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Optimization

INTRODUCTORY EXAMPLE

The Berlin Airlift

After World War II, the city of Berlin was an “island”
surrounded by the Soviet zone of occupied Germany. The
city was divided into four sections, with the British, French,
and Americans having jurisdiction over West Berlin and
the Soviets over East Berlin. But the Russians were eager
for the other three nations to abandon Berlin. After months
of harassment, on June 24, 1948, they imposed a blockade
on West Berlin, cutting off all access by land and rail.
With a civilian population of about 2.5 million people,
the isolated western sectors became dependent on reserve
stocks and airlift replacements.

Four days later, the first American planes landed in
Berlin with supplies of food, and “Operation Vittles” had
begun. At first the airlift seemed doomed to failure because
the needs of the city were overwhelming. The Russians had
cut off all electricity and coal shipments, and the city was

literally under siege. But the Western Allies responded
by flying in thousands of tons of food, coal, medicine,
and other supplies on a daily basis. In May 1949, Stalin
relented, and the blockade was lifted. The airlift, however,
continued for another four months.

The Berlin Airlift was unbelievably successful in using
relatively few aircraft to deliver an enormous amount
of supplies. The design and conduct of this operation
required intensive planning and calculations, which led to
the theoretical development of linear programming, and
the invention of the simplex method by George Dantzig.
The potential of this new tool was quickly recognized by
business and industry, where it is now used to allocate
resources, plan production, schedule workers, organize
investment portfolios, formulate marketing strategies, and
perform many other tasks involving optimization.

There are many situations in business, politics, economics, military strategy, and other
areas where one tries to optimize a certain benefit. This may involve maximizing a profit
or the payoff in a contest or minimizing a cost or other loss. This chapter presents two
mathematical models that deal with optimization problems.! The fundamental results in
both cases depend on properties of convex sets and hyperplanes. Section 9.1 introduces

'T am indebted to my brother, Dr. Steven R. Lay, for designing and writing most of this chapter and class
testing it at Lee University. I have also class tested it and made a few changes/additions. It works well, and
the students enjoyed it. However, I would appreciate feedback from anyone who uses this, faculty or

students.



2 CHAPTER 9 Optimization

9.1 MATRIX GAMES

the theory of games and develops strategies based on probability. Sections 9.2-9.4
explore techniques of linear programming and use them to solve a variety of problems,
including matrix games larger than those in Section 9.1.

The theory of games analyzes competitive phenomena and seeks to provide a basis for
rational decision-making. Its growing importance was highlighted in 1994 when the
Nobel Prize in Economics was awarded to John Harsanyi, John Nash, and Reinhard
Selten, for their pioneering work in the theory of noncooperative games.”

The games in this section are matrix games whose various outcomes are listed in a
payoff matrix. Two players in a game compete according to a fixed set of rules. Player
R (for row) has a choice of m possible moves (or choices of action), and player C (for
column) has n moves. By convention, the payoff matrix A = [a;;] lists the amounts
that the row player R wins from player C, depending on the choices R and C make.
Entry a;; shows the amount R wins when R chooses action i and C chooses action j. A
negative value for a;; indicates a loss for R, the amount R has to pay to C. The games
are often called two-person zero-sum games because the algebraic sum of the amounts
gained by R and C is zero.

EXAMPLE 1 Each player has a supply of pennies, nickels, and dimes. At a given
signal, both players display (or “play”) one coin. If the displayed coins are not the
same, then the player showing the higher-valued coin gets to keep both. If they are both
pennies or both nickels, then player C keeps both; but if they are both dimes, then player
R keeps them. Construct a payoff matrix, using p for display of a penny, n for a nickel,
and d for a dime.

SOLUTION Each player has three choices, p, n, and d, so the payoff matrix is 3 x 3:

Player C

p n d
p
Player R n
d

Consider a row for R and fill in what R receives (or pays), depending on the choice C
makes. First, suppose R plays a penny. If C also plays a penny, R loses 1 cent, because
the coins match. The (1, 1) entry is —1. If C plays either a nickel or a dime, R also
loses 1 cent, because C displays the higher-valued coin. This information goes in row
1:

Player C
p n d
D -1 -1 -1
Player R n
d

Next, suppose R plays a nickel. If C plays a penny, R wins the penny. Otherwise, R
loses the nickel, because either C matches the nickel or shows the higher-value dime.
Finally, when R plays a dime, R gains either a penny or a nickel, whichever is shown

2 The popular 2002 movie, A Beautiful Mind, tells a poignant story of the life of John Nash.



9.4 Matrix Games 3

by C, because R’s dime is of higher value. Also, when both players display a dime, R
wins the dime from C because of the special rule for that case.

Player C
p n d
Y4 -1 -1 -1
Player R n 1 -5 =5 u

d I 5 10

By looking at the payoff matrix in Example 1, the players discover that some
plays are better than others. Both players know that R is likely to choose a row that
has positive entries, while C is likely to choose a column that has negative entries (a
payment from R to C). Player R notes that every entry in row 3 is positive and chooses
to play a dime. No matter what C may do, the worst that can happen to R is to win
a penny. Player C notes that every column contains a positive entry and therefore C
cannot be certain of winning anything. So player C chooses to play a penny, which will
minimize the potential loss.

From a mathematical point of view, what has each player done? Player R has found
the minimum of each row (the worst that could happen for that play) and has chosen the
row for which this minimum is largest. (See Fig. 1.) That is, R has computed

max |:mjn a,-,-]
i J ’

Player C Row minima
-1 -1 -1 -1
Player R 1 -5 -5 -5
1 5 10 1 <—Max of the minima
Column maxima 1 5 10

T—l\/lin of the maxima
FIGURE 1

Observe that for C, a large positive payment to R is worse than a small positive
payment. Thus C has found the maximum of each column (the worst that can happen to
C for that play) and has chosen the column for which this maximum is smallest. Player
C has found

min [max aij ]
J 1

For this payoff matrix [a;;],

maxming;; = minmaxa;; = 1
1 J J 1

If the payoff matrix of a matrix game contains an entry a;; that is both the
minimum of row i and the maximum of column j, then a;; is called a saddle
point.

In Example 1, the entry a3 is a saddle point for the payoff matrix. As long as both
players continue to seek their best advantage, player R will always display a dime (row



4 CHAPTER 9 Optimization

3) and player C will always display a penny (column 1). Some games may have more
than one saddle point.
The situation is not quite so simple in the next example.

EXAMPLE 2 Again suppose that each player has a supply of pennies, nickels, and
dimes to play, but this time the payoff matrix is given as follows:

Player C
p n d Row minima

Player R n 1 1 -1 -1 «<Max of the minima
d 0 -10 -5 | -10

Column maxima 10 1 5

T—l\/lin of the maxima

If player R reasons as in the first example and looks at the row minima, R will choose
to play a nickel, thereby maximizing the minimum gain (in this case a loss of 1). Player
C, looking at the column maxima (the greatest payment to R), will also select a nickel
to minimize the loss to R.

Thus, as the game begins, R and C both continue to play a nickel. After a while,
however, C begins to reason, “If R is going to play a nickel, then I'll play a dime so
that I can win a penny.” However, when C starts to play a dime repeatedly, R begins to
reason, “If C is going to play a dime, then I’ll play a penny so that I can win a nickel.”
Once R has done this, C switches to a nickel (to win a nickel) and then R starts playing
anickel ... and so on. It seems that neither player can develop a winning strategy. M

Mathematically speaking, the payoff matrix for the game in Example 2 does not

have a saddle point. Indeed,
maxmjina,-i =-1

1

while
minmaxa;; = 1

jooi
This means that neither player can play the same coin repeatedly and be assured of
optimizing the winnings. In fact, any predictable strategy can be countered by the
opponent. But is it possible to formulate some combination of plays that over the long
run will produce an optimal return? The answer is yes (as Theorem 3 later will show),
when each move is made at random, but with a certain probability attached to each
possible choice.

Here is a way to imagine how player R could develop a strategy for playing a
matrix game. Suppose that R has a device consisting of a horizontal metal arrow whose
center of gravity is supported on a vertical rod in the middle of a flat circular region.
The region is cut into pie-shaped sectors, one for each of the rows in the payoff matrix.
Player R gives the arrow an initial spin and waits for it to come to rest. The position of
the arrowhead at rest determines one play for R in the matrix game.

If the area of the circle is taken as 1 unit, then the areas of the various sectors sum to
1; and these areas give the relative frequencies, or probabilities, of selecting the various
plays in the matrix game, when the game is played many times. For instance, if there
are five sectors of equal area and if the arrow is spun many times, player R will select
each of the five plays about 1/5 of the time. This strategy is specified by the vector in
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R> whose entries all equal 1/5. If the five sectors of the circle are unequal in size, then
in the long run some game plays will be chosen more frequently than the others. The
corresponding strategy for R is specified by a vector in R that lists the areas of the five
sectors.

A probability vector in R is a vector x in R” whose entries are nonnegative
and sum to one. Such an x has the form

X1 m
X = : , x;>0fori =1,...,mand E x;i =1
X, i=1

Let A be an m x n payoff matrix for a game. The strategy space for player R is
the set of all probability vectors in R”, and the strategy space for player C is the
set of all probability vectors in R”. A point in a strategy space is called a strategy.
If one entry in a strategy is 1 (and the other entries are zeros), the strategy is called
a pure strategy.

The pure strategies in R™ are the standard basis vectors for R”, ey, ..., e,. In gen-
eral, each strategy x is a linear combination, x;e; + --- + x,,€,,, of these pure strategies
with nonnegative weights that sum to one.’

Suppose now that R and C are playing the m x n matrix game A = [a;;], where
a;j is the entry in the i th row and the j th column of A. There are mn possible outcomes
of the game, depending on the row R chooses and the column C chooses. Suppose R
uses strategy x and C uses strategy y, where

X1 1
X=| : and y=1 :
xm yﬂ
Since R plays the first row with probability x; and C plays the first column with prob-
ability y; and since their choices are made independently, it can be shown that the
probability is x;y; that R chooses the first row and C chooses the first column. Over
the course of many games, the expected payoff to R for this outcome is a;;x;y; for one
game. A similar computation holds for each possible pair of choices that R and C can
make. The sum of the expected payoffs to R over all possible pairs of choices is called
the expected payoff, £ (x,y), of the game to player R for strategies x and y. That is,
Ex.y) =YY xayy; =xAy
i=1j=I
Roughly speaking, the number E(X,y) is the average amount that C will pay to R
per game, when R and C play a large number of games using the strategies x and y,
respectively.
Let X denote the strategy space for R and Y the strategy space for C. If R were to
choose a particular strategy, say X, and if C were to discover this strategy, then C would
certainly choose y to minimize

E(%,y) = X'Ay

3 More precisely, each strategy is a convex combination of the set of pure strategies—that is, a point in the
convex hull of the set of standard basis vectors. This fact connects the theory of convex sets to the study of
matrix games. The strategy space for R is an (m — 1)-dimensional simplex in R™, and the strategy space
for C is an (n — 1)-dimensional simplex in R”. See Sections 8.3 and 8.5 for definitions.
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THEOREM 1

The value of using strategy X is the number v(X) defined by

v(X) = min E(X,y) = minX'Ay (1
ye€Y yeY

Since X' is a 1 x n matrix, the mapping y — E(X,y) = X'Ay is a linear functional on
the strategy space Y. From this, it can be shown that E(X, y) attains its minimum when
y is one of the pure strategies, ey, ..., e,, for ct

Recall that Ae; is the jth column of the matrix A, usually denoted by a;. Since
the minimum in (1) is attained when y = e; for some j, (1) may be written, with X in
place of X, as

v(x) = min E(x,e;) = minxTAej = m_inxTaj = minx-a; 2)
J J J J

That is, v(x) is the minimum of the inner product of x with each of the columns of A.
The goal of R is to choose x to maximize v(X).

The number vg, defined by

Vg = max v(x) = max min E(X,y) = max minx-a;
xeX xeX yeYy xeX j

with the notation as described above, is called the value of the game to row
player R. A strategy X for R is called optimal if v(X) = vg.

Of course, E(x,y) may exceed vg for some x and y if C plays poorly. Thus, X is
optimal for R if E(X,y) > vg for all y € Y. This value vg can be thought of as the
most that player R can be sure to receive from C, independent of what player C may
do.

A similar analysis for player C, using the pure strategies for x, shows that a partic-
ular strategy y will have a value v(y) given by

v(y) = max E(x,y) = max E(e;, y) = max row; (A)y 3)
X€E 1 ]
because e/A = row; (A). That is, the value of strategy y to C is the maximum of the
inner product of y with each of the rows of A. The number v, defined by
ve = minv(y) = min max row; (4)y
yE€Y yeYy i
is called the value of the game to column player C. This is the least that C will have

to lose regardless of what R may do. A strategy ¥ for C is called optimal if v(y) = vc.
Equivalently, y is optimal if £(x,y) < vc forall x in X.

In any matrix game, vg < vc.

PROOF For any x in X, the definition v(x) = minyey E(x,y) implies that v(x) <
E(x,y) foreach y in Y. Also, since v(y) is the maximum of E(x,y) over all x, v(y) >
E(x,y) for each individual x. These two inequalities show that

v(x) < E(x,y) < v(y)

* A linear functional on Y is a linear transformation from Y into R. The pure strategies are the extreme
points of the strategy space for a player. The stated result follows directly from Theorem 16 in Section 8.5.
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forall x € X and for all y € Y. For any fixed y, the left inequality above implies that
maxyey v(X) < E(X,y). Similarly, for each x, £(x,y) < minyey v(y). Thus,

max v(x) < minv(y)
xeX yeY

which proves the theorem. u
1 1
10 -5 5 4 1

EXAMPLE 3 1let A = 1 1 —11{,x= % ,and y = 411 , where A4
0 —10 -5 1 1
4 2

comes from Example 2. Compute E(x,y) and verify that this number lies between
v(x) and v(y).

SOLUTION Compute

_ 1
10 -5 5 1
E(X,y):xTAyz[JT % JT] 1 1 —1 711
0 —10 -5 1
- 2
15
1
=[: 3 1l| ol=-%
_—5

Next, from (2), v(x) is the minimum of E(x,e;) for 1 < j < 3. So compute

Exe)="+1+0=3

5,110 13
Ex.e)=-3+3-3=-7%
Bxen=$-4-3=-}
Then v(x) = min {3,—%,—%} = —% < —% = E(x,y). Similarly, E(e;,y) = %,
E(e,y) =0, and E(es,y) =—5, and so v(y) =max {£2,0,—5} =13 Thus
E(x,y) < v(y), as expected. [ ]

In Theorem 1, the proof that vg < vc was simple. A fundamental result in game
theory is that vg = v, but this is not easy to prove. The first proof by John von
Neumann in 1928 was technically difficult. Perhaps the best-known proof depends
strongly on certain properties of convex sets and hyperplanes. It appeared in the classic
1944 book Theory of Games and Economic Behavior, by von Neumann and Oskar
Morgenstern.’

Minimax Theorem
In any matrix game, vg = v¢. That s,

max min E (X = min max E (x
x€EX yeY ( ’Y) YEY x€X ( ’Y)

5 More precisely, the proof involves finding a hyperplane that strictly separates the origin 0 from the convex
hull of {a;,....a,.,e;,..., e}, where aj, ..., a, are the columns of A and ey, ..., e,, are the standard basis
vectors in R”. The details are in Steven R. Lay, Convex Sets and Their Applications (New York: John
Wiley & Sons, 1982; Mineola, NY: Dover Publications, 2007), pp. 159-163.
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Optimization

THEOREM 3

The common value v = vg = v¢ is called the value of the game. Any pair of
optimal strategies (X, y) is called a solution to the game.

When (X, ¥) is a solution to the game, vz = v(X) < E(X,¥) < v(¥) = vc, which
shows that E(X,y) = v.

The next theorem is the main theoretical result of this section. A proof can be based
either on the Minimax Theorem or on the theory of linear programming (in Section 9.4).6

Fundamental Theorem for Matrix Games

In any matrix game, there are always optimal strategies. That is, every matrix
game has a solution.

2 x n Matrix Games

When a game matrix A has 2 rows and n columns, an optimal row strategy and vg are
fairly easy to compute. Suppose

A= aip dip s din

dz;  dypp st Ay
The objective of player R is to choose x in R? to maximize v(x). Since x has only two
entries, the strategy space X for R may be parameterized by a variable ¢, with a typical
x in X having the form x(¢) = ! t_ ! for 0 <t < 1. From formula (2), v(x(¢)) is the

minimum of the inner product of x(¢) with each of the columns of A. That is,

v(x(t)):min{x(t)T[alj] j= 1,...,n}
a

J
=min{a;;(1—1) +ayt:j=1,....n} 4)

Thus v(x()) is the minimum value of n linear functions of . When these functions are
graphed on one coordinate system for 0 < ¢ < 1, the graph of z = v(x(?)) as a function
of ¢ becomes evident, and the maximum value of v(x(?)) is easy to find. The process is
illustrated best by an example.

EXAMPLE 4 Consider the game whose payoff matrix is
1 5 3 6
4= [4 0o 1 2]
a. On a t-z coordinate system, sketch the four lines z = ay;(1 —1) 4 ay;t for

0 <t <1, and darken the line segments that correspond to the graph of z = v(x(¢)),
from (4).

6 The proof based on the Minimax Theorem goes as follows: The function v(x) is continuous on the
compact set X, so there exists a point X in X such that

v(X) = max v(x) = vg
xe€X
Similarly, there exists ¥ in Y such that
v(§) = minv(y) = ve
YEY

According to the Minimax Theorem, vg = v¢ = v.
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b. Identify the highest point M = (z, z) on the graph of v(x(¢)). The z-coordinate of

M is the value vg of the game for R, and the ¢-coordinate determines an optimal
strategy X(¢) for R.

SOLUTION

a. The four lines are

z=1-(1-t)4+4-t= 3t+1
z2=5-(1-t)+0-t =-5t+4+5
z=3-(1-0)+1-t=-2t+3
z=6-(1—-t)+2-t=—-4t+6

See Fig. 2. Notice that the line z = ay; - (1 — ) + ay; -t goes through the points
(0,a1;) and (1, ay;). For instance, the line z = 6 - (1 — ) + 2 - ¢ for column 4 goes
through the points (0, 6) and (1, 2). The heavy polygonal path in Fig. 2 represents
v(x) as a function of ¢, because the z-coordinate of a point on this path is the
minimum of the corresponding z-coordinates of points on the four lines in Fig. 2.

6 CO] T
)
n
5 A B
4 Coy, 4
001172 00\‘“““
3 Co]Umn 3 |
11
N Moo— -2
] -1
f t
0 H 1
5
FIGURE 2

b. The highest point, M, on the graph of v(x) is the intersection of the lines correspond-
ing to the first and third columns of A. The coordinates of M are (2 1 ).7 The value

of the game for R is

11
5

1—2 3
. A_ 5 _ 5
Risx = ) =13

5 5

For any 2 x n matrix game, Example 4 illustrates the method for finding an optimal
solution for player R. Theorem 3 guarantees that there also exists an optimal strategy
for player C, and the value of the game is the same for C as for R. With this value
available, an analysis of the graphical solution for R, as in Fig. 2, will reveal how to
produce an optimal strategy ¥ for C. The next theorem supplies the key information

about y.

1L This value is attained at 1 = 2

7 Solve the equations for columns 1 and 3 simultaneously:

(column 1) z =3¢ + 1
(column3) z = =2t + 3

505

so the optimal strategy for
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THEOREM 4 Let X and y be optimal strategies for an m x n matrix game whose value is v, and
suppose that
X = Xie; +---+ x,€e, inR” %)

Then ¥ is a convex combination of the pure strategies e; in R” for which
E(X,e;) = v. In addition, ¥ satisfies the equation

E(e;,§) = v (©)
for each i such that x; # 0.

PROOF Write y = ye; +--- + y,e, in R”", and note that v = E(X,¥) = v(X) <
E(X,e;) for j =1,...,n. So there exist nonnegative numbers ¢; such that

EX.ej))=v+¢e (j=1,....n)
Then

v=ERXY) =ER jier+ -+ Juen)

D FERe) =Y Hiv+te))

j=1 j=1
n

v+ Y e
j=1

because the J; sum to one. This equality is possible only if §; = 0 whenever ¢; > 0.
Thus ¥ is a linear combination of the e; for which ¢; = 0. For such j, E(X,e;) = v.

Next, observe that E(e;,y) < v(y) = E(X,y) fori =1,...,m. So there exist
nonnegative numbers §; such that

E.y)+6=v (i=1,...,m) @)
Then, using (5) gives

m
v=ER§) =) %E(@.9)

i=1
m m

= E fCi(U—fSi):U—E X6
i=1 i=l1

since the X; sum to one. This equality is possible only if §; = 0 when X; # 0. By (7),
E(e;,y) = v for each i such that X; # 0. [ |

EXAMPLE 5 The value of the game in Example 4 is %, attained when X = |:

NI nilw
1

Use this fact to find an optimal strategy for the column player C.

SOLUTION The z-coordinate of the maximum point M in Fig. 2 is the value of the
game, and the 7-coordinate identifies the optimal strategy x(%) = X. Recall that the z-
coordinates of the lines in Fig. 2 represent E(x(7),e;) for j = 1,...,4. Only the lines
for columns 1 and 3 pass through the point M, which means that

ERX,e)) = 1—51 and EX, e3) = %
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while E(X,e;) and E(X, e4) are greater than % By Theorem 4, the optimal column

strategy ¥ for C is a linear combination of the pure strategies e; and e; in R?. Thus, §
has the form

1 0 C1
A 0 0 0
Y=alo |t 1| T o
0 0 0

where ¢; + ¢3 = 1. Since both coordinates of the optimal X are nonzero, Theorem 4
shows that E(e;,§) = & and E(e;, §) = 4. Each condition, by itself, determines §.
For example,

Ci
A A 4 0 1 2
_ . Tan _ _ 1
E(elvy)_e]Ay_[l 0][1 5 3 6j| 3 —4C1+C3—?
0
Substitute ¢3 = 1 — ¢y, and obtain 4¢; + (1 —¢y) = 1?, = % and ¢z = % The
2
5
. A 0
optimal strategy for C isy = | , |. [ |
5
0

Reducing the Size of a Game

The general m x n matrix game can be solved using linear programming techniques,
and Section 9.4 describes one method for doing this. In some cases, however, a matrix
game can be reduced to a “smaller” game whose matrix has only two rows. If this
happens, the graphical method of Examples 4 and 5 is available.

Given a and b in R”, with entries a; and b;, respectively, vector a is said to
dominate vector b if a; > b; forall i = 1,...,n and a; > b; for at least one
i. If a dominates b, then b is said to be recessive to a.

Suppose that in the matrix game A, row r dominates row s. This means that for R
the pure strategy of choosing row r is at least as good as the pure strategy of choosing
row s, no matter what C may choose, and for some choice by C,r is better than s.
It follows that the recessive row s (the “smaller” one) can be ignored by R without
hurting R’s expected payoff. A similar analysis applies to the columns of A, in which
case the dominating “larger” column is ignored. These observations are summarized in
the following theorem.

Let A be an m x n matrix game. If row s in the matrix A4 is recessive to some
other row, then let A; be the (m — 1) x n matrix obtained by deleting row s from
A. Similarly, if column 7 of matrix A dominates some other column, let A, be
the m x (n — 1) matrix obtained by deleting column # from A. In either case, any
optimal strategy of the reduced matrix game A, or A, will determine an optimal
strategy for A.



12 CHAPTER 9 Optimization

EXAMPLE 6 Use the process described in Theorem 5 to reduce the following
matrix game to a smaller size. Then find the value of the game and optimal strategies
for both players in the original game.

7 1 6 7
A=18 3 1 0
4 5 3 3

SOLUTION Since the first column dominates the third, player C will never want to use
the first pure strategy. So delete column 1 and obtain

[« 1 6 7
3 1 0
i 5 3 3
In this matrix, row 2 is recessive to row 3. Delete row 2 and obtain
[« 1 6 7
* % k%
x5 3 3

This reduced 2 x 3 matrix can be reduced further by dropping the last column, since it
dominates column 2. Thus, the original matrix game A has been reduced to

1 6 7 1 6 7
B=|:5 3] whenA=(8 3 1 0 )
4 5 3 3

and any optimal strategy for B will produce an optimal strategy for A, with zeros as
entries corresponding to deleted rows or columns.

A quick check of matrix B shows that the game has no saddle point (because 3 is
the max of the row minima and 5 is the min of the column maxima). So the graphical
solution method is needed. Figure 3 shows the lines corresponding to the two columns
of B, whose equations are 7 = 4¢ 4+ 1 and z = —3¢ + 6. They intersect where t = %;
the value of the game is % and the optimal row strategy for matrix B is

T3

ﬁ:x(g

(=]
Qo+
—_

FIGURE 3

Since the game has no saddle point, the optimal column strategy must be a linear
combination of the two pure strategies. Set y = cje; + ¢,€,, and use the second part of
Theorem 4 to write

A 1 6 C1
2 _ g ) =1 0][5 3][02] — ¢+ 602 = (1—2) + 663
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czzé,andq:l—cz:%. Thus§'=|:

9.4 Matrix Games 13

i|. As a check,

N QW

compute E(e;,y) = 5(%) + 3(;) = % = .
The final step is to construct the solution for matrix A from the solution for matrix
B (given by X and § above). Look at the matrices in (8) to see where the extra zeros go.

The row and column strategies for A are, respectively,

and y =

»>

Il
QU O =
O Nk Nw O

PRACTICE PROBLEM

Find the optimal strategies and the value of the matrix game

-3 4 1 3
2 2 -1 0
1 5 2 3
9.1 EXERCISES
In Exercises 1-4, write the payoff matrix for each game. 5 4 3 -2 4 1 -1
7.1 -2 1 -5 2 8. 35 2 2
1. Player R has a supply of dimes and quarters. Player R 4 3 7 3 1 =3 0 2
chooses one of the coins, and player C must guess which -
coin R has chosen. If the guess is correct, C takes the coin.
If the guess is incorrect, C gives R an amount equal to R’s 9. Let M be the matrix game having payoff matrix
chosen coin. (1 2 -2
0 1 4 |. Find E(x,y), v(x), and v(y) when x and y
2. Players R and C each show one, two, or three fingers. If 13 -1 1
the total number N of fingers shown is even, then C pays N have the given values.
dollars to R. If N is odd, R pays N dollars to C. M1 M1
3 4
3. Inthe traditional Japanese children’s game janken (or “stone, a X= % andy = %
scissors, paper”), at a given signal, each of two players shows L % ] L % i
either no fingers (stone), two fingers (scissors), or all five m m
(paper). Stone beats scissors, scissors beats paper, and paper 4 2
beats stone. In the case of a tie, there is no payoff. In the case b. x= % andy = %
of a win, the winner collects 5 yen. (On December 10, 2004, 1 1
Fox Sports broadcast the 2004 Rock Paper Scissors World L4 L4
Championships. See www.worldrps.com.)
10. Let M be the matrix game having payoff matrix

4. Player R has three cards: a red 3, a red 6, and a black 7.
Player C has two cards: a red 4 and a black 9. They each
show one of their cards. If the cards are the same color, R
receives the larger of the two numbers. If the cards are of

different colors, C receives the sum of the two numbers.

Find all saddle points for the matrix games in Exercises 5—8.

4 3 2 1 3
> [1 —1} 6. |:4 -2 1]

2 0 1 -1

—1 1 =2 0

1 -2 2 1

x and y have the given values.

. Find E(x,y), v(x), and v(y) when

O W= =

andy =

)
[l
I
Wi O wi—

Bl
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andy =

Bl— A= =
= RI= = O

In Exercises 11-18, find the optimal row and column strategies
and the value of each matrix game.

11.

13.

15.

17.

18.

19.

20.

B [ 2 2

0 1] 121 3 6]
(35 (3 5 3 2
4 1} RN 8]
i 5 -1 1
RSN T A

. |2 -3 1
[0 -1 4 3

1 -1 3 -1 =3

2 -1 4 0 -2

| -1 2 2 1

(6 4 5 5

0 4 2 7

6 3 5 2

12 5 3 7

A certain army is engaged in guerrilla warfare. It has two
ways of getting supplies to its troops: it can send a convoy
up the river road or it can send a convoy overland through
the jungle. On a given day, the guerrillas can watch only one
of the two roads. If the convoy goes along the river and the
guerrillas are there, the convoy will have to turn back and 4
army soldiers will be lost. If the convoy goes overland and
encounters the guerrillas, half the supplies will get through,
but 7 army soldiers will be lost. Each day a supply convoy
travels one of the roads, and if the guerrillas are watching the
other road, the convoy gets through with no losses. Set up
and solve the following as matrix games, with R being the
army.

a. What is the optimal strategy for the army if it wants to
maximize the amount of supplies it gets to its troops?
What is the optimal strategy for the guerrillas if they want
to prevent the most supplies from getting through? If
these strategies are followed, what portion of the supplies
gets through?

b. What is the optimal strategy for the army if it wants to
minimize its casualties? What is the optimal strategy for
the guerrillas if they want to inflict maximum losses on
the army? If these strategies are followed, what portion
of the supplies gets through?

Suppose in Exercise 19 that whenever the convoy goes over-
land two soldiers are lost to land mines, whether they are
attacked or not. Thus, if the army encounters the guerrillas,
there will be 9 casualties. If it does not encounter the
guerrillas, there will be 2 casualties.

a. Find the optimal strategies for the army and the guerrillas
with respect to the number of army casualties.

b. In part (a), what is the “value” of the game? What does
this represent in terms of the troops?

In Exercises 21 and 22, mark each statement True or False. Justify
each answer.

21.

22.

23.

24.

25.

a. The payoff matrix for a matrix game indicates what R
wins for each combination of moves.

b. With a pure strategy, a player makes the same choice each
time the game is played.

c. The value v(x) of a particular strategy x to player R is
equal to the maximum of the inner product of x with each
of the columns of the payoff matrix.

d. The Minimax Theorem says that every matrix game has
a solution.

e. If row s is recessive to some other row in payoff matrix
A, then row s will not be used (that is, have probability
zero) in an optimal strategy for (row) player R.

a. If a;; is a saddle point, then a;; is the smallest entry in
row i and the largest entry in column ;.
b. Each pure strategy is an optimal strategy.

c. The value v of the game to player R is the maximum of
the values of the various possible strategies for R.

d. The Fundamental Theorem for Matrix Games shows how
to solve every matrix game.

e. If column 7 dominates some other column in a payoff
matrix A, then column ¢ will not be used (that is, have
probability zero) in an optimal strategy for (column)
player C.

Find the optimal strategies and the value of the game in
Example 2.

Bill and Wayne are playing a game in which each player has
a choice of two colors: red or blue. The payoff matrix with
Bill as the row player is given below.

blue

red -1 2

blue 3 4

For example, this means that if both people choose red, then
Bill pays Wayne one unit.

red

a. Using the same payoffs for Bill and Wayne, write the
matrix that shows the winnings with Wayne as the row
player.

b. If A is the matrix with Bill as the row player, write your
answer to (a) in terms of A.

Consider the matrix game A = [Z s ], where A has no

saddle point.

a. Find a formula for the optimal strategies X for R and y for
C. What is the value of the game?
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1 1
1 1
with @ # 0. Use your answer in part (a) to show that
the optimal strategies for the matrix game B = A + fJ
are the same as for A. In particular, note that the optimal
strategies for A and A + BJ are the same.

b. Let J — [ :| and let @ and B be real numbers 26. Let A be a matrix game having value v. Find an example to

show that £(x,y) = v does not necessarily imply that x and
y are optimal strategies.

SOLUTION TO PRACTICE PROBLEM

The first row is recessive to the third row, so the first row may be eliminated. The second
and fourth columns dominate the first and third columns, respectively. Deletion of the
second and fourth columns leaves the matrix B:

s 1 -3 4 1 3
B = |:1 2:| when A = 2 2 -1 0
1 5 2 3

The game for B has no saddle point, but a graphical analysis will work. The two columns
of B determine the two lines shown below, whose equations are 2 - (1 —¢) + 1 - ¢ and
z=—1-(1—-t)+2-t.

EN[

These lines intersect at the point (%, %) The value of the game is %, and the optimal
row strategy for the matrix game B is

w07

. A ¢ . .
By Theorem 4, the optimal column strategy, y = |:Cl :|, satisfies two equations
2

EN[RFNE

E(e;.§) = 3 and E(e,.§) = 3, because X is a linear combination of both e; and e;.
Each of these equations determines y. For example,

5 A 2 -1 C1
Z_E(el,y)_[l 0]|:1 2}[02} =2ci—c,=2c;—(1—c¢;) =3¢, —1

3 1 N
Thus, ¢; = I and so ¢, = T andy = |:

B Ll SN O]

:| . As a check, compute

S LR

This solves the game for B. The optimal row strategy X for A needs a 0 in the first entry
(for the deleted first row); the optimal column strategy ¥ for A needs 0’s in entries 2 and
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4 (for the two deleted columns). Thus

3
O Z
.| . |o
X=|3 and y= ]
3 1
4 0

9.2 LINEAR PROGRAMMING—GEOMETRIC METHOD

Since the 1950s, the variety and size of industrial linear programming problems have
grown along with the dramatic increase in computing power. Still, at their core,
linear programming problems have a concise mathematical description, discussed in
this section. The final example in the section presents a geometric view of linear
programming that is important for visualizing the algebraic approach needed for larger
problems.

Generally speaking, a linear programming problem involves a system of linear
inequalities in variables xi,...,x, and a linear functional f from R” into R. The
system typically has many free variables, and the problem is to find a solution x that
maximizes or minimizes f(x).

EXAMPLE 1 The Shady-Lane grass seed company blends two types of seed mix-
tures, EverGreen and QuickGreen. Each bag of EverGreen contains 3 pounds of fescue
seed, 1 pound of rye seed, and 1 pound of bluegrass. Each bag of QuickGreen contains
2 pounds of fescue, 2 pounds of rye, and 1 pound of bluegrass. The company has 1200
pounds of fescue seed, 800 pounds of rye seed, and 450 pounds of bluegrass available
to put into its mixtures. The company makes a profit of $2 on each bag of EverGreen
and $3 on each bag of QuickGreen that it produces. Set up the mathematical problem
that determines the number of bags of each mixture that Shady-Lane should make in
order to maximize its profit.

SOLUTION The phrase “maximize ... profit” identifies the goal or objective of the
problem. The first step, then, is to create a formula for the profit. Begin by naming the
quantities that can vary. Let x; be the number of bags of EverGreen and x; the number
of bags of QuickGreen that are produced. Since the profit on each bag of EverGreen is
$2 and the profit on each bag of QuickGreen is $3, the total profit (in dollars) is

2x1 4+ 3x; (profit function)

The next step is to write inequalities or equalities that x; and x, must satisfy, one for
each of the ingredients that are in limited supply. Notice that each bag of EverGreen
requires 3 pounds of fescue seed and each bag of QuickGreen requires 2 pounds of
fescue seed. So the total amount of fescue required is 3x; + 2x; pounds. Since only
1200 pounds are available, x; and x, must satisfy

3x1 + 2x, < 1200 (fescue)

Similarly, EverGreen needs 1 pound of rye per bag, QuickGreen needs 2 pounds per bag,
and only 800 pounds of rye are available. Thus, the total amount of rye seed required is
X1 + 2x,, and x| and x, must satisfy

X1 + 2x, < 800 (rye)
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As for the bluegrass, EverGreen requires 1 pound per bag and QuickGreen requires 1
pound per bag. Since 450 pounds are available,

X1 + xo <450 (bluegrass)
Of course, x; and x, cannot be negative, so x| and x, must also satisfy
x1 >0 and x>0
The problem is summarized mathematically as

Maximize 2x1 4 3x (profit function)
subject to 3x1 4+ 2x, < 1200  (fescue)

X1+ 2x, <800  (rye)

X1+ xp <450  (bluegrass)

and x; > 0,x, > 0. [ |

EXAMPLE 2 An oil refining company has two refineries that produce three grades
of unleaded gasoline. Each day refinery A produces 12,000 gallons of regular, 4,000
gallons of premium, and 1,000 gallons of super gas, at a cost of $3,500. Each day
refinery B produces 4,000 gallons of regular, 4,000 gallons of premium, and 5,000
gallons of super gas, at a cost of $3,000. An order is received for 48,000 gallons
of regular, 32,000 gallons of premium, and 20,000 gallons of super gas. Set up a
mathematical problem that determines the number of days each refinery should operate
in order to fill the order at the least cost.

SOLUTION Suppose that refinery A operates x; days and refinery B operates x, days.
The cost of doing this is 3,500x; + 3,000x; dollars. The problem is to find a production
schedule (x;, x,) that minimizes this cost and also ensures that the required gasoline is
produced.

Since refinery A produces 12,000 gallons of regular gas each day and refinery B
produces 4,000 gallons of regular each day, the total produced is 12,000x; + 4,000x,.
The total should be at least 48,000 gallons. That is,

12,000x; + 4,000x, > 48,000
Similarly, for the premium gas,
4,000x; 4 4,000x, > 32,000

and, for the super,
1,000x; + 5,000x, > 20,000

As in Example 1, x; and x; cannot be negative, so x; > 0 and x, > 0.
The problem is summarized mathematically as
Minimize 3,500x; + 3,000x, (cost function)
subject to 12,000x; + 4,000x, > 48,000 (regular gas)
4,000x; + 4,000x, > 32,000 (premium)
1,000x; + 5,000x; > 20,000  (super)
and x; > 0,x, > 0. |
The examples show how a linear programming problem involves finding the
maximum (or minimum) of a linear function, called the objective function, subject
to certain linear constraints. In many situations, the constraints take the form of linear

inequalities and the variables are restricted to nonnegative values. Here is a precise
statement of the so-called canonical form of a linear programming problem.
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by i

Givenb=| : [inR", c¢=| : | inR" and an m x n matrix A = [ a;; |,

by Cn

the canonical linear programming problem is the following:

X1
Find an n-tuplex = | : | in R” to maximize
Xn
f(xy,....x) =c1x1 + coxp + -+ cpxy

subject to the constraints

anxy + apxy+ - +apx, < by
anxi + anxy+ -+ +axpx, < b,

Am1 X1 + AmaXo+ -+ FAmn Xy = bm

and

x; 20 forj=1,....n

This may be restated in vector-matrix notation as follows:

Maximize f(x) = ¢’x (1)
subject to the constraints Ax < b )
andx > 0 3)

where an inequality between two vectors applies to each of their coordinates.
Any vector x that satisfies (2) and (3) is called a feasible solution, and the set
of all feasible solutions, denoted by ¥, is called the feasible set. A vector X in &

is an optimal solution if f(X) = maxyez f(X).

The canonical statement of the problem is really not as restrictive as it might seem.
To minimize a function i (x), replace it with the problem of maximizing the function

—h(x). A constraint inequality of the sort

ap Xy + -+ aipxy, =

can be replaced by

—dj1X1 == dinXp =

An equality constraint
aip Xy + -+ aipxy

can be replaced by two inequalities

aii1Xy + -+ ainXy

—di1X1 =t AinXy

=

=

With an arbitrary canonical linear programming problem, two things can go wrong.
If the constraint inequalities are inconsistent, then ¥ is the empty set. If the objective
function takes on arbitrarily large values in ¥, then the desired maximum does not exist.
In the former case, the problem is said to be infeasible; in the latter case, the problem

is called unbounded.
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EXAMPLE 3 The problem

Maximize 5x
subject to x <3
—x <—4
x>0
is infeasible, since there is no x such that x < 3 and x > 4. |
EXAMPLE 4 The problem
Maximize 5x
subject to —x <3
x>0

is unbounded. The values of 5x may be arbitrarily large, as x is only required to satisfy
x >0 (and x > —3). |

Fortunately, these are the only two things that can go wrong.

If the feasible set ¥ is nonempty and if the objective function is bounded above
on ¥, then the canonical linear programming problem has at least one optimal
solution. Furthermore, at least one of the optimal solutions is an extreme point of
7!

Theorem 6 describes when an optimal solution exists, and it suggests a possible
technique for finding one. That is, evaluate the objective function at each of the extreme
points of ¥ and select the point that gives the largest value. This works well in simple
cases such as the next two examples. The geometric approach is limited to two or three
dimensions, but it provides an important visualization of the nature of the solution set
and how the objective function interacts with the feasible set to identify extreme points.

EXAMPLE 5 Maximize f(x1,x2) = 2x1 + 3x2

subject to X1 <30
Xy < 20
X1 + 2x, <54

and x; > 0,x, > 0.

SOLUTION Figure 1 shows the shaded pentagonal feasible set, obtained by graphing
each of the constraint inequalities. (For simplicity, points in this section are displayed
as ordered pairs or triples.) There are five extreme points, corresponding to the five
vertices of the feasible set. They are found by solving the appropriate pairs of linear
equations. For example, the extreme point (14, 20) is found by solving the linear system
X1 + 2x, = 54 and x, = 20. The table below shows the value of the objective function
at each extreme point. Evidently, the maximum is 96 at x; = 30 and x, = 12.

! The feasible set is the solution of a system of linear inequalities. Geometrically, this corresponds to the
intersection of a finite number of (closed) half-spaces, sometimes called a polyhedral set. Intuitively, the
extreme points correspond to the “corner points,” or vertices, of this polyhedral set. The notion of an
extreme point is discussed more fully in Section 8.5.

A proof of Theorem 6 is in Steven R. Lay, Convex Sets and Their Applications (New York: John
Wiley & Sons, 1982; Mineola, NY: Dover Publications., 2007), p. 171.
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X2
0, 20) (14, 20) (crxy) | 2% +3x,
0, 0) 0
(30, 12) (30,0) 60
L (30, 12) 96 «—
(14, 20) 88
(0, 20) 60
©.,0) ' ' (30,0)' ' T
FIGURE 1

Another geometric technique that can be used when the problem involves two
variables is to graph several level lines for the objective function. These are parallel
lines, and the objective function has a constant value on each line. (See Fig. 2.) The
values of the objective function f(xi, x;) increase as (x;, x,) moves from left to right.
The level line farthest to the right that still intersects the feasible set is the line through
the vertex (30, 12). Thus, the point (30, 12) yields the maximum value of f(xy, x3)
over the feasible set. [ |

L%

\ f(x1,x,) =96
: 1 1 1 1 xl

f(x1,x,) =30 f(x1,x,) =60
FIGURE 2

EXAMPLE 6 Maximize f(x1,x2,X3) = 2x; + 3x5 + 4x3

subject to X1+ xo+ x3 <50
X1+ 2x, +4x3 <80
and x; > 0,x, > 0,x3 > 0.
SOLUTION Each of the five inequalities above determines a “half-space” in R*—a
plane together with all points on one side of the plane. The feasible set of this linear

programming problem is the intersection of these half-spaces, which is a convex set in
the first octant of R3.
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When the first inequality is changed to an equality, the graph is a plane that
intercepts each coordinate axis 50 units from the origin and determines the equilateral
triangular region shown in Fig. 3. Since (0, 0, 0) satisfies the inequality, so do all the
other points “below” the plane. In a similar fashion, the second (in)equality determines
atriangular region on a plane (shown in Fig. 4) that passes somewhat closer to the origin.
The two planes intersect in a line that contains segment EB.

The quadrilateral surface BCDE forms a boundary of the feasible set, because it is
below the equilateral triangular region. Beyond EB, however, the two planes change
position relative to the origin, so the planar region ABE forms another bounding surface
for the feasible set. The vertices of the feasible set are the points A, B, C, D, E, and 0
(the origin). See Fig. 5, which has all sides of the feasible set shaded except the large
“top” piece. To find the coordinates of B, solve the system

X1+ x2+ x3 =50

X1+ 2x2 + 4x3 = 80

x3= 0

Obtain x, = 30, and find that B is (20, 30, 0). For E, solve
X1+ x2+ x3 =50

X1 + 2x, + 4x3 = 80

X2 =0

Obtain x3 = 10, and find that E = (40, 0, 10).

X1+ x, =50
X1+2XQ=80

X1+ X3=50
X1 +4x;3 =80

X3

50

(=]
N
S
()
S

/ Xy
40,0, 10) E 7

FIGURE 5

Now that the feasible set and its extreme points are clearly seen, the next step is
to examine the objective function f(xy, x2, x3) = 2x; + 3x, + 4x3. The sets on which
f is constant are planes, rather than lines, all having (2, 3, 4) as a normal vector to the
plane. This normal vector has a direction different from the normal vectors (1, 1, 1) and
(1,2, 4) to the two faces BCDE and ABE. So the level sets of f are not parallel to any
of the bounding surfaces of the feasible set. Figure 6 shows just the feasible set and a
level set on which f has the value 120. This plane passes through C, E, and the point
(30, 20, 0) on the edge of the feasible set between A and B, which shows that the vertex
B is “above” this level plane. In fact, f(20,30,0) = 130. Thus the unique solution of
the linear programming problem is at B = (20, 30, 0). ]
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f(x1, x5, x3) =120

(40,0, 10) E
B (20, 30, 0)
(30, 20, 0)
X
FIGURE 6
PRACTICE PROBLEMS
1. Consider the following problem:
Maximize 2x1 + X
subject to X1 — 2x, > —8
3x1 +2x, < 24

and x; > 0,x, > 0.

Write this problem in the form of a canonical linear programming problem: Maxi-

mize ¢’x subject to Ax < b and x > 0. Specify 4, b, and c.
2. Graph the feasible set for Practice Problem 1.

3. Find the extreme points of the feasible set in Practice Problem 2.

4. Use the answer to Practice Problem 3 to find the solution to the linear programming

problem in Practice Problem 1.

9.2 EXERCISES

1. Betty plans to invest a total of $12,000 in mutual funds, cer-
tificates of deposit (CDs), and a high yield savings account.
Because of the risk involved in mutual funds, she wants to
invest no more in mutual funds than the sum of her CDs and
savings. She also wants the amount in savings to be at least
half the amount in CDs. Her expected returns are 11% on
the mutual funds, 8% on the CDs and 6% on savings. How
much money should Betty invest in each area in order to have
the largest return on her investments? Set this up as a linear
programming problem in the following form: Maximize ¢’x
subject to Ax < b and x > 0. Do not find the solution.

2. A dog breeder decides to feed his dogs a combination of two
dog foods: Pixie Power and Misty Might. He wants the dogs
to receive four nutritional factors each month. The amounts
of these factors (a, b, ¢, and d) contained in 1 bag of each dog

food are shown in the following chart, together with the total
amounts needed.

a c
Pixie Power 3 2 1 2
Misty Might 2 4 3
Needed 28 30 20 25

The costs per bag are $50 for Pixie Power and $40 for Misty
Might. How many bags of each dog food should be blended
to meet the nutritional requirements at the lowest cost? Set
this up as a linear programming problem in the following
form: Minimize ¢’x subject to Ax > b and x > 0. Do not
find the solution.



In Exercises 36, find vectors b and ¢ and matrix A so that each
problem is set up as a canonical linear programming problem:
Maximize ¢’x subject to Ax <b and x > 0. Do not find the

solution.

3x; + 4x, — 2x3

X1 + 2X2 < 20
3X2 + 5X3 > 10

and x; > 0,x, > 0,x3 > 0.

3. Maximize
subject to

4. Maximize
subject to

3)C| =+ X2 =+ SX3

5x1 4+ Txo + x3 <25
2.X1 + 3.X2 + 4X3 =40
andx. > 0,X2 > 0,X3 > 0.

7X1 - 3X2 -+ X3

X — 4X2 > 35
X2 — 2)C3 =20

andx. > 0,X2 > 0,X3 > 0.

5. Minimize
subject to

X + 5X2 - 2X3

2X1 + X +4X3 527
X — 6.X2 + 3X3 > 40
andx. > 0,X2 > 0,X3 20

6. Minimize
subject to

In Exercises 7-10, solve the linear programming problems.

7. Maximize 80x; + 65x,
subject to 2x1 +  xp, <32
X1+ x =18
X1+ 3x; <24
and X = 0,X2 > 0.
8. Minimize 5x1 + 3x»
subject to 2x; + 5x, > 10
3x1 4+ x> 6
X1+ Txy > 7
and x; > 0,x, > 0.
9. Maximize 2x1 + 7x,
subject to —2x1+ x <4

X — 2.X2 54
and x; > 0,x, > 0.

10. Maximize 5x1 + 12x,
subject to X1 — x< 3
—x; + 2x, <-4

and x; > 0,x, > 0.

In Exercises 11 and 12, mark each statement True or False. Justify

each answer.

11. a. In a canonical linear programming problem, a nonnega-
tive vector x is a feasible solution if it satisfies Ax < b.

b. A vector X is an optimal solution of a canonical linear
programming problem if f(X) is equal to the maximum

value of the linear functional f on the feasible set ¥ .

12.

13.
14.
15.
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a. If a canonical linear programming problem does not have
an optimal solution, then either the objective function is
not bounded on the feasible set ¥ or ¥ is the empty set.

b. If X is an optimal solution of a canonical linear program-
ming problem, then X is an extreme point of the feasible
set.

Solve the linear programming problem in Example 1.
Solve the linear programming problem in Example 2.

The Benri Company manufactures two kinds of kitchen gad-
gets: invertible widgets and collapsible whammies. The
production process is divided into three departments: fab-
ricating, packing, and shipping. The hours of labor required
for each operation and the hours available in each department
each day are shown below.

Widgets Whammies Time available
Fabricating 5.0 2.0 200
Packing 2 4 16
Shipping 2 2 10

Suppose that the profit on each widget is $20 and the profit
on each whammy is $26. How many widgets and how
many whammies should be made each day to maximize the
company’s profit?

Exercises 16— 19 use the notion of a convex set, studied in Section
8.3. A set S in R” is convex if, for each p and q in S, the line
segment between p and q lies in S. [This line segment is the set
of points of the form (1 —#)p + tqfor0 <t < 1.]

16.

17.

18.

19.

Let ¥ be the feasible set of all solutions x of a linear
programming problem Ax < b with x > 0. Assume that ¥
is nonempty. Show that ¥ is a convex set in R". [Hint:
Consider points p and q in ¥ and ¢ such that 0 <7 < 1.
Show that (1 —7)p + rqisin F.]

Letv = [Z] andx = [il ] The inequality ax; + bx; < ¢

2
for some real number ¢ may be written as v/x < ¢. The
set S of all x that satisfy this inequality is called a closed
half-space of R2. Show that S is convex. [See the Hint for
Exercise 16.]

The feasible set in Example 5 is the intersection of five closed
half-spaces. By Exercise 17, these half-spaces are convex
sets. Show that the intersection of any five convex sets
Si,...,S5in R" is a convex set.

If ¢ is in R” and if f is defined on R” by f(x) = ¢’x, then
f is called a linear functional, and for any real number d,
{x: f(x) = d} is called a level set of f. (See level sets in
Fig. 2 of Example 5.) Show that any such level set is convex.
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SOLUTIONS TO PRACTICE PROBLEMS

1. The first inequality has the wrong direction, so multiply by —1. This gives the

following problem:
Maximize 2X1 + X
subject to X1 +2x, < 8
3x1 4+ 2x, <24
and x; > 0,x, > 0.

This corresponds to the canonical form

Maximize ¢’x subjectto Ax < bandx > 0

v-[i] xe[u] e [I] wea[3 3]

when

. To graph the inequality —x; + 2x, <8, first graph the corresponding equality

—Xx1 + 2x, = 8. The intercepts are easy to find: (0, 4) and (-8, 0). Figure 7 shows
the straight line through these two points.

The graph of the inequality consists of this line together with all points on one
side of the line. To determine which side, pick a point not on the line to see if its
coordinates satisfy the inequality. For example, try the origin, (0, 0). The inequality

—(0) +2(0) < 8

is a true statement. Thus the origin and all other points below the line satisfy the
inequality. As another example, substituting the coordinates of the point (0, 8) into
the inequality produces a false statement:

—(0)+208) =8

Thus (0, 8) and all other points above the line do not satisfy the inequality. Figure 7
shows small arrows beneath the graph of —x; + 2x, = 8, to indicate which side is
to be included.

e
/(é 8 16

FIGURE 7 Graph of —x; 4+ 2x; < 8.

For the inequality
3x1 4+ 2x, <24

draw the graph of 3x; + 2x, = 24, using the intercepts (0, 12) and (8, 0) or two
other convenient points. Since (0, 0) satisfies the inequality, the feasible set is on
the side of the line containing the origin. The inequality x; > O gives the right half-
plane, and the inequality x, > 0 gives the upper half-plane. All of these are graphed
in Fig. 8, and their common solution is the shaded feasible set.
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FIGURE 8 Graph of the feasible set.

3. There are four extreme points in the feasible set:
1. The origin: (0, 0)
2. The x,-intercept of the first inequality: (0, 4)
3. The x;-intercept of the second inequality: (8, 0)
4. The intersection of the two inequalities.

For the fourth extreme point, solve the system of equations —x; + 2x, = 8 and
3x; + 2x, = 24 to obtain x; = 4 and x, = 6.

4. To find the maximum value of the objective function 2x; + x,, evaluate it at each of
the four extreme points of the feasible set.

2x1 + x>
(0,0) 2(0) + 1(0) =0
0.4) 20+ 1(4) =4

(8,0) 2(8) + 1(0) = 16
(4,6) 2(4) + 1(6) = 14

The maximum value is 16, attained when x; = 8 and x, = 0.

9.3 LINEAR PROGRAMMING—SIMPLEX METHOD

Transportation problems played an important role in the early days of linear program-
ming, including the Berlin Airlift described in this chapter’s Introductory Example.
They are even more important today. The first example is simple, but it suggests
how a problem of this type could involve hundreds, if not thousands, of variables and
equations.

EXAMPLE 1 A retail sales company has two warehouses and four stores. A
particular model of outdoor hot tub is sold at all four stores, and each store has placed an
order with company headquarters for a certain number of these hot tubs. Headquarters
determines that the warehouses have enough hot tubs and can ship them immediately.
The distances from the warehouses to the stores vary, and the cost of transporting a hot
tub from a warehouse to a store depends on the distance. The problem is to decide on
a shipping schedule that minimizes the total cost of shipping. Let x;; be the number of
units (hot tubs) to ship from warehouse i to store j.
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Store 2 Store 3
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1 14 4
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Let a; and a, be the numbers of units available at warehouses 1 and 2, and let
r1,...,T4 be the numbers of units requested by the various stores. Then the x;; must
satisfy the equations

X1+ X2 + X3 + X4 =a
X21 + X220 + X3 + X4 Sz

X11 + X2 =T
X12 + X2 =n

X13 + X3 =73

X14 + X4 = 14

and x;; >0 for i = 1,2 and j =1,...,4. If the cost of shipping one unit from
warehouse i to store j is ¢;;, then the problem is to minimize the function

cnXn + CiaX12 + €13X13 + C14X14 + C21X21 + C22X22 4 €23X23 + C24X24
subject to the four equalities and ten inequalities listed above. [ ]

The simplex method, discussed below, can easily handle problems the size of
Example 1. To introduce the method, however, this section focuses mainly on the
canonical linear programming problem from Section 9.2, in which the objective function
must be maximized. Here is an outline of the steps in the simplex method.

1. Select an extreme point x of the feasible set # .

2. Consider all the edges of ¥ that join at x. If the objective function f cannot be
increased by moving along any of these edges, then x is an optimal solution.

3. If f canbe increased by moving along one or more of the edges, then follow the path
that gives the largest increase and move to the extreme point of ¥ at the opposite
end.

4. Repeat the process, beginning at step 2.

Since the value of f increases at each step, the path will not go through the same extreme
point twice. Since there are only a finite number of extreme points, this process will
end at an optimal solution (if there is one) in a finite number of steps. If the problem
is unbounded, then eventually the path will reach an unbounded edge at step 3 along
which f increases without bound.
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The next five examples concern canonical linear programming problems in which
each of the entries in the m-tuple b is positive:

Maximize f(x) = ¢/x

subject to the constraints AXx < bandx > 0

Here ¢ and x are in R”, A is an m X n matrix, and b is in R".

The simplex method begins by changing each constraint inequality into an equality.
This is done by adding one new variable to each inequality. These new variables are not
part of the final solution; they appear only in the intermediate calculations.

A slack variable is a nonnegative variable that is added to the smaller side of an
inequality to convert it to an equality.

EXAMPLE 2 Change the inequality
5x1 4 7x, <80

into the equality
5x1 4 7x2 + x3 = 80

by adding the slack variable x3. Note that x3 = 80 — (5x; + 7x,) > 0. [ |

If Ais m x n, the addition of m slack variables in Ax < b produces a linear system
with m equations and n + m variables. A solution to this system is called a basic
solution if no more than m of the variables are nonzero. As in Section 9.2, a solution to
the system is called feasible if each variable is nonnegative. Thus, in a basic feasible
solution, each variable must be nonnegative and at most m of them can be positive.
Geometrically, these basic feasible solutions correspond to the extreme points of the
feasible set.

EXAMPLE 3 Find a basic feasible solution for the system

2)(?] + 3X2 +4X3 < 60
3x1 + x4+ 5x3 <46
X1+ 2x; + x3 <50

SOLUTION Add slack variables to obtain a system of three equations:

2x1 + 3x2 + 4x3 4+ x4 =60
3x1 + X2 + 5x3 + X5 =46 @))
X1+ 2x2 + X3 + x6 = 50

There were three inequalities in the original system, so a basic solution of (1) has at
most three nonzero values for the variables. The following simple solution is called the
basic feasible solution associated with (1):

X1=x,=x3=0, x4=60, x5;=46, and xc =50

This solution corresponds to the extreme point 0 in the feasible set (in R?). [ |
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It is customary to refer to the nonzero variables x4, X5, and x4 in system (1) as
basic variables because each has a coefficient of 1 and occurs in only one equation.
The basic variables are said to be “in” the solution of (1). The variables x;, x,, and x3
are said to be “out” of the solution. In a linear programming problem, this particular
solution would probably not be optimal since only the slack variables are nonzero.

A standard procedure in the simplex method is to change the role a variable plays
in a solution. For example, although x; is out of the solution in (1), it can be introduced
“into” a solution by using elementary row operations. The goal is to pivot on the x;
entry in the third equation of (1) to create a new system in which x, appears only in the
third equation.?

First, divide the third equation in (1) by the coefficient of x, to obtain a new third
equation:

3%+ X2 + 53 + 3% = 25

Second, to equations 1 and 2 of (1) add multiples of this new equation that will eliminate
X, from those equations. This produces the system

1 5 3 —

5X1 + 5X3 + X4 — 35X = —15
5 9 1

3X1 + 5X3 + X5 — 53X = 21
1 1 1

35X+ X2+ 5x3 + 53X = 25

The basic solution associated with this new system is
X1 :x3:x6:0, XZ:25, X4:—15, X5:21

The variable x; has come into the solution, and the variable x¢ has gone out. Unfor-
tunately, this basic solution is not feasible since x4 < 0. This lack of feasibility was
caused by an improper choice of a pivot equation. The next paragraph shows how to
avoid this problem.

In general, consider the system

anxy + o+ apXg + o+ apx, = b
anxi + -+ aikXxp + o+ AinXy = b;

A1 X1 + -+ QuicXe + -0+ QuaXn = bn

and suppose the next step is to bring the variable x; into the solution by using equation
p to pivot on entry a i xi. The basic solution corresponding to the resulting system will
be feasible if the following two conditions are satisfied:

1. The coefficient a,; of x; must be positive. (When the pth equation is divided by
api , the new b, term must be positive.)

2. The ratio b, /a,; must be the smallest among all the ratios b; /a;) for which a;; > 0.
(This will guarantee that when the pth equation is used to eliminate the x; term from
the ith equation, the resulting b; term will be positive.)

!'This terminology generalizes that used in Section 1.2, where basic variables also had to correspond to pivot
positions in a matrix echelon form. Here, the goal is not to solve for basic variables in terms of free
variables, but to obtain a particular solution of the system when the nonbasic (free) variables are zero.

2To “pivot” on a particular term here means to transform its coefficient into a 1 and then use it to eliminate
corresponding terms in all the other equations, not just the equations below it, as was done in Section 1.2.
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EXAMPLE 4 Determine which row to use as a pivot in order to bring x, into the
solution in Example 3.

SOLUTION Compute the ratios b; /a;>:

b 60 b b 50

o020, 2 =46 and 2= =
ap 3 axn ap 2

Since the first ratio is the smallest, pivot on the x, term in the first equation. This

produces the system

25

2 4 1
3X1 + xy + 343 + 3X4 =20
%xl + %)@ — %X4 + X5 =26
—1x — %x — 2y, + x¢ = 10

Now the basic feasible solution is

X1=x3=x4=0, x,=20, x5=206, x¢=10 |

A matrix format greatly simplifies calculations of this type. For instance, system
(1) in Example 3 is represented by the augmented matrix

W

X1 X2 X3 X4 X5 X6
2 0 4 1 0 0 60
3 1 5 0 1 0 46
1 2 1 0 0 1 50
The variables are used as column labels, with the slack variables in color. Recall that
the basic feasible solution associated with this matrix is
X1=)C2=X3=0, X4=60, X5=46, x6=50

The circled 3 in the x, column indicates that this entry will be used as a pivot to bring
X, into the solution. (The ratio calculations in Example 4 identified this entry as the
appropriate pivot.) Complete row reduction in column 2 produces the new matrix that
corresponds to the new system in Example 4:

X1 X X3 X4 X5 X6
2 1+ 1 o0 o0]20
Io 4L -1 1 0 26
-1 0 -2 -2 0 110

As in Example 4, the new basic feasible solution is
X1=X3=X4=0, X2=20, X5=26, X6=10
The preceding discussion has prepared the way for a full demonstration of the
simplex method, based on the constraints in Example 3. At each step, the objective

function in Example 5 will drive the choice of which variable to bring into the solution
of the system.

EXAMPLE 5 Maximize 25x; + 33x> + 18x3
subject to 2x1 4 3x, + 4x3 < 60
3x1 + X+ 5x3 <46
X1+ 2x, 4+ x3 <50
and x; >O0forj =1,...,3.
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SOLUTION First, add slack variables, as before. Then change the objective function
25x1 + 33x, + 18x3 into an equation by introducing a new variable M given by M =
25x1 4+ 33x, + 18x3. Now the goal is to maximize the variable M, where M satisfies
the equation

—25x1 —=33x, —18x3+ M =0

The original problem is now restated as follows: Among all the solutions of the system
of equations

2x1 + 3x; + 4x3 4+ x4 = 60
31+ X2+ 5x3 + X5 =46
X1+ 2x +  x3 + X¢ =50
—25X1 — 33)(2 — 18X3 + M= 0
find a solution for which x; > 0(j = 1,...,6) and for which M is as large as possible.

The augmented matrix for this new system is called the initial simplex tableau. It
is written with two ruled lines in the matrix:

X1 X2 X3 Xy X5 X M
2 3 4 1 0 0 0 60
3 1 5 0 1 0 0 46
1 2 1 0 0 1 0 50
—-25 -33 —18 0 0 0 1 0

The horizontal line above the bottom row isolates the equation corresponding to the
objective function. This last row will play a special role in what follows. (The bottom
row is used only to decide which variable to bring into the solution. Pivot positions are
never chosen from the bottom row.) The column headings for the slack variables are
in color, as a reminder that at the end of the calculations only the original variables are
part of the final solution of the problem.

Look in rows 1 to 3 of the tableau above to find the basic feasible solution. The
columns of the 3 X 3 identity matrix in these three rows identify the basic variables—
namely, x4, X5, and x¢. The basic solution is

X1=x=x3=0, x4=60, x5=46, x=50, M=0

This solution is not optimal, however, since only the slack variables are nonzero.
However, the bottom row implies that

M = 25x; + 33x, + 18x3

The value of M will rise when any of the variables x;, x;, or x3 rises. Since the
coefficient of x, is the largest of the three coefficients, bringing x, into the solution
will cause the greatest increase in M.

To bring x; into the solution, follow the pivoting procedure outlined earlier. In the
tableau above, compare the ratios b; /a;, for each row except the last. They are 60/3,
46/1, and 50/2. The smallest is 60/3, so the pivot should be the entry 3 that is circled
in the first row.

X1 X2 X3 Xy X5  x¢ M
2 0B 4 1 0 0 0 60
3 1 5 0 1 0 0 46
1 2 1 0 0 1 0 50
—25 —-33 —18 0 0 0 1 0
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The result of the pivot operation is

X1 Xy X3 Xy X5 oxe M

1 3 L 0 0o o020

Io0 4 -1 1 o0 o0 26 2)
-+ 0 =2 -2 o0 1 0 10
-3 0 26 11 0 0 1660

Now the columns of the 3 x 3 identity matrix are in columns 2, 5, and 6 of the tableau.
So the basic feasible solution is

X] = X3 = X4 = O, Xy = 20, X5 = 26, X = 10, M = 660

Thus M has increased from 0 to 660. To see if M can be increased further, look at the
bottom row of the tableau and solve the equation for M :

M = 660 + 3x; —26x3 — 11x4 3)

Since each of the variables x; is nonnegative, the value of M will increase only if x;
increases (from 0). (Since the coefficients of x3 and x4 are both negative at this point,
increasing one of them would decrease M.) So x| needs to come into the solution.
Compare the ratios (of the augmented column to column 1):

20 26 78
5 =30 ad S =—
2 T
3 3

The second ratio is smaller, so the next pivot should be % in row 2.

X; X2 X3 x4 X5 x¢ M
1 4 L 0 o 0] 2
@ o L -1 1 0 o0 26
-+ 0 =3 =2 0 1 010
-3 0 26 11 0 0 1 | 660
After pivoting, the resulting tableau is
X1 X2 X3 X4 X5 X6 M
o 1 2 1 2 0 o s
I R
e A
0 0 W oEoy o g
The corresponding basic feasible solution is
=x=x5=0, x;=2 =% x=% M=%

The bottom row shows that

4854 215 74 9
M =37 — X — TX4— 7%5

The negative coefficients of the variables here show that M can be no larger than &754

(because x3, x4, and x5 are nonnegative), so the solution is optimal. The maximum value
of 25x1 + 33x, + 18x3 is @, and this maximum occurs when x; = ?, Xy = %, and

x3 = 0. The variable x3 is zero because in the optimal solution x3 is a free variable,
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not a basic variable. Note that the value of x¢ is not part of the solution of the original
problem, because xg is a slack variable. The fact that the slack variables x4 and x5 are
zero means that the first two inequalities listed at the beginning of this example are both
equalities at the optimal values of x|, x;, and x3. |

Example 5 is worth reading carefully several times. In particular, notice that a
negative entry in the bottom row of any x; column will become a positive coefficient
when that equation is solved for M, indicating that M has not reached its maximum.
See tableau (2) and equation (3).

In summary, here is the simplex method for solving a canonical maximizing
problem when each entry in the vector b is positive.

THE SIMPLEX ALGORITHM FOR A CANONICAL LINEAR PROGRAMMING
PROBLEM

1. Change the inequality constraints into equalities by adding slack variables.
Let M be a variable equal to the objective function, and below the constraint
equations write an equation of the form

— (objective function) + M =0

2. Set up the initial simplex tableau. The slack variables (and M) provide the
initial basic feasible solution.

3. Check the bottom row of the tableau for optimality. If all the entries to the left
of the vertical line are nonnegative, then the solution is optimal. If some are
negative, then choose the variable x; for which the entry in the bottom row is
as negative as possible.’

4. Bring the variable x; into the solution. Do this by pivoting on the positive
entry a,, for which the nonnegative ratio b; /a;; is the smallest. The new
basic feasible solution includes an increased value for M .

5. Repeat the process, beginning at step 3, until all the entries in the bottom row
are nonnegative.

Two things can go wrong in the simplex algorithm. At step 4, there might be a
negative entry in the bottom row of the x; column, but no positive entry a;; above
it. In this case, it will not be possible to find a pivot to bring xj into the solution.
This corresponds to the case where the objective function is unbounded and no optimal
solution exists.

The second potential problem also occurs at step 4. The smallest ratio b; /a;; may
occur in more than one row. When this happens, the next tableau will have at least one
basic variable equal to zero, and in subsequent tableaus the value of M may remain
constant. Theoretically it is possible for an infinite sequence of pivots to occur and
fail to lead to an optimal solution. Such a phenomenon is called cycling. Fortunately,
cycling occurs only rarely in practical applications. In most cases, one may arbitrarily
choose either row with a minimum ratio as the pivot.

3 The goal of step 3 is to produce the greatest increase possible in the value of M. This happens when only
one variable xj satisfies the conditions. Suppose, however, that the most negative entry in the bottom row
appears in both columns j and k. Step 3 says that either x; or x; should be brought into the solution, and
that is correct. Occasionally, a few computations can be avoided by first using step 4 to compute the
“smallest ratio” for both columns j and k, and then choosing the column for which this “smallest ratio” is
larger. This situation will arise in Section 9.4.
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EXAMPLE 6 A health food store sells two different mixtures of nuts. A box of the
first mixture contains 1 pound of cashews and 1 pound of peanuts. A box of the second
mixture contains 1 pound of filberts and 2 pounds of peanuts. The store has available
30 pounds of cashews, 20 pounds of filberts, and 54 pounds of peanuts. Suppose the
profit on each box of the first mixture is $2 and on each box of the second mixture is $3.
If the store can sell all of the boxes it mixes, how many boxes of each mixture should
be made in order to maximize the profit?

SOLUTION Let x; be the number of boxes of the first mixture, and let x, be the number
of boxes of the second mixture. The problem can be expressed mathematically as

Maximize 2x1 + 3x»
subject to X1 <30 (cashews)
X <20 (filberts)
X1 + 2xp, <54 (peanuts)

and x; > 0, x, > 0.
This turns out to be the same problem solved graphically in Example 5 of Section 9.2.
When it is solved by the simplex method, the basic feasible solution from each tableau
corresponds to an extreme point of the feasible region. See Fig. 1.

X2

(0, 20) (14, 20)

(30, 12)

1
o0 " [Goo™M
FIGURE 1

To construct the initial tableau, add slack variables and rewrite the objective
function as an equation. The problem now is to find a nonnegative solution to the system

X1 + x3 =30
Xo + X4 =20

X1 + 2x; + X5 =54
—2x1 — 3x, + M= 0

for which M is a maximum. The initial simplex tableau is

X1 Xy X3 X4 X3 M
1 0 1 0 0 0 30
0 1 0 1 0 0 20
1 2 0 0 1 0 54
-2 =3 0 0 0 1 0

The basic feasible solution, where x;, x,, and M are 0, corresponds to the extreme point
(x1,x2) = (0, 0) of the feasible region in Fig. 1. In the bottom row of the tableau, the
most negative entry is —3, so the first pivot should be in the x, column. The ratios 20/1
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X2

(0, 20)

(14, 20)

and 54 /2 show that the pivot should be the 1 in the x; column:

X1 X2 X3 X4 X5 M

1 0 1 0 0 0 30
o @ o 1 0 0 |20
1 2 0 0 1 0 54
-2 =3 0 0 0 1 0
After pivoting, the tableau becomes
X1 X2 X3 x4 x5 M
1 0 1 0 0 0 30
0 1 0 1 0 0 | 20
@ o 0 -2 1 0 14
-2 0 0 3 0 1 60

The basic feasible solution is now
X1 = X4 = 0, Xy = 20, X3 = 30, X5 = 14, M = 60

The new solution is at the extreme point (x;, x) = (0,20) in Fig. 1. The —2 in the
bottom row of the tableau shows that the next pivot is in column 1, which produces

X1 X2 X3 X4 X5 M

0 0 1 @ -1 0 | 16
0 1 0 1 0 0 20
1 0 0o -2 0 14
0 0 0 -1 2 1 88
This time x; = 14 and x, = 20, so the solution has moved across to the extreme point

(14,20) in Fig. 1, and the objective function has increased from 60 to 88. Finally, the
—1 in the bottom row shows that the next pivot is in column 4. Pivoting on the 2 in the
first row produces the final tableau:

X1 X, X3 x4 x5 M

o o 1+ 1 -4 0|8
o 1 - 0 3 0 |12
1 0o 1 0 0 0 |30
o o 1 o 2 1 \ 96

Since all the entries in the bottom row are nonnegative, the solution now is optimal, with
x; = 30and x, = 12, corresponding to the extreme point (30, 12). The maximum profit
of $96 is attained by making 30 boxes of the first mixture and 12 boxes of the second.
Note that although x4 is part of the basic feasible solution for this tableau, its value is
not included in the solution of the original problem, because x4 is a slack variable. W
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Minimization Problems

So far, each canonical maximizing problem involved a vector b whose coordinates were
positive. But what happens when some of the coordinates of b are zero or negative? And
what about a minimizing problem?

If some of the coordinates of b are zero, then it is possible for cycling to occur
and the simplex method to fail to terminate at an optimal solution. As mentioned
earlier, however, cycling does not generally happen in practical applications, and so
the presence of zero entries in the right-hand column seldom causes difficulty in the
operation of the simplex method.

The case when one of the coordinates of b is negative can occur in practice and
requires some special consideration. The difficulty is that all the b; terms must be
nonnegative in order for the slack variables to provide an initial basic feasible solution.
One way to change a negative b; term into a positive term would be to multiply the
inequality by —1 (before introducing slack variables). But this would change the
direction of the inequality. For example,

X1 —3x;+2x3 <4

would become Xy 4 3% — 203 > 4

Thus a negative b; term causes the same problem as a reversed inequality. Since reversed
inequalities often occur in minimization problems, the following example discusses this
case.

EXAMPLE 7 Minimize x; + 2x;

subject to X1+ x> 14

>
Xy — X2 =
and x; > 0, x, > 0.

SOLUTION The minimum of f(x;,x,) over a set occurs at the same point as the
maximum of — f(x, x,) over the same set. However, in order to use the simplex
algorithm, the canonical description of the feasible set must use < signs. So the first
inequality above must be rewritten. The second inequality is already in canonical form.
Thus the original problem is equivalent to the following:

Maximize —Xx1 — 2x>
subject to —X; — x» <—14
X1— x2 < 2

and x; > 0,x, > 0.

To solve this, let M = —x; — 2x, and add slack variables to the inequalities, as before.
This creates the linear system

—X1 — X2 + X3 =—-14
X1 — X2 + X4 = 2
X1 + 2x» + M = 0

To find a nonnegative solution to this system for which M is a maximum, construct the
initial simplex tableau:

X; X2 x3 xys M
1 -1 1 0 0|—14
1 -1 0 1 o0 2
1 2 0 0 1, 0
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The corresponding basic solution is
X1=x,=0, x3=-14, x4=2, M=0

However, since x3 is negative, this basic solution is not feasible. Before the standard
simplex method can begin, each term in the augmented column above the horizontal line
must be a nonnegative number. This is accomplished by pivoting on a negative entry.

In order to replace a negative b; entry by a positive number, find another negative
entry in the same row. (If all the other entries in the row are nonnegative, then the
problem has no feasible solution.) This negative entry is in the column corresponding
to the variable that should now come into the solution. In this example, the first two
columns both have negative entries, so either x; or x; should be brought into the
solution.

For example, to bring x, into the solution, select as a pivot the entry a;, in
column 2 for which the ratio b; /a;, is the smallest nonnegative number. (The ratio
is positive when both b; and a;, are negative.) In this case, only the ratio (—14)/(—1)
is nonnegative, so the —1 in the first row must be the pivot. After the pivot operations
on column 2, the resulting tableau is

X1 X2 X3 x4 M

1 1 -1 0 o] 14
2 0 -1 1 0 16
1 0 2 0 1 -28

Now each entry in the augmented column (except the bottom entry) is positive, and the
simplex method can begin. (Sometimes it may be necessary to pivot more than once
in order to make each of these terms nonnegative. See Exercise 15.) The next tableau
turns out to be optimal:

X, X2 X3 x4 M

o 1 -1 -1 0o 6
1 0 - 3 0 38
o o 3 1 120

The maximum feasible value of —x; — 2x, is —20, when x; = 8 and x, = 6. So the
minimum value of x; + 2x, is 20. |

The final example uses the technique of Example 7, but the simplex tableau requires
more preprocessing before the standard maximization operations can begin.

EXAMPLE 8 Minimize 5x; + 3x»

subject to 4x1 + x> 12
X1+ 2x, > 10
X1+ 4x, > 16

and x; > 0,x, > 0.

v

\

SOLUTION Convert the problem into a maximization problem, setting M = —5x; —
3x, and reversing the three main constraint inequalities:

—dx; —xy < —12, —x1—2x, <—10, —x;—4x, <-16



Add nonnegative slack variables, and construct the initial simplex tableau:

—4x1 — X2+ X3
—X1 — 2x;
—x; —4x;
5x1 + 3x,

+ X4

+ X5
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+M =

—12
—10
—16

X1 X» X3 x4 x5 M

-4 -1 1 0 0 0/]-12

-1 -2 0 1 0 0/|-10

-1 -4 0 0 1 0]-16
5 3 0 0 0 1 0

Before the simplex maximization process can begin, the top three entries in the aug-
mented column must be nonnegative (to make the basic solution feasible). Pivoting on
a negative entry to bring x; or x, into the solution will help. Trial and error will work.
However, the fastest method is to compute the usual ratios b; /a;; for all negative entries
in rows 1 to 3 of columns 1 and 2. Choose as the pivot the entry with the largest ratio.
That will make all the augmented entries change sign (because the pivot operation will
add multiples of the pivot row to the other rows). In this example, the pivot should be
a3, and the new tableau is

X1 Xy X3 x4 x5 M

0 15 1 0 —4 0 52
0 2 0 1 -1 0 6
1 4 0 0 -1 0 16
0 —-17 0 0 5 1| -80

Now the simplex maximization algorithm is available. The —17 in the last row shows
that x, must be brought into the solution. The smallest of the ratios 52/15, 6/2, and
16/4is 6/2. A pivot on the 2 in column 2 produces

X1 X7 X3 X4 X3 M

o o 1 -2 I ol 7
o 1 o i -3 0 3
1 0 o0 -2 1 o0 4
o o o Y -I 1]-2

The —% in the last row shows that x5 must be brought into the solution. The pivot is %
in column 5, and the new (and final) tableau is

X1 X2 X3 X4 xs M
o o 2 - 1 o 2
o 1 I -+ 0o o 4
1 0o -2 L1 0o o 2
0 0 1 1 0 1] -22
The solution occurs when x; = 2 (fromrow 3), x, = 4,and M = —22, so the minimum

of the original objective function is 22. [ |
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The “Simplex” in the Simplex Algorithm

The geometric approach in Section 9.2 focused on the rows of an m x 2 matrix A,
graphing each inequality as a half-space in R?, and viewing the solution set as the
intersection of half-spaces. In higher-dimensional problems, the solution set is again
an intersection of half-spaces, but this geometric view does not lead to an efficient
algorithm for finding the optimal solution.

The simplex algorithm focuses on the columns of A instead of the rows. Suppose
that A is m x n and denote the columns by ay, ..., a,. The addition of m slack variables
creates an m by n + m system of equations of the form

X1a; + 0+ X8, + Xpp1€1 + 00+ Xygm€n = b

where x1, ..., X,+, are nonnegative and {ey, ..., e, } is the standard basis for R”. The
initial basic feasible solution is obtained when xi, ..., x, are zero and b;e; + --- +
bne, =b.If s = by + --- + by, then the equation

0+ (ﬁ)sel +-F (bﬂ)sem =b
s s

shows that b is in what is called the simplex generated by 0, sey, ..., se,,. For simplicity,
we say that “b is in an m-dimensional simplex determined by ey, ...,e;.” This is the
first simplex in the simplex algorithm.*

In general, if vy,...,v, is any basis of R, selected from the columns of the
matrix P = [a;---a, e;---e, ], and if b is a linear combination of these vectors with
nonnegative weights, then b is in an m-dimensional simplex determined by vy, ..., v,,.
A basic feasible solution of the linear programming problem corresponds to a particular
basis from the columns of P. The simplex algorithm changes this basis and hence
the corresponding simplex that contains b, one column at a time. The various ratios
computed during the algorithm drive the choice of columns. Since row operations do not
change the linear dependence relations among the columns, each basic feasible solution
tells how to build b from the corresponding columns of P.

PRACTICE PROBLEM

Use the simplex method to solve the following linear programming problem:

Maximize 2x1 + X3
subject to —Xx1; +2x, <8
3x1 +2x, <24

and x; > 0,x, > 0.

4If vy, ...,V are linearly independent vectors in R™, then the convex hull of the set {0, vy, ..., v, } is an
m-dimensional simplex, S. (See Section 8.5.) A typical vector in S has the form co0 + ¢1vy + -+ + ¢ Vi,
where the weights are nonnegative and sum to one. (Equivalently, vectors in S have the form

c1v] + -+ ¢ Vi, Where the weights are nonnegative and their sum is at most one.) Any set formed by
translating such a set S is also called an m-dimensional simplex, but such sets do not appear in the simplex
algorithm.
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In Exercises 1 and 2, set up the initial simplex tableau for the given
linear programming problem.

21)(1 + 25X2 + IS)C3
2X1 + 7X2 + 10X3 < 20
3X1 + 4X2 + 18X3 < 25
and x; > 0,x, > 0,x3 > 0.

1. Maximize
subject to

22X1 + 14X2
3x1 4+ 5x, <30
2x1 + Txp; <24
6.X1 + Xy < 42
and x; > 0,x, > 0.

2. Maximize
subject to

For each simplex tableau in Exercises 3—6, do the following:
a. Determine which variable should be brought into the solution.
b. Compute the next tableau.

c. Identify the basic feasible solution corresponding to the
tableau in part (b).

d. Determine if the answer in part (c) is optimal.

3. X X X3 X4 M
5 11 0 0] 20
3 20 0| 30
| -4 —10 0 0 1 0
4 X Xo X3 X4 M
[ —1 1 2 0 0| 4
1 0 1 0 6
-5 0 0 1|17
5 X1 X X3 X4 M
2 3 0 0| 20
1 0 1 0| 16
| -6 -5 0 0 1 0
6 X1 X X3 Xy4 M
5 8 1 0 0| 80
12 6 0 | 30
L 2 -3 0 1| o0

Exercises 7 and 8 relate to a canonical linear programming prob-
lem with an m x n coefficient matrix A in the constraint inequality
Ax < b. Mark each statement True or False, and justify each
answer.

7. a. A slack variable is used to change an equality into an
inequality.

b. A solution is feasible if each variable is nonnegative.

c. If one of the coordinates in vector b is negative, then the
problem is infeasible.

a. A solution is called a basic solution if m or fewer of the
variables are nonzero.

b. The basic feasible solutions correspond to the extreme

points of the feasible region.

c. The bottom entry in the right column of a simplex tableau
gives the maximum value of the objective function.

Solve Exercises 9—14 by using the simplex method.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

10X1 + 12X2

2x1 4+ 3x, <36
le + 4)C2 < 55
and x; > 0,x, > 0.

Maximize
subject to

Maximize 5x; + 4x;
subject to X1+ 5x, <70
3X1 + 2X2 < 54
and x; > 0,x, > 0.
Maximize 4x, + 5x;
subject to X1 + 2x, <26
2X1 + 3X2 < 30
X1+ x, <13

and x; > 0,x, > 0.

Maximize 2x1 4+ 5x, + 3x3
subject to X1+ 2x, <28
2x; + 4x; <16

X2+ x3 <12
and x; > 0,x, > 0,x3 > 0.

Minimize 12x; + 5x;
subject to 2x1 + x> 32
—3X1 + 5X2 < 30

and x; > 0,x, > 0.

Minimize 2x1 4 3x, + 3x3
subject to X; — 2x, > -8
2X2 + X3 > 15
2.X1 — X3 + X3 < 25

and x; > 0,x, > 0,x3 > 0.

Solve Example 7 by bringing x; into the solution (instead of
X») in the initial tableau.

Use the simplex method to solve the linear programming
problem in Section 9.2, Exercise 1.

Use the simplex method to solve the linear programming
problem in Section 9.2, Exercise 15.

Use the simplex method to solve the linear programming
problem in Section 9.2, Example 1.
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SOLUTION TO PRACTICE PROBLEM

Introduce slack variables x3 and x4 to rewrite the problem:

Maximize 2x1 + X
subject to —X1 + 2x7 + X3 = 8
3x; + 2x, + x4 =24

and x; > 0,x, > 0.
Then let M = 2x; + X, so that —2x; — x, + M = 0 provides the bottom row in the
initial simplex tableau.
X1 X2 X3 X4 M
—1 2 1 0 0 8
©) 2 0 1 0 24
-2 -1 0 0 1] 0

Bring x into the solution (because of the —2 entry in the bottom row), and pivot on
the second row (because it is the only row with a positive entry in the first column).
The second tableau turns out to be optimal, since all the entries in the bottom row are
positive. Remember that the slack variables (in color) are never part of the solution.

X1 X x3 x4y M

o ¥ 1 1 of]1e
1 3 o0 1 o0 8
o 1 0o 2 116

The maximum value is 16, when x; = 8 and x, = 0. Note that this problem was solved
geometrically in the Practice Problem for Section 9.2.

9.4  DUALITY

Associated with each canonical (maximization) linear programming problem is a related
minimization problem, called the dual problem. In this setting, the canonical problem
is called the primal problem. This section describes the dual problem and how it is
solved, along with an interesting economic interpretation of the dual variables. The
section concludes by showing how any matrix game can be solved using the primal and
dual versions of a suitable linear programming problem.

Given vectors ¢ in R” and b in R, and given an m X n matrix A, the canonical
(primal) problem is to find x in R” so as to maximize f(x) = c¢’x subject to the
constraints Ax < b and x > 0. The dual (minimization) problem is to find y in R”
50 as to minimize g(y) = b’y subjectto A7y > candy > 0:

Primal Problem P Dual Problem P*
Maximize f(x) = ¢'x Minimize g(y) =b"y
subject to Ax <b subjectto ATy > ¢

x>0 y>0

Observe that in forming the dual problem, the ¢; coefficients of x; in the objective
function of the primal problem become the constants on the right-hand side of the
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constraint inequalities in the dual. Likewise, the numbers in the right-hand side of
the constraint inequalities in the primal problem become the coefficients b; of y;
in the objective function in the dual. Also, note that the direction of the constraint
inequalities is reversed from Ax < b to ATy > ¢. In both cases, the variables x and y
are nonnegative.

EXAMPLE 1 Find the dual of the following primal problem:
Maximize 5x1 + 7x;
subject to 2x1 + 3x, <25
Tx1 +4x, < 16
X1+ 9x, <21
and x; > 0,x, > 0.

SOLUTION
Minimize 25y + 16y, + 21y3

subject to 2y1+ Ty, + y3 =5
3+ 4yt 9y =7
and y; =2 0,y2 >0, y3 > 0. u
Suppose that the dual problem above is rewritten as a canonical maximization

problem:
Maximize h(y) = b’y

subject to —Ay < —¢ and y>0.
Then the dual of this problem is
Minimize F(w) = —c'w
subject to (=A")"'w>—b and w>0.

In canonical form, this minimization problem is equivalent to
Maximize ~ G(w) = c¢/w
subject to Aw <b and w>0.

If w is replaced by x, this problem is precisely the primal problem. So the dual of the
dual problem is the original primal problem.

Theorem 7 below is a fundamental result in linear programming. As with the
Minimax Theorem in game theory, the proof depends on certain properties of convex
sets and hyperplanes.'

The Duality Theorem

Let P be a (primal) linear programming problem with feasible set 5, and let P*
be the dual problem with feasible set  *.

a. If ¥ and F* are both nonempty, then P and P* both have optimal solutions,
say X and y, respectively, and f(X) = g(y).

b. If one of the problems P or P* has an optimal solution X or y, respectively,
then so does the other, and f(X) = g(y).

1f the equation Ax = b has no nonnegative solution, then the sets {b} and S = {z € R” : z = Ax,x > 0}
are disjoint. It is not hard to show that S is a closed convex set, so Theorem 12 in Chapter 8 implies that
there exists a hyperplane strictly separating {b} and S. This hyperplane plays a key role in the proof. For
details, see Steven R. Lay, Convex Sets and Their Applications (New York: John Wiley & Sons, 1982;
Mineola, NY: Dover Publications., 2007), pp. 174-178.
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EXAMPLE 2 Set up and solve the dual to the problem in Example 5 of Section 9.2.
SOLUTION The original problem is to

Maximize f(x1,x2) = 2x1 + 3x;

subject to X1 < 30
Xy <20
X1 4 2xp, <54

and x; > 0,x, > 0.
Calculations in Example 5 of Section 9.2 showed that the optimal solution of this

problem is X = [ig} with f(X) = 96. The dual problem is to
Minimize g1, ¥2,v3) = 30y, + 20y, + 54y;
subject to Vi + ;=2

y2+2y3=3
and y; >0,y > 0,y3 > 0.

The simplex method could be used here, but the geometric method of Section 9.2 is

not too difficult. Graphs of the constraint inequalities (Fig. 1) reveal that ¥ * has three
1

2
extreme points and that y = | 0 | is the optimal solution. Indeed, g(y) = 30(%) +
3
2
d

20(0) + 54(%) = 96, as expected. [ ]

y | s
0,0,2) 108
1 3
(3:0.3) % <
(2,3,0) 120

©0,0,2) ===
/ (3.0,

Y3
FIGURE 1 The minimum of g(yy, y2, v3) = 30y, 4+ 20y, + 54y;.
Example 2 illustrates another important property of duality and the simplex method.

Recall that Example 6 of Section 9.3 solved this same maximizing problem using the
simplex method. Here is the final tableau:

X1 X X3 X4 Xs M

o o 41 1 -1 o] 8
o0 1 -5 0 1 0 12
1 0 1 0 0 030
o o 4 o 2 19
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Notice that the optimal solution to the dual problem appears in the bottom row. The
variables x3, x4, and x5 are the slack variables for the first, second, and third equations,
respectively. The bottom entry in each of these columns gives the optimal solution

to the dual problem. This is not a coincidence, as the following theorem

|
Il
RIw O WI—

shows.

The Duality Theorem (Continued)

Let P be a (primal) linear programming problem and let P* be its dual problem.
Suppose P (or P*) has an optimal solution.

c. Ifeither P or P* is solved by the simplex method, then the solution of its dual
is displayed in the bottom row of the final tableau in the columns associated
with the slack variables.

EXAMPLE 3 Setup and solve the dual to the problem in Example 5 in Section 9.3.
SOLUTION The primal problem P is to

Maximize f(x1,x2,x3) = 25x1 + 33x2 + 18x3
subject to 2x1 + 3x3 + 4x3 <60
3x1 + x4+ 5x3 <46
X1+ 2x, + x3 <50
and x; > 0,x, > 0,x3 > 0.

The dual problem P* is to

Minimize g1, ¥2, y3) = 60y, + 46y, + 50y;
subjectto  2y; + 3y, + y3 =25

3yi+ y2+2y3>33

dy; + 5y + y3 > 18
and y; =0,y > 0,y; = 0.

The final tableau for the solution of the primal problem was found to be

X1X2X3)C4X§X(7M
o 1 2 2 -2 o0 o0 B
O = R
I A A
N

The slack variables are x4, x5, and x¢. They give the optimal solution to the dual problem

P*. Thus,

yi=% y=3 and y;=0

Note that the optimal value of the objective function in the dual problem is

g(5.3.0) = 60(F) +46(3) +50(0) = 5+

FREA

which agrees with the optimal value of the objective function in the primal problem. M
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The variables in the dual problem have useful economic interpretations. For
example, consider the problem of mixing nuts studied in Example 5 of Section 9.2 and
Example 6 of Section 9.3:

Maximize f(x1,x2) = 2x1 4+ 3x;
subject to X1 <30 (cashews)
Xy <20 (filberts)
X1 + 2xp, < 54 (peanuts)

and x; > 0,x, > 0.

Recall that x; is the number of boxes of the first mixture and x; is the number of boxes
of the second mixture. Example 2 displayed the dual problem:

Minimize g1, ¥2,v3) = 30y, + 20y, + 54y;
subject to Vi + ;=2

y2+2y3 =3
andy1 > O,yz > 0,y3 > 0.

If X and y are optimal solutions of these problems, then by the Duality Theorem, the
maximum profit f(X) satisfies the equation

S(X) = g(y) = 30y; + 20y, + 54y3

Suppose, for example, that the amount of cashews available was increased from 30
pounds to 30 4+ & pounds. Then the profit would increase by hy;. Likewise, if the
amount of cashews was decreased by & pounds, then the profit would decrease by /.
So y; represents the value (per pound) of increasing or decreasing the amount of cashews
available. This is usually referred to as the marginal value of the cashews. Similarly,
¥2 and y3 are the marginal values of the filberts and peanuts, respectively. These values
indicate how much the company might be willing to pay for additional supplies of the
various nuts.”

EXAMPLE 4 The final simplex tableau for the problem of mixing nuts was found
(in Example 6 of Section 9.3) to be

X1 Xy X3 x4 x5 M
1 1
0 0 5 I —3 0 8
1 1
0 I -3 0 5 0 12
1 0 1 0 0 0 30
1 3
0 0 5 0 3 1 96
1
2
so the optimal solution of the dualisy = | 0 |. Thus the marginal value of the cashews

3

is % the marginal value of the filberts is 0, and the marginal value of the peanuts is 5

Note that the optimal production schedule X = 30 ] uses only 12 of the 20 pounds

[ 12
of filberts. (This corresponds to the slack variable x, for the filbert constraint inequality

2 The other entries in the final tableau can also be given an economic interpretation. See Saul I. Gass, Linear
Programming Methods and Applications, Sth Ed. (Danvers, MA: Boyd & Fraser Publishing, 1985), pp.
173-177. Also see Goldstein, Schneider, and Siegel, Finite Mathematics and Its Applications, 6th Ed.
(Upper Saddle River, NJ: Prentice Hall, 1998), pp. 166—185.
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having value 8 in the final tableau.) This means that not all the available filberts are
used, so there is no increase in profit from increasing the number of filberts available.
That is, their marginal value is zero. |

Linear Programming and Matrix Games

Let A be an m x n payoff matrix for a matrix game, as in Section 9.1, and assume at first
that each entry in A is positive. Letuin R” and v in R” be the vectors whose coordinates
are all equal to one, and consider the following linear programming problem P and its
dual P*. (Notice that the roles of x and y are reversed, with x in R” and y in R".)

P: Maximize v’y P*: Minimize u’x
subjectto Ay <u subjectto  A’x >v
y=0 x>0

The primal problem P is feasible since y = 0 satisfies the constraints. The dual
problem P* is feasible since all the entries in A are positive and v is a vector of 1’s.
By the Duality Theorem, there exist optimal solutions y and X such that v/'§ = u”%. Set

A=viy=u'x
Since the entries in A and u are positive, the inequality Ay < u has a nonzero solution
y with 'y > 0. As a result, the solution A of the primal problem is positive. Let

y=y/A and X=X/

It can be shown (Exercise 23) that ¥ is the optimal mixed strategy for the column player
C and X is the optimal mixed strategy for the row player R. Furthermore, the value of
the game is equal to 1/A.

Finally, if the payoff matrix A has some entries that are not positive, add a fixed
number, say k, to each entry to make the entries all positive. This will not change the
optimal mixed strategies for the two players, and it will add an amount k to the value of
the game. [See Exercise 25(b) in Section 9.1.]

EXAMPLE 5 Solve the game whose payoff matrix is 4 = [_é ; (2)]

SOLUTION To produce a matrix B with positive entries, add 3 to each entry:

1 4 5
B= [6 5 3}
The optimal strategy for the column player C is found by solving the linear program-
ming problem
Maximize yi+ y2+ »3
subject to yi+4y, + 53 <1
6y1 + 5y2 +3y3 =1
and y; > 0,y2 >0, y3 = 0.

Introduce slack variables y4 and ys, let M be the objective function, and construct the
initial simplex tableau:

1 4 5 1 0 0
0
1

S| = =



46 CHAPTER 9 Optimization

The three —1 entries in the bottom row are equal, so any of columns 1 to 3 can be the
first pivot column. Choose column 1 and check the ratios b; /a;;. To bring variable y,
into the solution, pivot on the 6 in the second row.

Yoo y2 y3 ya ys M
o B % 1t o
12 5 0 5 03¢
A

In the bottom row, the third entry is the most negative, so bring y; into the solution. The

s b Jaaare 3/ — 5 andl/l 1 _ 9 o] -
ratios b; /a;3 are 2 /5 = 35 and ¢ /5 = 3 = 35. The first ratio is smaller, so pivot on the

% in the first row.

yo oy y3 o oya ys M

0 B 13-k 03
LB 0ol 5 0 2
0 5 0 4 4 1 %

The optimal solution of the primal problem is
Ji=%. 5=0 3=z, withd=7J+h+y =%

The corresponding optimal mixed strategy for C is

2
7
y=y/A=10
5
7

The optimal solution of the dual problem comes from the bottom entries under the slack

variables:
= _1_ 3 - 4 . = - 7
Xj=g5=3 and X =5, Wwithd=x +x =5

which shows that the optimal mixed strategy for R is

3
a2 7
X =X/A=
/ 4
7
The value of the game with payoff matrix B isv = % = %, so the value of the original
matrix game A is g -3 = g. [ |

Although matrix games are usually solved via linear programming, it is interesting
that a linear programming problem can be reduced to a matrix game. If the programming
problem has an optimal solution, then this solution is reflected in the solution of the
matrix game. Suppose the problem is to maximize e’x subject to Ax < b and x > 0,
where A is m x n withm < n. Let

0 A -b §
M=|-4T 0 ¢ and s=|x
p" - 0 z

and suppose that M represents a matrix game and s is an optimal column strategy for M .
The (n +m + 1) x (n +m + 1) matrix M is skew-symmetric; that is, M7 = —M.
It can be shown that in this case the optimal row strategy equals the optimal column
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strategy, the value of the game is 0, and the maximum of the entries in the vector Ms is
0. Observe that

0 A b [y A% —zb 0
Ms=|-4AT 0 ¢ x|=|-ATy+zc|<]|0
b — 0|z b7y —cTx 0

Thus AX < zb, ATy > ze¢, and bT)_' < ¢Tx. Since the column strategy s is a probability
vector, z > 0. It can be shown that if z > 0, then X/z is an optimal solution for the
primal (maximization) problem for Ax < b, and y/z is an optimal solution for the dual
problem for ATy > ¢. Also, if z = 0, then the primal and dual problems have no optimal
solutions.

In conclusion, the simplex method is a powerful tool in solving linear programming
problems. Because a fixed procedure is followed, it lends itself well to using a computer
for the tedious calculations involved. The algorithm presented here is not optimal for
a computer, but many computer programs implement variants of the simplex method,
and some programs even seek integer solutions. New methods developed in recent
years take shortcuts through the interior of the feasible region instead of going from
extreme point to extreme point. They are somewhat faster in certain situations (typically
involving thousands of variables and constraints), but the simplex method is still the
approach most widely used.

PRACTICE PROBLEMS

The following questions relate to the Shady-Lane grass seed company from Example 1
in Section 9.2. The canonical linear programming problem can be stated as follows:

Maximize 2x1 + 3x»

subject to 3x1 + 2x3 <1200  (fescue)
X1+ 2xp, < 800 (rye)
X1+ xp < 450 (bluegrass)

and x; > 0, x, > 0.

1. State the dual problem.

2. Find the optimal solution to the dual problem, given that the final tableau in the
simplex method for solving the primal problem is

X1 Xy X3 X4 Xj M
0 0 1 1 —4 0| 200
o0 1 0 1 -1 0 350
1 0 0 -1 1 0 100
0 0 0 1 1 1 | 1250

3. What are the marginal values of fescue, rye, and bluegrass at the optimal solution?

9.4 EXERCISES

In Exercises 1-4, state the dual of the given linear programming In Exercises 5-8, use the final tableau in the solution of the given
problem. exercise to solve its dual.

1. Exercise 9 in Section 9.3 2. Exercise 10 in Section 9.3 5. Exercise 9 in Section 9.3 6. Exercise 10 in Section 9.3

3. Exercise 11 in Section 9.3 4. Exercise 12 in Section 9.3 7. Exercise 11 in Section 9.3 8. Exercise 12 in Section 9.3
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Exercises 9 and 10 relate to a primal linear programming problem
of finding x in R” so as to maximize f(x) = ¢’xsubjectto Ax < b
and x > 0. Mark each statement True or False, and justify each
answer.

9. a. The dual problem is to minimize y in R subject to Ay >
candy > 0.

b. If both the primal and the dual problems are feasible, then
they both have optimal solutions.

c. If X is an optimal solution to the primal problem and
y is a feasible solution to the dual problem such that
g(@¥) = f(X), then ¥ is an optimal solution to the dual
problem.

d. If a slack variable is in an optimal solution, then the
marginal value of the item corresponding to its equation
is positive.

10. a. The dual of the dual problem is the original primal prob-

lem.

b. If either the primal or the dual problem has an optimal
solution, then they both do.

c. If the primal problem has an optimal solution, then the
final tableau in the simplex method also gives the optimal
solution to the dual problem.

d. When a linear programming problem and its dual are
used to solve a matrix game, the vectors u and v are unit
vectors.

Sometimes a minimization problem has inequalities only of the
“>"type. In this case, replace the problem by its dual. (Multiply-
ing the original inequalities by —1 to reverse their direction will
not work, because the basic solution of the initial simplex tableau
in this case will be infeasible.) In Exercises 11-14, use the simplex
method to solve the dual, and from this solve the original problem
(the dual of the dual).

11. Minimize 16x; + 10x, + 20x3

subject to X1+ x4+ 3x3>4
2X1 + Xy + 2X3 > 5
and x; > 0,x, > 0,x3 > 0.
12. Minimize 10x; + 14x,
subject to X1+ 2x, >3
2X1 + X2 Z 4
3+ xp>2

and x; > 0,x, > 0.
13. Solve Exercise 2 in Section 9.2.

14. Solve Example 2 in Section 9.2.

Exercises 15 and 16 refer to Exercise 15 in Section 9.2. This
exercise was solved using the simplex method in Exercise 17 of
Section 9.3. Use the final simplex tableau for that exercise to
answer the following questions.

15. What is the marginal value of additional labor in the fabri-
cating department? Give an economic interpretation to your
answer.

16. If an extra hour of labor were available, to which department
should it be allocated? Why?

Solve the matrix games in Exercises 17 and 18 by using linear
programming.

2 0 1 -2
17. | -4 5 18. 0 1
-1 3 -3 2

19. Solve the matrix game in Exercise 9 in Section 9.1 using
linear programming. This game and the one in Exercise 10
cannot be solved by the methods of Section 9.1.

20. Solve the matrix game in Exercise 10 in Section 9.1 using
linear programming.

21. Bob wishes to invest $35,000 in stocks, bonds, and gold
coins. He knows that his rate of return will depend on the
economic climate of the country, which is, of course, difficult
to predict. After careful analysis, he determines the annual
profit in dollars he would expect per hundred dollars on each
type of investment, depending on whether the economy is
strong, stable, or weak:

Strong Stable Weak
Stocks 4 1 -2
Bonds 1 3 0
Gold -1 0 4

How should Bob invest his money in order to maximize his
profit regardless of what the economy does? That is, consider
the problem as a matrix game in which Bob, the row player,
is playing against the “economy.” What is the expected value
of his portfolio at the end of the year?

22. Let P be a (primal) linear programming problem with feasi-
ble set ¥, and let P™* be the dual problem with feasible set
F*. Prove the following:

a. If xisin ¥ and y is in %, then f(x) < g(y). [Hint:
Write f(x) as x’c and g(y) as y”b. Then begin with the
inequality ¢ < ATy.]

b. If f(X) = g(¥) for some X in & and § in ¥ *, then X is an
optimal solution to P and ¥ is an optimal solution to P *.

23. Let A be an m x n matrix game. Let y and X be the optimal
solutions to the related primal and dual linear programming
problems, respectively, as in the discussion prior to Example
5. Let A =u’x = v’y, and define X = X/A and y = y/A.
Let R and C, respectively, denote the row and column
players.

a. Show that X and y are mixed strategies for R and C,
respectively.

b. Ifyisany mixed strategy for C, show that E(X,y) > 1/A.

c. Ifxisany mixed strategy for R, show that E(x,§) < 1/A.

d. Conclude that X and ¥ are optimal mixed strategies for R
and C, respectively, and that the value of the game is 1/A.
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SOLUTIONS TO PRACTICE PROBLEMS

1. Minimize 1200y, + 800y, + 450y3
subject to 3y + Y2 + y3>2
2yi+ 2y 4+ y3=3
and y; 2 0,y2 >0, y3 > 0.
2. The slack variables are x3, x4, and x5. The bottom row entries in these columns
of the final simplex tableau give the optimal solution to the dual problem. Thus
0
y=|1
1
3. Slack variable x3 comes from the constraint inequality for fescue. This corresponds
to variable y; in the dual problem, so the marginal value of fescue is 0. Similarly, x4
and x5 come from rye and bluegrass, respectively, so their marginal values are both
equal to 1.



Answers to

Odd-Numbered Exercises
Chapter 9

Chapter 9

Section 9.1, page 13

1.

11.

d q

d[—10 10
q| 25 -25

st sc P
stone 0 5 =5
scissors | —5 0 5
paper 5 =5 0
4 5 ® 4 @
[1 _1:| -2 1 -5 2
4 @710
a. Ex,y) = 12,v(x)—mm % 1, ‘—é =%

v(y) = max {3. 5.5} = %

. 3 -2
Given 4 = 0 1 ], graph

z= 31—-t)4+ O)y= 3-3¢
z=="2(1-t)+ ()t =-2+43t °
The lines intersect at (¢, z) = 6, 2) The optimal row

1—3 1

strategy is X = x(%) = |: 5 6 :| = |: 2 :|, and the value of
6 6

the game is v = % By Theorem 4, the optimal column

strategy § satisfies £(e;,§) = 1 and E(e,,§) = 1 because

X is a linear combination of both e; and e,. From the second

. 3 =2 C
of these conditions, § = [0 1 ]|:0 | ] [ o ] =

[O 1 ] [3C1 6_262] = ¢,. From this, ¢; = 1 and
2

2

. As a check on this work, one can compute

15.

>
Il
| —|
wi nilw
;"
— <>
Il
—
W= nls
[
<
Il
w3

3 5
1 1],graph
2=31—0)+ @) =3+1
z=5(1-0+ )t =54t °

The lines intersect at (¢,2) = (3, Y

1-2
strategy is X = x(%) =|: s 5:| =|:
3

the game isv = 1. By Theorem 4, the optimal column
= and E(ey.y) =

5
strategy y satisfies E(e;,y) =

because X is a linear comblnatlon of both e; and ez From
the first of these conditions,

=0 ol Y]

=[3 5][1?61] =5-2¢

). The optimal row

W nilw

:|, and the value of

4
From this, ¢; = 4 and y= |: f i| As a check on this work,
5

one can compute

E(e,§) = [0

D= Uil
| IS

—_
[E—

[ —

wl— wls B W

| I
I
w3

or any convex combination of these row

strategies, § =

>
I
| —
W W=
1
]
=
| —
wi wnlw
O — O oL

Solution:
Column 2 dominates column 3, so the column player C will
never play column 2. The graph shows why column 2 will
not affect the column play, and the graph shows that the
value of the game is 2. The new game is

4 % 2 0 4 2 0
[1 2 sMBE=1 g s
for column 3 is z = 2. That line intersects the line for
column 4 where z = 0(1 —¢) + 5t = 2,andt = .4. An

] . The line

Al
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17.

optimal row strategy is X = |: ! _4'4 = 2 . Another
optimal row strategy is determined by the intersection of

the lines for columns 1 and 3, where z = 4(1 —¢) +1t = 2,
1

=

wiN

,and X = Z . It can be shown that any convex

3
combination of these two optimal strategies is also an

optimal row strategy.
Cy
To find the optimal column strategy, sety = | ¢ |,
C3
and set2 = E(e;,y) = e/ By and 2 = E(e,,y) = el By.
These two equations produce 4¢; + 2¢, = 2 and
c1 + 2¢; + 5¢3 = 2. Combine these with the fact that
¢ + ¢; + ¢3; must be 1, and solve the system:

46’1+2Cz =2
C1+262+5C3=2
¢+ ¢+ C3:1

4 2 0 2 1 0 0 0
1 2 5 2|~(0 1 0 1],
1 1 1 1 0o o 1 o0
0
=1, and y=|1
0
This is the column strategy for the game matrix B. For A4,
[0
~_ |0
Y= 11
L0
-5 0
7 5
ol |7 3
X = % N y = 5 , U = 5
0 0
- 0
Solution:

Row 2 is recessive to row 3, and row 4 is recessive to row

1, so the row player R will never play row 2 or row 4. Also,

column 4 dominates column 2, so the column player C will
never play column 4. Thus, the game reduces:

0 1 -1 4 3
1 -1 3 -1 -3

A=1 5 1 4 0 22
-1 0 -2 2 1

M 1 -1 4 37

*k *k * *k *k

- ~1 0 -2

L * * * * |

0 1 -1 * 3]

* * * * *

T2 -2

_* *k *k *k *_

o 1 -1 3
Let = [2 1 4 2
noticed as dominant, this fact will become clear after the
lines are plotted for the columns of the reduced matrix.) The
equations of the lines corresponding to the columns of B are

:|. (If column 4 in A is not

(columnl) z= 0(1—1¢t)+ 2t =2t
(column2) z= 1(1—-¢t)— t=1-2¢
(column3) z=-1(1—1t)+ 4t =—-1+5¢
(columnd) z= 3(1—1t)—2t=3-5¢

The graph of v(x(#)) as a function of ¢ is the polygonal path
formed by line 3 (for column 3), then line 2 (column 2), and
then line 4 (column 4). The highest point on this path occurs

at the intersection of lines 3 and 2. Solve z = —1 + 5¢ and
z=1—-2ttofindt = % and z = % The value of game B
_2 5
is z = 2, attained when X = ) T = |:; .
7 7

7

Because columns 2 and 3 of B determine the optimal

solution, the optimal strategy for the column player C is a

convex combination ¥ of the pure column strategies €, and
0

- c . . .
e3, say,y = % |. Since both coordinates of the optimal
C3

0
row solution are nonzero, Theorem 4 shows that
E(e;.§) = 2 fori = 1,2. Each condition, by itself,
determines y. For example,

E(elaf’) 28{33\7

_ 0 1 -1 37|e
-1 o)y ]

3
:cz—C3:7

1 — C2, and obtain Cy) = % and 3 = g

Substitute ¢3 E

Thus, y = is the optimal column strategy for game

O N Nw O |

B. For game A, X = andy = , and the value

O NI O v
O O NN Nn O

of the game is still 2.

19. a. Army: 1/3 river, 2/3 land; guerrillas: 1/3 river,
2/3 land; 2/3 of the supplies get through.
b. Army: 7/11 river, 4/11 land; guerrillas: 7/11 river,
4/11 land; 64 /121 of the supplies get through.

21. a. True. Definition.

b. True. With a pure strategy, a player chooses one
particular play with probability 1.



23.

25.

c. False. v(x) is equal to the minimum of the inner product
of x with each of the columns of the payoff matrix.

d. False. The Minimax Theorem says only that the value
of a game is the same for both players. It does not
guarantee that there is an optimal mixed strategy for
each player that produces this common value. It is the
Fundamental Theorem for Matrix Games that says
every matrix game has a solution.

e. True. By Theorem 5, row r may be deleted from the
payoff matrix, and any optimal strategy from the new
matrix will also be an optimal strategy for matrix A.
This optimal strategy will not involve row s.

: 0
k=3 §=|;]v=0
0 2
o d—c a—b
X_(a—b—i—d—c’a—b—l-d—c)’
o d—>b a—c
y_(a—b—}—d—c’a—b—}-d—c)’
_ad—bc
T a—-b+d-c

Section 9.2, page 22

1.

Let x; be the amount invested in mutual funds, x, the
amount in CDs, and x; the amount in savings. Then

12,000 X 11
b= 0 ,Xx=| x, |,e=| .08 |, and
0 X3 .06
1 1
A=1[1 -1 -1
o 1 =2
3
20 1 2 0
b_[—lo]’c_ 4 ’A_[o 3 —5}
-2
-35 -7 -1 4 0
b=| 20 |,e=| 3|,A=| 0 1 -2
—20 —1 0 -1 2
max = 1360, when x; = % and x, = %
Solution:

First, find the intersection points for the bounding lines:

(1) 2x + x = 32,
2) xi1+x,=18,
(3) x|+ 3x, =24

Even a rough sketch of the graphs of these lines will reveal
that (0, 0), (16, 0), and (0, 8) are vertices of the feasible set.
What about the intersections of the lines corresponding to
(1), (2), and (3)?

The graphical method will work, provided the graph is
large enough and is drawn carefully. In many simple
problems, even a small sketch will reveal which
intersection points are vertices of the feasible set. In this

11.

13.

Section 9.2 A3

problem, however, three intersection points happen to be
quite close to each other, and a slight inaccuracy on a graph
of size 3”7 x 3" or smaller may lead to an incorrect solution.
In a case such as this, the following algebraic procedure
will work well:

When an intersection point is found that corresponds
to two inequalities, test it in the other inequalities
to see whether the point is in the feasible set.

The intersection of (1) and (2) is (14, 4). Test this in
the third inequality: (14) + 3(4) = 26 > 24. The
intersection point does not satisfy the inequality for (3), so
(14, 4) is not in the feasible set.

The intersection of (1) and (3) is (14.4, 3.2). Test this
in the second inequality: 14.4 4+ 3.2 = 17.6 < 18, so
(14.4,3.2) is in the feasible set.

The intersection of (2) and (3) is (15, 3). Test this in
the first inequality: 2(15) + (3) = 33 > 32,50 (15,3) is
not in the feasible set.

Next, list the vertices of the feasible set: (0, 0), (16, 0),
(14.4,3.2), and (0, 8). Then compute the values of the
objective function 80x; + 65Xx; at these points.

(0, 0): 80(0) + 65(0) = 0

(16, 0): 80(16) + 3(0) = 1280
(14.4,3.2):  80(14.4) + 65(3.2) = 1360
(0, 8): 80(0) + 65(8) = 520

Finally, select the maximum of the objective function,
which is 1360, and note that this maximum is attained at
(14.4,3.2).

unbounded

a. True. Definition.

b. False. The vector X must itself be feasible. It is possible
for a nonfeasible vector (as well as the optimal solution)
to yield the maximum value of f.

max profit = $1250, when x; = 100 bags of EverGreen
and x, = 350 bags of QuickGreen

Solution:
First, find the intersection points for the bounding lines:

(1)  3x; 4 2x, = 1200 (fescue)
(2)  x; + 2x, = 800 (rye)
(3) xi + x; = 450 (bluegrass)

The intersection of lines (1) and (2) is (200, 300). Test
this in the inequality corresponding to (3):

(200) + (300) = 500 > 450. The intersection point does
not satisfy the inequality for (3), so (200, 300) is not in the
feasible set.

The intersection of (1) and (3) is (300, 150). Test this
in (2): (300) + 2(150) = 600 < 800, so (300, 150) is in the
feasible set.

The intersection of (2) and (3) is (100, 350). Test this
in (1): 3(100) 4 2(350) = 1000 < 1200, so (100, 350) is in
the feasible set.
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15.

17.

19.

The vertices of the feasible set are (0, 0), (400, 0),
(300, 150), (100, 350), and (0, 400). Evaluate the objective
function at each vertex:

(0, 0): 2(0) +3(0) =0
(400,0):  2(400) + 3(0) = 800
(300, 150):  2(300) + 3(150) = 1050
(100,350):  2(100) + 3(350) = 1250
(0,400):  2(0) + 3(400) = 1200

The maximum of the objective function 2x; + 3x, is $1250
at (100, 350).

max profit = $1180, for 20 widgets and 30 whammies

Solution:
First, find the intersection points for the bounding lines:

(1) 5x + 2x, = 200
(2) .2X1 + .4X2 =16
(3) 2x,+.2x, =10

The intersection of (1) and (2) is (30, 25). Test this in
the third inequality: .2(30) + .2(25) = 11 > 10. The
intersection point does not satisfy the inequality for (3), so
(30, 25) is not in the feasible set.

The intersection of (1) and (3) is (100/3, 100/6). Test
this in the second inequality:

.2(100/3) + .4(100/6) = 13.3 < 16, so (100/3, 100/6) is
in the feasible set.

The intersection of (2) and (3) is (20, 30). Test this in
the first inequality: 5(20) + 2(30) = 160 < 200, so
(20, 30) is in the feasible set.

The vertices of the feasible set are (40, 0),
(100/3,100/6), (20, 30), and (0, 40). Evaluate the
objective function at each vertex:

(40, 0): 20(40) + 26(0) = 800
(100/3,100/6):  20(100/3) + 26(100/6) = 1100
(20, 30): 20(20) + 26(30) = 1180

(0, 40): 20(0) + 26(40) = 1040

The maximum profit is $1180, when x; = 20 widgets and
X, = 30 whammies.

Take any p and q in S, with p = |:x1 :| andq = |:yl ]
X2 Y2

Then v/'p < c and v7' q < c. Take any scalar ¢ such that

0 <t < 1. Then, by the linearity of matrix multiplication

(or the dot product if vTp is written as v-p, and so on),

VIA—0p+1q=(1—0)vp+1viq=
1—-tc+tc=c

because (1 —7) and ¢ are both positive and p and q are in S.

So the line segment between p and q is in S. Since p and q
were any points in S, the set S is convex.

Let S = {x: f(x) = d}, and take p and q in S. Also, take
t with0 <t < 1,and letx = (I —¢)p + ¢q. Then

f®) =c"x=c"[(1-1)p+1q]
=(0-t)"p+tc’"q=(0—1t)d +td =d

Thus, x is in S. This shows that S is convex.

Section 9.3, page 39

1. X1 X7 X3 X4 X5 M
2 7 10 1 0 0] 20
3 4 18 0 | 25
21 =25 -15 0 0 1 | 0
3. a. X2
b X1 X2 X3 X4 M
7 1
I 0 1 -1 o 5
3 1
1 0 Lo 15
m o o0 5 1| 150

C. X =0,X2=15,X3=5,X4=O,M=150
d. optimal

5. a. X1
b X1 X2 X3 X4 M
0o 2 1 -1 0 4
1
1 Lo Lo 8
0 -2 0 3 1 | 48

C X = 8,X2 :O,X3 :4,X4 =0,M =48
d. not optimal
. False. A slack variable is used to change an inequality
into an equality.
b. True. Definition.
c. False. The initial basic solution will be infeasible, but
there may still be a basic feasible solution.
9. The maximum is 150, when x; = 3 and x, = 10.

Solution:

First, bring x, into the solution; pivot with row 1. Then
bring x,; into the solution; pivot with row 2. The maximum
is 150, when x; = 3 and x, = 10.

X1 X X3 X4 M
2 3 1 0 0 36
5 4 0 1 0 55
-10 =12 0 0 1 | 0
X1 X7 X3 X4 M
2 1
3 1 3 0 0 12
~ 7 4
3 0 -3 1 0 7
-2 0 4 0 1 | 144
X1 X7 X3 X4 M
5 2
0 1 > =3 0 10
~ 4 3
1 0 -3 z 0 3
20 6
i 0 0 = 3 1 | 150 ]




11.

13.

15.

The maximum is 56, when x; = 9 and x, = 4.

Solution:

First, bring x, into the solution; pivot with row 2. Then
bring x; into the solution; pivot with row 3. The maximum
is 56, when x; = 9 and x, = 4.

X1 X2 X3 X4 X5 M
1 2 1 0 0 0 26
2 3 0 1 0 0 30
1 1 0 0 1 0 13
| —4 =5 0 0 0 1 0
X1 X X3 X4 Xs M
—% 0 1 —% 0 0 6
2 1
~ 3 1 0 3 0 0 10
% 0 0 — % 1 0 3
-3 0 0 20 1 |50
X1 X2 X3 X4 X5 M
0 0 1 -1 1 0 9
~ |0 1 0 1 -2 0 4
1 0 0 -1 3 0 9
| 0 0 0 1 2 1 56

The minimum is 180, when x; = 10 and x, = 12.

Solution:

Convert this to a maximization problem for —12x, — 5x,,
and reverse the first constraint inequality. Beginning with
the first tableau below, bring x; into the solution, using row
1 as the pivot row. Then bring X, into the solution; pivot
with row 2. The maximum value of —12x; — 5x, is —180,
so the minimum of the original objective function

12x; + 5x5, is 180, when x; is 10 and x, is 12.

X1 X2 X3 X4 M
[—2 -1 1 0 0| -32
-3 5 0 1 0 30
12 5 0 0o 1, 0
X1 X2 X3 X4 M

1 1
1 5 3 0 0 16
~ 13 3

0 5 -3 1 0 78
0 -1 6 0 1| —192
X1 X2 X3 X4 M

5 1
1 0 -3 -5 0 10

~ 3 2
0 I -3 3 0 12

75 2
_0 0 5 3 1 —180_

The answer matches that in Example 7. The minimum is
20, when x; = 8 and x, = 6.

17.

Section 9.3 A5

Solution:

Begin with the same initial simplex tableau, bringing x;
into the solution, with row 2 as the pivot row. Then bring
X, into the solution; pivot with row 1. The maximum of
—Xx; — 2x, is —20, so the minimum of x; + 2x, is 20, when
x; = 8and x, = 6.

X1 X2 X3 X4 M
-1 -1 1 0 0| —14
1 -1 0 1 0 2

X Xo X3 X4 M

0 -2 1 1 0]-I2
11 -1 0o 1 o0 2

0 =3 0 -1 1| -2

X1 X3 X3 X4 M

0o 1 -1 -1 0| 6
J I T R S N (N

o 0 2 L 1]-20

The maximum profit is $1180, achieved by making 20
widgets and 30 whammies each day.

Solution:

The simplex tableau below is based on the problem of the
Benri Company (Exercise 15 in Section 9.2) to maximize
the profit function 20x; + 26X, subject to various amounts
of labor available for the three-step production process. To
begin the simplex method, bring x, into the solution; pivot
with row 2. Then, bring x; into the solution; pivot with row
3. The profit is maximized at $1180, by making 20 widgets
and 30 whammies each day.

X1 X2 X3 X4 Xs M
5 2 1 0 0 0 | 200
1 2
3 H 0 1 0 0 16
1 1
3 3 0 0 1 0 10
—20 =26 0 0 0 1 0

X1 X X3 X4 X5 M
4 0 1 ) 0 0| 120
1 5
~ 3 1 0 3 0 0 40
1 1
o 0 0 -3 1 0 2
-7 0 0 65 0 1 ]1040
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X: M
15 —40 0 40
0
0
1

14
ol— o ©
olo o = F

|

W
S

(=) =)

30 70

Section 9.4, page 47

1.

11.

Minimize
subject to

36y; + 55y,
3yi+ 4y, > 12

and y; > 0,y, > 0.

Minimize

subject to

26y1 + 30y2 + 13y;

i+ 2y+ y3=4
2y1+ 3;m+ 3 =5
and y; > 0,y, > 0,y; > 0.

The minimum is M = 150, attained when y; = ? and
Y2 = %

Solution:

The final tableau from Exercise 9 in Section 9.3 is

M
01 10
0o 3
1| 150

R
=
)
I
=
&

—
(=)

S \|\|4> 2w "4‘

Qo | wiw e =

o
[es]
NS

The solution of the dual problem is displayed by the entries
in row 3 of columns 3, 4, and 6. The minimum is
M = 150, attained when y; = 2 and y, = &.

The minimum is M = 56, attained when y; = 0, y, = 1,
and y; = 2.

Solution:
The final tableau from Exercise 11 in Section 9.3 is

X4 X5 M
-1 1 0 9
1 =2 0 4

0
1

X1 X2

=

oloc o ~ &

-1
1

S|l= O O

0
1
0 9

0 56 |

The solution of the dual problem is displayed by the entries
in row 4 of columns 3, 4, 5, and 7. The minimum is

M = 56, attained when y; = 0, y, = 1, and y; = 2.
False. It should be ATy > c.

True. Theorem 7.

True. Theorem 7.

ao T

False. The marginal value is zero if it is in the optimal
solution. See Example 4.

The minimum is 43, when x; = 7, x, = 0, and x3 = 3.

13.

Solution:
The dual problem is to maximize 4y, + 5y, subject to
1 2 16

1 1 [yl ] < | 10 [ andy > 0. Solve the dual
3 2L 20
problem with the simplex method:
N Y2 V3 V4 Ys M _
1 2 1 0 0 0| 16
1 1 0 1 0 0 10
3 2 0 0 1 0 |20
|4 -5 0 0 0 1 0 |
B N Y2 V3 V4 V5 M _
1 1
3 1 3 0 0 0 8
1 1
~ 3 0 =3 1 0 0 2
2 0o -1 0 1 0 4
3 5
| -3 0 3 0 0 1| 40 |
B2 V2 V3 V4 Js M
3 1
0 1 3 0 —3 0 7
1 1
~ |0 0 —3 1 —3 0 1
1 1
1 0 —3 0 5 0 2
7 3
o o I o0 2 1|43

The solution of the dual of the dual (the primal) is x; = 1,
X, =0,x3 = %, with M = 43.

The minimum cost is $670, using 11 bags of Pixie Power
and 3 bags of Misty Might.

Solution:
The problem in Exercise 2 of Section 9.2 is to minimize
c’x subject to Ax > b and x > 0, where x lists the number

of bags of Pixie Power and Misty Might, and ¢ = |: 50 :|,

40
3 2 28
12 4 130 _|x
A= 1 3 b= 20 ,andx—[xz].Thedualof
2 1 25

a minimization problem involving a matrix is a
maximization problem involving the transpose of the
matrix, with the vector data for the objective function and
the constraint equation interchanged. Since the notation
was established in Exercise 2 for a minimization problem,
the notation here is “reversed” from the usual notation for a
primal problem. Thus, the dual of the primal problem stated
above is to maximize b”y subject to A’y < cand y > 0.
That is, maximize 28y, 4 30y, + 20y; + 25y, subject to
1
[ 32 1 2 ] 2|~ |: 50 :|
2 4 3 1 y3 | — | 40
Ya
Here are the simplex calculations for this dual problem:



15.

17.

19.

N Y2 ya Vs ye M
32 1 2 1 0 omw
2 4 3 1 0 1 0 40
|28 =30 —20 —25 0 0 1| 0]
Y Y2y o ya s v M
2 0 -1 2 1 =L 0 30
A T S R S (I 10
130 f =¥ 0 5130
Yoy oy oy s e M
0 -1 1 -1 0] 20
A O S T R T N -
E T T R 2
Yooy yiooya Vs ye M
'g 0 1 P -l 0| 2
L T
114 0 0 11 3 1670

Since the original problem is the dual of the problem solved
by the simplex method, the desired solution is given by the
slack variables ys = 11 and ys = 3. The value of the
objective is the same for the primal and dual problems, so
the minimum cost is $670. This is achieved by blending 11
bags of Pixie Power and 3 bags of Misty Might.

The marginal value is zero. This corresponds to labor in the
fabricating department being underutilized. That is, at the
optimal production schedule with x; = 20 and x, = 30,
only 160 of the 200 available hours in fabricating are
needed. The extra labor is wasted, and so it has value zero.

[2] o
3 1
g={o0|5=|7|v=1
1 L2 ]
L3
o o
5 7
g=12]v=123 —
X=|z2[y¥y=|:3 ,v=1
1 1
L5 L7 4
Solution:
1 2 =2
The gameis | 0 1 4
3 -1 1
4 5 1
34 7
6 2 4
game is

. Add 3 to shift the game:

. The linear programming tableau for this

21.

Section 9.4 A7

Yooy ¥y ya s v M

4 5 1 0 o0 o0]1

3 4 7 0 1 0 011

6 2 4 0 0 1 0| 1

-1 -1 -1 0 0 0 1] 0
Pivots:

Yy o y2 ys va Vs v M

0 4 i 0 30y

o 3 5 0 1 —3 03

1 2 0 0o L0l

0 -5 -5 0 0 ¢ 13

1 2 V3 Ya Vs Ve M

[0 1 -2 2 o -2 o | L
~10 o ®» -2 1 L o 3

0§ -5 5 0 3

0 0 —F & 0 5 13

i V2 bE V4 Vs Ve M

0o 1 0 2 L 3 o2
~ |0 0 1 -5 4 & 0| x

Lo w ow w0 |

o 0o 0 5 F m 1|3

The optimal solution of the primal and dual problems,

respectively, are y; =

¥, — L ¥, — L wi 1
Xy = lO,x3—20,W1th)L_4

3 5 - 3 5 _
% V2 = 5. 3 =

1 co— L
%,andxl = 15

. The corresponding optimal

mixed strategies for the column and row players,

respectively, are:

§=§/h=y4=

Nl= 9w W

and X = X/

Il
>
N
Il
= w»l nl

The value of the game with the shifted payoff matrix is 1/A,
which is 4, so the value of original game is 4 —3 = 1.

Change this “game” into a linear programming problem and
use the simplex method to analyze the game. The expected

38

value of the game is 3

based on a payoff matrix for an

investment of $100. With $35,000 to invest, Bob “plays”
this game 350 times. Thus, he expects to gain $380, and the
expected value of his portfolio at the end of the year is
$35,380. Using the optimal game strategy, Bob should
invest $11,000 in stocks, $9,000 in bonds, and $15,000 in

gold.
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Solution:
The game is |: . Add 3 to shift the game:
i 1
4 6 3 |. The linear programming problem is to
12 3 7]
maximize y; + y» + y3 subject to
7 4 17 1 i 0
4 6 31<|1land| y, [ =] 0
12 3 7] 1 V3 0
The tableau for this game is
Vi Y2 V3 Ya Vs Yo M
7 4 1 1 0 0 0 1
4 6 3 0 1 0 0 1
2 3 7 0 0 1 0 1
-1 -1 -1 0 0 0 1 0
The simplex calculations are
Yoo y2 ysooyaoys Ve M
14 00 0
I R
I A
K I R R R R I
yoooy2 o ysooyaoys o v M
1oz 0 I o0 -L o &
~l0 ¥ 0 -2 1 -2 o0 £
0o B 1 -2 o I o 2
0 -5 o0 F 0 & 1|3
Yyoooy2 vz ys oy M
R - T
~l0 1 o -& £ I o0 X
0 0 1 0 -4 Z 0 =+
o 0 0 + &= B 1=

The optimal solution of the primal and dual problems,

respectively, are
14
143

y = Yo =

8
143

7Y3

1
11

)

and
1 9 15 35
X1=—,%=—,X3=—, withl = —
13 143 143 143
The corresponding optimal mixed strategies for the

column and row players, respectively, are

14
35
T=v/L=v.u _ 8
y=¥/A=¥-3% =| 3 |and
13
11
35
R =%/} =x-u _ 9
X=X/A=X-37 = =
15
35

The value of the game_with the shifted payoff matrix is
1/A , which is 52, so the value of original game is
% -3 = 38 . Using the optimal strategy X, Bob should
1nvest = of the $35,000 in stocks, = 3 in bonds, and ;z in
gold. That is, Bob should invest $11,000 in stocks, $9,000
in bonds and $15,000 in gold. The expected value of the
game is 35, based on $100 for each play of the game. (The
payoff matrix lists the amounts gained or lost for each $100
that is invested for one year.) With $35,000 to invest, Bob
“plays” this game 350 times. Thus, he should expect to gain
$380, and the expected value of his portfolio at the end of
the year is $35,380.

23. a. The coordinates of X are all nonnegative. From the

definition of u, A is equal to the sum of these
coordinates. It follows that the coordinates of X are
nonnegative and sum to one. Thus, X is a mixed strategy
for the row player R. A similar argument holds for ¥
and the column player C.

b. If y is any mixed strategy for C, then

10478 ]

1
E(ky) =%"dy =5 (" 4y) =
1
> _(vey) = —
z vy =+
c. If x is any mixed strategy for R, then

. .1 o1 )
E(x.§) =x"Ay = 3 (x"4y) = — [x- A¥]

A

< l(X'll) [

A A

d. Part (b) implies v(X) > 1/A,s0 vg > 1/A . Part (c)
implies v(¥) < 1/4,s0 ve < 1/ . It follows from the
Minimax Theorem in Section 9.1 that X and y are
optimal mixed strategies for R and C, respectively, and
that the value of the game is 1/A.



