< NVIDIA.

2025-1-20

Eagle 2: Building Post-Training Data Strategies from Scratch
for Frontier Vision-Language Models

Zhiqi Li™*
Yilin Zhao>*
Matthieu Le De-An Huang Ilia Karmanov Lukas Voegtle Philipp Fischer Timo Roman Tong Lu!
Zhiding Yu'

Guo Chen"* Shilong Liu>* Shihao Wang>* Vibashan VS§** Yishen Ji' Shiyi Lan Hao Zhang
Subhashree Radhakrishnan Nadine Chang Karan Sapra Amala Deshmukh Tuomas Rintamaki

Jose M. Alvarez Bryan Catanzaro Jan Kautz Andrew Tao Guilin Liu

Abstract: Recently, promising progress has been made by open-source vision-language models (VLMs) in bringing
their capabilities closer to those of proprietary frontier models. However, most open-source models only publish their
final model weights, leaving the critical details of data strategies and implementation largely opaque. In this work,
we address VLM post-training from a data-centric perspective, showing the key role of data strategy in developing
frontier VLMs. By studying and building our post-training data strategy from scratch, we share detailed insights into the
development processes, aiming to benefit the development of competitive models for the open-source community. Our
introduced data strategy, together with training recipes and model design, leads to a family of performant VLMs named
Eagle 2. Specifically, Eagle2-9B achieves state-of-the-art results across various multimodal benchmarks, matching
certain competitive models with up to 70B parameters.

Links: Github Code | HF Models | Demo

1. Introduction
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language models (VLMs) [1, 2, 3, 4] aim to enable LLMs
to see. With the ability to visually perceive the world,
VLMs are able to take in multimodal information, and
as a result, handle a broader range of intelligent applica-
tions. There is thus a growing interest to use VLMs as the
backbone for reasoning and decision making in various
applications, such as intelligent agents [5], autonomous
driving [6, 7], and embodied AI [8, 9, 10].
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The community has delved deeply into the architec- MathVista (Test-Mini)

ture and training methodologies of VLMs with signifi-
cant advances. A predominant strategy to align the vision
and language modalities is through post-training on pre-
trained LLMs, with the LLaVA family [4] being the rep-
resentative examples. Based on the level of transparency,
current VLM models can also be broadly categorized
into three types: 1) commercially closed-source models
(e.g., GPT-4v/o [11] and Claude [12]), 2) frontier mod-
els with publicly available weights (e.g., Qwen2-VL [13],
InternVL2 [14] and Llama 3.1 [15]), and 3) fully open-
source models (e.g., Cambrian-1 [16] and the LLaVA fam-

MMMU (Val)

HallBench

MMBench v1.1 (Test)
MMVet

Eagle-2-9B (This Work) GPT-4Vv

InternVL2-8B

Qwen2VL-7B
MiniCPM-V-2.6

Figure 1 | Overview of Eagle2-9B’s result across different
multimodal benchmarks, in comparison to state-of-the-art
open-source and commercial frontier models.

ily [4, 17]).

Recently, some frontier models with publicly available
weights have been shown to match closed-source com-
mercial models on key benchmarks while offering better
customization for downstream applications. However, the
technical details provided by these models are often insuf-
ficient for reproduction. On the other hand, fully open-
source models tend to disclose extensive technical details,
including both the dataset strategies and training recipes.

These details unveils the secret sources in building cus-
tomized VLM models, which enables easier reproduction
and helps the community to develop technologies faster.
However, most of the open source models still lag behind
their frontier counterparts. For instance, on the OpenCom-
pass [18] benchmark, LLaVA-OneVision-72B [17] still
ranks slightly behind InternVL2-40B [14] despite having
a stronger LLM backbone. We thus ask the following
question: What could help the community to develop more
competitive open-source frontier VLMs?
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Figure 2 | Step-by-Step ablation of Eagle 2. We show the
average scores of 13 benchmarks, detailed numbers are in
Table 5 and

1.1. Data Strategy

Our answer to the above question is the data-strategy. As-
suming the same pre-trained LLM backbone, we posit
that data is the most decisive factor to obtain high-quality
models. We thus adopt a centralized strategy to build our
post-training data. For fully open-source models, various
constraints such as computing resources may limit the
study on more dataset sources, despite their intention to
make the data recipe publicly available. This limitation
often affects their capability compared to models that can
access and utilize a wider range of data sources.

“Diversity first, then quality”. We follow this princi-
ple throughout our development and push it to the extreme.
Our optimization of the data results in consistent improve-
ments in model. Our contributions involve: 1) a data
collection strategy leading to a large-scale highly diverse
data pool with 180+ sources, 2) a data filtering strategy
to remove low-quality samples, 3) a data selection strat-
egy to construct high-quality subsets, and 4) a series of
data augmentation techniques to enrich the existing data.
This series of strategies are shown to improve the model
significantly.

1.2. Model Architecture

Besides data strategy, another important factor considered
in this work is model architecture. Since different architec-

ture designs have been well-studied in open-source models,
their properties are relatively transparent to the commu-
nity. Despite various designs such as Q-Former [19] and
Hybrid-Attention [20], simple MLP connector is still the
most popular choice to connect the vision encoder and
LLM. With the rapid advances in architecture designs in
contemporary VLMs, model structure is no longer a pri-
mary factor driving performance differences among mod-
els. However, this does not imply that there is no room for
further improvement in architecture.

Tiled mixture of vision encoders. Inspired by the
works of InternVL [21, 14], Eagle [22] and Cambrian-
1 [16], we follow a vision-centric design where we
adopt both dynamic tiling and mixture of vision encoders
(MoVE) in one unified design. Specifically, each image
tile is encoded by channel-concatenated MoVE, therefore
allowing high-resolution input from tiling while maintain-
ing the robust perception from MoVE. Similar to [22], we
follow a “SigLIP [23] + X (ConvNeXt [24])” configuration.
Compared to SigLIP alone, tiled MoVE yields significant
improvements despite having tiling, particularly in tasks
like OCR and Chart/Document VQA.

1.3. Training Recipe

Which training recipe to be used? In this context, the train-
ing recipe primarily refers to various configurations for
training a VLM. With the same dataset, different recipes
can still have a significant impact on the final perfor-
mance. Although the training recipes for the state-of-the-
art VLMs [25, 14, 26] are somewhat unclear, the details
shared by existing work [16, 4, 17] can offer a solid base-
line. However, to further improve model performance, it
is necessary to explore more effective training recipe.

Three-stage training. We adopt a three-stage training
strategy to best leverage the training data. In particular,
the first stage (Stage-1) is used to align language and
image modality via training the MLP connector. The next
stage (Stage-1.5) trains the full model with a large-scale
diverse data. The final stage (Stage-2) continues training
the full model with a carefully crafted, high-quality visual
instruction tuning dataset. In Stage-1.5, we incorporate all
available visual instruction data, rather than limiting it to
captioning or knowledge data alone. Our results show that
this approach yields substantial improvements over the
commonly used two-stage training strategy [4]. We also
identify limitations in existing open-source frameworks
concerning data packing and introduce a balanced data
packing approach to address the issue.

1.4. Summary

Our extensive exploration on data strategy, model archi-
tecture and training recipe is shown in Fig. 2, resulting
in a family of VLMs named Eagle 2. Through sharing
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Name Eagle2-Baseline
Vision Encoder Siglip-400M [23]
Model Connector MLP
LLM Qwen?2.5-7B-Instruct [27]
Resolution X ((1.D), (1.2), 2.2) ---. (1,12)]
Stage-1 Training Data ALLaVA(1.2M) [4]
e Trainable Module Connector
Training Data Cambrian-1 (5.2M) [16]
Stage2 | rainable Module Full Model

Table 1 | Baseline Settings.
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Figure 3 | An overview of our data strategy. The upper
part shows the date collection pipeline and the lower part
shows the data refinement pipeline.

the journey of exploration, we aim to “teach readers to
fish than to give them a fish”, by sharing our data strate-
gies, model design and training recipe, detailing the it-
erative development process than merely displaying the
final benchmark results and demonstrations. The Eagle 2
model family spans a range of various scales, including
1B, 2B and 9B parameters. As shown in Fig. |, Eagle2-9B
can match or outperform frontier open-source and com-
mercially closed-source VLMs on a set of common multi-
modal benchmarks.

2. Method

2.1. Baseline Setting

As shown in Tab. 1, our initial baseline starts with the Cam-
brian dataset [16] using LLaVA’s [4] two-stage training
recipe. We remove some low-quality data from Cambrian-
7M, such as ShareGPT-4V, GPT-77K and Data-Engine-
161K, ultimately resulting in a subset of 5.2M samples.
The model incorporates an MLP connector to bridge the
vision encoder with the LLM and employs image tiling
for dynamic resolution. Starting from this baseline, we
enhance Eagle 2 in three key aspects: (1) data strategy,
(2) training recipe, and (3) model architecture. These op-
timizations enable the model to achieve state-of-the-art
performance.

2.2. Data Strategy

Training data is essential for defining a VLM’s capabili-
ties. However, most commercial VLMs and leading VLMs
with publicly available weights keep their data strategies

confidential. In this work, we conducted an in-depth ex-
ploration to create a diverse and high-quality dataset with
a series of data strategies to iteratively refine and opti-
mize our data pool. The resulting dataset significantly
boosts model performance, far surpassing the initial base-
line. Fig. 3 illustrates our overall data strategy consisting
of two core components: data collection and optimizing
existing data. More technical details have been provided
in the appendix.

Data collection - diversity is the key. A model’s ca-
pability is strongly correlated with the diversity of data.
As such, collecting data as diverse as possible is a key
principle of this work, leading to two main strategies:

* Passive gathering: Monitoring the latest related datasets
from arXiv manuscripts and HuggingFace Datasets and
adding them into our candidate list.

* Proactive searching: Addressing the bucket effect. As
shown in Fig. 3, for each update of the data pool, we
generate error analysis to identify model weaknesses
and perform targeted searches for new data.

Our diverse data sources are summarized in Tab.
and generally publicly available. We utilize some pre-
organized dataset collections [16, 17, ] to speed up
preparation but also conducted careful inspection to pre-
vent issues like test data leakage'. We also collect a large
amount of public non-QA data, such as Google Land-
mark [31], and convert them into VQA data using specific
rules or auto-labeling tools.

To reduce training costs, we avoid performing ablation
for each dataset individually. Instead, datasets with sim-
ilar domains are added in batches to the data pool when
meeting the following criteria:

* Maintaining overall accuracy without noticeable regres-
sion for every considered benchmark.
e Introducing meaningful diversity to the current domains.

To help quantify the diversity, we define a metric called
Similarity Score to measure the relevance between a new
data source and the current data pool as follows:

N
Sp==3 max (Sim(I;,I;) x Sim(T};,T;)), (1)

N ~—~1<5<My,
=1

where ¢ is the index of a new data source with N samples,
and j is the index of the existing pool with M samples,
with k£ denoting the data category. We compute similarity
scores only within the same category, as inter-category
similarity is generally low. Image embeddings I; and I;
are generated from SSCD [178], and text embeddings 7;
and T from all-mpnet-base-v2 [179]. The similarity score

I'The test split of AI2D is used in Cambrian-1 training data.
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Category

Dataset

Captioning & Knowledge

ShareGPT4o [28], KVQA [29], Movie-Posters [30], Google-Landmark [31], WikiArt [32], Weather-QA [33], Coco-
Colors [34], music-sheet [35], SPARK [36], Image-Textualization [37], SAM-Caption [38], Tmdb-Celeb-10k [39]

43], Geometry3K [44], MAVIS-math-rule-geo [45], MAVIS-math-

)], ScienceQA [51], TQA [52], PathVQA [53], SciQA [54], Textbooks-QA, VQA-RAD [55], VisualWebln-

ChartQA [57], MMC-Inst [58], DVQA [59], PIotQA [60], LRV-Instruction [61], TabMWP [62], UniChart [63], Vistext [64],
TAT-DQA [65], VQAonBD [66], FigureQA [67], Chart2Text [68], RobuT-{Wikisql, SQA, WTQ} [69], MultiHiertt [70]

3], SROIE [74], FUNSD [75], Latex-Formula [76], IAM [77], Handwriting-
8], ArT [79], CTW [80], ReCTs [81], COCO-Text [82], SVRD [83], Hiertext [84], RoadText [85], MapText [80],
CAPTCHA [87], Est-VQA [88], HME-100K [89], TAL-OCR-ENG [89], TAL-HW-MATH [89], IMGURS5K [90], ORAND-
CAR [91], Invoices-and-Receipts-OCR [92], Chrome-Writting [93], IIITS5k [94], K12-Printing [89], Memotion [95],
Arxiv2Markdown, Handwritten-Mathematical-Expression [96], WordArt [97], RenderedText [98], Handwriting-Forms [99]

)], InfoVQA [101], TextVQA [102], ArxivQA [103], ScreencQA [104], DocReason [105], Ureader [106],

. GeoQA+ [40], MathQA [4 1], CLEVR-Math/Super [42,
Mathematics metagen [45], InterGPS [46], Raven [47], GEOS [48], UniGeo [49]
. AI2D [5(
Science -
struct [56]
Chart & Table
SynthDoG [71], MTWI [72], LVST [7:
Latex [7¢
Naive OCR
DocVQA [10(
0 08
OCR QA FinanceQA [107], DocMatrix [108], A-OKVQA [I

Grounding & Counting

09], Diagram-Image-To-Text [110], MapQA [111], OCRVQA [112],
ST-VQA [113], SlideVQA [ 1 14], PDF-VQA [115], SQuAD-VQA, VQA-CD [116], Block-Diagram [ 1 7], MTVQA [1 18],
ColPali [119], BenthamQA [120]

TallyQA [121], OODVQA [122], RefCOCO/+/g (en) [123, 124], GroundUI [125]

LLaVA-150K [4], LVIS-Instruct4V [126], ALLaVA [127], Laion-GPT4V [128], LLAVAR [129], SketchyVQA [122],
VizWiz [130], IDK [131], AlfworldGPT, LNQA [132], Face-Emotion [133], SpatialSense [134], Indoor-QA [135],

General VQA Places365 [136], MMinstruct [137], DriveLM [138], YesBut [139], WildVision [140], LLaVA-Critic-113k [14 1], RLAIF-
V [142], VQAV2 [143], MMRA [144], KONIQ [145], MMDU [146], Spot-The-Diff [147], Hateful-Memes [ 48], COCO-
QA [149], NLVR [150], Mimic-CGD [151], Datikz [152], Chinese-Meme [153], IconQA [154], Websight [155]
Orca [156], Orca-Math [157], OpenCodelnterpreter [158] MathInstruct [159], WizardLM [160], TheoremQA [161],
Text-only OpenHermes2.5 [162], NuminaMath-CoT [163], Python-Code-25k [ 164], Infinity-Instruct [ 165], Python-Code-Instructions-
18k-Alpaca [166], Ruozhiba [167], InfinityMATH [168], StepDPO [169], TableLLM [170], Ultralnteract-sft [171]
(a) Summary of the collected Eagle 2 SFT datasets
Category Dataset
Captioning & Knowledge | CC3M [172], TextCaps [173], ShareGPT-4V [174], DenseFusion-1M [175]
Grounding & Counting | Object 365 [176]
Text-only OpenMathlInstruct [177]

(b) Summary of the additional Stage 1.5 datasets

Table 2 | Dataset used in Eagle 2. Dataset in Magenta is internal data.

between samples is the product of image and text similarity.
This metric shows most sources have low similarity, with
a few high-similarity samples removed as duplicates.

Following our data collection protocol and the refine-
ment steps stated below, our final model uses 21.6 M
samples in Stage-1.5 and 4.6 M samples in Stage-2, with
the distribution illustrated in Fig. 4. We make sure text-
only data occupy over 20%. Captioning data account for
the largest proportion in Stage-1.5; however, in Stage-2,
we reduce its share primarily due to concerns about the
overly monotonous instructions.

Data filtering - “A rotten apple spoils the barrel.”” Pub-

lic datasets often contain many low-quality samples. We

find that most low-quality cases belong to the following

categories, which we use as our filtering criteria:

* Mismatching question-answer pair. E.g., Fig. 5 (a) from
ShareGPT4o [28].

o [rrelevant image-question pair with unrelated image and
question. E.g., Fig. 5 (b) from Cambrian-1 [16].

[ GeneralVQA
[ Captioning & Knowledge
[ Science

Chart & Table
[ Mathematics
[ OCRQA

[ Grounding & Counting
[ Text-Only
[ Naive OCR

(a)Data Dlstr|but|on in Stage 1.5 (b)Data Distribution in Stage 2

Figure 4 | Data Distribution for Stage-1.5 and Stage-2.

* Repeated texts.
4V [174].

* Numeric formatting issue. Excessive decimal precision
or overly precise numerical answers lacking correspond-
ing information in the image. E.g., Fig. 6.

E.g., Fig. 5 (¢) from ShareGPT-

Since most low-quality data are generated from synthesis,
they often present characteristics making them distinguish-
able for removal through rule-based filtering.
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Please describe the situation in the picture as clearly as possible.

To answer any questions related to this image, we must infer based
on the described elements: - The photograph of the man appears to
be from the mid-20th century due to the black-and-white color and
classic attire. - The serious expression and formal clothing suggest
he might be a professional or someone significant, possibly an actor
from a period-specific media.

(a) Irrelevant question-answer pair from (ShareGPT-40)

What is the structural organization of the heart of the mosquito
Anopheles gambiae, and how does it differ from vertebrate hearts?

The tube-like heart of the mosquito Anopheles gambiae is green and
extends horizontally across the body, interlinked with diamond-
shaped wing muscles...

(b) Irrelevant image-question pair (from Cambrian-1 Data Engine)

A e . Al
Write a detailed description of the given image.

€ s not contair
lements t C ar style or genre...The image does
not contain any elements that suggest a particular style or genre...

() Repeated texts ( from ShareGPT-4V)

Figure 5 | Typical low-quality samples.

What is the average net bilateral aid flow in Small states per year ?
5336666.666666667
What is the ratio of the net bilateral aid flow in World in 1990 to that in 1995

0.2700346484855259

rrrrw':

Figure 6 | Public datasets [60, 58] often do not rigorously
handle numerical precision, resulting in high decimal pre-
cision impossible to directly extract from the image.

Subset selection - “every data comes with a price”. Se-
lecting optimal subsets is key to high-quality training. Re-
cent work [16] suggests limiting the number of samples
from each source to be typically no more than K (e.g.
350K). Our data selection adopts on two main principles:

* Subset quantity determination. Data source diversity
and distribution determine the sample quantity. Auto-
labeled sources are featured by larger sizes, but often
contain errors and lack diversity. Instead, manually la-
beled datasets are often smaller. Thus, datasets with
larger original sizes are generally applied with smaller
sampling ratios. In our Stage-2 data, the average size
per source is around 20K, with the largest subset Visual-
Weblnstruct [56] having 263K samples.

* K-means clustering selection. Once the subset size is de-
termined, the next step is to select the samples. Current
methods often use random selection, which is subop-
timal. For example, in chart data, histogram samples
are more frequent than other types like line charts or
pie charts, and random sampling wouldn’t ensure bal-
ance across these types. To address this, we applied
unsupervised K-means clustering on SSCD [178] image
embeddings, where samples with similar chart types
are clustered closer, allowing for target data selection,
such as including all the line and pie chart samples as
needed. While K-means using SSCD image embeddings

How many of the planets are surrounded by rings?
(A):4(B):1(C):2(D):3

1. Identify Planets with Rings: - Look for visual indicators of rings encircling any
of the planets.

2. List Planets with Observed Rings - Saturn: depicted with prominent rings. -
Uranus: Visible rings are present.

3. Counting Planets with Rings: - From the visual inspection, there are two
planets, Saturn and Uranus, with visible rings.

4. Mathematical Principle: - Visual enumeration is used to count the distinct
planets with rings based on observational analysis.

5. Final Answer: The correct choice is 2 (Option C), as two planets, Saturn and
Uranus, have rings.

(a) Chain-of-Thought Augmentation

2. (Original short answer)

®
o @
®

{+]

i

o 1$
io
i

What is the maximum number of word titles?
The maximum number of world titles is 16 from the Ferrari.

What is the mean number of word titles?

The mean number of world titles is 4.2.

(b) Rule-based Augmentation

| Is the bear facing the window? sitting sideways. (Original short answer)
4 The bear is positioned sideways on the windowsill. Its body is oriented
perpendicularly to the window, meaning it is neither directly facing nor directly

== turned away from the window.
(c) Short Answer -> Long answer Augmentation

g2

B

Figure 7 | Our three most commonly used data aug-
mentation methods.These methods rely on rule-based ap-
proaches or utilize VLM models for automatic labeling.

Formular Image

K:l
Fo= g

IXTgX Annotation

S=4\piR~ 2=\ frac{9}{2}\pi

\begin{align*}F_c=m_{J}\frac{c"2}{R}\end{align*}

Table 3 | Two samples with same "Extract ISIEX from
image" task but with different format.

performs poorly on natural scene images, it excels with
mathematical, medical, and document-based data.

Data augmentation. Data augmentation aims to mine
the rich information from input images that is not fully
present in the existing QA annotations. In order to mine
the potentially useful information from image space, a
common approach is to use third-party VLMs to generate
fine-grained descriptions of the images. We adopt this
approach, as illustrated in Fig. 7.

* Adding CoT (Chain-of-Thought) explanations.
* Rule-based QA generation.
* Expanding short answers into longer responses.

For details of the above generation process, kindly refer to
the supplementary.

Data formatting. Transforming data into the correct for-
mat is also a crucial step in data preparation. One of our
basic principles is: “same task, similar format; differ-
ent tasks, clearly distinct formats.” Our data formatting
includes but is not limited to:

* Removing unnecessary decorations. We present a seem-
ingly inconspicuous example that, nonetheless, has a
profound impact on the final results in Tab. 3. We show
two samples from different sources for the task of ex-
tracting LaTeX formulas from images. The second sam-
ple includes an unnecessary fixed equation environment.
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Stage-1 Stage-1.5 Stage-2
Vision Resolution {448sig11p, 512convNexes} X {(i,7) | 4,5 € ZF, i x j <12}
) Tokens (i xj+1) x 256
Data Dataset ALLaVA Rich Diverse Data  High-Quality Data
#Samples 1.2M 21.6M 4.6M
Trainable MLP Connector Full Model Full Model
Qwen2.5-0.5B 4.9M 0.9B 0.9B
Model
Qwen2.5-1.5B 9.4M 2.0B 2.0B
Qwen2.5-7B 40.0M 8.9B 8.9B
Batch Size 1024 1024 256
Training Learning Rate 2x10* (2,4} x107° (2,4} x107°
Max Length 4096 8192 16384

Table 4 | We present our three-stage training set-
tings, where Eagle2-9B/2B/1B builds upon Qwen2.5-
32B/7B/1.5B/0.5B [27], respectively. *: For small scale
model with 0.5/1.5B LLM, we only use SigLIP as visual
encoder and learning rate of 4 x 10~° in Stage-1.5 & 2.

Even with limited use of such data, the model consis-
tently outputs this fixed template (in red texts). After
removing the fixed equation environment, the model
returns to normal behavior, leading to a significant im-
provement on OCRBench [180].

* Appending more specific instructions. Adding detailed
instructions to the original instruction based on the re-
sponse is a common approach. For example, appending
“Provide a short answer” to brief responses helps prevent
a model from becoming an “answering machine” that
is used to giving short answers. However, overusing
this can also hinder generalization. For instance, adding
“Please answer yes or no” to every yes-or-no question
may impair the model’s ability to answer correctly with-
out such prompt during inference.

2.3. Training Recipe

Our data strategy enables us to build a high-quality and
diverse dataset, but applying different training recipes to
the same data pool still has a decisive impact on the final
results. Our recipe is built upon the following core points.

Post-pretraining stage is necessary. We initially begin
with LLaVA [4]’s two-stage training strategy, where we
train an MLP connector followed by full model training
with SFT data. While efficient, this approach proved un-
suitable for quick SFT data updates, as the expanding SFT
data makes it harder to track the impact of new data and
reduces the experimental efficiency. For instance, we ob-
serve improvements from expanding the Cambrian-1 [16]
SFT data. However, the gap remains between the model
and state-of-the-art ones. Considering that the main lim-
itation of the two-stage strategy is the lack of robust pre-
training, we add an additional pre-training stage (Stage-
1.5). Stage-1.5 pre-trains the model on a larger dataset to
reduce dependency on SFT data in subsequent training.

Accelerating the iteration of data strategy

O

High-quality data back

E nt Foundation
+ Slow lIteration

Figure 8 | Stage-1.5 accelerates Stage-2 and Stage-2 gives
Stage-1.5 feedback.

“Large wheel drives small wheel.” Three-stage pre-
training is, in fact, widely used in existing works, such as
LLaVA-OneVision [17]. However, we have a distinctly
different view to the data that using in Stage-1.5. Other
works tend to use more knowledge-related data, such as
captioning data, at this stage. In this work, we add all data
sources intended for visual instruction to Stage-1.5, simul-
taneously introducing several other datasets as shown in
Tab. 2b. As shown in Fig. 8, training Stage-2 based on
Stage-1.5 enables rapid iteration on a high-performance
foundation. The derived conclusions are more robust than
those obtained from ungeneralizable ablation experiments
on toy-scale data. In addition, the effective conclusions
obtained from Stage-2 can be used to update Stage-1.5,
further driving improvements in model performance. De-
tailed settings are shown in Tab. 4.

5000
7000
6000
000
£ om0
2000
2000

1000

(a) Knapsacks of naive greedy (b) Knapsacks of balanced
knapsack method. knapsack method.

Figure 9 | We pack 64 samples of varying lengths into com-
bined samples, each with a length of less than 8192. The
naive greedy knapsack approach in LLaMa-Factory [181]
leads to uneven length distributions (left), while the pro-
posed method gives more balanced length distributions
within every knapsack (right).

Balance-aware data packing matters. Data packing
speeds up training by concatenating shorter samples, re-
ducing padding use. In our experiments, using packing
accelerate the training by 2-3 times. A key step in pack-
ing is arranging IV short samples of varying lengths into
M long samples without exceeding max length. Existing
frameworks such as LLaMa-Factory use a naive greedy
knapsack algorithm’, but this often produces packs with

2https ://github.com/hiyouga/LLaMA-Factory/
blob/main/src/llamafactory/data/processors/
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# Our proposed greedy knapsack method

def balanced_greedy_knapsack (samples, L):
# Step 1: Sort the samples
samples.sort (reverse=True)
total_length = sum(samples)

min_knapsacks = (total_length + L - 1) // L

# Step 2: Initialize knapsacks

knapsacks=[[] for _ in range (min_knapsacks)
]

knapsack_lengths = [0] * min_knapsacks

# Step 3: Distribute samples across
knapsacks

ks_index = 0

sample_index = 0

while sample_index < len(samples) :
length = samples[sample_index]

if knapsack_lengths[ks_index]+length<=L

knapsacks[ks_index] .append (length)
knapsack_lengths[ks_index] +=
length
sample_index += 1
else:
knapsacks.append([])
knapsack_lengths.append (0)
ks_index = argmin (knapsack_lengths)

return knapsacks

Figure 10 | Python code for the proposed balance-aware
greedy knapsack method. L is the max length and “sam-
ples" is a list of token lengths.

uneven length distributions. As shown in Fig. 9, the naive
greedy knapsack method groups long and short samples
separately, which is not desirable to model training.

Therefore, we design a balance-aware greedy knap-
sack algorithm that creates packs with a more uniform
length distribution, as shown in Fig. 10, ensuring that
each pack contains both long and short samples. Unlike
SPFHP (Shortest-Pack-First Histogram Packing) [182],
our method prioritizes balanced length distribution over
packing efficiency, helping balance loss weights between
long and short samples. Further details are in the appendix.

2.4. Tiled Mixture of Vision Encoders

Following Eagle [22], we use SigLIP [23] and ConvNeXt-
XXLarge [24, 183] as vision encoders. Additionally, to
handle arbitrarily high-resolution images, we employ im-
age tiling following InternVL-1.5 [21]. The input resolu-
tion of every image tile of SigL.IP is 448 x 448, while the
input size of ConvNeXt is 512 x 512. To make sure they
output same number of image tokens, we use PixelShuf-
fle to conduct a 2x downsampling on the image features
from SigLIP, resulting a feature shape of 16x16, matching
the output size of ConvNeXt (32x downsampling of in-
put). We then concatenate these features along the channel
dimension and align with LLM via an MLP layer.

processor_utils.py

( )

t t
] [ MLP connector ]

HEHAR -
nation

f Feature Concate

ConvNeXt ] [ SigLIP ]

Dynamic Splitting Image ]

Figure 11 | Tiled Mixture of Vision Encoders.

3. Experiments

3.1. Evolution of Eagle 2

Scaling Stage-2 training data. We initially explore
the impact of scaling Stage-2 data, as shown in Tab. 5.
Our findings reveal that model’s overall performance im-
proved steadily with additional data, with the most no-
table gains arising from the inclusion of 2M (million)
VQA samples focused on charts, tables, and OCR. While
data scaling indicates potential for further gains beyond
10M samples, our experiments’ costs have risen sharply,
and the efficiency of data iteration has decreased. More-
over, we observe considerable performance fluctuations
across specific benchmarks at this scale, especially in
challenging benchmarks like MMMU, MathVista, and
MMVet. Another obstacle is that, as illustrated by the
data-performance growth trend in Fig.2, reaching the per-
formance of frontier VLMs like Qwen2-VL would be
difficult. These challenges leads us to consider adopting a
more effective training strategy.

Introducing Stage-1.5. To build a robust pre-trained
model, we implement Stage-1.5 where we focus on maxi-
mizing the data utilization to strengthen the model’s foun-
dational capabilities. As shown in Tab. 6, the Stage-1.5
checkpoint is competitive by itself, and subsequent Stage-2
training further improves the previous best model’s perfor-
mance by average 3.9%.

Naive data selection. Using a naive data selection strat-
egy with maximum thresholds and random sampling, we
reduce the training data to 8.6M; unfortunately, this led to
a decline in performance. We speculate it might be that
the randomly selected data have inadvertently excluded
some valuable samples, while also failing to adequately
ensure a balanced data distribution.

Data formatting & filtering. After filtering low-quality
data and formatting the training set, we see clear improve-
ments on 8 out of 14 benchmarks, including a remarkable
45-point gain on OCRBench [180]. This implies the im-
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Model Stage-1 Stage-2 DocVQA ChartQA InfoVQA TextVQA OCRBench MMstar RWQA AI2D MMMU MMB; ; MM Vet HallB MathVista| Average
Test Test Test Val Test Test Test Test Val EN-Val Test Test Test-Mini| score
Cambrian-7B [16] 12M 7™ 77.8 73.3 - 71.7 624 50.7 642 746 427 - 48.0 30.6 490 -
Eagle2-Baseline 1.2M  52M 77 65.9 50 69.9 589 473 603 747 497 71.2 459 448 49.2 58.8
+ Naive OCR 1.2M  +0.8M 78 67.0 57 73.7 719 493 599 744 507 72.1 455 463 50.7 61.3
+ Chart, Table & OCR QA| 1.2M  +2.0M 88 78.3 65 77.6 783 51.7 627 762 50.1 72.7 50.1 399 54.1 65.0
+ Science & Math 1.2M  +0.7M 89 78.8 64 71.7 777 525 634 771 507 75.6 51.5 389 51.2 65.2
+ Caption 1.2M  +0.5M 88 79.0 63 78.0 784 537 610 772 529 719 55.8 395 49.7 65.7
+ Grounding & Counting | 1.2M +0.2M 88 79.4 64 779 792 543 617 771 518 77.6 542 39.6 53.7 66.0
+ Text-Only 1.2M  +23M 88 78.5 63 779 792 555 654 765 514 76.5 58.8 373 57.5 66.6
+ General 1.2M  +1.0M 88 80.0 63 77.8 797 559 659 769 522 78.9 56.8 40.8 55.5 67.0

Table 5 | Data ablation under 2-Stage training. The Stage-2 baseline uses Cambrian-1 data. In subsequent experiments,
we gradually increase the SFT data, adding only specific categories each time.

DocVQA ChartQA InfoVQA TextVQA OCRBench MMstar RWQA AI2D MMMU MMB; ; MM Vet HallB MathVista| Average

Model Stage-1 Stage-1.5 Stage-2 L

Test Test Test Val Test Test Test Test Val EN-Val Test Test Test-Mini| Score
Cambrian-7B [16] 1.2M - ™ 77.8 73.3 - 71.7 624 50.7 642 746 427 68.2 48.0 30.6 49.0 -
Introducing Stage 1.5 12M  21IM - 89.9 82.7 71.1 79.5 812 585 694 786 509 81.7 557 47.1 60.1 69.7
+ Stage 2 12M  2IM  127M| 91.0 84.0 72.5 81.0 825 61.4 690 81.0 520 83.0 56.3 464 61.4 70.9
+ Naive Subset Selection 12M  2IM  82M 90.4 83.7 72.0 79.7 798 628 678 83.6 51.7 81.9 56.1 467 61.0 70.6
+ Data Formatting/Filtering 12M  2IM  82M 91.1 84.5 72.3 81.2 843 62.1 67.7 83.0 532 82.2 558  46.6 62.0 71.2
+ Advanced Subset Selection | 1.2M  2IM  4.6M 90.8 84.1 73.3 81.4 843 627 689 841 525 825 59.3 492 60.5 71.8
+ Data Augmentation 12M  2IM  4.6M 91.8 85.1 73.6 81.1 839 61.4 684 839 536 82.4 60.1 484 63.5 72.1
+ Re-Update Stage 1.5 12M  22M  4.6M 91.3 85.9 73.3 81.9 842 61.7 682 835 536 824 61.3  49.0 65.2 72.4
+ Mixture of Vision Encoders| 1.2M  22M  4.6M 92.6 86.4 712 83.0 868 62.6 693 839 56.1 81.9 622 493 63.8 735

Table 6 | Employing three-stage training strategy allows us to reduce the amount of training data required in the Stage-2,
thereby expediting the data iteration process. The resultant efficient data strategies can then be leveraged to refresh and
optimize the data in Stage-1.5.

DocVQA ChartQA InfoVQA TextVQA OCRBench MMstar RWQA AI2D MMMU MMB; ; MM Vet HallB MathVista Open-

Model

Test Test Test Val Test Test  Test Test  Val Test Test Test Test-Mini Compass
Closed-Source Models
GPT-40-0513 [184] 92.8 85.7 - - 736 639 754 846 692 822 69.1 550 613 69.9
GPT-4V [11] 88.4 78.5 75.1 78.0 656 56.0 68.0 78.6 61.7 79.8 67.5 439 54.7 63.5
Gemini-1.5-Pro [185] 93.1 87.2 81.0 78.7 754 - 70.4 - 62.2 - - - 63.9 64.4
Publicly Available Models
LLaVa-OneVision-0.5B [17] =~ 70.0 61.4 41.8 - 565 377 556 57.1 314 50.3 322 317 33.8 41.3
InternVL2-1B [14] 81.7 72.9 50.9 70.0 754 457 503 64.1 367 59.7 327 340 377 48.3
Eagle2-1B 81.8 77.0 54.8 76.6 767 48.5 554 709 388 63.0 409 353 453 52.4%
InternVL2-2B [14] 86.9 76.2 58.9 73.4 784 50.1 573 741 363 69.6 39.5 379 463 54.0
Qwen2-VL-2B [25] 90.1 73.0 65.5 79.7 809 48.0 626 789 41.1 72.2 49.5 417 430 57.2
Eagle2-2B 88.0 82.3 65.8 79.1 818 564 631 793 43.1 74.9 53.8 458 54.7 61.2%
InternVL2-8B [14] 91.6 83.3 74.8 77.4 794 609 644 838 518 79.4 542 452 58.3 64.1
Qwen2-VL-7B [27] 94.6 83.0 74.3 84.3 845 60.7 70.1 83.0 54.1 81.0 62.0 505 58.2 67.0
MiniCPM-V2.6 [186] 90.8 82.4 - 80.1 852 575 650 82.1 4938 78.0 60.0 48.1 60.6 65.2
LLaVA-One-Vision-7B [17] 87.5 80.0 68.8 - 622 61.7 663 814 488 80.9 575 316 63.2 60.1
InternVL2-26B [14] 92.9 84.9 759 82.3 825 61.0 68.3 845 50.7 81.2 62.1 50.7 59.4 66.4
LLaVA-One-Vision-72B [17]| 91.7 83.7 74.9 - 741 66.1 719 856 56.6 84.5 60.6 475 68.4 68.0
LLaMa-3.2-90B-Vision [15] 90.1 85.5 - - 783 55.3 - - 60.3 77.3 64.1 44.1 57.3 63.4
Eagle2-9B 92.6 86.4 77.2 83.0 868 62.6 693 839 56.1 80.6 622 493 63.8 68.2%

Table 7 | Comparison with SoTA models on Various Benchmarks. *: We obtain the OpenCompass [18] score by
averaging across Eagle benchmarks (OCRBench, MMStar, AI2D, MMMU, MMB ;, MM Vet, HallusionBench, and
MathVista).

portance of carefully reviewing and utilizing existing data,  further reduce the dataset to 4.6M samples. By selecting a
as well as exercising caution with publicly available data.  more balanced data subset and ensuring data quality, we
achieve a further improvement in average score with a

Advanced data selection. By employing the compre- reduced amount of data.

hensive data selection strategy introduced in Sec. 2.2, we
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Data augmentation. By employing our data augmen-
tation strategy, we introduce a greater volume of auto-
matically generated CoT training data, leading to notable
performance improvements on MMMU and MathVista.
The rule-based data augmentation on the chart data also
brings 1 point improvement on ChartQA.

Re-updating stage-1.5. The effective data strategies we
explored in Stage-2, such as data filtering, formatting,
and augmentation, can be applied to update the Stage-
1.5 data, thereby further enhancing the model’s ultimate
capability. By updating Stage-1.5 checkpoint, we obtain
clear improvement on ChartQA, MM Vet and MathVista.

Mixture of vision encoders. Introducing mixture of vi-
sion encoder has brought performance improvements on
12 out of 14 benchmarks, particularly in benchmarks re-
lated to documents, charts, and OCR. This clearly demon-
strates that the mixture of vision encoders significantly
enhances the model’s understanding to visual spaces.

3.2. Comparison with SOTA Models

As shown in Tab. 7, we conducted comparisons across 14
diverse benchmarks with the representative state-of-the-art
public avaiable and closed-source models. Our Eagle2-
9B, building on top of Qwen2.5-7B [27], outperforms
InternVL2-8B [14] and MiniCPM-v2.6 [186] across all
14 benchmarks and leads Qwen2-VL-7B [25] in 9 out of
the 14 benchmarks and beats it on OpenCompass. Eagle2-
9B holds its ground against much larger VLMs such as
InternVL2-26B, LLaVa-OneVision-72B [17] and LLaMa-
3.2-90B-Vision [15]. Apart from MM Vet and MMMU, we
comprehensively surpass GPT-4V. Eagle2-9B surpasses
GPT-40 [184] on ChartQA, OCRBench, and MathVista,
while achieving performance very close to GPT-40 on
DocVQA, MMStar, AI2D and OpenCompass.

4. Related Work

Vision-Language Models (VLMs) LLMs [187, , 3]
have transformed natural language processing (NLP)
and reshaped the broader Al landscape. The advance-
ment of LLLMs has spurred significant progress in vi-
sual understanding by integrating visual features with
LLMs, leading to the emergence of Visual-Language
Models(VLMs) [189, 11, 4, ]. The performance of
VLMs with public available weights [4, 3, s s s

, , 14, 25, , 15, , , , ] contin-
ues to make breakthroughs, reaching or even surpass-
ing the most advanced commercial models such as GPT-
4V/4o [184, 11] and Gemini-1.5 [185]. Fully open-source
VLMs [17, 16, ] have released their training data and
code base, further accelerating the VLM research.

Vision-Centric VLMs. Our work adopts a vision-centric
VLM design that emphasizes strong vision foundation

and HD input. This is aligned with the spirit of vari-
ous related areas, including: 1) Vision foundation for

VLMs [201, s ] and improved designs [204, 23,
s s , ], 2) Mixture of vision encoder de-
signs [208, s s , 16, 22], and 3) Tiling

and HD input designs [213, , s , 21, s X

, 14, 25]. To our best knowledge, this work is the first
to explore the tiled mixture of vision encoder (MoVE)
design, which is shown to inherit the benefits from both
worlds. The proposed tiled MoVE design also introduces
additional flexibility to incorporate advanced vision foun-
dation models.

Data Efforts in VLMs. Data strategy is crucial in train-
ing VLMs, encompassing aspects of data set construc-
tion, balance and filtering, and training methodologies.
Early endeavors such as LLaVA-150K [4] used instructed
tuning with GPT-4 [11], which was later enriched by
successors [218, s s ] incorporating academic
training data from various tasks into the supervised fine-
tuning stage. Studies also broadened data types to include
video [220, 15], multi-image inputs [17, 14], image-text
interleaved data [221, ], multilingual data [186], and
synthetic datasets [15]. However, simply expanding data
sets can compromise model performance due to varying
quality and size. Approaches like Instruct-BLIP [219]
and Cambrian-1 [16] addressed this by devising optimal
data ratios and balancing techniques, while others like
Llama3 [15] and Molmo [223] focused on enhancing data
quality by removing duplicates with SSCD [178] and incor-
porating human-annotated images, respectively. In addi-
tion, Training strategies have also evolved, with LLaVA [4]
proposing a two-stage training process that has become a
standard, and later models [17] introducing intermediate
stages. VLM surveys [224, R ] also discuss various
training recipes and data strategies for building VLMs,
however, they lack qualitative analysis and do not provide
a detailed enough path for training cutting-edge VLMs.

5. Conclusion

As publicly available frontier VLMs continue to approach
or even surpass proprietary commercial models, the de-
tailed data strategies of these leading VLMs remains un-
known to the community. In this paper, we have unveiled
many details on the post-training data strategy for training
frontier VLMs. Our covered data strategy is effective and
comprehensive. We hope this work offers a transparent
practice to inspire the community.

6. Demos
This section provides some examples to demonstrate Ea-

gle2 capabilities. To avoid cherry-picking, we directly
select demo cases from other works (Qwen2-VL and In-
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ternVL2) as our test cases.
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Document Parsing with Dense Formulas (Example borrowed from Qwen2-VL paper)

10§ >0, letd” = (i~ 1,d—i~1+1,1). Let Vg and Vr be r -+ 1-dimensional subspaces
of HO(Lg) and H(L ), respectively, such that gy 0(Vg) = Vor®. Then the distributivity
holds in Vi if and only if

dim (V2 + V;50) - dim (V220 + Vpis%) = r + 1 = dim (V0 + Vg + V3>9)

2 Ifi+l<d—1,letd":=(i,d—i~1—1,1+1). Let V; and Vg be r + 1-dimensional
subspaces of H*(Ly) and H*(Lgv), respectively, such that pgv 4(Vy V52, Then the
distributivity holds in Vy if and only if

dim (V504 V59) = dim (V90 + V9) = 4 1= dim (V09 + V140 1 1J00),

where the maps g2+ and ;4 in Proposition 3.14 are the maps linking the corresponding
sheaves. Another important result is Proposition 3.16, which establishes an inequality for
any exact limit linear series. Specifically, our Proposition 3.16 says:

Let {(£4, Vo) }a be an ezact limit lincar series of degree d and dimension r. Then

Vi
> dim (71) Zr+l.
Ty v ) 2
1 Vet Vi g bV

As a consequence of Proposition 3.14 and Proposition 3.16, in Corollary 3.17, we get the
following characterization of exact limit linear series satisfying the distributivity at cach
‘multidegree:

Let {(£,Vg)}q be an ezact limit lincar series of degree d and dimension r. Then

3 dim (%)““
VPV v

r
if and only if the distributivity holds in V for any d.

In Section 3, we also study simple limit lincar series. In Proposition 3.18, we characterize
the multidegrees which determine all simple bases. In Proposition 3.20, following the
construction in Mufioz [5], Proposition 4.4, we present, a certain structure of linearly inde-
‘pendent sections for any exact limit lincar series satisfying the distributivity property. In
propositions 3.21 and 3.22, we obtain some properties of that structure. These properties
imply the existence of a simple basis (we give a proof of that in Proposition 3.23).

We conclude Section 3 with a characterization of simple limit linear series among the
exact limit linear series. Specifically, our Corollary 3.21 says:
Let {(£4,V)}q be an ezact limit linear series of degree d and dimension r. Then the
Jollowing statements are equivalent:
1. {(£q, Vo)) is simple.

N Va

2.3 dim (g | =741

S (i)
3. The distributivity holds in Vy for any d.

In a subsequent, work, given a refined limit lincar series, we will construct all sim-
ple extensions by combining our Proposition 3.14 and the method of Mufioz [6] for the
construction of all exact extensions.

Input: Extract the Text co

Model Response

1 ifi>0,letd” := (i — 1,d —i — I + 1,1). Let Vzand Vi be r+ 1-dimensional subspaces
of H(L4) and H(Lar ), respectively, such that paav (V) = Vir. Then the distributivity
holds in V ifand only if

X.20

dm(VE 4 VI _ gim(v R0 X0 oy dim (0 4 "

X,3,0
VI,
2 Wi+l<d—1letd” := (i,d—i—1—1,1+1).LetVyand Vnber+1-
dimensienal subspaces of HY (£4) and H(L ), respectively, such that g g(Vyw ) =
V. Then the distributivity holds in ;; if and only if
aim(Vy + Vi) — dim(V;0H 4 V)
VX.CHI)
d )

N SR &1}
r+1—dim(VyT + VT +

where the maps @4+ and (. 4 are the maps linking the corresponding sheaves.

Anctherimportant result is Proposition 3.16, which establishes an inequality for any exact limit

linear series:

Let {(Lu, Va) } be an exact limit linear series of degree d and dimension r. Then

zddim(Vx_m_ i n+Vx)n) >r+l
i ;

Asa of Proposition 3.14 and Propc 3.16, in Corollary 3.17, we get the following

characterization of exact limit linear series satisfying the ivity at each

Let {(La, Vi) }a be an exact limit linear series of degree d and dimension r. Then
dim (

Zd V:‘

if and only if the distributivity holds in V; for any d.

r+1

In Section 3, we also study simple limit linear series. In Proposition 3.18, we characterize the
multidegrees which determine all simple bases. In Proposition 3.20, following the construction in

Mufioz [5], Proposition 4.4, we present a certain structure of linearly independent sections for any

exact limit linear ser the ivity property. In propositions 3.21 and 3.22, we
obtain some properties of that structure. These properties imply the existence of a simple basis

(we give a proof of that in Proposition 3.23).

We conclude Section 3 witha ch

f simple limit linear seri the exact limit

linear series. Specifically, our Corollary 3.24 says:

Let {(La, Vi) } be an exact limit linear series of degree d and dimension r. Then the following

statements are equivalent:

1 {(La4, Vi) taissimple.

2 ¥, dim (s .
A

3. Thedistributivity holdsin Vj forany d.

g

Ina subsequent work, given a refined limit linear series, we will construct all simple extensions by
combining our Proposition 3.14 and the method of Mufioz (6] for the construction of all exact

extensions.

Figure 12 | Eagle2-9B has strong OCR recognition capabilities.
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Multilingual Text Re

Input and Model Response

w

hat is the text?
_—

(In this conversation, 1 image was uploaded, 1 image in total)

ndo é normal ter medo de andar no Sojinha ma Rua!!!ll!

What dose it mean?

o
It means "It is not normal to be afraid of walking alone on the street".

Figure 13 | Eagle2-9B has Multilingual OCR Recognition Capability.
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Mathematical Problem Solving (Example borrowed from Qwen2-VL paper)

P Ox —1 B

Ax + 1 5x — 0.5
C

Input and Model Response |

Find the length of AC in the isosceles triangle ABC. Give a step-by-step solution.

(In this conversation, 1image was uploaded, 1 image in total)

Problem Restatement:

We need to find the length of side AC in isosceles triangle ABC, where AC' = BC'. The
expressions for the sides are given as 9 — 1 for AB and 5z — 0.5 for both AC and BC.

Step-by-Step Process:

1. Identify Equal Sides: Since triangle ABC is isosceles with AC' = BC, set their respective
expressions equal: 4z + 1 = 5z — 0.5

2. Solve forx: Rearrange the equation: 4@ + 1 = 5z — 0.5 Subtract 4 from each side:
1 = = — 0.5Add 0.5 to both sides to solve for z: z = 1.5

3. Substitute Back into AC's Expression: Use the value of z to calculate AC using its
expression 4z + 1: AC = 4(1.5) + 1 Simplifying this gives: AC =6 +1 =17

Final Answer:

The length of AC'is .

Figure 14 | CoT Inference ability.
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gorithmic Problem Solving (Example borrowed from Qwen2-VL paper)

5 b Rn @ s O B © Rosr o Sonn

oojonjon
pojoniok

napinaoinaninan
e e 05 B 2O © Tosemse

Input: Solve the algorithmic problem in the web page.

Model Response

To solve the problem of finding the final position of a snake in a matrix based on commands, we
can iterate through each command and update the position accordingly. Here is a Python
solution that demonstrates this approach:

class Selution(object):
def finalPosition0fSnake(self, n, commands):
# Initial position at (@, 0)
x=y=9a

for emd in commands:

if emd == 'RIGHT':
y+=1

elif cmd == "LEFT':
Yi==nl

elif cmd == 'UP':
X -=1

elif cmd == "DOWN':
X +=1

# Ensure the position stays within the grid boundaries
ify>=n: y=n -1

ify<o: y=20

if x >=n: x=n =1

if x < 8: x=8

return x * n + y

# Test coses to vaolidote the solution
snake_solution = Solution()

print(snake_solution.finalPosition0fSnake(2, ["RIGHT", "DOWN"])) # Expect:
print(snake_solution. finalPosition0fSnake(3, ["DOWN", "RIGHT", "UP"])) # E
The key steps include:

Initializing the starting position (x, v) atcell e (gridfel[e] ).
Iterating over each command.

Updating the position based on the direction of movement ("RIGHT", "LEFT", "UP", "DOWN").

bW N

Ensuring the position remains within the valid range (8, n-1] .

This code handles edge cases by resetting positions when they go outside the grid limits.

Figure 15 | Solving “Easy" algorithmic problem via Eagle2-9B.
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Input and Model Response

Is this a real plant? Analyze the reasons.

(In this conversation, 1 image was uploaded, 1 image in total}

No, this is not a real plant. It appears to be an artificial tree designed with digital art or 3D

modeling software.

1. Design and Structure: The branches are unusually twisted and stylized, lacking the natural
curvature found in most trees.

2. Leaf Arrangement: The leaves look uniform in shape and size, with no variation typical of
natural foliage.

3. Flowering Pattern: The flowers resemble white calla lilies but are placed at unnatural
intervals and angles on the branches.

4. Base and Growth Medium: The base looks like it's growing out of a rectangular block of
material resembling concrete or plaster, which isn't a realistic way for plants to grow
naturally.

5. Lighting and Texture: The lighting and texture, such as the leaf veins and bark, seem overly
smooth and lack the organic imperfections seen in real plants.

These features suggest that the image has been digitally created rather than depicting a living
plant.

Figure 16 | Eagle2-9B is able to analyze anomalies in images.
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Image An (Example b

Input and Model Response

How many dogs in the image and why?

(In this conversation, 1 image was uploaded, 1 image in total)

There is one dog in the image, as we see only one pug looking at its reflection.

Figure 17 | Eagle2-9B can correctly distinguish objects in the mirror.
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Handwritting OCR (Example borrowed from InternVL2 demos)

23. A skier slides down the frictionless slope as shown. What is the skier's speed at the bottom?

Start
\ 0

H=40

Finish

Solution: L=80m

. “m flod™ e
Te MM‘CS)M y = : )
gy e S s e & e bygrsiy
and o fe end.
Sm:E,:WL(?L
End: &= L 3
= M5L=Z/”l\/

-y
= \/:\IEjT,?fZ,« 9.5/780 = 37-6ms
o e

Analyze this image?

(In this conversation, 1 image was uploaded, 1 image in total)

The image represents a physics problem involving the calculation of a skier's speed at the bottom
of a frictionless slope. Here are the details:

1. Problem Description:

o Askier slides down a frictionless slope.

o The height of the slope is 40 meters (H =40 m).

o The length of the slope is 80 meters (L =80 m).
2. Solution:

©  The solution applies the principle of conservation of energy, which states that energy
remains constant in an isolated system.

3. Equations and Calculations:

o Initial potential energy at the start: Fiyy,y = mgL

©  Final kinetic energy at the end: Eppq = %mvz

©  Since there is no friction, all initial gravitational potential energy converts into kinetic
energy at the bottom. mgL = %mvz

©  Solving for v, the final velocity: v = +/2g¢L Substituting g = 9.8 l:r:l,/s2 andL =

80m,v =+/2 x 0.8 x 80 = 39.6 m/s

This explanation combines a clear description with mathematical calculations to determine the

skier's speed at the bottom of the slope using principles of energy conservation.

Figure 18 | Eagle2-9B has excellent handwriting recognition capabilities.
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A. Computing

We show our training resource for Eagle2-9B in Tab. A. In

actual development, we rarely iterate the Stage-1 model.

Usually, we iterate Stage-1.5 once after iterating Stage-2

> 10 times.
Stage-1 Stage-1.5 Stage-2
Q .98 GPUs | H100x 128 | H100x256 | H100x256
W= Hours 25 28 6

Table A | Training Information of Eagle2-9B.

Dataset Category | #Stage-1.5 | #Stage-2
LLaVa-150K-EN General 158K 57K
LLaVa-150K-CN General 158K 50K
LVIS-Instruct4V General 223K 12K
ALLaVa-laion General 505K 20K
ALLaVa-vflan General 202K 26K
Laion-GPT4V General 11K 11K
LLAVAR General 20K 20K
Sketchy VQA General 4K 4K
IDK General 11K 11K
AlfworldGPT General 45K 9K
LNQA General 303K 23K
Face-Emotion General 1K 1K
SpatialSense General 10K 10K
Indoor-QA General 3K 3K
Place365 General 19K 19K
MMInsturct-QA General 167K 23K
DriveLM General 4K 4K
YesBut General 1K 1K
WildVision General 6K 6K
LLaVa-Critic-113K | General 113K 56K
RLAIF-V General 83K 14K
VQAv2 General 83K 18K
MMRA General 1K 1K
KONIQ General 30K 30K
MMDU General 45K 23K
Spot-The-Ditf General 9K 9K
Hatefull-Memes General 9K 9K
COCO-QA General 46K 23K
NLVR2 General 50K 25K
Mimic-CGD General 71K 7K
Datikz General 44K 8K
Chinese-Meme General 5K 5K
IconQA General 27K 27K
Websight General 10K 10K

Table B | General VQA Data.

We show the detailed used number of samples of every

B. Dataset
data source in Tab. B, Tab. C, Tab.
Tab. H, Tab. J, and Tab. I.

, Tab.

, Tab. I, Tab.

s

In addition to these existing data, we will also provide
the augmented data information later.

Dataset Category | #Stage-1.5 | #Stage-2
SynthDog Naive OCR 100K 400
MTWI Naive OCR 10K 10K
LVST Naive OCR 30K 30K
SROIE Naive OCR 34K 1K
FUNSD Naive OCR 199 199
Latex-Formula Naive OCR 110K 6K
IAM Naive OCR 58K 16K
Handwriting-Latex Naive OCR 100K 3K
ArT Naive OCR 55K 14K
CTW Naive OCR 26K 26K
ReCTs Naive OCR 20K 20K
COCO-Text Naive OCR 16K 16K
SVRD Naive OCR 2K 2K
Hiertext Naive OCR 10K 10K
RoadText Naive OCR 200 200
MapText Naive OCR 240 240
CAPTCHA Naive OCR 10K 10K
Est-VQA Naive OCR 17K 17K
HME-100K Naive OCR 75K 37K
TAL-OCR-ENG Naive OCR 10K 10K
TAL-HW-Math Naive OCR 22K 22K
IMGURSK Naive OCR 6K 6K
ORAND-CAR Naive OCR SK 5K
Invoices-and-Receipts Naive OCR 2K 2K
Chrome-Writting Naive OCR 9K 9K
IIITSK Naive OCR 2K 2K
K12-Printing Naive OCR 257K 51K
Memotion Naive OCR 6K 6K
Arxix2Markdown Naive OCR 502K 50K
HW-Mathematicsl-Exp. | Naive OCR 12K 12K
WordArt Naive OCR 5K 5K
Rendered Text Naive OCR 10K 10K
Handwriting-Forms Naive OCR 1K 1K
Table C | Naive OCR Data.
Dataset Category | #Stage-1.5 | #Stage-2
TallyQA Counting 133K 12K
OODVQA Counting 3K 3K
RefCOCO/+/g | Grounding 105K 25K
GroundUI Grounding 17K 8K
Object365 Grounding 1184K 0

Table D | Counting & Grounding Data.
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Dataset Category | #Stage-1.5 | #Stage-2
AI2D Science 12K x4 12K x4
ScienceQA Science 13K x4 13K x2
TQA Science 7K 7K
PathVQA Science 33K 1K
SciQA Science 296K 7K
VQA-RAD Science 313 313
VisualWeblnsturct | Science 263K 263K
TextBooks-QA Science 47K 47K

Table E | Science Data. xn notes repeat the data by n
times.

Dataset Category | #Stage-1.5 | #Stage-2
GeoQA+ Math 177K 13K
MathQA Math 40K 40K
CLEVR Math 70K 3K
CLEVR-Math Math 70K 3K
MAVIS-math-rule-geo Math 100K 100K
MAVIS-math-mategen Math 86K 86K
InterGPS Math 1280 1280
Raven Math 43K 31K
GEOS Math 498 498
UniGeo Math 12K 12K
Table F | Math Data.
Dataset Category #Stage-1.5 | #Stage-2
ShareGPT4o0 Captioning 57K 12K
KVQA Knowledge 24K 24K
Movie-Posters Knowledge 15K 15K
Google-Landmark | Knowledge 26K 26K
WikitArt Knowledge 12K 12K
Weather-QA Knowledge 1100 1100
Coco-colors Captioning 44K 22K
music-sheet Knowledge 9K 9K
SPARK Captioning 6K 6K
SAM-caption Captioning 78K 39K
Tmbd-Celeb-10K | Knowledge 8K 8K
CC3M Captioning 2237K 0
Textcaps Captioning 110K 0
ShareGPT-4V Captioning 767K 0
DenseFusion Captioning 1171K 0

Table G | Caption & Knowledge Data.

B.1. Dataset Collection

Internal Data To augment the existing OCR data, we
used some internal PDF OCR annotated data, notated as
Arxiv2Markdown in this work, which converts each page
of papers from into the corresponding Markdown format.
For this dataset, we use 500k in stage-1.5 and 50k in stage-
2. We also use a dataset created from the textbooks as
shown in Fig. A, 47K samples are used in both stage-1.5
and stage-2.

Non-QA data conversion Some of the data source was

Dataset Category | #Stage-1.5 | #Stage-2
ChartQA Chart 60K 60K
MMC-Inst Chart 363K 11K
DVQA Chart 197K 8K
PlotQA Chart 157K 7K
LRV-Instruction Chart 7K 7K
TamMWP Table 23K 23K
UniChart Chart 956K 33K
Vistext Table 10K 10K
TAT-DQA Table 2K 2K
VQAonDB Table 34K 40K
FigureQA Chart 100K 29K
Chart2Text Chart 27K 27K
Robut Table 111K 23K
MultiHiertt Table 7K 7K

Table H | Chart & Table Data. We heavily use some low-
quality data such as MMC-Inst, PlotQA in Stage-1.5. But
in our final stage, we just sample a very small part from
these sources.

Dataset Category | #Stage-1.5 | #Stage-2
DocVQA OCR QA 39K %3 39K
InfoVQA OCR QA 24K x4 24K x4
TextVQA OCR QA 35K x4 35K %2
ArxivQA OCR QA 54K 3K
ScreenQA OCR QA 33K 1K
DocReason OCR QA 9K 9K
Ureader OCR QA 75K 37K
FinanceQA OCR QA 10K 10K
DocMatrix OCR QA 250K 7K
A-OKVQA OCR QA 8K 8K
Diagram-Image-To-Text | OCR QA 300 300
MapQA OCR QA 37K 37K
OCRVQA OCR QA 166K 83K
ST-VQA OCR QA 17K 17K
SlideVQA OCR QA 6K 6K
PDF-VQA OCR QA 9K 9K
SQuUAD-VQA OCR QA 87K 46K
VQA-CD OCR QA 330 330
Block-Diagram OCR QA 48K 1K
MTVQA OCR QA TK x4 TK x4
ColPali OCR QA 46K 23K
BenthanQA OCR QA 19K 19K

Table I | OCR QA Data. “x4" means we repeat every
sample 4 times.

originally in a non-QA format. If it is classification data,
we convert it into multiple-choice questions, as shown
in Fig. B. For certain datasets with only images, we use
automated annotation tools to generate image descriptions,
transforming them into captioning data.

Similarity Score our designed similarity score can quickly
help us assess the overlap between new data and the exist-
ing data pool. Here, we provide an example: if the current
data pool is Cambrian-7M, and we aim to introduce new
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Dataset Category | #Stage-1.5 | #Stage-2
Orca Text-only 492K 49K
Orca-math Text-only 199K 99K
MathInsturct Text-only 279K 130K
OpenMathlnsturct | Text-only 1580K 0
WizardLM Text-only 70K 42K
TheoremQA Text-only 796 796
OpenHermes2.5 Text-only 99K 50K
NuminaMath-CoT | Text-only 349K 140K
Python-Code-25k Text-only 25K 25K
Infinity-Instruct Text-only 303K 121K
Python-18k-Alpaca | Text-only 18K 18K
Ruozhiba Text-only 1734 1734
Infinity-Math Text-only 74K 74K
StepDPO Text-only 11K 11K
TableLLM Text-only 73K 36K
Ultralnteract-sft Text-only 279K 84K

Table J | Text-only Data. The quality of text-only data still
matters for multi-modal LLMs. We collect a diverse col-
lection of open-source text-only datasets. We also convert
some preference datasets into SFT format.

datasets such as UReader, COCO-Colors, and Textbook-
QA as shown in Tab. K. Since UReader is a data collection
contains DocQA, InfoQA and ChartQA which is already
included in Cambrian-7M, we can observe that it has a
high similarity score 0.45. The dataset COCO-colors uses
COCO images but has new instruction about image colors,
so that it has a middle-level score 0.10. Textbooks-QA is
our internal data, so it has a relative low score 0.02. In our
practice, sources with a score below 0.3 are considered
different from the existing data pool. Data with a score
above 0.3 may also be retained or removed based on spe-
cific considerations. Given the relatively high quality of
the data within Ureader, we chose to retain it.

Dataset Similarity Score Max value
Ureader 0.45 0.95
Coco-Colors 0.10 0.3
Textbooks-QA 0.02 0.1

Table K | Similarity Score of new data source to Cambrian.
We can found that using similarity score can roughly re-
flect the overlap between new introduced dataset with the
existing data pool.

B.2. Dataset Filtering

Our data filtering strategy mainly relies on manual inspec-
tion to extract the key features of erroneous data and then
filter them through rules.

In addition to the common error data mentioned in the
paper, there are other types of errors, but their proportion is
relatively small. For example. we notice a particular type
of annotated data where the responses are similar to “I can-

Dataset Category Original Answer Type #Samples
TQA-CoT Science Only Option Letter 5K
ChartQA-CoT Science Only Final Answer 24K
DVQA-CoT Chart Only Final Answer 25K
Clever-CoT Math Only Final Answer 13K
Clever-Math-CoT Math Only Final Answer 59K
SketchyVQA-CoT General Yes/No Answer 8K
Tab-MWP-CoT Table Brief Explanation 20K
RAVEN-CoT Math Option Letter 9K
MAVIS-math-metagen-CoT Math Unformatted Long Answer 86K
UniGeo-CoT Math Only Final Answer 12K

Table L | Dataset for CoT data augmentation.

training w/ CoT Data ‘ Evaluating w/ CoT Prompt ‘ MathVista-Mini
61.0
60.5
63.2
63.5

W X X
A NENENEN

Table M | With CoT training data, adding "Solve this
problem step-by-step" prompt can help to improve the
performance.

not answer this.” For questions involving safety or ethical
issues, such responses are appropriate and even necessary.
However, some data, such as in pure-text form where the
question is “Can you help me describe this image” and the
answer is “Sorry, I cannot”, are evidently unsuitable for
continued use in VLM training. Therefore, we designed
a set of keyword-based filtering rules to exclude these
samples.

B.3. Subset Selection

As shown in Tab. B, Tab. C, Tab. D, Tab. E, Tab. I, Tab. G,
Tab. H, Tab. J and Tab. I, we have several general rules
from subset selection.

* For datasets with fewer than 20,000 samples, we do
not perform subset selection.

 If we perform subset selection, we remove at least
half of the data. For datasets originally exceeding
100,000 samples, in most cases, we limit the subset
to no more than 50,000 samples.

B.4. Data Augmentation

CoT Augmentation. We use existing SOTA VLMs to help
us re-write some Science, Math or Chart data to generate
detailed chain-of-thought answer. We list datasets used
to augment here in Tab. [.. We show our prompt used for
CoT augmentation in List

In fact, using this automated augmentation method can
easily generate incorrect answers or solution steps, even
when the correct answer is provided in the prompt. To
address this, we employed another LLM to compare the
generated answers with the original answers, filtering out
some erroneous sample, the prompt is shown in List

To verify the effectiveness of the constructed CoT data,
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Model packing method | DocVQA ChartQA InfoVQA TextVQA OCRBench MMstar RWQA AI2D MMMU MMB; ; MMVet HallB MathVista | Average
Test Test Test Val Test Test Test  Test Val EN-Val Test Test Test-Mini | Score

Eagle2-9B Greedy 92.6 84.7 76.5 83.8 855 62.7 67.8 840 547 81.7 63.0 479 61.6 72.8

Eagle2-9B Blanced 92.6 86.4 77.2 83.0 868 62.6 69.3 839 56.1 81.9 622 493 63.8 73.5

Table N | The overall performance of using naive greedy packing is inferior to that of using balanced-aware packing.
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Study the image and explain the diagram on the left side of the image.

The left diagram illustrates a small-signal passive-feedback voltage amplifier
setup, featuring components like the signal source, load, feedback network, and
controller. Notably, a "phantom zero" has been introduced within the series
branch of the feedback network.
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Analyze the test tube data and calculate the titer for the represented test. First,
explain the concept, and then output the answer only at the end, in the new line
like this. ANSWER = Output. Concept: Text ANSWER= Output; reasoning.

Concept: The visible ring of precipitin in the tubes that have an antigen-antibody
ratio within the equivalence zone. This highest dilution with a visible ring is used
to determine the titer of the antibodies. ANSWER=16; Titer is the reciprocal of the
highest dilution which is 1/16 in the given test.

Figure A | Samples of Internal TextbookQA Dataset.

What category does this scene belong to? A: swimming pool/outdoor B: bank
vault C: landfill D: beauty salon Answer with the option letter only

A

Figure B | Sample of SpatialScene Dataset.

we evaluate it on MathVista. For models that do not train
on the generated CoT data, when adding the CoT prompt
"Think it step-by-step” to the question, they do give an-
swers in a CoT format, but unfortunately do not improve
accuracy or even significantly reduce it. However, after
incorporating our constructed CoT data, using the CoT
prompt bring performance boost, as shown in Tab. M.

Rule-Based QA Generation In addition to the previous
In addition to the augmentation method for table data, we
also designed several other rules to expand the existing
dataset as shown in Fig. C. These tasks are designed to re-
duce model hallucinations and enhance the model’s spatial
awareness capabilities. Specifically, we use IIIT5K and
WordArt dataset for OCR data augmentation.

Is "lifa" written on the image?

life.

No, it is “life".

Is “Bcl1way” written on the image?
Bellwa
J No, it is “Bellway".
aFE
m What is the word in the right-top corner?

AMF

I/JA\‘\ T What is the word in the third-row and the rightmost col?

GBaey, wr

Figure C | Rule-based data augmentation for OCR data.

Expanding Short Answers. We extending the short re-
sponse in dataset VQAv2, GQA and VSR to detailed re-
sponse via the prompt List 3.

C. Packing

The knapsacks generated by the naive greedy packing
strategy exhibit an unnecessary length distribution bias.
To address this, we designed a balanced-aware knapsack
method aimed at producing knapsacks with a more uni-
form length distribution. We show the ablation results with
different packing methods in Tab. N. Additional details on
practical implementation are provided in List 4.
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f"""Rewrite the following answer using a #**
Chain of Thought (CoT)*x* approach. The final
answers should adhere to the following
structure and constraints:

1. *#+Problem Restatementx*x: Start by
restating the problem clearly to set the
context.

2. »*xStep-by-Step Processx*x*:

— #+#Explicit Steps+#: Break the solution
into =x*discrete stepsx**, showing all
calculations.

— xxJustifications+x: Include a brief
explanation for each step (e.g., referencing
mathematical rules such as the distributive
property, derivative rules, or solving
equations) .

3. #x#*Mathematical Principles*#*: Where
relevant, mention the specific mathematical
principles or theorems being applied (e.g.,
chain rule, Pythagoras’ theorem, etc.).

4. #xFinal Answer++: End with the final
solution, clearly boxed or highlighted.

5. x*xConsistent Structurexx: Ensure every
solution follows this format:

— **Restatement of the problem#*x*

— *+Steps and calculations with
justifications**

— *x#Final answerxx

The output should be detailed but concise,
explaining each step logically while avoiding
excessive repetition. Clarity and logical flow

are crucial.

Here is a question and answer pair of this
image:

Question: {question}

Answer: {answer}

mun

Listing 1 | Prompt we used for CoT Augementation.

fr"""Please evaluate if the correctness of
my answer based on the provided question and
the correct answer.

Question: {question}
Correct Answer: {ori_answer}
My Answer: {new_answer}

Please only return "True" if my answer 1is
correct, or "False" if it is incorrect.
My answer is:"""

Listing 2 | Prompt we used for judging the correctness of

generation chain-of-thought response.

f"""Given the question {question}. The
original answer 1is {answer}.

Please reply with a more specific answer
based on the existing answer, as detailed as
possible. """

Listing 3 | Prompt we used for expanding short answers.

# Our proposed greedy knapsack method

def balanced_greedy_knapsack (samples, L,
delta=20) :

# Step 1: Sort the samples

samples.sort (reverse=True)

total_length = sum(samples)

min_knapsacks = (total_length + L - 1) // L
+ delta

# Step 2: Initialize knapsacks

knapsacks=[[] for _ in range (min_knapsacks)
]

knapsack_lengths = [0] % min_knapsacks

# Step 3: Distribute samples across
knapsacks

ks_index = 0

sample_index = 0

while sample_index < len(samples):
length = samples|[sample_index]

if knapsack_lengths[ks_index]+length<=L:
knapsacks[ks_index] .append (length)
knapsack_lengths[ks_index] += length
sample_index += 1

else:

knapsacks.append ([])
knapsack_lengths.append (0)

ks_index = argmin (knapsack_lengths)

return knapsacks

Listing 4 | In practical implementation, we added an extra
redundancy delta to min_knapsacks to avoid creating new
knapsacks within the loop. Without this delta, knapsacks
with imbalanced distributions could be introduced. The
delta value is set based on the data length distribution. The
size of samples in our settings is 4k.
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