4,5,6]

Generators can be combined. For example, the Cartesian product of two lists can be written as follows:

> [{X, Y} || X <- [1,2,3], Y <- [a,b]].
[{1,a},{1,b},{2,a},{2,b},{3,a},{3,b}]

7.3.2 Quick Sort

The well-known quick sort routine can be written as follows:

sort([Pivot|T]) ->
sort([X || X <- T, X < Pivot]) ++
[Pivot] ++
sort([X || X <- T, X >= Pivot]);
sort([]) -> [1].

Theexpression[X || X <- T, X < Pivot] isthelistof al elementsin T that are lessthan Pi vot .
[X]| X< T, X >= Pivot] isthelist of al elementsin T that are greater than or equal to Pi vot .
A list sorted asfollows:

« Thefirst element inthelist isisolated and the list is split into two sublists.

* Thefirst sublist contains all elementsthat are smaller than the first element in the list.

* The second sublist contains all elements that are greater than, or equal to, the first element in the list.
* Then the sublists are sorted and the results are combined.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 219

7.3 List Comprehensions

7.3.3 Permutations

The following example generates all permutations of the elementsin alist:

perms([1) -> [[]];
perms(L) -> [[H|T] || H<- L, T <- perms(L--[H])].
This takes Hfrom L in al possible ways. The result is the set of al lists[H| T] , where T is the set of al possible

permutations of L, with Hremoved:

> perms([b,u,qgl).
[[b,u,q],[b,g,ul,[u,b,gl,[u,g,bl,[g,b,ul,[g,u,b]]

7.3.4 Pythagorean Triplets
Pythagorean triplets are sets of integers{ A, B, C} suchthat A**2 + B**2 = C**2.

Thefunction pyt h(N) generatesalist of al integers{ A, B, C} suchthat A**2 + B**2 = C**2 and wherethe
sum of the sidesis equal to, or lessthan, N:

) ->

{A,B,C} ||
A <- lists:seq(1,N),
B <- lists:seq(1,N),
C <- lists:seq(1,N),
A+B+C =< N,
A*A+B*B == C*C

pyth(N
[

> pyth(3).
[

> pyth(11).
[1.

> pyth(12).
[{3,4,5},{4,3,5}]

> pyth(50).
[{3,4,5},
{4,3,5},
{5,12,13},
{6,8,10},
{8,6,10},
{8,15,17},
{9,12,15},
{12,5,13},
{12,9,15},
{12,16,20},
{15,8,17},
{16,12,20}1]

The following code reduces the search space and is more efficient:

pythl(N
[{A,

->

C} ||

<- lists:seq(1l,N-2),
<- lists:seq(A+1,N-1),
C <- lists:seq(B+1,N),
A+B+C =< N,

A*A+B*B == C*C].

)
B
A
B

220 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

7.3 List Comprehensions

7.3.5 Simplifications With List Comprehensions

Asan example, list comprehensions can be used to simplify some of the functionsinl i sts. erl :

append(L) -> [X || L1l <- L, X <- L1].
map(Fun, L) -> [Fun(X) || X <- LI].
filter(Pred, L) -> [X || X <- L, Pred(X)].

7.3.6 Variable Bindings in List Comprehensions
The scope rules for variables that occur in list comprehensions are as follows:

« All variablesthat occur in agenerator pattern are assumed to be "fresh" variables.

* Any variablesthat are defined before the list comprehension, and that are used in filters, have the values they
had before the list comprehension.

» Variables cannot be exported from alist comprehension.

As an example of these rules, suppose you want to write the function sel ect , which selects certain elements from a
list of tuples. Supposeyouwritesel ect (X, L) -> [Y || {X Y} <- L]. withtheintention of extracting
al tuplesfrom L, where the first item is X.

Compiling this gives the following diagnostic:
./FileName.erl:Line: Warning: variable 'X' shadowed in generate

Thisdiagnostic warnsthat the variable X in the pattern is not the same asthe variable X that occursin the function head.

Evaluating sel ect givesthe following result:
> select(b, [{a,1},{b,2},{c,3},{b,7}1).
[1,2,3,7]

Thisis not the wanted result. To achieve the desired effect, sel ect must be written as follows:
select(X, L) -> [Y || {X1, Y} <- L, X == X1].

The generator now contains unbound variables and the test has been moved into the filter.
This now works as expected:

> select(b, [{a,1},{b,2},{c,3},{b,7}1).
[2,7]

Also notethat avariablein agenerator pattern will shadow avariable with the same name bound in aprevious generator
pattern. For example:

> [{X,Y} || X <- [1,2,3]1, X=Y <- [a,b,cl].
[{a,a},{b,b},{c,c}, {a,a},{b,b},{c,c},{a,a},{b,b},{c,c}]

A consequence of therulesfor importing variablesinto alist comprehensionsisthat certain pattern matching operations
must be moved into the filters and cannot be written directly in the generators.

Toillustrate this, do not write as follows:
f(...) ->
Y = ...
[Expression || PatternInvolving Y <- Expr, ...]

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 221

7.4 Bit Syntax

Instead, write as follows:

f(.

L) >
Y = ...
[Expression || PatternInvolving Y1 <- Expr, Y == Y1, ...]

7.4 Bit Syntax

7.4.1 Introduction

The complete specification for the bit syntax appearsin the Reference Manual.

In Erlang, a Bin is used for constructing binaries and matching binary patterns. A Bin is written with the following
syntax:

<<E1l, E2, ... En>>
A Binisalow-level sequence of bits or bytes. The purpose of a Bin isto enable construction of binaries:
Bin = <<E1, E2, ... En>>
All elements must be bound. Or match a binary:
<<El, E2, ... En>> = Bin

Here, Bi n isbound and the elements are bound or unbound, asin any match.
A Bin does not need to consist of awhole number of bytes.

A bitstring is a sequence of zero or more bits, where the number of bits does not need to be divisible by 8. If the
number of bitsisdivisible by 8, the bitstring is also a binary.

Each element specifies a certain segment of the bitstring. A segment is a set of contiguous bits of the binary (not
necessarily on a byte boundary). The first element specifies the initial segment, the second element specifies the
following segment, and so on.

Thefollowing examplesillustrate how binaries are constructed, or matched, and how elements and tails are specified.
Examples

Example 1: A binary can be constructed from a set of constants or a string literal:

Binll
Binl2

<<1, 17, 42>>,
<<"abc">>

This gives two binaries of size 3, with the following evaluations:

e binary to_list(Binll) evaluatesto[1, 17, 42].

e binary_to_list(Binl2) evaluatesto[97, 98, 99].

Example 2: Similarly, abinary can be constructed from a set of bound variables:

A=1, B=17, C = 42,
Bin2 = <<A, B, C:16>>

Thisgivesabinary of size 4. Here, asize expression isused for the variable C to specify a 16-bits segment of Bi n2.
binary _to_list(Bin2) evaluatesto[1, 17, 00, 42].

Example 3: A Bin can aso be used for matching. D, E, and F are unbound variables, and Bi n2 is bound, asin
Example 2:

222 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

7.4 Bit Syntax

<<D:16, E, F/binary>> = Bin2
ThisgivesD = 273,E = 00,and Fbindstoabinary of sizel:binary to list(F) = [42].
Example 4: The following is a more elaborate example of matching. Here, Dgr amis bound to the consecutive bytes
of an IP datagram of |P protocol version 4. The ambition is to extract the header and the data of the datagram:

-define(IP_VERSION, 4).
-define(IP_MIN HDR LEN, 5).

DgramSize = byte size(Dgram),
case Dgram of
<<?IP VERSION:4, HLen:4, SrvcType:8, TotlLen:16,
ID:16, Flgs:3, Frag0ff:13,
TTL:8, Proto:8, HdrChkSum:16,
SrcIP:32,
DestIP:32, RestDgram/binary>> when HLen>=5, 4*HLen=<DgramSize ->
OptsLen = 4*(HLen - ?IP MIN HDR LEN),
<<0Opts:OptsLen/binary,Data/binary>> = RestDgram,

end.

Here, the segment corresponding to the Opt s variable hasatype modifier, specifying that Opt s isto bindto abinary.
All other variables have the default type equal to unsigned integer.

An |P datagram header is of variable length. Thislength is measured in the number of 32-bit wordsand isgivenin the
segment corresponding to HLen. The minimum value of HLen is 5. It is the segment corresponding to Opt s that is
variable, so if HLen isequal to 5, Opt s becomes an empty binary.

Thetail variables Rest Dgr amand Dat a bind to binaries, as al tail variables do. Both can bind to empty binaries.
The match of Dgr amfailsif one of the following occurs:

e Thefirst 4-bits segment of Dgr amis not equal to 4.
* HLenislessthan 5.
» Thesizeof Dgr amislessthan 4* HLen.

7.4.2 Lexical Note

Notice that "B=<<1>>" will beinterpreted as"B =< <1>>", which isasyntax error. The correct way to write the
expressionis: B = <<1>>,

7.4.3 Segments

Each segment has the following general syntax:

Val ue: Si ze/ TypeSpeci fi erLi st

The Si ze or the TypeSpeci fi er, or both, can be omitted. Thus, the following variants are allowed:
 Val ue

* Val ue: Si ze

e Val ue/ TypeSpeci fi erlLi st

Default values are used when specifications are missing. The default values are described in Defaults.

The Val ue part is any expression, when used in binary construction. Used in binary matching, the Val ue part must
be a literal or a variable. For more information about the Val ue part, see Constructing Binaries and Bitstrings and
Matching Binaries.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 223

7.4 Bit Syntax

The Si ze part of the segment multiplied by the unit in TypeSpeci fi er Li st (described later) gives the number
of bitsfor the segment. In construction, Si ze isany expression that evaluates to an integer. In matching, Si ze must
be a constant expression or avariable.

The TypeSpeci fi er Li st isalist of type specifiers separated by hyphens.

Type
The most commonly used typesarei nt eger , f| oat, and bi nar y. See Bit Syntax Expressionsin the
Reference Manual for a complete description.

Signedness
The signedness specification can be either si gned or unsi gned. Notice that signedness only matters for
matching.

Endianness
The endianness specification can be either bi g, i tt1 e, or nat i ve. Native-endian means that the endian is
resolved at load time, to be either big-endian or little-endian, depending on what is "native" for the CPU that
the Erlang machineisrun on.

Unit
Theunit sizeisgivenasuni t : | nt eger Li t er al . Theallowed range is 1-256. It ismultiplied by the Si ze
specifier to give the effective size of the segment. The unit size specifies the alignment for binary segments
without size.

Example:
X:4/little-signed-integer-unit:8

This element has atotal size of 4*8 = 32 bits, and it contains a signed integer in little-endian order.

7.4.4 Defaults

The default type for a segment is integer. The default type does not depend on the value, even if the value is aliteral.
For example, the default type in <<3. 14>> isinteger, not float.

Thedefault Si ze dependson thetype. For integeritis8. For float itis64. For binary itisall of thebinary. In matching,
thisdefault valueisonly valid for thelast element. All other binary elementsin matching must have asize specification.

The default unit depends on thetype. For i nt eger ,fl oat ,andbi t stri ngitisl. For binary itis8.
The default signednessisunsi gned.
The default endiannessisbi g.

7.4.5 Constructing Binaries and Bitstrings

This section describes the rules for constructing binaries using the bit syntax. Unlike when constructing lists or tuples,
the construction of abinary can fail with abadar g exception.

There can be zero or more segmentsin abinary to be constructed. The expression <<>> constructsazero length binary.

Each segment in a binary can consist of zero or more bits. There are no alignment rules for individual segments of
typei nt eger andf | oat . For binariesand bitstrings without size, the unit specifiesthe alignment. Since the default
alignment for thebi nar y typeis8, the size of abinary segment must be amultiple of 8 bits, that is, only whole bytes.

Example:
<<Bin/binary,Bitstring/bitstring>>

Thevariable Bi n must contain awhole number of bytes, because the bi nar y type defaultstouni t : 8. A badar g
exception is generated if Bi n consist of, for example, 17 bits.

224 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

7.4 Bit Syntax

TheBi t st ri ng variable can consist of any number of bits, for example, 0, 1, 8, 11, 17, 42, and so on. Thisisbecause
the default uni t for bitstringsis 1.

For clarity, it is recommended not to change the unit size for binaries. Instead, use bi nar y when you need byte
alignment and bi t st r i ng when you need bit alignment.

The following example successfully constructs a bitstring of 7 bits, provided that al of X and Y are integers:
<<X:1,Y:6>>
As mentioned earlier, segments have the following general syntax:

Val ue: Si ze/ TypeSpeci fi erLi st

When constructing binaries, Val ue and Si ze can be any Erlang expression. However, for syntactical reasons, both
Val ue and Si ze must be enclosed in parenthesis if the expression consists of anything more than asingle literal or
avariable. The following gives a compiler syntax error:

<<X+1:8>>
This expression must be rewritten into the following, to be accepted by the compiler:

<<(X+1):8>>

Including Literal Strings

A literal string can be written instead of an element:
<<"hello">>
Thisis syntactic sugar for the following:

<<$h, $e,$1,$1, $0>>

7.4.6 Matching Binaries

This section describes the rules for matching binaries, using the bit syntax.

There can be zero or more segments in a binary pattern. A binary pattern can occur wherever patterns are alowed,
including inside other patterns. Binary patterns cannot be nested. The pattern <<>> matches a zero length binary.

Each segment in abinary can consist of zero or morebits. A segment of typebi nar y must haveasizeevenly divisible
by 8 (or divisible by the unit size, if the unit size hasbeen changed). A segment of typebi t st r i ng hasnorestrictions
on the size. A segment of typef | oat must have size 64 or 32.

Asmentioned earlier, segments have the following general syntax:
Val ue: Si ze/ TypeSpeci fi erLi st

When matching Val ue, value must be either a variable or an integer, or a floating point literal. Expressions are not
allowed.

Si ze must be aguard expression, which can useliteralsand previously bound variables. Thefollowing isnot allowed:

foo(N, <<X:N,T/binary>>) ->
{X,T}.

The two occurrences of N are not related. The compiler will complain that the N in the size field is unbound.
The correct way to write this example is as follows:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 225

7.4 Bit Syntax

foo(N, Bin) ->
<<X:N,T/binary>> = Bin,
{X,T}.

| Before OTP 23, Si ze wasrestricted to be an integer or a variable bound to an integer. |

Binding and Using a Size Variable

There is one exception to the rule that a variable that is used as size must be previously bound. It is possible to match
and bind avariable, and use it as a size within the same binary pattern. For example:

bar(<<Sz:8,Payload:Sz/binary-unit:8,Rest/binary>>) ->
{Payload,Rest}.

Here Sz is bound to the value in the first byte of the binary. Sz is then used at the number of bytes to match out
asabinary.

Starting in OTP 23, the size can be a guard expression:

bar(<<Sz:8,Payload: ((Sz-1)*8)/binary,Rest/binary>>) ->
{Payload,Rest}.

Here Sz is the combined size of the header and the payload, so we will need to subtract one byte to get the size of
the payload.

Getting the Rest of the Binary or Bitstring

To match out the rest of abinary, specify abinary field without size:
foo(<<A:8,Rest/binary>>) ->

The size of the tail must be evenly divisible by 8.

To match out the rest of a bitstring, specify afield without size:
foo(<<A:8,Rest/bitstring>>) ->

There are no restrictions on the number of bitsin the tail.

7.4.7 Appending to a Binary

Appending to abinary in an efficient way can be done as follows:

triples to bin(T) ->
triples to bin(T, <<>>).

triples to bin([{X,Y,Z} | T], Acc) ->
triples to bin(T, <<Acc/binary,X:32,Y:32,7:32>>);
triples_to bin([], Acc) ->
Acc.

226 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

8.1 Introduction

8 Efficiency Guide

8.1 Introduction

8.1.1 Purpose
"Premature optimization is the root of all evil" (D.E. Knuth)

Efficient code can be well-structured and clean, based on a sound overall architecture and sound algorithms. Efficient
cade can be highly implementation-code that bypasses documented interfaces and takes advantage of obscure quirks
in the current implementation.

Ideally, your code only contains the first type of efficient code. If that turns out to be too slow, profile the application
to find out where the performance bottlenecks are and optimize only the bottlenecks. Let other code stay as clean as
possible.

This Efficiency Guide cannot really teach you how to write efficient code. It can give you afew pointers about what to
avoid and what to use, and some understanding of how certain language features are implemented. This guide does not
include general tips about optimization that worksin any language, such as moving common cal cul ations out of loops.

8.1.2 Prerequisites

It is assumed that you are familiar with the Erlang programming language and the OTP concepts.

8.2 The Seven Myths of Erlang Performance

Some truths seem to live on well beyond their best-before date, perhaps because "information” spreads faster from
person-to-person than a single rel ease note that says, for example, that body-recursive calls have become faster.

This section triesto kill the old truths (or semi-truths) that have become myths.

8.2.1 Myth: Tail-Recursive Functions are Much Faster Than Recursive
Functions

According to the myth, using a tail-recursive function that builds a list in reverse followed by a cal to
lists:reverse/ 1 isfaster than a body-recursive function that builds the list in correct order; the reason being
that body-recursive functions use more memory than tail-recursive functions.

That was true to some extent before R12B. It was even more true before R7B. Today, not so much. A body-recursive
function generally uses the same amount of memory as atail-recursive function. It is generally not possible to predict
whether thetail-recursive or the body-recursive version will be faster. Therefore, use the version that makes your code
cleaner (hint: it is usually the body-recursive version).

For a more thorough discussion about tail and body recursion, see Erlang's Tail Recursion is Not a Silver Bullet.

A tail-recursive function that does not need to reverse the list at the end is faster than a body-recursive function,
as are tail-recursive functions that do not construct any terms at all (for example, afunction that sums all integers
inalist).

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 227

href

8.2 The Seven Myths of Erlang Performance

8.2.2 Myth: Operator "++" is Always Bad

The ++ operator has, somewhat undeservedly, got a bad reputation. It probably has something to do with code like
the following, which is the most inefficient way thereisto reverse alist:

DO NOT

naive reverse([H|T]) ->
naive reverse(T)++[H];
naive reverse([]) ->

Asthe ++ operator copiesits |eft operand, the result is copied repeatedly, leading to quadratic complexity.
But using ++ asfollowsis not bad:
OK

naive but ok reverse([H|T], Acc) ->
naive but ok reverse(T, [H]++Acc);
naive but ok reverse([], Acc) ->
Acc.

Each list element is copied only once. The growing result Acc isthe right operand for the ++ operator, and it is not
copied.

Experienced Erlang programmers would write as follows:
DO

vanilla reverse([H|T], Acc) ->
vanilla reverse(T, [H|Accl);
vanilla reverse([], Acc) ->
Acc.

This is dightly more efficient because here you do not build a list element only to copy it directly. (Or it would be
more efficient if the compiler did not automatically rewrite[H] ++Acc to[H Acc] .)

8.2.3 Myth: Strings are Slow

String handling can be slow if done improperly. In Erlang, you need to think a little more about how the strings are
used and choose an appropriate representation. If you use regular expressions, use the re module in STDLIB instead
of the obsoleter egexp module.

8.2.4 Myth: Repairing a Dets File is Very Slow

The repair time is till proportional to the number of records in the file, but Dets repairs used to be much slower in
the past. Dets has been massively rewritten and improved.

8.2.5 Myth: BEAM is a Stack-Based Byte-Code Virtual Machine (and
Therefore Slow)

BEAM isaregister-based virtual machine. It has 1024 virtual registersthat are used for holding temporary values and
for passing arguments when calling functions. Variables that need to survive afunction call are saved to the stack.

BEAM is a threaded-code interpreter. Each instruction is word pointing directly to executable C-code, making
instruction dispatching very fast.

228 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

8.3 Common Caveats

8.2.6 Myth: Use " " to Speed Up Your Program When a Variable is
Not Used
That was once true, but from R6B the BEAM compiler can see that avariableis not used.

Similarly, trivial transformations on the source-code level such as converting acase statement to clauses at the top-
level of the function seldom makes any difference to the generated code.

8.2.7 Myth: A NIF Always Speeds Up Your Program

Rewriting Erlang code to a NIF to make it faster should be seen asalast resort. It is only guaranteed to be dangerous,
but not guaranteed to speed up the program.

Doing too much work in each NIF call will degrade responsiveness of the VM. Doing too little work may mean that
the gain of the faster processing in the NIF is eaten up by the overhead of calling the NIF and checking the arguments.

Be sureto read about Long-running NIFs before writing a NIF.

8.3 Common Caveats

This section lists afew modules and BIFs to watch out for, not only from a performance point of view.

8.3.1 Timer Module

Creating timers using erlang:send_after/3 and erlang:start_timer/3, is more efficient than using the timers provided
by the timer modulein STDLIB.

Thet i mer module uses a separate process to manage the timers. Before OTP 25, this management overhead was
substantial and increasing with the number of timers, especially when they were short-lived, so thetimer server process
could easily become overloaded and unresponsive. In OTP 25, the timer module was improved by removing most of
the management overhead and the resulting performance penalty. Still, the timer server remains a single process, and
it may at some point become a bottleneck of an application.

The functionsin the t i mer module that do not manage timers (such astiner:tc/ 3 orti ner: sl eep/ 1), do
not call the timer-server process and are therefore harmless.

8.3.2 Accidental Copying and Loss of Sharing
When spawning a new process using a fun, one can accidentally copy more data to the process than intended. For
example:
DO NOT
accidentall(State) ->
spawn(fun() ->

io:format("~p\n", [State#state.info])
end) .

The code in the fun will extract one element from the record and print it. The rest of the st at e record is not used.
However, when the spawn/ 1 function is executed, the entire record is copied to the newly created process.
The same kind of problem can happen with a map:

DO NOT
accidental2(State) ->
spawn(fun() ->

io:format("~p\n", [map get(info, State)])
end).

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 229

8.3 Common Caveats

In the following example (part of a module implementing the gen_server behavior) the created fun is sent to another
process:

DO NOT

handle call(give me a fun, From, State) ->
Fun = fun() -> State#state.size =:= 42 end,
{reply, Fun, State}.

How bad that unnecessary copy is depends on the contents of the record or the map.
For example, if the st at e record isinitialized like this:

initl() ->
#state{data=1lists:seq(1l, 10000)}.

alist with 10000 elements (or about 20000 heap words) will be copied to the newly created process.
An unnecessary copy of 10000 element list can be bad enough, but it can get even worseif the st at e record contains
shared subterms. Hereis a simple example of aterm with a shared subterm:

{SubTerm, SubTerm}

When aterm is copied to another process, sharing of subterms will be lost and the copied term can be many times
larger than the original term. For example:

init2() ->
SharedSubTerms = lists:foldl(fun(_, A) -> [A]|A] end, [0], lists:seq(l, 15)),
#state{data=Shared}.

In the processthat callsi ni t 2/ 0, the size of thedat a field inthe st at e record will be 32 heap words. When the
record is copied to the newly created process, sharing will be lost and the size of the copied dat a field will be 131070
heap words. More details about |oss off sharing are found in alater section.

To avoid the problem, outside of the fun extract only the fields of the record that are actually used:
DO

fixed accidentall(State) ->
Info = State#state.info,
spawn(fun() ->
io:format("~p\n", [Info])
end) .

Similarly, outside of the fun extract only the map elements that are actually used:
DO

fixed accidental2(State) ->
Info = map_get(info, State),
spawn(fun() ->
io:format("~p\n", [Info])
end).

8.3.3 list_to_atom/1

Atoms are not garbage-collected. Once an atom is created, it is never removed. The emulator terminates if the limit
for the number of atoms (1,048,576 by default) is reached.

Therefore, converting arbitrary input strings to atoms can be dangerous in a system that runs continuously. If only
certain well-defined atoms are allowed as input, list_to_existing_atom/1 can be used to guard against a denial-of-

230 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

8.3 Common Caveats

service attack. (All atoms that are allowed must have been created earlier, for example, by simply using al of them
in amodule and loading that module.)

Using | i st _to_at oni 1 to construct an atom that is passed to appl y/ 3 asfollows, is quite expensive and not
recommended in time-critical code:

apply(list to atom("some prefix"++Var), foo, Args)

8.3.4 length/1

The time for calculating the length of alist is proportional to the length of the list, as opposed to t upl e_si ze/ 1,
byte_size/ 1,andbit _si ze/ 1, whichal executein constant time.

Normally, there is no need to worry about the speed of | engt h/ 1, because it is efficiently implemented in C. In
time-critical code, you might want to avoid it if the input list could potentialy be very long.

Some uses of | engt h/ 1 can be replaced by matching. For example, the following code:

foo(L) when length(L) >= 3 ->

can be rewritten to:

fOO([7!7!7'7]=L) ->

One dlight differenceisthat | engt h(L) failsif L isan improper list, while the pattern in the second code fragment
accepts an improper list.

8.3.5 setelement/3

setelement/3 copies the tuple it modifies. Therefore, updating atuplein aloop using set el emrent / 3 creates a new
copy of the tuple every time.

There is one exception to the rule that the tuple is copied. If the compiler clearly can see that destructively updating
the tuple would give the sameresult as if the tuple was copied, the call to set el enent / 3 isreplaced with a special
destructiveset el erment instruction. In thefollowing code sequence, thefirst set el enment / 3 call copiesthetuple
and modifies the ninth element:

multiple setelement(TO) ->
Tl = setelement(9, TO, bar),
T2 = setelement(7, T1l, foobar),
setelement (5, T2, new value).

Thetwo following set el enent / 3 calls modify the tuplein place.

For the optimization to be applied, all the following conditions must be true:

e Theindices must be integer literals, not variables or expressions.

* Theindices must be given in descending order.

* Theremust be no callsto another function in between the callsto set el enent / 3.

e Thetuplereturned from oneset el errent / 3 call must only be used in the subsequent call to
set el enent/ 3.

If the code cannot be structured asinthenul ti pl e_set el enent/ 1 example, the best way to modify multiple
elementsin alargetupleisto convert the tuple to alist, modify the list, and convert it back to atuple.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 231

8.4 Constructing and Matching Binaries

8.3.6 size/l

si ze/ 1 returnsthe size for both tuples and binaries.

UsingtheBIFst upl e_si ze/ 1 andbyt e_si ze/ 1 givesthe compiler and the runtime system more opportunities
for optimization. Another advantage is that the BIFs give Dialyzer more type information.

8.3.7 split_binary/2

It is usually more efficient to split a binary using matching instead of calling the spl it _bi nary/ 2 function.
Furthermore, mixing bit syntax matching and spl i t _bi nary/ 2 can prevent some optimizations of bit syntax
matching.

DO
<<Binl:Num/binary,Bin2/binary>> = Bin,
DO NOT

{Binl,Bin2} = split binary(Bin, Num)

8.4 Constructing and Matching Binaries

Binaries can be efficiently built in the following way:
DO

my list to binary(List) ->
my list to binary(List, <<>>).

my list to binary([H|T], Acc) ->
my list to binary(T, <<Acc/binary,H>>);

my list to binary([], Acc) ->
Acc.

Binaries can be efficiently matched like this:
DO

my binary to list(<<H,T/binary>>) ->
[Hlmy binary to list(T)];
my binary to list(<<>>) -> [].

8.4.1 How Binaries are Implemented

Internally, binaries and bitstrings are implemented in the same way. In this section, they are called binaries because
that iswhat they are called in the emulator source code.

Four types of binary objects are available internally:
e Two are containers for binary dataand are called:

» Refc binaries (short for reference-counted binaries)
* Heap binaries
* Two are merely referencesto apart of abinary and are called:
e subbinaries
* match contexts

232 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

8.4 Constructing and Matching Binaries

Refc Binaries
Refc binaries consist of two parts:

« Anobject stored on the process heap, called a ProcBin
e Thebinary object itself, stored outside all process heaps

The binary object can be referenced by any number of ProcBins from any number of processes. The object containsa
reference counter to keep track of the number of references, sothat it can beremoved when thelast reference disappears.

All ProcBin objects in a process are part of a linked list, so that the garbage collector can keep track of them and
decrement the reference counters in the binary when a ProcBin disappears.

Heap Binaries

Heap binaries are small binaries, up to 64 bytes, and are stored directly on the process heap. They are copied when
the process is garbage-collected and when they are sent as a message. They do not require any special handling by
the garbage collector.

Sub Binaries

The reference objects sub binaries and match contexts can reference part of arefc binary or heap binary.

A sub binary iscreatedby spl i t _bi nary/ 2 and when abinary ismatched out in abinary pattern. A sub binary is
areferenceinto a part of another binary (refc or heap binary, but never into another sub binary). Therefore, matching
out abinary isrelatively cheap because the actual binary datais never copied.

Match Context

A match context is similar to a sub binary, but is optimized for binary matching. For example, it contains a direct
pointer to the binary data. For each field that ismatched out of abinary, the position in the match context isincremented.

The compiler tries to avoid generating code that creates a sub binary, only to shortly afterwards create a new match
context and discard the sub binary. Instead of creating a sub binary, the match context is kept.

The compiler can only do this optimization if it knows that the match context will not be shared. If it would be shared,
the functional properties (also called referential transparency) of Erlang would break.

8.4.2 Constructing Binaries
Appending to abinary or bitstring is specially optimized by the runtime system:

<<Binary/binary, ...>>
<<Binary/bitstring, ...>>

As the runtime system handles the optimization (instead of the compiler), there are very few circumstances in which
the optimization does not work.

To explain how it works, let us examine the following code line by line:

Bin0® = <<0>>, %% 1
Binl = <<Bin@/binary,1,2,3>>, %% 2
Bin2 = <<Binl/binary,4,5,6>>, %% 3
Bin3 = <<Bin2/binary,7,8,9>>, %% 4
Bin4 = <<Binl/binary,17>>, %% 5 !!!
{Bin4,Bin3} %% 6

e Linel (marked with the %8% 1 comment), assigns a heap binary to the Bi nO variable.

e LineZ2isan append operation. As Bi nO has not been involved in an append operation, anew refc binary is
created and the contents of Bi n0 is copied into it. The ProcBin part of the refc binary hasits size set to the size

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 233

8.4 Constructing and Matching Binaries

of the data stored in the binary, while the binary object has extra space allocated. The size of the binary object is
either twice the size of Bi n1 or 256, whichever islarger. In thiscaseit is 256.

e Line3ismoreinteresting. Bi n1 has been used in an append operation, and it has 252 bytes of unused storage
at the end, so the 3 new bytes are stored there.

* Line4. The same applies here. There are 249 bytes left, so there is no problem storing another 3 bytes.

« Line5. Here, something inter esting happens. Notice that the result is not appended to the previous
resultin Bi n3, but to Bi nl. It isexpected that Bi n4 will be assigned thevalue<<0, 1, 2, 3, 17>>.
It is also expected that Bi n3 will retain itsvalue (<<0, 1, 2, 3, 4, 5, 6, 7, 8, 9>>). Clearly, the
runtime system cannot write byte 17 into the binary, because that would change the value of Bi n3 to
<<0,1,2,3,4,17,6,7, 8, 9>>,

The runtime system sees that Bi n1 is the result from a previous append operation (not from the latest append
operation), so it copies the contents of Bi n1 to a new binary, reserve extra storage, and so on. (Here is not explained
how the runtime system can know that it is not allowed to writeinto Bi n1; itisleft asan exerciseto the curious reader
to figure out how it is done by reading the emulator sources, primarily er| _bits. c.)

Circumstances That Force Copying

The optimization of the binary append operation requires that there is asingle ProcBin and a single r efer ence to the
ProcBin for the binary. The reason is that the binary object can be moved (reallocated) during an append operation,
and when that happens, the pointer in the ProcBin must be updated. If there would be more than one ProcBin pointing
to the binary object, it would not be possible to find and update all of them.

Therefore, certain operations on abinary mark it so that any future append operation will be forced to copy the binary.
In most cases, the binary object will be shrunk at the same time to reclaim the extra space allocated for growing.

When appending to a binary as follows, only the binary returned from the latest append operation will support further
cheap append operations:

Bin = <<Bin0,...>>

In the code fragment in the beginning of this section, appending to Bi n will be cheap, while appending to Bi n0 will
force the creation of anew binary and copying of the contents of Bi nO.

If abinary issent asamessageto aprocessor port, the binary will be shrunk and any further append operation will copy
the binary datainto a new hinary. For example, in the following code fragment Bi n1 will be copied in the third line:

Binl = <<Bin@,...>>,
PortOrPid ! Binl,
Bin = <<Binl,...>> %% Binl will be COPIED

The same happens if you insert a binary into an Ets table, send it to aport using er | ang: port _command/ 2, or
passit to enif_inspect_binary in aNIF.

Matching a binary will also cause it to shrink and the next append operation will copy the binary data:

Binl = <<Bin@,...>>,
<<X,Y,Z,T/binary>> = Binl,
Bin = <<Binl,...>> %% Binl will be COPIED

The reason is that a match context contains a direct pointer to the binary data.

If a process simply keeps binaries (either in "loop data’ or in the process dictionary), the garbage collector can
eventually shrink the binaries. If only one such binary is kept, it will not be shrunk. If the process later appends to a
binary that has been shrunk, the binary object will be reallocated to make place for the data to be appended.

8.4.3 Matching Binaries

Let usrevisit the example in the beginning of the previous section:

234 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

8.4 Constructing and Matching Binaries

DO

my binary to list(<<H,T/binary>>) ->
[H|imy binary to list(T)];
my binary to list(<<>>) -> [].

Thefirsttimemy_bi nary_to_li st/ 1iscaled, amatch context is created. The match context points to the first
byte of the binary. 1 byte is matched out and the match context is updated to point to the second byte in the binary.

At this point it would make sense to create a sub binary, but in this particular example the compiler sees that there
will soon beacall toafunction (inthiscase,tony_bi nary_to_li st/ 1 itself) that immediately will create anew
match context and discard the sub binary.

Thereforeny_binary_to_|i st/ 1 calsitsalf with the match context instead of with asub binary. Theinstruction
that initializes the matching operation basically does nothing when it sees that it was passed a match context instead
of abinary.

When the end of the binary is reached and the second clause matches, the match context will simply be discarded
(removed in the next garbage collection, as there is no longer any reference to it).

Tosummarize, my_binary_to_|ist/ 1 only needsto create one match context and no sub binaries.

Noticethat thematch contextinmy_bi nary_to_|i st/ 1 wasdiscarded when the entire binary had been traversed.
What happensiif the iteration stops before it has reached the end of the binary? Will the optimization still work?

after zero(<<0,T/binary>>) ->
T;

after zero(<< ,T/binary>>) ->
after zero(T);

after_zero(<<>>) ->
<<>>,

Yes, it will. The compiler will remove the building of the sub binary in the second clause:

after zero(<< ,T/binary>>) ->
after zero(T);

But it will generate code that builds a sub binary in the first clause:

after zero(<<0,T/binary>>) ->
T;

Therefore, af t er _zer o/ 1 builds one match context and one sub binary (assuming it is passed abinary that contains
azero byte).

Code like the following will also be optimized:

all but zeroes to list(Buffer, Acc, 0) ->
{lists:reverse(Acc),Buffer};

all but zeroes to list(<<0@,T/binary>>, Acc, Remaining) ->
all but zeroes to list(T, Acc, Remaining-1);

all but zeroes to list(<<Byte,T/binary>>, Acc, Remaining) ->
all but zeroes to list(T, [Byte|Acc], Remaining-1).

The compiler removes building of sub binaries in the second and third clauses, and it adds an instruction to the first
clause that converts Buf f er from amatch context to a sub binary (or do nothing if Buf f er isabinary aready).

But in more complicated code, how can one know whether the optimization is applied or not?

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 235

8.5 Maps

Option bin_opt_info

Usethebi n_opt _i nf o option to have the compiler print alot of information about binary optimizations. It can be
given either to the compiler orer | c:

erlc +bin opt info Mod.erl
or passed through an environment variable:
export ERL COMPILER OPTIONS=bin opt info

Notice that the bi n_opt _i nf o is not meant to be a permanent option added to your Makef i | es, because all
messages that it generates cannot be eliminated. Therefore, passing the option through the environment is in most
cases the most practical approach.

The warnings look as follows:

./efficiency guide.erl:60: Warning: NOT OPTIMIZED: binary is returned from the function
./efficiency guide.erl:62: Warning: OPTIMIZED: match context reused

To make it clearer exactly what code the warnings refer to, the warnings in the following examples are inserted as
comments after the clause they refer to, for example:

after zero(<<0,T/binary>>) ->
%% BINARY CREATED: binary is returned from the function
T;
after zero(<<_ ,T/binary>>) ->
%% OPTIMIZED: match context reused
after zero(T);
after zero(<<>>) ->
<<>>,

The warning for the first clause says that the creation of a sub binary cannot be delayed, because it will be returned.
The warning for the second clause says that a sub binary will not be created (yet).

Unused Variables

The compiler figures out if avariable is unused. The same code is generated for each of the following functions:

countl(<< ,T/binary>>, Count) -> countl(T, Count+l);
countl(<<>>, Count) -> Count.

count2(<<H,T/binary>>, Count) -> count2(T, Count+l);
count2(<<>>, Count) -> Count.

count3(<< H,T/binary>>, Count) -> count3(T, Count+l);
count3(<<>>, Count) -> Count.

In each iteration, the first 8 bitsin the binary will be skipped, not matched out.

8.4.4 Historical Note

Binary handling was significantly improved in R12B. Because code that was efficient in R11B might not be efficient
in R12B, and vice versa, earlier revisions of this Efficiency Guide contained some information about binary handling
in R11B.

8.5 Maps

This guide to using maps efficiently starts with a brief section on the choice between records or maps, followed by
three sections giving concrete (but brief) advice on using maps as an alternative to records, as dictionaries, and as sets.

236 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

8.5 Maps

The remaining sections dig deeper, looking at how maps are implemented, the map syntax, and finally the functions
in the maps module.

Terminology used in this chapter:

* A map with at most 32 elements will informally be called a small map.
* A map with more than 32 elements will informally be called alar ge map.

8.5.1 Maps or Records?

If the advicein this chapter is followed, the performance of records compared to using small maps instead of records
is expected to be similar. Therefore, the choice between records and maps should be based on the desired properties
of the data structure and not performance.

The advantages of records compared to maps are:

e |f thename of arecord field is misspelled, there will be acompilation error. If amap key is misspelled, the
compiler will give no warning and program will fail in some way when it isrun.

* Recordswill use dightly less memory than maps, and performance is expected to be slightly better than maps
in most circumstances.

The disadvantage of records compared to mapsisthat if anew field is added to arecord, al code that uses that record
must be recompiled. Because of that, it is recommended to only use records within a unit of code that can easily be
recompiled all a once, for example within a single application or single module.

8.5.2 Using Maps as an Alternative to Records

» Usethe map syntax instead of the functions in the maps module.

e Avoid having more than 32 elements in the map. As soon as there are more than 32 elementsin the map, it will
reguire more memory and keys can no longer be shared with other instances of the map.

* When creating anew map, always create it with all keysthat will ever be used. To maximize sharing of keys (thus
minimizing memory use), create asingle function that constructs the map using the map syntax and always useit.

« Alwaysupdate the map using the : = operator (that is, requiring that an element with that key aready exists). The
. = operator is dlightly more efficient, and it hel ps catching mispellings of keys.

e Whenever possible, match multiple map elements at once.

* Whenever possible, update multiple map elements at once.

e Avoid default values and the maps.get/3 function. If there are default values, sharing of keys between different
instances of the map will be less effective, and it is not possible to match multiple elements having default values
inone go. Thenaps: get / 3 function isimplemented in Erlang, making it less efficient than maps: get/ 2 or
the map matching syntax.

e Toavoid having to deal with a map that may lack some keys, maps.merge/2 can efficiently add multiple default
values. For example:

DefaultMap = #{shoe size => 42, editor => emacs},
MapWithDefaultsApplied = maps:merge(DefaultMap, OtherMap)
8.5.3 Using Maps as Dictionaries
Using amap as adictionary implies the following usage pattern:
» Keysareusudly variables not known at compile-time.

e There can be any number of el ementsin the map.
e Usually, no more than one element is looked up or updated at once.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 237

8.5 Maps

Given that usage pattern, the difference in performance between using the map syntax and the maps moduleis usually
small. Therefore, which one to useis mostly a matter of taste.

Maps are usually the most efficient dictionary data structure, with afew exceptions:

e If it is necessary to frequently convert a dictionary to a sorted list, or from a sorted list to a dictionary, using
gb_trees can be a better choice.

» If dl keys are non-negative integers, the array module can be a better choice.

8.5.4 Using Maps as Sets

Starting in OTP 24, the sets module has an option to represent sets as maps. Examples:

1> sets:new([{version,2}]).

#{}
2> sets:from list([x,y,z], [{version,2}]).
#{x => [1,y == [1,z == []}

set s backed by mapsis generally the most efficient set representation, with afew possible exceptions:

* ordsetsintersection/2 can be more efficient than sets:intersection/2. If the intersection operation isfrequently used
and operations that operate on a single element in aset (such asi s_el enent / 2) are avoided, ordsets can be
a better choice than sets.

« |f the intersection operation is frequently used and operations that operate on a single element in a set (such as
i s_el ement/ 2) must also be efficient, gb_sets can potentially be a better choice than sets.

« If the elements of the set are integers in a fairly compact range, the set can be represented as an integer where
each bit represents an element in the set. The union operation is performed by bor and the intersection operation
by band.

8.5.5 How Maps are Implemented

Internally, maps have two distinct representati ons depending on the number of elementsin the map. The representation
changes when a map grows beyond 32 elements, or when it shrinks to 32 elements or less.

* A map with at most 32 elements has a compact representation, making it suitable as an alternative to records.

« A map with morethan 32 elementsis represented as a tree that can be efficiently searched and updated
regardless of how many elements there are.

How Small Maps are Implemented

A small map looks like this inside the runtime system:

FLATMVAP N Keys Valuel e ValueN

Table 5.1: The representation of a small map

FLATVAP
Thetag for asmall map (called flat map in the source code for the runtime system).
N
The number of elements in the map.
Keys
A tuple with keys of themap: { Key1, . . ., KeyN}. The keys are sorted.
Vauel
The value corresponding to the first key in the key tuple.

238 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

8.5 Maps

ValueN
The value corresponding to the last key in the key tuple.

Asan example, let uslook at how themap#{a => foo, z => bar} isrepresented:

FLATVAP 2 {a,z} foo bar

Table 5.2: #{a => foo, z => bar}

Let us update the map: M#{ q => baz} . The map now lookslike this:

FLATMAP 3 {a,9,2} foo baz bar

Table 5.3: #{a => foo, q => baz, z => bar}

Finally, change the value of one element: M#{ z : = bi r d} . The map now looks like this:

FLATMAP 3 {a,9,2} foo baz bird

Table 5.4: #{a => foo, q => baz, z => bird}

When the value for an existing key is updated, the key tuple is not updated, allowing the key tuple to be shared with
other instances of the map that have the same keys. In fact, the key tuple can be shared between all maps with the same
keys with some care. To arrange that, define a function that returns a map. For example:

new() ->
#{a => default, b => default, c => default}.

Defined like this, the key tuple{ a, b, c} will beaglobal literal. To ensure that the key tupleis shared when creating
an instance of the map, always call new() and modify the returned map:

(SOME_MODULE:new())#{a := 42}.

Using the map syntax with small maps is particularly efficient. As long as the keys are known at compile-time, the
map is updated in one go, making the time to update a map essentially constant regardless of the number of keys
updated. The same goes for matching. (When the keys are variables, one or more of the keys could be identical, so
the operations need to be performed sequentially from left to right.)

The memory size for asmall map isthe size of al keys and values plus 5 words. See Advanced for more information
about memory sizes.

How Large Maps are Implemented

A map with more than 32 elements is implemented as a Hash array mapped trie (HAMT). A large map can be
efficiently searched and updated regardless of the number of elements in the map.

Thereisless performance to be gained by matching or updating multiple elements using the map syntax on alarge map
compared to asmall map. The execution time is roughly proportional to the number of elements matched or updated.

The storage overhead for alarge map ishigher than for asmall map. For alarge map, the extranumber of words besides
the keys and values is roughly proportional to the number of elements. For a map with 33 elements the overhead is
at least 53 heap words according to the formulain Advanced (compared to 5 extra words for a small map regardless
of the number of elements).

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 239

href

8.5 Maps

When alarge map is updated, the updated map and the original map will share common parts of the HAMT, but sharing
will never be as effective as the best possible sharing of the key tuple for small maps.

Therefore, if maps are used instead of records and it is expected that many instances of the map will be created, it is
more efficient from a memory standpoint to avoid using large maps (for example, by grouping related map elements
into sub maps to reduce the number of elements).

8.5.6 Using the Map Syntax

Using the map syntax is usually slightly more efficient than using the corresponding function in the maps module.

The gain in efficiency for the map syntax is more noticeable for the following operations that can only be achieved
using the map syntax:

* Matching multiple literal keys

e Updating multiple literal keys

e Adding multiple literal keysto amap
For example:

DO

Map = Mapl#{x := X, y :=Y, z := Z}

DO NOT
Map2 = maps:update(x, X, Mapl),
Map3 = maps:update(y, Y, Map2),

Map = maps:update(z, Z, Map3)

If the map isasmall map, the first example runs roughly three times as fast.

Note that for variable keys, the elements are updated sequentially from left to right. For example, given the following
update with variable keys:

Map = Mapl#{Keyl := X, Key2 :=Y, Key3 := 7}
the compiler rewritesit like this to ensure that the updates are applied from left to right:
Map2 = Mapl#{Keyl := X},

Map3 = Map2#{Key2 := Y},
Map = Map3#{Key3 := Z}

If akey is known to exist in a map, using the : = operator is dightly more efficient than using the => operator for
asmall map.

8.5.7 Using the Functions in the maps Module

Here follows some notes about most of the functions in the maps module. For each function, the implementation
language (C or Erlang) is stated. The reason we mention the language is that it gives an hint about how efficient the
functionis:

« Ifafunctionisimplementedin C, itispretty muchimpossibleto implement the samefunctionality moreefficiently
in Erlang.

e However, it might be possible to beat the maps modules functions implemented in Erlang, because they are
generally implemented in away that attempts to make the performance reasonable for al possible inputs.

For example, maps.map/2 iterates over all elements of the map, calling the mapping fun, collectsthe updated map
elementsin alist, and finally converts the list back to a map using maps.from_list/1. If it is known that at most
one percent of the values in the map will change, it can be more efficient to update only the changed values.

240 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

8.5 Maps

The implementation details given in this section can change in the future.

maps:filter/2

maps:filter/2 isimplemented in Erlang. It creates anew map using maps.from_list/1. If itisknown that only aminority
of the values will be removed, it can be more efficient to avoid maps: fi | t er/ 2 and write afunction that will use
maps:remove/3 to remove the unwanted values.

maps:filtermap/2

maps:filtermap/2 is implemented in Erlang. It creates a new map using maps:from_list/1. See the notes for
maps: nap/ 2 and maps: fil ter/ 2 for hints on how to implement a more efficient version.

maps:find/2
maps:find/2 isimplemented in C.

Using the map matching syntax instead of maps: fi nd/ 2 will be dightly more efficient since building an
{ ok, Val ue} tuplewill be avoided.

maps:get/2

Asan optimization, the compiler will rewrite acall to maps.get/2 to acall to the guard BIF map_get/2. A call toaguard
BIF is more efficient than calls to other BIFs, making the performance similar to using the map matching syntax.

If the map is small and the keys are constants known at compile-time, using the map matching syntax will be more
efficient than multiple callsto maps: get / 2.

maps:get/3
maps:get/3 isimplemented in Erlang essentially like this:

get(Key, Map, Default) ->
case Map of
#{Key := Value} -> Value;
#{} -> Default
end.

Therefore, acall maps: get / 3 ismore expensive than acall to maps: get/ 2.

If asmall map isused asalternativeto using arecord, instead of calling maps: get / 3 multipletimesto handle default
values, consider putting the default values in a map and merging that map with the other map:

DefaultMap = #{Keyl => Value2, Key2 => Value2, ..., KeyN => ValueN},
MapWithDefaultsApplied = maps:merge(DefaultMap, OtherMap)

Whether that is faster than calling maps: get / 3 multiple times depends on the size of the map and the number of
default values.

maps:intersect/2, maps:intersect with/3

maps.intersect/2 and maps.intersect with/3 are implemented in Erlang. They both create new maps using
maps:from_list/1.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 241

8.5 Maps

A map is usualy the most efficient way to implement a set, but an exception is the intersection operation, where
ordsets:intersection/2 used on ordsets can be more efficient than maps: i nt er sect / 2 on sets implemented as

maps.

maps:from_list/1
maps:from_list/1 isimplemented in C.
maps:from_keys/2
maps.from_keys/2 isimplemented in C.
maps:is_key/2

As an optimization, the compiler rewrites calls to maps:is_key/2 to calls to the guard BIF is_ map_key/2. A cal to a
guard BIF ismore efficient than callsto other BIFs, making the performance similar to using the map matching syntax.

maps:iterator/1

maps.iterator/1 is efficiently implemented in C and Erlang.

maps:keys/1

maps:keys/1 isimplemented in C. If the resulting list needs to be ordered, use lists:sort/1 to sort the result.
maps:map/2

maps:.map/2 isimplemented in Erlang. It creates anew map using maps.from_list/1. If it isknown that only aminority
of the values will be updated, it can be more efficient to avoid maps: nmap/ 2 and write a function that will call
maps: update/3 to update only the values that have changed.

maps:merge/2

maps.merge/2 isimplemented in C.

maps:merge_with/3

maps:merge with/3 isimplemented in Erlang. It updates and returns the larger of the two maps.
maps:new/0

The compiler rewrites a call to maps.new/0 to using the syntax #{ } for constructing an empty map.
maps:next/1

maps:next/1 is efficiently implemented in C and Erlang.

maps:put/3

maps:put/3 isimplemented in C.

If the key is known to already exist in the map, maps.update/3 is dightly more efficient than maps: put / 3.

If the keys are constants known at compile-time, using the map update syntax with the => operator is more efficient
than multiple callsto maps: put / 3, especialy for small maps.

maps:remove/2

maps:.remove/2 isimplemented in C.

242 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

8.6 List Handling

maps:size/l

As an optimization, the compiler rewrites calls to maps:size/1 to calls to the guard BIF map_size/1. Calls to guard
BIFs are more efficient than calls to other BIFs.

maps:take/2
maps:take/2 isimplemented in C.
maps:to_list/1

maps:to_list/1 is efficiently implemented in C and Erlang. If the resulting list needs to be ordered, use lists:sort/1 to
sort the result.

Maps are usually more performant than gb_trees, but if it is necessary to frequently convert to and from sorted
lists, gb_t r ees can be abetter choice.

maps:update/3
maps:update/3 isimplemented in C.

If the keys are constants known at compile-time, using the map update syntax with the : = operator is more efficient
than multiple callsto maps: updat e/ 3, especialy for small maps.

maps:values/1

maps.values/1 isimplemented in C.

maps:with/2

maps:with/2 isimplemented in Erlang. It creates a new map using maps.from_list/1.
maps:without/2

maps:without/2 isimplemented in Erlang. It returns a modified copy of the input map.

8.6 List Handling
8.6.1 Creating a List

Lists can only be built starting from the end and attaching list elements at the beginning. If you use the "++" operator
asfollows, anew list is created that isa copy of theelementsin Li st 1, followed by Li st 2:

Listl ++ List2

Looking at how | i st s: append/ 1 or ++ would be implemented in plain Erlang, clearly thefirst list is copied:

append([H|T], Tail) ->
[H|append(T, Tail)];

append([], Tail) ->
Tail.

When recursing and building alist, it isimportant to ensure that you attach the new elements to the beginning of the
list. In thisway, you will build one list, not hundreds or thousands of copies of the growing result list.

Let usfirst see how it is not to be done:
DO NOT

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 243

8.6 List Handling

bad fib(N) ->
bad fib(N, 0, 1, []).

bad fib(0, Current, Next, Fibs) ->
Fibs;
bad fib(N, Current, Next, Fibs) ->
bad fib(N - 1, Next, Current + Next, Fibs ++ [Current]).

Here more than one list is built. In each iteration step a new list is created that is one element longer than the new
previous list.

To avoid copying the result in each iteration, build the list in reverse order and reverse the list when you are done:
DO

tail recursive fib(N) ->
tail recursive fib(N, 0, 1, []).

tail recursive fib(©, Current, Next, Fibs) ->
lists:reverse(Fibs);
tail recursive fib(N, Current, Next, Fibs) ->
tail recursive fib(N - 1, Next, Current + Next, [Current|Fibs]).

8.6.2 List Comprehensions

Lists comprehensions till have a reputation for being slow. They used to be implemented using funs, which used
to be slow.

A list comprehension:
[Expr(E) || E <- List]
isbasically trandated to alocal function:

'lc™0' ([E|Taill, Expr) ->
[Expr(E)|'lc™0'(Tail, Expr)l;
‘Lt ([1, _Expr) -> [1.

If the result of the list comprehension will obviously not be used, a list will not be constructed. For example, in this
code:

[io:put chars(E) || E <- List],
ok.

or in this code:

case Var of
->
[io:put_chars(E) || E <- List];
S
end,
some_function(...),

the value is not assigned to a variable, not passed to another function, and not returned. This means that there is no
need to construct alist and the compiler will simplify the code for the list comprehension to:

'lc™0' ([E|Tail], Expr) ->
Expr(E),
'1c”0' (Tail, Expr);
'"1cr0'([1, Expr) -> [1.

244 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

8.6 List Handling

The compiler also understands that assigning to '_' means that the value will not used. Therefore, the code in the
following example will also be optimized:

= [io:put chars(E) || E <- List],
ok.

8.6.3 Deep and Flat Lists

lists:flatten/1 builds an entirely new list. It is therefore expensive, and even more expensive than the ++ operator
(which copiesits left argument, but not its right argument).

In the following situations, you can easily avoid callingl i sts: fl atten/ 1:

* When sending data to a port. Ports understand deep lists so there is no reason to flatten the list before sending it
to the port.

» When calling BIFs that accept deep lists, such aslist_to binary/1 or iolist to_binary/1.
e When you know that your list is only one level deep, you can use lists.append/1.

Port Example
DO
bé%ticommand(Port, DeepList)

DO NOT

bé%t_command(Port, lists:flatten(DeeplList))
A common way to send a zero-terminated string to a port is the following:

DO NOT

TerminatedStr = String ++ [0], % String="foo" => [$f, $0, $0, 0]
port command(Port, TerminatedStr)

Instead:

DO

TerminatedStr = [String, 0], % String="foo" => [[$f, $0, $0], O]
port command(Port, TerminatedStr)

Append Example
DO

> lists:append([[1]1, [2], [3]11).
[1,2,3]

>

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 245

8.7 Functions

DO NOT

> lists:flatten([[1], [2], [31]).
[1,2,3]

>

8.6.4 Recursive List Functions

In section about myths, the following myth was exposed: Tail-Recursive Functions are Much Faster Than Recursive
Functions.

Thereisusually not much difference between abody-recursivelist function and tail-recursive function that reversesthe
list at the end. Therefore, concentrate on writing beautiful code and forget about the performance of your list functions.
In the time-critical parts of your code (and only there), measur e before rewriting your code.

This section is about list functions that construct lists. A tail-recursive function that does not construct alist runs
in constant space, while the corresponding body-recursive function uses stack space proportional to the length of
thelist.

For example, afunction that sums alist of integers, is not to be written as follows:

DO NOT
recursive sum([H|T]) -> H+recursive sum(T);
recursive sum([]) -> 0.

I nstead:

DO

sum(L) -> sum(L, 0).

sum([H|T], Sum) -> sum(T, Sum + H);
sum([], Sum) -> Sum.

8.7 Functions
8.7.1 Pattern Matching

Pattern matching in function head as well asin case and r ecei ve clauses are optimized by the compiler. With a
few exceptions, there is nothing to gain by rearranging clauses.

One exception is pattern matching of binaries. The compiler does not rearrange clauses that match binaries. Placing
the clause that matches against the empty binary last is usually slightly faster than placing it fir st.

Thefollowing is arather unnatural example to show another exception:
DO NOT

atom mapl(one) -> 1;

atom mapl(two) -> 2;

atom mapl(three) -> 3;

atom mapl(Int) when is integer(Int) -> Int;
atom mapl(four) -> 4;

atom mapl(five) -> 5;

atom mapl(six) -> 6.

246 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

8.7 Functions

The problem isthe clause with thevariable| nt . Asavariable can match anything, including the atomsf our ,fi ve,
andsi x, whichthefollowing clausesa so match, the compiler must generate suboptimal codethat executesasfollows:

« Fird, theinput value is compared to one, t wo, and t hr ee (using asingle instruction that does a binary
search; thus, quite efficient even if there are many values) to select which one of the first three clausesto
execute (if any).

« |f none of the first three clauses match, the fourth clause match as a variable always matches.
» Iftheguardtesti s_i nt eger (| nt) succeeds, the fourth clauseis executed.

» |f theguard test fails, the input valueis compared to f our , f i ve, and si x, and the appropriate clause is
selected. (Thereisaf uncti on_cl ause exception if none of the values matched.)

Rewriting to either:
DO

atom map2(one) -> 1;

atom map2(two) -> 2;

atom map2(three) -> 3;

atom map2(four) -> 4,

atom map2(five) -> 5;

atom map2(six) -> 6;

atom map2(Int) when is integer(Int) -> Int.

or:
DO

atom_map3(Int) when is_integer(Int) -> Int;
atom map3(one) -> 1;

atom map3(two) -> 2;

atom map3(three) -> 3;

atom map3(four) -> 4;

atom map3(five) -> 5;

atom map3(six) -> 6.

gives dlightly more efficient matching code.
Another example:

DO NOT
map _pairsl(Map, [], Ys) ->
Ys;
map pairsl(Map, Xs, []) ->
Xs;

map_pairsl(Map, [X]|Xsl, [Y]|Ys]) ->
[Map(X, Y)|map pairsl(Map, Xs, Ys)].

Thefirst argument isnot aproblem. Itisvariable, but itisavariablein al clauses. The problem isthe variable in the
second argument, Xs, in the middle clause. Because the variable can match anything, the compiler is not allowed to
rearrange the clauses, but must generate code that matches them in the order written.

If the function is rewritten as follows, the compiler is free to rearrange the clauses:

DO
map pairs2(Map, [], Ys) ->
Ys;
map_pairs2(Map, [| I=Xs, []1) ->
Xs;

map_pairs2(Map, [X]|Xsl, [Y]|Ys]) ->
[Map(X, Y)|map pairs2(Map, Xs, Ys)].

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 247

8.7 Functions

The compiler will generate code similar to this:
DO NOT (already done by the compiler)

explicit map pairs(Map, XsO, Ys0) ->
case Xs0 of
[X|Xs] ->
case YsO of
[Y[Ys] ->
[Map(X, Y)|explicit map pairs(Map, Xs, Ys)1;
[r->
Xs0
end;
[1->
YsO
end.

Thisis dightly faster for probably the most common case that the input lists are not empty or very short. (Another
advantage isthat Dialyzer can deduce a better type for the Xs variable.)

8.7.2 Function Calls

Thisisarough hierarchy of the performance of the different types of function calls:

« Cdlstolocal or externa functions (f oo() , m f 0o()) arethe fastest calls.
e Cadlingor applying afun (Fun(),appl y(Fun, []))isjustalittle lower than external calls.

e Applying an exported function (Mod: Nane() , appl y(Mod, Nane, [])) wherethe number of arguments
isknown at compiletimeis next.

* Applying an exported function (appl y(Mod, Name, Args)) wherethe number of argumentsis not known
at compiletimeisthe least efficient.

Notes and Implementation Details

Calling and applying afun does not involve any hash-table lookup. A fun contains an (indirect) pointer to the function
that implements the fun.

app! y/ 3 must look up the code for the function to execute in a hash table. It istherefore always slower than a direct
cal or afun call.

Caching callback functions into funs may be more efficient in the long run than apply calls for frequently-used
callbacks.
8.7.3 Memory Usage in Recursion

When writing recursive functions, it is preferable to make them tail-recursive so that they can execute in constant
memory space:

DO

list length(List) ->
list length(List, 0).

list length([], AccLen) ->
AcclLen; % Base case

list length([|Tail], AccLen) ->
list length(Tail, AccLen + 1). % Tail-recursive

DO NOT

248 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

8.8 Tables and Databases

list length([]) ->
0. % Base case
list length([_ | Taill) ->
list length(Tail) + 1. % Not tail-recursive

8.8 Tables and Databases
8.8.1 Ets, Dets, and Mnesia

Every exampleusing Ets hasacorresponding examplein Mnesia. In general, all Etsexamplesalso apply to Detstables.

Select/Match Operations

Select/match operations on Ets and Mnesia tables can become very expensive operations. They usually need to scan
the complete table. Try to structure the data to minimize the need for select/match operations. However, if you require
a select/match operation, it is still more efficient than usingt ab2l i st . Examples of thisand of how to avoid select/
match are provided in the following sections. The functions et s: sel ect/ 2 and mesi a: sel ect/ 3 areto be
preferred over et s: mat ch/ 2, et s: mat ch_obj ect/ 2, and mesi a: mat ch_obj ect/ 3.

In some circumstances, the select/match operations do not need to scan the complete table. For example, if part of the
key isbound when searching an or der ed_set table, or if it isaMnesiatable and there is a secondary index on the
field that is selected/matched. If the key is fully bound, there is no point in doing a select/match, unless you have a
bag table and are only interested in a subset of the elements with the specific key.

When creating arecord to be used in a select/match operation, you want most of the fields to havethevalue"_". The
easiest and fastest way to do that is asfollows:

#person{age = 42, ="' "'}.

Deleting an Element

The del et e operation is considered successful if the element was not present in the table. Hence al attempts to
check that the element is present in the EtsMnesia table before deletion are unnecessary. Here follows an example
for Etstables:

DO

ets:delete(Tab, Key),

DO NOT

case ets:lookup(Tab, Key) of
[1 ->
ok;
[L1.1->
ets:delete(Tab, Key)
end,

Fetching Data
Do not fetch data that you already have.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 249

8.8 Tables and Databases

Consider that you have a module that handles the abstract data type Per son. You export the interface
function print_person/ 1, which uses the interna functions print_nane/1, print_age/1, and
print_occupation/1.

If thefunction pri nt _nane/ 1, and so on, had been interface functions, the situation would have been different,
as you do not want the user of the interface to know about the internal data representation.

DO

%%% Interface function
print person(Personld) ->
%% Look up the person in the named table person,
case ets:lookup(person, PersonId) of
[Person] ->
print name(Person),
print age(Person),
print occupation(Person);
[1 -»
io:format("No person with ID = ~p~n", [PersonID])
end.

%%% Internal functions
print name(Person) ->
io:format("No person ~p~n", [Person#person.name]).

print age(Person) ->
io:format("No person ~p~n", [Person#person.age]).

print occupation(Person) ->
io:format("No person ~p~n", [Person#person.occupation]).

DO NOT

%%% Interface function
print person(PersonId) ->
%% Look up the person in the named table person,
case ets:lookup(person, PersonId) of
[Person] ->
print name(PersonID),
print age(PersonID),
print occupation(PersonID);
[1->
io:format("No person with ID = ~p~n", [PersonID])
end.

%%% Internal functions

print_name(PersonID) ->
[Person] = ets:lookup(person, Personld),
io:format("No person ~p~n", [Person#person.name]).

print_age(PersonID) ->
[Person] = ets:lookup(person, PersonId),
io:format("No person ~p~n", [Person#person.age]).

print occupation(PersonID) ->

[Person] = ets:lookup(person, PersonId),
io:format("No person ~p~n", [Person#person.occupationl]).

250 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

8.8 Tables and Databases

Non-Persistent Database Storage
For non-persistent database storage, prefer Ets tables over Mnesia |

ocal _content tables. Even the Mnesia

dirty_wit e operationscarry afixed overhead compared to Etswrites. Mnesiamust check if thetableisreplicated
or has indices, thisinvolves at least one Ets lookup for each di rty_wri t e. Thus, Etswritesis always faster than

Mnesiawrites.

tab2list

Assuming an Etstable that usesi dno as key and contains the following:

[#person{idno = 1, name = "Adam", age = 31, occupation =
#person{idno = 2, name = "Bryan", age = 31, occupation =
#person{idno = 3, name = "Bryan", age = 35, occupation =
#person{idno = 4, name = "Carl", age = 25, occupation =

"mailman"},
"cashier"},
"banker"},

"mailman"}]

If you must return all data stored in the Etstable, you can use et s: t ab2l i st/ 1. However, usually you are only
interested in a subset of the information in which caseet s: t ab2l i st/ 1 isexpensive. If you only want to extract

one field from each record, for example, the age of every person, then:
DO

ets:select(Tab, [{ #person{idno='_",
name="'_"',
age='$1",
occupation = ' '},
[1,
['$1'1}1),

DO NOT

TabList = ets:tab2list(Tab),
lists:map(fun(X) -> X#person.age end, TablList),

If you are only interested in the age of all persons named "Bryan”, then:

DO

é%é:select(Tab,[{ #person{idno="'_"',
name="Bryan",
age='$1",
occupation = ' '},
[1,
['$1'1}1),

DO NOT

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 251

8.8 Tables and Databases

TabList = ets:tab2list(Tab),
lists:foldl(fun(X, Acc) -> case X#person.name of
"Bryan" ->
[X#person.age|Acc];

>

Acc
end
end, [], TabList),
REALLY DO NOT
TabList = ets:tab2list(Tab),
BryanList = lists:filter(fun(X) -> X#person.name == "Bryan" end,

TabList),
lists:map(fun(X) -> X#person.age end, BryanlList),

If you need al information stored in the Ets table about persons named "Bryan”, then:
DO

ets:select(Tab, [{#person{idno='_"',
name="Bryan",

age='_"',
occupation = '_'}, [1, ['$_'I1}1),

DO NOT

TabList = ets:tab2list(Tab),
lists:filter(fun(X) -> X#person.name == "Bryan" end, TablList),

Ordered_set Tables

If the data in the table is to be accessed so that the order of the keys in the table is significant, the table type
order ed_set can be used instead of the more usual set table type. An or der ed_set isaways traversed in
Erlang term order regarding the key field so that the return values from functionssuch assel ect , mat ch_obj ect ,
andf ol dl areordered by the key values. Traversing an or der ed_set withthefi r st and next operationsalso
returns the keys ordered.

An order ed_set only guarantees that objects are processed in key order. Results from functions such as
et s: sel ect/ 2 appear in key order even if the key is not included in the result.

252 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

8.8 Tables and Databases

8.8.2 Ets-Specific

Using Keys of Ets Table

An Etstable is asingle-key table (either a hash table or atree ordered by the key) and is to be used as one. In other
words, use the key to look up things whenever possible. A lookup by aknown key inaset Etstableisconstant and
foranor der ed_set EtstableitisO(logN). A key lookup is always preferable to a call where the whole table has
to be scanned. In the previous examples, the field i dno isthe key of the table and all lookups where only the name
is known result in a complete scan of the (possibly large) table for a matching result.

A simple solution would be to use the narre field asthe key instead of thei dno field, but that would cause problems
if the names were not unique. A more general solution would be to create a second table with name askey andi dno
as data, that is, to index (invert) the table regarding the nane field. Clearly, the second table would have to be kept
consistent with the master table. Mnesiacan do thisfor you, but ahome brew index table can be very efficient compared
to the overhead involved in using Mnesia.

An index table for the table in the previous examples would have to be a bag (as keys would appear more than once)
and can have the following contents:

[#index _entry{name="Adam", idno=1},
#index _entry{name="Bryan", idno=2},
#index _entry{name="Bryan", idno=3},
#index entry{name="Carl", idno=4}]

Given thisindex table, alookup of the age fields for all persons named "Bryan" can be done as follows:

MatchingIDs = ets:lookup(IndexTable,"Bryan"),
lists:map(fun(#index entry{idno = ID}) ->
[#person{age = Age}] = ets:lookup(PersonTable, ID),
Age
end,
MatchingIDs),

Notice that this code never uses et s: mat ch/ 2 but instead uses the et s: | ookup/ 2 call. Thel i st's: map/ 2
call is only used to traverse the i dnos matching the name "Bryan" in the table; thus the number of lookups in the
master table is minimized.

K eeping an index tableintroduces some overhead when inserting recordsin the table. The number of operations gained
from the table must therefore be compared against the number of operations inserting objects in the table. However,
notice that the gain is significant when the key can be used to lookup elements.

8.8.3 Mnesia-Specific

Secondary Index

If you frequently do alookup on afield that is not the key of the table, you lose performance using "mnesia:select/
match_object" as this function traverses the whole table. You can create a secondary index instead and use
"mnesia:iindex_read" to get faster access, however this requires more memory.

Example

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 253

8.9 Processes

-record(person, {idno, name, age, occupation}).

{atomic, ok} =
mnesia:create table(person, [{index, [#person.agel},
{attributes,
record info(fields, person)}l),
{atomic, ok} = mnesia:add table index(person, age),

PersonsAge42 =
mnesia:dirty index read(person, 42, #person.age),

Transactions

Using transactions is a way to guarantee that the distributed Mnesia database remains consistent, even when many
different processes updateit in parallel. However, if you have real-time requirementsit isrecommendedto usedi rt y
operations instead of transactions. When using di r t y operations, you lose the consistency guarantee; thisis usually
solved by only letting one process update the table. Other processes must send update requests to that process.

Example

% Using transaction
Fun = fun() ->
[mnesia:read({Table, Key}),
mnesia:read({Table2, Key2})]
end,

{atomic, [Resultl, Result2]} = mnesia:transaction(Fun),
% Same thing using dirty operations

Resultl
Result2

mnesia:dirty read({Table, Key}),
mnesia:dirty read({Table2, Key2}),

8.9 Processes

8.9.1 Creating an Erlang Process
An Erlang processis lightweight compared to threads and processes in operating systems.
A newly spawned Erlang process uses 326 words of memory. The size can be found as follows:

Erlang/0TP 24 [erts-12.0] [64-bit] [smp:8:8] [ds:8:8:10] [async-threads:1] [jit]

Eshell V5.6 (abort with ~G)

1> Fun = fun() -> receive after infinity -> ok end end.
#Fun<...>

2> { ,Bytes} = process info(spawn(Fun), memory).
{memory, 1232}

3> Bytes div erlang:system info(wordsize).

309

254 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

8.9 Processes

The size includes 233 words for the heap area (which includes the stack). The garbage collector increases the heap
as needed.

The main (outer) loop for a process must be tail-recursive. Otherwise, the stack grows until the process terminates.
DO NOT

loop() ->
receive
{sys, Msg} ->
handle sys msg(Msg),
loop();
{From, Msg} ->
Reply = handle msg(Msg),
From ! Reply,
loop()
end,
io:format("Message is processed~n", [1).

The call toi o: f or mat / 2 will never be executed, but a return address will still be pushed to the stack each time
| oop/ 0 iscaled recursively. The correct tail-recursive version of the function looks as follows:

DO

loop() ->
receive
{sys, Msg} ->
handle sys msg(Msg),
loop();
{From, Msg} ->
Reply = handle msg(Msg),
From ! Reply,
loop()
end.

Initial Heap Size

The default initial heap size of 233 words is quite conservative to support Erlang systems with hundreds of thousands
or even millions of processes. The garbage collector grows and shrinks the heap as needed.

In asystem that use comparatively few processes, performance might be improved by increasing the minimum heap
size using either the +h option for erl or on a process-per-process basis using the m n_heap_si ze option for
spawn_opt/4.

The gainistwofold:

« Although the garbage collector grows the heap, it grows it step-by-step, which is more costly than directly
establishing alarger heap when the process is spawned.

* The garbage collector can also shrink the heap if it is much larger than the amount of data stored on it; setting
the minimum heap size prevents that.

The emulator probably uses more memory, and because garbage collections occur less frequently, huge binaries
can be kept much longer.

In systemswith many processes, computation tasksthat run for ashort time can be spawned off into anew processwith
a higher minimum heap size. When the processis done, it sends the result of the computation to another process and
terminates. If the minimum heap size is calculated properly, the process might not have to do any garbage collections
at al. Thisoptimization isnot to be attempted without proper measur ements.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 255

8.9 Processes

8.9.2 Sending Messages

All datain messages sent between Erlang processes is copied, except for refc binaries and literals on the same Erlang
node.

When amessage is sent to a process on another Erlang node, it is first encoded to the Erlang External Format before
being sent through a TCP/IP socket. The receiving Erlang node decodes the message and distributes it to the correct
process.

8.9.3 Receiving messages

The cost of receiving messages depends on how complicated the r ecei ve expression is. A simple expression that
matches any message is very cheap because it retrieves the first message in the message queue:

DO

receive
Message -> handle msg(Message)
end.

However, thisis not always convenient: we can receive a message that we do not know how to handle at this point,
so it is common to only match the messages we expect:

receive
{Tag, Message} -> handle msg(Message)
end.

While this is convenient it means that the entire message queue must be searched until it finds a matching message.
Thisis very expensive for processes with long message queues, so we have added an optimization for the common
case of sending arequest and waiting for a response shortly after:

DO

MRef = monitor(process, Process),
Process ! {self(), MRef, Request},
receive
{MRef, Reply} ->
erlang:demonitor(MRef, [flush]),
handle reply(Reply);
{'DOWN', MRef, , , Reason} ->

handle error(Reason)
end.

Since the compiler knows that the reference created by noni t or / 2 cannot exist beforethe call (sinceitisaglobally
unique identifier), and that the r ecei ve only matches messages that contain said reference, it will tell the emulator
to search only the messages that arrived after the call tononi t or/ 2.

The above is a simple example where one is but guaranteed that the optimization will take, but what about more
complicated code?

Option recv_opt_info

Usether ecv_opt _i nf o option to have the compiler print information about receive optimizations. It can be given
either to the compiler or er | c:

erlc +recv_opt info Mod.erl
or passed through an environment variable:

export ERL_COMPILER OPTIONS=recv_opt info

256 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

8.9 Processes

Noticethatr ecv_opt _i nf o isnot meant to be apermanent option added toyour Makef i | es, because all messages
that it generates cannot be eliminated. Therefore, passing the option through the environment isin most cases the most

practical approach.

The warnings look as follows:

efficiency guide.
efficiency guide.
efficiency guide.
efficiency guide.
efficiency guide.
efficiency guide.

erl:

erl

erl:
erl:
erl:
erl:

194:
1200
206:
208:
219:
222:

Warning:
Warning:
Warning:
Warning:
Warning:
Warning:

INFO: receive matches any message, this is always fast

NOT OPTIMIZED: all clauses do not match a suitable reference

OPTIMIZED: reference used to mark a message queue position

OPTIMIZED: all clauses match reference created by monitor/2 at efficienc)
INFO: passing reference created by make ref/0 at efficiency guide.erl:21¢
OPTIMIZED: all clauses match reference in function parameter 1

To make it clearer exactly what code the warnings refer to, the warnings in the following examples are inserted as
comments after the clause they refer to, for example:

%% DO
simple receive()

->

%% efficiency guide.erl:194: Warning: INFO: not a selective receive, this is always fast

receive

Message -> handle msg(Message)

end.

%% DO NOT, unless Tag is known to be a suitable reference: see

%% cross_function receive/0 further down.

selective receive(Tag, Message) ->

%% efficiency guide.erl:200: Warning: NOT OPTIMIZED: all clauses do not match a suitable reference

receive

{Tag, Message} -> handle msg(Message)

end.

DO

o°
o°

optimized receive(Process, Request) ->
%% efficiency guide.erl:206: Warning: OPTIMIZED: reference used to mark a message queue position
MRef = monitor(process, Process),
Process ! {self(), MRef, Request},
%% efficiency guide.erl:208: Warning: OPTIMIZED: matches reference created by monitor/2 at efficiency gt

receive

{MRef, Reply} ->
erlang:demonitor(MRef,

handle reply(Reply);
_, Reason} ->
handle error(Reason)

{'DOWN', MRef,

end.

o°

% DO
s

cross_function receive() ->
%% efficiency guide.erl:218:

Ref = make ref(),

%% efficiency guide.erl:219:
cross_function receive(Ref).

cross_function receive(Ref) ->
%% efficiency guide.erl:222:

receive

[flush]),

Warning: OPTIMIZED: reference used to mark a message queue position

Warning: INFO: passing reference created by make ref/0 at efficiency guide.

Warning: OPTIMIZED: all clauses match reference in function parameter 1

{Ref, Message} -> handle msg(Message)

end.

8.9.4 Literal Pool

Constant Erlang terms (hereafter called literals) are kept in literal pools; each loaded module has its own pool. The
following function does not build the tuple every timeit is called (only to have it discarded the next time the garbage
collector was run), but the tuple is located in the modul€'s literal pool:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 257

8.9 Processes

DO

days _in_month(M) ->
element(M, {31,28,31,30,31,30,31,31,30,31,30,31}).

If aliteral, or aterm that contains a literal, is inserted into an Ets table, it is copied. The reason is that the module
containing the literal can be unloaded in the future.

When aliteral is sent to another process, it is not copied. When amodule holding aliteral is unloaded, the literal will
be copied to the heap of all processes that hold referencesto that literal.

There also exists aglobal literal pool that is managed by the persistent_term module.

By default, 1 GB of virtual address space is reserved for al literal pools (in BEAM code and persistent terms). The
amount of virtual address space reserved for literals can be changed by using the +M scs opt i on when starting
the emulator.

Here is an example how the reserved virtual address space for literals can beraised to 2 GB (2048 MB):

erl +MIscs 2048

8.9.5 Loss of Sharing

An Erlang term can have shared subterms. Here is a simple example:
{SubTerm, SubTerm}

Shared subterms are not preserved in the following cases:

* When aterm is sent to another process
* When aterm is passed as the initial process arguments in the spawn call
* When atermisstored in an Etstable

That is an optimization. Most applications do not send messages with shared subterms.
The following example shows how a shared subterm can be created:

kilo byte() ->
kilo byte(10, [42]).
kilo byte(0, Acc) ->
Acc;
kilo byte(N, Acc) ->
kilo byte(N-1, [Acc]|Acc]).

kil o _byte/ 1l createsadeep list. If | i st _to_bi nary/ 1 iscaled, the deep list can be converted to a binary
of 1024 bytes:

1> byte size(list to binary(efficiency guide:kilo byte())).
1024
Usingtheert s_debug: si ze/ 1 BIF, it can be seen that the deep list only requires 22 words of heap space:
2> erts debug:size(efficiency guide:kilo byte()).
22

Using theerts_debug: fl at _si ze/ 1 BIF, the size of the deep list can be calculated if sharing is ignored. It
becomes the size of the list when it has been sent to another process or stored in an Etstable:

258 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

8.10 Drivers

3> erts debug:flat size(efficiency guide:kilo byte()).
4094

It can be verified that sharing will be lost if the dataiis inserted into an Etstable;

4> T = ets:new(tab, [1).
#Ref<0.1662103692.2407923716.214181>

5> ets:insert (T, {key,efficiency guide:kilo byte()}).

true

6> erts debug:size(element(2, hd(ets:lookup(T, key)))).

4094

7> erts debug:flat size(element(2, hd(ets:lookup(T, key)))).
4094

When the data has passed through an Etstable, ert s_debug: si ze/ 1 anderts_debug: fl at _si ze/ 1 return
the same value. Sharing has been lost.

It is possible to build an experimental variant of the runtime system that will preserve sharing when copying terms
by giving the - - enabl e- shari ng- pr eser vi ng optiontotheconf i gur e script.

8.9.6 SMP Emulator

The emulator takes advantage of a multi-core or multi-CPU computer by running several Erlang scheduler threads
(typicaly, the same as the number of cores).

To gain performance from a multi-core computer, your application must have more than one runnable Erlang
process most of the time. Otherwise, the Erlang emulator can still only run one Erlang process at the time.

Benchmarks that appear to be concurrent are often sequential. The estone benchmark, for example, is entirely
sequential. So is the most common implementation of the "ring benchmark™; usually one process is active, while the
otherswaitinar ecei ve statement.

8.10 Drivers

This section provides a brief overview on how to write efficient drivers.
It is assumed that you have a good understanding of drivers.

8.10.1 Drivers and Concurrency
The runtime system always takes alock before running any code in adriver.

By default, that lock is at the driver level, that is, if severa ports have been opened to the same driver, only code for
one port at the same time can be running.

A driver can be configured to have one lock for each port instead.

If adriver isused in a functional way (that is, holds no state, but only does some heavy calculation and returns a
result), several ports with registered names can be opened beforehand, and the port to be used can be chosen based
on the scheduler ID asfollows:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 259

8.10 Drivers

-define (PORT NAMES(),

{some driver 01, some driver 02, some driver 03, some driver 04,
some_driver 05, some driver 06, some driver 07, some driver 08,
some_driver 09, some driver 10, some driver 11, some driver 12,
some _driver 13, some driver 14, some driver 15, some driver 16}).

client port() ->
element(erlang:system info(scheduler id) rem tuple size(?PORT NAMES()) + 1,
?PORT _NAMES()) .

Aslong asthere are no more than 16 schedulers, there will never be any lock contention on the port lock for thedriver.

8.10.2 Avoiding Copying Binaries When Calling a Driver
There are basically two ways to avoid copying a binary that is sent to adriver:

» If the Dat a argument for port_control/3 is a binary, the driver will be passed a pointer to the contents of the
binary and the binary will not be copied. If the Dat a argument isaniolist (list of binaries and lists), al binaries
intheiolist will be copied.

Therefore, if you want to send both a pre-existing binary and some extra data to a driver without copying the
binary, you must call port _cont r ol / 3 twice; once with the binary and once with the extra data. However,
that will only work if there is only one process communicating with the port (because otherwise another process
can call the driver in-between the calls).

* Implement an out put v callback (instead of an out put callback) in the driver. If a driver has an out put v
callback, refc binaries passed in aniolist in the Dat a argument for port_command/2 will be passed as references
to the driver.

8.10.3 Returning Small Binaries from a Driver

The runtime system can represent binaries up to 64 bytes as heap binaries. They are always copied when sent in
messages, but they require less memory if they are not sent to another process and garbage collection is cheaper.

If you know that the binaries you return are always small, you are advised to use driver API calls that do not require
a pre-allocated binary, for example, driver_output() or erl_drv_output_term(), using the ERL_DRV_BUF2BI NARY
format, to allow the runtime to construct a heap binary.

8.10.4 Returning Large Binaries without Copying from a Driver

To avoid copying data when a large binary is sent or returned from the driver to an Erlang process, the driver must
first allocate the binary and then send it to an Erlang process in some way.

Usedriver_aloc_binary() to alocate a binary.
There are several waysto send abinary created with dri ver _al | oc_bi nary():

 Fromthecont r ol calback, abinary can be returned if set_port_control_flags() has been called with the flag
value PORT_CONTROL_FLAG_BI NARY.

* A singlebinary can be sent with driver_output_binary().
e Usingerl_drv_output_term() or erl_drv_send term(), abinary can be included in an Erlang term.

260 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

8.11 Advanced

8.11 Advanced
8.11.1 Memory

A good start when programming efficiently isto know how much memory different datatypes and operations require.
It isimplementation-dependent how much memory the Erlang data types and other items consume, but the following
table shows some figuresfor theer t s- 8. 0 systemin OTP 19.0.

The unit of measurement is memory words. There exists both a 32-bit and a 64-bit implementation. A word
is therefore 4 bytes or 8 bytes, respectively. The value for a running system can be determined by calling

erl ang: system.i nf o(wordsi ze) .

Data Type

Memory Size

Small integer

1 word.

On 32-bit architectures; -134217729 < i < 134217728
(28 bits).

On 64-bit architectures: -576460752303423489 < i <
576460752303423488 (60 hits).

Large integer

3..N words.

Atom

1 word.

An atom refersinto an atom table, which also consumes
memory. The atom text is stored once for each unique
atom in thistable. The atom tableis not garbage-
collected.

Float

On 32-bit architectures: 4 words.
On 64-bit architectures. 3 words.

Binary

3..6 words + data (can be shared).

List

1 word + 1 word per element + the size of each element.

String (is the same as alist of integers)

1 word + 2 words per character.

Tuple

2 words + the size of each element.

Small Map

5 words + the size of all keys and values.

Large Map (> 32 keys)

Nx F words + the size of all keys and values.

Nisthe number of keysin the Map.

F isasparsity factor that can vary between 1.6 and 1.8
due to the probabilistic nature of the internal HAMT
data structure.

Pid

1 word for a process identifier from the current local
node.

On 32-hit: 6 words for a process identifier from another
node.

On 64-hit: 5 words for a process identifier from another
node.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 261

8.11 Advanced

A processidentifier refersinto a process table and a
node table, which also consumes memory.

1 word for aport identifier from the current local node.
5 words for a port identifier from another node.

A port identifier refersinto a port table and a node table,
which also consumes memory.

On 32-bit architectures: 4-7 words for areference from
the current local node, and 7-9 words for areference
from another node.

On 64-bit architectures. 4-6 words for areference from
Reference the current local node, and 6-7 words for areference
from another node.

A reference aso refers into more or less emulator
internal data structures which also consumes memory.
At aminimum it refers into the node tables.

9..13 words + the size of environment.
Fun A funrefersinto afun table, which also consumes
memory.

Initially 768 words + the size of each element (6 words
Etstable + the size of Erlang data). The table grows when
necessary.

338 words when spawned, including a heap of 233

Erlang process words.

Table 11.1: Memory Size of Different Data Types

8.11.2 System Limits

The Erlang language specification puts no limits on the number of processes, length of atoms, and so on. However,
for performance and memory saving reasons, there will always be limitsin a practical implementation of the Erlang
language and execution environment.

The maximum number of simultaneously alive Erlang
processes is by default 262,144. Thislimit can be
Processes configured at startup. For more information, see the
+P command-lineflagintheer | (1) manual pagein
ERTS.

A remote node Y must be known to node X if there
exists any pids, ports, references, or funs (Erlang data
types) fromY on X, or if X and Y are connected. The
maximum number of remote nodes simultaneously/ever
known to anode is limited by the maximum number of
atoms available for node names. All data concerning
remote nodes, except for the node name atom, are
garbage-collected.

Known nodes

262 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

8.11 Advanced

Connected nodes

The maximum number of simultaneously connected
nodesis limited by either the maximum number of
simultaneously known remote nodes, the maximum
number of (Erlang) ports available, or the maximum
number of sockets available.

Charactersin an atom

255.

Atoms

By default, the maximum number of atomsis 1,048,576.
Thislimit can be raised or lowered using the +t option.

Elementsin atuple

The maximum number of elementsin atupleis
16,777,215 (24-bit unsigned integer).

Size of binary

In the 32-bit implementation of Erlang, 536,870,911
bytesisthe largest binary that can be constructed

or matched using the bit syntax. In the 64-

bit implementation, the maximum sizeis
2,305,843,009,213,693,951 bytes. If the limit

is exceeded, bit syntax construction fails with a
system | i mt exception, whileany attempt to
match a binary that istoo large fails. Thislimit is
enforced starting in R11B-4.

In earlier Erlang/OTP releases, operations on too large
binariesin genera either fail or give incorrect results.
In future releases, other operations that create binaries
(suchasli st _to_binary/ 1) will probably aso
enforce the same limit.

Total amount of data allocated by an Erlang node

The Erlang runtime system can use the complete 32-bit
(or 64-hit) address space, but the operating system often
limits asingle process to use less than that.

Length of anode name

An Erlang node name has the form host@shortname
or host@longname. The node nameis used as an atom
within the system, so the maximum size of 255 holds
also for the node name.

Open ports

The maximum number of simultaneously open Erlang
portsis often by default 16,384. Thislimit can be
configured at startup. For more information, see the
+Qcommand-lineflagintheer| (1) manual pagein
ERTS.

Open files and sockets

The maximum number of simultaneously open files and
sockets depends on the maximum number of Erlang
ports available, as well as on operating system-specific
settings and limits.

Number of argumentsto afunction or fun

255

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 263

8.12 Profiling

Each scheduler thread has its own set of references,
and all other threads have a shared set of references.
Each set of references consist of 2## - 1 unique
references. That is, the total amount of unique
references that can be produced on a runtime system
Unique References on a Runtime System Instance instanceis (NoSchedul ers + 1) x (2## -
1).

If ascheduler thread create a new reference each nano
second, references will at earliest be reused after more
than 584 years. That is, for the foreseeable future they
are unique enough.

There are two types of unique integers both created
using the erlang:unique_integer() BIF:

1. Unique integers created with the nonot oni ¢
modifier consist of aset of 2## - 1 unique integers.
2. Unique integers created without the nonot oni ¢
modifier consist of aset of 2## - 1 unique integers
per scheduler thread and a set of 2## - 1 unique
Unique Integers on a Runtime System Instance integers shared by other threads. That is, the total
amount of unique integers without the nonot oni ¢
modifier is(NoSchedul ers + 1) x (2## -
1).

If aunique integer is created each nano second, unique
integers will at earliest be reused after more than 584
years. That is, for the foreseeable future they are unique
enough.

Table 11.2: System Limits

8.12 Profiling
8.12.1 Do Not Guess About Performance - Profile

Even experienced software developers often guess wrong about where the performance bottlenecks are in their
programs. Therefore, profile your program to see where the performance bottlenecks are and concentrate on optimizing
them.

Erlang/OTP contains severa tools to help finding bottlenecks:

« fprof providesthe most detailed information about where the program time is spent, but it significantly slows
down the program it profiles.

e eprof providestimeinformation of each function used in the program. No call graph is produced, but epr of
has considerably lessimpact on the program it profiles.
If the program is too large to be profiled by f pr of or epr of , cpr of can be used to locate code parts that are
to be more thoroughly profiled using f pr of or epr of .

« cprof isthemost lightweight tool, but it only provides execution counts on afunction basis (for al processes,
not per process).

» dbg isthe generic erlang tracing frontend. By using thet i mest anp or cpu_t i nest anp options it can be
used to time how long function callsin alive system take.

264 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

8.12 Profiling

« | cnt isusedtofind contention pointsin the Erlang Run-Time System's internal locking mechanisms. It is useful
when looking for bottlenecks in interaction between process, port, ets tables and other entities that can be run
in parallel.

The tools are further described in Tools.
There are also severa open source tools outside of Erlang/OTP that can be used to help profiling. Some of them are:

e erlgrind can be used to visualize fprof datain kcachegrind.
» eflameisan dternative to fprof that displays the profiling output as a flamegraph.

e reconisacaoallection of Erlang profiling and debugging tools. Thistool comes with an accompanying E-book
caled Erlang in Anger.

8.12.2 Memory profiling
eheap alloc: Cannot allocate 1234567890 bytes of memory (of type "heap").

The above slogan is one of the more common reasons for Erlang to terminate. For unknown reasons the Erlang Run-
Time System failed to alocate memory to use. When this happens a crash dump is generated that containsinformation
about the state of the system as it ran out of memory. Use the cr ashdunp_vi ewer to get aview of the memory
being used. Look for processes with large heaps or many messages, large ets tables, etc.

When looking at memory usage in a running system the most basic function to get information from is
erl ang: menory() . It returns the current memory usage of the system. i nst r unent (3) can be used to get a
more detailed breakdown of where memory is used.

Processes, ports and ets tables can then be inspected using their respective info functions, i.e.
erl ang: process_info/2 ,erlang:port_info/2 andets:info/1l.

Sometimesthe system can enter astatewherethereported memory fromer | ang: nmenor y(t ot al) isvery different
from the memory reported by the OS. This can be because of internal fragmentation within the Erlang Run-Time
System. Data about how memory is allocated can beretrieved using er | ang: syst em_ i nfo(al | ocat or) . The
data you get from that function is very raw and not very pleasant to read. recon_alloc can be used to extract useful
information from system_info statistics counters.

8.12.3 Large Systems

For alargesystem, it can beinteresting to run profiling on asimulated and limited scenario to start with. But bottlenecks
have a tendency to appear or cause problems only when many things are going on at the same time, and when many
nodes are involved. Therefore, it is also desirable to run profiling in a system test plant on areal target system.

For alarge system, you do not want to run the profiling tools on the whole system. Instead you want to concentrate
on central processes and modules, which account for a big part of the execution.

There are also some tools that can be used to get a view of the whole system with more or less overhead.
* observer isaGUI tool that can connect to remote nodes and display a variety of information about the
running system.

e et opisacommand linetool that can connect to remote nodes and display information similar to what the
UNIX tool top shows.

« msacc alowsthe user to get aview of what the Erlang Run-Time system is spending its time doing. Has a
very low overhead, which makes it useful to run in heavily loaded systemsto get some idea of where to start
doing more granular profiling.

8.12.4 What to Look For

When analyzing the result file from the profiling activity, look for functions that are called many times and have a
long "own" execution time (time excluding calls to other functions). Functions that are called a lot of times can also

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 265

href
href
href
href
href

8.12 Profiling

be interesting, as even small things can add up to quite a bit if repeated often. Also ask yourself what you can do to
reduce thistime. The following are appropriate types of questionsto ask yourself:

* Isit possible to reduce the number of times the function is called?

* Can any test be run less often if the order of testsis changed?

e Can any redundant tests be removed?

» Doesany calculated expression give the same result each time?

« Arethere other waysto do this that are equivalent and more efficient?

* Can another internal data representation be used to make things more efficient?

These questions are not always trivial to answer. Some benchmarks might be needed to back up your theory and to
avoid making things slower if your theory iswrong. For details, see Benchmarking.

8.12.5 Tools
fprof

f pr of measures the execution time for each function, both own time, that is, how much time a function has used
for its own execution, and accumulated time, that is, including called functions. The values are displayed per process.
Y ou also get to know how many times each function has been called.

f pr of isbased on trace to file to minimize runtime performance impact. Using f pr of isjust a matter of calling a
few library functions, see the fprof manual pagein Tools.
eprof

epr of isbased onthe Erlangtrace_i nf o BIFs. epr of shows how much time has been used by each process,
and in which function calls this time has been spent. Time is shown as a percentage of total time and absolute time.
For more information, see the eprof manual pagein Toals.

cprof

cpr of issomething in between f pr of and cover regarding features. It counts how many times each function is
called when the program is run, on a per module basis. cpr of has alow performance degradation effect (compared
with f pr of) and does not need to recompile any modules to profile (compared with cover). For more information,
see the cprof manual pagein Tools.

Tool Summary

i Effects on Records Records Records
Size of Program . Records
Tool Results . Number of |Execution Garbage
Result Execution : Called by :
. Calls Time Collection
Time
Per process .
f pr of to screen/ Large Significant Yes Total and Yes Yes
file slowdown own
Per process/ Small
epr of functionto | Medium Yes Only total No No
: slowdown
screenffile

266 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

8.13 Retired Myths

Per module Small
cpr of to caller Small Jowdown Yes No No No

Table 12.1: Tool Summary

dbg

dbg is a generic Erlang trace tool. By using the ti mest anp or cpu_t i nest anp options it can be used as a
precision instrument to profile how long time afunction call takesfor aspecific process. This can be very useful when
trying to understand wheretimeis spent in aheavily loaded system asit is possible to limit the scope of what is profiled
to be very small. For more information, see the dbg manual page in Runtime Tools.

lcnt

| cnt isused to profile interactions in between entities that run in parallel. For example if you have a process that all
other processes in the system needs to interact with (maybe it has some global configuration), then| cnt can be used
to figure out if the interaction with that processis a problem.

In the Erlang Run-time System entities are only run in parallel when there are multiple schedulers. Therefore | cnt
will show more contention points (and thus be more useful) on systems using many schedulers on many cores.

For more information, see the Icnt manual page in Tools.

8.12.6 Benchmarking

The main purpose of benchmarking isto find out which implementation of agiven algorithm or function isthe fastest.
Benchmarking isfar from an exact science. Today's operating systems generally run background tasksthat are difficult
to turn off. Caches and multiple CPU cores do not facilitate benchmarking. It would be best to run UNIX computers
in single-user mode when benchmarking, but that is inconvenient to say the least for casual testing.

Benchmarks can measure wall-clock time or CPU time.

e timer:tc/3 measures wall-clock time. The advantage with wall-clock time isthat 1/O, swapping, and other
activities in the operating system kernel are included in the measurements. The disadvantage is that the
measurements vary alot. Usually it is best to run the benchmark several times and note the shortest time, which
isto be the minimum time that is possible to achieve under the best of circumstances.

o datisticy/1 with argument r unt i me measures CPU time spent in the Erlang virtual machine. The advantage
with CPU time is that the results are more consistent from run to run. The disadvantage is that the time spent
in the operating system kernel (such as swapping and 1/0) is not included. Therefore, measuring CPU timeis
midleading if any 1/O (file or socket) isinvolved.

Itis probably agood ideato do both wall-clock measurements and CPU time measurements.
Some final advice:

e Thegranularity of both measurement types can be high. Therefore, ensure that each individual measurement
lasts for at least several seconds.

* Tomakethetest fair, each new test runisto run in its own, newly created Erlang process. Otherwise, if al tests
run in the same process, the later tests start out with larger heap sizes and therefore probably do fewer garbage
collections. Also consider restarting the Erlang emulator between each test.

« Do not assume that the fastest implementation of a given algorithm on computer architecture X is also the
fastest on computer architecture Y.

8.13 Retired Myths

We believe that the truth finally has caught with the following, retired myths.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 267

8.13 Retired Myths

8.13.1 Myth: Funs are Slow

Funs used to be very slow, slower than appl y/ 3. Originally, funs were implemented using nothing more than
compiler trickery, ordinary tuples, appl y/ 3, and agreat deal of ingenuity.

But that is history. Funs was given its own data type in R6B and was further optimized in R7B. Now the cost for afun
call fals roughly between the cost for acall to alocal function and appl y/ 3.

8.13.2 Myth: List Comprehensions are Slow
List comprehensions used to be implemented using funs, and in the old days funs were indeed slow.

Nowadays, the compiler rewrites list comprehensions into an ordinary recursive function. Using a tail-recursive
function with a reverse at the end would be still faster. Or would it? That leads us to the myth that tail-recursive
functions are faster than body-recursive functions.

8.13.3 Myth: List subtraction ("--" operator) is slow

List subtraction used to have arun-time complexity proportional to the product of the length of its operands, so it was
extremely slow when both lists were long.

As of OTP 22 the run-time complexity is "nlog n" and the operation will complete quickly even when both lists are
very long. Infact, it isfaster and usesless memory than the commonly used workaround to convert both liststo ordered
sets before subtracting them with or dset s: subtract/ 2.

268 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

9.1 Introduction

9 Interoperability Tutorial

9.1 Introduction

This section informs on interoperability, that is, information exchange, between Erlang and other programming
languages. The included examples mainly treat interoperability between Erlang and C.

9.1.1 Purpose

The purpose of this tutorial is to describe different interoperability mechanisms that can be used when integrating a
program written in Erlang with a program written in another programming language, from the Erlang programmer's
perspective.

9.1.2 Prerequisites

It is assumed that you are a skilled Erlang programmer, familiar with concepts such as Erlang data types, processes,
messages, and error handling.

Toillustrate the interoperability principles, C programsrunning in a UNIX environment have been used. It is assumed
that you have enough knowledge to apply these principles to the relevant programming languages and platforms.

For readability, the example code is kept as ssimple as possible. For example, it does not include error handling,
which might be vital in areal-life system.

9.2 Overview

9.2.1 Built-In Mechanisms

Two interoperability mechanisms are built into the Erlang runtime system, distributed Erlang and ports. A variation
of portsislinked-in drivers.

Distributed Erlang

An Erlang runtime system ismade adistributed Erlang node by giving it aname. A distributed Erlang node can connect
to, and monitor, other nodes. It can also spawn processes at other nodes. M essage passing and error handling between
processes at different nodes are transparent. A number of useful STDLIB modules are available in adistributed Erlang
system. For example, gl obal , which provides global name registration. The distribution mechanism isimplemented
using TCP/IP sockets.

When to use: Distributed Erlang is primarily used for Erlang-Erlang communication. It can also be used for
communication between Erlang and C, if the C program is implemented as a C node, see C and Java Libraries.

Whereto read more: Distributed Erlang and some distributed programming techniques are described in the Erlang
book.

For more information, see Distributed Programming.
Relevant manual pages are the following:
» erlang manual page in ERTS (describes the BIFS)

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 269

9.2 Overview

» globa manual pagein Kernel

e net_adm manua pagein Kernel
e pgmanual pagein Kernel

e rpcmanual pagein Kernel

e pool manual pagein STDLIB

e davemanual pagein STDLIB

Ports and Linked-In Drivers

Ports provide the basic mechanism for communication with the external world, from Erlang's point of view. The ports
provide a byte-oriented interface to an external program. When a port is created, Erlang can communicate with it by
sending and receiving lists of bytes (not Erlang terms). This meansthat the programmer might haveto invent asuitable
encoding and decoding scheme.

The implementation of the port mechanism depends on the platform. For UNIX, pipes are used and the external
program is assumed to read from standard input and write to standard output. The external program can be written
in any programming language as long as it can handle the interprocess communication mechanism with which the
port isimplemented.

The external program resides in another OS process than the Erlang runtime system. In some cases this is not
acceptable. Consider, for example, driverswith very hard timerequirements. It istherefore possible to write aprogram
in C according to certain principles, and dynamically link it to the Erlang runtime system. Thisis called a linked-
indriver.

When to use: Ports can be used for all kinds of interoperability situations where the Erlang program and the other
program runs on the same machine. Programming is fairly straight-forward.

Linked-in driversinvolves writing certain call-back functionsin C. Thisrequires very good skills asthe codeislinked
to the Erlang runtime system.

‘ A faulty linked-in driver causes the entire Erlang runtime system to leak memory, hang, or crash.

Wheretoread more: Ports are described in section "Miscellaneous Items' of the Erlang book. Linked-in drivers are
described in Appendix E.

The BIF open_port/ 2 isdocumented in the erlang manual pagein ERTS.
For linked-in drivers, the programmer needsto read the erl_ddll manual page in Kernel.
Examples: Port examplein Ports.

9.2.2 C and Java Libraries

Erl_Interface

The program at the other side of a port is often a C program. To help the C programmer, the Erl_|Interface library
has been developed

The Erlang externa term format is a representation of an Erlang term as a sequence of bytes, that is, a binary.
Conversion between the two representations is done using the following BIFs:

term to binary(Term)

Binary =
= binary to term(Binary)

Term

270 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

9.2 Overview

A port can be set to use binaries instead of lists of bytes. It is then not necessary to invent any encoding/decoding
scheme. Erl_Interface functions are used for unpacking the binary and convert it into a struct similar to an Erlang term.
Such a struct can be manipulated in different ways, be converted to the Erlang external format, and sent to Erlang.

When to use: In C code, in conjunction with Erlang binaries.

Wheretoread more: SeetheErlang Interface User's Guide, Command Reference, and Library Reference. In Erlang/
OTP R5B, and earlier versions, the information is part of the Kernel application.

Examples: Erl_Interface examplein Erl_Interface.

C Nodes

A Cprogram that usesthe Erl_Interface functionsfor setting up aconnection to, and communicating with, adistributed
Erlang nodeis called a C node, or ahidden node. The main advantage with aC node is that the communication from
the Erlang programmer's perspective is extremely easy, as the C program behaves as a distributed Erlang node.

When to use: C nodes can typically be used on device processors (as opposed to control processors) where C is a
better choice than Erlang due to memory limitations or application characteristics, or both.

Wheretoread more: Seetheei _connect part of the Erl_Interface documentation. The programmer also needsto
be familiar with TCP/IP sockets, see Socketsin Standard Protocols and Distributed Erlang in Built-In Mechanisms.

Example: C node example in C Nodes.

Jinterface

In Erlang/OTP R6B, alibrary similar to Erl_Interface for Javawas added called jinterface. It provides atool for Java
programs to communicate with Erlang nodes.

9.2.3 Standard Protocols

Sometimes communication between an Erlang program and another program using a standard protocol is desirable.
Erlang/OTP currently supports TCP/IP and UDP sockets: as follows:

« SNMP
. HTTP
« 1IOP(CORBA)

Using one of the latter three requires good knowledge about the protocol and is not covered by this tutorial. See the
SNMP, Inets, and Orber applications, respectively.
Sockets

Simply put, connection-oriented socket communication (TCP/IP) consists of an initiator socket ("server") started at a
certain host with a certain port number. A connector socket ("client"), which is aware of the initiator host name and
port number, can connect to it and data can be sent between them.

Connection-less socket communication (UDP) consistsof aninitiator socket at acertain host with acertain port number
and a connector socket sending datato it.

For a detailed description of the socket concept, refer to a suitable book about network programming. A suggestion
isUNIX Network Programming, Volume 1: Networking APIs - Socketsand XTI by W. Richard Stevens, |SBN:
013490012X.

In Erlang/OTP, access to TCP/IP and UDP sockets is provided by the modulesgen_t cp and gen_udp in Kernel.
Both are easy to use and do not require detailed knowledge about the socket concept.

When to use: For programs running on the same or on another machine than the Erlang program.
Whereto read more: Seethe gen_tcp and the gen_udp manual pagesin Kernel.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 271

9.3 Problem Example

9.2.4 IC and CORBA

IC (Erlang IDL Compiler) isan interface generator that, given an IDL interface specification, automatically generates
stub code in Erlang, C, or Java. See the IC User's Guide and | C Reference Manual.

For details, see the corba repository.

9.2.5 Old Applications

Two old applications are of interest regarding interoperability. Both have been replaced by |C and are mentioned here
for reference only:

¢ 1G - Removed from Erlang/OTP R6B.

IG (Interface Generator) automatically generated code for port or socket communication between an Erlang
program and a C program, given a C header file with certain keywords.

* Jive- Removed from Erlang/OTP R7B.
Jive provided a simple interface between an Erlang program and a Java program.

9.3 Problem Example

9.3.1 Description

A common interoperability situation is when you want to incorporate a piece of code, solving a complex problem,
in your Erlang program. Suppose for example, that you have the following C functions that you would like to call
from Erlang:

/* complex.c */
int foo(int x) {
return x+1;

)
int bar(int y) {
return y*2;

}

The functions are deliberately kept as simple as possible, for readability reasons.

From an Erlang perspective, it is preferable to be able to call f oo and bar without having to bother about that they
are C functions:

% Erlang code

Res = complex:foo(X),

Here, the communication with C is hidden in the implementation of conpl ex. er | . In the following sections, it is
shown how this module can be implemented using the different interoperability mechanisms.

9.4 Ports

This section outlines an example of how to solve the example problem in the previous section by using a port.

The scenario isillustrated in the following figure:

272 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

href

9.4 Ports

EET=

. EEEEE——
5-|—|- Farl
=i}

External program

I:l QS proceas

—® Communicabion

o Erlangproceas

Figure 4.1: Port Communication

9.4.1 Erlang Program

All communication between Erlang and C must be established by creating the port. The Erlang process that creates
aport is said to be the connected process of the port. All communication to and from the port must go through the
connected process. If the connected process terminates, the port also terminates (and the external program, if it is

written properly).

Theportiscreated using the BIF open_por t / 2 with{ spawn, Ext Pr g} asthefirst argument. Thestring Ext Pr g
isthe name of the external program, including any command line arguments. The second argument isalist of options, in

thiscaseonly { packet , 2} .

Thisoption saysthat a2 bytelength indicator isto be used to simplify the communication

between C and Erlang. The Erlang port automatically adds the length indicator, but this must be done explicitly in

the external C program.

The processis also set to trap exits, which enables detection of failure of the external program:

-module(complexl).

-export([start/1, init/11]).

start(ExtPrg) ->
spawn (?MODULE, init,

init(ExtPrg) ->

[ExtPrg]).

register(complex, self()),
process flag(trap exit, true),
Port = open port({spawn, ExtPrg}, [{packet, 2}1),

loop(Port).

Now conpl ex1: f oo/ 1 and conpl ex1: bar/ 1 can be implemented. Both send a message to the conpl ex
process and receive the following replies:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 273

9.4 Ports

foo(X) ->

call port({foo, X}).
bar(Y) ->

call port({bar, Y}).

call port(Msg) ->
complex ! {call, self(), Msg},
receive
{complex, Result} ->
Result
end.

The conpl ex process does the following:

» Encodes the message into a sequence of bytes.
e Sendsit to the port.

* Waitsfor areply.

e Decodesthereply.

* Sendsit back to the caler:

loop(Port) ->
receive
{call, Caller, Msg} ->
Port ! {self(), {command, encode(Msg)}},
receive
{Port, {data, Data}} ->
Caller ! {complex, decode(Data)}
end,
loop(Port)
end.

Assuming that both the arguments and the results from the C functions are less than 256, a simple encoding/decoding
scheme is employed. In this scheme, f 00 isrepresented by byte 1, bar isrepresented by 2, and the argument/result
is represented by a single byte aswell:

encode({foo, X}) -> [1, X];
encode({bar, Y}) -> [2, Y].
decode([Int]) -> Int.

The resulting Erlang program, including functionality for stopping the port and detecting port failures, is as follows:

274 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

9.4 Ports

-module(complexl).
-export([start/1l, stop/0, init/1]).
-export([foo/1, bar/1]).

start(ExtPrg) ->

spawn (?MODULE, init, [ExtPrgl).
stop() ->

complex ! stop.

foo(X) ->

call port({foo, X}).
bar(y) ->

call port({bar, Y}).

call port(Msg) ->
complex ! {call, self(), Msg},
receive
{complex, Result} ->
Result
end.

init(ExtPrg) ->
register(complex, self()),
process flag(trap exit, true),
Port = open_port({spawn, ExtPrg}, [{packet, 2}]),
loop(Port).

loop(Port) ->
receive
{call, Caller, Msg} ->
Port ! {self(), {command, encode(Msg)}},
receive
{Port, {data, Data}} ->
Caller ! {complex, decode(Data)}
end,
loop(Port);
stop ->
Port ! {self(), close},
receive
{Port, closed} ->
exit(normal)
end;
{'EXIT', Port, Reason} ->
exit(port terminated)
end.

encode({foo, X}) -> [1, X];
encode({bar, Y}) -> [2, Y].

decode([Int]) -> Int.

9.4.2 C Program

On the C side, it is necessary to write functions for receiving and sending data with 2 byte length indicators from/to
Erlang. By default, the C program is to read from standard input (file descriptor 0) and write to standard output (file
descriptor 1). Examples of such functions, r ead_cnd/ 1 andwri t e_cnd/ 2, follows:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 275

9.4 Ports

/* erl _comm.c */

#include <stdio.h>
#include <unistd.h>

typedef unsigned char byte;

int read exact(byte *buf, int len)

{
int i, got=0;
do {
if ((1i = read(0, buf+got, len-got)) <= 0){
return(i);
}
got += 1i;

} while (got<len);

return(len);

}

int write exact(byte *buf, int len)

{

int i, wrote = 0;

do {
if ((i = write(1l, buf+wrote, len-wrote)) <= 0)
return (i);

wrote += 1i;
} while (wrote<len);

return (len);

}

int read cmd(byte *buf)
{

int len;

if (read exact(buf, 2) != 2)
return(-1);

len = (buf[0] << 8) | buf[1l];

return read exact(buf, len);

}

int write cmd(byte *buf, int len)

{
byte 1i;

11 = (len >> 8) & Oxff;
write exact(&li, 1);

1i = len & Oxff;
write exact(&li, 1);

return write exact(buf, len);

}
Noticethat st di nandst dout arefor bufferedinput/output and must not be used for the communication with Erlang.

Inthe mai n function, the C program isto listen for a message from Erlang and, according to the selected encoding/
decoding scheme, usethefirst byte to determine which function to call and the second byte as argument to the function.
The result of calling the function is then to be sent back to Erlang:

276 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

9.5 Erl_Interface

/* port.c */
typedef unsigned char byte;

int main() {
int fn, arg, res;
byte buf[100];

while (read cmd(buf) > 0) {
fn = buf[0];
arg = buf[1];

if (fn == 1) {
res = foo(arg);

} else if (fn == 2) {
res = bar(arg);

}

buf[0] = res;

write cmd(buf, 1);

}
}

Notice that the C program isin awhi | e-loop, checking for the return value of r ead_cnd/ 1. Thisis because the
C program must detect when the port closes and terminates.

9.4.3 Running the Example

Step 1. Compile the C code:

unix> gcc -o extprg complex.c erl comm.c port.c

Step 2. Start Erlang and compile the Erlang code:

unix> erl
Erlang (BEAM) emulator version 4.9.1.2

Eshell V4.9.1.2 (abort with "G)
1> c(complexl).
{ok, complex1}

Step 3. Run the example:

2> complexl:start("./extprg").
<0.34.0>

3> complexl:foo(3).

4

4> complexl:bar(5).

10

5> complexl:stop().

stop

9.5 Erl_Interface

This section outlines an example of how to solve the example problem in Problem Example by using a port and
Erl_Interface. It is necessary to read the port example in Ports before reading this section.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 277

9.5 Erl_Interface

9.5.1 Erlang Program

Thefollowing example shows an Erlang program communicating with a C program over aplain port with home made
encoding:

-module(complexl).
-export([start/1, stop/0, init/1]).
-export([foo/1, bar/1]).

start(ExtPrg) ->

spawn (?MODULE, init, [ExtPrgl).
stop() ->

complex ! stop.

foo(X) ->
call port({foo, X}).
bar(Y) ->

call port({bar, Y}).

call port(Msg) ->
complex ! {call, self(), Msg},
receive
{complex, Result} ->
Result
end.

init(ExtPrg) ->
register(complex, self()),
process flag(trap exit, true),
Port = open port({spawn, ExtPrg}, [{packet, 2}1),
loop(Port).

loop(Port) ->
receive
{call, Caller, Msg} ->
Port ! {self(), {command, encode(Msg)}},
receive
{Port, {data, Data}} ->
Caller ! {complex, decode(Data)}
end,
loop(Port);
stop ->
Port ! {self(), close},
receive
{Port, closed} ->
exit(normal)
end;
{'EXIT', Port, Reason} ->
exit(port terminated)
end.

encode({foo, X}) -> [1, X];
encode({bar, Y}) -> [2, Y].

decode([Int]) -> Int.

There are two differences when using Erl_Interface on the C side compared to the example in Ports, using only the
plain port:
e AsErl_Interface operates on the Erlang external term format, the port must be set to use binaries.

* Instead of inventing an encoding/decoding scheme, thet erm t o_bi nary/ 1 andbinary_to_term 1
BIFs areto be used.

That is:

278 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

9.5 Erl_Interface

open_port({spawn, ExtPrg}, [{packet, 2}])

is replaced with:

open port({spawn, ExtPrg}, [{packet, 2}, binary])
And:

Port ! {self(), {command, encode(Msg)}},
receive
{Port, {data, Data}} ->
Caller ! {complex, decode(Data)}
end

is replaced with:
Port ! {self(), {command, term to binary(Msg)}},
receive
{Port, {data, Data}} ->
Caller ! {complex, binary to term(Data)}
end

The resulting Erlang programis as follows:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 279

9.5 Erl_Interface

-module(complex2).
-export([start/1l, stop/0, init/1]).
-export([foo/1, bar/1]).

start(ExtPrg) ->

spawn (?MODULE, init, [ExtPrgl).
stop() ->

complex ! stop.

foo(X) ->

call port({foo, X}).
bar(Y) ->

call port({bar, Y}).

call port(Msg) ->
complex ! {call, self(), Msg},
receive
{complex, Result} ->
Result
end.

init(ExtPrg) ->
register(complex, self()),
process flag(trap exit, true),
Port = open port({spawn, ExtPrg}, [{packet, 2}, binary]),
loop(Port).

loop(Port) ->
receive
{call, Caller, Msg} ->
Port ! {self(), {command, term to binary(Msg)}},
receive
{Port, {data, Data}} ->
Caller ! {complex, binary to term(Data)}
end,
loop(Port);
stop ->
Port ! {self(), close},
receive
{Port, closed} ->
exit(normal)
end;
{'EXIT', Port, Reason} ->
exit(port terminated)
end.

Notice that calling conpl ex2: f oo/ 1 and conpl ex2: bar/ 1 resultsin thetuple { f oo, X} or { bar, Y} being
sent totheconpl ex process, which codesthem as binaries and sends them to the port. This meansthat the C program
must be able to handle these two tuples.

9.5.2 C Program

The following example shows a C program communicating with an Erlang program over a plain port with the Erlang
external term format encoding:

280 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

9.5 Erl_Interface

/* ei.c */

#include "ei.h"

#include <unistd.h>
#include <string.h>
#include <stdlib.h>

typedef unsigned char byte;

int read cmd(byte *buf);

int write cmd(byte *buf, int len);
int foo(int x);

int bar(int y);

static void fail(int place) {
fprintf(stderr, "Something went wrong %d\n", place);
exit(1l);

}

int main() {
byte buf[100];
int index = 0;
int version = 0;
int arity = 0;
char atom[128];
long in = 0;
int res = 0;
ei x buff res buf;

ei init();
while (read cmd(buf) > 0) {
if (ei_decode version(buf, &index, &version) != 0)
fail(l);
if (ei_decode tuple header(buf, &index, &arity) != 0)
fail(2);
if (arity != 2)
fail(3);
if (ei_decode atom(buf, &index, atom) != 0)
fail(4);
if (ei_decode long(buf, &index, &in) != 0)
fail(5);
if (strncmp(atom, "foo", 3) == 0) {

res = foo((int)in);
} else if (strncmp(atom, "bar", 3) == 0) {
res = bar((int)in);

}

if (ei x new with version(&res buf) != 0)
fail(6);

if (ei_x _encode long(&res buf, res) != 0)
fail(7);

write cmd(res buf.buff, res buf.index);
if (ei x free(&res buf) != 0)

fail(8);
index = 0;

}

The following functions, read_cnd() andwrite_cnd(), fromtheerl _conmm ¢ examplein Ports can still be
used for reading from and writing to the port:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 281

9.5 Erl_Interface

/* erl _comm.c */

#include <stdio.h>
#include <unistd.h>

typedef unsigned char byte;
int read exact(byte *buf, int len)

{
int i, got=0;

do {
if ((1i = read(0, buf+got, len-got)) <= 0){
return(i);
}
got += 1i;

} while (got<len);

return(len);

}

int write exact(byte *buf, int len)

{

int i, wrote = 0;

do {
if ((i = write(1l, buf+wrote, len-wrote)) <= 0)
return (i);

wrote += 1i;
} while (wrote<len);

return (len);

}

int read cmd(byte *buf)
{

int len;

if (read exact(buf, 2) != 2)
return(-1);

len = (buf[0] << 8) | buf[1l];

return read exact(buf, len);

}

int write cmd(byte *buf, int len)
{
byte 1i;

11 = (len >> 8) & Oxff;
write exact(&li, 1);

1i = len & Oxff;
write exact(&li, 1);

return write exact(buf, len);

9.5.3 Running the Example
Step 1. Compile the C code. This provides the pathsto theincludefileei . h, and also to thelibrary ei :

282 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

9.6 Port Drivers

unix> gcc -o extprg -I/usr/local/otp/lib/erl interface-3.9.2/include \
-L/usr/local/otp/lib/erl_interface-3.9.2/1lib \
complex.c erl comm.c ei.c -lei -lpthread

In Erlang/OTP R5B and later versionsof OTP, thei ncl ude and! i b directoriesaresituated under OTPROOT/ | i b/
erl _interface- VSN, where OTPROOT isthe root directory of the OTP installation (/ usr/ | ocal / ot p inthe
recent example) and VSNisthe version of the Erl_interface application (3.2.1 in the recent example).

In R4B and earlier versions of OTP, i ncl ude and | i b are situated under OTPROOT/ usr .
Step 2. Start Erlang and compile the Erlang code:

unix> erl
Erlang (BEAM) emulator version 4.9.1.2

Eshell V4.9.1.2 (abort with ~G)
1> c(complex2).
{ok,complex2}

Step 3. Run the example:

2> complex2:start("./extprg").
<0.34.0>

3> complex2:foo(3).

4

4> complex2:bar(5).

10

5> complex2:bar(352).

704

6> complex2:stop().

stop

9.6 Port Drivers

This section outlines an example of how to solve the example problem in Problem Example by using alinked-in port
driver.

A port driver is alinked-in driver that is accessible as a port from an Erlang program. It is a shared library (SO in
UNIX, DLL in Windows), with special entry points. The Erlang runtime system calls these entry points when the
driver is started and when data is sent to the port. The port driver can also send data to Erlang.

Asaport driver isdynamically linked into the emulator process, thisisthe fastest way of calling C-code from Erlang.
Calling functions in the port driver requires no context switches. But it is also the least safe way, because a crash in
the port driver brings the emulator down too.

The scenario isillustrated in the following figure:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 283

9.6 Port Drivers

emulator .
Port driver
Connected shared librar
process Port y
S process

O Erlang process
—= Comnmnication

Figure 6.1: Port Driver Communication

9.6.1 Erlang Program

Like a port program, the port communicates with an Erlang process. All communication goes through one Erlang
process that is the connected process of the port driver. Terminating this process closes the port driver.

Before the port is created, the driver must be loaded. Thisis done with thefunctioner| _ddl | : | oad_dri ver/1,
with the name of the shared library as argument.

The port is then created using the BIF open_port/ 2, with the tuple { spawn, Dri ver Nane} as the first
argument. The string Shar edLi b is the name of the port driver. The second argument is a list of options, none in

this case:

-module(complex5).
-export([start/1, init/1]).

start(SharedLib) ->
case erl ddll:load driver(".", SharedLib) of
ok -> ok;
{error, already loaded} -> ok;
_ -> exit({error, could not load driver})
end,
spawn (?MODULE, init, [SharedLib]).

init(SharedLib) ->
register(complex, self()),
Port = open port({spawn, SharedLib}, [1),
loop(Port).

Now conpl ex5: f oo/ 1 and conpl ex5: bar/ 1 can be implemented. Both send a message to the conpl ex
process and receive the following reply:

284 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

9.6 Port Drivers

foo(X) ->

call port({foo, X}).
bar(Y) ->

call port({bar, Y}).

call port(Msg) ->
complex ! {call, self(), Msg},
receive
{complex, Result} ->
Result
end.

The conpl ex process performs the following:

» Encodes the message into a sequence of bytes.
e Sendsit to the port.

* Waitsfor areply.

e Decodesthereply.

* Sendsit back to the caler:

loop(Port) ->
receive
{call, Caller, Msg} ->
Port ! {self(), {command, encode(Msg)}},
receive
{Port, {data, Data}} ->
Caller ! {complex, decode(Data)}

end,
loop(Port)

end.

Assuming that both the arguments and the results from the C functions are less than 256, a simple encoding/decoding
scheme is employed. In this scheme, f 00 is represented by byte 1, bar is represented by 2, and the argument/result
is represented by a single byte aswell:

encode({foo, X}) -> [1, X];
encode({bar, Y}) -> [2, Y].
decode([Int]) -> Int.

The resulting Erlang program, including functions for stopping the port and detecting port failures, is as follows:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 285

9.6 Port Drivers

-module(complex5).
-export([start/1l, stop/0, init/1]).
-export([foo/1, bar/1]).

start(SharedLib) ->
case erl ddll:load driver(".", SharedLib) of
ok -> ok;
{error, already loaded} -> ok;
_ -> exit({error, could not load driver})
end,
spawn (?MODULE, init, [SharedLib]).

init(SharedLib) ->
register(complex, self()),
Port = open port({spawn, SharedLib}, []),
loop(Port).

stop() ->
complex ! stop.

foo(X) ->

call port({foo, X}).
bar(Y) ->

call port({bar, Y}).

call port(Msg) ->
complex ! {call, self(), Msg},
receive
{complex, Result} ->
Result
end.

loop(Port) ->
receive

{call, Caller, Msg} ->
Port ! {self(), {command, encode(Msg)}},
receive

{Port, {data, Data}} ->
Caller ! {complex, decode(Data)}
end,
loop(Port);

stop ->
Port ! {self(), close},
receive

{Port, closed} ->
exit(normal)
end;

{'EXIT', Port, Reason} ->
io:format("~p ~n", [Reason]),
exit(port terminated)

end.

encode({foo, X}) -> [1, X];
encode({bar, Y}) -> [2, Y].

decode([Int]) -> Int.

9.6.2 C Driver

The C driver isamodule that is compiled and linked into a shared library. It uses a driver structure and includes the
header fileer | _driver. h.

286 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

9.6 Port Drivers

The driver structure is filled with the driver name and function pointers. It is returned from the special entry point,
declared with the macro DRI VER_| NI T(<dri ver _nane>).

The functions for receiving and sending data are combined into a function, pointed out by the driver structure. The
data sent into the port is given as arguments, and the replied datais sent with the C-function dr i ver _out put .

Asthedriver isashared module, not a program, no main function is present. All function pointers are not used in this
example, and the corresponding fieldsinthedr i ver _ent ry structure are set to NULL.

All functionsin the driver takes ahandle (returned from st ar t) that is just passed along by the Erlang process. This
must in some way refer to the port driver instance.

The exanpl e_drv_start, isthe only function that is called with a handle to the port instance, so this must be
saved. It iscustomary to use an allocated driver-defined structure for this one, and to pass a pointer back as areference.

It is not a good idea to use a globa variable as the port driver can be spawned by multiple Erlang processes. This
driver-structure is to be instantiated multiple times:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 287

9.6 Port Drivers

/* port_driver.c */

#include <stdio.h>
#include "erl driver.h"

typedef struct {
ErlDrvPort port;
} example data;

static ErlDrvData example drv_start(ErlDrvPort port, char *buff)

{
example data* d = (example data*)driver alloc(sizeof(example data));
d->port = port;
return (ErlDrvData)d;

}
static void example drv_stop(ErlDrvData handle)
{
driver free((char*)handle);
}

static void example drv output(ErlDrvData handle, char *buff,
ErlDrvSizeT bufflen)

{
example data* d = (example _data*)handle;
char fn = buff[0], arg = buff[1], res;
if (fn == 1) {
res = foo(arg);
} else if (fn == 2) {
res = bar(arg);
}
driver output(d->port, &res, 1);
}

ErlDrvEntry example driver entry = {
NULL, /* F_PTR init, called when driver is loaded */
example drv start, /* L PTR start, called when port is opened */
example drv stop, /* F PTR stop, called when port is closed */
example drv output, /* F PTR output, called when erlang has sent */
NULL, /* F_PTR ready input, called when input descriptor ready */
NULL, /* F_PTR ready output, called when output descriptor ready */

"example drv", /* char *driver name, the argument to open port */
NULL, /* F_PTR finish, called when unloaded */
NULL, /* void *handle, Reserved by VM */

NULL, /* F_PTR control, port command callback */
NULL, /* F_PTR timeout, reserved */
NULL, /* F_PTR outputv, reserved */

NULL, /* F_PTR ready async, only for async drivers */
NULL, /* F_PTR flush, called when port is about
to be closed, but there is data in driver
queue */
NULL, /* F_PTR call, much like control, sync call
to driver */
NULL, /* unused */
ERL DRV _EXTENDED MARKER, /* int extended marker, Should always be

set to indicate driver versioning */
ERL DRV _EXTENDED MAJOR VERSION, /* int major version, should always be
set to this value */
ERL_DRV_EXTENDED MINOR VERSION, /* int minor version, should always be
set to this value */

0, /* int driver flags, see documentation */

NULL, /* void *handle2, reserved for VM use */

NULL, /* F_PTR process exit, called when a
monitored process dies */

NULL /* F_PTR stop select, called to close an

288 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

9.7 C Nodes

event object */

Y
DRIVER INIT(example drv) /* must match name in driver_entry */
{
return &example driver entry;
}

9.6.3 Running the Example
Step 1. Compile the C code:

unix> gcc -o example drv.so -fpic -shared complex.c port driver.c
windows> cl -LD -MD -Fe example drv.dll complex.c port driver.c

Step 2. Start Erlang and compile the Erlang code:

> erl
Erlang (BEAM) emulator version 5.1

Eshell V5.1 (abort with "G)
1> c(complex5).
{ok,complex5}

Step 3. Run the example:

2> complex5:start("example drv").
<0.34.0>

3> complex5:foo(3).

4

4> complex5:bar(5).

10

5> complex5:stop().

stop

9.7 C Nodes

Thereader isreferred to the erl_interface users guide for information about how to create C nodes.

9.8 NIFs

This section outlines an example of how to solve the example problem in Problem Example by using Native
Implemented Functions (NIFs).

NIFs are a ssimpler and more efficient way of calling C-code than using port drivers. NIFs are most suitable for
synchronous functions, such asf 0o and bar in the example, that do some relatively short calculations without side
effects and return the resuilt.

A NIFisafunctionthat isimplemented in C instead of Erlang. NIFs appear as any other functionsto the callers. They
belong to amodule and are called like any other Erlang functions. The NIFs of amodule are compiled and linked into
adynamic loadable, shared library (SO in UNIX, DLL in Windows). The NIF library must be loaded in runtime by
the Erlang code of the module.

AsaNIFlibrary isdynamically linked into the emulator process, thisis the fastest way of calling C-code from Erlang
(alongside port drivers). Calling NIFs requires no context switches. But it is also the least safe, because acrash in a
NIF brings the emulator down too.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 289

9.8 NIFs

9.8.1 Erlang Program
Even if al functions of amodule are NIFs, an Erlang module is still needed for two reasons:

* TheNIF library must be explicitly loaded by Erlang code in the same module.
e All NIFs of amodule must have an Erlang implementation as well.

Normally these are minimal stub implementations that throw an exception. But they can also be used as fallback
implementations for functions that do not have native implementations on some architectures.

NIF libraries are loaded by calling er | ang: | oad_ni f/ 2, with the name of the shared library as argument. The
second argument can be any term that will be passed on to the library and used for initialization:

-module(complex6).
-export([foo/1, bar/1]).
-nifs([foo/1, bar/1]).
-on_load(init/0).

->

init()
ok = erlang:load nif("./complex6 nif", 0).

foo(X) ->
exit(nif library not loaded).
bar(Y) ->

exit(nif library not loaded).

Here, the directive on_| oad isused to get functioni ni t to be automatically called when the module is loaded. If
i nit returns anything other than ok, such when the loading of the NIF library failsin this example, the module is
unloaded and calls to functions within it, fail.

Loading the NIF library overrides the stub implementations and cause callsto f 00 and bar to be dispatched to the
NIF implementations instead.

9.8.2 NIF Library Code

TheNIFs of themodule are compiled and linked into ashared library. Each NIF isimplemented asanormal C function.
The macro ERL_NI F_I NI T together with an array of structures defines the names, arity, and function pointers of
all the NIFsin the module. The header fileer | _ni f. h must be included. Asthe library is a shared module, not a
program, no main function isto be present.

The function arguments passed to a NIF appearsin an array ar gv, with ar gc asthe length of the array, and thus the
arity of thefunction. The Nth argument of the function can beaccessed asar gv[N- 1] . NIFsalso take an environment
argument that serves as an opaque handle that is needed to be passed on to most API functions. The environment
contains information about the calling Erlang process:

290 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

9.8 NIFs

#include <erl nif.h>

extern int foo(int x);
extern int bar(int y);

static ERL NIF TERM foo nif(ErlNifEnv* env, int argc, const ERL NIF TERM argv[])
{
int x, ret;
if ('enif get int(env, argv[0], &x)) {
return enif make badarg(env);

ret = foo(x);
return enif make int(env, ret);

}

static ERL NIF TERM bar nif(ErlNifEnv* env, int argc, const ERL NIF TERM argv[])
{
int y, ret;
if ('enif get int(env, argv[0], &y)) {
return enif make badarg(env);

)
ret = bar(y);
return enif make int(env, ret);

}

static ErlNifFunc nif funcs[] = {
{"foo", 1, foo nif},
{"bar", 1, bar nif}

}i

ERL_NIF INIT(complex6, nif funcs, NULL, NULL, NULL, NULL)

Here, ERL_NI F_I NI T hasthe following arguments:

e Thefirst argument must be the name of the Erlang module as a C-identifier. It will be stringified by the macro.

e Thesecond argument isthe array of Er | Ni f Func structures containing name, arity, and function pointer of
each NIF.

* Theremaining arguments are pointers to callback functions that can be used to initialize the library. They are
not used in this simple example, hence they are all set to NULL.

Function arguments and return values are represented as values of type ERL_NI F_TERM Here, functions like
eni f _get _int and eni f _nmake_i nt are used to convert between Erlang term and C-type. If the function
argument ar gv[O] isnot aninteger, eni f _get _i nt returnsfalse, in which caseit returns by throwing abadar g-
exception witheni f _nake_badar g.

9.8.3 Running the Example

Step 1. Compile the C code:

unix> gcc -o complex6 nif.so -fpic -shared complex.c complex6 nif.c
windows> cl -LD -MD -Fe complex6 nif.dll complex.c complex6 nif.c

Step 2: Start Erlang and compile the Erlang code:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 291

9.9 Debugging NIFs and Port Drivers

> erl
Erlang R13B04 (erts-5.7.5) [64-bit] [smp:4:4] [rq:4] [async-threads:0] [kernel-poll:false]

Eshell V5.7.5 (abort with ~G)
1> c(complex6).
{ok,complex6}

Step 3: Run the example:

3> complex6:foo(3).
4
4> complex6:bar(5).
10
5> complex6:foo("not an integer").
** exception error: bad argument

in function complex6:foo/1

called as comlpex6:foo("not an integer")

9.9 Debugging NIFs and Port Drivers

9.9.1 With great power comes great responsibilty

NIFs and port driver code run inside the Erlang VM OS process (the "Beam"). To maximize performance the code
is called directly by the same threads executing Erlang beam code and has full access to all the memory of the OS
process. A buggy NIF/driver can thus make severe damage by corrupting memory.

In abest case scenario such memory corruption is detected immediately causing the Beam to crash generating a core
dump file which can be analyzed to find the bug. However, it is very common for memory corruption bugs to not
be immediately detected when the faulty write happens, but instead much later, for example when the calling Erlang
process is garbage collected. When that happens it can be very hard to find the root cause of the memory corruption
by analysing the core dump. All traces that could have indicated which specific buggy NIF/driver that caused the
corruption may be long gone.

9.9.2 The debug emulator

One way to make debugging easier is to run an emulator built with target debug. It will

* Increase probability of detecting bugs earlier. It contains a lot more runtime checks to ensure correct use of
internal interfaces and data structures.

* Generateacoredump that iseasier to analyze. Compiler optimizations are turned off, which stops the compiler
from "optimizing away" variables, thus making it easier/possible to inspect their state.

* Detect lock order violations. A runtime lock checker will verify that the locks in the erl _nif and
erl _driver APIsareseizedin aconsistent order that cannot result in deadlock bugs.

In fact, we recommend to use the debug emulator as default during development of NIFs and drivers, regardless if
you are troubleshooting bugs or not. Some subtle bugs may not be detected by the normal emulator and just happen to
work anyway by chance. However, another version of the emulator, or even different circumstances within the same
emulator, may cause the bug to later provoke all kinds of problems.

The main disadvantage of the debug emulator is its reduced performance. The extra runtime checks and lack of
compiler optimizations may result in a slowdown with a factor of two or more depending on load. The memory
footprint should be about the same.

If thedebug emulator is part of the Erlang/OTP installation, it can be started with the - enu_t ype option.

292 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

9.9 Debugging NIFs and Port Drivers

> erl -emu_type debug
Erlang/0TP 25 [erts-13.0.2] ... [type-assertions] [debug-compiled] [lock-checking]

Eshell V13.0.2 (abort with ~G)
1>

If the debug emulator is not part of the installation, you need to build it from the Erlang/OTP source code. After
building from source either make an Erlang/OTP installation or you can run the debug emulator directly in the source
treewiththecer | script:

> $ERL TOP/bin/cerl -debug
Erlang/0TP 25 [erts-13.0.2] ... [type-assertions] [debug-compiled] [lock-checking]

Eshell V13.0.2 (abort with "G)
1>

Thecer | script can also be used as a convenient way to start the debugger gdb for core dump analysis:

> $ERL TOP/bin/cerl -debug -core core.12345
or
> $ERL TOP/bin/cerl -debug -rcore core.12345

Thefirst variant starts Emacs and runs gdb within, while the other - r cor e runs gdb directly in the terminal. Apart
from starting gdb with the correct beam debug. snp executablefileit will also read the file SERL_TOP/ ert s/
et ¢/ uni x/ et p- commands which containsalot of gdb command for inspecting abeam core dump. For example,
the command et p that will print the content of an Erlang term (Et er j in plain Erlang syntax.

9.9.3 Address Sanitizer

AddressSanitizer (asan) is an open source programming tool that detects memory corruption bugs such as buffer
overflows, use-after-free and memory leaks. AddressSanitizer is based on compiler instrumentation and is supported
by both gcc and clang.

Similar to thedebug emulator, the asan emulator runs slower than normal, about 2-3 times slower. However, it also
has alarger memory footprint, about 3 times more memory than normal.

To get full effect you should compile both your own NIF/driver code as well as the Erlang emulator with
AddressSanitizer instrumentation. Compile your own code by passing option - f sani ti ze=addr ess to gcc or
clang. Other recommended options that will improve the fault identification are - f no- cormon and - f no- oni t -
frane- poi nter.

Build and run the emulator with AddressSanitizer support by using the same procedure as for the debug emulator,
except usethe asan build target instead of debug.

Run in source tree

If you run the asan emulator directly in the source tree with the cer | script you only need to set environment
variable ASAN_LOG DI Rto the directory where the error log files will be generated.

> export ASAN LOG DIR=/my/asan/log/dir
> $ERL TOP/bin/cerl -asan
Erlang/0TP 25 [erts-13.0.2] ... [address-sanitizer]

Eshell V13.0.2 (abort with ~G)
1>

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 293

href

9.9 Debugging NIFs and Port Drivers

Y ou may however also want to set ASAN_OPTI ONS="hal t _on_error=true" if youwant the emulator to
crash when an error is detected.

Run installed Erlang/OTP

If you run the asan emulator in an installed Erlang/OTP wither| -emu_t ype asan you need to set the
path to the error log file with

> export ASAN OPTIONS="log path=/my/asan/log/file"

To avoid false positive memory leak reports from the emulator itself set LSAN _OPTI ONS
(LSAN=LeakSanitizer):

> export LSAN OPTIONS="suppressions=$ERL TOP/erts/emulator/asan/suppress"

The suppr ess fileis currently not installed but can be copied manually from the source tree to wherever you
want it.

Memory corruption errors are reported by AddressSanitizer when they happen, but memory leaks are only checked
and reported by default then the emulator terminates.

9.9.4 Valgrind

An even more heavy weight debugging tool isValgrind. It can aso find memory corruption bugs and memory leaks
similar to asan. Valgrind is not as good at buffer overflow bugs, but it will find use of undefined data, which is a
type of error that asan cannot detect.

Valgrind is much sower than asan and it is incapable at exploiting CPU multicore processing. We therefore
recommend asan as the first choice before trying valgrind.

Valgrind runs as avirtual machine itself, emulating execution of hardware machine instructions. This means you can
run almost any program unchanged on valgrind. However, we have found that the beam executable benefits from
being compiled with special adaptions for running on valgrind.

Build the emulator with val gri nd target the same as is done for debug and asan. Note that val gri nd needs
to be installed on the machine before the build starts.

Run the val gri nd emulator directly in the source tree with the cerl script. Set environment variable
VALGRI ND_LGOG DI Rto the directory where the error log files will be generated.

> export VALGRIND LOG DIR=/my/valgrind/log/dir
> $ERL _TOP/bin/cerl -valgrind
Erlang/0TP 25 [erts-13.0.2] ... [valgrind-compiled]

Eshell V13.0.2 (abort with "G)
1>

9.9.5 rr - Record and Replay

Last but not least, the fantastic interactive debugging tool rr, developed by Mozilla as open source. r r stands for
Record and Replay. While a core dump represents only a static snapshot of the OS process when it crashed, with r r
you instead record the entire session, from start of the OS process to the end (the crash). You can then replay that
session from within gdb. Single step, set breakpoints and watchpoints, and even execute backwar ds.

Considering its powerful utility, r r is remarkably light weight. It runs on Linux with any reasonably modern x86
CPU. You may get a two times slowdown when executing in recording mode. The big weakness is its inability to

294 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

href
href

9.9 Debugging NIFs and Port Drivers

exploite CPU multicore processing. If the bug is a race condition between concurrently running threads, it may be
hard to reproduce with r r .

rr does not require any specia instrumented compilation. However, if possible, run it together with the debug
emulator, asthat will result in amuch nicer debugging experience. Yourunr r inthesourcetreeusingthecer | script.

Hereis an example of atypical session. First we catch the crash in an rr recording session:

> $ERL TOP/bin/cerl -debug -rr
rr: Saving execution to trace directory /home/foobar/.local/share/rr/beam.debug.smp-1.
Erlang/0TP 25 [erts-13.0.2]

Eshell V13.0.2 (abort with ~G)
1> mymod:buggy nif().
Segmentation fault

Now we can replay that session withrr repl ay:

> rr replay
GNU gdb (Ubuntu 9.2-0ubuntul~20.04.1) 9.2

(rr) continue

Thread 2 received signal SIGSEGV, Segmentation fault.
(rr) backtrace

You get the call stack at the moment of the crash. Bad luck, it is somewhere deep down in the garbage collection of
the beam. But you manage to figure out that variable hp pointsto abroken Erlang term.

Set awatch point on that memory position and resume execution backwar ds. The debugger will then stop at the exact
position when that memory position * hp was written.

(rr) watch -1 *hp

Hardware watchpoint 1: -location *hp
(rr) reverse-continue

Continuing.

Thread 2 received signal SIGSEGV, Segmentation fault.

This is a quirk to be aware about. We started by executing forward until it crashed with SIGSEGV. We are now
executing backwards from that point, so we are hitting the same SIGSEGV again but from the other direction. Just
continue backwards once more to move past it.

(rr) reverse-continue
Continuing.

Thread 2 hit Hardware watchpoint 1: -location *hp

42
0

0ld value
New value

And here we are at the position when someone wrote a broken term on the process heap. Note that "Old value" and
"New value" are reversed when we execute backwards. In this case the value 42 was written on the heap. Let's see
who the guilty oneis:

(rr) backtrace

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 295

10.1 Overview

10 OTP Design Principles

10.1 Overview

The OTP design principles define how to structure Erlang code in terms of processes, modules, and directories.

10.1.1 Supervision Trees

A basic concept in Erlang/OTP is the supervision tree. This is a process structuring model based on the idea of

workersand supervisors:

* Workers are processes that perform computations, that is, they do the actual work.

* Supervisors are processes that monitor the behaviour of workers. A supervisor can restart aworker if something
goes wrong.

e Thesupervision treeis ahierarchical arrangement of code into supervisors and workers, which makes it
possible to design and program fault-tolerant software.

In the following figure, square boxes represents supervisors and circles represent workers:

w
[

/ /

Figure 1.1: Supervision Tree

10.1.2 Behaviours

In a supervision tree, many of the processes have similar structures, they follow similar patterns. For example, the
supervisors are similar in structure. The only difference between them is which child processes they supervise. Many
of the workers are serversin a server-client relation, finite-state machines, or event handlers.

296 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

10.1 Overview

Behaviour s are formalizations of these common patterns. The ideaisto divide the code for aprocessin ageneric part
(abehaviour module) and a specific part (a callback module).

The behaviour module is part of Erlang/OTP. To implement a process such as a supervisor, the user only has to
implement the callback module which isto export a pre-defined set of functions, the callback functions.

The following example illustrate how code can be divided into a generic and a specific part. Consider the following
caode (written in plain Erlang) for a simple server, which keeps track of a number of "channels’. Other processes can
allocate and free the channels by calling the functionsal | oc/ 0 and f r ee/ 1, respectively.

-module(chl).
-export([start/0]).
-export([alloc/0, free/l1]).
-export([init/0]).

start() ->
spawn(chl, init, [1).
alloc() ->
chl ! {self(), alloc},
receive
{chl, Res} ->
Res
end.
free(Ch) ->
chl ! {free, Ch},
ok.
init() ->

register(chl, self())
Chs = channels(),
loop(Chs).

loop(Chs) ->
receive
{From, alloc} ->
{Ch, Chs2} = alloc(Chs),
From ! {chl, Ch},
loop(Chs2);
{free, Ch} ->
Chs2 = free(Ch, Chs),
loop(Chs2)
end.

The code for the server can be rewritten into ageneric part ser ver . er | :

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 297

10.1 Overview

server).
[start/1]).
[call/2, cast/2]).
[init/1]).

-module
-export
-export
-export

—~ e~ o~ —

start(Mod) ->
spawn(server, init, [Mod]).

call(Name, Req) ->
Name ! {call, self(), Req},
receive
{Name, Res} ->
Res
end.

cast(Name, Req) ->
Name ! {cast, Req},
ok.

init(Mod) ->
register(Mod, self()),
State = Mod:init(),
loop(Mod, State).

loop(Mod, State) ->
receive
{call, From, Req} ->
{Res, State2} = Mod:handle call(Req, State),
From ! {Mod, Res},
loop(Mod, State2);
{cast, Req} ->
State2 = Mod:handle cast(Req, State),
loop(Mod, State2)
end.

And acallback modulech?2. er | :

-module(ch2).

-export([start/0]).

-export([alloc/0, free/1]).

-export([init/0, handle call/2, handle cast/2]).

start() ->
server:start(ch2).

alloc() ->
server:call(ch2, alloc).

free(Ch) ->
server:cast(ch2, {free, Ch}).

init() ->
channels().

handle call(alloc, Chs) ->
alloc(Chs). % => {Ch,Chs2}

handle cast({free, Ch}, Chs) ->
free(Ch, Chs). % => Chs2

Notice the following:
e Thecodeinserver can be reused to build many different servers.

298 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

10.1 Overview

* Theserver name, in this example the atom ch2, is hidden from the users of the client functions. This means
that the name can be changed without affecting them.

e The protocol (messages sent to and received from the server) is also hidden. Thisis good programming practice
and allows one to change the protocol without changing the code using the interface functions.

« Thefunctionality of ser ver can be extended without having to change ch2 or any other callback module.
In chl.erl and ch2.erl above, the implementation of channel s/ 0, all oc/ 1, and free/ 2 has been
intentionally left out, asit is not relevant to the example. For completeness, one way to write these functions is given

below. Thisisan exampleonly, arealisticimplementation must be ableto handlesituationslike running out of channels
to allocate, and so on.

channels() ->
{ Allocated = [], Free = lists:seq(1,100)}.

alloc({Allocated, [H|T] = Free}) ->
{H, {[H|Allocated], T}}.

free(Ch, {Alloc, Free} = Channels) ->
case lists:member(Ch, Alloc) of
true ->
{lists:delete(Ch, Alloc), [Ch|Freel};
false ->
Channels
end.

Codewritten without using behaviours can be more efficient, but theincreased efficiency isat the expense of generality.
The ability to manage all applicationsin the system in a consistent manner isimportant.

Using behaviours also makes it easier to read and understand code written by other programmers. Improvised
programming structures, while possibly more efficient, are always more difficult to understand.

Theser ver module corresponds, greatly simplified, to the Erlang/OTP behaviour gen_ser ver .
The standard Erlang/OTP behaviours are:
* gen_server
For implementing the server of a client-server relation
e gen_statem
For implementing state machines
e gen_event
For implementing event handling functionality
e supervisor
For implementing a supervisor in a supervision tree

The compiler understands the module attribute - behavi our (Behavi our) and issues warnings about missing
callback functions, for example:

-module(chs3).
-behaviour(gen_server).

3> c(chs3).
./chs3.erl:10: Warning: undefined call-back function handle call/3
{ok,chs3}

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 299

10.2 gen_server Behaviour

10.1.3 Applications

Erlang/OTP comes with a number of components, each implementing some specific functionality. Components are
with Erlang/OTP terminology called applications. Examples of Erlang/OTP applications are Mnesia, which has
everything needed for programming database services, and Debugger, which is used to debug Erlang programs. The
minimal system based on Erlang/OTP consists of the following two applications:

» Kerne - Functionality necessary to run Erlang
e STDLIB - Erlang standard libraries

The application concept applies both to program structure (processes) and directory structure (modules).

The simplest applications do not have any processes, but consist of a collection of functional modules. Such an
application is called alibrary application. An example of alibrary application is STDLIB.

An application with processes is easiest implemented as a supervision tree using the standard behaviours.
How to program applicationsis described in Applications.

10.1.4 Releases

A release is a complete system made out from a subset of Erlang/OTP applications and a set of user-specific
applications.

How to program releases is described in Releases.
How to install arelease in atarget environment is described in the section about target systemsin Section 2 System
Principles.

10.1.5 Release Handling

Release handling is upgrading and downgrading between different versions of a release, in a (possibly) running
system. How to do thisis described in Release Handling.

10.2 gen_server Behaviour
This section isto be read with the gen_server(3) manual pagein st dl i b, where all interface functions and callback
functions are described in detail.

10.2.1 Client-Server Principles

The client-server model is characterized by acentral server and an arbitrary number of clients. The client-server model
is used for resource management operations, where several different clients want to share a common resource. The
server is responsible for managing this resource.

300 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

10.2 gen_server Behaviour

)

Clients

The Client-server model

Figure 2.1: Client-Server Model

10.2.2 Example

An example of asimple server writtenin plain Erlang is provided in Overview. The server can be reimplemented using
gen_ser ver, resulting in this callback module:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 301

10.2 gen_server Behaviour

-module(ch3).
-behaviour(gen server).

-export([start link/0]).
-export([alloc/0, free/l1]).
-export([init/1, handle call/3, handle cast/2]).

start _link() ->

gen server:start link({local, ch3}, ch3, [1, []).

alloc() ->

gen_server:call(ch3, alloc).

free(Ch) ->

gen_server:cast(ch3, {free, Ch}).

init(_Args) ->

{ok, channels()}.

handle call(alloc, From, Chs) ->

{Ch, Chs2} = alloc(Chs),
{reply, Ch, Chs2}.

handle cast({free, Ch}, Chs) ->

Chs2 = free(Ch, Chs),
{noreply, Chs2}.

The codeis explained in the next sections.

10.2.3 Starting a Gen_Server

In the example in the previous section, gen_ser ver isstarted by callingch3: start _I i nk():

start link() ->

gen server:start link({local, ch3}, ch3, [1, []) => {ok, Pid}

start _|ink calsfunctiongen_server: start _|ink/ 4. Thisfunction spawns and links to a new process, a
gen_server.

Thefirst argument, {1 ocal , ch3}, specifiesthe name. The gen_server isthen locally registered asch3.

If thenameisomitted, thegen_ser ver isnotregistered. Instead itspid must be used. Thename can also begiven
as{gl obal , Nane},inwhichcasethegen_server isregistered using gl obal : r egi st er _nane/ 2.
The second argument, ch3, isthe name of the callback module, that is, the module where the callback functions
arelocated.

Theinterfacefunctions(start _| i nk,al | oc, andf r ee) are then located in the same modul e as the callback
functions (i ni t, handl e_cal | , and handl e_cast). Thisis normally good programming practice, to have
the code corresponding to one process contained in one module.

The third argument, [] , isaterm that is passed asis to the callback functioni ni t . Here, i ni t does not need
any indata and ignores the argument.

The fourth argument, [], isalist of options. Seethegen_ser ver (3) manua page for available options.

If name registration succeeds, the new gen_ser ver process callsthe callback functionch3:init ([]).init is
expected to return { ok, St at e}, where St at e is the internal state of the gen_ser ver . In this case, the state
isthe available channels.

init(Args) ->

{ok, channels()}.

302 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

10.2 gen_server Behaviour

gen_server:start _|ink issynchronous. It does not return until thegen_ser ver hasbeen initidized and is
ready to receive requests.

gen_server:start _|ink must be used if the gen_server is part of a supervision tree, that is, started by
a supervisor. There is another function, gen_server: start, to start a standalone gen_ser ver, that is, a
gen_ser ver that isnot part of a supervision tree.

10.2.4 Synchronous Requests - Call

The synchronous request al | oc() isimplemented usinggen_server: cal |l / 2:

alloc() ->
gen_server:call(ch3, alloc).

ch3 isthe name of thegen_ser ver and must agree with the name used to start it. al | oc isthe actual request.

The request is made into a message and sent to the gen_server. When the request is received, the
gen_server cdls handl e_cal |l (Request, From State), which is expected to return a tuple
{reply, Reply, Statel}. Reply isthereply that is to be sent back to the client, and St at el is a new value
for the state of thegen_ser ver.

handle call(alloc, From, Chs) ->
{Ch, Chs2} = alloc(Chs),
{reply, Ch, Chs2}.

In this case, the reply isthe allocated channel Ch and the new state is the set of remaining available channels Chs2.

Thus, the call ch3: al | oc() returns the allocated channel Ch and the gen_ser ver then waits for new requests,
now with an updated list of available channels.

10.2.5 Asynchronous Requests - Cast

The asynchronous request f r ee(Ch) isimplemented using gen_ser ver : cast/ 2:

free(Ch) ->
gen_server:cast(ch3, {free, Ch}).

ch3 isthenameof thegen_server.{free, Ch} istheactual request.
The request is made into amessage and sent tothegen_ser ver . cast , and thusf r ee, then returns ok.

When the request isreceived, thegen_ser ver calshandl e_cast (Request, State), whichisexpectedto
return atuple{ nor epl y, St at el}. St at el isanew vauefor the state of thegen_ser ver.

handle cast({free, Ch}, Chs) ->
Chs2 = free(Ch, Chs),
{noreply, Chs2}.

In this case, the new state is the updated list of available channels Chs2. The gen_ser ver isnow ready for new
requests.

10.2.6 Stopping

In a Supervision Tree

If the gen_server is part of a supervision tree, no stop function is needed. The gen_ser ver is automatically
terminated by its supervisor. Exactly how thisis doneis defined by a shutdown strategy set in the supervisor.

If it isnecessary to clean up before termination, the shutdown strategy must be atime-out valueandthegen_ser ver
must be set to trap exit signalsin functioni ni t . When ordered to shutdown, thegen_ser ver then callsthe callback
functiont er m nat e(shut down, State):

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 303

10.3 gen_statem Behaviour

init(Args) ->
process flag(trap exit, true),

{ok, State}.

terminate(shutdown, State) ->
..code for cleaning up here..
ok.

Standalone Gen_Servers

If thegen_ser ver isnot part of asupervision tree, astop function can be useful, for example:
égﬁort([stop/e]).

stop() ->
gen_server:cast(ch3, stop).

handle cast(stop, State) ->
{stop, normal, State};
handle cast({free, Ch}, State) ->

terminate(normal, State) ->
ok.

The callback function handling the st op request returns a tuple { st op, nor nal , St at el1}, where nor nal
specifies that it is anormal termination and St at el is a new value for the state of the gen_ser ver . This causes
thegen_server tocalterm nate(normal, Statel) andthenitterminates gracefully.

10.2.7 Handling Other Messages

If the gen_server is to be able to receive other messages than requests, the callback function
handl e_i nfo(l nfo, State) must be implemented to handle them. Examples of other messages are exit
messages, if thegen_ser ver islinked to other processes (than the supervisor) and trapping exit signals.

handle info({'EXIT', Pid, Reason}, State) ->
..code to handle exits here..
{noreply, Statel}.
Thecode_change method must also be implemented.

code change(0ldVsn, State, Extra) ->
..code to convert state (and more) during code change
{ok, NewState}.

10.3 gen_statem Behaviour

This section is to be read with the gen_st at em(3) manua page in STDLIB, where al interface functions and
callback functions are described in detail.

304 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

10.3 gen_statem Behaviour

10.3.1 Event-Driven State Machines

Established Automata Theory does not deal much with how astatetransition istriggered, but assumes that the output
isafunction of the input (and the state) and that they are some kind of values.

For an Event-Driven State Machine, the input is an event that triggers a state transition and the output is actions
executed during the state transition. Analogously to the mathematical model of a Finite State Machine, it can be
described as a set of relations of the following form:

State(S) x Event(E) -> Actions(A), State(S')

These relations are interpreted as follows: if we are in state S and event E occurs, we are to perform actions A, and
make atransitionto state S' . Noticethat S' can be equal to S, and that A can be empty.

Ingen_st at emwedefineastatechangeasastatetransition inwhichthenew state S' isdifferent from the current
state S, where "different” means Erlang's strict inequality: =/ = also known as "does not match". gen_st at emdoes
more things during state changes than during other state transitions.

AsAand S' depend only on S and E, the kind of state machine described here is aMealy machine (see, for example,
the Wikipedia article "Mealy machine").

Like most gen_ behaviours, gen_st at emkeeps a server Dat a besides the state. Because of this, and as there is
no restriction on the number of states (assuming that there is enough virtual machine memory) or on the number of
distinct input events, a state machine implemented with this behaviour isin fact Turing complete. But it feels mostly
like an Event-Driven Mealy machine.

10.3.2 When to use gen_statem

If your process logic is convenient to describe as a state machine, and you want any of these gen_st at emkey
features:

e Co-located callback code for each state, for all Event Types (such as call, cast and info)

» Postponing Events (a substitute for selective receive)

» Inserted Events (that is, events from the state machine to itself; for purely internal eventsin particular)

« State Enter Calls(callback on state entry co-located with the rest of each state's callback code)

» Easy-to-use time-outs (State Time-Outs, Event Time-Outs and Generic Time-Outs (named time-outs))

If so, or if possibly needed in future versions, then you should consider using gen_st at emover gen_ser ver.

For simple state machines not needing these features gen_ser ver works just fine. It also has got smaller call
overhead, but we are talking about something like 2 vs 3.3 microseconds call roundtrip time here, so if the server
callback does just a little bit more than just replying, or if the call is not extremely frequent, that difference will be
hard to notice.

10.3.3 Callback Module

The callback module contains functions that implement the state machine. When an event occurs, thegen_st at em
behaviour engine calls afunction in the callback module with the event, current state and server data. This function
performs the actions for this event, and returns the new state and server data and also actions to be performed by the
behaviour engine.

The behaviour engine holds the state machine state, server data, timer references, a queue of postponed messages and
other metadata. It receives al process messages, handles the system messages, and calls the callback module with
machine specific events.

The callback module can be changed for a running server using any of the transition actions
{change_cal | back_nodul e, NewModul e}, {push_cal | back_nodul e, NewModul e} or

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 305

10.3 gen_statem Behaviour

pop_cal | back_nodul e. Note that thisis a pretty esoteric thing to do... The origin for this feature is a protocol
that after version negotiation branches off into quite different state machines depending on the protocol version. There
might be other use cases. Beware that the new callback module completely replaces the previous behaviour module,
so al relevant callback functions have to handle the state and data from the previous callback module.

10.3.4 Callback Modes

Thegen_st at embehaviour supports two callback modes:
state_functions

Events are handled by one callback function per state.
handl e_event _functi on

Events are handled by one single callback function.

The callback mode is a property of the callback module and is set at server start. It may be changed due to a code
upgrade/downgrade, or when changing the callback module.

See the section State Callback that describes the event handling callback function(s).

The callback mode is selected by implementing a mandatory callback function Modul e: cal | back_node() that
returns one of the callback modes.

The Modul e: cal | back_node() function may also return a list containing the callback mode and the atom
st at e_ent er inwhich case state enter calls are activated for the callback mode.

Choosing the Callback Mode

The short version: choose st at e_f uncti ons - it is the one most like gen_f sm But if you do not want the
restriction that the state must be an atom, or if you do not want to write one state callback function per state; please
read on...

The two callback modes give different possibilities and restrictions, with one common goal: to handle all possible
combinations of events and states.

This can be done, for example, by focusing on one state at the time and for every state ensure that all events are
handled. Alternatively, you can focus on one event at the time and ensure that it is handled in every state. You can
also use amix of these strategies.

With st ate_functi ons, you are restricted to use atom-only states, and the gen_st at em engine branches
depending on state name for you. This encourages the callback module to co-locate the implementation of all event
actions particular to one state in the same place in the code, hence to focus on one state at the time.

This mode fits well when you have a regular state diagram, like the ones in this chapter, which describes al events
and actions belonging to a state visually around that state, and each state has its unique name.

With handl e_event _f uncti on, you are free to mix strategies, as al events and states are handled in the same
callback function.

This mode works equally well when you want to focus on one event at the time or on one state at the time, but function
Modul e: handl e_event / 4 quickly grows too large to handle without branching to helper functions.

The mode enables the use of non-atom states, for example, complex states or even hierarchical states. See section
Complex State. If, for example, astate diagram islargely alikefor the client side and the server side of a protocol, you
can have a state { St at eNane, server} or { St at eName, cl i ent }, and make St at eNane determine where
in the code to handle most events in the state. The second element of the tuple is then used to select whether to handle
special client-side or server-side events.

306 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

10.3 gen_statem Behaviour

10.3.5 State Callback

Thestate callback isthe callback function that handles an event in the current state, and which function that is depends
on the callback mode:

state_functions
The event is handled by:
Modul e: St at eNanme(Event Type, Event Content, Data)

Thisform isthe one mostly used in the Example section.

handl e_event function
The event is handled by:
Modul e: handl e_event (Event Type, Event Content, State, Data)

See section One State Callback for an example.

The state is either the name of the function itself or an argument to it. The other arguments are the Event Type and
the event dependent Event Cont ent , both described in section Event Types and Event Content, and the current
server Dat a.

State enter calls are also handled by the event handler and have dlightly different arguments. See section State Enter
Calls.

The state callback return values are defined in the description of Modul e: St at eNane/ 3 in the gen_st at em
manual page, but hereis amore readable list:

{next _state, NextState, NewData, Actions}
{next _state, NextState, NewData}

Set next state and update the server data. If the Act i ons field is used, execute transition actions. An empty
Act i ons listisequivalent to not returning the field.

See section Transition Actionsfor alist of possible transition actions.

If Next State =/= St at e thisis a state change so the extra things gen_st at emdoes are: the event
queue is restarted from the oldest postponed event, any current state time-out is cancelled, and a state enter call
is performed, if enabled.

{keep_state, NewData, Actions}
{keep_state, NewbData}

Sameasthenext _st at e valueswith Next St at e =: = St at e, that is, no state change.

{keep_state_and_data, Actions}
keep_state_and_data

Same asthekeep_st at e valueswith Next Dat a =: = Dat a, that is, no change in server data.

{repeat _state, NewData, Actions}
{repeat _state, NewDat a}

{repeat _state_and_data, Actions}
repeat _state_and_data

Same asthe keep_st at e or keep_st at e_and_dat a values, and if State Enter Calls are enabled, repeat
the state enter call asif this state was entered again.

If these return values are used from a state enter call the Q dSt at e does not change, but if used from an event
handling state callback the new state enter call's O dSt at e will be the current state.

{stop, Reason, NewDat a}
{stop, Reason}

Stop the server with reason Reason. If the NewDat a field is used, first update the server data.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 307

10.3 gen_statem Behaviour

{stop_and_reply, Reason, NewData, ReplyActions}
{stop_and_reply, Reason, ReplyActions}

Same asthe st op values, but first execute the given transition actions that may only be reply actions.

The First State

To decide the first state the Modul e: i ni t (Args) callback function is called before any state callback is called.
This function behaves like a state callback function, but gets its only argument Ar gs from the gen_st at em
start/ 3,4 orstart _|ink/3,4 function, and returns{ ok, State, Data} or{ok, State, Data,
Acti ons}. If you use the post pone action from this function, that action is ignored, since there is no event to
postpone.

10.3.6 Transition Actions

In the first section (Event-Driven State Machines), actions were mentioned as a part of the general state machine
model. These general actions are implemented with the code that callback module gen_st at emexecutes in an
event-handling callback function before returning to thegen_st at emengine.

There are more specific transition actionsthat a callback function can command thegen_st at emengineto do after
the callback function return. These are commanded by returning alist of actions in the return value from the callback
function. These are the possible transition actions:

post pone
{ post pone, Bool ean}
If set postpone the current event, see section Postponing Events.
hi bernate
{hi bernat e, Bool ean}
If set hibernate the gen_st at em treated in section Hibernation.
{state_tinmeout, Tinme, EventContent}
{state_tinmeout, Tinme, EventContent, Opts}
{state_tinmeout, update, EventContent}
{state_tinmeout, cancel}
Start, update or cancel a state time-out, read more in sections Time-Outs and State Time-Outs.
{tinmeout, Nanme}, Tine, EventContent}
{tinmeout, Nanme}, Tine, EventContent, Opts}
{tinmeout, Name}, update, EventContent}
{tinmeout, Name}, cancel}
Start, update or cancel a generic time-out, read more in sections Time-Outs and Generic Time-Outs.
{tinmeout, Tinme, EventContent}
{tinmeout, Time, EventContent, Opts}
Ti me
Start an event time-out, see more in sections Time-Outs and Event Time-Outs.
{reply, From Reply}
Reply to acaller, mentioned at the end of section All State Events.
{next _event, EventType, Event Content}
Generate the next event to handle, see section Inserted Events.
{change_cal | back_nodul e, Newhbdul e}
Change the callback module for the running server. This can be done during any state transition, whether it is
astate change or not, but it can not be done from a state enter call.
{push_cal I back_nodul e, Newibdul e}
Push the current callback module to the top of an internal stack of callback modules and set the new callback
module for the running server. Otherwiselike{ change_cal | back_nodul e, Newibdul e} above.

{
{
{
{

308 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

10.3 gen_statem Behaviour

pop_cal | back_nodul e
Pop the top module from the internal stack of callback modules and set it to be the new callback module for
the running server. If the stack is empty the server fails. Otherwiselike { change_cal | back_nodul e,
Newibdul e} above.

For details, seethegen_st at em(3) manual pagefor typeact i on() . You can, for example, reply to many callers,
generate multiple next events, and set atime-out to use absolute instead of relative time (using the Opt s field).

Among these transition actions only to reply to acaller is an immediate action. The others are collected and handled
later during the state transition. Inserted Events are stored and inserted all together, and the rest set transition
options where the last of a specific type override the previous. See the description of a state transition in the
gen_st at en(3) manual pagefor typetransiti on_option().

The different Time-Outs and next _event actions generate new events with corresponding Event Types and Event
Content .

10.3.7 Event Types and Event Content

Events are categorized in different event types. Events of al types are for a given state handled in the same
callback function, and that function gets Event Type and Event Cont ent as arguments. The meaning of the
Event Cont ent dependsonthe Event Type.

Thefollowing is acomplete list of event types and where they come from:

cast
Generated by gen_st at em cast (Ser ver Ref, Msg) where Msg becomesthe Event Cont ent .

{cal |, Front
Generated by gen_st at em cal | (Server Ref, Request) where Request becomesthe
Event Cont ent . Fr omisthe reply address to use when replying either through the transition action
{reply, From Repl y} orby calinggen_statem repl y(From Reply) fromthe callback
module.

info
Generated by any regular process message sent to the gen_st at emprocess. The process message becomes
the Event Cont ent .

state_tineout
Generated by transition action { st at e_t i neout , Ti ne, Event Cont ent } statetimer timing out. Read
more in sections Time-Outs and State Time-Outs.

{tinmeout, Nane}
Generated by transition action { {t i neout , Nane}, Ti me, Event Cont ent } generic timer timing out.
Read more in sections Time-Outs and Generic Time-Outs.

ti meout
Generated by transition action { t i meout , Ti me, Event Cont ent } (or itsshort form Ti nme) event timer
timing out. Read more in sections Time-Outs and Event Time-Outs.

i nternal
Generated by transition action { next _event, i nt er nal , Event Cont ent } . All event types above can
also be generated using the next _event action: { next _event, Event Type, Event Cont ent }.

10.3.8 State Enter Calls

Thegen_st at embehaviour canif thisis enabled, regardless of callback mode, automatically call the state callback
with specia arguments whenever the state changes so you can write state enter actions near the rest of the state
transition rules. It typically looks like this:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 309

10.3 gen_statem Behaviour

StateName(enter, 0ldState, Data) ->
. code for state enter actions here ...
{keep state, NewData};
StateName(EventType, EventContent, Data) ->
. code for actions here ...
{next state, NewStateName, NewData}.

Sincethe state enter call isnot an event there arerestrictions on the allowed return value and State Transition Actions.
Y ou may not change the state, postpone this non-event, insert any events, or change the callback module.

Thefirst state that is entered will get a state enter call with O dSt at e equal to the current state.

Y ou may repeat the state enter call usingthe{r epeat state, ...} returnvauefrom the state callback. In this
case A dSt at e will also be equal to the current state.

Depending on how your state machine is specified, this can be a very useful feature, but it forces you to handle the
state enter callsin all states. See also the State Enter Actions section.

10.3.9 Time-Outs

Time-outsin gen_st at emare started from a transition action during a state transition that is when exiting from
the state callback.

There are 3 types of time-outsingen_st at em

state_ti meout
There is one State Time-Out that is automatically cancelled by a state change.
{tineout, Nane}
There are any number of Generic Time-Outs differing by their Nane. They have no automatic cancelling.
ti meout
There is one Event Time-Out that is automatically cancelled by any event. Note that postponed and inserted
events cancel thistime-out just as external events.

When a time-out is started any running time-out of the same type; st ate_ti meout, {ti neout, Name} or
ti meout , iscancelled, that is, the time-out is restarted with the new time.

All time-outs has got an Event Cont ent that is part of the transition action that starts the time-out. Different
Event Cont ent sdoes not create different time-outs. The Event Cont ent isdelivered to the state callback when
the time-out expires.

Cancelling a Time-Out

If atime-out is started with thetime i nfi ni ty it will never time out, in fact it will not even be started, and any
running time-out with the same tag will be cancelled. The Event Cont ent will in this case be ignored, so why not
setittoundef i ned.

A more explicit way to cancel atimer isto use atransition action on theform { Ti meout Type, cancel } which
isafeature introduced in OTP 22.1.

Updating a Time-Out

While a time-out is running, its Event Cont ent can be updated using a transition action on the form
{Ti meout Type, update, NewEvent Content} whichisafeatureintroducedin OTP 22.1.

If this feature is used while no such Ti meout Type is running then a time-out event is immediately delivered as
when starting a Time-Out Zero.

310 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

10.3 gen_statem Behaviour

Time-Out Zero

If atime-out is started with the time O it will actually not be started. Instead the time-out event will immediately be
inserted to be processed after any events already enqueued, and before any not yet received external events. Note that
some time-outs are automatically cancelled so if you for example combine postponing an event in astate change with
starting an event time-out with time O there will be no time-out event inserted since the event time-out is cancelled
by the postponed event that is delivered due to the state change.

10.3.10 Example

A door with a code lock can be seen as a state machine. Initially, the door islocked. When someone presses a button,
an event is generated. The pressed buttons are collected, up to the number of buttons in the correct code. If correct,
the door is unlocked for 10 seconds. If not correct, we wait for a new button to be pressed.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 311

10.3 gen_statem Behaviour

do_lock()
Clear Buttons

»)
Ll

Y

locked

{button,Button} <

|

Collect Buttons

Correct Code?

do_unlock()
Clear Buttons
state_timeout 10 s

A

Y

open

| {button,Digit} <
do_lock() state_timeout <

|

Figure 3.1: Code Lock State Diagram

This code lock state machine can be implemented using gen_ st at emwith the following callback module:

312 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

10.3 gen_statem Behaviour

-module(code lock).
-behaviour(gen statem).
-define(NAME, code lock).

-export([start link/1]).

-export([button/1]).

-export([init/1,callback mode/0,terminate/3]).
-export([locked/3,0pen/3]).

start link(Code) ->
gen statem:start link({local, ?NAME}, ?MODULE, Code, [1]).

button(Button) ->
gen statem:cast(?NAME, {button,Button}).

init(Code) ->
do lock(),
Data = #{code => Code, length => length(Code), buttons => []},
{ok, locked, Data}.

callback mode() ->
state functions.

locked(
cast, {button,Button},
#{code := Code, length := Length, buttons := Buttons} = Data) ->
NewButtons =
if
length(Buttons) < Length ->
Buttons;
true ->
tl(Buttons)
end ++ [Button],
if
NewButtons =:= Code -> % Correct
do_unlock(),
{next _state, open, Data#{buttons := []},
[{state timeout,10000,lock}1}; % Time in milliseconds
true -> % Incomplete | Incorrect
{next state, locked, Data#{buttons := NewButtons}}
end.

open(state timeout, lock, Data) ->
do_ lock(),
{next state, locked, Data};
open(cast, {button, }, Data) ->
{next_state, open, Data}.

do lock() ->
io:format("Lock~n", [1).
do unlock() ->
io:format("Unlock~n", []).
terminate(Reason, State, Data) ->
State =/= locked andalso do lock(),
ok.

The codeis explained in the next sections.

10.3.11 Starting gen_statem

In the examplein the previous section, gen_st at emis started by calling code_| ock: start _| i nk(Code) :

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 313

10.3 gen_statem Behaviour

start link(Code) ->
gen statem:start link({local, ?NAME}, ?MODULE, Code, [1]).

start _|ink cals function gen_statem start | ink/ 4, which spawns and links to a new process, a
gen_statem

» Thefirst argument, {| ocal , ?NAME} , specifies the name. In this case, the gen_st at emislocally registered
ascode_| ock through the macro ?NAME.

If the name is omitted, the gen_st at emis not registered. Instead its pid must be used. The name can aso be
specified as{ gl obal , Nane}, thenthe gen_st at emisregistered using gl obal : r egi st er _nane/ 2 in
Kernel.

e The second argument, ?MODULE, is the name of the callback module, that is, the module where the callback
functions are located, which is this module.

The interface functions (start _|ink/1 and button/ 1) are located in the same module as the callback
functions (i nit/ 1, 1 ocked/ 3, and open/ 3). It is normally good programming practice to have the client-
side code and the server-side code contained in one module.

* Thethird argument, Code, isalist of digits, which is the correct unlock code that is passed to callback function
init/1.
» Thefourth argument, [], isalist of options. For the available options, seegen_statem start _|i nk/ 3.

If name registration succeeds, the new gen_st at emprocess cals callback function code_I| ock: i ni t (Code) .
Thisfunction is expected to return { ok, St ate, Dat a}, where St at e istheinitial state of thegen_st at em
in this case | ocked; assuming that the door is locked to begin with. Dat a is the internal server data of the
gen_st at em Here the server data is a map with key code that stores the correct button sequence, key | engt h
storeitslength, and key but t ons that stores the collected buttons up to the same length.

init(Code) ->
do lock(),
Data = #{code => Code, length => length(Code), buttons => []},
{ok, locked, Data}.

Function gen_st at em start _| i nk issynchronous. It does not return until the gen_st at emisinitialized and
isready to receive events.

Functiongen_statem start | i nk mustbeusedif thegen_st at emispart of asupervisiontree, thatis, started
by a supervisor. Another function, gen_st at em st art can be used to start a standalone gen_st at em that is,
agen_st at emthat is not part of a supervision tree.

Function Modul e: cal | back_mnode/ 0 selects the Cal | backMode for the callback module, in this case
state_functions. Thatis, each state has got its own handler function:

callback mode() ->
state functions.

10.3.12 Handling Events

The function notifying the code lock about a button event isimplemented using gen_st at em cast/ 2:

button(Button) ->
gen statem:cast(?NAME, {button,Button}).

The first argument is the name of the gen_st at emand must agree with the name used to start it. So, we use the
same macro ?NAME as when starting. { but t on, But t on} isthe event content.

The event is sent to the gen_st at em When the event is received, the gen_st at emcalls St at eNane(cast,
Event, Data), which is expected to return a tuple { next _state, NewStateNanme, NewbData}, or

314 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

10.3 gen_statem Behaviour

{next _state, NewStateNane, NewData, Actions}. StateNane isthe name of the current state
and NewSt at eNarre is the name of the next state to go to. NewDat a is a new value for the server data of the
gen_statemandAct i ons isalist of actions to be performed by the gen_st at emengine.

locked(
cast, {button,Button},
#{code := Code, length := Length, buttons := Buttons} = Data) ->
NewButtons =
if
length(Buttons) < Length ->
Buttons;
true ->
tl(Buttons)
end ++ [Button],
if
NewButtons =:= Code -> % Correct
do_unlock(),
{next state, open, Data#{buttons := []},
[{state timeout,10000,lock}]1}; % Time in milliseconds
true -> % Incomplete | Incorrect
{next state, locked, Data#{buttons := NewButtons}}
end.

In statel ocked, when abutton is pressed, it is collected with the last pressed buttons up to the length of the correct
code, and compared with the correct code. Depending on the result, the door is either unlocked andthegen_st at em
goesto state open, or the door remainsin state | ocked.

When changing to state open, the collected buttons are reset, the lock unlocked, and a state timer for 10 sis started.

open(cast, {button, }, Data) ->
{next state, open, Data}.

In state open, a button event is ignored by staying in the same state. This can also be done by returning
{keep_state, Data} orinthiscasesince Dat a unchanged even by returning keep_st at e_and_dat a.

10.3.13 State Time-Outs

When a correct code has been given, the door is unlocked and the following tuple is returned from | ocked/ 2:

{next _state, open, Data#{buttons := []1},
[{state timeout, 10000, lock}]1}; % Time in milliseconds

10,000 is a time-out value in milliseconds. After this time (10 seconds), a timeout occurs. Then,
StateNane(state_tinmeout, |ock, Data) iscaled. Thetime-out occurs when the door has been in state
open for 10 seconds. After that the door is locked again:

open(state timeout, lock, Data) ->
do_lock(),
{next_state, locked, Data};

Thetimer for a state time-out is automatically cancelled when the state machine does a state change.
You can restart, cancel or update a state time-out. See section Time-Outs for details.

10.3.14 All State Events

Sometimes events can arrive in any state of the gen_st at em It is convenient to handle these in a common state
handler function that all state functions call for events not specific to the state.

Consider acode_| engt h/ 0 function that returns the length of the correct code. We dispatch all events that are not
state-specific to the common function handl e_conmon/ 3:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 315

10.3 gen_statem Behaviour

-export([button/1,code length/0]).

code length() ->
gen statem:call(?NAME, code length).

locked(...) -> ... ;
locked (EventType, EventContent, Data) ->
handle common(EventType, EventContent, Data).

open(...) -> ... ;
open(EventType, EventContent, Data) ->
handle common(EventType, EventContent, Data).

handle _common({call,From}, code length, #{code := Code} = Data) ->
{keep _state, Data,
[{reply,From,length(Code)}1}.

Another way to do it is through a convenience macro ?HANDLE _COVMON 0:
:éiport([button/l,code_length/@]).

code length() ->
gen statem:call(?NAME, code length).

-define (HANDLE_COMMON,
?FUNCTION NAME(T, C, D) -> handle common(T, C, D)).

o°

handle common({call,From}, code length, #{code := Code} = Data) ->
{keep state, Data,
[{reply,From,length(Code)}1}.

locked(...) -> ... ;
?HANDLE_COMMON.

open(...) -> ... ;
?HANDLE_COMMON.

This example uses gen_st at em cal | / 2, which waits for a reply from the server. The reply is sent with a
{reply, From Repl y} tupleinan actionlistinthe{ keep_state, ...} tuplethat retainsthe current state.
Thisreturn form is convenient when you want to stay in the current state but do not know or care about what it is.

If the common state callback needs to know the current state afunction handl e_conmon/ 4 can be used instead:

-define (HANDLE_COMMON,
?FUNCTION_NAME(T, C, D) -> handle_common(T, C, ?FUNCTION_NAME, D)).

10.3.15 One State Callback

If callback mode handl e_event functi on isused, al events are handled in Modul e: handl e_event/ 4
and we can (but do not have to) use an event-centered approach where we first branch depending on event and then
depending on state:

316 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

10.3 gen_statem Behaviour

-export([handle_event/4]).
callback mode() ->
handle event function.

handle event(cast, {button,Button}, State, #{code := Code} = Data) ->
case State of

locked ->
#{length := Length, buttons := Buttons} = Data,
NewButtons =
if
length(Buttons) < Length ->
Buttons;
true ->
t1(Buttons)
end ++ [Button],
if
NewButtons =:= Code -> % Correct
do_unlock(),
{next state, open, Data#{buttons := []},
[{state timeout, 10000, lock}1}; % Time in milliseconds
true -> % Incomplete | Incorrect
{keep state, Data#{buttons := NewButtons}}
end;
open ->
keep state and data
end;
handle event(state timeout, lock, open, Data) ->
do lock(),

{next state, locked, Data};
handle event(
{call,From}, code length, State, #{code := Code} = Data) ->
{keep _state, Data,
[{reply,From,length(Code)}1}.

10.3.16 Stopping

In a Supervision Tree

If the gen_st at emis part of a supervision tree, no stop function is needed. The gen_st at emis automatically
terminated by its supervisor. Exactly how thisis doneis defined by a shutdown strategy set in the supervisor.

If it isnecessary to clean up before termination, the shutdown strategy must be atime-out valueandthegen_st at em
must in functioni ni t / 1 set itself to trap exit signalsby callingpr ocess_fl ag(trap_exit, true):

init(Args) ->
process flag(trap exit, true),
do_lock(),

When ordered to shut down, the gen_st at emthen calls callback functiont er m nat e(shut down, State,
Dat a) .

In this example, function t er ni nat e/ 3 locks the door if it is open, so we do not accidentally leave the door open
when the supervision tree terminates:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 317

10.3 gen_statem Behaviour

terminate(Reason, State, Data) ->
State =/= locked andalso do lock(),
ok.
Standalone gen_statem

If thegen_st at emisnot part of asupervisiontreg, it can bestopped usinggen_st at em st op, preferably through
an API function:

-export([start link/1,stop/0]).

stop() ->
gen _statem:stop(?NAME) .

This makesthe gen_st at emcall callback functiont er m nat e/ 3 just like for a supervised server and waits for
the process to terminate.

10.3.17 Event Time-Outs

A time-out feature inherited from gen_st at enis predecessor gen_f sm is an event time-out, that is, if an event
arrives the timer is cancelled. Y ou get either an event or atime-out, but not both.

Itisordered by thetransition action {t i neout , Ti ne, Event Cont ent }, or just an integer Ti e, even without
the enclosing actions list (the latter isaform inherited from gen_f sm

Thistype of time-out is useful for exampleto act on inactivity. Let usrestart the code sequence if no button is pressed
for say 30 seconds:

locked(timeout, , Data) ->
{next_state, locked, Data#{buttons := []1}};
locked(

cast, {button,Button},
#{code := Code, length := Length, buttons := Buttons} = Data) ->

true -> % Incomplete | Incorrect
{next _state, locked, Data#{buttons := NewButtons},
30000} % Time in milliseconds

Whenever we receive abutton event we start an event time-out of 30 seconds, and if we get an event typeof t i neout
we reset the remaining code sequence.

Anevent time-out is cancelled by any other event so you either get some other event or thetime-out event. It istherefore
not possible nor needed to cancel, restart or update an event time-out. Whatever event you act on has already cancelled
the event time-out, so there is never arunning event time-out while the state callback executes.

Note that an event time-out does not work well when you have for example astatus call asin section All State Events,
or handle unknown events, since all kinds of eventswill cancel the event time-out.

10.3.18 Generic Time-Outs

The previous example of state time-outs only work if the state machine stays in the same state during the time-out
time. And event time-outs only work if no disturbing unrelated events occur.

Y ou may want to start atimer in one state and respond to the time-out in another, maybe cancel the time-out without
changing states, or perhaps run multiple time-outs in parallel. All this can be accomplished with generic time-outs.

318 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

10.3 gen_statem Behaviour

They may look a little bit like event time-outs but contain a name to allow for any number of them simultaneously
and they are not automatically cancelled.

Here is how to accomplish the state time-out in the previous example by instead using a generic time-out named for
example open:

locked(
cast, {button,Button},
#{code := Code, length := Length, buttons := Buttons} = Data) ->

if
NewButtons =:= Code -> % Correct
do_unlock(),

{next state, open, Data#{buttons := []},
[{{timeout,open},10000,lock}]}; % Time in milliseconds

open({timeout,open}, lock, Data) ->
do_lock(),
{next_state, locked,Data};
open(cast, {button, }, Data) ->
{keep state,Data};

Specific generic time-outs can just as state time-outs be restarted or cancelled by settingittoanew timeori nfinity.

In this particular case we do not need to cancel the time-out since the time-out event is the only possible reason to
do a state change from open to | ocked.

Instead of bothering with when to cancel atime-out, a late time-out event can be handled by ignoring it if it arrives
in astate whereit is known to be late.

You can restart, cancel or update a generic time-out. See section Time-Outs for details.

10.3.19 Erlang Timers

The most versatile way to handle time-outsisto use Erlang Timers,; seeer | ang: start _ti mer/ 3, 4. Most time-
out tasks can be performed with the time-out featuresin gen_st at em but an example of one that cannot is if you
should need the return value from er | ang: cancel _ti ner (Tr ef) , that is; the remaining time of the timer.

Hereis how to accomplish the state time-out in the previous example by instead using an Erlang Timer:

locked (
cast, {button,Button},
#{code := Code, length := Length, buttons := Buttons} = Data) ->

if
NewButtons =:= Code -> % Correct
do_unlock(),
Tref =
erlang:start _timer(
10000, self(), lock), % Time in milliseconds
{next state, open, Data#{buttons := [], timer => Tref}};

open(info, {timeout,Tref,lock}, #{timer := Tref} = Data) ->
do lock(),
{next_state,locked,maps:remove(timer, Data)};
open(cast, {button, }, Data) ->
{keep state,Data};

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 319

10.3 gen_statem Behaviour

Removing the t i mer key from the map when we do a state changeto | ocked is not strictly necessary since we
can only get into state open with an updated t i mer map value. But it can be nice to not have outdated values in
the state Dat a!

If you need to cancel atimer because of some other event, you can use er | ang: cancel _ti mer (Tr ef). Note
that no time-out message will arrive after this (because the timer has been explicitly canceled), unlessyou have already
postponed one earlier (see the next section), so ensure that you do not accidentally postpone such messages. Also note
that a time-out message may arrive during a state callback that is cancelling the timer, so you may have to read out
such a message from the process mailbox, depending on the return value from er | ang: cancel _timer (Tref).

Another way to handle a late time-out can be to not cancel it, but to ignore it if it arrivesin a state where it is known
to be late.

10.3.20 Postponing Events

If you want to ignore a particular event in the current state and handle it in afuture state, you can postpone the event.
A postponed event isretried after astate change, that is, d dSt at e =/ = NewSt at e.

Postponing is ordered by the transition action post pone.

In this example, instead of ignoring button eventswhilein the open state, we can postpone them and they are queued
and later handled inthe | ocked state:

open(cast, {button, }, Data) ->
{keep_state,Data, [postpone]};

Since a postponed event is only retried after a state change, you have to think about where to keep a state data
item. You can keep it in the server Dat a or in the St at e itself, for example by having two more or less identical
states to keep a boolean value, or by using a complex state (see section Complex State) with callback mode
handl e_event _f uncti on. If achangeinthe value changesthe set of eventsthat ishandled, then the value should
be kept in the State. Otherwise no postponed events will be retried since only the server Data changes.

Thisis not important if you do not postpone events. But if you later decide to start postponing some events, then the
design flaw of not having separate states when they should be, might become a hard-to-find bug.

Fuzzy State Diagrams

It is not uncommon that a state diagram does not specify how to handle events that are not illustrated in a particular
state in the diagram. Hopefully thisis described in an associated text or from the context.

Possible actions: ignore as in drop the event (maybe log it) or deal with the event in some other state asin postponeit.

Selective Receive

Erlang's selective receive statement is often used to describe simple state machine examplesin straightforward Erlang
code. The following is a possible implementation of the first example:

320 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

10.3 gen_statem Behaviour

-module(code lock).
-define(NAME, code lock 1).
-export([start link/1,button/1]).

start link(Code) ->

spawn (
fun () ->
true = register(?NAME, self()),
do lock(),
locked(Code, length(Code), [1)
end) .

button(Button) ->
?NAME ! {button,Button}.

locked(Code, Length, Buttons) ->
receive
{button,Button} ->
NewButtons =
if
length(Buttons) < Length ->
Buttons;
true ->
t1(Buttons)
end ++ [Button],
if
NewButtons =:= Code -> % Correct
do_unlock(),
open(Code, Length);
true -> % Incomplete | Incorrect
locked(Code, Length, NewButtons)
end
end.

open(Code, Length) ->
receive
after 10000 -> % Time in milliseconds
do_ lock(),
locked(Code, Length, [1)
end.

do lock() ->
io:format("Locked~n", [1).

do_unlock() ->
io:format("Open~n", [1).

The selective receive in this case causes open to implicitly postpone any eventsto thel ocked state.

A selective receive cannot be used from agen_st at embehaviour (or from any gen_* behaviour), as the receive
statement is within the gen_* engine itself. It must be there because all sys compatible behaviours must respond
to system messages and therefore do that in their engine receive loop, passing non-system messages to the callback
module.

The transition action post pone is designed to model selective receives. A selective receive implicitly postpones
any not received events, but the post pone transition action explicitly postpones one received event.

Both mechanisms have the same theoretical time and memory complexity, while the selective receive language
construct has smaller constant factors.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 321

10.3 gen_statem Behaviour

10.3.21 State Enter Actions

Say you have a state machine specification that uses state enter actions. Although you can code this using inserted
events (described in the next section), especialy if just one or afew states has got state enter actions, thisis a perfect
use case for the built in state enter calls.

Youreturnalist containing st at e_ent er fromyour cal | back_node/ 0 functionandthegen_st at emengine
will call your state callback once with an event (enter, O dState, ...) whenever it doesastate change.
Then you just need to handle these event-like callsin all states.

init(Code) ->
process flag(trap exit, true),
Data = #{code => Code, length = length(Code)},
{ok, locked, Data}.

callback mode() ->
[state functions,state enter].

locked(enter, OldState, Data) ->
do_lock(),
{keep state,Data#{buttons => []}};
locked(
cast, {button,Button},
#{code := Code, length := Length, buttons := Buttons} = Data) ->

if
NewButtons =:= Code -> % Correct
{next state, open, Data};

open(enter, OldState, Data) ->
do_unlock(),
{keep state and data,
[{state timeout, 10000, lock}]1}; % Time in milliseconds
open(state timeout, lock, Data) ->
{next _state, locked, Data};

You can repeat the state enter code by returning one of {repeat_state,),
{repeat _state_and data, } or repeat_state_and_dat a that otherwise behaves exactly like their
keep_st at e siblings. Seethetypest at e_cal | back_resul t () inthereference manual.

10.3.22 Inserted Events

It can sometimes be beneficial to be able to generate events to your own state machine. This can be done with the
transition action { next _event, Event Type, Event Content}.

You can generate events of any existing type, but the i nt er nal type can only be generated through action
next _event . Hence, it cannot come from an external source, so you can be certain that ani nt er nal eventisan
event from your state machine to itself.

One example for thisis to pre-process incoming data, for example decrypting chunks or collecting characters up to
aline break.

Purists may arguethat this should be modelled with aseparate state machinethat sends pre-processed eventsto themain
state machine, but to decrease overhead the small pre-processing state machine can be implemented in the common
state event handling of the main state machine using afew state data variables that then sends the pre-processed events
as internal events to the main state machine. Using internal events also can make it easier to synchronize the state
machines.

322 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

10.3 gen_statem Behaviour

A variant of thisisto use acomplex state with one state callback. The state is then modeled with for example atuple
{ Mai nFSMSt at e, SubFSMVSt at e} .

To illustrate this we make up an example where the buttons instead generate down and up (press and release) events,
and the lock responds to an up event only after the corresponding down event.

:éiport([down/l, up/1]1).

down(Button) ->
gen statem:cast(?NAME, {down,Button}).

up(Button) ->
gen statem:cast(?NAME, {up,Button}).

locked(enter, O0ldState, Data) ->
do_lock(),
{keep state,Data#{buttons => []}};
locked(
internal, {button,Button},
#{code := Code, length := Length, buttons := Buttons} = Data) ->

handle common(cast, {down,Button}, Data) ->
{keep state, Data#{button => Button}};
handle common(cast, {up,Button}, Data) ->
case Data of
#{button := Button} ->
{keep state,maps:remove(button, Data),
[{next _event,internal, {button,Button}}]};
#{} ->
keep state and data
end;

open(internal, {button, }, Data) ->
{keep_state,Data, [postpone]};

If you start this program with code_| ock: start([17]) you can unlock with code_I| ock: down(17),
code_| ock: up(17).

10.3.23 Example Revisited

This section includes the example after most of the mentioned modifications and some more using state enter calls,
which deserves anew state diagram:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 323

10.3 gen_statem Behaviour

do_lock()
Clear Buttons

Y

locked

A
state_timeout < {button,Button} <

Clear Buttons Collect Buttons

|

state_timeout 30 s

Correct Code?

do_unlock()
state_timeout 10 s

Y

open

state_timeout <

Figure 3.2: Code Lock State Diagram Revisited

Notice that this state diagram does not specify how to handle a button event in the state open. So, you need to read in
some side notes, that is, here: that unspecified events shall be postponed (handled in some later state). Also, the state
diagram does not show that the code_| engt h/ 0 call must be handled in every state.

Callback Mode: state_functions

Using state functions:

324 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

10.3 gen_statem Behaviour

-module(code lock).
-behaviour(gen statem).
-define(NAME, code lock 2).

-export
-export
-export
-export

[start link/1,stop/01]).
[down/1,up/1,code length/0]).
[init/1,callback mode/0,terminate/3]).
[locked/3,0pen/3]).

—_———~ —

start link(Code) ->

gen_statem:start link({local, ?NAME}, ?MODULE, Code, [1).
stop() ->

gen _statem:stop(?NAME) .

down(Button) ->

gen statem:cast(?NAME, {down,Button}).
up (Button) ->

gen statem:cast(?NAME, {up,Button}).
code length() ->

gen statem:call(?NAME, code length).

init(Code) ->
process flag(trap exit, true),
Data = #{code => Code, length => length(Code), buttons => []},
{ok, locked, Data}.

callback mode() ->
[state functions,state enter].

-define (HANDLE_COMMON,
?FUNCTION NAME(T, C, D) -> handle common(T, C, D)).

o°

handle common(cast, {down,Button}, Data) ->
{keep state, Data#{button => Button}};
handle common(cast, {up,Button}, Data) ->
case Data of
#{button := Button} ->
{keep state, maps:remove(button, Data),
[{next _event,internal, {button,Button}}1};
#3} ->
keep state and data
end;
handle common({call,From}, code length, #{code := Code}) ->
{keep state and data,
[{reply,From,length(Code)}1}.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 325

10.3 gen_statem Behaviour

locked(enter, OldState, Data) ->
do_lock(),
{keep state, Data#{buttons := []}};
locked(state timeout, button, Data) ->
{keep state, Data#{buttons := []}};
locked(
internal, {button,Button},
#{code := Code, length := Length, buttons := Buttons} = Data) ->
NewButtons =
if
length(Buttons) < Length ->
Buttons;
true ->
t1(Buttons)
end ++ [Button],
if
NewButtons =:= Code -> % Correct
{next state, open, Data};
true -> % Incomplete | Incorrect
{keep state, Data#{buttons := NewButtons},
[{state timeout,30000,button}]} % Time in milliseconds
end;
?HANDLE_COMMON .

open(enter, OldState, Data) ->

do_unlock(),

{keep state and data,

[{state timeout,10000,lock}]1}; % Time in milliseconds

open(state timeout, lock, Data) ->

{next state, locked, Data};
open(internal, {button, },) ->

{keep state and data, [postponel};
?HANDLE_COMMON.

do lock() ->
io:format("Locked~n", [1).

do_unlock() ->
io:format("Open~n", [1).

terminate(Reason, State, Data) ->

State =/= locked andalso do lock(),
ok.

Callback Mode: handle_event_function

This section describes what to change in the example to use one handl e_event / 4 function. The previously used
approach to first branch depending on event does not work that well here because of the state enter calls, so this
example first branches depending on state:

-export([handle event/4]).

callback mode() ->
[handle event function,state enter].

326 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

10.3 gen_statem Behaviour

o°
o°

%% State: locked
handle event(enter, OldState, locked, Data) ->
do lock(),
{keep state, Data#{buttons := []}};
handle event(state timeout, button, locked, Data) ->
{keep state, Data#{buttons := []}};
handle event(
internal, {button,Button}, locked,
#{code := Code, length := Length, buttons := Buttons} = Data) ->
NewButtons =
if
length(Buttons) < Length ->
Buttons;
true ->
tl(Buttons)
end ++ [Button],
if
NewButtons =:= Code -> % Correct
{next state, open, Data};
true -> % Incomplete | Incorrect
{keep state, Data#{buttons := NewButtons},
[{state timeout,30000,button}]} % Time in milliseconds
end;

o°
o°

%% State: open
handle event(enter, OldState, open, Data) ->
do_unlock(),
{keep state and data,
[{state timeout,10000,lock}1}; % Time in milliseconds
handle event(state timeout, lock, open, Data) ->
{next state, locked, Data};
handle event(internal, {button, }, open,) ->
{keep state and data, [postponel]};

%% Common events
handle event(cast, {down,Button}, State, Data) ->
{keep state, Data#{button => Button}};
handle event(cast, {up,Button}, State, Data) ->
case Data of
#{button := Button} ->
{keep state, maps:remove(button, Data),
[{next _event,internal, {button,Button}},
{state timeout,30000,button}]}; % Time in milliseconds
#} ->
keep state and data
end;
handle event({call,From}, code length, State, #{length := Length}) ->
{keep state and data,
[{reply,From,Length}1}.

Notice that postponing buttons from the open state to the | ocked state feels like a strange thing to do for a code
lock, but it at least illustrates event postponing.

10.3.24 Filter the State

Theexampleserverssofar inthischapter print thefull internal stateintheerror log, for example, when killed by an exit
signal or because of aninternal error. This state containsboth the codelock code and which digitsthat remain to unlock.

Thisstate datacan beregarded as sensitive, and maybe not what you want in the error log because of some unpredictable
event.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 327

10.3 gen_statem Behaviour

Another reason to filter the state can be that the state is too large to print, asit fills the error log with uninteresting
details.

To avoid this, you can format the internal state that gets in the error log and gets returned from
sys: get _status/ 1, 2 by implementing function Modul e: f or mat _st at us/ 2, for example like this:

-export([init/1,terminate/3, format status/2]).

format_status(Opt, [PDict,State,Data]) ->
StateData =
{State,
maps: filter(
fun (code,) -> false;

(_,) -> true
end,
Data)},
case Opt of
terminate ->
StateData;
normal ->
[{data, [{"State",StateData}]}]
end.

Itis not mandatory to implement aModul e: f or mat _st at us/ 2 function. If you do not, a default implementation
is used that does the same as this example function without filtering the Dat a term, that is, St at eData =
{ St at e, Dat a}, in this example containing sensitive information.

10.3.25 Complex State

The callback mode handl e_event _functi on enables using a non-atom state as described in section Callback
Modes, for example, a complex state term like atuple.

One reason to use this is when you have a state item that when changed should cancel the state time-out, or one
that affects the event handling in combination with postponing events. We will go for the latter and complicate the
previous example by introducing a configurable lock button (this is the state item in question), which in the open
state immediately locks the door, and an API functionset | ock _but t on/ 1 to set the lock button.

Suppose now that wecall set _| ock_but t on whilethe door isopen, and we have already postponed a button event
that was the new lock button:

1> code lock:start link([a,b,c], X).
{0k, <0.666.0>}

2> code lock:button(a).

ok

3> code lock:button(b).

ok

4> code lock:button(c).

ok

Open

5> code lock:button(y).

ok

6> code lock:set lock button(y).

X

% What should happen here? Immediate lock or nothing?

We could say that the button was pressed too early so it is not to be recognized as the lock button. Or we can make the
lock button part of the state so when we then change the lock button in the locked state, the change becomes a state
change and al postponed events are retried, therefore the lock isimmediately locked!

328 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

10.3 gen_statem Behaviour

We define the state as { St at eNane, LockBut t on}, where St at eNane is as before and LockBut t on is the
current lock button:

-module(code lock).
-behaviour(gen statem).
-define(NAME, code lock 3).

-export([start link/2,stop/0]).
-export([button/1,set lock button/1]).
-export([init/1,callback mode/0,terminate/3]).
-export([handle event/4]).

start link(Code, LockButton) ->
gen statem:start link(
{local, ?NAME}, ?MODULE, {Code,LockButton}, []).
stop() ->
gen statem:stop(?NAME) .

button(Button) ->
gen statem:cast(?NAME, {button,Button}).
set lock button(LockButton) ->
gen statem:call(?NAME, {set lock button,LockButton}).

init({Code,LockButton}) ->
process flag(trap exit, true),
Data = #{code => Code, length => length(Code), buttons => []},
{ok, {locked,LockButton}, Data}.

callback mode() ->
[handle _event function,state enter].

%% State: locked
handle event(enter, OldState, {locked, }, Data) ->
do lock(),
{keep state, Data#{buttons := []}};
handle event(state timeout, button, {locked, }, Data) ->
{keep state, Data#{buttons := []}};
handle event(
cast, {button,Button}, {locked,LockButton},
#{code := Code, length := Length, buttons := Buttons} = Data) ->
NewButtons =
if
length(Buttons) < Length ->
Buttons;
true ->
tl(Buttons)
end ++ [Button],
if
NewButtons =:= Code -> % Correct
{next state, {open,LockButton}, Data};
true -> % Incomplete | Incorrect
{keep state, Data#{buttons := NewButtons},
[{state timeout,30000,button}]} % Time in milliseconds
end;

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 329

10.3 gen_statem Behaviour

N
o°

%% State: open
handle event(enter, OldState, {open, }, Data) ->
do_unlock(),
{keep state and data,
[{state timeout, 10000, lock}]1}; % Time in milliseconds
handle event(state timeout, lock, {open,LockButton}, Data) ->
{next state, {locked,LockButton}, Data};
handle event(cast, {button,LockButton}, {open,LockButton}, Data) ->
{next state, {locked,LockButton}, Data};
handle event(cast, {button, }, {open, }, Data) ->
{keep state and data, [postpone]};

o°
o°

%% Common events
handle event(
{call,From}, {set lock button,NewLockButton},
{StateName,0ldLockButton}, Data) ->
{next state, {StateName,NewLockButton}, Data,
[{reply,From,0ldLockButton}]1}.

do_lock() ->
io:format("Locked~n", [1).

do_unlock() ->
io:format("Open~n", [1]).

terminate(Reason, State, Data) ->
State =/= locked andalso do lock(),
ok.

10.3.26 Hibernation

If you have many serversin one node and they have some state(s) in their lifetimein which the servers can be expected
toidle for awhile, and the amount of heap memory all these servers need is a problem, then the memory footprint of
aserver can be mimimized by hibernating it through pr oc_1 i b: hi ber nat e/ 3.

It is rather costly to hibernate a process; see er | ang: hi ber nat e/ 3. It is not something you want to do after
every event.

We can in this example hibernatein the { open, _} state, because what normally occursin that state is that the state
time-out after awhile triggersatransitionto{ | ocked, _}:

o°
o°

%% State: open
handle event(enter, OldState, {open, }, Data) ->
do_unlock(),
{keep state and data,
[{state timeout,10000,lock}, % Time in milliseconds
hibernatel};

Theatom hi ber nat e inthe action list on the last linewhen entering the { open, _} stateisthe only change. If any
event arrivesinthe{ open, _}, state, we do not bother to rehibernate, so the server stays awake after any event.

To change that we would need to insert action hi ber nat e in more places. For example, the state-independent
set | ock_butt on operationwould havetousehi ber nat e butonly inthe{ open, _} state, whichwould clutter
the code.

330 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

10.4 gen_event Behaviour

Another not uncommon scenario is to use the event time-out to trigger hibernation after a certain time of inactivity.
Thereis also a server start option { hi bernate_after, Timeout} forstart/3,4,start_Iink/3,4o0r
ent er _| oop/ 4, 5, 6 that may be used to automatically hibernate the server.

This particular server probably does not use heap memory worth hibernating for. To gain anything from hibernation,
your server would have to produce non-insignificant garbage during callback execution, for which this example server
can serve as a bad example.

10.4 gen_event Behaviour

Thissectionistobereadwiththegen_event (3) manual pagein STDLIB, whereall interfacefunctionsand callback
functions are described in detail.

10.4.1 Event Handling Principles

In OTP, an event manager is a named object to which events can be sent. An event can be, for example, an error,
an alarm, or some information that is to be logged.

In the event manager, zero, one, or many event handlers are installed. When the event manager is notified about an
event, the event is processed by all the installed event handlers. For example, an event manager for handling errors
can by default have a handler installed, which writes error messages to the terminal. If the error messages during a
certain period are to be saved to afile aswell, the user adds another event handler that does this. When logging to the
fileisno longer necessary, this event handler is deleted.

An event manager is implemented as a process and each event handler isimplemented as a callback module.

Theevent manager essentially maintainsalist of { Modul e, St at e} pairs, where each Modul e isan event handler,
and St at e istheinterna state of that event handler.

10.4.2 Example

The callback module for the event handler writing error messages to the terminal can look as follows:

-module(terminal logger).
-behaviour(gen_event).

-export([init/1, handle event/2, terminate/2]).

init(Args) ->
{ok, [1}.

handle event(ErrorMsg, State) ->
io:format("***Error*** ~p~n", [ErrorMsgl),
{ok, State}.

terminate(_Args, State) ->
ok.

The callback module for the event handler writing error messages to afile can look as follows:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 331

10.4 gen_event Behaviour

-module(file logger).
-behaviour(gen event).

-export([init/1, handle event/2, terminate/2]).

init(File) ->
{ok, Fd} = file:open(File, read),
{ok, Fd}.

handle event(ErrorMsg, Fd) ->
io:format(Fd, "***Error*** ~p~n", [ErrorMsg]l),
{ok, Fd}.

terminate(Args, Fd) ->
file:close(Fd).

The codeis explained in the next sections.

10.4.3 Starting an Event Manager

To start an event manager for handling errors, as described in the previous example, call the following function:
gen _event:start link({local, error _man})

This function spawns and links to a new process, an event manager.

The argument, {| ocal , error_nman} specifies the name. The event manager is then locally registered as
error_man.

If the name is omitted, the event manager is not registered. Instead its pid must be used. The name can also be given
as{gl obal , Nane}, inwhich case the event manager isregistered using gl obal : r egi st er _nane/ 2.

gen_event: start _|ink must be used if the event manager is part of a supervision tree, that is, started by a
supervisor. There is another function, gen_event : st art, to start a standalone event manager, that is, an event
manager that is not part of a supervision tree.

10.4.4 Adding an Event Handler

The following example shows how to start an event manager and add an event handler to it by using the shell:

1> gen_event:start({local, error man}).

{o0k,<0.31.0>}

2> gen_event:add handler(error man, terminal logger, []).
ok

This function sends a message to the event manager registered as er r or _mran, telling it to add the event handler
t er m nal _I ogger . The event manager callsthe callback functiont er mi nal _| ogger:init([]),wherethe
argument [] isthe third argument to add_handl er . i ni t isexpected to return { ok, St at e}, where St at e
istheinternal state of the event handler.

init(_Args) ->
{ok, [1}.

Here, i ni t doesnot need any input dataand ignoresitsargument. Fort er m nal _I ogger , theinternal stateis not
used. Forfi |l e_| ogger, theinternal stateis used to save the open file descriptor.

init(File) ->

{ok, Fd} = file:open(File, read),
{ok, Fd}.

332 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

10.4 gen_event Behaviour

10.4.5 Notifying about Events

3> gen_event:notify(error _man, no reply).
¥*Error* no reply
ok

er r or _nman isthe name of the event manager and no_r epl y isthe event.

The event is made into a message and sent to the event manager. When the event is received, the event manager calls
handl e_event (Event, State) for each instaled event handler, in the same order as they were added. The
functionisexpected toreturn atuple{ ok, St at e1}, where St at el isanew valuefor the state of the event handler.

Int erm nal _| ogger:

handle event(ErrorMsg, State) ->
io:format ("***Error*** ~p~n", [ErrorMsg]),
{ok, State}.
Infile_logger:

handle event(ErrorMsg, Fd) ->
io:format(Fd, "***Error*** ~p~n", [ErrorMsgl),
{ok, Fd}.

10.4.6 Deleting an Event Handler

4> gen event:delete handler(error man, terminal logger, []).
ok

This function sends a message to the event manager registered aser r or _mran, telling it to delete the event handler
term nal _| ogger. The event manager calls the callback function t ermi nal _| ogger:term nate([],
St at e) , wheretheargument [] isthethird argument to del et e_handl er .t er m nat e isto be the opposite of
i ni t and do any necessary cleaning up. Its return value isignored.

Fort erm nal _| ogger, no cleaning up is necessary:

terminate(Args, State) ->
ok.

Forfil e_l ogger, thefile descriptor openedini ni t must be closed:

terminate(Args, Fd) ->
file:close(Fd).

10.4.7 Stopping

When an event manager is stopped, it gives each of the installed event handlers the chance to clean up by calling
t er m nat e/ 2, the same way as when deleting a handler.

In a Supervision Tree

If the event manager is part of a supervision tree, no stop function is needed. The event manager is automatically
terminated by its supervisor. Exactly how thisis doneis defined by a shutdown strategy set in the supervisor.

Standalone Event Managers
An event manager can also be stopped by caling:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 333

10.5 Supervisor Behaviour

> gen_event:stop(error _man).
ok

10.4.8 Handling Other Messages

If thegen_event isto beableto receive other messagesthan events, the callback function handl e_i nf o(| nf o,
St at e) must be implemented to handle them. Examples of other messages are exit messages, if thegen_event is
linked to other processes (than the supervisor, for exampleviaadd_sup_handl er) and trapping exit signals.

handle info({'EXIT', Pid, Reason}, State) ->
..code to handle exits here..
{ok, NewState}.

Thecode_change method must also be implemented.

code change(0ldVsn, State, Extra) ->
..code to convert state (and more) during code change
{ok, NewState}

10.5 Supervisor Behaviour

This section should be read with the supervisor(3) manua page in STDLIB, where all details about the supervisor
behaviour is given.

10.5.1 Supervision Principles

A supervisor isresponsible for starting, stopping, and monitoring its child processes. The basic idea of asupervisor is
that it isto keep its child processes alive by restarting them when necessary.

Which child processes to start and monitor is specified by alist of child specifications. The child processes are started
in the order specified by thislist, and terminated in the reversed order.

10.5.2 Example

The callback module for a supervisor starting the server from gen_server Behaviour can look as follows:

-module(ch sup).
-behaviour(supervisor).

-export([start link/0]).
-export([init/11]).

start link() ->
supervisor:start link(ch sup, [1).

init(Args) ->
SupFlags = #{strategy => one for one, intensity => 1, period => 5},
ChildSpecs = [#{id => ch3,
start => {ch3, start link, [1},
restart => permanent,
shutdown => brutal kill,
type => worker,
modules => [ch3]}],
{ok, {SupFlags, ChildSpecs}}.

The SupFl ags variablein thereturn value fromi ni t / 1 represents the supervisor flags.
The Chi | dSpecs variablein thereturn value fromi ni t / 1 isalist of child specifications.

334 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

10.5 Supervisor Behaviour

10.5.3 Supervisor Flags
Thisisthe type definition for the supervisor flags:

sup flags() = #{strategy => strategy(), % optional
intensity => non neg integer(), % optional
period => pos integer(), % optional
auto shutdown => auto shutdown()} % optional

strategy() = one for all
| one for one
| rest for one
| simple one for one
auto shutdown() = never
| any significant
| all significant
e strategy specifiestherestart strategy.
e intensity andperi od specify the maximum restart intensity.

e aut o_shut down specifiesif and when a supervisor should automatically shut itself down.

10.5.4 Restart Strategy
The restart strategy is specified by the st r at egy key in the supervisor flags map returned by the callback function
init:

SupFlags = #{strategy => Strategy, ...}

Thest r at egy key isoptiona in thismap. If itisnot given, it defaultstoone_f or _one.

For simplicity, the diagrams shown in this section display a setup where all the depicted children are assumed to
have arestart type of per manent .

one_for_one

If achild process terminates, only that processis restarted.

Terminated process
O Process restarted by the supervisor

Figure 5.1: One_For_One Supervision

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 335

10.5 Supervisor Behaviour

one_for_all
If a child process terminates, all other child processes are terminated, and then al child processes, including the
terminated one, are restarted.

Terminated process

Process terminated by the supervisor
O Process restarted by the supervisor

Shutdown order

->» Restart order
Figure 5.2: One_For_All Supervision

rest for one

If achild process terminates, the rest of the child processes (that is, the child processes after the terminated processin
start order) are terminated. Then the terminated child process and the rest of the child processes are restarted.

336 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

10.5 Supervisor Behaviour

Terminated process
Process terminated by the supervisor
O Process restarted by the supervisor
Shutdown order
->» Restart order
Figure 5.3: Rest_For_One Supervision

simple_one_for_one

See simple-one-for-one supervisors.

10.5.5 Maximum Restart Intensity

The supervisors have a built-in mechanism to limit the number of restarts which can occur in a given time interval.
This is specified by the two keysi nt ensi ty and peri od in the supervisor flags map returned by the callback
functioni ni t:

SupFlags = #{intensity => MaxR, period => MaxT, ...}

If more than Max R number of restarts occur in thelast Max T seconds, the supervisor terminates all the child processes
and then itself. The termination reason for the supervisor itself in that case will be shut down.

When the supervisor terminates, then the next higher-level supervisor takessomeaction. It either restartsthe terminated
supervisor or terminates itself.

The intention of the restart mechanism is to prevent a situation where a process repeatedly dies for the same reason,
only to be restarted again.

The keysi ntensi ty and peri od are optional in the supervisor flags map. If they are not given, they default to
1 and 5, respectively.
Tuning the intensity and period

The default valuesare 1 restart per 5 seconds. Thiswas chosen to be safe for most systems, even with deep supervision
hierarchies, but you will probably want to tune the settings for your particular use case.

First, the intensity decides how big bursts of restarts you want to tolerate. For example, you might want to accept a
burst of at most 5 or 10 attempts, even within the same second, if it results in a successful restart.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 337

10.5 Supervisor Behaviour

Second, you need to consider the sustained failure rate, if crashes keep happening but not often enough to make the
supervisor give up. If you set intensity to 10 and set the period as low as 1, the supervisor will alow child processes
to keep restarting up to 10 times per second, forever, filling your logs with crash reports until someone intervenes
manually.

Y ou should therefore set the period to be long enough that you can accept that the supervisor keeps going at that rate.
For example, if you have picked an intensity value of 5, then setting the period to 30 seconds will give you at most
one restart per 6 seconds for any longer period of time, which means that your logs won't fill up too quickly, and you
will have a chance to observe the failures and apply afix.

These choices depend alot on your problem domain. If you don't have real time monitoring and ability to fix problems
quickly, for example in an embedded system, you might want to accept at most one restart per minute before the
supervisor should give up and escalate to the next level to try to clear the error automatically. On the other hand, if
it is more important that you keep trying even at a high failure rate, you might want a sustained rate of as much as
1-2 restarts per second.

Avoiding common mistakes:

« Do not forget to consider the burst rate. If you set intensity to 1 and period to 6, it gives the same sustained error
rate as 5/30 or 10/60, but will not allow even 2 restart attempts in quick succession. This is probably not what
you wanted.

* Do not set the period to a very high value if you want to tolerate bursts. If you set intensity to 5 and period to
3600 (one hour), the supervisor will allow a short burst of 5 restarts, but then gives up if it sees another single
restart almost an hour later. Y ou probably want to regard those crashes as separate incidents, so setting the period
to 5 or 10 minutes will be more reasonable.

» If your application has multiple levels of supervision, then do not simply set the restart intensities to the same
values on all levels. Keep in mind that the total number of restarts (before the top level supervisor gives up and
terminates the application) will be the product of theintensity values of al the supervisors above the failing child
process.

For example, if thetop level allows 10 restarts, and the next level aso alows 10, a crashing child below that level
will be restarted 100 times, which is probably excessive. Allowing at most 3 restarts for the top level supervisor
might be a better choicein this case.

10.5.6 Automatic Shutdown

A supervisor can be configured to automatically shut itself down when significant children terminate.

This is useful when a supervisor represents awork unit of cooperating children, as opposed to independent workers.
When the work unit has finished its work, that is, when any or al significant child processes have terminated, the
supervisor should then shut down by terminating all remaining child processes in reverse start order according to the
respective shutdown specifications, and then itself.

Automatic shutdown is specified by the aut o_shut down key in the supervisor flags map returned by the callback
functioni ni t:

SupFlags = #{auto shutdown => AutoShutdown, ...}

Theaut o_shut down key isoptional inthismap. If it is not given, it defaultsto never .

The automatic shutdown facility only applies when significant children terminate by themselves, that is, when
their termination was not caused by means of the supervisor. Specifically, neither the termination of a child as a
conseguence of asibling'sdeathintheone_for _al | orrest for_one strategiesnor the manual termination
of achild by means of super vi sor:term nate_chi | d/ 2 will trigger an automatic shutdown.

338 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

10.5 Supervisor Behaviour

never
Automatic shutdown is disabled.

Inthismode, significant children are not accepted. If the child specsreturned fromi ni t containssignificant children,
the supervisor will refuse to start. Attempts to start significant children dynamically will be rejected.

Thisisthe default setting.
any_significant

The supervisor will automatically shut itself down when any significant child terminates, that is, when a transient
significant child terminates normally or when atemporary significant child terminates normally or abnormally.

all_significant

The supervisor will automatically shut itself down when all significant children have terminated, that is, when the last
active significant child terminates. The same rulesasfor any_si gni fi cant apply.

War ning:
The automatic shutdown feature appeared in OTP 24.0, but applications using this feature will also compile and
run with older OTP versions.

However, such applications, when compiled with an OTP version that predates the appearance of the automatic
shutdown feature, will leak processes because the automatic shutdowns they rely on will not happen.

It is up to implementors to take proper precautions if they expect that their applications may be compiled with
older OTP versions.

War ning:

Top supervisorsof Applications should not be configured for automati ¢ shutdown, because when the top supervisor
exits, the application terminates. If the application is per manent , all other applications and the runtime system
are terminated, also.

Warning:

Supervisors configured for automatic shutdown should not be made permanent children of their respective parent
supervisors, as they would be restarted immediately after having automatically shut down, only to shut down
automatically again after awhile, and may thus exhaust the Maximum Restart Intensity of the parent supervisor.

10.5.7 Child Specification
The type definition for a child specification is as follows:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 339

10.5 Supervisor Behaviour

child spec() = #{id => child _id(), % mandatory
start => mfargs(), % mandatory
restart => restart(), % optional
significant => significant(), % optional
shutdown => shutdown(), % optional
type => worker(), % optional
modules => modules()} % optional

child id() = term()

mfargs() = {M :: module(), F :: atom(), A :: [term()]}
modules() = [module()] | dynamic

restart() = permanent | transient | temporary
significant() = boolean()

shutdown () brutal kill | timeout()
worker() = worker | supervisor

i d isused to identify the child specification internally by the supervisor.
Thei d key is mandatory.

Note that this identifier occasionally has been called "name". As far as possible, the terms "identifier" or "id"
are now used but in order to keep backwards compatibility, some occurrences of "name" can till be found, for
example in error messages.

st art definesthe function call used to start the child process. It is a module-function-arguments tuple used as
apply(M F, A).
Itisto be (or result in) acal to any of the following:

e supervisor:start_link

e gen_server:start_link

e gen_statemstart_I|ink

e gen_event:start _link

* A function compliant with these functions. For details, seethe super vi sor (3) manual page.

Thest art key ismandatory.
restart defineswhen aterminated child processisto be restarted.

A permanent child processisalways restarted.

 Atenporary child processisnever restarted (not even when the supervisor restart strategy is
rest _for_oneorone_for_all andasibling death causes the temporary process to be terminated).

e Atransi ent child processisrestarted only if it terminates abnormally, that is, with an exit reason other
than nor mal , shut down, or { shut down, Ter n}.

Therest art keyisoptional. If it isnot given, the default value per nanent will be used.

si gni fi cant definesif achild is considered significant for automatic self-shutdown of the supervisor.

It is invalid to set this option to t rue for a child with restart type per manent or in a supervisor with
auto_shutdown set to never .

340 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

10.5 Supervisor Behaviour

e shut down defines how achild process is to be terminated.

e brutal _kill meansthat the child processis unconditionally terminated using exi t (Chi | d,
kill).

« Aninteger time-out value means that the supervisor tells the child process to terminate by calling
exi t(Child, shutdown) andthen waitsfor an exit signal back. If no exit signal is received within
the specified time, the child process is unconditionally terminated usingexi t (Chi l d, kil l).

» If the child process is another supervisor, it must beset toi nf i ni ty to give the subtree enough time

to shut down. Itisalso allowedto setittoi nfi ni ty, if thechild processis aworker. See the warning
below:

Setting the shutdown time to anything other thani nf i ni t y for achild of type super vi sor can cause a
race condition wherethe childin question unlinksitsown children, but fail sto terminate them beforeit iskilled.

Be careful when setting the shutdown timetoi nf i ni t y when the child processisaworker. Because, in this
situation, the termination of the supervision tree depends on the child process; it must be implemented in a
safe way and its cleanup procedure must always return.

The shut down key isoptional. If it is not given, and the child is of type wor ker , the default value 5000 will
be used; if the child is of typesuper vi sor , the default valuei nf i ni t y will be used.

e type specifiesif the child processis a supervisor or aworker.

Thet ype key isoptionad. If it is not given, the default value wor ker will be used.

« nodul es areto be alist with one element [Modul e] , where Modul e is the name of the callback module, if
the child process is a supervisor, gen_server, gen_statem. If the child process is a gen_event, the value shall be
dynami c.

Thisinformation is used by the release handler during upgrades and downgrades, see Release Handling.
Thenodul es keyisoptional. If itisnot given, it defaultsto[M , where Mcomesfromthechild'sstart{ M F, A} .

Example: The child specification to start the server ch3 in the previous example look as follows:

#{id => ch3,
start => {ch3, start link, [1},
restart => permanent,
shutdown => brutal kill,
type => worker,
modules => [ch3]}

or simplified, relying on the default values:
#{id => ch3,
start => {ch3, start link, [1}
shutdown => brutal kill}
Example: A child specification to start the event manager from the chapter about gen_event:
#{id => error_man,
start => {gen_event, start link, [{local, error man}]},

modules => dynamic}

Both server and event manager are registered processes which can be expected to be always accessible. Thus they
are specified to be per nanent .

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 341

10.5 Supervisor Behaviour

ch3 does not need to do any cleaning up before termination. Thus, no shutdown time is needed, but br ut al _ki | |
is sufficient. er r or _nman can need some time for the event handlers to clean up, thus the shutdown time is set to
5000 ms (which is the default value).

Example: A child specification to start another supervisor:

#{id => sup,
start => {sup, start link, [1},
restart => transient,
type => supervisor} % will cause default shutdown=>infinity

10.5.8 Starting a Supervisor

In the previous example, the supervisor is started by callingch_sup: start _I i nk():

start link() ->
supervisor:start link(ch sup, []).

ch_sup:start _link calsfunctionsupervi sor: start _| i nk/ 2, which spawnsand linksto anew process,
asupervisor.

* Thefirst argument, ch_sup, isthe name of the callback module, that is, the module wherethei ni t callback
function is located.

e Thesecond argument, [], isaterm that is passed asis to the callback functioni ni t . Here, i ni t does not
need any indata and ignores the argument.

In this case, the supervisor is not registered. Instead its pid must be used. A name can be
specified by caling supervisor:start _|ink({local, Nane}, Modul e, Args) or
supervisor:start_|ink({global, Nane}, Mdule, Args).

The new supervisor process calls the calback function ch_sup:init([]). init shal return {ok,
{SupFl ags, Chil dSpecs}}:

init(Args) ->
SupFlags = #{},
ChildSpecs = [#{id => ch3,
start => {ch3, start link, [1},
shutdown => brutal kill}],
{ok, {SupFlags, ChildSpecs}}.

The supervisor then starts all its child processes according to the child specificationsin the start specification. In this
case there is one child process, ch3.

supervi sor:start | i nk issynchronous. It does not return until all child processes have been started.

10.5.9 Adding a Child Process

In addition to the static supervision tree, dynamic child processes can be added to an existing supervisor with the
following call:

supervisor:start child(Sup, ChildSpec)

Sup isthe pid, or name, of the supervisor. Chi | dSpec is a child specification.

Child processes added using st art _chi | d/ 2 behave in the same way as the other child processes, with the an
important exception: if a supervisor dies and is recreated, then all child processes that were dynamically added to the
supervisor are lost.

342 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

10.5 Supervisor Behaviour

10.5.10 Stopping a Child Process

Any child process, static or dynamic, can be stopped in accordance with the shutdown specification:

supervisor:terminate child(Sup, Id)
Stopping asignificant child of asupervisor configured for automatic shutdown will not trigger an automatic shutdown.
The child specification for a stopped child process is deleted with the following call:

supervisor:delete child(Sup, Id)

Sup isthe pid, or name, of the supervisor. | d isthe value associated with thei d key in the child specification.

Aswith dynamically added child processes, the effects of deleting a static child process are lost if the supervisor itself
restarts.

10.5.11 Simplified one_for_one Supervisors

A supervisor with restart strategy si npl e_one_f or _one isasimplified one_f or _one supervisor, where all
child processes are dynamically added instances of the same process.

Thefollowing is an example of a callback module for asi npl e_one_f or _one supervisor:

-module(simple sup).
-behaviour(supervisor).

-export([start link/0]).
-export([init/1]).

start _link() ->
supervisor:start link(simple sup, []).

init(_Args) ->
SupFlags = #{strategy => simple one for one,
intensity => 0,
period => 1},
ChildSpecs = [#{id => call,
start => {call, start link, []},
shutdown => brutal kill}],
{ok, {SupFlags, ChildSpecs}}.

When started, the supervisor does not start any child processes. Instead, all child processes are added dynamically
by calling:

supervisor:start child(Sup, List)

Sup isthe pid, or name, of the supervisor. Li st isan arbitrary list of terms, which are added to the list of arguments
specified in the child specification. If the start function is specifiedas{M F, A}, the child process is started by
calingappl y(M F, A++List).

For example, adding a child to si npl e_sup above:
supervisor:start child(Pid, [id1])

Theresult isthat the child processis started by callingappl y(cal |, start_link, []++[id1]),oractualy:
call:start link(idl)

A child under asi npl e_one_f or _one supervisor can be terminated with the following:

supervisor:terminate child(Sup, Pid)

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 343

10.6 sys and proc_lib

Sup isthe pid, or name, of the supervisor and Pi d isthe pid of the child.

Becauseasi npl e_one_f or _one supervisor can have many children, it shutsthem all down asynchronously. This
meansthat the children will do their cleanup in parallel and therefore the order in which they are stopped is not defined.

10.5.12 Stopping

Since the supervisor is part of a supervision tree, it is automatically terminated by its supervisor. When asked to shut
down, it terminates all child processesin reversed start order according to the respective shutdown specifications, and
then terminates itself.

If the supervisor is configured for automatic shutdown on termination of any or al significant children, it will shut
down itself when any or the last active significant child terminates, respectively. The shutdown itself follows the same
procedure as described above, that is, the supervisor terminates all remaining child processes in reversed start order,
and then terminates itself.

Manual stopping versus Automatic Shutdown

For several reasons, a supervisor should not be stopped manually viasuper vi sor: term nate_chi | d/ 2 from
achild located in its own tree.

e Thechild process will have to know the pids or registered names not only of the supervisor it wants to stop, but
also that of the supervisor's parent supervisor, in order to tell the parent supervisor to stop the supervisor it wants
to stop. This can make restructuring a supervision tree difficult.

e supervisor:term nate_chil d/ 2 isablocking call that will only return after the parent supervisor has
finished the shutdown of the supervisor that should be stopped. Unless the call is made from a spawned process,
thiswill result in adeadl ock, asthe supervisor waitsfor the child to exit as part of its shutdown procedure, whereas
the child waits for the supervisor to shut down. If the child is trapping exits, this deadlock will last until the
shutdown timeout for the child expires.

e When asupervisor is stopping achild, it will wait for the shutdown to complete before accepting other calls, that
is, the supervisor will be unresponsive until then. If the termination takes some time to complete, especially when
the considerations outlined in the previous point were not taken into account carefully, said supervisor might
become unresponsive for along time.

Instead, it is generally a better approach to rely on Automatic Shutdown.

« A child process does not need to know anything about its supervisor and its respective parent, not even that it is
part of asupervision tree in the first place. It isinstead only the supervisor which hosts the child who must know
which of its children are significant ones, and when to shut itself down.

* A child process does not need to do anything special to shut down the work unit it is part of. All it needsto do is
terminate normally when it has finished the task it was started for.

* A supervisor that isautomatically shutting itself down will perform the required shutdown steps fully independent
of its parent supervisor. The parent supervisor will only notice that its child supervisor has terminated in the end.
Asthe parent supervisor is not involved in the shutdown process, it will not be blocked.

10.6 sys and proc_lib

Thesys module hasfunctions for simple debugging of processesimplemented using behaviours. It also has functions
that, together with functionsin the pr oc_I i b module, can be used to implement a special process that compliesto
the OTP design principles without using a standard behaviour. These functions can also be used to implement user-
defined (non-standard) behaviours.

Both sys and proc_| i b belong to the STDLIB application.

344 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

10.6 sys and proc_lib

10.6.1 Simple Debugging

The sys module has functions for simple debugging of processes implemented using behaviours. The code_| ock
example from gen_statem Behaviour is used to illustrate this:

Erlang/0TP 20 [DEVELOPMENT] [erts-9.0] [source-5ace45e] [64-bit] [smp:8:8] [ds:8:8:10] [async-threads:10] [l

Eshell V9.0 (abort with "G)
1> code lock:start link([1,2,3,4]).
Lock
{0k, <0.63.0>}
2> sys:statistics(code lock, true).
ok
3> sys:trace(code lock, true).
ok
4> code lock:button(1).
DBG code lock receive cast {button,1} in state locked
ok
DBG code lock consume cast {button,1} in state locked
5> code lock:button(2).
DBG code lock receive cast {button,2} in state locked
ok
DBG code lock consume cast {button,2} in state locked
6> code lock:button(3).
DBG code lock receive cast {button,3} in state locked
ok
DBG code lock consume cast {button,3} in state locked
7> code lock:button(4).
DBG code lock receive cast {button,4} in state locked
ok
Unlock
DBG code lock consume cast {button,4} in state locked
DBG code lock receive state timeout lock in state open
Lock
DBG code lock consume state timeout lock in state open
8> sys:statistics(code lock, get).
{ok, [{start time, {{2017,4,21},{16,8,7}}},
{current _time, {{2017,4,21},{16,9,42}}},
{reductions, 2973},
{messages in,5},
{messages out,0}]}
9> sys:statistics(code lock, false).
ok
10> sys:trace(code lock, false).
ok
11> sys:get status(code lock).
{status,<0.63.0>,
{module,gen_ statem},
[[{'$initial call',{code lock,init,1}},
{'$ancestors',[<0.61.0>]}1,
running,<0.61.0>,[],
[{header, "Status for state machine code lock"},
{data, [{"Status", running},
{"Parent",<0.61.0>},
{"Logged Events",[1},
{"Postponed",[1}1},
{data, [{"State",
{locked,#{code => [1,2,3,4],remaining => [1,2,3,41}}}1}11}

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 345

10.6 sys and proc_lib

10.6.2 Special Processes

This section describes how to write a process that complies to the OTP design principles, without using a standard
behaviour. Such aprocessisto:

» Besdtarted in away that makes the processfit into a supervision tree
e Support the sys debug facilities
e Take care of system messages.

System messages are messages with a special meaning, used in the supervision tree. Typical system messages are
reguestsfor trace output, and requeststo suspend or resume process execution (used during release handling). Processes
implemented using standard behaviours automatically understand these messages.

Example
The simple server from Overview, implemented using sys and pr oc_| i b soit fitsinto asupervision tree:

346 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

10.6 sys and proc_lib

-module(ch4).
-export([start link/0]).
-export([alloc/0, free/l1]).
-export([init/1]).
-export([system continue/3, system terminate/4,
write debug/3,
system get state/l, system replace state/2]).

start link() ->
proc_lib:start link(ch4, init, [self()]).

alloc() ->
ch4 ! {self(), alloc},
receive
{ch4, Res} ->
Res
end.
free(Ch) ->
ch4 ! {free, Ch},
ok.

init(Parent) ->
register(ch4, self())
Chs = channels(),
Deb = sys:debug options([]),
proc_lib:init ack(Parent, {ok, self()}),
loop(Chs, Parent, Deb).

loop(Chs, Parent, Deb) ->
receive
{From, alloc} ->
Deb2 = sys:handle debug(Deb, fun ch4:write debug/3,
ch4, {in, alloc, From}),
{Ch, Chs2} = alloc(Chs),
From ! {ch4, Ch},
Deb3 = sys:handle debug(Deb2, fun ch4:write debug/3,
ch4, {out, {ch4, Ch}, From}),
loop(Chs2, Parent, Deb3);
{free, Ch} ->
Deb2 = sys:handle debug(Deb, fun ch4:write debug/3,
ch4, {in, {free, Ch}}),
Chs2 = free(Ch, Chs),
loop(Chs2, Parent, Deb2);

{system, From, Request} ->
sys:handle system msg(Request, From, Parent,
ch4, Deb, Chs)
end.

system continue(Parent, Deb, Chs) ->
loop(Chs, Parent, Deb).

system terminate(Reason, Parent, Deb, Chs) ->
exit(Reason).

system get state(Chs) ->
{ok, Chs}.

system replace state(StateFun, Chs) ->
NChs = StateFun(Chs),
{ok, NChs, NChs}.

write debug(Dev, Event, Name) ->

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 347

10.6 sys and proc_lib

io:format(Dev, "~p event = ~p~n", [Name, Event]).

Example on how the simple debugging functionsin the sys module can also be used for ch4:

% erl
Erlang (BEAM) emulator version 5.2.3.6 [hipe] [threads:0]

Eshell V5.2.3.6 (abort with "G)

1> ch4:start link().

{ok,<0.30.0>}

2> sys:statistics(ch4, true).

ok

3> sys:trace(ch4, true).

ok

4> ch4:alloc().

chd4 event {in,alloc,<0.25.0>}

ch4 event {out, {ch4,chl},<0.25.0>}

chl

5> ch4:free(chl).

ch4 event = {in, {free,chl}}

ok

6> sys:statistics(ch4, get).

{ok, [{start time, {{2003,6,13},{9,47,5}}},
{current_time, {{2003,6,13},{9,47,56}}},
{reductions, 109},

{messages _in,2},
{messages out,1}]}

7> sys:statistics(ch4, false).

ok

8> sys:trace(ch4, false).

ok

9> sys:get status(ch4).

{status,<0.30.0>,

{module, ch4},
[[{'$ancestors',[<0.25.0>]},{ '$initial call', {ch4,init,[<0.25.0>]}}1,
running,<0.25.0>,[],
[chl,ch2,ch3]]}

Starting the Process

A function in the pr oc_I| i b moduleisto be used to start the process. Several functions are available, for example,
spawn_l i nk/ 3, 4 for asynchronous start and st art _| i nk/ 3, 4, 5 for synchronous start.

A process started using one of these functions stores information (for example, about the ancestors and initial call)
that is needed for a processin a supervision tree.

If the process terminates with another reason than nor mal or shut down, a crash report is generated. For more
information about the crash report, see the SASL User's Guide.

In the example, synchronous start is used. The process starts by callingch4: start _|i nk():

start link() ->
proc_lib:start link(ch4, init, [self()]).

ch4: start _|ink calsthefunctionproc_Ilib: start _|i nk. Thisfunction takes a module name, a function
name, and an argument list as arguments, spawns, and links to a new process. The new process starts by executing
the given function, herech4: i ni t (Pi d) , wherePi d isthepid (sel f ()) of thefirst process, which is the parent
process.

All initialization, including name registration, isdonein i ni t . The new process must also acknowledge that it has
been started to the parent:

348 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

10.6 sys and proc_lib

init(Parent) ->

proc_lib:init_ack(Parent, {ok, self()}),
loop(...).

proc_lib:start _|i nk issynchronousand does not return until proc_|i b:i nit_ack hasbeen called.

Debugging
To support the debug facilities in sys, a debug structure is needed. The Deb term is initialized using
sys: debug_options/ 1:
init(Parent) ->
6é5 = sys:debug options([]),
iéép(Chs, Parent, Deb).

sys: debug_opti ons/ 1 takesalist of options as argument. Here the list is empty, which means no debugging is
enabled initialy. For information about the possible options, seethe sys(3) manua pagein STDLIB.

Then, for each system event to be logged or traced, the following function isto be called.
sys:handle debug(Deb, Func, Info, Event) => Debl

Here:

» Deb isthe debug structure.

* Func isafun specifying a (user-defined) function used to format trace output. For each system event, the
format function iscalled as Func(Dev, Event, Info),where

* Dev isthel/O device to which the output is to be printed. Seethei o(3) manual pagein STDLIB.
« Event and| nf o are passed asisfrom handl e_debug.
* | nf o isused to pass moreinformation to Func. It can be any term and is passed asis.

« Event isthe system event. It is up to the user to define what a system event isand how it is to be represented.
Typically at least incoming and outgoing messages are considered system events and represented by the tuples
{in, Msg[, Froni} and{out, Msg, To[, St at e] }, respectively.

handl e_debug returns an updated debug structure Deb1.

In the example, handl e_debug is called for each incoming and outgoing message. The format function Func is
thefunctionch4: wri t e_debug/ 3, which prints the message usingi o: f or mat / 3.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 349

10.6 sys and proc_lib

loop(Chs, Parent, Deb) ->
receive
{From, alloc} ->
Deb2 = sys:handle debug(Deb, fun ch4:write debug/3,
ch4, {in, alloc, From}),
{Ch, Chs2} = alloc(Chs),
From ! {ch4, Ch},
Deb3 = sys:handle debug(Deb2, fun ch4:write debug/3,
ch4, {out, {ch4, Ch}, From}),
loop(Chs2, Parent, Deb3);
{free, Ch} ->
Deb2 = sys:handle debug(Deb, fun ch4:write debug/3,
ch4, {in, {free, Ch}}),
Chs2 = free(Ch, Chs),
loop(Chs2, Parent, Deb2);

end.

write debug(Dev, Event, Name) ->
io:format(Dev, "~p event = ~p~n", [Name, Event]).

Handling System Messages
System messages are received as:
{system, From, Request}

The content and meaning of these messages do not need to beinterpreted by the process. Instead the following function
isto be called:

sys:handle system msg(Request, From, Parent, Module, Deb, State)

This function does not return. It handles the system message and then either calls the following if process execution
isto continue:

Module:system continue(Parent, Deb, State)
Or callsthefollowing if the processis to terminate:
Module:system terminate(Reason, Parent, Deb, State)

A processin a supervision tree is expected to terminate with the same reason as its parent.

* Request and Fr omareto be passed asis from the system message to the call to handl e_syst em nsg.
e Parent isthepid of the parent.

* Modul e isthe name of the module.

« Deb isthe debug structure.

e St at e isaterm describing the internal state and is passed to syst em cont i hue/syst em t er m nat e/
system get _state/systemrepl ace_state.

If the processisto returnits state, handl e_syst em nsg cals:
Module:system get state(State)

If the processisto replace its state using the fun St at eFun, handl e_syst em nsg calls:
Module:system replace state(StateFun, State)

In the example:

350 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

10.6 sys and proc_lib

loop(Chs, Parent, Deb) ->
receive

{system, From, Request} ->
sys:handle system msg(Request, From, Parent,
ch4, Deb, Chs)
end.

system continue(Parent, Deb, Chs) ->
loop(Chs, Parent, Deb).

system terminate(Reason, Parent, Deb, Chs) ->
exit(Reason).

system get state(Chs) ->
{ok, Chs, Chs}.

system replace state(StateFun, Chs) ->
NChs = StateFun(Chs),
{ok, NChs, NChs}.

If the special process is set to trap exits and if the parent process terminates, the expected behavior is to terminate
with the same reason:

init(...) ->
bFééess_flag(trap_exit, true),
loop(...).

loop(...) ->

receive

{'EXIT', Parent, Reason} ->
..maybe some cleaning up here..
exit(Reason);

end....

10.6.3 User-Defined Behaviours

Toimplement auser-defined behaviour, write code similar to code for aspecial process, but call functionsin acallback
module for handling specific tasks.

If the compiler isto warn for missing callback functions, asit doesfor the OTP behaviours, add - cal | back attributes
in the behaviour modul e to describe the expected callbacks:

-callback Namel(Argl 1, Argl 2, ..., Argl N1) -> Resl.
-callback Name2(Arg2 1, Arg2 2, ..., Arg2 N2) -> Res2.
-callback NameM(ArgM 1, ArgM 2, ..., ArgM NM) -> ResM.

Name X are the names of the expected callbacks. Ar gX_Y and ResX are types as they are described in Types and
Function Specifications. The whole syntax of the - spec attribute is supported by the - cal | back attribute.

Callback functions that are optional for the user of the behaviour to implement are specified by use of the -
optional _cal | backs attribute:

-optional callbacks([OptNamel/OptArityl, ..., OptNameK/OptArityK]).

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 351

10.6 sys and proc_lib

where each Opt Nane/ Opt Arity specifies the name and arity of a callback function. Note that the -
optional _cal | backs attributeisto be used together with the - cal | back attribute; it cannot be combined with
thebehavi our _i nf o() function described below.

Tools that need to know about optional callback functions can call
Behavi our : behavi our _i nfo(optional _cal | backs) togetalist of al optional callback functions.

We recommend using the - cal | back attribute rather than the behavi our _i nf o() function. The reason is
that the extra type information can be used by tools to produce documentation or find discrepancies.

As an dternative to the - cal | back and - opti onal _cal | backs attributes you may directly implement and
export behavi our _i nfo():

behaviour info(callbacks) ->
[{Namel, Arityl},...,{NameN, ArityN}].

where each { Nane, Arity} specifies the name and arity of a callback function. This function is otherwise
automatically generated by the compiler using the - cal | back attributes.

When the compiler encounters the module attribute - behavi our (Behavi our) . in a module Mod, it cals
Behavi our : behavi our _i nfo(cal | backs) and compares the result with the set of functions actually
exported from Mod, and issues awarning if any callback function is missing.

Example:

%% User-defined behaviour module
-module(simple server).
-export([start link/2, init/3, ...]).

-callback init(State :: term()) -> 'ok'.

-callback handle req(Req :: term(), State :: term()) -> {'ok', Reply :: term()}.
-callback terminate() -> 'ok'.

-callback format state(State :: term()) -> term().

-optional callbacks([format state/1]).
% Alternatively you may define:

-export([behaviour info/1]).
behaviour info(callbacks) ->
[{init, 1},
{handle req,2},
{terminate,0}].

d° P d° d° o° o° of
0° 0° o° o° o° o°

start link(Name, Module) ->
proc_lib:start link(?MODULE, init, [self(), Name, Module]).

init(Parent, Name, Module) ->
register(Name, self()),

Dbg = sys:debug options([]),
proc lib:init ack(Parent, {ok, self()}),
loop(Parent, Module, Deb, ...).

In acalback module:

352 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

10.7 Applications

-module(db).
-behaviour(simple server).

-export([init/1, handle req/2, terminate/0]).

The contracts specified with - cal | back attributes in behaviour modules can be further refined by adding - spec
attributes in callback modules. This can be useful as - cal | back contracts are usually generic. The same callback
module with contracts for the callbacks:

-module(db).
-behaviour(simple server).

-export([init/1, handle req/2, terminate/0]).
-record(state, {fieldl :: [atom()], field2 :: integer()}).

-type state() 11 #state{}.
-type request() :: {'store', term(), term()};
{'lookup', term()}.

-spec handle req(request(), state()) -> {'ok', term()}.

Each - spec contract isto be a subtype of the respective - cal | back contract.

10.7 Applications

This section isto be read withtheapp(4) and appl i cati on(3) manual pagesin Kernel.

10.7.1 Application Concept

When you have written code implementing some specific functionality you might want to make the code into an
application, that is, a component that can be started and stopped as a unit, and which can also be reused in other
systems.

To do this, create an application callback module, and describe how the application is to be started and stopped.

Then, an application specification is needed, which is put in an application resource file. Among other things, this
file specifies which modul es the application consists of and the name of the callback module.

If youusesyst ool s, the Erlang/OTPtoolsfor packaging code (see Releases), the code for each applicationisplaced
in a separate directory following a pre-defined directory structure.

10.7.2 Application Callback Module

How to start and stop the code for the application, that is, the supervision tree, is described by two callback functions:

start(StartType, StartArgs) -> {ok, Pid} | {ok, Pid, State}
stop(State)

* start iscaled when starting the application and is to create the supervision tree by starting the top supervisor.
It is expected to return the pid of the top supervisor and an optional term, St at e, which defaultsto[] . This
term is passed asisto st op.

e« Start Type isusualy theatom nor mal . It has other values only in the case of atakeover or failover, see
Distributed Applications.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 353

10.7 Applications

e Start Args isdefined by the key nod in the application resourcefile.

e stop/1iscaled after the application has been stopped and is to do any necessary cleaning up. The actual
stopping of the application, that is, the shutdown of the supervision tree, is handled automatically as described
in Starting and Stopping Applications.

Example of an application callback module for packaging the supervision tree from Supervisor Behaviour:

-module(ch_app).
-behaviour(application).

-export([start/2, stop/1]).

start(_Type, Args) ->
ch _sup:start link().

stop(State) ->
ok.

A library application that cannot be started or stopped, does not need any application callback module.

10.7.3 Application Resource File

To define an application, an application specification is created, which is put in an application resourcefile, or in
short an . app file:

{application, Application, [Optl,...,OptN]}.

« Application, anatom, isthe name of the application. The file must be named Appl i cat i on. app.

« Each Opt isatuple{ Key, Val ue}, which defines a certain property of the application. All keys are optional.
Default values are used for any omitted keys.

The contents of aminimal . app filefor alibrary application | i bapp looks as follows:
{application, libapp, [1}.
The contents of aminimal . app filech_app. app for asupervision tree application like ch_app looks asfollows:

{application, ch_app,
[{mod, {ch_app,[1}}1}.

The key nod defines the callback module and start argument of the application, in this case ch_app and [],
respectively. This means that the following is called when the application is to be started:

ch _app:start(normal, [])

Thefollowing is called when the application is stopped.

ch _app:stop([1])

When using syst ool s, the Erlang/OTP tools for packaging code (see Section Releases), the keysdescri pti on,
vsn, nodul es, regi stered,andappl i cati ons areaso to be specified:

{application, ch app,
[{description, "Channel allocator"},
{vsn, "1"},
{modules, [ch app, ch sup, ch3]},
{registered, [ch3]},
{applications, [kernel, stdlib, sasll},
]imod, {ch_app, [1}}

354 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

10.7 Applications

e description - A short description, astring. Defaultsto "".

e vsn - Version number, astring. Defaultsto "".

* nodul es - All modulesintroduced by this application. syst ool s usesthislist when generating boot scripts
and tar files. A module must be defined in only one application. Defaultsto|[] .

e registered - All names of registered processesin the application. syst ool s usesthislist to detect name
clashes between applications. Defaultsto[] .

* applications - All applications that must be started before this application is started. syst ool s usesthis
list to generate correct boot scripts. Defaultsto [] . Notice that all applications have dependenciesto at least
Kernel and STDLIB.

For details about the syntax and contents of the application resource file, see the app manual page in Kernel. ‘

10.7.4 Directory Structure

When packaging code using syst ool s, the code for each application is placed in a separate directory, | i b/
Appl i cati on- Vsn, where Vsn isthe version number.

This can be useful to know, even if syst ool s is not used, since Erlang/OTP is packaged according to the OTP
principles and thus comes with a specific directory structure. The code server (see the code(3) manual page in
Kernel) automatically uses code from the directory with the highest version number, if more than one version of an
application is present.

Directory Structure Guidelines for a Development Environment

Any directory structure for development will suffice as long as the released directory structure adheres to the
description below, but it is encouraged that the same directory structure also be used in a devel opment environment.
The version number should be omitted from the application directory name since thisis an artifact of the release step.

Some sub-directories are required. Some sub-directories are optional, meaning that it should only be used if the
application itself requiresit. Finally, some sub-directories are recommended, meaning it is encouraged that it is used
and used as described here. For example, both documentation and tests are encouraged to exist in an application for
it to be deemed a proper OTP application.

— ${application}
— doc

internal
examples
src

— include

— priv

— src

L— ¢{application}.app.src
— test

e src - Required. Contains the Erlang source code, the source of the . app file and internal include files used by
the application itself. Additional sub-directorieswithin sr ¢ can be used as namespaces to organize source files.
These directories should never be deeper than one level.

e priv-Optiona. Used for application specific files.
* incl ude - Optional. Used for public include files that must be reachable from other applications.
e doc - Recommended. Any source documentation should be placed in sub-directories here.

e doc/internal - Recommended. Any documentation that describes implementation details about this
application, not intended for publication, should be placed here.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 355

10.7 Applications

» doc/ exanpl es - Recommended. Source code for examples on how to use this application should be placed
here. It is encouraged that examples are sourced to the public documentation from this directory.

 doc/ src - Recommended. All source files for documentation, such as Markdown, AsciiDoc or XML-files,
should be placed here.

* test - Recommended. All files regarding tests, such as test suites and test specifications, should be placed
here.

Other directories in the development environment may be needed. If source code from languages other than Erlang is
used, for instance C-codefor NIFs, that code should be placed in aseparate directory. By conventionit isrecommended
to prefix such directories with the language name, for example c_sr ¢ for C, j ava_sr ¢ for Javaor go_sr c for
Go. Directorieswith _sr ¢ suffix indicatesthat it is a part of the application and the compilation step. The final build
artifacts should target thepri v/ 1 i b or pri v/ bi n directories.

Thepri v directory holds assets that the application needs during runtime. Executables should resideinpri v/ bi n
and dynamically-linked librariesshouldresideinpri v/ | i b. Other assetsarefreetoresidewithinthepr i v directory
but it is recommended they do so in a structured manner.

Source files from other languages that generate Erlang code, such as ASN.1 or Mibs, should be placed in directories,
at the top level or in sr ¢, with the same name as the source language, for example asnl and mi bs. Build artifacts
should be placed in their respective language directory, such assr ¢ for Erlang codeor j ava_sr ¢ for Java code.

The . app file for release may reside in the ebi n-directory in a development environment but it is encouraged that
thisisan artifact of the build step. By convention a. app. sr ¢ fileisused, which residesin the sr ¢ directory. This
fileisnearly identical asthe. app filebut certain fields may be replaced during the build step, such as the application
version.

Directory names should not be capitalized.

It is encouraged to omit empty directories.

Directory Structure for a Released System
A released application must follow a certain structure.

— ${application}-${version}
— bin
— doc
html
man[1-9]
pdf
internal
examples
— ebin
L— ¢${application}.app
— include
— priv
lib
bin
— src

e src - Optional. Contains the Erlang source code and internal include files used by the application itself. This
directory isno longer required in areleased application.

* ebi n - Required. Contains the Erlang object code, the beamfiles. The . app file must also be placed here.

e priv-Optiona. Used for application specific files. code: pri v_di r/ 1 isto be used to access this
directory.

 priv/lib-Recommended. Any shared-object files that are used by the application, such as NIFs or linked-
in-drivers, should be placed here.

e priv/bi n-Recommended. Any executable that is used by the application, such as port-programs, should be
placed here.

356 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

10.7 Applications

* incl ude - Optional. Used for public include files that must be reachable from other applications.

e bi n - Optional. Any executable that is a product of the application, such as escripts or shell-scripts, should be
placed here.

e doc - Optional. Any released documentation should be placed in sub-directories here.
* doc/ manl - Recommended. Man pages for Application executables.

e doc/ man3 - Recommended. Man pages for module APIs.

* doc/ man6 - Recommended. Man pages for Application overview.

e doc/ htm - Optional. HTML pages for the entire Application.

* doc/ pdf - Optional. PDF documentation for the entire Application.

The sr ¢ directory could be useful to release for debugging purposes but is not required. The i ncl ude directory
should only bereleased if the applications has public include files.

The only documentation that is recommended to be released in this way are the man pages. HTML and PDF will
normally be distributed in some other manner.

It is encouraged to omit empty directories.

10.7.5 Application Controller

When an Erlang runtime system is started, a number of processes are started as part of the Kernel application. One of
these processes is the application controller process, registered asappl i cati on_control | er.

All operations on applications are coordinated by the application controller. It isinteracted with through the functions
in the module appl i cati on, seetheappl i cati on(3) manual page in Kernel. In particular, applications can
be loaded, unloaded, started, and stopped.

10.7.6 Loading and Unloading Applications

Before an application can be started, it must be loaded. The application controller reads and stores the information
fromthe. app file

1> application:load(ch app).

ok

2> application:loaded applications().
[{kernel,"ERTS CXC 138 10","2.8.1.3"},
{stdlib, "ERTS CXC 138 10","1.11.4.3"},
{ch_app, "Channel allocator","1"}]

An application that has been stopped, or has never been started, can be unloaded. Theinformation about the application
is erased from the internal database of the application controller.

3> application:unload(ch app).

ok

4> application:loaded applications().
[{kernel,"ERTS CXC 138 10","2.8.1.3"},
{stdlib, "ERTS CXC 138 10","1.11.4.3"}]

Loading/unloading an application does not load/unload the code used by the application. Code loading is done
the usual way.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 357

10.7 Applications

10.7.7 Starting and Stopping Applications
An application is started by caling:

5> application:start(ch app).

ok

6> application:which applications().
[{kernel, "ERTS CXC 138 10","2.8.1.3"},
{stdlib, "ERTS CXC 138 16","1.11.4.3"},
{ch_app, "Channel allocator","1"}]

If the application is not already loaded, the application controller first loads it using appl i cati on: | oad/ 1. It
checksthevalueof theappl i cat i ons key, to ensurethat all applicationsthat areto be started before this application
arerunning.

The application controller then creates an application master for the application. The application master becomes
the group leader of al the processes in the application. 1/0 is forwarded to the previous group leader, though, thisis
just away to identify processes that belong to the application. Used for example to find itself from any process, or,
reciprocally, to kill them all when it terminates.

The application master startsthe application by calling the application callback function st ar t / 2 in the module, and
with the start argument, defined by the nod key inthe . app file.

An application is stopped, but not unloaded, by calling:

7> application:stop(ch _app).
ok

The application master stops the application by telling the top supervisor to shut down. The top supervisor tellsall its
child processes to shut down, and so on; the entire tree is terminated in reversed start order. The application master
then calls the application callback function st op/ 1 in the module defined by the nod key.

10.7.8 Configuring an Application

An application can be configured using configuration parameters. These are alist of { Par, Val } tuples specified
by akey env inthe. app file:

{application, ch app,
[{description, "Channel allocator"},
{vsn, "1"},
{modules, [ch_app, ch_sup, ch3]},
{registered, [ch3]},
{applications, [kernel, stdlib, sasl]},

{mod, {ch_app,[1}},
{env, [{file, "/usr/local/log"}1}

1.

Par isto bean atom. Val isany term. The application can retrieve the value of a configuration parameter by calling
application:get_env(App, Par) oranumber of similar functions, see the appl i cati on(3) manual
pagein Kernel.

Example:

358 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

10.7 Applications

% erl

Erlang (BEAM) emulator version 5.2.3.6 [hipe] [threads:0]
Eshell V5.2.3.6 (abort with ~G)

1> application:start(ch _app).

ok

2> application:get env(ch app, file).
{ok,"/usr/local/log"}

The valuesin the . app file can be overridden by values in a system configuration file. Thisis afile that contains
configuration parameters for relevant applications:

[{Applicationl, [{Parll,Vvalll},...1},
{ApplicationN, [{ParN1,ValN1},...]}].

The system configuration isto be called Nane. conf i g and Erlang isto be started with the command-line argument
-confi g Name. For details, seetheconf i g(4) manual pagein Kernel.

Example:

A filet est . confi g iscreated with the following contents:
[{ch _app, [{file, "testlog"}1}].

Thevalueof fi | e overridesthevalueof fi | e asdefined inthe. app file:

% erl -config test
Erlang (BEAM) emulator version 5.2.3.6 [hipe] [threads:0]

Eshell V5.2.3.6 (abort with ~G)

1> application:start(ch app).

ok

2> application:get env(ch app, file).
{ok, "testlog"}

If release handling is used, exactly one system configurationfileisto beused and that fileistobecaledsys. confi g.

Thevaluesinthe. app fileand the valuesin a system configuration file can be overridden directly from the command
line:

% erl -ApplName Parl Vall ... ParN ValN

Example:

% erl -ch app file '"testlog"'
Erlang (BEAM) emulator version 5.2.3.6 [hipe] [threads:0]

Eshell V5.2.3.6 (abort with ~G)

1> application:start(ch _app).

ok

2> application:get env(ch app, file).
{ok, "testlog"}

10.7.9 Application Start Types
A start typeis defined when starting the application:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 359

10.8 Included Applications

application:start(Application, Type)

application:start(Application) is the same as calling application:start(Application,
t enpor ary) . Thetype can also be per nanent ortransi ent:

» If apermanent application terminates, all other applications and the runtime system are also terminated.

« |If atransient application terminates with reason nor mal , thisis reported but no other applications are
terminated. If atransient application terminates abnormally, that is with any other reason than nor mal , all
other applications and the runtime system are also terminated.

» If atemporary application terminates, this is reported but no other applications are terminated.

An application can always be stopped explicitly by calling appl i cati on: st op/ 1. Regardless of the mode, no
other applications are affected.

Thetransient mode is of little practical use, since when a supervision tree terminates, the reason is set to shut down,
not nor mal .

10.8 Included Applications

10.8.1 Introduction

An application can include other applications. Anincluded application hasits own application directory and . app
file, but it is started as part of the supervisor tree of another application.

An application can only be included by one other application.
An included application can include other applications.
An application that is not included by any other applicationis called aprimary application.

Primary application

Inclnded applications

Included applications

Figure 8.1: Primary Application and Included Applications

The application controller automatically loads any included applications when loading a primary application, but does
not start them. Instead, the top supervisor of the included application must be started by a supervisor in the including
application.

360 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

10.8 Included Applications

This means that when running, an included application isin fact part of the primary application, and a processin an
included application considersitself belonging to the primary application.

10.8.2 Specifying Included Applications
Which applicationsto include is defined by thei ncl uded_appl i cat i ons key inthe. app file:

{application, prim_app,
[{description, "Tree application"},
{vsn, "1"},
{modules, [prim_app cb, prim app sup, prim app_serverl},
{registered, [prim_app server]},
{included applications, [incl appl},
{applications, [kernel, stdlib, sasll},
{mod, {prim_app_cb,[]1}},
{env, [{file, "/usr/local/log"}1}
1}.

10.8.3 Synchronizing Processes during Startup

The supervisor tree of an included application is started as part of the supervisor tree of the including application. If
thereisaneed for synchronization between processes in the including and included applications, this can be achieved
by using start phases.

Start phases are defined by the st art _phases key inthe. app fileasalist of tuples{ Phase, PhaseAr gs},
where Phase isan atom and PhaseAr gs isaterm.

The value of the nod key of the including application must be set to {application_starter,
[Modul e, St art Args] }, where Modul e as usua is the application callback module. St ar t Ar gs is a term
provided as argument to the callback function Modul e: start/ 2:

{application, prim_app,
[{description, "Tree application"},
{vsn, "1"},
{modules, [prim app cb, prim app sup, prim app serverl},
{registered, [prim _app server]},
{included applications, [incl appl},
{start phases, [{init,[1}, {go,[1}1},
{applications, [kernel, stdlib, sasll},
{mod, {application starter,[prim app cb,[]11}},
{env, [{file, "/usr/local/log"}1}
1}.

{application, incl app,
[{description, "Included application"},
{vsn, "1"},
{modules, [incl app cb, incl app sup, incl app serverl},
{registered, [1},
{start phases, [{go,[1}1},
{applications, [kernel, stdlib, sasll},
{mod, {incl app cb,[1}}
1}.

When starting a primary application with included applications, the primary application is started the normal way,
that is:

e Theapplication controller creates an application master for the application
* Theapplication master callsMbdul e: start (nornmal , Start Args) to start the top supervisor.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 361

10.9 Distributed Applications

Then, for the primary application and each included application in top-down, |eft-to-right order, the application master
cadlsMbdul e: start _phase(Phase, Type, PhaseAr gs) foreach phasedefined for the primary application,
in that order. If a phase is not defined for an included application, the function is not called for this phase and
application.

The following requirements apply to the . app file for an included application:

e The{nod, {Modul e, StartArgs}} option must beincluded. Thisoption is used to find the callback
module Mbdul e of the application. St ar t Ar gs isignored, asMbdul e: st art/ 2 iscalled only for the
primary application.

» |If theincluded application itself contains included applications, instead the { nod,
{application_starter, [Mdule, StartArgs]}} option must beincluded.

e The{start_phases, [{Phase, PhaseArgs}]} option must beincluded, and the set of specified
phases must be a subset of the set of phases specified for the primary application.

When starting pri m_app as defined above, the application controller calls the following callback functions before
application:start(primapp) returnsavalue

application:start(prim app)

=> prim_app _cb:start(normal, [])

=> prim_app cb:start phase(init, normal,
=> prim app cb:start phase(go, normal, []
=> incl app cb:start phase(go, normal, []
ok

[1)
)
)

10.9 Distributed Applications
10.9.1 Introduction

In adistributed system with several Erlang nodes, it can be necessary to control applications in a distributed manner.
If the node, where a certain application is running, goes down, the application is to be restarted at another node.

Such an applicationiscalled adistributed application. Noticethat it isthe control of the application that is distributed.
All applications can be distributed in the sense that they, for example, use services on other nodes.

Since a distributed application can move between nodes, some addressing mechanism is required to ensure that it can
be addressed by other applications, regardless on which node it currently executes. This issue is not addressed here,
but the gl obal or pg modulesin Kernel can be used for this purpose.

10.9.2 Specifying Distributed Applications

Distributed applications are controlled by both the application controller and a distributed application controller
process, di st _ac. Both these processes are part of the Kernel application. Distributed applications are thus specified
by configuring the Kernel application, using the following configuration parameter (seeaso ker nel (6)):

distributed = [{Application, [Tinmeout,] NodeDesc}]
* Specifieswhere the application Appl i cati on = at on{) can execute.

* NodeDesc = [Node | {Node, ..., Node}] isalist of node namesin priority order. The order between
nodesin atupleis undefined.
e Timeout = integer () specifieshow many millisecondsto wait before restarting the application at

another node. It defaults to O.

For distribution of application control to work properly, the nodes where adistributed application can run must contact
each other and negotiate where to start the application. Thisis done using the following configuration parameters in
Kernel:

362 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

10.9 Distributed Applications

« sync_nodes_nandatory = [Node] - Specifieswhich other nodes must be started (within the time-out
specified by sync_nodes_t i meout).

e sync_nodes_optional = [Node] - Specifieswhich other nodes can be started (within the time-out
specified by sync_nodes_ti neout).
e sync_nodes_tinmeout = integer() | infinity -Specifieshow many millisecondsto wait for the

other nodes to start.

When started, the node waitsfor all nodesspecifiedby sync_nodes_nandat ory andsync_nodes_opt i onal
to come up. When all nodes are up, or when all mandatory nodes are up and the time specified by
sync_nodes_ti meout haselapsed, al applications start. If not all mandatory nodes are up, the node terminates.

Example:

Anapplicationnmyapp istorunatthenodecpl@ave. If thisnodegoesdown, myapp istoberestartedatcp2@ave
orcp3@ave. A system configuration filecpl. confi g for cpl@ave canlook asfollows:

[{kernel,
[{distributed, [{myapp, 5000, [cpl@cave, {cp2@cave, cp3@cave}]}1},
{sync_nodes mandatory, [cp2@cave, cp3@cavel},
{sync_nodes timeout, 5000}
1
}
1.

The system configuration filesfor cp2@ave and cp3@ave are identical, except for the list of mandatory nodes,
whichistobe[cpl@ave, cp3@ave] forcp2@ave and[cpl@ave, cp2@ave] forcp3@ave.

All involved nodes must have the same value for di st ri but ed and sync_nodes_t i meout . Otherwise the
system behaviour is undefined.

10.9.3 Starting and Stopping Distributed Applications

When all involved (mandatory) nodes have been started, the distributed application can be started by caling
application:start(Application) atall of these nodes.

A boot script (see Releases) can be used that automatically starts the application.

The application is started at the first operational node that is listed in the list of nodes in the di st ri but ed
configuration parameter. The application is started as usual. That is, an application master is created and calls the
application callback function:

Module:start(normal, StartArgs)

Example:
Continuing the exampl e from the previous section, the three nodes are started, specifying the system configuration file:

> erl -sname cpl -config cpl
> erl -sname cp2 -config cp2
> erl -sname cp3 -config cp3

When all nodes are operational, myapp can be started. Thisisachieved by callingappl i cati on: start (myapp)
at all three nodes. It isthen started at cp1, as shown in the following figure:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 363

10.9 Distributed Applications

myapp

Figure 9.1: Application myapp - Situation 1

Similarly, the application must be stopped by callingappl i cat i on: st op(Appl i cati on) atall involved nodes.

10.9.4 Failover

If the node where the application is running goes down, the application is restarted (after the specified time-out) at
the first operational node that is listed in the list of nodes in the di st ri but ed configuration parameter. This is
called afailover.

The application is started the normal way at the new node, that is, by the application master calling:
Module:start(normal, StartArgs)

An exception isif the application hasthe st art _phases key defined (see Included Applications). The application
isthen instead started by calling:

Module:start({failover, Node}, StartArgs)
Here Node is the terminated node.

Example:

If cpl goes down, the system checks which one of the other nodes, cp2 or cp3, has the least number of running
applications, but waits for 5 seconds for cpl to restart. If cpl does not restart and cp2 runs fewer applications than
cp3, nyapp isrestarted oncp2.

364 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

10.9 Distributed Applications

Mmyapp

3 secs.

myapp

Figure 9.2: Application myapp - Situation 2

Suppose now that cp2 goes also down and does not restart within 5 seconds. myapp is now restarted on cp3.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 365

10.9 Distributed Applications

myapp

3 secs.

myapp

Figure 9.3: Application myapp - Situation 3

10.9.5 Takeover

If a node is started, which has higher priority according to di st ri but ed than the node where a distributed
application isrunning, the applicationisrestarted at the new node and stopped at the old node. Thisiscalled atakeover .

The application is started by the application master calling:
Module:start({takeover, Node}, StartArgs)

Here Node isthe old node.
Example:

If myapp isrunning at cp3, and if cp2 now restarts, it does not restart nyapp, as the order between the cp2 and
cp3 nodesis undefined.

myapp

Figure 9.4: Application myapp - Situation 4

366 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

10.10 Releases

However, if cpl aso restarts, the function appl i cati on: t akeover/ 2 moves nmyapp to cpl, as cpl has
a higher priority than cp3 for this application. In this case, Modul e: start ({t akeover, cp3@ave},
St art Args) isexecuted at cpl to start the application.

= @

Yapp

cpl: application takeoverimyapp, permanent)

myapp

Figure 9.5: Application myapp - Situation 5

10.10 Releases

This section isto be read withther el (4) ,syst ool s(3),andscri pt (4) manual pagesin SASL.

10.10.1 Release Concept

When you have written one or more applications, you might want to create a complete system with these applications
and a subset of the Erlang/OTP applications. Thisiscalled arelease.

To do this, create arelease resource file that defines which applications are included in the rel ease.

The release resource file is used to generate boot scripts and release packages. A system that is transferred to and
installed at another siteis called atarget system. How to use a rel ease package to create atarget system is described
in System Principles.

10.10.2 Release Resource File

To define arelease, create areleaseresourcefile, orinshort a. r el file. Inthefile, specify the name and version of
the release, which ERTS version it is based on, and which applications it consists of:

{release, {Name,Vsn}, {erts, EVsn},
[{Applicationl, AppVsnl},

{AbﬁlicationN, AppVsnN}1}.

Narme, Vsn, EVsn, and AppVsn are strings.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 367

10.10 Releases

Thefile must be named Rel . r el , where Rel isaunique name.

Each Appl i cati on (atom) and AppVsn is the name and version of an application included in the release. The
minimal release based on Erlang/OTP consists of the Kernel and STDLIB applications, so these applications must
beincluded inthelist.

If the release is to be upgraded, it must also include the SASL application.
Example: A release of ch_app from Applications has the following . app file:

{application, ch app,
[{description, "Channel allocator"},
{vsn, "1"},
{modules, [ch app, ch sup, ch3]},
{registered, [ch3]1},
{applications, [kernel, stdlib, sasll},
]imod, {ch_app, [1}}

The. rel filemust aso containkernel ,stdlib,andsasl , asthese applications are required by ch_app. The
fileiscaledch_rel-1.rel:

{release,

{"ch _rel", "A"},
{erts, "5.3"},
[{kernel, "2.9"},
{stdlib, "1.12"},
{sasl, "1.10"},
{ch_app, "1"}]

}.

10.10.3 Generating Boot Scripts

syst ool s inthe SASL application includestoolsto build and check releases. Thefunctionsread ther el and. app
filesand perform syntax and dependency checks. Thesyst ool s: make_scri pt/ 1, 2 function isused to generate
aboot script (see System Principles):

1> systools:make script("ch rel-1", [locall).
ok

This creates a boot script, both the readable version, ch_rel-1.script, and the binary version,
ch_rel - 1. boot, used by the runtime system.

e "ch_rel-1" isthenameof the. r el file, minusthe extension.

e | ocal isanoptionthat meansthat the directories where the applications are found are used in the boot script,
instead of $ROOT/ | i b ($ROCT istheroot directory of theinstalled release).

Thisisauseful way to test a generated boot script locally.

When starting Erlang/OTP using the boot script, all applications from the . r el file are automatically loaded and
started:

368 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

10.10 Releases

% erl -boot ch rel-1
Erlang (BEAM) emulator version 5.3

Eshell V5.3
1>
=PROGRESS REPORT==== 13-Jun-2003::12:01:15
supervisor: {local,sasl safe sup}
started: [{pid,<0.33.0>},
{name,alarm _handler},

(abort with ~G)

{mfa,{alarm _handler,start link, []}},

{restart_type,permanent},
{shutdown, 2000},
{child type,worker}]

=PROGRESS REPORT====
application:
started at:

13-Jun-2003::12:01:15
sasl
nonode@nohost

=PROGRESS REPORT====
application:

started at:

13-Jun-2003::12:01:15
ch_app
nonode@nohost

10.10.4 Creating a Release Package

Thesyst ool s: make_tar/ 1, 2 functiontakesa. r el fileasinput and creates azipped tar file with the code for

the specified applications, arelease package:

1> systools:make script("ch rel-1").
ok

2> systools:make tar("ch rel-1").

ok

The release package by default contains:

The. app files
The. rel file

The binary boot script renamedto st art . boot

% tar tf ch rel-1.tar
lib/kernel-2.9/ebin/kernel.app
lib/kernel-2.9/ebin/application.beam

lib/stdlib-1.12/ebin/stdlib.app
lib/stdlib-1.12/ebin/beam lib.beam

iib/sasl-l.10/ebin/sasl.app
lib/sasl-1.10/ebin/sasl.beam

lib/ch_app-1/ebin/ch app.app
lib/ch_app-1/ebin/ch app.beam
lib/ch_app-1/ebin/ch sup.beam
lib/ch_app-1/ebin/ch3.beam
releases/A/start.boot
releases/A/ch rel-1.rel
releases/ch rel-1.rel

Ericsson AB. All Rights Reserved

The object code for all applications, structured according to the application directory structure

.: Erlang/OTP System Documentation | 369

10.10 Releases

A new boot script was generated, without the | ocal option set, before the rel ease package was made. In the release
package, all application directoriesareplaced under | i b. Y ou do not know wherethe release package will beinstalled,
s0 no hard-coded absolute paths are allowed.

The release resource file mysyst em r el is duplicated in the tar file. Originaly, this file was only stored in the
r el eases directory to makeit possiblefor ther el ease_handl er to extract thisfile separately. After unpacking
thetar file,r el ease_handl er would automatically copy thefiletor el eases/ FI RST. However, sometimesthe
tar fileisunpacked without involvingther el ease_handl er (for example, when unpacking thefirst target system)
and the file is therefore now instead duplicated in the tar file so no manual copying is necessary.

If ar el up file and/or a system configuration file called sys. confi g, or asys. confi g. src, isfound, these
files are also included in the release package. See Release Handling.

Options can be set to make the release package include source code and the ERTS binary as well.

For information on how toinstall thefirst target system, using arel ease package, see System Principles. For information
on how to install a new release package in an existing system, see Release Handling.

10.10.5 Directory Structure

The directory structure for the code installed by the release handler from arelease package is as follows:

$RO0T/1ib/Appl-AVsnl/ebin
/priv

/App2-AVsn2/ebin

/priv

)Apr—AVan/ebin
/priv
/erts-EVsn/bin
/releases/Vsn
/bin
e |ib-Application directories
e erts-EVsn/ bi n - Erlang runtime system executables

* releases/Vsn-.rel fileandboot script st art . boot ; if present in the release package, r el up and/or
sys. configorsys. config.src

e bi n - Top-level Erlang runtime system executables

Applicationsarenot required to belocated under directory $ROOT/ | i b. Several installation directories, which contain
different parts of a system, can thus exist. For example, the previous example can be extended as follows:

$SECOND ROOT/.../SAppl-SAVsnl/ebin
/priv

/SApp2-SAVsn2/ebin

/priv

/SAppN-SAVsnN/ebin
/priv
$THIRD ROOT/TAppl-TAVsnl/ebin
/priv
/TApp2-TAVsn2/ebin
/priv

/TAppN-TAVsnN/ebin
/priv

$SECOND ROOT and $THI RD ROOT ae introduced as variables in the cal to the
syst ool s: make_scri pt/ 2 function.

370 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

10.11 Release Handling

Disk-Less and/or Read-Only Clients

If a complete system consists of disk-less and/or read-only client nodes, acl i ent s directory isto be added to the
$ROOT directory. A read-only node is a node with aread-only file system.

The cl i ent s directory is to have one subdirectory per supported client node. The name of each client directory
is to be the name of the corresponding client node. As a minimum, each client directory is to contain the bi n and
r el eases subdirectories. These directories are used to store information about installed releases and to appoint the
current release to the client. The $ROOT directory thus contains the following:

$ROOT/. ..
/clients/ClientNamel/bin
/releases/Vsn
/ClientName2/bin
/releases/Vsn

/ClientNameN/bin
/releases/Vsn

This structure is to be used if al clients are running the same type of Erlang machine. If there are clients running
different types of Erlang machines, or on different operating systems, thecl i ent s directory can be divided into one

subdirectory per type of Erlang machine. Alternatively, one $ROOT can be set up per type of machine. For each type,
some of the directories specified for the $ROOT directory are to be included:

$ROOT/. ..
/clients/Typel/lib

/erts-EVsn

/bin

/ClientNamel/bin
/releases/Vsn

/ClientName2/bin
/releases/Vsn

/ClientNameN/bin
/releases/Vsn

JTypeN/lib
/erts-EVsn
/bin

With this structure, the root directory for clients of Typel is$ROOT/ cl i ent s/ Typel.

10.11 Release Handling
10.11.1 Release Handling Principles

An important feature of the Erlang programming language is the ability to change module code in runtime, code
replacement, as described in the Erlang Reference Manual.

Based on this feature, the OTP application SASL provides a framework for upgrading and downgrading between
different versions of an entire release in runtime. Thisis called release handling.

The framework consists of :

« Offline support - syst ool s for generating scripts and building release packages
e Onlinesupport - r el ease_handl er for unpacking and installing rel ease packages

Theminimal system based on Erlang/OTP, enabling release handling, thus consists of the Kernel, STDLIB, and SASL
applications.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 371

10.11 Release Handling

Release Handling Workflow
Step 1) A releaseis created as described in Releases.

Step 2) The release is transferred to and installed at target environment. For information of how to install the first
target system, see System Principles.
Step 3) Modifications, for example, error corrections, are made to the code in the development environment.

Step 4) At some point, it is time to make a new version of release. The relevant . app files are updated and a new
. rel fileiswritten.

Step 5) For each modified application, an application upgradefile, . appup, iscreated. In thisfile, it is described how
to upgrade and/or downgrade between the old and new version of the application.

Step 6) Based onthe. appup files, arelease upgradefilecalledr el up, iscreated. Thisfile describes how to upgrade
and/or downgrade between the old and new version of the entire release.

Step 7) A new release package is made and transferred to the target system.
Step 8) The new release package is unpacked using the release handler.

Step 9) The new version of the release is installed, also using the release handler. This is done by evaluating the
instructionsin r el up. Modules can be added, deleted, or reloaded, applications can be started, stopped, or restarted,
and so on. In some cases, it is even necessary to restart the entire emulator.

« If theinstallation fails, the system can be rebooted. The old release version is then automatically used.

« |f theinstallation succeeds, the new version is made the default version, which isto now be used if thereisa
system reboot.

Release Handling Aspects

Appup Cookbook, contains examples of . appup files for typical cases of upgrades/downgrades that are normally
easy to handle in runtime. However, many aspects can make rel ease handling complicated, for example:

« Complicated or circular dependencies can make it difficult or even impossible to decide in which order things
must be done without risking runtime errors during an upgrade or downgrade. Dependencies can be:
* Between nodes
e Between processes
* Between modules

» During release handling, non-affected processes continue normal execution. This can lead to time-outs or other
problems. For example, new processes created in the time window between suspending processes using a certain
module, and loading a new version of this module, can execute old code.

It is thus recommended that code is changed in as small steps as possible, and always kept backwards compatible.

10.11.2 Requirements

For release handling to work properly, the runtime system must have knowledge about which release it is running.
It must also be able to change (in runtime) which boot script and system configuration file to use if the system is
rebooted, for example, by hear t after afailure. Thus, Erlang must be started as an embedded system; for information
on how to do this, see Embedded System.

For system reboots to work properly, it is also required that the system is started with heartbeat monitoring, see the
erl (1) manua pagein ERTS and thehear t (3) manual pagein Kernel

Other requirements:

372 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

10.11 Release Handling

» Theboot script included in a release package must be generated from the same . r el file as the release package
itself.

Information about applications is fetched from the script when an upgrade or downgrade is performed.
* The system must be configured using only one system configuration file, called sys. confi g.

If found, thisfileis automatically included when a rel ease package is created.
e All versions of arelease, except the first one, must contain ar el up file.

If found, thisfileis automatically included when a rel ease package is created.

10.11.3 Distributed Systems

If the system consists of several Erlang nodes, each node can use its own version of the release. The release handler
isalocally registered process and must be called at each node where an upgrade or downgrade is required. A release
handling instruction, sync_nodes, can be used to synchronize the rel ease handler processes at a number of nodes,
seetheappup(4) manua pagein SASL.

10.11.4 Release Handling Instructions

OTP supports a set of release handling instructions that are used when creating . appup files. The release handler
understands a subset of these, the low-level instructions. To make it easier for the user, there are also a number of
high-level instructions, which are translated to low-level instructions by syst ool s: make_r el up.

Some of the most frequently used instructions are described in this section. The completelist of instructionsisincluded
intheappup(4) manua pagein SASL.

First, some definitions:

* Residence module - The module where a process has its tail-recursive loop function(s). If these functions are
implemented in several modules, all those modules are residence modules for the process.

e Functional module - A module that is not a residence module for any process.

For a process implemented using an OTP behaviour, the behaviour module is the residence module for that process.
The callback moduleis afunctional module.

load_module

If asimple extension has been made to afunctional module, it is sufficient to load the new version of the module into
the system, and remove the old version. Thisis called simple code r eplacement and for thisthe following instruction
isused:

{load module, Module}

update

If amore complex change has been made, for example, achangeto theformat of theinternal state of agen_ser ver,
simple code replacement is not sufficient. Instead, it is necessary to:

e Suspend the processes using the module (to avoid that they try to handle any requests before the code
replacement is completed).

e Ask them to transform the internal state format and switch to the new version of the module.

e Removethe old version.

* Resume the processes.

Thisis called synchronized code replacement and for this the following instructions are used:

{update, Module, {advanced, Extra}}
{update, Module, supervisor}

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 373

10.11 Release Handling

updat e with argument { advanced, Ext r a} isused when changing the internal state of a behaviour as described
above. It causes behaviour processesto call the callback function code_change, passing the term Ext r a and some
other information as arguments. See the manual pages for the respective behaviours and Appup Cookbook.

updat e with argument super vi sor is used when changing the start specification of a supervisor. See Appup
Cookbook.

When amoduleisto be updated, the rel ease handler finds which processes that are using the module by traversing the
supervision tree of each running application and checking all the child specifications:

{Id, StartFunc, Restart, Shutdown, Type, Modules}

A process uses amoduleif the nameislisted in Modul es in the child specification for the process.

If Modul es=dynam c, which isthe casefor event managers, the event manager processinformsthe release handler
about the list of currently installed event handlers (gen_event), and it is checked if the module name isin thislist
instead.

The release handler suspends, asks for code change, and resumes processes by caling the functions
sys: suspend/ 1, 2,sys: change_code/ 4, 5,andsys: resune/ 1, 2, respectively.

add_module and delete_module
If anew moduleisintroduced, the following instruction is used:
{add_module, Module}

The instruction loads the module and is necessary when running Erlang in embedded mode. It is not strictly required
when running Erlang in interactive (default) mode, since the code server then automatically searches for and loads
unloaded modules.

The opposite of add_nodul e isdel et e_nodul e, which unloads a module;
{delete _module, Module}

Any process, in any application, with Modul e as residence module, is killed when the instruction is evaluated. The
user must therefore ensure that all such processes are terminated before del eting the module, to avoid a situation with
failing supervisor restarts.

Application Instructions
The following isthe instruction for adding an application:
{add_application, Application}

Adding an application means that the modules defined by the nodul es key in the . app file are loaded using a
number of add_nodul e instructions, and then the application is started.

The following isthe instruction for removing an application:
{remove application, Application}

Removing an application means that the application is stopped, the modules are unloaded using a number of
del et e_nodul e instructions, and then the application specification is unloaded from the application controller.

The following is the instruction for restarting an application:
{restart _application, Application}

Restarting an application means that the application is stopped and then started again similar to using the instructions
renove_applicationandadd_appl i cati on insequence.

374 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

10.11 Release Handling

apply (Low-Level)

To call an arbitrary function from the release handler, the following instruction is used:

{apply, {M, F, A}}
Therelease handler evaluatesappl y(M F, A).

restart new_emulator (Low-Level)

This instruction is used when changing to a new emulator version, or when any of the core applications Kernel,
STDLIB, or SASL isupgraded. If asystem reboot isneeded for another reason, ther est art _emnul at or instruction
isto be used instead.

This instruction requires that the system is started with heartbeat monitoring, seetheer | (1) manua pagein ERTS
andthe heart (3) manua pagein Kernel.

Therestart _new_enul at or instruction must always be the first instruction in arelup. If the relup is generated
by syst ool s: nake_r el up/ 3, 4, thisisautomatically ensured.

When the release handler encounters the instruction, it first generates a temporary boot file, which starts the new
versions of the emulator and the core applications, and the old version of all other applications. Then it shuts down the
current emulator by callingi ni t : r eboot (), seethei ni t (3) manual pageinKernel. All processesareterminated
gracefully and the system is rebooted by the hear t program, using the temporary boot file. After the reboot, the rest
of the relup instructions are executed. Thisis done as a part of the temporary boot script.

This mechanism causes the new versions of the emulator and core applications to run with the old version of
other applications during startup. Thus, take extra care to avoid incompatibility. Incompatible changesin the core
applications can in some situations be necessary. |f possible, such changes are preceded by deprecation over two
major rel eases before the actual change. To ensure the application isnot crashed by an incompatible change, aways
remove any call to deprecated functions as soon as possible.

An info report is written when the upgrade is completed. To programmatically find out if the upgrade is complete,
cal rel ease_handl er: whi ch_rel eases(current) and check if it returns the expected (that is, the new)
release.

The new release version must be made permanent when the new emulator is operational. Otherwise, the old version
will be used if there is a new system reboot.

On UNIX, therelease handler tellsthehear t program which command to use to reboot the system. The environment
variable HEART _COMVAND, normally used by the heart program, is ignored in this case. The command instead
defaults to $ROOT/ bi n/ st art. Another command can be set by using the SASL configuration parameter
start _prg, seethesasl (6) manual page.

restart_emulator (Low-Level)

Thisinstruction is not related to upgrades of ERTS or any of the core applications. It can be used by any application
to force arestart of the emulator after all upgrade instructions are executed.

A relup script can only have oner est art _enul at or instruction and it must always be placed at the end. If the
relup is generated by syst ool s: make_rel up/ 3, 4, thisisautomatically ensured.

When the release handler encountersthe instruction, it shuts down the emulator by callingi ni t : r eboot () , seethe
i ni t(3) manual pagein Kernel. All processes are terminated gracefully and the system can then be rebooted by the
hear t program using the new release version. No more upgrade instruction is executed after the restart.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 375

10.11 Release Handling

10.11.5 Application Upgrade File

To define how to upgrade/downgrade between the current version and previous versions of an application, an
application upgrade file, or in short an . appup file is created. The file is to be called Appl i cati on. appup,
where Appl i cat i on isthe application name:

{Vsn,
[{UpFromVsnl, InstructionsUl},

{UpFromVsnK, InstructionsUK}],
[{DownToVsnl, InstructionsD1},

{DownToVsnK, InstructionsDK}]}.

e Vsn, astring, isthe current version of the application, as defined inthe . app file.
« Each UpFr onmVsn isaprevious version of the application to upgrade from.

» EachDownToVsn isaprevious version of the application to downgrade to.

« Eachl nstructions isalist of release handling instructions.

For information about the syntax and contents of the . appup file, seetheappup(4) manua pagein SASL.
Appup Cookbook includes examples of . appup filesfor typical upgrade/downgrade cases.

Example: Consider the release ch_r el - 1 from Releases. Assume you want to add a function avai | abl e/ 0 to
server ch3, which returns the number of available channels (when trying out the example, change in a copy of the
original directory, so that the first versions are till available):

-module(ch3).
-behaviour(gen server).

-export([start link/0]).

-export([alloc/0, free/l1]).
-export([available/0]).

-export([init/1, handle call/3, handle cast/2]).

start _link() ->
gen server:start link({local, ch3}, ch3, [1, []).

alloc() ->
gen_server:call(ch3, alloc).

free(Ch) ->
gen_server:cast(ch3, {free, Ch}).

available() ->
gen_server:call(ch3, available).

init(_Args) ->
{ok, channels()}.

handle call(alloc, From, Chs) ->
{Ch, Chs2} = alloc(Chs),
{reply, Ch, Chs2};

handle call(available, From, Chs) ->
N = available(Chs),
{reply, N, Chs}.

handle cast({free, Ch}, Chs) ->
Chs2 = free(Ch, Chs),
{noreply, Chs2}.

A new version of thech_app. app file must now be created, where the version is updated:

376 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

10.11 Release Handling

{application, ch app,
[{description, "Channel allocator"},
{vsn, "2"},
{modules, [ch app, ch sup, ch3]},
{registered, [ch3]},
{applications, [kernel, stdlib, sasl]},
]imod, {ch_app, [1}}

To upgrade ch_app from" 1" to" 2" (and to downgrade from " 2" to " 1"), you only need to load the new (old)
version of the ch3 callback module. Create the application upgrade filech_app. appup inthe ebi n directory:

{II2II’
[{"1", [{load module, ch3}1}1,
[{"1", [{load module, ch3}1}]
}.

10.11.6 Release Upgrade File

To define how to upgrade/downgrade between the new version and previous versions of arelease, arelease upgrade
file, orin short r el up file, isto be created.

Thisfile does not need to be created manually, it can be generated by syst ool s: make_rel up/ 3, 4. Therelevant
versions of the . r el file, . app files, and . appup files are used as input. It is deduced which applications are to
be added and deleted, and which applications that must be upgraded and/or downgraded. The instructions for this are
fetched fromthe . appup files and transformed into asingle list of low-level instructionsin the right order.

If ther el up fileisrelatively simple, it can be created manually. It is only to contain low-level instructions.
For details about the syntax and contents of the release upgrade file, seether el up(4) manual pagein SASL.

Example, continued from the previous section: You have a new version "2" of ch_app and an . appup file. A
new version of the . rel fileis aso needed. This time the fileiscalled ch_rel - 2. rel and the release version
string is changed from "A" to "B":

{release,
{"Chire.l.”, IIBII}’
{erts, "5.3"},

[{kernel, "2.9"},
{stdlib, "1.12"},
{sasl, "1.10"},
{ch_app, "2"}]

Now ther el up file can be generated:

1> systools:make relup("ch rel-2", ["ch rel-1"], ["ch rel-1"]).
ok

This generates a r el up file with instructions for how to upgrade from version "A" ("ch _rel-1") to version
"B" ("ch_rel-2") and how to downgrade from version "B" to version "A".

Both the old and new versionsof the. app and. r el filesmust beinthe code path, aswell asthe. appup and (new)
. beamfiles. The code path can be extended by using the option pat h:

1> systools:make relup("ch rel-2", ["ch rel-1"], ["ch rel-1"],
[{path,["../ch _rel-1",

"../ch_rel-1/1ib/ch _app-1/ebin"1}1).

ok

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 377

10.11 Release Handling

10.11.7 Installing a Release

When you have made anew version of arel ease, arel ease package can be created with this new version and transferred
to the target environment.

To ingtall the new version of the release in runtime, the release handler is used. Thisis a process belonging to the
SASL application, which handles unpacking, installation, and removal of rel ease packages. It iscommunicated through
ther el ease_handl er module. For details, seether el ease_handl er (3) manual pagein SASL.

Assuming there is an operational target system with installation root directory $ROOT, the release package with the
new version of the release isto be copied to $ROOT/ r el eases.

First, unpack the release package. The files are then extracted from the package:

release handler:unpack release(ReleaseName) => {ok, Vsn}
* Rel easeNane isthe name of the release package except the . t ar . gz extension.
» Vsn istheversion of the unpacked release, as defined inits. r el file.

A directory $ROOT/ | i b/ r el eases/ Vsn is created, where the . r el file, the boot script st art . boot , the
system configuration file sys. confi g, and r el up are placed. For applications with new version numbers, the
application directories are placed under $ROOT/ | i b. Unchanged applications are not affected.

An unpacked release can be installed. The release handler then evaluates the instructionsinr el up, step by step:
release handler:install release(Vsn) => {ok, FromVsn, []}

If an error occurs during the installation, the system is rebooted using the old version of the release. If installation
succeeds, the system is afterwards using the new version of the release, but if anything happens and the system is
rebooted, it starts using the previous version again.

To be made the default version, the newly installed release must be made per manent, which means the previous
version becomes old:

release handler:make permanent(Vsn) => ok

The system keeps information about which versions are old and permanent in the files $SROOT/ r el eases/
RELEASES and $ROOT/ r el eases/ start _erl . dat a.

To downgrade from Vsn to FronVsn, i nstal | _r el ease must be called again:
release handler:install release(FromVsn) => {ok, Vsn, [1}

Aninstalled, but not permanent, release can be removed. Information about the release is then deleted from $ROOT/
r el eases/ RELEASES and the release-specific code, that is, the new application directories and the $ROCT/
r el eases/ Vsn directory, are removed.

release_handler:remove_release(Vsn) => ok

Example (continued from the previous sections)

Step 1) Create atarget system as described in System Principles of the first version" A" of ch_r el from Releases.
Thistimesys. conf i g must beincluded in the release package. If no configuration is needed, the fileisto contain
the empty list:

[1.

Step 2) Start the system asasimpletarget system. Inredlity, it isto be started as an embedded system. However, using
er | with the correct boot script and config file is enough for illustration purposes:

378 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

10.11 Release Handling

% cd $ROOT
% bin/erl -boot $RO0T/releases/A/start -config $RO0T/releases/A/sys

$ROOT isthe installation directory of the target system.

Step 3) Inanother Erlang shell, generate start scripts and create arel ease package for the new version” B" . Remember
toinclude (a possible updated) sys. conf i g and ther el up file, see Release Upgrade File.

1> systools:make script("ch rel-2").
ok

2> systools:make tar("ch rel-2").

ok

The new release package now also containsversion "2" of ch_app andther el up file:

% tar tf ch rel-2.tar
lib/kernel-2.9/ebin/kernel.app
lib/kernel-2.9/ebin/application.beam

lib/stdlib-1.12/ebin/stdlib.app
lib/stdlib-1.12/ebin/beam lib.beam

iiB/sasl-l.10/ebin/sasl.app
lib/sasl-1.10/ebin/sasl.beam

lib/ch_app-2/ebin/ch_app.app
lib/ch_app-2/ebin/ch_app.beam
lib/ch_app-2/ebin/ch_sup.beam
lib/ch_app-2/ebin/ch3.beam
releases/B/start.boot
releases/B/relup
releases/B/sys.config
releases/B/ch rel-2.rel
releases/ch rel-2.rel

Step 4) Copy the release packagech_r el - 2. t ar. gz tothe $ROOT/ r el eases directory.
Step 5) In the running target system, unpack the rel ease package:

1> release handler:unpack release("ch rel-2").
{ok, IIBII}

Thenew application versionch_app- 2 isinstalled under $ROOT/ | i b nexttoch_app- 1. Theker nel ,stdl i b,
and sas| directories are not affected, as they have not changed.

Under $ROOT/r el eases, a new directory B is created, containing ch_rel-2.rel, start. boot,
sys. config,andrel up.

Step 6) Check if thefunction ch3: avai | abl e/ 0 isavailable:

2> ch3:available().
** exception error: undefined function ch3:available/0

Step 7) Install the new release. Theinstructionsin $ROOT/ r el eases/ B/ r el up areexecuted one by one, resulting
in the new version of ch3 being loaded. The function ch3: avai | abl e/ 0 isnow available:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 379

10.12 Appup Cookbook

3> release handler:install release("B").

{ok, "A", [1}
4> ch3:available().
3

5> code:which(ch3).
".../lib/ch_app-2/ebin/ch3.beam"

6> code:which(ch sup).
".../lib/ch_app-1/ebin/ch_sup.beam"

Processes in ch_app for which code have not been updated, for example, the supervisor, are still evaluating code
fromch_app- 1.

Step 8) If the target system is now rebooted, it uses version "A" again. The "B" version must be made permanent, to
be used when the system is rebooted.

7> release _handler:make permanent("B").
ok

10.11.8 Updating Application Specifications

When a new version of arelease is installed, the application specifications are automatically updated for all loaded
applications.

The information about the new application specifications is fetched from the boot script included in the release
package. Thus, it is important that the boot script is generated from the same . r el file as is used to build the
release package itself.

Specifically, the application configuration parameters are automatically updated according to (in increasing priority
order):

* Thedatain the boot script, fetched from the new application resource file App. app
* Thenewsys.config
e Command-line arguments- App Par Val

This means that parameter values set in the other system configuration files and values set using
appl i cation: set_env/ 3 aredisregarded.

When an installed release is made permanent, the system processi ni t isset to point out the new sys. confi g.

After the installation, the application controller compares the old and new configuration parameters for al running
applications and call the callback function:

Module:config change(Changed, New, Removed)

* Modul e isthe application callback module as defined by the mod key in the . app file.
e Changed and Newarelistsof { Par, Val } for al changed and added configuration parameters, respectively.
« Renopvedisalist of all parameters Par that have been removed.

The function is optional and can be omitted when implementing an application callback module.

10.12 Appup Cookbook

This section includes examples of . appup filesfor typical cases of upgrades’downgrades done in runtime.

380 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

10.12 Appup Cookbook

10.12.1 Changing a Functional Module

When afunctional modul e hasbeen changed, for exampl e, if anew function has been added or abug hasbeen corrected,
simple code replacement is sufficient, for example:

{"2",
[{"1", [{load module, m}1}1,

[{"1", [{load module, m}]}]
}.

10.12.2 Changing a Residence Module

In a system implemented according to the OTP design principles, all processes, except system processes and special
processes, residein one of thebehaviourssuper vi sor ,gen_server,gen_fsmgen_st at emorgen_event .
These belong to the STDLIB application and upgrading/downgrading normally requires an emulator restart.

OTP thus provides no support for changing residence modul es except in the case of special processes.

10.12.3 Changing a Callback Module

A callback moduleis afunctional module, and for code extensions simple code replacement is sufficient.

Example: When adding afunction to ch3, as described in the example in Release Handling, ch_app. appup looks
asfollows:
{"2",
[{"1", [{load module, ch3}1}1,

[{"1", [{load module, ch3}1}]
}.

OTP also supports changing the internal state of behaviour processes, see Changing Internal State.

10.12.4 Changing Internal State

In this case, simple code replacement is not sufficient. The process must explicitly transform its state using the
callback function code_change before switching to the new version of the callback module. Thus, synchronized
code replacement is used.

Example: Consider gen_ser ver ch3 from gen_server Behaviour. The internal state is aterm Chs representing
the available channels. Assume you want to add a counter N, which keeps track of the number of al | oc requests so
far. This means that the format must be changed to { Chs, N}.

The. appup file can look asfollows:

2
[{"1", [{update, ch3, {advanced, [1}}1}],
[{"1", [{update, ch3, {advanced, [1}}1}]

Thethird element of theupdat e instructionisatuple{ advanced, Ext r a} , which saysthat the affected processes
areto do a state transformation before loading the new version of the module. Thisis done by the processes calling the
callback function code_change (seethe gen_ser ver (3) manua page in STDLIB). The term Ext r a, in this
case[], ispassed asisto the function:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 381

10.12 Appup Cookbook

-module(ch3).
-export([code change/3]).

code change({down, Vsn}, {Chs, N}, Extra) ->
{ok, Chs};

code change(Vsn, Chs, Extra) ->
{ok, {Chs, 0}}.

The first argument is { down, Vsn} if thereis a downgrade, or Vsn if there is a upgrade. The term Vsn is fetched
from the 'original’ version of the module, that is, the version you are upgrading from, or downgrading to.

Theversionisdefined by the module ettribute vsn, if any. Thereisno such attributein ch3, soin thiscasethe version
is the checksum (a huge integer) of the beam file, an uninteresting value, which isignored.

The other callback functions of ch3 must also be modified and perhaps a new interface function must be added, but
thisis not shown here.

10.12.5 Module Dependencies

Assume that a module is extended by adding an interface function, as in the example in Release Handling, where a
function avai | abl e/ 0 isadded toch3.

If acall isadded to thisfunction, say in module nil, aruntime error could can occur during release upgrade if the new
version of ml isloaded first and callsch3: avai | abl e/ 0 before the new version of ch3 isloaded.

Thus, ch3 must be loaded before nil, in the upgrade case, and conversely in the downgrade case. il is said to be
dependent on ch3. In arelease handling instruction, thisis expressed by the DepMods element:

{load module, Module, DepMods}
{update, Module, {advanced, Extra}, DepMods}

DepMods isalist of modules, on which Mbdul e is dependent.

Example: Themodule il in application my app isdependent on ch3 when upgrading from"1" to"2", or downgrading
from"2" to"1":

myapp.appup:

{II2II,
[{"1", [{load module, ml, [ch3]}]}],
[{"1", [{load module, ml, [ch3]}]}]
}.

ch_app.appup:

{II2II,
[{"1", [{load module, ch3}1}],
[{"1", [{load module, ch3}1}]
}.

If instead ml and ch3 belong to the same application, the . appup file can look as follows:

{"2",
[{"1",
[{load module, ch3},
{load _module, ml, [ch3]}1}],
[{"1",
[{load module, ch3},
{load module, ml, [ch3]}1}]

382 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

10.12 Appup Cookbook

ml is dependent on ch3 aso when downgrading. syst ool s knows the difference between up- and downgrading
and generates a correct r el up, where ch3 isloaded before ml when upgrading, but ml is loaded before ch3 when
downgrading.

10.12.6 Changing Code for a Special Process

In this case, simple code replacement is not sufficient. When anew version of aresidence module for aspecia process
isloaded, the process must make afully qualified call to itsloop function to switch to the new code. Thus, synchronized
code replacement must be used.

The name(s) of the user-defined residence module(s) must be listed in the Modul es part of the child specification
for the special process. Otherwise the release handler cannot find the process.

Example: Consider the example ch4 in sys and proc_lib. When started by a supervisor, the child specification can
look as follows:

{ch4, {ch4, start link, [1},
permanent, brutal kill, worker, [ch4]}

If ch4 ispart of theapplicationsp_app and anew version of the moduleisto beloaded when upgrading from version
"1" to"2" of thisapplication, sp_app. appup can look asfollows:

{"2",
[{"1", [{update, ch4, {advanced, [1}}1}1,
[{"1", [{update, ch4, {advanced, [1}}1}]

}.

The updat e instruction must contain the tuple { advanced, Ext r a} . The instruction makes the special process
call thecallback functionsyst em code_change/ 4, afunction the user must implement. Theterm Ext r a, inthis
case[],ispassed asisto syst em code_change/ 4:

-module(ch4).

:ékport([system_code_change/4]).

system code change(Chs, Module, O0ldVsn, Extra) ->
{ok, Chs}.
e Thefirst argument istheinternal state St at e, passed from function
sys: handl e_system nmsg(Request, From Parent, Mbdule, Deb, State),andcaledby
the special process when a system message isreceived. In ch4, theinternal state isthe set of available channels
Chs.
* The second argument is the name of the module (ch4).

e Thethird argumentisVsn or { down, Vsn}, asdescribed for gen_ser ver: code_change/ 3 in Changing
Internal State.

In this case, al arguments but the first are ignored and the function simply returns the internal state again. Thisis
enough if the code only has been extended. If instead theinternal stateis changed (similar to the examplein Changing
Internal State), thisisdonein thisfunction and { ok, Chs2} returned.

10.12.7 Changing a Supervisor

The supervisor behaviour supports changing the internal state, that is, changing the restart strategy and maximum
restart frequency properties, as well as changing the existing child specifications.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 383

10.12 Appup Cookbook

Child processes can be added or deleted, but this is not handled automatically. Instructions must be given by in the
. appup file.
Changing Properties

Since the supervisor is to change its internal state, synchronized code replacement is required. However, a special
updat e instruction must be used.

First, the new version of the callback module must be loaded, both in the case of upgrade and downgrade. Then the
new return value of i ni t / 1 can be checked and the internal state be changed accordingly.

Thefollowing upgr ade instruction is used for supervisors:
{update, Module, supervisor}

Example: To change the restart strategy of ch_sup (from Supervisor Behaviour) from one_for _one to
one_for _al |, changethecalback functioni nit/1inch_sup.erl:

-module(ch sup).
init(Args) ->
{ok, {#{strategy => one for all, ...}, ...}}.
Thefilech_app. appup:
{2,
[{"1", [{update, ch sup, supervisor}]}],

[{"1", [{update, ch sup, supervisor}]}]
}.

Changing Child Specifications

Theinstruction, and thusthe . appup file, when changing an existing child specification, isthe same aswhen changing
properties as described earlier:

{II2II’
[{"1", [{update, ch sup, supervisor}]}],
[{"1", [{update, ch sup, supervisor}]}]
}.

The changes do not affect existing child processes. For example, changing the start function only specifies how the
child processisto be restarted, if needed later on.

The id of the child specification cannot be changed.

Changing the Modul es field of the child specification can affect the release handling process itself, as this field is
used to identify which processes are affected when doing a synchronized code replacement.

Adding and Deleting Child Processes

As stated earlier, changing child specifications does not affect existing child processes. New child specifications are
automatically added, but not deleted. Child processes are not automatically started or terminated, this must be done
using appl y instructions.

Example: Assume anew child processml isto beaddedto ch_sup when upgrading ch_app from"1" to "2". This
means N1l isto be deleted when downgrading from "2" to " 1":

384 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

10.12 Appup Cookbook

{"2"1
[{"1",
[{update, ch sup, supervisor},
{apply, {supervisor, restart child, [ch sup, ml]}}
131,
[{"1",
[{apply, {supervisor, terminate child, [ch sup, ml]}},
{apply, {supervisor, delete child, [ch sup, ml]}},
{update, ch sup, supervisor}
131
}.

The order of the instructions isimportant.

The supervisor must be registered as ch_sup for the script to work. If the supervisor is not registered, it
cannot be accessed directly from the script. Instead a help function that finds the pid of the supervisor and calls
supervi sor:restart_chil d,andsoon, must bewritten. Thisfunction isthen to be called from the script using
theappl y instruction.

If the module nL isintroduced in version "2" of ch_app, it must also be loaded when upgrading and deleted when
downgrading:

{"2"1
[{"1",
[{add module, ml},
{update, ch sup, supervisor},
{apply, {supervisor, restart child, [ch sup, ml]}}
[{"1",
[{apply, {supervisor, terminate child, [ch sup, ml]}},
{apply, {supervisor, delete child, [ch sup, ml]}},
{update, ch sup, supervisor},
{delete module, ml}
131
}.

As stated earlier, the order of the instructions is important. When upgrading, mlL must be loaded, and the supervisor
child specification changed, before the new child process can be started. When downgrading, the child process must
be terminated before the child specification is changed and the module is deleted.

10.12.8 Adding or Deleting a Module

Example: A new functional module misadded to ch_app:
{"2"1

[{"1", [{add module, m}]1}],

[{"1", [{delete module, m}]}]
10.12.9 Starting or Terminating a Process
In a system structured according to the OTP design principles, any process would be a child process belonging to a
supervisor, see Adding and Deleting Child Processes in Changing a Supervisor.
10.12.10 Adding or Removing an Application

When adding or removing an application, no . appup file is needed. When generating r el up, the . r el filesare
compared and theadd_appl i cati on andr enpve_appl i cati on instructions are added automatically.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 385

10.12 Appup Cookbook

10.12.11 Restarting an Application

Restarting an application is useful when a change is too complicated to be made without restarting the processes, for
example, if the supervisor hierarchy has been restructured.

Example: When adding achild mL toch_sup, asin Adding and Deleting Child Processes in Changing a Supervisor,
an alternative to updating the supervisor isto restart the entire application:

{II2II’
[{"1", [{restart application, ch app}]1}],
[{"1", [{restart application, ch app}]}]

}.

10.12.12 Changing an Application Specification

When installing arelease, the application specifications are automatical ly updated before evaluating ther el up script.
Thus, no instructions are needed in the . appup file:

10.12.13 Changing Application Configuration

Changing an application configuration by updating the env key in the . app file is an instance of changing an
application specification, see the previous section.

Alternatively, application configuration parameters can be added or updated in sys. confi g.

10.12.14 Changing Included Applications

The release handling instructions for adding, removing, and restarting applications apply to primary applications only.
There are no corresponding instructions for included applications. However, since an included application is really a
supervision tree with a topmost supervisor, started as a child process to a supervisor in the including application, a
r el up file can be manually created.

Example: Assume there is a release containing an application pri m_app, which have a supervisor pri m sup in
its supervision tree.

Inanew version of therelease, theapplicationch_app istobeincludedinpri m app. Thatis, itstopmost supervisor
ch_sup isto be started as a child processto pri m sup.

The workflow is as follows:
Step 1) Edit the code for pri m sup:

init(...) ->
{ok, {...supervisor flags...,
[...,
{ch_sup, {ch sup,start link,[]},
permanent,infinity, supervisor, [ch _supl},

13
Step 2) Edit the. app filefor pri m app:

386 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

10.12 Appup Cookbook

{application, prim_app,
{vsn, "2},
iiﬁéludedfapplications, [ch _appl},
3.
Step 3) Createanew . r el file, includingch_app:

{release,
[...,

{prim app, "2"},

{ch _app, "1"}1}.

Theincluded application can be started in two ways. This is described in the next two sections.

Application Restart

Step 4a) One way to start the included application is to restart the entire pri m_app application. Normally, the
restart _applicationinstructioninthe. appup filefor pri m app would be used.

However, if thisis done and ar el up file is generated, not only would it contain instructions for restarting (that is,
removing and adding) pri m app, it would also contain instructionsfor startingch_app (and stopping it, in the case
of downgrade). Thisisbecause ch_app isincludedinthenew . r el file, but not in the old one.

Instead, a correct r el up file can be created manually, either from scratch or by editing the generated version. The
instructions for starting/stopping ch_app are replaced by instructions for loading/unloading the application:

{"B"I
[{"A",
[1,
[{load object code,{ch app,"1",[ch sup,ch3]1}},
{load object code,{prim _app,"2",[prim app,prim _supl}},
point_of no_return,
{apply, {application,stop, [prim_appl}},
{remove, {prim_app,brutal purge,brutal purge}},
{remove, {prim sup,brutal purge,brutal purge}},
{purge, [prim app,prim supl},
{load, {prim app,brutal purge,brutal purge}},
{load, {prim sup,brutal purge,brutal purge}},
{load, {ch _sup,brutal purge,brutal purge}},
{load, {ch3,brutal purge,brutal purge}},
{apply, {application, load, [ch_appl}},
{apply, {application,start, [prim_app,permanent]}}1}1,
[{"A",
[1,
[{load object code,{prim app,"1",[prim _app,prim supl}},
point of no return,
{apply, {application,stop, [prim_appl}},
{apply, {application,unload, [ch appl}},
{remove, {ch _sup,brutal purge,brutal purge}},
{remove, {ch3,brutal purge,brutal purge}},
{purge, [ch_sup,ch3]},
{remove, {prim_app,brutal purge,brutal purge}},
{remove, {prim sup,brutal purge,brutal purge}},
{purge, [prim app,prim supl},
{load, {prim app,brutal purge,brutal purge}},
{load, {prim sup,brutal purge,brutal purge}},
{apply, {application,start, [prim_app,permanent]}}]1}]

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 387

10.12 Appup Cookbook

Supervisor Change

Step 4b) Ancther way to start theincluded application (or stop it in the case of downgrade) isby combining instructions
for adding and removing child processes to/from pri m sup with instructions for loading/unloading al ch_app
code and its application specification.

Again, ther el up file is created manually. Either from scratch or by editing a generated version. Load al code
for ch_app first, and also load the application specification, before pri m sup is updated. When downgrading,
pri m sup isto updated first, before the code for ch_app and its application specification are unl caded.

{"B"I

[{"A",
[1,
[{load object code,{ch app,"1",[ch sup,ch3]1}},
{load object code,{prim _app,"2",[prim_supl}},
point of no return,
{load, {ch_sup,brutal purge,brutal purge}},
{load, {ch3,brutal purge,brutal purge}},
{apply, {application, load, [ch_appl}},
{suspend, [prim_supl},
{load, {prim sup,brutal purge,brutal purge}},
{code _change,up, [{prim sup,[1}1},
{resume, [prim_supl},
{apply, {supervisor,restart child, [prim_sup,ch supl}}1}1,

[{"A",
[1,
[{load object code,{prim app,"1l",[prim _supl}},
point of no return,
{apply, {supervisor,terminate child, [prim_sup,ch supl}},
{apply, {supervisor,delete child, [prim sup,ch supl}},
{suspend, [prim_supl},
{load, {prim sup,brutal purge,brutal purge}},
{code change,down, [{prim sup,[1}1},
{resume, [prim_supl},
{remove, {ch_sup,brutal purge,brutal purge}},
{remove, {ch3,brutal purge,brutal purge}},
{purge, [ch_sup,ch3]},
{apply, {application,unload, [ch _appl}}]1}]

}.

10.12.15 Changing Non-Erlang Code

Changing code for a program written in another programming language than Erlang, for example, a port program, is
application-dependent and OTP provides no specia support for it.

Example: When changing code for a port program, assume that the Erlang process controlling the port is a
gen_server port ¢ and that the port is opened in the callback functioni ni t/ 1:

init(...) ->

PortPrg = filename:join(code:priv_dir(App), "portc"),
Port = open port({spawn,PortPrg}, [...]),

{ok, #state{port=Port, ...}}.

If the port program isto be updated, the code for thegen_ser ver can be extended withacode_change function,
which closes the old port and opens a new port. (If necessary, the gen_ser ver can first request data that must be
saved from the port program and pass this data to the new port):

388 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

10.12 Appup Cookbook

code change(0ldVsn, State, port) ->
State#state.port ! close,
receive
{Port,close} ->
true
end,
PortPrg = filename:join(code:priv_dir(App), "portc"),
Port = open port({spawn,PortPrg}, [...]),
{ok, #state{port=Port, ...}}.

Update the application version number in the. app fileand writean . appup file:

[II2II’
[{"1", [{update, portc, {advanced,port}}1}1,
[{"1", [{update, portc, {advanced,port}}]}]
1.

Ensurethat the pr i v directory, where the C program is located, is included in the new rel ease package:

1> systools:make tar("my release", [{dirs,[priv]}]).

10.12.16 Emulator Restart and Upgrade

Two upgrade instructions restart the emulator:
e restart_new enul ator

Intended when ERTS, Kernel, STDLIB, or SASL is upgraded. It is automatically added when ther el up file
isgenerated by syst ool s: nake_r el up/ 3, 4. Itis executed before all other upgrade instructions. For more
information about this instruction, see restart_new_emulator (Low-Level) in Release Handling Instructions.

e restart_enul ator

Used when a restart of the emulator is required after all other upgrade instructions are executed. For more
information about this instruction, see restart_emulator (Low-Level) in Release Handling Instructions.

If an emulator restart is necessary and no upgrade instructions are needed, that is, if the restart itself is enough for the
upgraded applications to start running the new versions, asimpler el up file can be created manually:

{IIBII,
[{IIAII'
[1,
[restart emulator]}],
[{IIAII'
[1,
[restart _emulator]}]

}.

Inthis case, the rel ease handler framework with automatic packing and unpacking of release packages, automatic path
updates, and so on, can be used without having to specify . appup files.

10.12.17 Emulator Upgrade From Pre OTP R15

From OTP R15, an emulator upgradeis performed by restarting the emulator with new versions of the core applications
(Kernel, STDLIB, and SASL) before loading code and running upgrade instruction for other applications. For thisto
work, the release to upgrade from must include OTP R15 or later.

For the case where the release to upgrade from includes an earlier emulator version, syst ool s: make_rel up
creates a backwards compatible relup file. This means that all upgrade instructions are executed before the emulator
isrestarted. The new application code is therefore loaded into the old emulator. If the new code is compiled with the

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 389

10.12 Appup Cookbook

new emulator, there can be cases where the beam format has changed and beam files cannot be loaded. To overcome
this problem, compile the new code with the old emulator.

390 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

11.1 Introduction

11 OAM Principles

11.1 Introduction

The Operation and Maintenance (OAM) support in OTP consists of a generic model for management subsystemsin
OTP, and some components to be used in these subsystems. This section describes the model.

The main ideain the model isthat it is not tied to any specific management protocol. An Application Programming
Interface (AP!) is defined, which can be used to write adaptations for specific management protocols.

Each OAM component in OTP is implemented as one sub-application, which can be included in a management
application for the system. Notice that such a complete management application is not in the scope of this generic
functionality. However, this section includes examples illustrating how such an application can be built.

11.1.1 Terminology

The protocol-independent architectural model on the network level is the well-known client-server model for
management operations. This model isbased on the client-server principle, where the manager (client) sends arequest
from a manager to an agent (server) when it accesses management information. The agent sends a reply back to the
manager. There are two main differences to the normal client-server model:

e Usualy afew managers communicate with many agents.

* The agent can spontaneously send a notification, for example, an alarm, to the manager.

The following pictureillustrates the idea:

MNM&E Manacer b
8 " SEES
NET ! MIR
' ;,fisees
Agent
Resl Res?

Figure 1.1: Terminology

The manager is often referred to asthe Networ k Management System (NM S), to emphasize that it usually isrealized
as aprogram that presents data to an operator.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 391

11.1 Introduction

The agent is an entity that executes within a Network Element (NE). In OTP, the NE can be a distributed system,
meaning that the distributed system is managed as one entity. Of course, the agent can be configured to be able to run
on one of several nodes, making it a distributed OTP application.

The management information is defined in a Management Information Base (MIB). It is a forma definition of
which information the agent makes available to the manager. The manager accesses the M1B through a management
protocol, such as SNMP, CMIP, HTTP, or CORBA. Each protocol hasits own MIB definition language. In SNMP, it
isasubset of ASN.1, in CMIPitisGDMO, in HTTP it isimplicit, and using CORBA, it isIDL.

Usually, the entities defined in the MIB are called M anaged Objects (M Os), athough they do not have to be objects
in the object-oriented way. For example, a smple scalar variable defined in a MIB is called an MO. The MOs are
logical objects, not necessarily with a one-to-one mapping to the resources.

11.1.2 Model

This section presents the generic protocol-independent model for use within an OTP-based NE. This modd is used
by all OAM components and can be used by the applications. The advantage of the model is that it clearly separates
the resources from the management protocol. The resources do not need to be aware of which management protocol
is used to manage the system. The same resources can therefore be managed with different protocols.

The entities involved in this model are the agent, which terminates the management protocol, and the resources,
which is to be managed, that is, the actual application entities. The resources should in general have no knowledge
of the management protocol used, and the agent should have no knowledge of the managed resources. This implies
that a trandation mechanism is needed, to translate the management operations to operations on the resources. This
translation mechanismisusually calledinstrumentation and the function that implementsitiscalled instrumentation
function. The instrumentation functions are written for each combination of management protocol and resource to be
managed. For example, if an application isto be managed by SNMP and HTTP, two sets of instrumentation functions
are defined; one that maps SNMP requests to the resources, and one that, for example, generates an HTML page for
Some resources.

When amanager makes a request to the agent, the following illustrates the situation:

392 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

11.1 Introduction

Figure 1.2: Request to An Agent by a Manager

The mapping between an instrumentation function and aresourceis not necessarily 1-1. It is a so possible to write one
instrumentation function for each resource, and use that function from different protocols.

The agent receives arequest and maps it to calls to one or more instrumentation functions. These functions perform
operations on the resources to implement the semantics associated with the MO.

For example, asystem that is managed with SNMP and HTTP can be structured as follows:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 393

11.1 Introduction

Figure 1.3: Structure of a System Managed with SNMP and HTTP

The resources can send notifications to the manager as well. Examples of notifications are events and alarms. The
resource needs to generate protocol-independent notifications. The following picture illustrates how thisis achieved:

394 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

11.1 Introduction

1oy
SN NP HTTF
ey e B ey er A
Instmrmentation Instmrmentation
e e ent
Eesl Ees2 Bes3

Figure 1.4: Notification Handling

The main ideais that the resource sends the notifications as Erlang terms to a dedicated gen_event process. Into
this process, handlers for the different management protocols areinstalled. When an event is received by this process,
it isforwarded to each installed handler. The handlers are responsible for translating the event into a notification to be
sent over the management protocol. For example, a handler for SNMP translates each event into an SNMP trap.

11.1.3 SNMP-Based OAM

For all OAM components, SNM P adaptations are provided. Other adaptations might be defined in the future.

The OAM components, and some other OTP applications, define SNMP MIBs. These MIBs are written in SNMPv2
SMI syntax, as defined in RFC 1902. For convenience we also deliver the SNMPv1 SMI equivalent. All MIBs are
designed to be v1/v2 compatible, that is, the v2 MIBs do not use any construct not availablein vi.

MIB Structure

The top-level OTP MIB is called OTP- REGand it isincluded in the SNMP application. All other OTP MIBs import
some objects from this MIB.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 395

11.1 Introduction

Each MIB is contained in one application. The MIB text files are stored under ni bs/ <M B>. mi b inthe application
directory. The generated . hr| files with constant declarations are stored under i ncl ude/ <M B>. hr | , and the
compiled MIBs are stored under pri v/ m bs/ <M B>. bi n.

An application that needs to import an MIB into another MIB isto usethei | option to the SNMP MIB compiler:
snmp:c("MY-MIB", [{il, ["snmp/priv/mibs"]1}1).

If the application needs to include a generated . hr | file, it is to use the - i ncl ude_l i b directive to the Erlang
compiler:

-module(my mib).
-include lib("snmp/include/OTP-REG.hrl").

Hereisalist of some of the MIBs defined in the OTP system:

e QOTP- REG(in SNMP) contains the top-level OTP registration objects, used by all other MIBs.

e QOIP- TC(in SNMP) contains the general Textual Conventions, which can be used by any other MIB.

e QOTP- SNMPEA- M B (in snnp) contains objects for instrumentation and control of the extensible SNMP agent
itself. The agent also implements the standard SNMPv2-MIB (or v1 part of MIB-I1, if SNMPv1 is used).

The different applications use different strategies for loading the MIBsinto the agent. Some MIB implementations are
cade-only, while others need a server. One way, used by the code-only MIB implementations, is for the user to call a
functionsuchassnmnpa: | oad_ni bs(Agent, [M b]) toloadtheMIB,andsnnpa: unl oad_ni bs(Agent ,
[M b]) tounload the MIB. See the manual page for each application for a description of how to load each MIB.

396 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

	Erlang/OTP System Documentation
	General Information
	Deprecations
	Introduction
	OTP 25
	Functions Deprecated in OTP 25

	OTP 24
	Erlang Distribution Without Large Node Container Support
	Old Link Protocol
	?NO_APP macro
	Functions Deprecated in OTP 24

	OTP 23
	Crypto Old API
	http_uri
	ssh
	Distributed Disk Logs
	erl_interface registry
	Functions Deprecated in OTP 23

	OTP 22
	VxWorks Support
	Legacy parts of erl_interface
	System Events
	Functions Deprecated in OTP 22

	OTP 20
	Functions Deprecated in OTP 20

	OTP 19
	SSL/TLS
	Functions Deprecated in OTP 19

	OTP 18
	erlang:now/0
	httpd_conf module
	Functions Deprecated in OTP 18

	OTP 16
	Functions Deprecated in OTP 16

	OTP 12
	inets - httpd Apache config files
	Functions Deprecated in OTP 12

	Removed Functionality
	Introduction
	OTP 25
	Functions Removed in OTP 25

	OTP 24
	erl_interface registry
	Compilation of Latin-1 Encoded Erlang Files
	igor and erl_tidy modules in syntax_tools
	Distributed Disk Logs
	Old Crypto API
	Megaco version 3 encoding config
	Functions Removed in OTP 24

	OTP 23
	VxWorks Support
	Legacy parts of erl_interface
	httpd_conf module
	inets - httpd Apache config files
	SSL/TLS
	Functions Removed in OTP 23

	OTP 22
	Functions Removed in OTP 22

	OTP 20
	Functions Removed in OTP 20

	OTP 19
	Functions Removed in OTP 19

	Scheduled for Removal
	Introduction
	OTP 27
	Functions Scheduled for Removal in OTP 27

	OTP 26
	Erlang Distribution Without Large Node Container Support
	Old Link Protocol
	Functions Scheduled for Removal in OTP 26

	Upcoming Potential Incompatibilities
	Introduction
	OTP 25
	Distribution flags will become mandatory

	OTP 26
	The distribution flag DFLAG_V4_NC will become mandatory
	The new link protocol will become mandatory
	Atoms will be encoded as UTF-8 by default
	The default timewarp mode will change to multi-time warp mode

	Installation Guide
	Installing the Binary Release
	Windows
	Installing
	Verifying

	Building and Installing Erlang/OTP
	Introduction
	Required Utilities
	Unpacking
	Building
	Building in Git
	Building on OS X

	Installing

	Optional Utilities
	Building
	Building Documentation

	How to Build and Install Erlang/OTP
	Unpacking
	Configuring
	Building
	Testing
	Installing
	Running
	How to Build the Documentation
	Build Issues

	How to Install the Documentation
	Accessing the Documentation
	How to Install the Pre-formatted Documentation

	Advanced configuration and build of Erlang/OTP
	make and $ERL_TOP
	otp_build vs configure/make
	Configuring
	Important Variables Inspected by configure
	Compiler and Linker
	Dynamic Erlang Driver Linking
	Large File Support
	Other Tools

	Updating configure Scripts
	Atomic Memory Operations and the VM

	Building
	Within Git
	OS X (Darwin)
	Building with wxErlang
	Pre-built Source Release
	How to Build a Debug Enabled Erlang RunTime System

	Installing
	Symbolic Links in --bindir

	Erlang/OTP test architectures

	Cross Compiling Erlang/OTP
	Introduction
	otp_build Versus configure/make
	Cross Configuration
	What can be Cross Compiled?
	Compatibility
	Patches

	Build and Install Procedure
	Building With configure/make Directly
	Building a Bootstrap System
	Cross Building the System
	Installing
	Installing Using Paths Determined by configure
	Installing Manually

	Building With the otp_build Script

	Building and Installing the Documentation
	Testing the cross compiled system
	Currently Used Configuration Variables
	Variables for otp_build Only
	Cross Compiler and Other Tools
	Cross System Root Locations
	Optional Feature, and Bug Tests

	How to Build Erlang/OTP on Windows
	Introduction
	Short Version
	Tools you Need and Their Environment
	The Shell Environment
	Building and Installing
	Development
	Frequently Asked Questions

	Patching OTP Applications
	Introduction
	Prerequisites
	Using otp_patch_apply
	Sanity check

	System Principles
	System Principles
	Starting the System
	Restarting and Stopping the System
	Boot Scripts
	Default Boot Scripts
	User-Defined Boot Scripts

	Code Loading Strategy
	File Types

	Error Logging
	Error Information From the Runtime System
	Log events from OTP behaviours

	Creating and Upgrading a Target System
	Creating a Target System
	Installing a Target System
	Starting a Target System
	System Configuration Parameters
	Differences From the Install Script
	Creating the Next Version
	Upgrading the Target System
	Listing of target_system.erl

	Upgrade when Erlang/OTP has Changed
	Introduction
	Upgrade of Core Applications
	Applications that Still do Not Allow Code Upgrade

	Versions
	OTP Version
	Retrieving Current OTP Version
	OTP Versions Table

	Application Version
	Version Scheme
	Order of Versions

	Releases and Patches
	OTP Versions Tree
	OTP 17.0 Application Versions

	Support, Compatibility, Deprecations, and Removal
	Introduction
	Supported Releases
	Compatibility
	Deprecation
	Removal

	Embedded Systems User's Guide
	Embedded Solaris
	Memory Use
	Disk Space Use
	Installing an Embedded System
	Creating User and Installation Directory
	Installing an Embedded System
	Configuring Automatic Start at Boot
	Making Hardware Watchdog Available
	Changing Permissions for Reboot
	Setting TERM Environment Variable
	Adding Patches
	Installing Module os_sup in Application os_mon
	Installation
	Testing the Application Configuration File
	Related Documents

	Installation Problems

	Starting Erlang
	Programs
	start
	run_erl
	to_erl
	start_erl

	Windows NT
	Memory Use
	Disk Space Use
	Installing an Embedded System
	Hardware Watchdog

	Starting Erlang

	Getting Started With Erlang
	Introduction
	Prerequisites
	Omitted Topics

	Sequential Programming
	The Erlang Shell
	Modules and Functions
	Atoms
	Tuples
	Lists
	Maps
	Standard Modules and Manual Pages
	Writing Output to a Terminal
	A Larger Example
	Matching, Guards, and Scope of Variables
	More About Lists
	If and Case
	Built-In Functions (BIFs)
	Higher-Order Functions (Funs)

	Concurrent Programming
	Processes
	Message Passing
	Registered Process Names
	Distributed Programming
	A Larger Example

	Robustness
	Time-outs
	Error Handling
	The Larger Example with Robustness Added

	Records and Macros
	The Larger Example Divided into Several Files
	Header Files
	Records
	Macros

	Erlang Reference Manual
	Introduction
	Purpose
	Prerequisites
	Document Conventions
	Complete List of BIFs
	Reserved Words

	Character Set and Source File Encoding
	Character Set
	Source File Encoding

	Data Types
	Terms
	Number
	Representation of Floating Point Numbers

	Atom
	Bit Strings and Binaries
	Reference
	Fun
	Port Identifier
	PID
	Tuple
	Map
	List
	String
	Record
	Boolean
	Escape Sequences
	Type Conversions

	Pattern Matching
	Pattern Matching

	Modules
	Module Syntax
	Module Attributes
	Pre-Defined Module Attributes
	Behaviour Module Attribute
	Record Definitions
	Preprocessor
	Setting File and Line
	Types and function specifications

	
 The feature directive

	Comments
	module_info/0 and module_info/1 functions
	module_info/0
	module_info/1

	Functions
	Function Declaration Syntax
	Function Evaluation
	Tail recursion
	Built-In Functions (BIFs)

	Types and Function Specifications
	The Erlang Type Language
	Types and their Syntax
	Type Declarations of User-Defined Types
	Type Information in Record Declarations
	Specifications for Functions

	Opaques
	Opaque Type Aliases

	Expressions
	Expression Evaluation
	Terms
	Variables
	Patterns
	Match Operator = in Patterns
	String Prefix in Patterns
	Expressions in Patterns

	Match
	Function Calls
	Local Function Names Clashing With Auto-Imported BIFs

	If
	Case
	Maybe
	Send
	Receive
	Term Comparisons
	Arithmetic Expressions
	Boolean Expressions
	Short-Circuit Expressions
	List Operations
	Map Expressions
	Creating Maps
	Updating Maps
	Maps in Patterns
	Matching Syntax

	Maps in Guards

	Bit Syntax Expressions
	Fun Expressions
	Catch and Throw
	Try
	Parenthesized Expressions
	Block Expressions
	List Comprehensions
	Bit String Comprehensions
	Guard Sequences
	Guard Expressions
	Operator Precedence

	Preprocessor
	File Inclusion
	Defining and Using Macros
	Predefined Macros
	Macros Overloading
	Flow Control in Macros
	
 The -feature() directive

	-error() and -warning() directives
	Stringifying Macro Arguments

	Records
	Defining Records
	Creating Records
	Accessing Record Fields
	Updating Records
	Records in Guards
	Records in Patterns
	Nested Records
	Internal Representation of Records

	Errors and Error Handling
	Terminology
	Exceptions
	The call-stack back trace (stacktrace)

	Handling of Run-time Errors in Erlang
	Error Handling Within Processes
	Error Handling Between Processes

	Exit Reasons

	Features
	Life cycle of features
	Enabling and Disabling Features
	Preprocessor Additions
	Information about Existing Features
	Existing Features

	Processes
	Processes
	Process Creation
	Registered Processes
	Process Aliases
	Process Termination
	Signals
	Sending Signals
	Receiving Signals
	Directly Visible Erlang Resources
	The Excluded Resources

	Delivery of Signals
	Irregularities

	Links
	Error Handling
	Sending Exit Signals
	Receiving Exit Signals

	Monitors
	Process Dictionary

	Distributed Erlang
	Distributed Erlang System
	Nodes
	Node Connections
	epmd
	Hidden Nodes
	Dynamic Node Name
	C Nodes
	Security
	Distribution BIFs
	Distribution Command-Line Flags
	Distribution Modules

	Compilation and Code Loading
	Compilation
	Code Loading
	Code Replacement
	Running a Function When a Module is Loaded

	Ports and Port Drivers
	Ports
	Port Drivers
	Port BIFs

	Programming Examples
	Records
	Records and Tuples
	Defining a Record
	Creating a Record
	Accessing a Record Field
	Updating a Record
	Type Testing
	Pattern Matching
	Nested Records
	A Longer Example

	Funs
	map
	foreach
	Syntax of Funs
	Variable Bindings Within a Fun
	Funs and Module Lists
	map
	any
	all
	foreach
	foldl
	mapfoldl
	filter
	takewhile
	dropwhile
	splitwith

	Funs Returning Funs
	Simple Higher Order Functions
	Infinite Lists
	Parsing

	List Comprehensions
	Simple Examples
	Quick Sort
	Permutations
	Pythagorean Triplets
	Simplifications With List Comprehensions
	Variable Bindings in List Comprehensions

	Bit Syntax
	Introduction
	Examples

	Lexical Note
	Segments
	Defaults
	Constructing Binaries and Bitstrings
	Including Literal Strings

	Matching Binaries
	Binding and Using a Size Variable
	Getting the Rest of the Binary or Bitstring

	Appending to a Binary

	Efficiency Guide
	Introduction
	Purpose
	Prerequisites

	The Seven Myths of Erlang Performance
	Myth: Tail-Recursive Functions are Much Faster
 Than Recursive Functions
	Myth: Operator "++" is Always Bad
	Myth: Strings are Slow
	Myth: Repairing a Dets File is Very Slow
	Myth: BEAM is a Stack-Based Byte-Code Virtual Machine
 (and Therefore Slow)
	Myth: Use "_" to Speed Up Your Program When a Variable
 is Not Used
	Myth: A NIF Always Speeds Up Your Program

	Common Caveats
	Timer Module
	Accidental Copying and Loss of Sharing
	list_to_atom/1
	length/1
	setelement/3
	size/1
	split_binary/2

	Constructing and Matching Binaries
	How Binaries are Implemented
	Refc Binaries
	Heap Binaries
	Sub Binaries
	Match Context

	Constructing Binaries
	Circumstances That Force Copying

	Matching Binaries
	Option bin_opt_info
	Unused Variables

	Historical Note

	Maps
	Maps or Records?
	Using Maps as an Alternative to Records
	Using Maps as Dictionaries
	Using Maps as Sets
	How Maps are Implemented
	How Small Maps are Implemented
	How Large Maps are Implemented

	Using the Map Syntax
	Using the Functions in the maps Module
	maps:filter/2
	maps:filtermap/2
	maps:find/2
	maps:get/2
	maps:get/3
	maps:intersect/2, maps:intersect_with/3
	maps:from_list/1
	maps:from_keys/2
	maps:is_key/2
	maps:iterator/1
	maps:keys/1
	maps:map/2
	maps:merge/2
	maps:merge_with/3
	maps:new/0
	maps:next/1
	maps:put/3
	maps:remove/2
	maps:size/1
	maps:take/2
	maps:to_list/1
	maps:update/3
	maps:values/1
	maps:with/2
	maps:without/2

	List Handling
	Creating a List
	List Comprehensions
	Deep and Flat Lists
	Port Example
	Append Example

	Recursive List Functions

	Functions
	Pattern Matching
	Function Calls
	Notes and Implementation Details

	Memory Usage in Recursion

	Tables and Databases
	Ets, Dets, and Mnesia
	Select/Match Operations
	Deleting an Element
	Fetching Data
	Non-Persistent Database Storage
	tab2list
	Ordered_set Tables

	Ets-Specific
	Using Keys of Ets Table

	Mnesia-Specific
	Secondary Index
	Transactions

	Processes
	Creating an Erlang Process
	Initial Heap Size

	Sending Messages
	Receiving messages
	Option recv_opt_info

	Literal Pool
	Loss of Sharing
	SMP Emulator

	Drivers
	Drivers and Concurrency
	Avoiding Copying Binaries When Calling a Driver
	Returning Small Binaries from a Driver
	Returning Large Binaries without Copying from a Driver

	Advanced
	Memory
	System Limits

	Profiling
	Do Not Guess About Performance - Profile
	Memory profiling
	Large Systems
	What to Look For
	Tools
	fprof
	eprof
	cprof
	Tool Summary
	dbg
	lcnt

	Benchmarking

	Retired Myths
	Myth: Funs are Slow
	Myth: List Comprehensions are Slow
	Myth: List subtraction ("--" operator) is slow

	Interoperability Tutorial
	Introduction
	Purpose
	Prerequisites

	Overview
	Built-In Mechanisms
	Distributed Erlang
	Ports and Linked-In Drivers

	C and Java Libraries
	Erl_Interface
	C Nodes
	Jinterface

	Standard Protocols
	Sockets

	IC and CORBA
	Old Applications

	Problem Example
	Description

	Ports
	Erlang Program
	C Program
	Running the Example

	Erl_Interface
	Erlang Program
	C Program
	Running the Example

	Port Drivers
	Erlang Program
	C Driver
	Running the Example

	C Nodes
	NIFs
	Erlang Program
	NIF Library Code
	Running the Example

	Debugging NIFs and Port Drivers
	With great power comes great responsibilty
	The debug emulator
	Address Sanitizer
	Valgrind
	rr - Record and Replay

	OTP Design Principles
	Overview
	Supervision Trees
	Behaviours
	Applications
	Releases
	Release Handling

	gen_server Behaviour
	Client-Server Principles
	Example
	Starting a Gen_Server
	Synchronous Requests - Call
	Asynchronous Requests - Cast
	Stopping
	In a Supervision Tree
	Standalone Gen_Servers

	Handling Other Messages

	gen_statem Behaviour
	Event-Driven State Machines
	When to use gen_statem
	Callback Module
	Callback Modes
	Choosing the Callback Mode

	State Callback
	The First State

	Transition Actions
	Event Types and Event Content
	State Enter Calls
	Time-Outs
	Cancelling a Time-Out
	Updating a Time-Out
	Time-Out Zero

	Example
	Starting gen_statem
	Handling Events
	State Time-Outs
	All State Events
	One State Callback
	Stopping
	In a Supervision Tree
	Standalone gen_statem

	Event Time-Outs
	Generic Time-Outs
	Erlang Timers
	Postponing Events
	Fuzzy State Diagrams
	Selective Receive

	State Enter Actions
	Inserted Events
	Example Revisited
	Callback Mode: state_functions
	Callback Mode: handle_event_function

	Filter the State
	Complex State
	Hibernation

	gen_event Behaviour
	Event Handling Principles
	Example
	Starting an Event Manager
	Adding an Event Handler
	Notifying about Events
	Deleting an Event Handler
	Stopping
	In a Supervision Tree
	Standalone Event Managers

	Handling Other Messages

	Supervisor Behaviour
	Supervision Principles
	Example
	Supervisor Flags
	Restart Strategy
	one_for_one
	one_for_all
	rest_for_one
	simple_one_for_one

	Maximum Restart Intensity
	Tuning the intensity and period

	Automatic Shutdown
	never
	any_significant
	all_significant

	Child Specification
	Starting a Supervisor
	Adding a Child Process
	Stopping a Child Process
	Simplified one_for_one Supervisors
	Stopping
	Manual stopping versus Automatic Shutdown

	sys and proc_lib
	Simple Debugging
	Special Processes
	Example
	Starting the Process
	Debugging
	Handling System Messages

	User-Defined Behaviours

	Applications
	Application Concept
	Application Callback Module
	Application Resource File
	Directory Structure
	Directory Structure Guidelines for a Development Environment
	Directory Structure for a Released System

	Application Controller
	Loading and Unloading Applications
	Starting and Stopping Applications
	Configuring an Application
	Application Start Types

	Included Applications
	Introduction
	Specifying Included Applications
	Synchronizing Processes during Startup

	Distributed Applications
	Introduction
	Specifying Distributed Applications
	Starting and Stopping Distributed Applications
	Failover
	Takeover

	Releases
	Release Concept
	Release Resource File
	Generating Boot Scripts
	Creating a Release Package
	Directory Structure
	Disk-Less and/or Read-Only Clients

	Release Handling
	Release Handling Principles
	Release Handling Workflow
	Release Handling Aspects

	Requirements
	Distributed Systems
	Release Handling Instructions
	load_module
	update
	add_module and delete_module
	Application Instructions
	apply (Low-Level)
	restart_new_emulator (Low-Level)
	restart_emulator (Low-Level)

	Application Upgrade File
	Release Upgrade File
	Installing a Release
	Example (continued from the previous sections)

	Updating Application Specifications

	Appup Cookbook
	Changing a Functional Module
	Changing a Residence Module
	Changing a Callback Module
	Changing Internal State
	Module Dependencies
	Changing Code for a Special Process
	Changing a Supervisor
	Changing Properties
	Changing Child Specifications
	Adding and Deleting Child Processes

	Adding or Deleting a Module
	Starting or Terminating a Process
	Adding or Removing an Application
	Restarting an Application
	Changing an Application Specification
	Changing Application Configuration
	Changing Included Applications
	Application Restart
	Supervisor Change

	Changing Non-Erlang Code
	Emulator Restart and Upgrade
	Emulator Upgrade From Pre OTP R15

	OAM Principles
	Introduction
	Terminology
	Model
	SNMP-Based OAM
	MIB Structure

