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Linear Equations
in Linear Algebra

1.1 SOLUTIONS

Notes: The key exercises are 7 (or 11 or 12), 19-22, and 25. For brevity, the symbols R1, R2,..., stand
for row 1 (or equation 1), row 2 (or equation 2), and so on. Additional notes are at the end of the section.

X +5x,= 17 {1 5 7}

C2x = Tx, =5 2 -7 -5
. X +5x, =7 1 5 7
Replace R2 by R2 + (2)R1 and obtain:
3x,=9 0 3 9
X, +5x,=7 15 7
Scale R2 by 1/3:
X, = 0 1 3
X =-8 [ 1 0 -8
Replace R1 by R1 + (-5)R2:
X, = o 1 3
The solution is (x;, x;) = (-8, 3), or simply (-8, 3).
5 2x, +4x, =—4 2 4 -4
S Sy +7x, =11 5 7 11
. X +2x,=-2 (1 2 =2
Scale R1 by 1/2 and obtain:
5x +7x, =11 |5 11
X +2x,=-2 1 2 =2
Replace R2 by R2 + (-5)R1:
—3x, =21 10 -3 21
X +2x,=-2 1 2 =2
Scale R2 by —1/3:
X, =-7 0 1 =7
X, =12 (1 0 12
Replace R1 by R1 + (-2)R2:
x,==7 0o 1 -7

The solution is (x1, x,) = (12, =7), or simply (12, -7).
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1-2 CHAPTER 1 < Linear Equations in Linear Algebra

3. The point of intersection satisfies the system of two linear equations:
X +5x,=7 {1 5 7}

X —2x,=-2 1 =2 =2
_ X +5x,= 7 (1t 5 7
Replace R2 by R2 + (-1)R1 and obtain:
~7x,=-9 10 -7 -9
x +5x,= 7 1 5 7
Scale R2 by —1/7: ] 2
x, =9/7 0 1 9/7
X, =4/7 10 4/7
Replace R1 by R1 + (-5)R2:
x, =9/7 0o 1 9/7

The point of intersection is (x;, x,) = (4/7, 9/7).

4. The point of intersection satisfies the system of two linear equations:

x —5x,=1 1 =5 1
3x,-7x,=5 3 =75

x, —5x, =1 (1 -5 1
Replace R2 by R2 + (-3)R1 and obtain: ! :
8x, =2 10 8 2
Scale R2 by 1/8:
x,=1/4 K 1 1/4
X =9/4 1 0 9/4
Replace R1 by R1 + (5)R2:
x, =1/4 0 1 1/4

The point of intersection is (x;, xo) = (9/4, 1/4).

5. The system is already in “triangular” form. The fourth equation is x4, =—5, and the other equations do
not contain the variable x4. The next two steps should be to use the variable x; in the third equation to
eliminate that variable from the first two equations. In matrix notation, that means to replace R2 by
its sum with 3 times R3, and then replace R1 by its sum with —5 times R3.

6. One more step will put the system in triangular form. Replace R4 by its sum with —3 times R3, which
1 6 4 0 -1

0o 2 -7 0
produces 0 0 L 2 -3l After that, the next step is to scale the fourth row by —1/5.
0 0 0 -5 15

7. Ordinarily, the next step would be to interchange R3 and R4, to put a 1 in the third row and third
column. But in this case, the third row of the augmented matrix corresponds to the equation 0 x; + 0
X, +0x; =1, or simply, 0 = 1. A system containing this condition has no solution. Further row
operations are unnecessary once an equation such as 0 = 1 is evident.
The solution set is empty.
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1.1 + Solutions 1-3

8. The standard row operations are:
1 4 9 0 1 4 9 0 1 4 0 0 1 0 0 O
0 1 7 0(~|0 1 7 0(~f0 1 0 O0|~[0 I 0 O
0 0 2 0 0 0 1 O 0 0 1 0 0 0 1 0

The solution set contains one solution: (0, 0, 0).

9. The system has already been reduced to triangular form. Begin by scaling the fourth row by 1/2 and
then replacing R3 by R3 + (3)R4:

I -1 0 0 —4][1 -1 0 0 —47 71 -1 0 0 -4
0 1 -3 0 -7/ /0 1 =3 0 -7/ |0 1 -3 0 -7
0 0 1 -3 -1/ |0 0o 1 -3 -1/ |0 0 1 0 5
0O 0 0 2 4[]0 o o 1 2/lo 0o o 1 2

Next, replace R2 by R2 + (3)R3. Finally, replace R1 by R1 + R2:

1 -1 0 0 411 00 0 4
O 100 8 /010 0 8
“lo 010 5100 10 5
0o 00 1 2[00 0 1 2

The solution set contains one solution: (4, 8, 5, 2).

10. The system has already been reduced to triangular form. Use the 1 in the fourth row to change the
—4 and 3 above it to zeros. That is, replace R2 by R2 + (4)R4 and replace R1 by R1 + (—3)R4. For the
final step, replace R1 by R1 + (2)R2.

1 20 3 =211 =200 771 00 0 -3
0O 10 -4 7/lo 100 =5/1]0 1 0 0 -5
0 01 0 6/]/0 010 6/]00 10 6
0 00 1 -3/]o 00 1 =31]0o0 0 1 -3

The solution set contains one solution: (-3, -5, 6, —3).

11. First, swap R1 and R2. Then replace R3 by R3 + (-3)R1. Finally, replace R3 by R3 + (2)R2.
0 1 4 -5 1 3 5 =2 1 3 5 2 1 3 5 =2
1 35 2|~10 1 4 -5|~0 1 4 -5|~|0 1 4 -5
3 7 7 6 37 7 6 0 -2 -8 12 0 0 0 2

The system is inconsistent, because the last row would require that 0 = 2 if there were a solution.
The solution set is empty.

12. Replace R2 by R2 + (—3)R1 and replace R3 by R3 + (4)R1. Finally, replace R3 by R3 + (3)R2.
1 3 4 A4 1 3 4 4 1 3 4 4
3 -7 7 8|~|0 2 -5 4(~0 2 -5 4
-4 6 -1 7 0 -6 15 -9 0O 0 0 3

The system is inconsistent, because the last row would require that 0 = 3 if there were a solution.
The solution set is empty.
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1-4 CHAPTER 1 < Linear Equations in Linear Algebra

13. Replace R2 by R2 + (-2)R1. Then interchange R2 and R3. Next replace R3 by R3 + (-2)R2. Then
divide R3 by 5. Finally, replace R1 by R1 + (-2)R3.

1 0 3 8 1 0 3 8 1 0 3 8 1 0 3 8
22 9 7|~|0 2 15 9(~|0 1 5 2|~10 1 5 =2
0o 1 5 =2 0 1 5 2 0 2 15 9 0 0 5 -5
1 0 -3 8 1 0 0 5
~10 15 =2|~/0 1 0 3|.Thesolutionis (5,3, -1).
0 0 1 -1 0 0 1 -1

14. Replace R2 by R2 + R1. Then interchange R2 and R3. Next replace R3 by R3 + 2R2. Then divide
R3 by 7. Next replace R2 by R2 + (—=1)R3. Finally, replace R1 by R1 + 3R2.

1 -3 0 5{/ (1t -3 0 5/ |1 -3 0 5( |1 -3 0 5] |1 -3 0 5
-1 1 5 2(~/0 =2 5 7|~|0 1 1 0(~(0 1 1 0|{~{0 1 1 O
0 1 1 0 0 1 1 0 0o -2 5 7 o o0 7 7 0 0 1 1
1 -3 0 5 1 0 0 2
~ 1 0 -1{~|0 1 0 -1|. Thesolutionis (2,-1,1).
0 1 1 0 0 1 1

15. First, replace R4 by R4 + (=3)R1, then replace R3 by R3 + (2)R2, and finally replace R4 by
R4 + (3)R3.

1 0 3 0 o 3 0 2] 10 3 0o 2
o 1.0 -3 3|10 0 -3 3/ lo1 0o -3 3
0 2 3 2 oo 2 3 2 1] oo 3 -4 7
300 7 -5/1]0 0 -9 7 —11| |0 0 -9 7 -11

103 0 2

0 1 0 -3
o0 3 -4 7

00 0 -5 10

The resulting triangular system indicates that a solution exists. In fact, using the argument from
Example 2, one can see that the solution is unique.

16. First replace R4 by R4 + (2)R1 and replace R4 by R4 + (—3/2)R2. (One could also scale R2 before
adding to R4, but the arithmetic is rather easy keeping R2 unchanged.) Finally, replace R4 by R4 +
R3.

100 =2 3]t 00 =2 3]t 0 0 =2 =311t 00 =2 -3
022 0 o/llo22 0o of]o2 2 0o oflflo22 0 o
o0 1 3 1/]oo 1 3 1/]oo 1 3 1/]o o 1 3 1

2 32 1 5/1]0 32 -3 <1/ |00 -1 =3 -1/ /0 0 0 0 0

The system is now in triangular form and has a solution. The next section discusses how to continue
with this type of system.
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17.

18.

19.

20.

21.

22.

23.

24.

1.1 + Solutions 1-5

Row reduce the augmented matrix corresponding to the given system of three equations:
1 4 1 1 -4 1 1 4 1
2 -1 3|~|0 7 =5|~|0 7 =5
-1 -3 4 0 -7 5 0 0 O

The system is consistent, and using the argument from Example 2, there is only one solution. So the
three lines have only one point in common.

Row reduce the augmented matrix corresponding to the given system of three equations:
1 2 1 4 1 2 1 4 1 2 1 4
0 1 -1 1|~/0 1 -1 I[~|0 1 -1 1
1 3 0 0 0o 1 -1 -4 0 0 0 -5

The third equation, 0 = —5, shows that the system is inconsistent, so the three planes have no point in
common.

(1 n 4] J1 h 4
~ Write ¢ for 6 — 34. If ¢ = 0, that is, if # =2, then the system has no
|13 6 8] |0 6-3n —4

solution, because 0 cannot equal —4. Otherwise, when /4 # 2, the system has a solution.

1 oh 311 R -3
~ . Write ¢ for 4 + 2A. Then the second equation cx, = 0 has a
-2 4 6] |0 4+2h O

solution for every value of c. So the system is consistent for all /.

1 3 2] [1 3 -2
~ . Write ¢ for 4 + 12. Then the second equation cx, =0 has a
(=4 h 8] |0 h+12 0

solution for every value of c. So the system is consistent for all 4.

2 3 h 2 3 h
~ . The system is consistent if and only if 5 + 34 =0, that is, if and
-6 9 5 0 0 5+3n

only if h =-5/3.

a. True. See the remarks following the box titled “Elementary Row Operations”.
b. False. A 5 X 6 matrix has five rows.

c. False. The description given applies to a single solution. The solution set consists of all possible
solutions. Only in special cases does the solution set consist of exactly one solution. Mark a
statement True only if the statement is always true.

d. True. See the box before Example 2.

a. True. See the box preceding the subsection titled “Existence and Uniqueness Questions”.

b. False. The definition of row equivalent requires that there exist a sequence of row operations that
transforms one matrix into the other.

¢. False. By definition, an inconsistent system has o solution.
d. True. This definition of equivalent systems is in the second paragraph after equation (2).
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1-6 CHAPTER 1 < Linear Equations in Linear Algebra

25.

26.

27.

28.

29.
30.
31.
32.

33.

1 4 7 g 1 -4 7 g 1 -4 7 g
0 3 =5 h|~|0 3 =5 h ~10 3 -5 h
-2 5 -9 &k 0 -3 5 k+2¢g 0 O 0 k+2g+h

Let b denote the number & + 2g + . Then the third equation represented by the augmented matrix
above is 0 = b. This equation is possible if and only if b is zero. So the original system has a solution
ifand only if k+2g+ h = 0.
A basic principle of this section is that row operations do not affect the solution set of a linear
system. Begin with a simple augmented matrix for which the solution is obviously (—2, 1, 0) ,and

then perform any elementary row operations to produce other augmented matrices. Here are three
examples. The fact that they are all row equivalent proves that they all have the solution set

(-2, 1, 0).

1 0 0 -2 1 0 0 -2 1 0 0 -2
010 1|~2 1 0 3|~2 1 0 -3
00 1 0 0 01 O 2 0 1 -4

Study the augmented matrix for the given system, replacing R2 by R2 + (—¢)R1:
1 3 /] [1 3 f
lc d g}N{O d-3¢c g-¢f
are arbitrary. Otherwise, for some choices of f'and g the second row would correspond to an equation
of the form 0 = b, where b is nonzero. Thus d # 3c.

} . This shows that shows d — 3¢ must be nonzero, since fand g

Row reduce the augmented matrix for the given system. Scale the first row by 1/a, which is possible
since a is nonzero. Then replace R2 by R2 + (—c)R1.

a b f 1 bla fla 1 b/a fla
0 d-cbl/a) g-c(f/a)
The quantity d — c(b/a) must be nonzero, in order for the system to be consistent when the quantity

g —c(f/a) is nonzero (which can certainly happen). The condition that d — ¢(b/a) # 0 can also be
written as ad — be # 0, or ad # bc.

c d g| |¢c d g

Swap R1 and R2; swap R1 and R2.

Multiply R2 by —1/2; multiply R2 by 2.

Replace R3 by R3 + (—4)R1; replace R3 by R3 + (4)R1.
Replace R3 by R3 + (3)R2; replace R3 by R3 + (-3)R2.

The first equation was given. The others are:

T,=(I; +20+40+T7;)/4, or 4L,-T,-1,=60
I, =(T,+T,+40+30)/4, or 4L-T,-T7,=70
T, =(10+7;+T; +30)/4, or 4I,-1,-T,=40
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1.1 + Solutions 1-7

Rearranging,
i, - T - T, = 30
-, + 47, - T, = 60
-, + 41, - T, = 70
-1 - T, + 4T, = 40

34. Begin by interchanging R1 and R4, then create zeros in the first column:
4 -1 0 -1 30 -1 0 -1 4 40 -1 0 -1 4 40
-1 4 -1 0 60 -1 4 -1 0 60 0 4 0 -4 20
0o -1 4 -1 70 0 -1 4 -1 70 0 -1 4 -1 70
-1 0 -1 4 40 4 -1 0 -1 30 0 -1 -4 15 190

Scale R1 by —1 and R2 by 1/4, create zeros in the second column, and replace R4 by R4 + R3:

10 1 -4 —40] [1 0 1 -4 —40] [1 0 1 —4 —40
0o 1 0 -1 5/]0o1 0 -1 5|0 10 -1 5
“lo -1 4 -1 70|/ |00 4 =2 75/ /0 0 4 —2 75
0 -1 —4 15 190 |0 0 -4 14 195 |0 0 0 12 270

Scale R4 by 1/12, use R4 to create zeros in column 4, and then scale R3 by 1/4:
‘1 0 1 -4 —40] [1 0 1 0 50] [1 0 1 0 50

o 1.0 -1 5/ 1]0 1 0 0 275 0 1 0 0 275
oo 4 2 75|00 4 0 12000 0 1 0 30

10 0 0 1 225 0 0 0 1 225 0 0 0 1 225
The last step is to replace R1 by R1 + (—1)R3:

1 0 0 0 200

0O 1 0 0 275 L
~ . The solution is (20, 27.5, 30, 22.5).

0 0 1 0 300

0 0 0 1 225

Notes: The Study Guide includes a “Mathematical Note” about statements, “If ... , then ... .”

This early in the course, students typically use single row operations to reduce a matrix. As a result,
even the small grid for Exercise 34 leads to about 25 multiplications or additions (not counting operations
with zero). This exercise should give students an appreciation for matrix programs such as MATLAB.
Exercise 14 in Section 1.10 returns to this problem and states the solution in case students have not
already solved the system of equations. Exercise 31 in Section 2.5 uses this same type of problem in
connection with an LU factorization.

For instructors who wish to use technology in the course, the Study Guide provides boxed MATLAB
notes at the ends of many sections. Parallel notes for Maple, Mathematica, and ssome calculators appear
in separate appendices at the end of the Study Guide. The MATLAB box for Section 1.1 describes how to
access the data that is available for all numerical exercises in the text. This feature has the ability to save
students time if they regularly have their matrix program at hand when studying linear algebra. The
MATLAB box also explains the basic commands replace, swap, and scale. These commands are
included in the text data sets, available from the text web site, www.pearsonhighered.com/lay.
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1-8 CHAPTER 1 < Linear Equations in Linear Algebra

1.2 SOLUTIONS

Notes: The key exercises are 1-20 and 23-28. (Students should work at least four or five from Exercises
7—-14, in preparation for Section 1.5.)

1. Reduced echelon form: a and b. Echelon form: d. Not echelon: c.
2. Reduced echelon form: a. Echelon form: b and d. Not echelon: c.

1 2 3 4 1 2 3 4 1 2 3 4
3.4 5 6 7|~0 -3 -6 -9(~(0 1 2 3
6 7 8 9 0 -5 -10 -15 0 -5 -10 -15

1 2 3 41 [ o0 -1 =2 2 3 4
~10 1 2 3|~[0 @ 2 3| Pivotcolsland2. |4 3 6 7
00 0 0[]0 0 0 0 6 7 8 9
1 3 5 7] [t 3 5 7 1 3 5 7 1 3 5 7
4.3 5 7 9/~|0 -4 -8 -12|~ 1 2 3 |~0 1 2 3
57 9 1] 0 -8 -16 -34] |0 -8 -16 -34] [0 0 0 -10]
135 7] [t 350 [0 -1 0] 3.5 7]
~lo 1 2 3|~lo 1 2 o|<]o @ 2 of Pivoteols 133 5 o
1,2,and 4
000 1,00 o0 1]]0oo0o oQ 5 7 9 Q)
_ m = H * |0 N
m * m * |0 N
5 H H } 6|0 mljo ollo o
o m/lo ollo o
- 0 0/|0 of[0 O

7‘134713471347@30—5
13 9 7 6/ |0 0 =5 <15/ |0 0o 1 3]0 0o @O 3
@D+3x2 = =5

Corresponding system of equations: @

The basic variables (corresponding to the pivot positions) are x; and x;. The remaining variable x, is
free. Solve for the basic variables in terms of the free variable. The general solution is

X ==5-3x,
x, is free
X, =3

Note: Exercise 7 is paired with Exercise 10.
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1.2« Solutions 1-9
g 1 4 0 711 4 0o 7][1 4 0 7] [0 0 -9
' 2 7 0 10/ [0 -1 0 —4] |0 1 0 4/ |0 Do 4

() = 9
@ = 4

The basic variables (corresponding to the pivot positions) are x; and x,. The remaining variable x; is
free. Solve for the basic variables in terms of the free variable. In this particular problem, the basic
variables do not depend on the value of the free variable.

Corresponding system of equations:

x=-9
General solution: {x, =4

x; is free

Note: A common error in Exercise 8 is to assume that x3 is zero. To avoid this, identify the basic
variables first. Any remaining variables are free. (This type of computation will arise in Chapter 5.)

0 0 1 -6 5] 1 =2 7 -6] [0 -5 4
=2 7 -6/ |10 1 -6 5|10 -6 5
- 5x = 4

@—6)63:5

Corresponding system: @

X =4+5x;
Basic variables: x;, x,; free variable: x;. General solution: {x, =5+ 6x;
x; is free
o |12 3t 23 O -2 0 -4
136 =2 2,0 o 1 -7, |0 o () -7
- 2x = -4
Corresponding system: @ : @ _ 7
x =—4+2x,

Basic variables: x), x3; free variable: x,. General solution: < x, is free

3 4 2 0] [3 4 2 o] [ —4/3 2/3 0
11.|-9 12 -6 0|~/0 0 0 O0[~[0 0 0 0
-6 8 -4 0[]0 0 o0 o/|O0 0O 0 0

|
W |
=
LS}
+
W |
X
I
S

Corresponding system: 0 = 0
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1-10  CHAPTER 1 -+ Linear Equations in Linear Algebra

X 4 2
=—Xx, ——Xx
1 3 2 3 3

Basic variable: x;; free variables x,, x3. General solution: < x, is free

x; is free

1 -7 0 6 5 1 -7 0 6 5 -7 0 6 5
122/0 0 1 =2 3[~/o0 0 1 =2 3[~jo0 0@ =2 =3
-1 7 4 2 7 0 0 4 8 12 0o 0 0 o0 O
x - Tx + 6x, = 5
Corresponding system: @ - 2x, = 3
0 = 0
X =5+7x, —6x,
Basic variables: x; and xs; free variables: x,, x4. General solution: X, 1 free
X, =-3+2x,
x, is free
1 3 0 -1 0 2]t -3 0 0 9 2] o o o -3
130100—4 1~0100_41~0®00_4
1o 0 0 9 4/ /0 0 0 1 9 4[]0 0 o0 (D 9
0o o o0 o0 o0 O 0 0 0 0 O 0 0 0 0 O
() - 3x =5
Corresponding system: @ - A =
+ 9x, = 4
0 =0
X, =5+3xs
X, =1+ 4x;
Basic variables: xi, x,, x4; free variables: x3, xs. General solution: < x; is free
Xy, =4-9x;
x5 1s free

Note: The Study Guide discusses the common mistake x; = 0.

1 2 5 6 0 5] [0 7 0 0 -9
“ 0 1 -6 -3 0 2| (0 -6 3 0 2
“lo 0 0o o0 1 o0/f0 0 0 0 @M O
00 0 0 0 O0/|0 0O 0 0 0 O
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15.

16.

17.

18.

19.

20.

21.

1.2+ Solutions 1-11

@ + Tx = -9

- 6x; — 3x
Corresponding system: @ 3 !

X, =2+ 6x; +3x,

Basic variables: xi, x,, xs; free variables: x3, x4. General solution: 1 x; is free

x, is free
x5=0
a. The system is consistent, with a unique solution.
b. The system is inconsistent. The rightmost column of the augmented matrix is a pivot column.
a. The system is consistent, with a unique solution.
b. The system is consistent. There are many solutions because x; is a free variable.
2 3 Kl [@ 3 &
~ © The system has a solution only if 7 — 24 =0, that is, if 4 = 7/2.
14 6 7] [0 0 7-2h
1 3 2] [ -3 =2 , o
~ If h +15 is zero, that is, if # =—15, then the system has no
5 h -7 0 hA+15 3

solution, because 0 cannot equal 3. Otherwise, when % # —15, the system has a solution.

(1 2] [ & 2
|4 8 k| |0 8-4h k-8

a. When 42 =2 and k #8, the augmented column is a pivot column, and the system is inconsistent.

b. When /% # 2, the system is consistent and has a unique solution. There are no free variables.

¢. When /1 =2 and k = 8, the system is consistent and has many solutions.

1 3 2] [ 3 2
3 h ok 0 h-9 k-6
a. When #=9 and £ # 6, the system is inconsistent, because the augmented column is a pivot
column.

b. When % # 9, the system is consistent and has a unique solution. There are no free variables.

¢. When 4 =9 and k = 6, the system is consistent and has many solutions.

a. False. See Theorem 1.

b. False. See the second paragraph of the section.

¢. True. Basic variables are defined after equation (4).

d. True. This statement is at the beginning of “Parametric Descriptions of Solution Sets”.

e. False. The row shown corresponds to the equation 5x, = 0, which does not by itself lead to a

contradiction. So the system might be consistent or it might be inconsistent.
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1-12  CHAPTER 1 -+ Linear Equations in Linear Algebra

22

23.

24.

25.

26.

27.

28.

29.

30.

31.

a. False. See the statement preceding Theorem 1. Only the reduced echelon form is unique.

b. False. See the beginning of the subsection “Pivot Positions”. The pivot positions in a matrix are
determined completely by the positions of the leading entries in the nonzero rows of any echelon
form obtained from the matrix.

¢. True. See the paragraph after Example 3.

d. False. The existence of at least one solution is not related to the presence or absence of free
variables. If the system is inconsistent, the solution set is empty. See the solution of Practice
Problem 2.

e. True. See the paragraph just before Example 4.

Yes. The system is consistent because with three pivots, there must be a pivot in the third (bottom)
row of the coefficient matrix. The reduced echelon form cannot contain a row of the form
[0 0000 1]

The system is inconsistent because the pivot in column 5 means that there is a row of the form
[0 0 0 O 1]in the reduced echelon form. Since the matrix is the augmented matrix for a system,
Theorem 2 shows that the system has no solution.

If the coefficient matrix has a pivot position in every row, then there is a pivot position in the bottom
row, and there is no room for a pivot in the augmented column. So, the system is consistent, by
Theorem 2.

Since there are three pivots (one in each row), the augmented matrix must reduce to the form
0 0 a @ = a
0 @D 0 b| andso @ = b
0 0@ ¢ @ = ¢

No matter what the values of a, b, and ¢, the solution exists and is unique.

“If a linear system is consistent, then the solution is unique if and only if every column in the
coefficient matrix is a pivot column, otherwise there are infinitely many solutions. ”

This statement is true because the free variables correspond to nonpivot columns of the coefficient
matrix. The columns are all pivot columns if and only if there are no free variables. And there are no
free variables if and only if the solution is unique, by Theorem 2.

Every column in the augmented matrix except the rightmost column is a pivot column, and the
rightmost column is not a pivot column.

An underdetermined system always has more variables than equations. There cannot be more basic
variables than there are equations, so there must be at least one free variable. Such a variable may be
assigned infinitely many different values. If the system is consistent, each different value of a free
variable will produce a different solution.

x + x + x =4

Example:
P 5

2, + 2x, + 2x

Yes, a system of linear equations with more equations than unknowns can be consistent.
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32.

33.

34.

X + x
Example (in whichx; =x,=1): x - X,
3, + 2x,

According to the numerical note in Section 1.2,

1.2+ Solutions 1-13

2
=0
= 5

when n = 30 the reduction to echelon form takes

about 2(30)*/3 = 18,000 flops, while further reduction to reduced echelon form needs at most (30)* =
900 flops. Of the total flops, the “backward phase” is about 900/18900 = .048 or about 5%.

When n = 300, the estimates are 2(300)/3 = 18,000,000 phase for the reduction to echelon form
and (300)* = 90,000 flops for the backward phase. The fraction associated with the backward phase

is about (9x10%) /(18x10°) = .003, or about .5%.

For a quadratic polynomial p(f) = ao + a\t + a»t*

to exactly fit the data (1, 12), (2, 15), and (3, 16), the

coefficients ay, a;, a, must satisfy the systems of equations given in the text. Row reduce the

augmented matrix:

1 11 1271 1 1 120 [t 1 1 121 [t 11 12] [1 1 0 13
1 2 4 15(~/0 1 3 3|~/0 1 3 3[~/0 1 3 3[~0 1 0 6
1 3 9 16/ (0 2 8 4/ |0 0 2 =2/ |0 0 1 -1] [0 0 1 -1
Mo o 7

~l0 o0 6
0 0@ -1

The polynomial is p(f) =7 + 61—t °.

[M] The system of equations to be solved is:

a + a0 + a,-0° + a-0° + a,-0° + 400 = 0

a + a2 + a-2> + a;-2° + a2 + a2 = 290

a + a4 + a4 + a4 + a4 + a4 = 148

a + a6 + a,-6° + a6 + a6 + a;-6 = 39.6

a + a-8 + a8 + a8 + a8 + a8 = 743

a + a-10 + a,-10° + a,-10° + a,-10* + a;-10° = 119

The unknowns are ay, a;,

matrix:

1 0 o0 0 0 0 0]
1 2 4 8 16 32 29
1 4 16 64 256 1024 148
16 36 216 1296 7776 39.6|
1 8 64 512 4096 32768 743

1 10 100 10° 10 10° 119

1 0 0 0 0 0 0]
0 2 8 16 32 2.9
0 0 8 48 224 960 9
0 0 24 192 1248 7680 309
0 0 48 480 4032 32640 62.7

10 0 80 960 9920 99840 104.5]

..., as. Use technology to compute the reduced echelon of the augmented
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10 0 0 o 0] 1 0 o0 0 0 0
0 2 4 8 16 32 29|10 2 4 8 16 32 29
0 0 8 48 224 960 9| |0 0 8 48 224 960 9

“lo 0 0 48 576 4800 39| |0 0 0 48 576 4800 3.9
0 0 0 192 2688 26880 87| [0 0 0 0 38 7680 —6.9
0 0 0 480 7680 90240 145| [0 0 0 0 1920 42240 —245|
10 0 0 0 o 0]t 00 0 0 0 0]

0 2 4 8 16 32 29| /0 2 4 16 32 29
0 0 8 48 224 960 9| |0 0 8 48 224 960 9

1o 0 0 48 576 4800 39| |0 0 0 48 576 4800 3.9
0 0 0 0 38 7680 —69| |0 0 0 0 38 7680 —69
0 0 0 0 0 380 10/ [0 00 0 o0 1 .0026 |
1 0 0 0 0 0] [1. 0 0 0 0 0 0]
0 2 4 8 16 0 28167 0 1.0 0 0 0 17125
0 0 8 48 224 0  6.5000 00 10 0 0 —-1.1948

o 0 0 48 576 0 -86000] |0 0 O 1 0 0O  .6615
00 0 0 38 0 -26900 0000 1 0 —0701
00 0 0 0 1 .002604] 0000 0 1 .0026

Thus p(£) = 1.7125¢ — 1.1948¢ + .6615¢ — .0701¢* + .0026¢, and p(7.5) = 64.6 hundred Ib.

Notes: In Exercise 34, if the coefficients are retained to higher accuracy than shown here, then p(7.5) =
64.8. If a polynomial of lower degree is used, the resulting system of equations is overdetermined. The
augmented matrix for such a system is the same as the one used to find p, except that at least column 6 is
missing. When the augmented matrix is row reduced, the sixth row of the augmented matrix will be
entirely zero except for a nonzero entry in the augmented column, indicating that no solution exists.

Exercise 34 requires 25 row operations. It should give students an appreciation for higher-level
commands such as gauss and bgauss, discussed in Section 1.4 of the Study Guide. The command
ref (reduced echelon form) is available, but I recommend postponing that command until Chapter 2.

The Study Guide includes a “Mathematical Note” about the phrase, “if and only if,” used in Theorem
2.

1.3 SOLUTIONS

Notes: The key exercises are 11-14, 17-22, 25, and 26. A discussion of Exercise 25 will help students
understand the notation [a; a, a;], {a, a,, a3}, and Span{a, a,, a3}.

-1| -3 -1+ (-3) —4
1. u+v= + = = .
2 -1 2+ (-1) 1
Using the definitions carefully,

I i o Y S MR
u-2v= +(-2) = + = = , or, more quickly
2 -1 2 =2)(-D 2+2 4
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-1 _[-3] [-1+6] [5 . , . .
u-2v= -2 = = . The intermediate step is often not written.
2 -1 2+2 | |4

H i 2} [ 3+2 } '5}
2. u+v= + = = .
2] -1 2+(-D] |1
Using the definitions carefully,
u—2v= {3} + (—2){ 2} = F} + { (-2 } = [3 K (_4)} = [_1} or, more quickly,
2 -1 2 =2)(-1) 2+2 4

3 2 3-4 -1
u-2v=| -2 = = . The intermediate step is often not written.
2 -1] |2+2 4

c
|
o<

e
\

6 -3 1 6x, —3x, 1 6x, —3x, 1
5. x| -1|+x,| 4|=|-T|, |-x|+|4x, |=|-T|, |-x+4x,|=|-7

5 0] |-5 5x, 0 -5 5x, -5

6x, - 3x, = 1

-x + 4x, = -7

5x = =5

Usually the intermediate steps are not displayed.

-2 8 1 0 —2x 8x, X3 0 —2x, +8x, + X3 0
6. x +x,| |+ X, = |, + + = |, =
3 5 -6 0 3x, 5x, —6x;5 0 3x, +5x, —6x; 0
2x, + 8, + x =0

3x, + 5x, — 6x3 = 0

Usually the intermediate steps are not displayed.

Copyright © 2016 Pearson Education, Inc.



1-16 CHAPTER 1 -+ Linear Equations in Linear Algebra

7. See the figure below. Since the grid can be extended in every direction, the figure suggests that every
vector in R” can be written as a linear combination of u and v.

To write a vector a as a linear combination of u and v, imagine walking from the origin to a along
the grid "streets" and keep track of how many "blocks" you travel in the u-direction and how many in
the v-direction.

a. To reach a from the origin, you might travel 1 unit in the u-direction and —2 units in the v-
direction (that is, 2 units in the negative v-direction). Hence a = u — 2v.

b. To reach b from the origin, travel 2 units in the u-direction and —2 units in the v-direction. So
b = 2u - 2v. Or, use the fact that b is 1 unit in the u-direction from a, so that

b=a+u=(u-2v)+tu=2u-2v

¢. The vector ¢ is —1.5 units from b in the v-direction, so
c=b-15v=_Cu-2v)-1.5v=2u—-3.5v

d. The “map” suggests that you can reach d if you travel 3 units in the u-direction and —4 units in

the v-direction. If you prefer to stay on the paths displayed on the map, you might travel from the
origin to —3v, then move 3 units in the u-direction, and finally move —1 unit in the v-direction. So

d=-3v+3u-v=3u-4v
Another solution is
d=b-2v+u=Q2u-2v)-2v+u=3u—4v

Figure for Exercises 7 and 8

8. See the figure above. Since the grid can be extended in every direction, the figure suggests that every
vector in R” can be written as a linear combination of u and v.

w. To reach w from the origin, travel —1 units in the u-direction (that is, 1 unit in the negative
u-direction) and travel 2 units in the v-direction. Thus, w = (—1)u + 2v, or w = 2v — u.

x. To reach x from the origin, travel 2 units in the v-direction and —2 units in the u-direction. Thus,
x =—-2u + 2v. Or, use the fact that x is —1 units in the u-direction from w, so that

x=w-u=(-u+2v)—u=-2u+2v
y. The vector y is 1.5 units from x in the v-direction, so
y=x+15v=(2u+2v)+ 1.5v=-2u+3.5v

z. The map suggests that you can reach z if you travel 4 units in the v-direction and —3 units in the
u-direction. So z = 4v — 3u = —3u + 4v. If you prefer to stay on the paths displayed on the “map,”
you might travel from the origin to —2u, then 4 units in the v-direction, and finally move —1 unit
in the u-direction. So

z=-2u+4v—-—u=-3u+4v
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x, + 5x =0 X, +5x; 0

9. 4x, + 6x, — x; = 0, 4x, +6x, —x; |=|0
-x + 3x, — 8 =0 —x;+3x,=8x; | | 0]
0 X, 5x; 0 0 1 51 [o]

4x, |+]| 6x, |[+| —x;|=| 0], x| 4|+x]6|+x|-1|=|0
-X; 3x, —8x; 0 -1 3 -8 | 0]

Usually, the intermediate calculations are not displayed.

Note: The Study Guide says, “Check with your instructor whether you need to “show work” on a
problem such as Exercise 9.”

4x, + x, + 3x 4x, + x, +3x, 9

Il
\SJENe)

10. x;, — 7x, — 2x , X =Tx,=2xy |=| 2

8, + 6x, — 5x; = 15 8x, +6x, —5x3 15

4x, X, 3x; 9 4 1 3 9
x|+ =Txy [+ 2% |=| 2], X | L+x,| =T |+x|-2|=

8x, 6x, =5x; 15 8 6 =5 15

Usually, the intermediate calculations are not displayed.

11. The question
Is b a linear combination of a,, a,, and a3?
is equivalent to the question
Does the vector equation x;a; + x,a, + x3a; = b have a solution?

The equation

1 0 5 2
X |2 +x,| 1|+x|-6|=|-1
0 2 8 6
T T T 1
a a, a, b

has the same solution set as the linear system whose augmented matrix is

10 5 2
M=|-2 1 -6 -I
02 8 6

Row reduce M until the pivot positions are visible:
1 0 5 2 0 5 2
M~0 1 4 3/~lo @ 4 3
0 2 8 6/ |0 0 0 O

The linear system corresponding to M has a solution, so the vector equation (*) has a solution, and
therefore b is a linear combination of a,, a,, and as.
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1-18 CHAPTER 1 -+ Linear Equations in Linear Algebra

12. The equation

1 0 2 =5
X | =2 +x,|5|+x|0|=|11
2 5 8] |7
T T T 7
a, a, a, b

has the same solution set as the linear system whose augmented matrix is

(10 2 -5
M=|-2 5 0 11
2 5 8 -7

Row reduce M until the pivot positions are visible:
(1 0 2 5] (Do 2 -5
M~0 5 4 1|~l0 B® 4 1
0 5 4 3,10 0 0

The linear system corresponding to M has no solution, so the vector equation (*) has no solution, and

therefore b is not a linear combination of a;, a,, and a;.
13. Denote the columns of 4 by a,, a,, a;. To determine if b is a linear combination of these columns,
use the boxed fact on page 30. Row reduce the augmented matrix until you reach echelon form:
1 4 2 31/ -4 2 3
0 3 5 -7(~|0 B 5 -7
-2 8 -4 3 0 0 0

The system for this augmented matrix is inconsistent, so b is not a linear combination of the columns

of 4.

1 2 -6 111 [ =2 -6 11

14.[a, a, a3 b]=|0 3 7 -5(~|0 (3 7 -5|.The linear system corresponding to this

1 2 5 9]0 o () -2
matrix sas a solution, so b is a linear combination of the columns of 4.

15. Noninteger weights are acceptable, of course, but some simple choices are 0-v; + 0-v, =0, and

7 -5

lvi+0v,=| 1|, Ovi+1lv,=| 3
| —6 | | 0
[ 2] [12]

Lvi+1lv,=| 4|, 1vi—1lv,=|-2
__6_ __6_

16. Some likely choices are 0-v; + 0-v, = 0, and
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17. [

18.

19.

1.9 + Solutions 1-19

3
I'vi+0v,=[0], Ov,+1v,=
|2

(1] 5
I'vi+1vy,=|0|, I'vi=1v,=1] O
5] 1]
2 411 =2 471 =2 41[®-=2 4
[a, a b]{ 3 1|~[0 5 -15|~/0 1 3|~0 (D -3 |.Thevector
0 3 h+8| |0 3 h+8] |0 0 h+17

b is in Span{a,, a,} when 4 + 17 is zero, that is, when 2 =—-17.

1 3 4Kl [l =3 h @® 3 &

[vi v» y]=| 0 1 =5(~|0 1 =5 |~|0 (@O -5 |.Thevectoryisin
-2 8 3 0 2 -3+2h 0 0 742

Span{v,, v} when 7 + 24 is zero, that is, when & =-7/2.

By inspection, v, = (3/2)v,. Any linear combination of v, and v, is actually just a multiple of v,. For
instance,

avy; + sz =av; + b(3/2)V2 = (Cl + 3b/2)V1
So Span{vy, v,} is the set of points on the line through v, and 0.

Note: Exercises 19 and 20 prepare the way for ideas in Sections 1.4 and 1.7.

20.

21.

22

23.

Span{v,, v,} is a plane in R’ through the origin, because neither vector in this problem is a multiple
of the other. Every vector in the set has 0 as its second entry and so lies in the xz-plane in ordinary
3-space. So Span{vy, v,} is the xz-plane.

h 2 2 h| @ 2 h
Lety= .Then[u v y]= ~
k -1 1 & 0 O k+h/2

corresponds to a consistent system for all 4 and &. So y is in Span{u, v} for all /# and k.

} . This augmented matrix

Construct any 3x4 matrix in echelon form that corresponds to an inconsistent system. Perform
sufficient row operations on the matrix to eliminate all zero entries in the first three columns.

a. False. The alternative notation for a (column) vector is (4, 3), using parentheses and commas.

=5
b. False. Plot the points to verify this. Or, see the statement preceding Example 3. If [ 2} were on

-2 -5 -2
the line through { 5} and the origin, then { 2} would have to be a multiple of [ 5} , which is

not the case.
c¢. True. See the line displayed just before Example 4.
d. True. See the box that discusses the matrix in (5).
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24.

25.

26.

27.

28.

T o e T

10
.[a a, a; b]=|-1 8 5 3|~[-1 8 5 3|~|]0 8 8 8|~|0 8
0 0

False. The statement is often true, but Span{u, v} is not a plane when v is a multiple of u, or
when u is the zero vector.

noos

. True. See the beginning of the subsection “Vectors in R" ”.

. True. Use Fig. 7 to draw the parallelogram determined by u — v and v.

False. See the first paragraph of the subsection “Linear Combinations”.

. True. See the statement that refers to Fig. 11.
. True. See the paragraph following the definition of Span{vy, ..., v,}.

There are only three vectors in the set {a;, a,, a3}, and b is not one of them.

. There are infinitely many vectors in /¥ = Span{a,, a,, a;}. To determine if b is in ¥, use the

method of Exercise 13.
1 0 -4 4] [1 0 -4 4] [D o0 —4 4
0 3 =2 1|~[0 3 =2 1|~[0 B -2 1
2 6 3 4] [0 6 -5 4] [0 0 (CD) 2
TT T
a a, a; b
The system for this augmented matrix is consistent, so b is in W.
a; = la, + Oa, + Oa;. See the discussion in the text following the definition of Span{v,, ..., v,}.

2 0 6 1001 0 3 5|1 0 3 5

S o0 W

5
8
1 -2 1 3, |1 -2 1 3/ (0 -2 -2 =2 0

Yes, b is a linear combination of the columns of 4, that is, b is in I¥.

. The third column of 4 is in W because a; = 0-a; + 0-a, + 1-a,.

. 5v, is the output of 5 days’ operation of mine #1.

150
. The total output is x;v; + x,v, so x; and x, should satisfy x,v, + x,v, = [ } .

2825

. 20 30 150 1 0 15
[M] Reduce the augmented matrix ~ .
550 500 2825 0 1 4.0

Operate mine #1 for 1.5 days and mine #2 for 4 days. (This is the exact solution.)

. The amount of heat produced when the steam plant burns x; tons of anthracite and x, tons of

bituminous coal is 27.6x; + 30.2x, million Btu.

. The total output produced by x; tons of anthracite and x, tons of bituminous coal is given by the

27.6 30.2
vector x;| 3100 |+ x,| 6400 |.
250 360
27.6 30.2 162
[M] The appropriate values for x; and x; satisfy x| 3100 |+ x,| 6400 |=| 23,610 |.
250 360 1,623
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27.6  30.2 162 | |1.000 0 3.900
To solve, row reduce the augmented matrix: | 3100 6400 23610 |~ 0 1.000 1.800].
250 360 1623 0 0 0

The steam plant burned 3.9 tons of anthracite coal and 1.8 tons of bituminous coal.

29. The total massis2+5+2+1=10. Sov=(2v, +5v, + 2v; + v4)/10. That is,

1( 5 4 —47 [-9 | 10+20-8-97 [1.3
V:EP —41+5] 3[+2| 3|+ 8 T —-8+15-6+8|=| 9
3 ) -1 6 6-10-2+6 0

. 1 m m
30. Let m be the total mass of the system. By definition, v=—(mv, +---+m,v,) =—Lv, +--+—Lv, .
m m m

The second expression displays v as a linear combination of vy, ..., v;, which shows that v is in
Span{vy, ..., v;}.

1 0 8 2 10/3
31. a. The center of massis —| 1- +1- +1- = .
3 1 1 4 2

b. The total mass of the new system is 9 grams. The three masses added, w;, w,, and w3, satisfy the

.1 0 8 2 2 .
equat10n§ (w +1)- | +(w, +1)- | +(wy +1)- 411715 , which can be rearranged to

(w +1).m+(w2 +1).m+(W3 +1).m=mandwl .m+w2 mw{ﬂ{lﬂ

The condition w; + w, + w3 = 6 and the vector equation above combine to produce a system of
three equations whose augmented matrix is shown below, along with a sequence of row
operations:

1 11 6/, |1 1 1 6/ |1 1 I 6/ [1 1 0 4| [1 0 0 35

0 8 2 8|~/0 8 2 8&|~/0 8 2 8&|~|0 8 0 4|~|0 8 0 4

1 1 4 12y |0 0 3 6] |0 O 1 2 0 01 20 0 1 2
1 0 0 35
~0 1 0 .5
0 0 1 2

Answer: Add 3.5 gat (0, 1), add .5 gat (8, 1), and add 2 g at (2, 4).

Extra problem: Ignore the mass of the plate, and distribute 6 gm at the three vertices to make the center
of mass at (2, 2). Answer: Place 3 gat (0, 1), 1 gat (8, 1), and 2 g at (2, 4).

32. See the parallelograms drawn on the figure from the text. Here ¢y, ¢,, ¢3, and ¢4 are suitable scalars.
The darker parallelogram shows that b is a linear combination of v, and v,, that is
C1V1 + V) + O'V3 =b.

The larger parallelogram shows that b is a linear combination of v, and vs, that is,
Cc4V) + 0'V2 + C3V3 = b.
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So the equation x;v; + x,v, + x3v; = b has at least two solutions, not just one solution. (In fact, the
equation has infinitely many solutions.)

vy

33. a. Forj=1,..., n, the jth entry of (u + v) + wis (1, + v;) + w;. By associativity of addition in R, this
entry equals u; + (v; + w;), which is the jth entry of u + (v + w). By definition of equality of
vectors, (W +v) +w=u+ (v+w).

b. For any scalar c, the jth entry of c(u + v) is c(u; + v;), and the jth entry of cu + cv is cu; + cv; (by
definition of scalar multiplication and vector addition). These entries are equal, by a distributive
lawin R. So c(u+v)=cu + cv.

34. a. Forj=1,...,n,u; + (-1)u; = (-1)u; + u; = 0, by properties of R. By vector equality,
ut+(-Du=(-Hu+u=0.
b. For scalars ¢ and d, the jth entries of c¢(du) and (cd )u are c(du;) and (cd )u;, respectively. These
entries in R are equal, so the vectors c(du) and (cd)u are equal.

Note: When an exercise in this section involves a vector equation, the corresponding technology
data (in the data files on the web) is usually presented as a set of (column) vectors. To use
MATLAB or other technology, a student must first construct an augmented matrix from these
vectors. The MATLAB note in the Study Guide describes how to do this. The appendices in the
Study Guide give corresponding information about Maple, Mathematica, and the TI and HP
calculators.

1.4 SOLUTIONS

Notes: Key exercises are 1-20, 27, 28, 31 and 32. Exercises 29, 30, 33, and 34 are harder. Exercise 34
anticipates the Invertible Matrix Theorem but is not used in the proof of that theorem.

1. The matrix-vector product Ax is not defined because the number of columns (2) in the 3x2 matrix

—4 2 3
1 6| does not match the number of entries (3) in the vector | -2 |.
0 1 7
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2. The matrix-vector product Ax is not defined because the number of columns (1) in the 3x1 matrix
2

5
6 | does not match the number of entries (2) in the vector J .
-1 L
6 5 57 6 5 12| |-15 -3
3. Ax=|-4 3 3=2—4—3—3=—8+ 9|=| 1], and
7 6] - 7 6 14 |-18] |—4]
6 5] 5] 6-2+5-(-3) -3
Ax=|-4 3 317 (-4)-2+(-3)-(-3)|=| 1
7 67 - 7-2+6-(=3) —4
- 1] -
8 3 -4 8 3 4| |8+3-4 7
4. Ax = 1|=1- +1- +1- = = , and
5 1 2] : 5 1 2| | 5+1+2 8
- 1] -
8 3 4 8-1+3-1+(-4)-1 7
Ax = 1|= =
5 1 2] : S5-1+1-1+2-1 18

5. On the left side of the matrix equation, use the entries in the vector x as the weights in a linear
combination of the columns of the matrix 4:

il

6. On the left side of the matrix equation, use the entries in the vector x as the weights in a linear
combination of the columns of the matrix 4:

7 -3 1
2 1| -9

-2 -5 |=
9 -6| |12
-3 2| |4

7. The left side of the equation is a linear combination of three vectors. Write the matrix 4 whose
columns are those three vectors, and create a variable vector x with three entries:

4 =5 7 4 -5 7
X
-1 3 -8 -1 3 -8 ) _
A= = and x=|x, |. Thus the equation Ax=Db is
7 =5 0 7 =5
X3
-4 1 2 -4 1
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4 -5 7 6
X
-1 3 -8 -8
X, |=
7 =5 0 0

For your information: The unique solution of this equation is (5, 7, 3). Finding the solution by hand
would be time-consuming.

Note: The skill of writing a vector equation as a matrix equation will be important for both theory and
application throughout the text. See also Exercises 27 and 28.

8. The left side of the equation is a linear combination of four vectors. Write the matrix 4 whose
columns are those four vectors, and create a variable vector with four entries:

Z
4 -4 -5 3 4 -4 -5 3 z, _
A= = ,and z = . Then the equation 4z=Db
-2 5 4 0 -2 5 4 0 Zs
24
2
. 4 -4 -5 3|z 4
is = .
-2 5 4 0fz 13
Z4

For your information: One solution is (7, 3, 3, 1). The general solution is z; = 6 + .75z3 — 1.25z,,
Zy = 5— .523 — .524, with Z3 and Zy free.

9. The system has the same solution set as the vector equation

o=l L)

and this equation has the same solution set as the matrix equation
X
31 -5 9
X, |=
0 1 4 0
X3

10. The system has the same solution set as the vector equation

8 -1| |4
x|5(+x,| 4|=|1
1 =3 |2

and this equation has the same solution set as the matrix equation
g8 -1 4

X

5 4 =1
X

1 -3 2
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11. To solve Ax = b, row reduce the augmented matrix [a; a, a; b] for the corresponding linear

system:
1 2 4 2 1 2 4 2 1 2 4 2 1 2 0 -6 0 0 O
0 1 5 2(~[0 1 5 2(~0 1 5 2|~0 1 0 =3|~j0 (D o0 -3
-2 4 3 9 0 0 5 5 0 0 1 1 0 0 1 1 00D 1
x = 0 X, 0
The solution is {x, = -3.Asa vector, the solutionisx=|x, [=|-3]|.
x = 1 X, 1

12. To solve Ax = b, row reduce the augmented matrix [a; a, a; b] for the corresponding linear

system:
1 2 1 0 1 2 1 0 1 2 1 0 1 2 10
-3 -1 2 1(~|0 5 5 1|~/0 5 5 l|~]0 5 5 1
0 5 3 -1 0 5 3 -1 0 0 2 -2 0 0 1 1
1 20 1] 1 20 17D o o 3/5
~[0 5 0 —4{~|0 1 0 -4/5(~[0 (D 0 -4/5
0 0 1 1 0 0 1 1 0o 0@ 1
x = 3/5 X, 3/5
The solutionis sx, = -4/5. As avector, the solutionis x=|x, [=|-4/5].
x = 1 X, 1

13. The vector u is in the plane spanned by the columns of A4 if and only if u is a linear combination of
the columns of A. This happens if and only if the equation Ax = u has a solution. (See the box
preceding Example 3 in Section 1.4.) To study this equation, reduce the augmented matrix [4 u]

3. -5 0 11 411 1 41 4

2 6 4|~2 6 4|~l0 8 12|~[0 ® 12

1 1 4 3 -5 0] |0 -8 =120 |0 O O
The equation Ax = u has a solution, so u is in the plane spanned by the columns of 4.

For your information: The unique solution of Ax = u is (5/2, 3/2).

14. Reduce the augmented matrix [4 u] to echelon form:
58 7 2 1 3 0 2 1 3 0 213 o 2
0 1 -1 3|~{0 1 -1 =-3(~|0 1 -1 3|~l0 O -1 -3

13 0 2/]|58 7 2|0 -7 7 =8/ |0 0 0 &9

The equation Ax = u has no solution, so u is not in the subset spanned by the columns of 4.
2 -1 b -1 b
" |, which is row equivalent to © !
-6 3 b, 0 0 b, +3p

. This shows that the equation Ax = b is not consistent when 3b; + b, is nonzero. The set of b for

15. The augmented matrix for Ax =b is [

Copyright © 2016 Pearson Education, Inc.



1-26 CHAPTER' 1

16.

17.

18.

19.

20.

21.

Linear Equations in Linear Algebra

which the equation is consistent is a line through the origin—the set of all points (b,, b,) satisfying b,
= —3b1 .

1 -3 -4 b,
Row reduce the augmented matrix [4A b]: 4=|-3 2  6|,b=|b, |
5 -1 -8 by
1 -3 -4 b 1 3 4 b 1 -3 -4 b
-3 2 6 b|~|0 -7 -6 b +3h|~|0 -7 -6 b, +3b,
5 -1 -8 b 0 14 12 b,-5h 0 0 0 by—5b+2(b,+3b)
-3 4 b
=0 6 b, +3b,

0 0 0 b+2b+b,

The equation Ax = b is consistent if and only if b + 2b, + b3 = 0. The set of such b is a plane through
the origin in R .

Row reduction shows that only three rows of 4 contain a pivot position:
1 3 0 3 1 3 0 3 1 3 0 3] [ 3 o0 3
A_—l -1 -1 1~0 2 -1 4~0 2 -1 4~0@—1 4
10 -4 2 -8/ |0 -4 2 -8/ |0 0 0 o[ |0 0 0@
2 0 3 -1 0o -6 3 -7 0 0 0 5 0 0 0 O

Because not every row of 4 contains a pivot position, Theorem 4 in Section 1.4 shows that the
equation Ax = b does not have a solution for each b in R*.

Row reduction shows that only three rows of B contain a pivot position:

13 2 211 3 =2 211 3 2 2] [ 3 2 2
o 1 1 5o 1 1 -5/]0o 1 1 -5/|0o@ 1 -5
12 3 770 -1 21 s{jooo 0o oo 0o 0@
2 8 2 -] 0 2 =2 300 0 -7/[0 0 0 0

Because not every row of B contains a pivot position, Theorem 4 in Section 1.4 shows that the
equation Bx =y does not have a solution for each y in R*.

The work in Exercise 17 shows that statement (d) in Theorem 4 is false. So all four statements in
Theorem 4 are false. Thus, not all vectors in R* can be written as a linear combination of the
columns of 4. Also, the columns of 4 do not span R*.

The work in Exercise 18 shows that statement (d) in Theorem 4 is false. So all four statements in
Theorem 4 are false. Thus, not all vectors in R* can be written as a linear combination of the
columns of B. The columns of B certainly do not span R, because each column of B is in R*, not

R’ . (This question was asked to alert students to a fairly common misconception among students
who are just learning about spanning.)

Row reduce the matrix [v; Vv, V3] to determine whether it has a pivot in each row.
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1.9 + Solutions 1-27

1 0 1 1 0 1 1 0 1 @
0
0

1
0
-1 0 O 0 0 1 0 0 1 @
0o 1 -1 0 1 -1 0 0 -1 0 0 0
The matrix [v; Vv, V3] does not have a pivot in each row, so the columns of the matrix do not span
R*, by Theorem 4. That is, {vi, v,, v3} does not span R*.

Note: Some students may realize that row operations are not needed, and thereby discover the principle
covered in Exercises 31 and 32.

22.

23.

24.

25.

26.

27.

Row reduce the matrix [v; Vv, V3] to determine whether it has a pivot in each row.
0 0 4] [ 8 -5
0 3 -1|~] 0 &) -1

-2 8 -5 0 0

The matrix [v; Vv, V3] has a pivot in each row, so the columns of the matrix span R’, by Theorem
4. That is, {vy, v», v3} spans R®.

. False. See the paragraph following equation (3). The text calls Ax = b a matrix equation.
. True. See the box before Example 3.
. False. See the warning following Theorem 4.

a

b

c

d. True. See Example 4.

e. True. See parts (c) and (a) in Theorem 4.
f

. True. In Theorem 4, statement (a) is false if and only if statement (d) is also false.

a. True. This statement is in Theorem 3. However, the statement is true without any “proof™
because, by definition, Ax is simply a notation for x;a; + - - - + x,a,, where ay, ..., a, are the
columns of 4.

b. True. See Example 2.
¢. True, by Theorem 3.

d. True. See the box before Example 1. Saying that b is not in the set spanned by the columns of 4
is the same a saying that b is not a linear combination of the columns of 4.

e. False. See the warning that follows Theorem 4.
f. True. In Theorem 4, statement (c) is false if and only if statement (a) is also false.

By definition, the matrix-vector product on the left is a linear combination of the columns of the
matrix, in this case using weights -3, —1, and 2. So ¢; =-3, ¢; =-1, and ¢3 = 2.

The equation in x; and x, involves the vectors u, v, and w, and it may be viewed as

X .. .
[u v]{ ! } = w. By definition of a matrix-vector product, x;u + x,v = w. The stated fact that
X

3u — 5v—w = 0 can be rewritten as 3u — 5v = w. So, a solution is x; = 3, x, = -5.
Place the vectors q, q», and q3 into the columns of a matrix, say, O and place the weights x;, x,, and

X3 into a vector, say, X. Then the vector equation becomes
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28.

29.

30.

31.

32.

33.

X
Ox=v,where O=[q: q. qs:]and x=|x,

X3
Note: If your answer is the equation 4x = b, you need to specify what 4 and b are.

The matrix equation can be written as ¢V, + ¢V, + ¢33 + €44 + ¢5Vs = Vg, Where

a=-3,0=2,c3=4,c4=-1,c5=2,and v, ={_3:|,V2 ={ 5},v3 =|:_4:|,V4 ={ 9},
5 8 1 -2
7 8
sl

Start with any 3%3 matrix B in echelon form that has three pivot positions. Perform a row operation
(a row interchange or a row replacement) that creates a matrix 4 that is not in echelon form. Then 4
has the desired property. The justification is given by row reducing 4 to B, in order to display the

pivot positions. Since A has a pivot position in every row, the columns of 4 span R*, by Theorem 4.
Start with any nonzero 3x3 matrix B in echelon form that has fewer than three pivot positions.
Perform a row operation that creates a matrix A that is not in echelon form. Then 4 has the desired
property. Since A does not have a pivot position in every row, the columns of 4 do not span R’, by
Theorem 4.

A 3%2 matrix has three rows and two columns. With only two columns, 4 can have at most two pivot
columns, and so 4 has at most two pivot positions, which is not enough to fill all three rows. By

Theorem 4, the equation Ax = b cannot be consistent for all b in R’ . Generally, if 4 is an mxn
matrix with m > n, then 4 can have at most n pivot positions, which is not enough to fill all m rows.

Thus, the equation Ax = b cannot be consistent for all b in R’ .

A set of three vectors in cannot span R*. Reason: the matrix 4 whose columns are these three
vectors has four rows. To have a pivot in each row, 4 would have to have at least four columns (one
for each pivot), which is not the case. Since 4 does not have a pivot in every row, its columns do not

span R*, by Theorem 4. In general, a set of 7 vectors in R cannot span R™ when # is less than m.

If the equation Ax = b has a unique solution, then the associated system of equations does not have
any free variables. If every variable is a basic variable, then each column of 4 is a pivot column. So
0 0

o@D o

the reduced echelon form of 4 must be .
0 0@

000

Note: Exercises 33 and 34 are difficult in the context of this section because the focus in Section 1.4 is on
existence of solutions, not uniqueness. However, these exercises serve to review ideas from Section 1.2,
and they anticipate ideas that will come later.
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36.

37.

38.

39.

1.9 + Solutions 1-29

If the equation Ax = b has a unique solution, then the associated system of equations does not have
any free variables. If every variable is a basic variable, then each column of 4 is a pivot column. So
00

the reduced echelon form of A must be | 0 (1) 0 |. Now it is clear that A4 has a pivot position in each

0 0@

row. By Theorem 4, the columns of 4 span R’ .

Given Ax; =y, and 4x, =Y,, you are asked to show that the equation Ax = w has a solution, where
w =Yy, +y,. Observe that w = Ax; + Ax; and use Theorem 5(a) with x; and x, in place of u and v,
respectively. That is, w = 4x; + Ax, = A(X; + X,). So the vector x = x; + X, is a solution of w = 4x.

Suppose that y and z satisfy Ay = z. Then 4z = 44y. By Theorem 5(b), 44y = A(4y). So 4z = A(4y),
which shows that 4y is a solution of Ax = 4z. Thus, the equation Ax = 4z is consistent.

7 2 -5 8 7 2 =5 8 5 8

2 —
-5 =3 4 -9| |0 -11/7 3/7 -23/7| |0 317 -23/7

M ~ ~
M6 10 2 770 s87 167 17] 7|0 0 ~189/11
-7 9 2 15 0 11 -3 23 0 0 0 0
2 -5 8
0 429 -3.29
or, approximately , to three significant figures. The original matrix does
0 0 ~17.2
0 0 0 0

not have a pivot in every row, so its columns do not span R*, by Theorem 4.

5 -7 -4 9] [5 -7 —4 9 —7 —4 9
] 6 -8 -7 5| |0 2/5 -11/S -29/5| |0 Q/3 -11/5 -29/5
4 -4 -9 9| |0 8/5 -29/5 -81/5| |0 0 © 7
-9 11 16 7| |0 -8/5 44/5 116/5| |0 0 * *

MATLAB shows starred entries for numbers that are essentially zero (to many decimal places) and
in fact they are zero. So, with pivots only in the first three rows, the original matrix has columns that

do not span R*, by Theorem 4.

12 -7 11 -9 5 12 -7 11 -9 5
-9 4 8 7 3 0 -5/4 1/4 1/4 3/4
-6 11 -7 3 -9 0 15/2 -3/2 -=3/2 -13/2

4 -6 10 -5 12 0 -11/3 19/3 -2 31/3

2 -7 1 -9 5 -7 11 -9 5
0 -5/4 1/4 /4 3/4] | 0 G5/ 1/4 /4 3/4
0 0 0 0 2| |0 0 28/ -41/15 122/15

0 0 28/5 -41/15 122/15| | 0 0 0 0 &)

The original matrix has a pivot in every row, so its columns span R*, by Theorem 4.
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8 11 -6 -7 137 [8 11 -6 -7 13

-7 -8 5 6 -9| |0 13/8 -1/4 -1/8 19/8
40. [M] ~

11 7 -7 -9 —6| |0 —65/8 5/4 5/8 =—191/8

-3 4 1 8 7/ |0 65/8 -5/4 43/8 95/8 |
g8 11 -6 -7 137 [® 11 -6 - 3]

- 71
0 13/8 —1/4 -1/8 19/8| |0 (A3/® -1/4 -1/8 19/8

o 0o 0 0 120110 0o o0 ® 0

o 0 o0 6 0|0 0o 0o o C12

The original matrix has a pivot in every row, so its columns span R*, by Theorem 4.

~

41. [M] Examine the calculations in Exercise 39. Notice that the fourth column of the original matrix,
say 4, is not a pivot column. Let C be the matrix formed by deleting column 4 of 4, let B be the
echelon form obtained from 4, and let D be the matrix obtained by deleting column 4 of B. The
sequence of row operations that reduces 4 to B also reduces C to D. Since D is in echelon form, it

shows that C has a pivot position in each row. Therefore, the columns of C span R*.

It is possible to delete columns 1, 2.or 3 of 4 instead of column 4. In this case, the fourth column of
A becomes a pivot column of C, as you can see by looking at what happens when column 3 of B is
deleted. For later work, it is desirable to delete a nonpivot column.

Note: Exercises 41 and 42 help to prepare for later work on the column space of a matrix. (See Section
2.9 or 4.6.) The Study Guide points out that these exercises depend on the following idea, not explicitly
mentioned in the text: when a row operation is performed on a matrix 4, the calculations for each new
entry depend only on the other entries in the same column. If a column of 4 is removed, forming a new
matrix, the absence of this column has no affect on any row-operation calculations for entries in the other
columns of 4. (The absence of a column might affect the particular choice of row operations performed
for some purpose, but that is not being considered here.)

42. [M] Examine the calculations in Exercise 40. The third column of the original matrix, say A4, is not a
pivot column. Let C be the matrix formed by deleting column 3 of 4, let B be the echelon form
obtained from A4, and let D be the matrix obtained by deleting column 3 of B. The sequence of row
operations that reduces A to B also reduces C to D. Since D is in echelon form, it shows that C has a

pivot position in each row. Therefore, the columns of C span R*.

It is possible to delete column lor 2 of A instead of column 3. (See the remark for Exercise 41.)
However, only one column can be deleted. If two or more columns were deleted from 4, the
resulting matrix would have fewer than four columns, so it would have fewer than four pivot
positions. In such a case, not every row could contain a pivot position, and the columns of the matrix

would not span R*, by Theorem 4.

Notes: At the end of Section 1.4, the Study Guide gives students a method for learning and mastering
linear algebra concepts. Specific directions are given for constructing a review sheet that connects the
basic definition of “span” with related ideas: equivalent descriptions, theorems, geometric interpretations,
special cases, algorithms, and typical computations. I require my students to prepare such a sheet that
reflects their choices of material connected with “span”, and I make comments on their sheets to help
them refine their review. Later, the students use these sheets when studying for exams.

The MATLAB box for Section 1.4 introduces two useful commands gauss and bgauss that
allow a student to speed up row reduction while still visualizing all the steps involved. The command
B =gauss (A,1) causes MATLAB to find the left-most nonzero entry in row 1 of matrix 4, and use
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that entry as a pivot to create zeros in the entries below, using row replacement operations. The result is a
matrix that a student might write next to A as the first stage of row reduction, since there is no need to
write a new matrix after each separate row replacement. I use the gauss command frequently in lectures
to obtain an echelon form that provides data for solving various problems. For instance, if a matrix has 5
rows, and if row swaps are not needed, the following commands produce an echelon form of 4:

B = gauss(A,1), B = gauss(B,2), B = gauss(B,3), B = gauss(B,4)

If an interchange is required, I can insert a command such as B = swap (B, 2,5) . The command
bgauss uses the left-most nonzero entry in a row to produce zeros above that entry. This command,
together with scale, can change an echelon form into reduced echelon form.

The use of gauss and bgauss creates an environment in which students use their computer
program the same way they work a problem by hand on an exam. Unless you are able to conduct your
exams in a computer laboratory, it may be unwise to give students too early the power to obtain reduced
echelon forms with one command—they may have difficulty performing row reduction by hand during an
exam. Instructors whose students use a graphing calculator in class each day do not face this problem. In
such a case, you may wish to introduce rref earlier in the course than Chapter 4 (or Section 2.8), which
is where I finally allow students to use that command.

1.5 SOLUTIONS

Notes: The geometry helps students understand Span{u, v}, in preparation for later discussions of sub-
spaces. The parametric vector form of a solution set will be used throughout the text. Figure 6 will appear
again in Sections 2.9 and 4.8. For solving homogeneous systems, the text recommends working with the
augmented matrix, although no calculations take place in the augmented column. See the Study Guide
comments on Exercise 7 that illustrate two common student errors.

All students need the practice of Exercises 1-14. (Assign all odd, all even, or a mixture. If you do not
assign Exercise 7, be sure to assign both 8 and 10.) Otherwise, a few students may be unable later to find
a basis for a null space or an eigenspace. Exercises 29—34 are important. Exercises 33 and 34 help
students later understand how solutions of Ax = 0 encode linear dependence relations among the columns
of 4. Exercises 35-38 are more challenging. Exercise 37 will help students avoid the standard mistake of
forgetting that Theorem 6 applies only to a consistent equation Ax = b.

1. Reduce the augmented matrix to echelon form and circle the pivot positions. If a column of the
coefficient matrix is not a pivot column, the corresponding variable is free and the system of
equations has a nontrivial solution. Otherwise, the system has only the trivial solution.

2 -5 8 0] [2 -5 8 0 -5 8 0
2 -7 1 0]|~|0 =12 9 0|~l0 C1D 9 0
4 2 7 o0l]o 12 -9 0|0 0 0 O

The variable x; is free, so the system has a nontrivial solution.

1 =3 7 0] [t =3 7 0] [ -3 7 0
2.2 1 -4 o|~lo =5 10 0|~|0 &3 10 o
1 2 9 o]0 5 20| |0 0@ o

There is no free variable; the system has only the trivial solution.

-3 5 -7 0 5 -7 0
3. ~ . The variable x; is free; the system has nontrivial
1 0 0 3 15 0

-6 7

solutions. An alert student will realize that row operations are unnecessary. With only two equations,
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there can be at most two basic variables. One variable must be free. Refer to Exercise 31 in Section
1.2

-5 7 9 0 1 -2 6 0 -2 6 0
4. ~ ~ @ . X3 1s a free variable; the system has
I =2 6 0] [-5 7 9 0] [0 (3 39 0

nontrivial solutions. As in Exercise 3, row operations are unnecessary.

1 3 1 0]t 3 1 0][1 0 =5 0[O o -5 o
5.1-4 -9 2 0|~[0 3 6 0|~l0 3 6 o|~<j0 ©O 2 o0
0 3 -6 0|/ |0 3 -6 0/ |0 0 0 0|0 0 0 O

@ - 5x, =0

@ + 2x, = 0. The variable x; is free, x; = 5x3, and x, = —2x3.

0=0
X 5x3 5
In parametric vector form, the general solutionis X =| x, |=| =2x; [=x;| -2 |.
X3 X3 1

1 3 -5 0] 1 3 -5 o] 1 3 -5 0ol o 4 o
6./ 1 4 -8 0|~[0 1 -3 0/~/0 1 =3 0|~l0 (D -3 0
-3 -7 9 o0/ |0 2 -6 0] |O O O O] |0 O O O
x +4x=0
@ — 3x; = 0. The variable x; is free, x; = —4x3, and x, = 3x3.
0=0
X —4x;, —4
In parametric vector form, the general solutionis x=| x, |=| 3x; [=x;| 3.

X3 X3

7'[1 3 -3 7 0}{@0 9 -8 o]@ +9x, —8x, =0

01 -4 5 0] [0@®-4 50 @)— 4x; +5x, =0

The basic variables are x; and x,, with x3 and x4 free. Next, x; = —9x3 + 8x4, and x, = 4x3 — 5x4. The
general solution is

X, —9x; +8x, —9x;, 8x, -9 8

X 4x; —5x 4x =5x 4 =5
== 3 4| E N ‘=x, +x,

X, X, X, 0 1 0

Xy Xy 0
g1 2 9 50 0 -5 -7 0] &) —5x —7x, =0
o1 2 -6 0o [0 @ 2 -6 0]  (x)+2x - 6x, =
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11.
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The basic variables are x; and x,, with x; and x, free. Next, x; = 5x3 + 7x4 and x, = —2x3 + 6x4. The
general solution in parametric vector form is

X Sxy+7x, 5x; Txy 5 7

X —2x; +6x -2x 6x -2 6
x=|"l=| 77 T = TP+ Pt =Ex +x,

X, X, X, 0 1 0

Xy Xy 0 X4 0 1

-1 3 -2 0 3 -9 6 0] |0 0 0 O 0

[3 -9 6 0}{1 -3 2 o}[@ -3 2 o} @—3x2+2x320.

The solution is x; = 3x, — 2x3, with x; and x; free. In parametric vector form,

3x, —2x4 3x, —2x5 3 -2
X= X, =l x [+ 0 |=x| 1|+x] O].
X; 0 X; 0 1

1 3 0 -4 0 30 -4 0](p—3x, —4x, =0
2 6 0 -8 0/ |0 0 0O 0 O 0 =0

The only basic variable is x;, s0 x,, x3, and x4 are free. (Note that x; is not zero.) Also, x; = 3x, + 4x4.

X, 3x, +4x, 3x, 0 4x, | 3 0 4
.. X, X, X, 0 0 1 0 0
The general solution is x = = = + + =X, |+tx3] [+x4 .
X3 X3 0 X, 0 0 1 0
Xy x, 0 0 X, | 0 0 1
1 4 -2 0 3 -5 0 1 4 -2 0 0 7 0] 1 -4 0 0 0 50
o o0 1 0 0 -1 0 0 0 0o 0 -1 0@ o1 0 0 -10
o 0 o0 0 I -4 0 0 0 0 1 -4 0 0o 0@ o0 1 -4 0
0o 0 0 0 0 o0 O 6O 0 0 0 O 0 O0f [0 O O O ©@ o0 o
@— 4x, + 5x, =0
— X —
@ @ 4 6 0 The basic variables are x;, x3, and xs. The remaining variables are
—_ x6 =
0=0

free. In particular, x, is free (and not zero as some may assume). The solution is x; = 4x, — 5xs,

X3 = Xg, X5 = 4x6, With x,, x4, and x¢ free. In parametric vector form,
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X

X

Note: The Study Guide discusses two mistakes that students often make on this type of problem.

Linear Equations in Linear Algebra

X
X6
Xy
4x

X6

[4x, —5x,

sy
0
X6
0

4x

Xo |

1
I

:AIOOOO»—A

1

0 -5
0 0

+ X 0 + X !
117 o
0 4

o] |1

T T

\'% W

S O BN =

0
0

@
0

1 5 2 -6 9 0 O 1 5 2 -6 9 0 0] [ 5 0 8
12.00 1 -7 4 80N00 1—7400~00®—7
0 0 0 0 0 1 0 0 0 0 0 0 1 O 0 0 O 0
0 0 0 0 0 0 O 0 0 O 0 0 0 O 0 0 O 0
@+ 5x, + 8x, + X =0
@ - Tx, +4x, =0
&= 0
0 =0
The basic variables are x;, x3, and xg; the free variables are x,, x4, and xs. The general solution is
X =—5x, — 8x4 — x5, X3 = Tx4 — 4xs, and x¢ = 0. In parametric vector form, the solution is
[ ] [=5x,—8x,—x5 | [-5x,] [-8x,] [ —x; | 5] [-8] 1]
X, X, X, 0 0 1 0 0
. X | Tx, —4x; _ 0 Tx, N —4x5 _x, 0 +x, 7 rx —4
Xy X, 0 X4 0 0 1 0
X5 Xs 0 0 Xs 0 0 1
| X | | 0 1 Lo | [0 ][ 0] | 0] | 0] | 0]

13. To write the general solution in parametric vector form, pull out the constant terms that do not

involve the free variable:

X
X=|x,|=

X3

5+4x,
2=-Tx; |=| =2 |+|-Tx; |=| 2 |+x;| -7 | = p+x3q.

X3

5

0

4x,

X3

5

0
T
p

4

1
T
q

5

Geometrically, the solution set is the line through | —
0
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1.9 + Solutions

14. To write the general solution in parametric vector form, pull out the constant terms that do not
involve the free variable:

X 3x, 0 3x, 0 3
X, 8+x, 8 X, 8 1
X= = = |+ = _|+x, =p+x,q
X, 2-5x, 2| | -Sxy 2 =5
Xy Xy 0 X, 0 1
T T
p q

The solution set is the line through p in the direction of q.

15. Row reduce the augmented matrix for the system:

1 3 1 1 1 3 1 1 1 3 1 1
-4 -9 2 -1|~/0 3 6 3(~/0 3 6 3
0 -3 -6 -3 0 -3 -6 -3 0 0 0 O
13 11 0 -5 2] () —5%=-2
~l0 1 2 1/~l0 D 2 1]. @)+ 2x = 1.
0 0 0 O 0 0 0 O 0 =0
Thus x; = -2 + 5x3, x; = 1 — 2x3, and x3 is free. In parametric vector form,
X -2+ 5x, -2 5x; -2 5
X=|x, |=| 1-2x; |=| 1|+|2x;|=]| 1|+x;]-2
X; X 0 X3 0 1
-2
The solution set is the line through | 1|, parallel to the line that is the solution set of the
0

homogeneous system in Exercise 5.

16. Row reduce the augmented matrix for the system:
1 3 -5 4] [1 3 =5 4] [1 3 =5 4] [(D o 4 -5
1 4 -8 7(~/0 1 -3 3[~l0 1 -3 3|~[0 (D -3 3
-3 -7 9 -6 0 2 -6 6 0 0 0 0 0 0 0 O

(x) +4x;=-5

@ — 3x; = 3. Thus x; =-5—4x3;,x, =3 + 3x3, and x3 is free. In parametric vector form,
0 =0
X =5 —4x, =5 —4x;, =5 -4
x=|x, |=| 3+3x; |[=| 3|+| 3x;|=| 3|+x] 3
X, X, 0 X3 0 1
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17.

18.

19.

20.

=5
The solution set is the line through | 3|, parallel to the line that is the solution set of the
0
homogeneous system in Exercise 6.

Solve x; + 9x, — 4x3 = -2 for the basic variable: x; = -2 — 9x, + 4x3, with x, and x; free. In vector
form, the solution is

x| [-2-9x, +4x, -2 —9x, | [4x 2] -9 4
X=|x,|= X, = Of+| x, |[+| 0 |=| O|+x,| 1|+x;]0
%] | X 0 0 X 0] 0 1
The solution of x; + 9x, — 4x3 = 0 is x; = —9x, + 4x;3, with x, and x;3 free. In vector form,
—xl i _—9x2 +4x;, —9x, 4x, -9 4]
X=|x, = X, = x [+] 0 [=x| 1|+x|0|=xu+x;v
X; X; 0 X; 0 1

The solution set of the homogeneous equation is the plane through the origin in R’ spanned by
u and v. The solution set of the nonhomogeneous equation is parallel to this plane and passes through
-2
the pointp=| 0].
0

Solve x; — 3x;, + 5x3 = 4 for the basic variable: x; = 4 + 3x, — 5x3, with x, and x5 free. In vector form,
the solution is

x| [4+3x, —5x, 4| |3x, —=5x; 4 3 -5
X=|x, |= X, = 0|+ x, |[+| O |=] O|+x,| 1|+x;] O
15| | X 0 0 X, 0 0 1
The solution of x; — 3x; + 5x3 = 0 is x; = 3x, — 5x3, with x, and x; free. In vector form,
X 3x, —5x; 3x, =5x; 3 -5
X=|x,|= X, =l x, [+| 0 |=x] 1|+x] O0|=xu+xv
E e 0 X, 0 1

The solution set of the homogeneous equation is the plane through the origin in R* spanned by u
and v. The solution set of the nonhomogeneous equation is parallel to this plane and passes through
4
the pointp= 0.
0

The line through a parallel to b can be written as x = a + ¢ b, where ¢ represents a parameter:
x| [=2] [-5 x, =-2-5t

X = = +1 , or
X, 0] 3 x, =3t

The line through a parallel to b can be written as x = a + tb, where ¢ represents a parameter:

X 31 [-7 x, =3-Tt
X = = +t , Or
X, —4 8 x, =—4+8¢
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1.9 + Solutions 1-37

2 -3
The line through p and q is parallel to q — p. So, given p = { 5} and q= { J , form

-3-2 -5 2 -5
-p= = , and write the lineasx=p + {(q —p) = +1 .
S [ poae=| G

—6 0
The line through p and q is parallel to q — p. So, given p = { 3} and q = { 4} , form

0-(-6)] [ 6 o %] [ 6
-P= = , and write the lineasx=p +#(q—p) = e
a-p [ _4_3} {_7} w p+t(q-p) {3} [_7}

Note: Exercises 21 and 22 prepare for Exercise 27 in Section 1.8.

23.

24.

25.

26.

27.

28.

a. True. See the first paragraph of the subsection titled “Homogeneous Linear Systems”.

b. False. The equation Ax = 0 gives an implicit description of its solution set. See the subsection
entitled “Parametric Vector Form”.

c. False. The equation Ax = 0 always has the trivial solution. The box before Example 1 uses the
word nontrivial instead of trivial.

d. False. The line goes through p parallel to v. See the paragraph that precedes Fig. 5.

e. False. The solution set could be empry! The statement (from Theorem 6) is true only when there
exists a vector p such that Ap =b.

a. False. A nontrivial solution of Ax = 0 is any nonzero x that satisfies the equation. See the
sentence before Example 2.

. True. See Example 2 and the paragraph following it.
True. If the zero vector is a solution, then b = Ax = 40 = 0.

. True. See the paragraph following Example 3.
False. The statement is true only when the solution set of Ax = b is nonempty. Theorem 6 applies
only to a consistent system.

cae T

Suppose p and w satisfy 4x =b. Then Ap =b and Aw =b . Set v, = w — p. Then
Avpy=A(w—-p)=Aw—-Ap=b-b=0
So vy, satisfies Ax = 0.

(Geometric argument using Theorem 6.) Since Ax = b is consistent, its solution set is obtained by
translating the solution set of Ax = 0, by Theorem 6. So the solution set of Ax = b is a single vector if
and only if the solution set of 4x = 0 is a single vector, and that happens if and only if Ax = 0 has
only the trivial solution.

(Proof using free variables.) If Ax = b has a solution, then the solution is unique if and only if there
are no free variables in the corresponding system of equations, that is, if and only if every column of
A is a pivot column. This happens if and only if the equation 4x = 0 has only the trivial solution.

When 4 is the 3x3 zero matrix, every x in R’ satisfies Ax = 0. So the solution set is all vectors in
R’.

No. If the solution set of Ax =b contained the origin, then 0 would satisfy 40= b, which is not true
since b is not the zero vector.
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29.

30.

31.

32.

33.

34.

a. When 4 is a 3x3 matrix with three pivot positions, the equation Ax = 0 has no free variables and
hence has no nontrivial solution.

b. With three pivot positions, 4 has a pivot position in each of its three rows. By Theorem 4 in
Section 1.4, the equation Ax = b has a solution for every possible b. The term “possible” in the

. . . . . 3
exercise means that the only vectors considered in this case are those in R’ , because 4 has three
TOWS.

a. When 4 is a 3x3 matrix with two pivot positions, the equation Ax = 0 has two basic variables and
one free variable. So Ax = 0 has a nontrivial solution.

b. With only two pivot positions, 4 cannot have a pivot in every row, so by Theorem 4 in Section
1.4, the equation Ax = b cannot have a solution for every possible b (in R*).

a. When 4 is a 3X2 matrix with two pivot positions, each column is a pivot column. So the equation
Ax = 0 has no free variables and hence no nontrivial solution.

b. With two pivot positions and three rows, 4 cannot have a pivot in every row. So the equation Ax
= b cannot have a solution for every possible b (in R?), by Theorem 4 in Section 1.4.

a. When 4 is a 2x4 matrix with two pivot positions, the equation 4x = 0 has two basic variables and
two free variables. So Ax = 0 has a nontrivial solution.

b. With two pivot positions and only two rows, 4 has a pivot position in every row. By Theorem 4
in Section 1.4, the equation Ax = b has a solution for every possible b (in R’ ).

-2 —6
Look at x;| 7 |+x,| 21| and notice that the second column is 3 times the first. So suitable values
-3 -9

3
for x; and x, would be 3 and —1 respectively. (Another pair would be 6 and -2, etc.) Thus x = { J

satisfies Ax = 0.
Inspect how the columns a, and a, of 4 are related. The second column is —3/2 times the first. Put

3
another way, 3a, + 2a, = 0. Thus [2} satisfies Ax = 0.

Note: Exercises 33 and 34 set the stage for the concept of linear dependence.

3S.

36.

37.

Look for 4 =[a; a, a;]such that 1-a; + 1a, + 1-a3 = 0. That is, construct 4 so that each row sum
(the sum of the entries in a row) is zero.

Look for 4 =[a; a, a;]such that1-a;—2-a,+ 1-a3=0. That is, construct 4 so that the sum of the
first and third columns is twice the second column.

Since the solution set of Ax = 0 contains the point (4,1), the vector x = (4,1) satisfies 4x = 0. Write
this equation as a vector equation, using a; and a, for the columns of 4:

4'31 + 1'32 =0
Then a, = —4a,. So choose any nonzero vector for the first column of 4 and multiply that column by

1 -4
— 4 to get the second column of 4. For example, set 4 = [1 4} .
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Finally, the only way the solution set of Ax =b could not be parallel to the line through (1,4) and the
origin is for the solution set of Ax = b to be empty. This does not contradict Theorem 6, because that
theorem applies only to the case when the equation Ax = b has a nonempty solution set. For b, take
any vector that is not a multiple of the columns of 4.

Note: In the Study Guide, a “Checkpoint” for Section 1.5 will help students with Exercise 37.

38. No. If Ax =y has no solution, then 4 cannot have a pivot in each row. Since 4 is 3%3, it has at most
two pivot positions. So the equation Ax = z for any z has at most two basic variables and at least one
free variable. Thus, the solution set for Ax = z is either empty or has infinitely many elements.

39. If u satisfies Ax =0, then Au = 0. For any scalar ¢, Theorem 5(b) in Section 1.4 shows that A(cu) =
cAu=c0=0.

40. Suppose Au =0 and Av = 0. Then, since A(u + v) = Au + Av by Theorem 5(a) in Section 1.4,
Au+v)=Au+Av=0+0=0.
Now, let ¢ and d be scalars. Using both parts of Theorem 5,
A(cu + dv) = A(cu) + A(dv) = cAu + dAv =c0 + d0 = 0.

Note: The MATLAB box in the Study Guide introduces the zeros command, in order to augment a
matrix with a column of zeros.

1.6 SOLUTIONS

1. Fill in the exchange table one column at a time. The entries in a column describe where a sector's
output goes. The decimal fractions in each column sum to 1.

Distribution of

Output From:
Goods Services Purchased by:
output | l input
2 i - Goods
.8 3 - Services

Denote the total annual output (in dollars) of the sectors by pg and ps. From the first row, the total
input to the Goods sector is .2 pg + .7 ps. The Goods sector must pay for that. So the equilibrium
prices must satisfy

income expenses
PG = 2pg+.7pg

From the second row, the input (that is, the expense) of the Services sector is .8 pg + .3 ps.
The equilibrium equation for the Services sector is
income expenses

Ds = 8pg +.3ps
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Move all variables to the left side and combine like terms:
-8p; + Ipg = 0
_ -7 0] [8 -7 0] [1 -875 0
Row reduce the augmented matrix: ~ ~
-8 g 0 0 0 0 0 0 0

The general solution is pg = .875 ps, with ps free. One equilibrium solution is ps = 1000 and

pc = 875. If one uses fractions instead of decimals in the calculations, the general solution would be
written pg = (7/8) ps, and a natural choice of prices might be ps = 80 and pg = 70. Only the ratio of
the prices is important: pg = .875 ps. The economic equilibrium is unaffected by a proportional
change in prices.

2. Take some other value for pg, say 200 million dollars. The other equilibrium prices are then
pc = 188 million, pg = 170 million. Any constant nonnegative multiple of these prices is a set of
equilibrium prices, because the solution set of the system of equations consists of all multiples of one
vector. Changing the unit of measurement to, say, European euros has the same effect as multiplying
all equilibrium prices by a constant. The ratios of the prices remain the same, no matter what
currencyis used.

3. a. Fill in the exchange table one column at a time. The entries in a column describe where a
sector’s output goes. The decimal fractions in each column sum to 1.

Distribution of Output From: Purchased
Chemicals Fuels Machinery by:
output l 2 \2 input
2 8 4 — Chemicals
3 .1 4 — Fuels
.5 A 2 — Machinery

b. Denote the total annual output (in dollars) of the sectors by pc, pr, and py. From the first row of
the table, the total input to the Chemical & Metals sector is .2 pc + .8 pr + .4 pu. So the
equillibrium prices must satisfy

income expenses
Pe = 2p.+.8pr+.4py
From the second and third rows of the table, the income/expense requirements for the Fuels &
Pr=3pc +.1pp +.4py
Py =5pc +.1pe +2py
8pc —8pp—4py =0
Move all variables to the left side and combine like terms: —3pc +.9pp —.4py =0
=5pc—.1pp +.8py =0

¢. [M] You can obtain the reduced echelon form with a matrix program. Actually, hand calculations
are not too messy. To simplify the calculations, first scale each row of the augmented matrix by
10, then continue as usual.

Power sector and the Machinery sector are, respectively,
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&8 -8 4 0 1 -1 -5 0 1 -1 -5 0
-3 9 4 0|~|-3 9 4 0|~|0 6 =55 0
-5 -1 8 0 =5 -1 8 0 0 -6 55 0

I -1 -5 0 @ 0 —1.417 0| The number of decimal
~0 1 =917 0|~0 () =917 0 places displayed is
0 0 0 0 0 0 0 0| somewhat arbitrary.

The general solution is pc= 1.417 pm, pr = .917 pm, with py free. If py is assigned
the value 100, then pc = 141.7 and pr = 91.7. Note that only the ratios of the prices are
determined. This makes sense, for if the were converted from, say, dollars to yen or Euros, the
inputs and outputs of each sector would still balance. The economic equilibrium is not affected
by a proportional change in prices.

4. a. Fill in the exchange table one column at a time. The entries in each column must sum to 1.
Distribution of Output From:

A E M T Purchased by :
output | l l ! input
65 30 30 20 —
0 .10 15 10 —
25 35 15 30 -
0 25 40 40 —

4z o

b. Denote the total annual output of the sectors by pa, pg, pm, and pr, respectively. From the first
row of the table, the total input to Agriculture is .65pa + .30pg + .30py + .20 pr. So the
equilibrium prices must satisfy

income expenses

pPx = .65p, +.30p; +.30p,, +.20p;

From the second, third, and fourth rows of the table, the equilibrium equations are

pg = .10p, +.10p; +.15p, +.10p;
Pu = 25p,+.35p; +.15py +.30p;
pr = 25pg +.40py, +.40p,

Move all variables to the left side and combine like terms:
35p, —30p; —.30py —20p; =0
-10p, +.90p; —.15p,, —.10p. =0
-25p, —.35p; +.85py —.30p; =0
-25p —40py +.60p; =0
Use gauss, bgauss, and scale operations to reduce the augmented matrix to reduced echelon form
35 -3 =3 -2 0 35 -3 0 =550 0 0 =71 0

0 81 -24 -16 0 0 81 0 -43 0 0 Mo -5 0
0 0 1.0 -1.17 0 0 0 1 -117 0 0 0 @ -117 0
0 0 0 0 0 0 0 0 0 0 0 0 O 0 0
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Scale the first row and solve for the basic variables in terms of the free variable pt, and obtain
pa=2.03pr, pr = .53pr, and py = 1.17pr. The data probably justifies at most two significant
figures, so take pr = 100 and round off the other prices to ps = 200, pg = 53, and py = 120.

5. The following vectors list the numbers of atoms of boron (B), sulfur (S), hydrogen (H), and oxygen

(0):
2 (0] 1 0] boron
3 0 0 1| sulfur
B,S;:| |, H,O: , H;BO;:| |, H,S:
0 2 3 2| hydrogen
0 _1_ 3 0] oxygen
The coefficients in the equation x;-B,S; + x,-H,0 — x3-H3;BO;5 + x4-H,S satisfy
2 0 1 0
3 0 0 1
X, 0 + X, 5 =X, 3 +x, 5
0 1 13 ] 0

Move the right terms to the left side (changing the sign of each entry in the third and fourth vectors)
and row reduce the augmented matrix of the homogeneous system:

S O W N
—_ O O

0
1
0
0

S O O N

3

0 0] 20 -1 00][20 -1 0020 -1 00
10l l0o 0 32 -1 0/]01 =3 00|01 -3 00
2 ol o 2 =3 =2 0| o o0 3/2 -1 0] |0 0 32 -1 0
ool o1 3 o0wo0/]0o2 3 =2 o0/l0oo0o 3 =20
0 0] 20 0 —2/3 0] [1 00 -1/3 0
0 0/ 0 1 0 =2 o/]0o10 -2 0
2/3 0ol o o 1 =2/3 ol [0 0 1 =2/3 0
2 0/ ]o 00 o of]oo o o o

The general solution is x; = (1/3) x4, X2 = 2x4, X3 = (2/3) x4, With x4 free. Take x, = 3. Then x; =1,
X, =6, and x; = 2. The balanced equation is B,S; + 6H,0 — 2H;BO; + 3H,S.

Na,PO,:

The coefficients in the equation x;-Na;PO, + x,-Ba(NO3),

3
1
4
0
0

b

Ba(NO;),:

. The following vectors list the numbers of atoms of sodium (Na), phosphorus (P), oxygen (O),
barium (Ba), and nitrogen(N):

(0] 0] 1] sodium
0 2 0| phosphorus
6|, Ba;(PO,),:|8|, NaNO;:|3| oxygen
1 3 0| barium

12 ] 10 | 1| nitrogen

— x3-Ba3(PO4)2 + x4-NaNO; satisfy
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31 [o] o] [1]
1 0 2 0
X[ 4]+x]6|=x;|8|+x,|3
0 1 0
0] 2] 10| 1]

Move the right terms to the left side (changing the sign of each entry in the third and fourth vectors)
and row reduce the augmented matrix of the homogeneous system:

30 0 -1 0 1 0 2 0 0]t o =2 o0 o0][1 0 =2 00
1 0 -2 0 0] [3 0 0 -1 0| |0 O -1 0 |01 -3 0 0
4 6 -8 -3 0|~/4 6 -8 -3 0|~|0 6 0 -3 0|~/0 6 0 -3 0
o 1 3 o0 0 |0 1 -3 00 (01 -3 00100 6 -1 0
02 0 -1 0] |02 0 -1 0] |02 0 -1 0] [0 2 0 -1 0]
1 0 =2 0 0] [1 0 =2 0 O] 1 0 0 =-1/3 O]
0 1 3 0 O/ |0 1 =3 0 0| |0 1 0 —-1/2 0
~l0 0 18 -3 0|~/0 0 1 -1/6 0|~|0 O 1 -1/6 0
00 6 -1 0|l |0 0 O 0 0| [0 0 O 0 0
00 6 -1 0/ |0 0 0 0 0] [0 0 O 0 0]

The general solution is x; = (1/3)x4, Xo = (1/2)x4, x3 = (1/6)x4, with x4 free. Take x4 = 6. Then x; =2,
x, =3, and x3 = 1. The balanced equation is

2Na3PO4 + 3Ba(NO3)2 — Ba3(PO4)2 + 6NaNO3

. The following vectors list the numbers of atoms of sodium (Na), hydrogen (H), carbon (C), and
oxygen (O):

1 0 3 0 0| sodium

1 8 5 2 0| hydrogen
NaHCO,: | |, H;C,HO,: , Na,CiH,O0,:| |, H,O:| |, CO,:

1 6 6 0 1| carbon

3 7 7 1 2| oxygen

The order of the various atoms is not important. The list here was selected by writing the elements in
the order in which they first appear in the chemical equation, reading left to right:

X1 NaHCO3 + x5 H3C6H507 — X3 Na3C6H507 + X4 HZO + X5 COZ

The coefficients x, ..., x5 satisfy the vector equation
1 0 3 0 0
1 8 5 2 0

X . +x, 6 =X 6 +Xx, 0 + x5 :
3 7 7 1 2

Move all the terms to the left side (changing the sign of each entry in the third, fourth, and fifth
vectors) and reduce the augmented matrix:
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1 0 3 0 0 0 1 00 0 -1 0
1 8 -5 2 0 0 01 0 0 -1/3 0
1 6 6 0 -1 of oo 1 0 -1/3 0
37 7 -1 =2 0 000 1 -1 0

The general solution is x; = xs, x; = (1/3)xs, x3 = (1/3)xs, x4 = x5, and xs is free. Take x5 = 3. Then x; =
x4 =3, and x, = x; = 1. The balanced equation is

3NaHCO3 +H3C6H5O7 — Na3C6H5O7 + 3H20 + 3C02

8. The following vectors list the numbers of atoms of potassium (K), manganese (Mn), oxygen (O),
sulfur (S), and hydrogen (H):

(0] (0] [2] [0] potassium

1 1 0 1 0 0| manganese
KMnO,: (4|, MnSO,: | 4|, H,O0: |1 |, MnO,: |2, K,SO,: | 4|, H,SO,: | 4| oxygen
0 1 0 0 1 1| sulfur

0 0 12 ] 10| 10 ] 2] hydrogen

The coefficients in the chemical equation
X]'KMI]O4 + )Cz'Ml’lSO4 + X3'H20 4 x4-Mn02 + XS'KZSO4 + x6-HQSO4satisfy the vector

1 0 0 0 2 0
1 1 0 1 0 0
equationx; | 4 [+ x, [ 4 |+x;]| 1 |=x,| 2 [+ x5| 4 |+ x4 | 4
0 1 0 0 1 1
10 10 12 ] 10| 10 2]

Move the terms to the left side (changing the sign of each entry in the last three vectors) and reduce
the augmented matrix:

‘1 0 0 0 =2 0 0] [ 0 -1.0 O]
1 1.0 -1 0 0
4 4 1 =2 -4 -4 0
01 0 0 -1 -1 0
002 0 0 -2

=R = -
l
=)
|
—_
(=)
o O o o

000 0@ -5 0

The general solution is x; = x, X, = (1.5)x6, X3 = X6, X4 = (2.5)x6, X5 = .5x6, and x¢ is free.
Take x¢ = 2. Then x; =x3 =2, and x, = 3, x4 = 5, and x5 = 1. The balanced equation is
2KMIIO4 + 3MIISO4 + 2H20 4 5M1’102 + KZSO4 + 2H2$O4

9. [M] Set up vectors that list the atoms per molecule. Using the order lead (Pb), nitrogen (N),
chromium (Cr), manganese (Mn), and oxygen (O), the vector equation to be solved is

(1] 0] 3] 0] 0] [0] lead

6 0 0 0 0 1| nitrogen
X |0 +x,| 1 |=x]0|+x,]2|+x5|0|+x,]0| chromium

0 2 0 0 1 0| manganese

10 | 8 4 |3 ] 12 ] 1] oxygen
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The general solution is x; = (1/6)xg, X, = (22/45)x6, x3 = (1/18)x¢, x4 = (11/45)x6, x5 = (44/45)x4, and
Xe 1s free. Take xg = 90. Then x; = 15, x, =44, x3 =5, x4 = 22, and x5 = 88. The balanced equation is
15PbN6 + 44CI'M1’1208 4 5Pb304 + 22CT203 + 88M1'102 +90NO

[M] Set up vectors that list the atoms per molecule. Using the order manganese (Mn), sulfur (S),
arsenic (As), chromium (Cr), oxygen (O), and hydrogen (H), the vector equation to be solved is
(1] 0| (0] 1] 0] (0] [0] manganese
1 1 0 0 3 0| sulfur
0 2 0 0 1 0 0| arsenic
x| |[+x, + X, =X4| |+ X5| [+ +x; _
0 10 0 0 0 1 0| chromium
0 35 4 4 0 12 1| oxygen
10 ] 1 0 | 12 ] 1] 3] 0 2] hydrogen

In rational format, the general solution is x; = (16/327)x7, x, = (13/327)x7, x3 = (374/327)x7,
x4 = (16/327)x7, x5 = (26/327)x7, x¢ = (130/327)x7, and x; is free. Take x; = 327 to make the other
variables whole numbers. The balanced equation is

16MnS + 13As,Cr0035 + 374H,SO4 — 16HMnO,4 + 26AsH; + 130CrS;04, + 327H,0

Note that some students may use decimal calculation and simply "round off" the fractions that relate
X1, ..., X6 t0 x7. The equations they construct may balance most of the elements but miss an atom or
two. Here is a solution submitted by two of my students:

SMnS + 4As,Cr o035 + 115H,SO4 — SHMnO, + 8AsH; + 40CrS;0,, + 100H,O

Everything balances except the hydrogen. The right side is short 8 hydrogen atoms. Perhaps the
students thought that the 4H, (hydrogen gas) escaped!

Write the equations for each node:
Node Flow in Flow out A
20 1,
A X tx, = 20 B
B X, = x+x fa x4
C 80 =  x+x 80 —— " 2
Total flow: 80 =  x,+20
Rearrange the equations:
b + x5 = 20
X3 — x - x, = 0
X t+ x = 80
x, = 60
Reduce the augmented matrix:
1 0 1 0 20 o 1 0 20
0 1 -1 -1 0 0 M -1 0 60
11 0 0 8| |oo 0@ 60

0 0 0 1 60 0 0 0 0 O

For this type of problem, the best description of the general solution uses the style of
Section 1.2 rather than parametric vector form:
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X =20—x,
X, =60+x; . ) )
. . Since x; cannot be negative, the largest value of x; is 20.
x; is free
X, =60

12. Write the equations for each intersection: 200

Intersection  Flow in Flow out lB
A X, = x;+x,+40 Y .
B 200 = Xt X, 10 < S 100
C Xy +x, = x5 +100
D Xotx, = 60 N
Total flow: 200 = 200 60
Rearrange the equations:
X, - X = X = 40
x + x = 200
X, + X - x; = 100
X, + xs = 60
Reduce the augmented matrix:
1 0 -1 -1 0 40] [ 0 -1 0 1 100
1 1.0 0 0 200 o M 1 0 -1 100
0O 1 1 0 -1 100] |0 0 o0 (D 1 60
0 0 0 1 1 60 0 0 0 0 O 0
The general solution (written in the style of Section 1.2) is
x; =100+ x5 — x5 X =40 + x;
Xy =100 —x; + x5 X, =160 — x4
x; is free b. When x4 = 0, xs must be 60, and 1 x; is free
x, =60—Xx; x,=0
x5 1s free x5 =60

¢. The minimum value of x; is 40 cars/minute, because x; cannot be negative.

13. Write the equations for each intersection:

30 40
A
Y
A X X C
80 «—— 2 B 5_e—100
B 4 A Xg
60)—E X3 X4 D—>90
A
A 4

20 40
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Intersection  Flow in Flow out
A x+30 = x+80
B X;+Xxs = X, tx
C Xe+100 = x;+40
D x,+40 = x,+90
E x+60 = x+20
Total flow: 230 = 230
Rearrange the equations:
X - X = =50
X, — X + X3 = X5 = 0
X3 — x4, = 60
X, - x, = 50
X - X -40
Reduce the augmented matrix:
‘1T -1 0 0 0 0 -50] (1 -1 0 0 0 0 =50
0o 1 -1 1 -1 0 0 0o 1 -1 1 -1 0 0
o o0 o o0 1 -1 60f~-~/0 0 O 1 0 -1 50
0 0 0 1 0 -1 50 0 0 0 O -1 60
10 -1 0 0 0 -40] o0 0 0 0 O 0
@ o0 -1 0 0 0 -40
o -1 0 0 0 10
~~l0 0 0 @O 0 -1 50
0 0 0 0 (D -1 60
0o 0 0 0 0 O 0]
X =x,—40
x, =x;+10
.. | xyi1s free
a. The general solution is
Xy =x5+50
X5 =Xz +60
x, 1s free

b. To find minimum flows, note that since x; cannot be negative, x; > 40. This implies that
x; > 50. Also, since x¢ cannot be negative, x4 > 50 and x5 > 60. The minimum flows are
X =50, x3 =40, x4, = 50, x5 = 60 (when x; = 0 and xs = 0).
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14. Write the equations for each intersection.

Intersection  Flow in Flow out 120 150
A X, = x,+100 c/y o,
B x,+50 = X3 x3 X4
C X, = x,+120 50 »—Elk . e f—» 80
D x,+150 = X 100 +—— <100
E X5 = x,+80 \_‘/
F X, +100 = X, 1
Rearrange the equations:
X - X = 100
X, — X = =50
Xy — X, = 120
X, = Xs = =150
X — X4 = 80
-X + x, = -100

Reduce the augmented matrix:

1 -1 0 0 0 0 100] 1 -1 0 0 0 0 100]
o 1 -1 0 0 0 -5 o 1 -1 0 0 0 -5
o 0 1 -1 0 0 120 0o 0 1 -1 0 0 120
0 0 0 -1 0 -150| {0 0 0 1 -1 0 -150
0 0 O 1 -1 80 0 0 0 1 -1 80
-1 0 0 0 0 1 -100] o 0 0 0 0 O 0]
(10 0 0 0 -1 100] x, =100 + x,
0 1.0 0 0 -1 0 X, = Xg
0 01 00 -1 50 % =50+x
e~ . The general solution is .
0 0 0 1 0 -1 =70 Xy ==70+ x,
0 0 0 01 -1 80 x5 =80+ x4
0 0 0 0 0 0 0 X, 1s free

Since x4 cannot be negative, the minimum value of x¢ is 70.
Note: The MATLAB box in the Study Guide discusses rational calculations, needed for balancing the

chemical equations in Exercises 9 and 10. As usual, the appendices cover this material for Maple,
Mathematica, and the TI and HP graphic calculators.

1.7 SOLUTIONS

Note: Key exercises are 9-20 and 23-30. Exercise 30 states a result that could be a theorem in the text.
There is a danger, however, that students will memorize the result without understanding the proof, and
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then later mix up the words row and column. Exercises 37 and 38 anticipate the discussion in Section 1.9
of one-to-one transformations. Exercise 44 is fairly difficult for my students.

1. Use an augmented matrix to study the solution set of x;u + x,v + x3w = 0 (¥), where u, v, and w are
5 7 9 0 7 9 0

the three given vectors. Since |0 2 4 0(~|0 (2 4 0/, there are no free variables. So
0 6 -8 0| (0 0® o

the homogeneous equation (*) has only the trivial solution. The vectors are linearly independent.

2. Use an augmented matrix to study the solution set of x;u + x,v + x3w = 0, where u, v, and w are the
0O 0 -3 0 2= 1 0
three given vectors. Since [0 5 4 0[~|0 5 (4 0], there are no free variables. So
2 -8 1 0 0 0 -3

the homogeneous equation has only the trivial solution. The vectors are linearly independent.

3. Use the method of Example 3 (or the box following the example). By comparing entries of the
vectors, one sees that the second vector is —3 times the first vector. Thus, the two vectors are linearly
dependent.

-2
may be 2
L] moy

. : -1
4. From the first entries in the vectors, it seems that the second vector of the pair [ 4},[

times the first vector. But there is a sign problem with the second entries. So neither of the vectors is
a multiple of the other. The vectors are linearly independent.

5. Use the method of Example 2. Row reduce the augmented matrix for Ax = 0:

0 -8 5 0/ [1 =3 201 =3 201 3 20 3 20
3 7 ol |3 =7 4 0/ ]0o 2 =2 0/]0 2 =2 0|0 @ =2 o0
-1 5 4 0/ |-1 5 -4 00 2 =20[]0 0 00/ [0 03O
1 =3 2 0/ ]0 -8 5 0|]0o -8 5 0/]o 0o =30 |0 0o 00

There are no free variables. The equation 4x = 0 has only the trivial solution and so the columns of 4
are linearly independent.

6. Use the method of Example 2. Row reduce the augmented matrix for Ax = 0:

4 3 0 0] [1 0 3 0]t 0o 301 0o 30D 030
0 -1 4 0/ |0 -1 4 0[]0 -1 4 0 |0 -1 4 ol |0 ED 4 0
1 0 3 0|l |4 =3 00/ 0o =3 120 1]0o 0 o0o0|fo 0@ o
5 4 6 0/ |5 4 6 0[]0 4 -9 0/]0 0o 7 00 000

There are no free variables. The equation Ax = 0 has only the trivial solution and so the columns of 4
are linearly independent.
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7. Study the equation Ax = 0. Some people may start with the method of Example 2:

10.

1 4 -3 0 O 1 4 3 0 o] [M4 3 0 0
2 -7 5 1 0|~/0 1 -1 1 0f~j0 -1 1 0
-4 -5 7 5 0| |0 11 -5 5 0] |0 0 @) -6 0
But this is a waste of time. There are only 3 rows, so there are at most three pivot positions. Hence, at

least one of the four variables must be free. So the equation Ax = 0 has a nontrivial solution and the
columns of 4 are linearly dependent.

. Same situation as with Exercise 7. The (unnecessary) row operations are

1 3 3 =2 o] [1 -3 3 =2 0] [®-3 3 =20
-3 7 -1 2 0|~[0 2 8 -4 0[~|0 &2 8 —4 0
0 1 -4 3 ofl]0o 1 -4 3 0/(0 0 o0 (DO

Again, because there are at most three pivot positions yet there are four variables, the equation Ax =
0 has a nontrivial solution and the columns of 4 are linearly dependent.

a. The vector v; is in Span{vy, v,} if and only if the equation x;v; + x,v, = v3 has a solution. To find
out, row reduce [v; Vv, V3], considered as an augmented matrix:

1 -3 5 -3 5
3 9 —7/~lo 0 ®
2 -6 h 0 0 h-10
At this point, the equation 0 = 8 shows that the original vector equation has no solution. So v; is
in Span{vy, v,} for no value of .

b. For {vi, v, v3} to be linearly independent, the equation x;v; + x,v, + x3v3 = 0 must have only the
trivial solution. Row reduce the augmented matrix [v; v, v; 0]

1 3 5 0 1 -3 5 0 -3 5 0
-3 9 -7 0|~[0 0 8 0|~0 O 0
2 -6 h O 0 0 hA-10 O 0 0 0 O
For every value of A, x; is a free variable, and so the homogeneous equation has a nontrivial
solution. Thus {vy, v,, v3} is a linearly dependent set for all 4.

a. The vector v; is in Span{vy, v,} if and only if the equation x;v; + x,v, = v3 has a solution. To find
out, row reduce [v; Vv, V3], considered as an augmented matrix:

1 2 2] [ -=2 2
-5 10 9|~l0 0o @
-3 6 A 0 0 h+6
At this point, the equation 0 = 1 shows that the original vector equation has no solution. So v; is
in Span{vy, v,} for no value of 4.

b. For {vi, v, v3} to be linearly independent, the equation x,v, + x,v, + x3v3 = 0 must have only the
trivial solution. Row reduce the augmented matrix [v; v, v; 0]:
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1 -2 2 0 1 -2 2 o ™ -2 2 0
-5 10 -9 0|~|0 O 1 0|~(0 O @ 0
-3 6 h 0 0 0 hA+t6 O 0 0 0 O

For every value of 4, x, is a free variable, and so the homogeneous equation has a nontrivial
solution. Thus {vi, v,, v3} is a linearly dependent set for all 4.

11. To study the linear dependence of three vectors, say vy, v,, v3, row reduce the augmented matrix
[vi v2 v; O]

1 3 -1 0] 1 3 -1 o]l [® 3 -1 o0
-1 -5 5 0|~[0 2 4 o0[~/0 & 4 o
4 7 h 0| |0 -5 h+4 O |0 O h-6 0

The equation x;v; + x,v, + x3v3 = 0 has a nontrivial solution if and only if # — 6 = 0 (which
corresponds to x3 being a free variable). Thus, the vectors are linearly dependent if and only if 4 = 6.

12. To study the linear dependence of three vectors, say vy, v,, v3, row reduce the augmented matrix
[vi v2 vi3 O]

2 6 8 0] [ -6 8 0
4 7 h 0|~[0 &3 h+l6 0
1 -3 4 0/ [0 0 0 0

The equation x;v; + x,v, + x3v3 = 0 has a free variable and hence a nontrivial solution no matter what
the value of /. So the vectors are linearly dependent for all values of 4.

13. To study the linear dependence of three vectors, say vy, v,, v3, row reduce the augmented matrix
[vi v2 vz O]

1 =2 3 0 -2 3 0
5 9 h o|~0 (D A-15 0
-3 6 -9 0 0 0 0 0
The equation x;v; + x,v, + x3v3 = 0 has a free variable and hence a nontrivial solution no matter what
the value of 4. So the vectors are linearly dependent for all values of 4.

14. To study the linear dependence of three vectors, say vy, v,, v3, row reduce the augmented matrix
[vi v2 vi3 O]

1 5 1 ol [t =5 1 o] [ -5 10

-1 7 1 0|~l0 2 2 o|~j0 O 1 0

3 8 h O 0 23 h-3 0 0 0 hr-26 0
The equation x;v; + x,v, + x3v3 = 0 has a nontrivial solution if and only if 4 —26= 0 (which

corresponds
to x; being a free variable). Thus, the vectors are linearly dependent if and only if 2 = 26.

15. The set is linearly dependent, by Theorem 8, because there are four vectors in the set but only two
entries in each vector.

16. The set is linearly dependent because the second vector is 3/2 times the first vector.
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17.

18.

19.

20.

21.

22.

23.

26.

27.

28.

29.

The set is linearly dependent, by Theorem 9, because the list of vectors contains a zero vector.

The set is linearly dependent, by Theorem 8§, because there are four vectors in the set but only two
entries in each vector.

The set is linearly independent because neither vector is a multiple of the other vector. [Two of the
entries in the first vector are — 4 times the corresponding entry in the second vector. But this multiple
does not work for the third entries.]

The set is linearly dependent, by Theorem 9, because the list of vectors contains a zero vector.

a. False. A homogeneous system al/ways has the trivial solution. See the box before Example 2.
b. False. See the warning after Theorem 7.

¢. True. See Fig. 3, after Theorem 8.

d. True. See the remark following Example 4.

a. True. See Fig. 1.

1 2
b. False. For instance, the set consisting of | =2 | and | —4 | is linearly dependent. See the warning
3 6
after Theorem 8.
c. True. See the remark following Example 4.
d. False. See Example 3(a).
~ - m 0 m
] % *
m *||0 m||0 O 0 m 0 0
0O m * 24. , , 25. and
0 0|10 0|0 O 0 0 0 0
0 0 m
- - (U 0 O
S
0 m * . . .
0 o0 ml The columns must be linearly independent, by Theorem 7, because the first column is
|10 0 O]

not zero, the second column is not a multiple of the first, and the third column is not a linear
combination of the preceding two columns (because aj; is not in Span{a,, a,}).

All five columns of the 7x5 matrix 4 must be pivot columns. Otherwise, the equation Ax = 0 would
have a free variable, in which case the columns of 4 would be linearly dependent.

If the columns of a 57 matrix 4 span R’ , then 4 has a pivot in each row, by Theorem 4. Since each
pivot position is in a different column, 4 has five pivot columns.

A: any 3x2 matrix with two nonzero columns such that neither column is a multiple of the other. In
this case the columns are linearly independent and so the equation Ax = 0 has only the trivial
solution.

B: any 3x2 matrix with one column a multiple of the other.
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31.

32.

33.
34.
3s.
36.

37.

38.

39.

40.

41.

1.9 + Solutions 1-53

a. n

b. The columns of 4 are linearly independent if and only if the equation Ax = 0 has only the trivial
solution. This happens if and only if 4x = 0 has no free variables, which in turn happens if and
only if every variable is a basic variable, that is, if and only if every column of 4 is a pivot
column.

Think of 4 =[a; a, a;]. The text points out that a; = a; + a,. Rewrite thisasa; +a,—a;=0. Asa
matrix equation, Ax =0 forx = (1, 1, -1).

Think of 4 =[a; a, a;]. The text points out that a; + 2a, = a;. Rewrite this as a; + 2a, —a; = 0. As
a matrix equation, 4x = 0 for x = (1, 2, -1).

True, by Theorem 7. (The Study Guide adds another justification.)
True, by Theorem 9.
False. The vector v, could be the zero vector.

False. Counterexample: Take v, v,, and v, all to be multiples of one vector. Take v; to be not a
multiple of that vector. For example,

1 1 4

2
1 2 0 4
v, = | ,Vy = 5 ,Vy = 0 JVy, = 4
1 2 0 4
True. A linear dependence relation among vy, v,, v; may be extended to a linear dependence relation
among Vi, V2, V3, V4 by placing a zero weight on v,.

True. If the equation x;v; + x,v, + x3v3 = 0 had a nontrivial solution (with at least one of x;, x5, x3
nonzero), then so would the equation x;v; + x,v, + x3v; + 0-v4, = 0. But that cannot happen because

{v1, V2, V3, v4} is linearly independent. So {v;, v,, vz} must be linearly independent. This problem can
also be solved using Exercise 37, if you know that the statement there is true.

If for all b the equation Ax = b has at most one solution, then take b = 0, and conclude that the
equation Ax = 0 has at most one solution. Then the trivial solution is the only solution, and so the
columns of 4 are linearly independent.

An m*n matrix with n pivot columns has a pivot in each column. So the equation Ax = b has no free
variables. If there is a solution, it must be unique.

8 3 0 -7 2][8 3 0 -7 2
9 4 5 11 7| |0 5/8 5 25/8 -19/4
M] A= ~
6 2 2 -4 4| |0 1/4 2 5/4 52
5 -1 7 0 10| [0 7/8 7 35/8 35/4
8 3 0 -7 2 ]1® 30 -7 2
0 5/8 5 25/8 -19/4| |0 5 25/8 -19/4
o0 0 0o 22/50 {0 0o 0o o @73
o 0 0 0 775] 0 0 0 0 0
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8 -3 2
. -9 4 -7
The pivot columns of 4 are 1, 2, and 5. Use them to form B = 6 — 4
5 -1 10
8 0 2 8 -7 2
) ) _ - 5 =711-9 11 -7
Other likely choices use columns 3 or 4 of 4 instead of 2: s all 6 4 4

5 7 1001 5 0 10

Actually, any set of three columns of 4 that includes column 5 will work for B, but the concepts
needed to prove that are not available now. (Column 5 is not in the two-dimensional subspace
spanned by the first four columns.)

42. [M]
(12 10 -6 -3 7 10] @2 10 -6 -3 7 10 |
-7 -6 4 7 -9 5 0 C1/® 1/2 21/4 -59/12 65/6
9 9 9 -5 5 _l|~wnjO 0 0 89/2 89

4 3 1 6 -8 9 o 0 0 0 0 ©)

|8 7 -5 -9 11 -8 0 0 0 0 0 0
12 10 =3 10
-7 -6 7 5

The pivot columns of 4 are 1, 2, 4, and 6. Use them to form B=| 9 9 -5 -1].
-4 3 6 9
| 8 7 -9 -8

Other likely choices might use column 3 of 4 instead of 2, and/or use column 5 instead of 4.

43. [M] Make v any one of the columns of 4 that is not in B and row reduce the augmented matrix
[B v]. The calculations will show that the equation Bx = v is consistent, which means that v is a
linear combination of the columns of B. Thus, each column of 4 that is not a column of B is in the set
spanned by the columns of B.

44. [M] Calculations made as for Exercise 43 will show that each column of 4 that is not a column of B
is in the set spanned by the columns of B. Reason: The original matrix 4 has only four pivot
columns. If one or more columns of 4 are removed, the resulting matrix will have at most four pivot
columns. (Use exactly the same row operations on the new matrix that were used to reduce A4 to
echelon form.) If v is a column of 4 that is not in B, then row reduction of the augmented matrix
[B v] will display at most four pivot columns. Since B itself was constructed to have four pivot
columns, adjoining v cannot produce a fifth pivot column. Thus the first four columns of [B  v] are
the pivot columns. This implies that the equation Bx = v has a solution.

Note: At the end of Section 1.7, the Study Guide has another note to students about “Mastering Linear

Algebra Concepts.” The note describes how to organize a review sheet that will help students form a
mental image of linear independence. The note also lists typical misuses of terminology, in which an
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adjective is applied to an inappropriate noun. (This is a major problem for my students.) I require my
students to prepare a review sheet as described in the Study Guide, and I try to make helpful comments on
their sheets. I am convinced, through personal observation and student surveys, that the students who
prepare many of these review sheets consistently perform better than other students. Hopefully, these
students will remember important concepts for some time beyond the final exam.

1.8 SOLUTIONS

Notes: The key exercises are 17-20, 25 and 31. Exercise 20 is worth assigning even if you normally
assign only odd exercises. Exercise 25 (and 27) can be used to make a few comments about computer
graphics, even if you do not plan to cover Section 2.6. For Exercise 31, the Study Guide encourages
students not to look at the proof before trying hard to construct it. Then the Guide explains how to create
the proof.

Exercises 19 and 20 provide a natural segue into Section 1.9. I arrange to discuss the homework on these
exercises when I am ready to begin Section 1.9. The definition of the standard matrix in Section 1.9
follows naturally from the homework, and so I’ve covered the first page of Section 1.9 before students
realize we are working on new material.

The text does not provide much practice determining whether a transformation is linear, because the
time needed to develop this skill would have to be taken away from some other topic. If you want your
students to be able to do this, you may need to supplement Exercises 29, 30, 32 and 33.

If you skip the concepts of one-to-one and “onto” in Section 1.9, you can use the result of Exercise 31
to show that the coordinate mapping from a vector space onto R”" (in Section 4.4) preserves linear
independence and dependence of sets of vectors. (See Example 6 in Section 4.4.)

sy Lo S

S 0 o 1] [5 5 0l[a] [.5a
2. Tw)y=Au={0 5 0 0}: 0, 7v)=]0 .5 0fb|=|.5
0 0 5|4 -2 0 Sile .Sc
1 0 =2 -1 [t 0 =2 -1] 1 0 =2 -1
3.4 b]=|-2 1 6 7}0 1 2 5/~j0 1 2 5
3 2 -5 3] |0 -2 1 0] [0 O 5 10

1 0 2 -1 1 0
~0 1 2 5|~j0 1 0 1| x=| 1|, unique solution
0

W
|
(V)]
|
O
|
O
S
N
|
—
()]
|
[\S]
|
(]
(]
r—
p—

1 -3 0 4 1 0 0 -5 -5
~0 1 0 =3|~{0 1 0 -3| x=|-3|,unique solution
0 1 1 0 0o 1 1 1
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T | R N

. 3 o . .
Note that a solution is not { J . To avoid this common error, write the equations:

x; =3-3x,
@ + 3x;, =3 _ _
and solve for the basic variables: {x, =1-2x;
@ + 2x; = 1 .
x; is free
X 3-3x, 3 -3
General solution x=| x, |=|1-2x; |=| 1 [+x;| =2 |. For a particular solution, one might choose
X X, 0 1
3
x3=0and x=|1].
0
1 =2 1 ) 1/ =2 1 11 [@®o 3 7
-4 5 9|10 2 2 6|0 1 1 3| |0 1 3
6. [4 b]= ~ ~ ~ ©
1 1 3| |0 1 3,10 0 O O |0 O O O
-3 5 -4 -6/ |0 -1 -1 3] [0 0 O O] [0 O O O
@ + 3x; =7
. X, =3-1x,
@ + x3 = 3 .
X, 1s free
X, 7-3x, 7 -3 7
General solution: x=| x, |=| 3—x; |=|3 |+x;| —1|, one choice: | 3 |.
X, X; 0 1 0

7. a = 5; the domain of T'is R’ , because a 6x5 matrix has 5 columns and for 4x to be defined, x must
be in R’ . b = 6; the codomain of T'is R®, because 4x is a linear combination of the columns of 4,

and each column of 4 is in R®.

8. A must have 5 rows and 4 columns. For the domain of T to be R*, 4 must have four columns so that

Ax is defined for x in R*. For the codomain of T to be R’ , the columns of 4 must have five entries
(in which case 4 must have five rows), because Ax is a linear combination of the columns of 4.

1 4 7 -5 0 1 4 7 -5 0 1 4 7 -5 0
9. Solve Ax=0. |0 1 4 3 0|~|0 1 4 3 0(~|0 1 4 3 0
2 6 6 4 0 0 2 -8 6 0 0o o o0 o0 O
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X =9%,—7x,

0 -9 0 - 9% + Tx, =
O @ ’ ! X, =4x; —3x,
~lo @ -4 0 () - 4n + 3x =0, _
x; 1s free
0 0 O 0 0 =0 .
x, is free
X, 9xy, =Tx, 9 =7
X, 4x, —3x, 4 -3
X= = =x;| |+,
X, X, 1 0
Xy Xy 0 1
1 3 9 2 0 1 3 9 2 0 1 3 9
1 o 3 -4 0[]0 -3 -6 -6 0| |0 1 2
10. Solve Ax = 0. ~ ~
o 1 2 3 o000 1 2 3 0] |0 -3 -6
-2 3 0 0j |10 9 18 9 0] |0 9 18
1 3 9 2 0 1 3 9 0 o] [®o0o 3 0 0
0 1 2 3000 1 2 0 of (|0 M2 0 0
0 0 0 3 000 0 0 1 O/ (|0 0 0 (OO
o 0 o0 -18 0/ |0 O O O O] |O O O O O
@  + 3x =0 x1=:_2f3 _§x3 _2
©+ 2w -0 [P 2n|
@ x; 1s free X, 1
=0
x, =0 0 0

11. Is the system represented by [4
1 4 7 -5 -1 [1 -4 7 -5 11 [ -4 7 -5 -1
o 1 -4 3 1|~|0 1 4 3 1/~j0 O -4 3 1
2 -6 6 -4 0 0 2 -8 6 2 o 0 0 0 O
The system is consistent, so b is in the range of the transformation x > Ax .
12. Is the system represented by [4 b] consistent?
1 3 9 2 -1 1 3 9 2 -l 1 3 9 2 -l

1 0 3 -4 310 =3 =6 -6 4/ l0 1 2 3 -1
0o 1 2 3 -1|lo 1 2 3 -1/ |0 3 6 -6 4
2 3 0 5 4//0 9 18 9 2/ lo 9 18 9 2
13 9 171 3 9 2 -1
0 1 2 Al jo 1 2 3 -
“lo 0 0 1 ]o o o 3 1
0 0 0 —-18 11/ |0 0 0 0 17

The system is inconsistent, so b is not in the range of the transformation x —~ Ax .
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2 0
30

-6 0
9 0

b] consistent? Yes, as the following calculation shows.
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13. 14.
x, X3
ve ve  +
M T "
\\__ » _ _e (u
Tttt
£ e (V) 4+
A reflection through the origin. A contraction by the factor .5.

The transformation in Exercise 13 may also be described as a rotation of 1t radians about the
origin or a rotation of —t radians about the origin.

15. 16.

A projection onto the x,-axis A reflection through the line x; = x;.
2 6 -1 -2
17. T(3u)=3T(u) = 3{ J =[ 3}, TQ2v)=2T(v) = 2{ 3} ={ }, and

6
T(3u +2v) = 3T(u) + 2T(v) = { ﬂ + {_ﬂ { ﬂ

18. Draw a line through w parallel to v, and draw a line through w parallel to u. See the left part of the
figure below. From this, estimate that w = u + 2v. Since 7 is linear, 7(w) = T(u) + 27(v). Locate T(u)
and 27(v) as in the right part of the figure and form the associated parallelogram to locate 7(w).

Xy 2 (v)

X2
2V v M1 M1
(u)

19. All we know are the images of e, and e, and the fact that 7 is linear. The key idea is to write

5 1 0
X= [ 3} = 5{0} - 3{ J =5e, —3e,. Then, from the linearity of 7, write

2 -1 13
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21.

22.

23.

24.

25.

26.

1.9 + Solutions 1-59

X

1 0
To find the image of , observe that x = e x| |+x|  |=xe +x,e,. Then
X, X, 0 1

HE S
T(x) = T(x1e; + x2e5) =x17(e;) + x27(e2) = X, s + X, =

6 5x, +6x,

Use the basic definition of Ax to construct 4. Write

T(x) + [ 1 R Y
X)=XxV; +X,V, =|V; V = X, =
171 27V2 1 2 x2 5 -3 5 -3

a. True. Functions from R” to R™ are defined before Fig. 2. A linear transformation is a function
with certain properties.
b. False. The domain is R’ . See the paragraph before Example 1.

c¢. False. The range is the set of all linear combinations of the columns of A. See the paragraph
before Example 1.

d. False. See the paragraph after the definition of a linear transformation.
e. True. See the paragraph following the box that contains equation (4).

a. True. See the paragraph following the definition of a linear transformation.

b. False. If 4 is an m xn matrix, the codomain is R" . See the paragraph before Example 1.

c. False. The question is an existence question. See the remark about Example 1(d), following the
solution of Example 1.

d. True. See the discussion following the definition of a linear transformation.

e. True. See the paragraph following equation (5).

X.
2 u+v x,
u u
v u
1 X1 X1
(v) (u)
(u) (u
(u+v)
Given any x in R", there are constants ¢y, ..., ¢, such that X = ¢;v; + - ¢,¥,, because vy, ..., v, span

R"". Then, from property (5) of a linear transformation,
I(x)=cT(vi) + =+, T(v)) =ci0+ - +¢c,0=0

Any point x on the line through p in the direction of v satisfies the parametric equation
x = p + tv for some value of ¢. By linearity, the image 7(x) satisfies the parametric equation

I(x)=T(p + tv) = T(p) + tT(v). If T(v) =0, then T(x) = T(p) for all values of z, and the image of the
original line is just a single point. Otherwise, 7(p) + t7(v) is the parametric equation of a line through
T(p) in the direction of 7(v).

Any point x on the plane P satisfies the parametric equation x = su + tv for some values of s and .
By linearity, the image 7(x) satisfies the parametric equation 7(x) = sT(u) + t7(v), s, t in R. The set
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27.

28.

29.

30.

31.

32.

33.

34.

of images is just Span{7(u), 7(v)}. If T(u) and 7(v) are linearly independent, Span{7(u), 7(v)} is a
plane through T(u), 7(v), and 0. If 7(u) and 7(v) are linearly dependent and not both zero, then
Span{T(u), 7(v)} is a line through 0. If T(u) = 7(v) = 0, then Span{7(u), T(v)} is {0}.

a. From the figure in exercises 21 and 22 for Section 1.5, the line through p and q is in the direction
of q — p, and so the equation of the lineisx=p+#q—-p)=p+tq—tp=(1—1)p + 1q.

b. Consider x = (1 — #)p + #q for ¢ such that 0 < ¢ < 1. Then, by linearity of 7,
Tx)=T(1-0Hp +tq) = (1 —HT(p) + tT(q), for 0 <¢ < 1. If T(p) and 7(q) are distinct, then

(1 -9T(p) + t1(q) is the equation for the line segment between 7(p) and 7(q), as shown in part
(a) Otherwise, the set of images is just the single point 7(p), because

(I -0T(p) + T(q) =(1 - HT(p) + tT(p) = T(p)

Consider a point x in the parallelogram determined by u and v, say x=au + bv for0 <a <1,

0 <b < 1. By linearity of 7, the image of x is 7(x) = T(au + bv) = aT(u) + bT(v), for 0 <a < 1, and

0 <b < 1. This image point lies in the parallelogram determined by 7(u) and 7(v).

Special “degenerate” cases arise when 7(u) and 7(v) are linearly dependent. If one of the images is
not zero, then the “parallelogram” is actually the line segment from 0 to 7(u) + 7(v). If both 7(u) and
T(v) are zero, then the parallelogram is just {0}. Another possibility is that even u and v are linearly
dependent, in which case the original parallelogram is degenerate (either a line segment or the zero
vector). In this case, the set of images must be degenerate, too.

a. When b =0, f(x) = mx. In this case, for all x,y in R and all scalars ¢ and d,
fex +dy) =m(cx + dy) = mex + mdy = c(mx) + d(my) = cf (x) + d-f (y)
This shows that f'is linear.

b. When f(x) = mx + b, with b nonzero, f{0) = m(0) + b = b # 0. This shows that f'is not linear,
because every linear transformation maps the zero vector in its domain into the zero vector in the
codomain. (In this case, both zero vectors are just the number 0.) Another argument, for instance,

would be to calculate f(2x) = m(2x) + b and 2f'(x) = 2mx + 2b. If b is nonzero, then f(2x) is not
equal to 2f'(x) and so f'is not a linear transformation.

¢. In calculus, fis called a “linear function” because the graph of f'is a line.

Let T(x) = Ax + b for x in R". If b is not zero, 7(0) = A0 + b =b # 0. Actually, T fails both
properties of a linear transformation. For instance, 7(2x) = 4(2x) + b = 24x + b, which is not the
same as 27(x) = 2(Ax + b) = 24x + 2b. Also, T(x + y) = A(x +y) + b= Ax + Ay + b which is not the
same as 7(x) + T(y) =4Ax+ b+ Ay + b.

(The Study Guide has a more detailed discussion of the proof.) Suppose that {v;, v,, v3} is linearly
dependent. Then there exist scalars ¢y, ¢,, 3, not all zero, such that ¢,v; + c,v, + c3v3 = 0.

Then T(cyvy + cava + c3v3) = T(0) = 0. Since 7'is linear,c, 7(v;) + ¢, T(v2) + ¢3T(v3) = 0. Since not all
the weights are zero, {7(v,), T(v2), T(v3)} is a linearly dependent set.

Take any vector (x;, x,) with x, # 0, and use a negative scalar. For instance, 7(0, 1) = (-2, 3), but
T(_l(oa 1)) = T(Oa _1) = (25 3) * (_I)T(Oa 1)

One possibility is to show that 7"does not map the zero vector into the zero vector, something that
every linear transformation does do. 7(0, 0) = (0, 4, 0).

Suppose that {u, v} is a linearly independent set in R” and yet 7(u) and 7(v) are linearly dependent.
Then there exist weights ¢y, ¢,, not both zero, such that ¢;7(u) + c,7(v) = 0. Because T is linear,
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T(ciu + c,v) = 0. That is, the vector x = cju + ¢,v satisfies 7(x) = 0. Furthermore, x cannot be the
zero vector, since that would mean that a nontrivial linear combination of u and v is zero, which is
impossible because u and v are linearly independent. Thus, the equation 7(x) = 0 has a nontrivial

3s.

36.

37.

38.

39.

40.

solution.

Take u and v in R’ and let ¢ and d be scalars. Then

cu +dv = (cuy + dvy, cur + dv,, cus + dvs). The transformation 7 is linear because

T(cu + dv) = (cu; + dvy, cus + dvy, — (cuz + dvs)) = (cuy + dvy, cup + dvy, — cus — dvs)
= (cuy, cuy, —cuz) + (dvy, dva, —dvs) = c(uy, uy, —u3z) +d(vy, va, —v3)
=cT(u) + dT(v)

Take u and v in R and let ¢ and d be scalars. Then
cu+ dv = (cuy + dvy, cuy + dvy, cus + dvs). The transformation 7 is linear because
T(cu + dv) = (cu; + dvy, 0, cuz + dvs) = (cuy, 0, cuz) + (dvy, 0, dvs)

= c(u1, 0, us) + d(v1, 0, v3)

=cT(u) + dT(v)
4 2 5 -5 0] [ o 0o -7/2 0] (x=(7/2)x, 7/2
9 7 -8 0 0| [0 (D0 -9/2 0| |x,=09/2)x, 9/2
[M] ~ : X=X,
-6 4 3000 0@ 0 0] |x=0 0
S5 3 -4 0] |0 0 O 0 O x4 1s free 1
(-9 -4 -9 0] (Mo 0 3/4 0] [x,=-(3/4x, -3/4
-8 -7 6 0| |0 0 5/4 0 =—(5/4 -5/4
M 09 R
1 16 -9 0| |0 0 (D -7/4 0] |x=(/4x, 7/4
i -7 -4 5 0] |0 0 O 0 0 x, 1s free 1
4 2 5 -5 7] [0 0 -7/2 4
-9 7 -8 50110 Mo -9/2 7 .
M] ~ , yes, b is in the range of the
-6 4 5 3 9/ 10 0D o0 1
|5 -3 8 -4 7/ ][0 00 0 O

transformation, because the augmented matrix shows a consistent system. In fact,

x, =4+(7/2)x, 4
% =T+09/2)x, . 7
the general solution is | ; when x4 = 0 a solution is x = ik
X, =
x4 1s free 0
-9 -4 -9 4 -7 0 0 3/4 -5/4
5 8 -7 6 -7/ 10 @O 0 5/4 -11/4 o
M] ~ , yes, b is in the range of the
7 11 16 -9 13 0 0 @ -7/4 13/4
9 -7 -4 5 =5 0O 0 0 0 0

transformation, because the augmented matrix shows a consistent system. In fact,
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X, =-5/4-3/4)x, -2
. | x=-11/4=(5/4)x, o —4
the general solution is ; when x, = 1 a solution is x =
X, =13/44+(7/4)x,
x4 1s free 1

Notes: At the end of Section 1.8, the Study Guide provides a list of equations, figures, examples,
and connections with concepts that will strengthen a student’s understanding of linear transformations.
I encourage my students to continue the construction of review sheets similar to those for “span” and
“linear independence,” but I refrain from collecting these sheets. At some point the students have to
assume the responsibility for mastering this material.

If your students are using MATLAB or another matrix program, you might insert the definition of
matrix multiplication after this section, and then assign a project that uses random matrices to explore
properties of matrix multiplication. See Exercises 34-36 in Section 2.1. Meanwhile, in class you can
continue with your plans for finishing Chapter 1. When you get to Section 2.1, you won’t have much to
do. The Study Guide’s MATLAB note for Section 2.1 contains the matrix notation students will need for
a project on matrix multiplication. The appendices in the Study Guide have the corresponding material for
Mathematica, Maple, and the T-83+/86/89 and HP-48G graphic calculators.

1.9 SOLUTIONS

Notes: This section is optional if you plan to treat linear transformations only lightly, but many
instructors will want to cover at least Theorem 10 and a few geometric examples. Exercises 15 and 16
illustrate a fast way to solve Exercises 17-22 without explicitly computing the images of the standard
basis.

The purpose of introducing one-to-one and onto is to prepare for the term isomorphism (in Section
4.4) and to acquaint math majors with these terms. Mastery of these concepts would require a substantial
digression, and some instructors prefer to omit these topics (and Exercises 25—40). In this case, you can
use the result of Exercise 31 in Section 1.8 to show that the coordinate mapping from a vector space onto
R" (in Section 4.4) preserves linear independence and dependence of sets of vectors. (See Example 6 in
Section 4.4.) The notions of one-to-one and onto appear in the Invertible Matrix Theorem (Section 2.3),
but can be omitted there if desired

Exercises 25-28 and 31-36 offer fairly easy writing practice. Exercises 31, 32, and 35 provide
important links to earlier material.

i-
F

1. 4=[T(e)) T(er)]=

—_— WY = W

4 -5
2. A=[T(e)) T(e)) T(e3)]= 7

3 4

3. T(el) =—€,, T(ez) =e. A= [—e2 el] =|: 0 1:|

N T(e1)=[ 1/\/5},%2 _{1/\5}/1{ 132 1/\5}

~1/2 /42 ~1/42 142
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1 1 0
5. T(e1)=e1—2e2={_J,T(ez):ez,/l:[ }

el
6. T(e1)=e1, T(e2)=e2+3e1= ,A:

7. Follow what happens to e, and e,. Since e, is on the unit

10.

11.

-2 1

1 0 1

circle in the plane, it rotates through —37/4 radians into a
point on the unit circle that lies in the third quadrant and
on the line x, =X (thatis, y =x in more familiar notation).

The point (—1,-1) is on the line X, =X, but its distance
from the origin is \/5 So the rotational image of e, is

(-1 N2, -12 ) . Then this image reflects in the horizontal
axis to (—1A/2,1~/2).

Similarly, e, rotates into a point on the unit circle that lies in

the fourth quadrant and on the line X, =—X;, namely,
(1 N2, -112 ) . Then this image reflects in the horizontal
axis to (1~/2,1/4/2).

When the two calculations described above are written in vertical vector notation, the
transformation’s standard matrix [7(e;) 7(e,)] is easily seen:

. %{—l/ﬁ]%{—l/ﬁ] . %{ 1/\5]%{1/\5} A{—l/\/i 1/@}
NG TN YN YN N2 142

0 -1
. e, —>e —e,and e, >—e, > —e, so A=e, —el]={

1 0

. The horizontal shear maps e; onto e;, and then the reflection in the line x, = —x; maps e, into —e.

(See Table 1.) The horizontal shear maps e, into e, into e, — 2e,. To find the image of e, — 2e¢; when it
1s reflected in the line x, = —x;, use the fact that such a reflection is a linear transformation. So, the
image of e, — 2e, is the same linear combination of the images of e, and e;, namely,
—e; — 2(—e,) =—e; + 2¢;. To summarize,

0 -1
e, —e ——e, and e, >e, —2e, — —e, +2e,, SO Az{_l 2]
To find the image of e, — 2e; when it is reflected through the vertical axis use the fact that such a

reflection is a linear transformation. So, the image of e, — 2e, is the same linear combination of the
images of e, and e, namely, e, + 2e,.

0 -1
e, >—e ——e, and e, > e, > —e,, SO Az{ | 0}

The transformation 7 described maps €, — €, ——€,; and maps €, —>—€, —>—€,. A rotation through
7 radians also maps e; into —e; and maps e, into —e,. Since a linear transformation is completely
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12.

13.

14.

15.

16.

17.

determined by what it does to the columns of the identity matrix, the rotation transformation has the

. 2
same effect as 7 on every vector in R”.

The transformation 7 in Exercise 8 maps €, — €, — €, and maps €, — —€, — —¢,. A rotation about

the origin through 7z /2 radians also maps e, into e, and maps e, into —e,. Since a linear
transformation is completely determined by what it does to the columns of the identity matrix, the

. . .2
rotation transformation has the same effect as 7 on every vector in R”.

Since (2, 1) = 2e; + e,, the image of (2, 1) under 7 is 27(e;) + 7(e,), by linearity of 7. On the figure in
the exercise, locate 27(e;) and use it with 7(e,) to form the parallelogram shown below.

X2

21
2 (&)

(ey)

(e7)

I B

Since T(x) = Ax =[a; a|]x =x;a; +xpa, =—a, + 3a,, when x = (-1, 3), the image of x is located by
forming the parallelogram shown below.

X2

(_1v 3)

-a4 a2

a

3 0 2]x 3x, —2x,
By inspection, |4 0 0| x, |= 4x,
1 -1 L x5 X — X, + X,
1 -1 X — X,
X
By inspection, | -2 1 { 1} =| -2x +x,
X2
| 1 0 X

To express T(x) as Ax , write 7(x) and x as column vectors, and then fill in the entries in 4 by
inspection, as done in Exercises 15 and 16. Note that since 7(x) and x have four entries, 4 must be a
4x4 matrix.

0 X, 0 0 0 O x

T(x) = Xt | y Xl ; 1 (i 8 X,
X, + X, x5 X,

X3+ X, X, 0 0 1 1} x

Copyright © 2016 Pearson Education, Inc.



18.

19.

20.

21.

22.

23.

24.

1.9 + Solutions

As in Exercise 17, write 7(x) and x as column vectors. Since x has 2 entries, 4 has 2 columns. Since

T(x) has 4 entries, 4 has 4 rows.

2x, =3x -3 2

x, —4x, _ 4 X\ 1 -4 x
0 X, 0 O0fx
X, 0 1

Since 7(x) has 2 entries, 4 has 2 rows. Since x has 3 entries, 4 has 3 columns.

X X
X, —5x, +4x; 1 -5 4
= A X, |= X,
X, —6x5 0 1 -6
X, X,
Since 7(x) has 1 entry, 4 has 1 row. Since x has 4 entries, 4 has 4 columns.
X, X
X X
[2x, +3x; —4x,]=[ A ] =2 0 3 -4
X3 X3
Xy X4

| |
1
N>< =

| I

Il

1
[ SN
[, TS

Ttx) = X tx, |
@ 4x, +5x, N

. 1 1 3
matrix: ~
{4 5 8}

3
{ } To solve T(x) = {8} , row reduce the augmented
X

ool © el

X, —2x, 1 -2 -1
I(x)=|-x, +3x, |=| 4 {xl} =|-1 3}{ xl} . Tosolve T(x) =| 4|, row reduce the
3x, - 2%, Rl o|tn 9
augmented matrix:
1 =2 1] 1 =2 =17 [1 =2 =17 [ o0 5
-1 3 4[~|0 1 3|~|0 1 3~0®3,x=m.
3 2 9 0 4 12 0 0 o0 0 0 0 3

True. See Theorem 10.
True. See Example 3.
False. See the paragraph before Table 1.

& o T B

False. See the definition of onto. Any function from R" to R™ maps each vector onto another
vector.

e. False. See Example 5.

a. False. See the paragraph preceding Example 2.
b. True. See Theorem 10.
¢. True. See Table 1.
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25.

26.

27.

28.

29.

d. False. See the definition of one-to-one. Any function from R" to R” maps a vector onto a single
(unique) vector.

e. True. See the solution of Example 5.
Three row interchanges on the standard matrix 4 of the transformation 7 in Exercise 17 produce

D 1
0o @
0 0

. This matrix shows that 4 has only three pivot positions, so the equation 4x = 0 has

- o O

0
1
0 0 0 O
a nontrivial solution. By Theorem 11, the transformation 7 is not one-to-one. Also, since 4 does not
have a pivot in each row, the columns of A do not span R*. By Theorem 12, T does not map R*
onto R*.

The standard matrix 4 of the transformation 7 in Exercise 2 is 2x3. Its columns are linearly
dependent because A has more columns than rows. So T is not one-to-one, by Theorem 12. Also, A is

ivalent t © 4 -
Trow egquivalent to
! 0 €Y 19

maps R’ onto R”.

, which shows that the rows of 4 span R”. By Theorem 12, T

-5 4
The standard matrix 4 of the transformation T in Exercise 19 is E) 6} . The columns of 4

)

are linearly dependent because 4 has more columns than rows. So 7 is not one-to-one, by Theorem
12. Also, A has a pivot in each row, so the rows of 4 span R”. By Theorem 12, 7' maps R’ onto
R?.

The standard matrix 4 of the transformation 7" in Exercise 14 has linearly independent columns,
because the figure in that exercise shows that a; and a, are not multiples. So 7 is one-to-one, by
Theorem 12. Also, A must have a pivot in each column because the equation Ax = 0 has no free

] *
variables. Thus, the echelon form of 4 is [0 .}. Since A4 has a pivot in each row, the columns of 4

span R*. So T'maps R* onto R”. An alternate argument for the second part is to observe directly

from the figure in Exercise 14 that a; and a, span R?. This is more or less evident, based on
experience with grids such as those in Figure 8 and Exercise 7 of Section 1.3.

By Theorem 12, the columns of the standard matrix 4 must be linearly independent and hence the
equation Ax = 0 has no free variables. So each column of 4 must be a pivot column:

[ ] * *
*

ol Note that 7 cannot be onto because of the shape of 4.
0

A~

oS o O
o o n

Copyright © 2016 Pearson Education, Inc.



30.

31.

32.

33.

34.

3S.

36.

37.

38.

1.9 + Solutions 1-67

By Theorem 12, the columns of the standard matrix 4 must span R*. By Theorem 4, the matrix must
have a pivot in each row. There are four possibilities for the echelon form:

m o* * x| [m * * = m ot * % 0O m * *
O m * * 10 m * * 10 0 m *|,|0 0 m *
0 0 m * 0 0 0 m 0 0 0 m| [0 O O m

Note that 7 cannot be one-to-one because of the shape of 4.

“T is one-to-one if and only if 4 has n pivot columns.” By Theorem 12(b), 7 is one-to-one if and only
if the columns of 4 are linearly independent. And from the statement in Exercise 30 in Section 1.7,
the columns of 4 are linearly independent if and only if 4 has n pivot columns.

The transformation 7' maps R” onto R™ if and only if the columns of 4 span R" , by Theorem 12.
This happens if and only if 4 has a pivot position in each row, by Theorem 4 in Section 1.4. Since A4

has m rows, this happens if and only if 4 has m pivot columns. Thus, “T'maps R" onto R" if and
only 4 has m pivot columns.”

Define 7:R" —R" by T(x) = Bx for some m xn matrix B, and let 4 be the standard matrix for 7.
By definition, 4 = [T(e;) --- 1(e,)], where €; is the jth column of /,. However, by matrix-vector
multiplication, 7(e;) = Be; = b;, the jth column of B. So4=[b, --- b,]=B.

The transformation 7 maps R" onto R" if and only if for each y in R" there exists an x in R" such
that y = T(x).

If T:R" > R"” maps R” onto R”, then its standard matrix 4 has a pivot in each row, by Theorem
12 and by Theorem 4 in Section 1.4. So 4 must have at least as many columns as rows. That is, m <
n. When T is one-to-one, 4 must have a pivot in each column, by Theorem 12, so m > n.

Take uand v in R” and let ¢ and d be scalars. Then
T(S(cu + dv)) = T(c-S(u) + d-S(v)) because S is linear
=c-T(S(w)) + d-T(S(v)) because T is linear
This calculation shows that the mapping x — 7(S(x)) is linear. See equation (4) in Section 1.8

-5 10 -5 4 1 0 0 44/35 0 0 12571
8 3 4 7 0 1 0 79/35 0 @ 0 22571 . ) .
M] ~ e~ ~ . There is no pivot in
4 -9 5 =3 0 0 1 86/35 0 0 @ 2.4571
-3 2 5 4 0O 0 O 0 0 0 O 0

the fourth column of the standard matrix 4, so the equation Ax = 0 has a nontrivial solution. By
Theorem 11, the transformation 7 is not one-to-one. (For a shorter argument, use the result of
Exercise 31.)

7 5 4 -9 D o 7
100 6 16 -4 o @D -9 : L :
[M] ~eee~ . No. There is no pivot in the third column of
12 8 12 7 0 0
-8 -6 -2 5 0 0 0 O

the standard matrix 4, so the equation Ax = 0 has a nontrivial solution. By Theorem 11, the trans-
formation T is not one-to-one. (For a shorter argument, use the result of Exercise 31.)
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[ 4 -7 7 5] (@M o o 5 o0
6 -8 12 -8 o ® o 1 o0
39. M] |-7 10 -8 -9 14|~--~| 0 0 (D -2 0. Thereis nota pivot in every row,
3 -5 4 2 -6 o o o o
-5 6 -6 -7 3] L0 0 0 0 0

so the columns of the standard matrix do not span R’ . By Theorem 12, the transformation 7 does
not map R onto R’.

9 13 5 6 -I] @ o0 o0 0 5]
14 15 -7 -6 4 o O 0o o0 -4
40. M] |[-8 -9 12 -5 -9|~--~| 0 0 () 0 0].Thereisnota pivot in every row,
-5 -6 -8 9 8 o 0o o (O 1
|13 14 15 2 11 L0 0 0 0 O]

so the columns of the standard matrix do not span R’ . By Theorem 12, the transformation 7T’ does
not map R’ onto R’

1.10 SOLUTIONS

1. a. Ifx, is the number of servings of Cheerios and x; is the number of servings of 100% Natural
Cereal, then x, and x, should satisfy

nutrients | nutrients quantities
X,| per serving |+ x, | per serving of |=| of nutrients

of Cheerios | 100% Natural required
110] 130] [295
_ 4 3 9
That is, x, +x, = .
20 18 48
2 5 8
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110 130 295
. . . . 4 3 X .
b. The equivalent matrix equation is = . To solve this, row reduce the
2 18| x, 48
2 5 8

110 130 295 2 5 8 1 25 4
9 4 3 9 4 3 9

4 3
20 18 48| |20 18 48| |10 9 24
2 5

augmented matrix for this equation.
8 110 130 295 110 130 295

1 25 47 71 25 411 0 15
o -7 -7/ o 1 1] ]o 1 1
“lo -16 -16] |0 0 0| |0 0 0
0 —145 —145| |0 0 0| |0 0 O

The desired nutrients are provided by 1.5 servings of Cheerios together with 1 serving of 100%
Natural Cereal.
2. Set up nutrient vectors for one serving of Shredded Wheat (SW) and Kellogg's Crispix (Crp):
Nutrients: SW Crp
calories 160 110

protein 5 2.
fiber 6 A
fat 1 4

5 2 3
a. Let B=[SW Crp]= , uz[ }

Then Bu lists the amounts of calories, protein, carbohydrate, and fat in a mixture of three servings
of Shredded Wheat and two servings of Crispix.

b. [M] Let «; and u; be the number of servings of Shredded Wheat and Crispix, respectively. Can

120

. . u, 3.2
these numbers satisfy the equation BLJ = 546 ? To find out, row reduce the augmented

.64

matrix

160 110 130 1 4 .64 1 4 .64 1 4 .64 1 0 4
5 2 32 0 0 0 0 46 276 0 1 .6 0 1 .6
6 .1 246| |0 —23 -138| [0 —23 -138| [0 0 0| |0 0 0O
1 4 .64 0 46 276 0 0 0 0 0 0 0 0 O

Since the system is consistent, it is possible for a mixture of the two creals to provide the desired
nutrients. The mixture is .4 servings of Shredded Wheat and .6 servings of Crispix.
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3. a.[M] Letx, x,, and x; be the number of servings of Annies’s Mac and Cheese, broccoli, and
chicken, respectively, needed for the lunch. The values of xy, x,, and x; should satisfy

[ nutrients } { nutrients ] { nutrients ] { quantities }
X, per serving +x, | per serving |+ x; | per serving | =| of nutrients
| of Mac and Cheese of broccoli of chicken required
From the given data,
[270 51 70| [400
x| 10|+x,|54 (+x|15|=| 30
| 2 5.2 o] | 10
To solve, row reduce the corresponding augmented matrix:
270 51 70 400 1 0 0 .9 .99 servings of Mac and Cheese
10 54 15 30|~..~|0 1 0 154, x=[1.54|= servings of broccoli
2 52 0 10 0 0 1 .79 .79 servings of chicken
b. [M] Changing from Annie’s Mac and Cheese to Annie’s Whole Wheat Shells and White Cheddar
260 51 70 400
changes the vector equationto x;| 9 |+x,|54 |+x;| 15|=| 30
5 5.2 o] | 10
To solve, row reduce the corresponding augmented matrix:
260 51 70 400 1 0 0 1.09 1.09 | servings of Shells
9 54 15 30|~..~|0 1 0 .88]; x=| .88 |=]|servings of broccoli
5 52 0 10 0 0 1 1.03 1.03 | | servings of chicken

Notice that the number of servings of broccoli has decreased as was desired.

4. Here are the data, assembled from Table 1 and Exercise 4:

Mg of Nutrients/Unit Nutrients
Nusent ik o whey b (milfarams)
protein 36 51 13 80 33
carboh. 52 34 74 0 45
fat 0 7 1.1 3.4 3
calcium 1.26 .19 .8 18 .8

a. Let x|, x5, x3, x4 represent the number of units of nonfat milk, soy flour, whey, and isolated soy
protein, respectively. These amounts must satisfy the following matrix equation
36 51 13 80 || % 33
52 34 74 0 ||* 45
0 7 1.1 34| %
1.26 .19 .8 .18 %

Copyright © 2016 Pearson Education, Inc.



1.10 <« Solutions 1-71

36 51 13 80 33 1 0 0 0 .64
vy | 52 3 74 0 45| J0 1.0 0 .54
0 7 11 34 3 00 1 0 —09
126 .19 8 .18 8 00 0 1 -21

The “solution” is x; = .64, x, = .54, x3 = —.09, x4, = —.21. This solution is not feasible, because the
mixture cannot include negative amounts of whey and isolated soy protein. Although the
coefficients of these two ingredients are fairly small, they cannot be ignored. The mixture of .64
units of nonfat milk and .54 units of soy flour provide 50.6 g of protein, 51.6 g of carbohydrate,
3.8 g of fat, and .9 g of calcium. Some of these nutrients are nowhere close to the desired
amounts.

5. Loop 1: The resistance vector is

11| Total of RI voltage drops for current /,
= —5| Voltage drop for /, is negative; I, flows in opposite direction
1 0| Current 7, does not flow in loop 1

0] Current/, does not flow in loop I
Loop 2: The resistance vector is

=5 | Voltage drop for I , s negative; /, flows in opposite direction

10| Total of RI voltage drops for current 7,

r, =
? —1| Voltage drop for /, is negative; /, flows in opposite direction
0] Current/, does not flow in loop 2
0 0 1 -5 0 0
-1 0 - -
AISO, r; = , 3= , and R = [r1 r, r; 1’4] = 5 10 1 0 .
9 —2 0 -1 9 -2
-2 10 0 0 -2 10

Notice that each off-diagonal entry of R is negative (or zero). This happens because the loop current
directions are all chosen in the same direction on the figure. (For each loop j, this choice forces the
currents in other loops adjacent to loop ;j to flow in the direction opposite to current /;.)

50

Next, set v = —40 . The voltages in loops 2 and 4 are negative because the battery orientation in
30
=30

each loop is opposite to the direction chosen for positive current flow. Thus, the equation Ri = v
becomes

1 -5 0 o 50 1 3.68
_ _ I _ I _

> 100 -1 04 %140 [M]: The solutionisi=| * |= 190
0 -1 9 =24 30 I 2.57
0 0 -2 10]{s] |30 1, -2.49
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6. Loop 1: The resistance vector is

6| Total of RI voltage drops for current 1

—1| Voltage drop for I, is negative; I, flows in opposite direction
0| Current 7, does not flow in loop 1
0J Current 14 does not flow in loop 1

Loop 2: The resistance vector is

—1| Voltage drop for /, is negative; /, flows in opposite direction

9| Total of RI voltage drops for current /,

r, =
—4| Voltage drop for /, is negative; /, flows in opposite direction
0] Current I, does not flow in loop 2
0 [0 6 -1 0 0] 30
—4 0 -1 9 -4 0 20
Also, r; = L= ,and R=[r; r r; 1= .Setv= . Then Ri=
7 -2 0o -4 7 =2 40
-2 | 7 0 0 -2 7] 10
v becomes
6 -1 0 0] 30 1, 6.36 |
-1 9 4 0|1 20 A 8.14
= . [M]: The solution is i = = .
0 -4 7 2|1 40 I 11.73
0 0 =2 7] 10 1, 4.78 |

7. Loop 1: The resistance vector is

12| Total of RI voltage drops for current / 1
_|=7| Voltage drop for 7, is negative; [, flows in opposite direction
0| Current 7, does not flow in loop 1
—4 | Voltage drop for I, is negative; /, flows in opposite direction

Loop 2: The resistance vector is

—7| Voltage drop for / | is negative; /, flows in opposite direction

15| Total of RI voltage drops for current /7,

" —6 | Voltage drop for /, is negative; /, flows in opposite direction
0] Current I, does not flow in loop 2
0 —4 12 -7 0 -4
Also, r; = 6 L= 0 ,and R=[r; r, r; I14]= -6 0 .
14 =5 0 -6 14 -5
=5 13 -4 0 -5 13

Notice that each off-diagonal entry of R is negative (or zero). This happens because the loop current
directions are all chosen in the same direction on the figure. (For each loop j, this choice forces the
currents in other loops adjacent to loop j to flow in the direction opposite to current /;.)
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40
30 ) ) . ) )
Next, setv = 0! Note the negative voltage in loop 4. The current direction chosen in loop 4 is
-10
opposed by the orientation of the voltage source in that loop. Thus Ri = v becomes
12 -7 0 -4 [ 40 1, 11.43
-7 15 -6 011, 30 Y 10.55
= . [M]: The solution is i = = .
0 -6 14 5|1 20 I 8.04
-4 0 =5 13|, -10 1, 5.84

. Loop 1: The resistance vector is

9| Total of RI voltage drops for current /|

—1| Voltage drop for /, is negative; I, flows in opposite direction
=] 0| Current 7, does not flow in loop 1

—1| Voltage drop for /, is negative; /, flows in opposite direction

-4 Voltage drop for / s is negative; / S flows in opposite direction

Loop 2: The resistance vector is

—1| Voltage drop for /; is negative; /, flows in opposite direction
7| Total of RI voltage drops for current 7,

I =|-2| Voltage drop for I , is negative; /, flows in opposite direction
0| Current 7, does not flow in loop 2

-3] Voltage drop for /, is negative; I, flows in opposite direction

[ 0] [-1] [—4] 9 -1 0 -1 -4] [ 50]

-2 0 -3 -1 7 -2 0 -3 =30
Also,r;=|10|,r3=|-3|,rs=|-3|,andR=| 0 -2 10 -3 -3|.Setv=/| 20].Note the
-3 7 -2 -1 0 -3 7 -2 -40

-3 2] | 12] -4 3 -3 =2 12 |0

negative voltages for loops where the chosen current direction is opposed by the orientation of the
voltage source in that loop. Thus Ri = v becomes:

9 -1 0 -1 —4]1 50 (1] [ 4.00]
-1 7 =2 0 =3\ [-30 I,| |-4.38
0 -2 10 -3 3||L|=| 20 [M] The solutionis | I; |=| —.90].
-1 0 -3 7 =2|I1,| |40 I,| |-5.80
-4 -3 -3 -2 12]|L]| [ 0 L] | -96]

. The population movement problems in this section assume that the total population is constant, with
no migration or immigration. The statement that “about 7% of the city’s population moves to the
suburbs” means also that the rest of the city’s population (93%) remain in the city. This determines
the entries in the first column of the migration matrix (which concerns movement from the city).
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City Suburbs  To:

.93
.07

City
Suburbs

10.

11.

Likewise, if 5% of the suburban population moves to the city, then the other 95% remain in the

93 .05
suburbs. This determines the second column of the migration matrix: M = { 07 95} . The

800,000
difference equation is x;.; = Mx; for k=0, 1,2, .... Also, xo = { }

500,000

. . .93 .05 || 800,000 769,000
The population in 2016 (when k= 1) is x; = Mx( = =

.07 .95 500,000 531,000
o . .93 .05 || 769,000 741,720

The population in 2017 (when k = 2) is x, = Mx; = =
.07 95| 531,000 558,280

The data in the first sentence implies that the migration matrix has the form:
From:
City Suburbs To:

04]  City
.06

Suburbs
The remaining entries are determined by the fact that the numbers in each column must sum to 1.
(For instance, if 6% of the city people move to the suburbs, then the rest, or 94%, remain in the city.)

S o 94 .04 o .. 10,000,000
So the migration matrix is M = . The initial population is xy = .
.06 .96 800,000
.94 .04 (/10,000,000 9,432,000
The population in 2016 (when k= 1) is x; = Mxy = =
.06 .96 800,000 1,368,000
.94 .04 9,432,000 8,920,800
The population in 2017 (when k= 2) is X, = Mx; = =
.06 .96 || 1,368,000 1,879,200

The problem concerns two groups of people—those living in California and those living outside
California (and in the United States). It is reasonable, but not essential, to consider the people living
inside California first. That is, the first entry in a column or row of a vector will concern the people
living in California. With this choice, the migration matrix has the form:

From:
Calif. Outside To:

Calif.
Outside
a. For the first column of the migration matrix M, compute

Calif. persons
who moved 748,252

[Total Calif. pop.} 38,041,430

1967
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The other entry in the first column is 1 —.01967 = .98033. Whatever number of decimal places
is used, it is important that the two entries sum to 1.

outside persons
who moved 493,641

[Total outside pop.} 275,872,610
entry is 1 —.00179 = .99821. Thus, the migration matrix is

=.00179. The other

For the second column of M, compute

From:
Calif. Outside To:
98033 .00179 | Calif.
[.01967 .9982 1} Outside

b. [M] The initial vector is xo = (38.041, 275.872), with data in millions of persons. Since X,
describes the population in 2012, and x; describes the population in 2013, the vector x,o describes
the projected population for the year 2022, assuming that the migration rates remain constant and
there are no deaths, births, or migration. Here are the vectors x, through x,o with the first 5 figures
displayed. Numbers are in millions of persons:

38.041||37.787 | | 37.538 | | 37.294 | | 37.056 | | 36.822
X = b b b b b =
" 1275.87 [ 276.13 || 276.62 || 276.62 || 276.86 || 277.09

36.594 [ 36.371][36.152] [ 35.938] [ 35.729
X = b b 9 b = X .
27732 277.54 | 277.76 | 277.98 | 278.18 | "
97 .05 .10 [295 97 .05 .10]295| |304
12. SetM=|.00 90 .05| and x,=| 55|.Thenx;=|{.00 90 .05| 55|=| 57|, and
.03 .05 .85 | 150 .03 .05 .85|| 150 139
97 .05 .10(304| |312
x;=1.00 .90 .05| 57|=| 58|. The entries in x; give the approximate distribution of cars on

.03 .05 .85][139 130
Wednesday, two days after Monday.

13. [M] The order of entries in a column of a migration matrix must match the order of the columns. For
instance, if the first column concerns the population in the city, then the first entry in each column
must be the fraction of the population that moves to (or remains in) the city. In this case, the data in

95 .03} {600, ooo}

and xo =

the exercise leads to M = Xg =
.05 400,000

a. Some of the population vectors are

523,293 472,737 439,417 417,456
X5 = > X0 = > X5 = > Xp0 =
476,707 527,263 560,583 582,544

The data here shows that the city population is declining and the suburban population is
increasing, but the changes in population each year seem to grow smaller.
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350,000
650,000

358,523 364,140 367,843 370,283
X5 = » X0 = > X5 = » X0 =

641,477 635,860 632,157 629,717
The city population is increasing slowly and the suburban population is decreasing. No other
conclusions are expected. (This example will be analyzed in greater detail later in the text.)

b. When xo = { } , the situation is different. Now

14. Here are Figs. (a) and (b) for Exercise 14, followed by the figure for Exercise 33 in Section
1.1:
200 20° 0 0 20° 20°
0 L 22 % 10 L 12 w10 L 2 tw
0 223 %o 10 223 L0 10 213 w0
200 20° 10° 10° 30° 30°
(a) (b) Section 1.1

4T, =0+20+T7, + 1T,
4T, =T, +20+ 0+ T,
AT, =T,+T1,+0+20
4T, =0+T1, + T, + 20

For Fig. (a), the equations are

To solve the system, rearrange the equations and row reduce the augmented matrix. Interchanging
rows 1 and 4 speeds up the calculations. The first five steps are shown in detail.

4 -1 0 -1 20 1 0 1 -4 =20 1 0 1 -4 =20 1 0 1 -4 =20
-1 4 -1 0 20 -1 4 -1 0 20 0 4 0 -4 0 0 1 0 -1 0
0 -1 4 -1 20 B 0 -1 4 -1 20 B 0 -1 4 -1 20 B 0 -1 4 -1 20
-1 0 ! 4 20 4 -1 0 -1 20 0 -1 -4 15 100 0 -1 -4 15 100

1 0 1 -4 =20 10 1 -4 =20 1 0 0 0 10

o 1 0 -l o o 1 0o -1 0 0 1 0 0 10

0 0 4 2 20| lo o 4 =2 20/ |o oo 1 0 10

0 0 -4 14 100] [0 0 0 12 120 0 0 0 1 10

47, =10+0+T7, + 1T,
AT, =T, +0+40+T;,
AT, =T,+T,+40+10
47, =10+T, + T, +10

For Fig (b), the equations are
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Rearrange the equations and row reduce the augmented matrix:

4 -1 0 -1 10 1 0 0 0 10
-1 4 -1 0 40 0 1 0 0 175
0 -1 4 -1 50 T 0 0 1 0 20
-1 0 -1 4 20 0 0 0 1 125

a. Here are the solution temperatures for the three problems studied:
Fig. (a) in Exercise 14 of Section 1.10: (10, 10, 10, 10)
Fig. (b) in Exercise 14 of Section 1.10: (10, 17.5, 20, 12.5)
Figure for Exercises 33 in Section 1.1 (20, 27.5, 30, 22.5)

When the solutions are arranged this way, it is evident that the third solution is the sum of the first
two solutions. What might not be so evident is that the list of boundary temperatures of the third
problem is the sum of the lists of boundary temperatures of the first two problems. (The
temperatures are listed clockwise, starting at the left of 77.)

Fig. (a): ( 0,20,20, 0, 0,20,20, 0)
Fig. (b): (10, 0, 0,40,40,10,10,10)
Fig. from Section 1.1: (10, 20, 20, 40, 40, 30, 30, 10)
b. When the boundary temperatures in Fig. (a) are multiplied by 3, the new interior temperatures are
also multiplied by 3.

c¢. The correspondence from the list of eight boundary temperatures to the list of four interior
temperatures is a linear transformation. A verification of this statement is not expected. However,
it can be shown that the solutions of the steady-state temperature problem here satisfy a
superposition principle. The system of equations that approximate the interior temperatures can
be written in the form Ax = b, where 4 is determined by the arrangement of the four interior

points on the plate and b is a vector in R* determined by the boundary temperatures.
Note: The MATLAB box in the Study Guide for Section 1.10 discusses scientific notation and shows

how to generate a matrix whose columns list the vectors Xy, X;, X5, ..., determined by an equation
X = Mx, fork=0,1,....

Chapter 1 SUPPLEMENTARY EXERCISES

1. a. False. (The word “reduced” is missing.) Counterexample:

oy ey s

The matrix 4 is row equivalent to matrices B and C, both in echelon form.

b. False. Counterexample: Let 4 be any n Xn matrix with fewer than # pivot columns. Then the
equation Ax = 0 has infinitely many solutions. (Theorem 2 in Section 1.2 says that a system has
either zero, one, or infinitely many solutions, but it does not say that a system with infinitely
many solutions exists. Some counterexample is needed.)

c¢. True. If a linear system has more than one solution, it is a consistent system and has a free
variable. By the Existence and Uniqueness Theorem in Section 1.2, the system has infinitely
many solutions.
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d. False. Counterexample: The following system has no free variables and no solution:

x + x, =1
x, =5
x + x, = 2

e. True. See the box after the definition of elementary row operations, in Section 1.1. If [4 b] is
transformed into [C d] by elementary row operations, then the two augmented matrices are row
equivalent, and thus have the same solution set.

f. True. Theorem 6 in Section 1.5 essentially says that when Ax = b is consistent, the solution sets
of the nonhomogeneous equation and the homogeneous equation are translates of each other. In
this case, the two equations have the same number of solutions.

g. False. For the columns of 4 to span R”, the equation Ax = b must be consistent for all b in R”,
not for just one vector b in R”.

h. False. Any matrix can be transformed by elementary row operations into reduced echelon form,
but not every matrix equation Ax = b is consistent.

i. True. If 4 is row equivalent to B, then 4 can be transformed by elementary row operations first
into B and then further transformed into the reduced echelon form U of B. Since the reduced
echelon form of 4 is unique, it must be U.

j. False. Every equation Ax = 0 has the trivial solution whether or not some variables are free.
k. True, by Theorem 4 in Section 1.4. If the equation Ax = b is consistent for every b in R", then 4

must have a pivot position in every one of its m rows. If 4 has m pivot positions, then 4 has m
pivot columns, each containing one pivot position.

1. False. The word “unique” should be deleted. Let A be any matrix with m pivot columns but more
than m columns altogether. Then the equation Ax = b is consistent and has m basic variables and
at least one free variable. Thus the equation does not have a unique solution.

m. True. If 4 has n pivot positions, it has a pivot in each of its #» columns and in each of its # rows.
The reduced echelon form has a 1 in each pivot position, so the reduced echelon form is the n xn
identity matrix.

n. True. Both matrices 4 and B can be row reduced to the 3%3 identity matrix, as discussed in the
previous question. Since the row operations that transform B into /3 are reversible, 4 can be
transformed first into /5 and then into B.

0. True. The reason is essentially the same as that given for question f.
p. True. If the columns of 4 span R", then the reduced echelon form of 4 is a matrix U with a pivot

in each row, by Theorem 4 in Section 1.4. Since B is row equivalent to 4, B can be transformed
by row operations first into 4 and then further transformed into U. Since U has a pivot in each

row, so does B. By Theorem 4, the columns of B span R".

q. False.

r. True. Any set of three vectors in R* would have to be linearly dependent.

s. False. If a set {v, v, v3, v4} were to span R’ , then the matrix 4 =[v, v, v3 v4] would have
a pivot position in each of its five rows, which is impossible since 4 has only four columns.

t. True. The vector —u is a linear combination of u and v, namely, —u = (-1)u + Ov.

u. False. If u and v are multiples, then Span{u, v} is a line, and w need not be on that line.

v. False. Let u and v be any linearly independent pair of vectors and let w =2v. Then w = Ou + 2v,
so w is a linear combination of u and v. However, u cannot be a linear combination of v and w
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because if it were, u would be a multiple of v. That is not possible since {u, v} is linearly
independent.

w. False. The statement would be true if the condition v; is not zero were present. See Theorem 7 in
Section 1.7. However, if v; = 0, then {vy, v,, v3} is linearly dependent, no matter what else might
be true about v, and vs.

x. True. “Function” is another word used for “transformation” (as mentioned in the definition of
“transformation” in Section 1.8), and a linear transformation is a special type of transformation.

y. True. For the transformation x > Ax to map R’ onto R’, the matrix 4 would have to have a

pivot in every row and hence have six pivot columns. This is impossible because A has only five
columns.

z. False. For the transformation x > 4x to be one-to-one, 4 must have a pivot in each column.

Since 4 has n columns and m pivots, m might be less than n.

. If a # 0, then x = b/a; the solution is unique. If @ = 0, and b # 0, the solution set is empty, because
0x=0=#b.If a=0and b =0, the equation Ox = 0 has infinitely many solutions.

. a. Any consistent linear system whose echelon form is
0O m * *lor|0O O W *jor|0 0O m *
0 0 0 O 0 0 0 O 0 0 0 O

b. Any consistent linear system whose coefficient matrix has reduced echelon form /3.
c¢. Any inconsistent linear system of three equations in three variables.

. Since there are three pivots (one in each row), the augmented matrix must reduce to the form

] & & %

0 m * *| Asolution of 4x = b exists for all b because there is a pivot in each row of 4. Each
0 0 m *

solution is unique because there are no free variables.

1 3 k 3 k
a. ~ O .Ifh =12 and k = 2, the second row of the augmented matrix
4 h 8 0 h-12 8-4k

indicates an inconsistent system of the form Ox, = b, with b nonzero. If # =12, and k = 2, there is
only one nonzero equation, and the system has infinitely many solutions. Finally, if # = 12, the
coefficient matrix has two pivots and the system has a unique solution.
=2 h 1 [ n 1 L :
b. ~ .If k + 37 =0, the system is inconsistent. Otherwise, the
6 k 2 0 k+3h 1
coefficient matrix has two pivots and the system has a unique solution.
4 -2 7 -5 e o
. a. Set v, = g | v, = 3 1 v, = ol and b = . “Determine if b is a linear combination of vy,

V2, v3.” Or, “Determine if b is in Span{vy, v, v3}.” To do this, compute

4 =2 7 -5] -2 7 -5
~ @ . The system is consistent, so b is in Span{vy, v, v3}.
8 -3 10 -3 0 @ -4 7
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10.

S PR O | R B

1 2
. The first line is the line spanned by {2} . The second line is spanned by L} So the problem is to

4 =2 7 -5
b. Set 4= {8 3 10}, b :[ } . “Determine if b is a linear combination of the columns of 4.”

¢. Define 7T(x) = Ax. “Determine if b is in the range of 7.”

2 -4 -2 b
.a. Setv,=|-5|, v,=| 1|, v;=| 1]|and b=|b, |.“Determine if v,, v5, v3 span R®.” To do this,
7 -5 -3 by

row reduce [v; v, s3]
2 4 2] [2 4 2] @ 4 =2
-5 1 1j~]0 -9 —4|~]0 —4 |. The matrix does not have a pivot in each row,
7 =5 =3 0 9 4 0o o0 O

so its columns do not span R’ , by Theorem 4 in Section 1.4.

2 -4 2
b. SetA=|-5 1 1|. “Determine if the columns of 4 span R’.”
7 -5 3

¢. Define 7(x) = Ax. “Determine if 7' maps R’ onto R’.”

o o

] %
0 m

5 1 2
write {6} as the sum of a multiple of {2} and a multiple of [J . That is, find x; and x, such that

2 1 5
X +x = . Reduce the augmented matrix for this equation:
N1 2] |6

2 1 5 1 2 6 1 2 6 1 2 6 1 0 4/3
1 2 6 2 1 5 0o -3 -7 0 1 7/3 0 1 7/3
Thus, 5 _4 2 L7 1 or 5 _ 8/3 N 7/3 .
6] 3/1] 3|2 6 4/3 14/3

The line through a; and the origin and the line through a, and the origin determine a “grid” on the

x1x-plane as shown below. Every point in R* can be described uniquely in terms of this grid. Thus,
b can be reached from the origin by traveling a certain number of units in the a;-direction and a
certain number of units in the a,-direction.
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ap

as

A solution set is a line when the system has one free variable. If the coefficient matrix is 2x3, then

1 2 *
two of the columns should be pivot columns. For instance, take {0 3 *} . Put anything in column

3. The resulting matrix will be in echelon form. Make one row replacement operation on the second

1 2 1 1 2 1
row to create a matrix not in echelon form, such as ~
0 3 1 1 5 2

A solution set is a plane where there are two free variables. If the coefficient matrix is 2x3, then only
one column can be a pivot column. The echelon form will have all zeros in the second row. Use a

. . . 1 2 3
row replacement to create a matrix not in echelon form. For instance, let A = [1 5 3} .

1 0 *
The reduced echelon form of 4 looks like E={0 1 *|. Since £ is row equivalent to 4, the
0 0 O
1 0 *|| 3 0
equation £x = 0 has the same solutions as Ax = 0. Thus {O I *|-2{=|0].
0 0 Of 1 0
1 0 -3
By inspection, E=|0 1
0 0 O

1 0
Row reduce the augmented matrix for x| [+ x, “ = ().
a a+?2 0

1 a 0 1 a 0 |1 a 0

a a+2 0| |0 a+2-4*> 0| |0 Q2-a)l+a) O
The equation (*) has a nontrivial solution only when (2 — a)(1 + @) = 0. So the vectors are linearly
independent for all @ except @ =2 and a =—1.

a. If the three vectors are linearly independent, then a, ¢, and f must all be nonzero. (The converse is
true, too.) Let 4 be the matrix whose columns are the three linearly independent vectors. Then
A must have three pivot columns. (See Exercise 30 in Section 1.7, or realize that the equation Ax
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16.

17.

18.

19.

20.

21.

22.

= 0 has only the trivial solution and so there can be no free variables in the system of equations.)
Since A4 is 3x3, the pivot positions are exactly where a, ¢, and fare located.

b. The numbers q, ..., fcan have any values. Here's why. Denote the columns by vy, v, and v;.
Observe that v, is not the zero vector. Next, v, is not a multiple of v, because the third entry of v,
is nonzero. Finally, v; is not a linear combination of v; and v, because the fourth entry of v; is
nonzero. By Theorem 7 in Section 1.7, {v|, v, v3} is linearly independent.

Denote the columns from right to left by vy, ..., v4. The “first” vector v, is nonzero, v; is not a
multiple of v; (because the third entry of v, is nonzero), and v; is not a linear combination of v, and
v, (because the second entry of v; is nonzero). Finally, by looking at first entries in the vectors, v4
cannot be a linear combination of vy, v,, and v;. By Theorem 7 in Section 1.7, the columns are
linearly independent.

b

Here are two arguments. The first is a “direct” proof. The second is called a “proof by contradiction.’

1. Since {v|, v, v3} is a linearly independent set, v; #0. Also, Theorem 7 shows that v, cannot be a
multiple of v, and v; cannot be a linear combination of v, and v,. By hypothesis, v, is not a linear
combination of vy, v,, and v;. Thus, by Theorem 7, {vy, v,, v3, v4} cannot be a linearly dependent
set and so must be linearly independent.

ii. Suppose that {v|, v, v3, v4} is linearly dependent. Then by Theorem 7, one of the vectors in the
set is a linear combination of the preceding vectors. This vector cannot be v, because v, is not in
Span{vy, v,, v3}. Also, none of the vectors in {vi, v, v3} is a linear combinations of the preceding
vectors, by Theorem 7. So the linear dependence of {v, v, v3, v4} is impossible. Thus {vi, v,, v3,
v4} is linearly independent.

Suppose that ¢; and ¢, are constants such that
avitavitv)=0 (¥)

Then (c; + ¢)vi + c2v2 = 0. Since v, and v, are linearly independent, both ¢; + ¢; =0 and ¢, = 0. It
follows that both ¢, and ¢, in (*) must be zero, which shows that {v,, v; + v,} is linearly independent.

Let M be the line through the origin that is parallel to the line through v,, v,, and v;. Then v, — v; and
v3 — vy are both on M. So one of these two vectors is a multiple of the other, say v, — v = k(v3 — vy).
This equation produces a linear dependence relation (k— 1)v; + v, — kv3 = 0.

A second solution: A parametric equation of the line is x = v; + #(v, — v). Since vj is on the line,
there is some ?y such that v3 = v + #o(v, — v;) = (1 — f)v| + £ V2. So v; is a linear combination of v,
and v,, and {vy, v,, v3} is linearly dependent.

If T(u) = v, then since T is linear,
T(—u) = I((-Dw) = (DT (u) = -v.

Either compute 7(e;), 7(e;), and 7(e;) to make the columns of 4, or write the vectors vertically in the
definition of 7 and fill in the entries of 4 by inspection:

77 X X, 1 0 O
Ax=|? A 7| x|=|-x|, 4={0 -1 0
707 ?|x X3 0 0 1

By Theorem 12 in Section 1.9, the columns of 4 span R’. By Theorem 4 in Section 1.4, 4 has a
pivot in each of its three rows. Since 4 has three columns, each column must be a pivot column. So
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the equation Ax = 0 has no free variables, and the columns of 4 are linearly independent. By
Theorem 12 in Section 1.9, the transformation X — AX is one-to-one.

a -bll4 51 . ) da - 3b 5
23. = implies that . Solve:
b all3 0 3a + 4b 0

4 -3 5 4 3 5 4 3 5 4 0 16/5 1 0 4/5
3 4 0 0 25/4 -15/4 0 1 -3/5 0 1 -=3/5 0 1 -=3/5

Thus a = 4/5 and b =-3/5.

24. The matrix equation displayed gives the information 2a —4b = 24/5 and 4a +2b = 0. Solve for a and

b{z 4 2\6}[2 4 2J§}[1 ) ﬁ}[l 0 1/6]
4 2 0] |0 10 -4 1 -2/45 1 -2/45

So a=1//5, b=-2/+/5.

25. a. The vector lists the number of three-, two-, and one-bedroom apartments provided when x; floors
of plan A4 are constructed.

3 4] 5]
b. x| 7|+x,|4|+x|3
8 8| 9]
'3 4 5] [ 66
c. [M] Solve x| 7 |+x,|4|+x;|3|=| 74
| 8 18 9 136
3 4 5 66 1 0 -1/72 2| x - 1/2x; = 2
7 4 3  74(~-0 1 13/8 15 x, + (13/8)x; = 15
8 8 9 136 0 0 0 0 0 = 0
The general solution is
X, 24+ (1/2)x; 2 1/2
x=|x, |=|15-(13/8)x; |=|15|+x;| —13/8
X X 0 1

However, the only feasible solutions must have whole numbers of floors for each plan. Thus, x3
must be a multiple of 8, to avoid fractions. One solution, for x3 = 0, is to use 2 floors of plan A
and 15 floors of plan B. Another solution, for x3 = 8, is to use 6 floors of plan A , 2 floors of plan
B, and 8 floors of plan C. These are the only feasible solutions. A larger positive multiple of 8
for x3 makes x; negative. A negative value for x3, of course, is not feasible either.
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2.1 SOLUTIONS

Notes: The definition here of a matrix product AB gives the proper view of AB for nearly all matrix
calculations. (The dual fact about the rows of 4 and the rows of AB is seldom needed, mainly because vectors
here are usually written as columns.) I assign Exercise 13 and most of Exercises 17-22 to reinforce the

definition of 4B.

Exercises 23 and 24 are used in the proof of the Invertible Matrix Theorem, in Section 2.3. Exercises
23-25 are mentioned in a footnote in Section 2.2. A class discussion of the solutions of Exercises 23-25 can
provide a transition to Section 2.2. Or, these exercises could be assigned after starting Section 2.2.

Exercises 27 and 28 are optional, but they are mentioned in Example 4 of Section 2.4. Outer products also
appear in Exercises 31-34 of Section 4.6 and in the spectral decomposition of a symmetric matrix, in Section 7.1.
Exercises 29-33 provide good training for mathematics majors.

2 0 -1 -4 0 2
1. 24=(-2) = . Next, use B—24 =B + (-24):
4 -5 2 -8 10 -4

7 =5 1] |4 0 2 3 -5 3
B-24= + = .
1 4 3] |-8 10 4| |[-7 6 -7
The product AC is not defined because the number of columns of 4 does not match the number of rows

1 2| 3 5 1-3+42(-1) 1-5+2-4 1 13 ,
of C. CD= = = . For mental computation, the
-2 1|-1 4] |-2-3+1(-1) -2-5+1-4| |-7 -6

row-column rule is probably easier to use than the definition.

2 0 -1 7 =5 1 2414 0-10 -—-1+2 16 -10 1
2. A+2B= +2 = =
4 -5 2 1 4 3 442 -5-8 2-6 6 -13 4
The expression 3C — E is not defined because 3C has 2 columns and —£ has only 1 column.

cgo| 27 S TL[ BTl 1924 12 [ 9 <13 S
=2 1|1 -4 3 |27+ 1 =2(=5)+1(-4) —2-1+1(=3)| [-13 6 -5

The product EB is not defined because the number of columns of £ does not match the number of rows
of B.

2-1
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{3 o} {4 —1} {3—4 0—(—1)} [—1 1}
3.3,-A= - = =
0 3| |5 —2]]0-5 3-(=2)| |-5 5

siya=3na=3 e
(2)—(2)— 5 _2—15 _6,01'

3 0][4 -1] [3-4+0 3(-D)+0] [12 -3
(31,)4 = - -
0 3|5 2| |0+3-5 0+43(-2)| |15 -6
9 -1 3] [5 0 0] [4 -1 3
4. A-5I,=|-8 7 —6|-|0 5 0|=|-8 2 -6

—4 1 0 0 5 —4 3
9 3 -5 15
(51;)A=5(1;4)=54=5{-8 7 —6|=|-40 35 -=30|,or
8 5 40
5 0 0 5:9+0+0 5(-1)+0+0 5-3+0+0
(51;)A=|0 5 O0f - =|0+5(-8)+0 0+5-7+0 0+5(-6)+0
0 0 5|4 0+0+5(-4) 0+0+5-1 0+0+5-8
45 -5  15]
=|-45 35 =30
20 5 40|
-1 ] —7 -1 2 4
3 -2
5. a. 4Ab=| 5 4{2} 71, A4b,=| 5 4[ } -6
2 3 12 2 3 -7
-7 4
B=[4b, 4b,|=| 7 -6
12 -7
-1 2 [—1-34+2(=2) -1(=2)+2-1 -7 4

b. | 5 4{3 _2} 5.3+4(=2)  S5(=2)+4-1|=| 7 -6
| 23-3(2)  2-2)-3-1] |12 -7

4 2 0 4 2 14
6. a. Ab;=|-3 0 mz -3|, 4b,=|-3 0 [_ﬂ: -9
35 |13 3.5 4

0 14

AB=[4b, 4b,]=|-3 -9

13 4
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10.

11.

12.

13.

14.

15.

2.1 + Solutions 2-3

2], g [41-22 43-2en] [0
b.|-3 0 {2 }: -3-140-2 —-3-3+0(-1)|=|-3 -9
35 3-145-2  3:3+5-1)| |13 4

Since 4 has 3 columns, B must match with 3 rows. Otherwise, 4B is undefined. Since AB has 7 columns,
so does B. Thus, B is 3x7.

The number of rows of B matches the number of rows of BC, so B has 3 rows.

2 5[4 5] [23 -10+5k . 4 5[ 2 5 23 15
. AB= = , while BA= 3 = .

13 k] |[-9 15+k k]|-3 1 6-3k 15+k
Then AB = BA if and only if —10 + 5k = 15 and -9 = 6 — 3k, which happens if and only if £ = 5.

2 =318 4] | 1 -7 2 35 =21 [ 1 =7
AB = = , AC = =
-4 6 [5 50 |2 14} [—4 6}{3 1} -2 14}

1 1 12 0o o] [2 3 5]
AD=[1 2 3|0 3 0|=[2 6 15
1 4 5][0 0 5] |2 12 25]
2 0 o]t 1 1] [2 2 2]
DA=|0 3 0|1 2 3|=[3 6 9
0 0 51 4 5] |5 20 25|

Right-multiplication (that is, multiplication on the right) by the diagonal matrix D multiplies each column
of A by the corresponding diagonal entry of D. Left-multiplication by D multiplies each row of 4 by the
corresponding diagonal entry of D. To make 4B = BA, one can take B to be a multiple of /5. For instance,
if B =41, then AB and BA are both the same as 4A4.

Consider B = [b; b;]. To make AB = 0, one needs Ab; = 0 and 4b, = 0. By inspection of A4, a suitable

12 i 2 2 6
b, is L}, or any multiple of { J. Example: B =[ { 3}.

Use the definition of 4B written in reverse order: [4b; - -- Ab,]=A[b, --- b,]. Thus

[Or) - Or,]=0OR,whenR=1[r; --- r,].
By definition, UQ = U[q, - - q4] =[Uq, - - - Uqs]. From Example 6 of Section 1.8, the vector
Uq, lists the total costs (material, labor, and overhead) corresponding to the amounts of products B and
C specified in the vector q;. That is, the first column of UQ lists the total costs for materials, labor, and
overhead used to manufacture products B and C during the first quarter of the year. Columns 2, 3,
and 4 of UQ list the total amounts spent to manufacture B and C during the 2"d, 3rd, and 4" quarters,
respectively.
a. False. See the definition of 4B.
b. False. The roles of 4 and B should be reversed in the second half of the statement. See the box after
Example 3.
¢. True. See Theorem 2(b), read right to left.
d. True. See Theorem 3(b), read right to left.
e. False. The phrase “in the same order” should be “in the reverse order.” See the box after Theorem 3.
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16.

17.

CHAPTER 2 -« Matrix Algebra

a. False. AB must be a 3x3 matrix, but the formula for 4B implies that it is 3x1. The plus signs should
be just spaces (between columns). This is a common mistake.

True. See the box after Example 6.

False. The left-to-right order of B and C cannot be changed, in general.
False. See Theorem 3(d).

True. This general statement follows from Theorem 3(b).

e e T

-1 2 -1
Since [ 6 —9 3} =AB=[Ab, Ab, Ab,], the first column of B satisfies the equation

-1 ) 1 -2 -1 1 0 7 70 ..
Ax = . Row reduction:[4  4b, ]~ ~ .Sob, = . Similarly,
6 -2 5 6] |0 1 4 4

1 =2 2] [1 0 -8 -8
[4  4b,]|~ ~ and b, = .
-2 5 9] [0 1 -5 -5

Note: An alternative solution of Exercise 17 is to row reduce [4 Ab; Ab,] with one sequence of row
operations. This observation can prepare the way for the inversion algorithm in Section 2.2.

18.

19.

20.

21.

The first two columns of AB are Ab; and 4b,. They are equal since b, and b, are equal.

(A solution is in the text). Write B =[b; b, b;]. By definition, the third column of AB is 4b;. By
hypothesis, b; = b; + b,. So Ab; = A(b, + b,) = Ab; + Ab,, by a property of matrix-vector multiplication.
Thus, the third column of AB is the sum of the first two columns of 4AB.

The second column of AB is also all zeros because Ab, = 40 = 0.

Let b, be the last column of B. By hypothesis, the last column of 4B is zero. Thus, 4b, = 0. However,
b, is not the zero vector, because B has no column of zeros. Thus, the equation 4b, = 0 is a linear
dependence relation among the columns of 4, and so the columns of 4 are linearly dependent.

Note: The text answer for Exercise 21 is, “The columns of 4 are linearly dependent. Why?” The Study Guide
supplies the argument above in case a student needs help.

22.

23.

24.

If the columns of B are linearly dependent, then there exists a nonzero vector x such that Bx = 0. From

this, A(Bx) = A0 and (4B)x = 0 (by associativity). Since x is nonzero, the columns of 4B must be linearly
dependent.

If x satisfies Ax = 0, then CAx = C0 = 0 and so /,x = 0 and x = 0. This shows that the equation Ax =0
has no free variables. So every variable is a basic variable and every column of 4 is a pivot column.

(A variation of this argument could be made using linear independence and Exercise 30 in Section 1.7.)
Since each pivot is in a different row, 4 must have at least as many rows as columns.

Take any b in R" . By hypothesis, ADb = I,,b = b. Rewrite this equation as 4(Db) = b. Thus, the

vector x = Db satisfies Ax = b. This proves that the equation Ax = b has a solution for each b in R" .
By Theorem 4 in Section 1.4, 4 has a pivot position in each row. Since each pivot is in a different
column, 4 must have at least as many columns as rows.
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25.

26.

27.

28.

29.

30.

31.

32.

2.1 + Solutions 2-5

By Exercise 23, the equation CA =/, implies that (number of rows in 4) > (number of columns), that is,
m > n. By Exercise 24, the equation AD = [,, implies that (number of rows in 4) < (number of columns),
that is, m < n. Thus m = n. To prove the second statement, observe that DAC = (DA)C = 1,C = C, and
also DAC = D(AC) = DI,, = D. Thus C = D. A shorter calculation is

C=1,C=(DA)C=DAC)=DI, =D

Write I; =[e; e, e;]and D=[d; d, d;]. By definition of AD, the equation 4D = [; is equivalent |to the
three equations 4d, = e, Ad, = e,, and Ad; = e;. Each of these equations has at least one solution because

the columns of 4 span R*. (See Theorem 4 in Section 1.4.) Select one solution of each equation and use
them for the columns of D. Then AD = I;.

The product u’v is a 1x1 matrix, which usually is identified with a real number and is written without the
matrix brackets.

a -2
u'v=[-2 3 -4]|b|=-2a+3b-4c, vViu=[a b c] 3|=-2a+3b-4c
C _4
) 2a -2b -2c
w’=| 3lla b c|]=| 3¢ 3 3
-4 —4a -4b —4c
[a -2a 3a —4a
v’ =|b|[-2 3 —4]=|-2b 3b -4b
Lc —2c 3¢ -4c

Since the inner product u’v is a real number, it equals its transpose. That is,

u’'v=(u'v)"=v'(u")" = v'u, by Theorem 3(d) regarding the transpose of a product of matrices and by
Theorem 3(a). The outer product uv’ is an z xn matrix. By Theorem 3, (uv’)’ = (v)"u’ = vu’.

The (i, j)-entry of A(B + C) equals the (i, j)-entry of AB + AC, because
z ay (b,g + ck]) Z a,kb,g + Za,kc,g

The (i, j)-entry of (B + C)A4 equals the (i, j)-entry of BA + CA, because
Zn:(bik + ¢y )akj = Zn:bikakj + Zn:cikakj

k=1 k=1 k=1

The (i, j))-entries of "(A4B), (rA)B, and A(rB) are all equal, because rz ayby,; = Z(m )by = Za x (rby) -

k=1 k=1

Use the definition of the product /,,4 and the fact that /,x = x for x in R" .
ImA :Im[al T an] = [Imal e Iman] = [al T an] =4
Let e; and a; denote the jth columns of /, and 4, respectively. By definition, the jth column of 47, is Ae;,

which is simply a; because e; has 1 in the jth position and zeros elsewhere. Thus corresponding columns
of Al, and A are equal. Hence A/, = A.
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33

34.
35.

36.

37.

38.
39.

40.

CHAPTER 2 Matrix Algebra

The (i, j)-entry of (4B)" is the (j, i)-entry of AB, which is ab;+---+a;,b,

The entries in row i of B" are by, ... , b,;, because they come from column 7 of B. Likewise, the entries in

column j of A" are a, ..., @, because they come from row j of 4. Thus the (i, j)-entry in B4 is
a;b;+---+a;,b,, as above.

Use Theorem 3(d), treating x as an nx 1 matrix: (4Bx)" = x"(4B)" =x"B"A".

[M] The answer here depends on the choice of matrix program. For MATLAB, use the help
command to read about zeros, ones, eye, and diag. For other programs see the
appendices in the Study Guide. (The TI calculators have fewer single commands that produce
special matrices.)

[M] The answer depends on the choice of matrix program. In MATLAB, the command rand (6, 4)
creates a 6x4 matrix with random entries uniformly distributed between 0 and 1. The command
round (19* (rand (6, 4) —.5) ) creates a random 6x4 matrix with integer entries between —9 and 9.
The same result is produced by the command randomint inthe Laydata Toolbox on text website.
For other matrix programs see the appendices in the Study Guide.

[M] (4 + I)(4 —I) — (4> — I) = 0 for all 4x4 matrices. However, (4 + B)(4 — B) — A* — B* is the zero
matrix only in the special cases when 4B = BA. In general,(4 + B)(A — B) = A(A — B) + B(4 - B)
=AA— AB+ BA — BB.

[M] The equality (4B)" = A’B" is very likely to be false for 4x4 matrices selected at random.

[M] The matrix S “shifts” the entries in a vector (a, b, ¢, d, e) to yield (b, ¢, d, e, 0). The entries in s?
result from applying S to the columns of S, and similarly for S*, and so on. This explains the patterns
of entries in the powers of S:

0 01 0 0 00 0 1 0 000 0 1
00 0 1 0 00 0 0 1 00 0 0 0
$?’=l0 0 0 0 1[,8=l0 0 0 0 0[S*=[0 0 0 0 O
0 0 0 0 0 00 0 0 0 00 0 0 0
0 0 0 0 0 0 0 0 0 0 00 0 0 0
S° is the 5%5 zero matrix. S° is also the 5%5 zero matrix.
3318 3346 3336 333337 333330 .333333
[M] A°=|.3346 3323 .3331|,4'"=|.333330 .333336 .333334
3336 3331 .3333 333333 333334 333333

The entries in 4% all agree with .3333333333 to 9 or 10 decimal places. The entries in A°° all agree with
.33333333333333 to at least 14 decimal places. The matrices appear to approach the matrix

/3 1/3 1/3
1/3 1/3 1/3 . Further exploration of this behavior appears in Sections 4.9 and 5.2.
/3 1/3 1/3

Note: The MATLAB box in the Study Guide introduces basic matrix notation and operations, including
the commands that create special matrices needed in Exercises 35, 36 and elsewhere. The Study Guide
appendices treat the corresponding information for the other matrix programs.
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2.2 SOLUTIONS

Notes: The text includes the matrix inversion algorithm at the end of the section because this topic is popular.
Students like it because it is a simple mechanical procedure. The final subsection is independent of the
inversion algorithm and is needed for Exercises 35 and 36.

Key Exercises: 8, 11-24, 35. (Actually, Exercise 8 is only helpful for some exercises in this section.
Section 2.3 has a stronger result.) Exercises 23 and 24 are used in the proof of the Invertible Matrix Theorem
(IMT) in Section 2.3, along with Exercises 23 and 24 in Section 2.1. I recommend letting students work on
two or more of these four exercises before proceeding to Section 2.3. In this way students participate in the
proof of the IMT rather than simply watch an instructor carry out the proof. Also, this activity will help
students understand why the theorem is true.

J[8 ST 4 ][ 2 3
|5 4] 32-30|-5 8 |-5/2 4
- -1
,[3 2[4 2] [2
174 12-14]-7 3| |7/2 -3/2
K 1[5 =] 1[-5 -5] 1o
3. - = or
-7 5| —40-(=35 7 8] 5.7 8] [-14 -16

4'3 47! 1 -8 4] 1[-8 4 S
7 8|  —24-(=28)|-7 3] 4|-7 3 —7/4 3/4

6
4

y 2 =3 2 7
x=A'b= 52 allt = 9 . Thus x; =7 and x, = -9.

8 5 -9
6. The system is equivalent to Ax = b, where 4 = { . 5} and b = [ . 1} , and the solution is x =4 'b. To

8 2
5. The system is equivalent to Ax = b, where 4 = [5 } and bI{ J , and the solution is

compute this by hand, the arithmetic is simplified by keeping the fraction 1/det(4) in front of the matrix
for A", (The Study Guide comments on this in its discussion of Exercise 7.) From Exercise 3,

a 11-5 -5 -9 11-10 2
x=4 b=—§ . gl 11 =—§ 55 = s . Thus x; =2 and x, = -5.
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12 -2 6 -1
or
=5 1 =25 5

}. Similar calculations give

1
b.[4 by by by by]=
[1234]{5123—565

1 2 -r 1 2 3 (1 2 -1 1 2 3
0 2 8 -10 -4 -10 o 1 4 -5 -2 -5

1 0 -9 11 6 13
o 1 4 -5 =2 -5

. -9 11 6 13 )
The solutions are { 4}, { 5}, { 2}, and { 5}, the same as in part (a).

Note: The Study Guide also discusses the number of arithmetic calculations for this Exercise 7, stating that
when 4 is large, the method used in (b) is much faster than using A"

8. Left-multiply each side of the equation AD = I by 4" to obtain
A'AD =4I, ID=4",and D=4"".
Parentheses are routinely suppressed because of the associative property of matrix multiplication.

9. a. True, by definition of invertible. b. False. See Theorem 6(b).
1 1
c. False. If A= [0 0} ,then ab—cd =1 -0 # 0, but Theorem 4 shows that this matrix is not invertible,

because ad — bc = 0.
d. True. This follows from Theorem 5, which also says that the solution of Ax = b is unique, for each b.
e. True, by the box just before Example 6.

10. a. False. The product matrix is invertible, but the product of inverses should be in the reverse order.

See Theorem 6(b).
b. True, by Theorem 6(a). ¢. True, by Theorem 4.
d. True, by Theorem 7. e. False. The last part of Theorem 7 is misstated here.

11. (The proof can be modeled after the proof of Theorem 5.) The n xp matrix B is given (but is arbitrary).
Since 4 is invertible, the matrix 4B satisfies AX = B, because A(4 'B)=A A"'B = IB = B. To show this
solution is unique, let X be any solution of AX = B. Then, left-multiplication of each side by 4™ shows
that X must be 4'B: Thus 4~ (AX)=A"'B, so [X=A4"'B, and thus X =A"'B.
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12.

13.

14.

15.

16.

2.2 + Solutions 2-9

If you assign this exercise, consider giving the following Hint: Use elementary matrices and imitate the
proof of Theorem 7. The solution in the Instructor’s Edition follows this hint. Here is another solution,
based on the idea at the end of Section 2.2.

Write B=[b; --- b,] and X=[u, --- u,]. By definition of matrix multiplication,

AX=[Au, --- Au,]. Thus, the equation AX = B is equivalent to the p systems:

Au;=by, ... Au,=b,

Since A4 is the coefficient matrix in each system, these systems may be solved simultaneously, placing the
augmented columns of these systems next to 4 to form [4 b, --- b,]=[4 B]. Since 4 is

invertible, the solutions uy, ..., u, are uniquely determined, and [4 b; - - - b,] must row reduce to
[/ w ---uw,]=[/ X].ByExercise 11, Xis the unique solution A'Bof AX = B.

Left-multiply each side of the equation AB = AC by A" to obtain 4 'AB = A"'AC, so IB=1IC,and B = C.

This conclusion does not always follow when A4 is singular. Exercise 10 of Section 2.1 provides a
counterexample.

Right-multiply each side of the equation (B — C)D = 0 by D' to obtain(B — C)DD "' = 0D, so (B — C)I
=(,thus B—C=0,and B =C.

The box following Theorem 6 suggests what the inverse of ABC should be, namely, C"'B'4™". To verify
that this is correct, compute:

(ABC) C'B'A"'=ABCC'B'A"' =ABIB'A"' =ABB'A"' =AI4"' = 44" =T and
C'B'A'(4BC)=C'B'4a'aBC=C'B'IBC=C'B'BC=C'IC=C'C=1

Let C = AB. Then CB' = ABB ™', so CB ™' = AI = A. This shows that 4 is the product of invertible
matrices and hence is invertible, by Theorem 6.

Note: The Study Guide warns against using the formula (4B) ' = B'A™" here, because this formula can be
used only when both 4 and B are already known to be invertible.

17.

18.

19.

Right-multiply each side of AB=BC by B, thus ABB' = BCB', so Al =BCB',and A=BCB .

Left-multiply each side of 4 = PBP ' by P"': thus P'A =P 'PBP ', so P'A=IBP"',and P'4A = BP"'
Then right-multiply each side of the result by P: thus P'4P=BP'P,so P'AP=BI,and P'4P =B

Unlike Exercise 17, this exercise asks two things, “Does a solution exist and what is it?” First, find what
the solution must be, if it exists. That is, suppose X satisfies the equation C"'(4 + X)B ' = I. Left-multiply
each side by C, and then right-multiply each side by B: thus CC'(4 + X)B™' = CI, so (4 + X)B' = C,
thus (4 +X)B'B=CB, and (4 + X)I= CB

Expand the left side and then subtract 4 from both sides: thus 47/ + XI = CB, so A + X = CB, and
X=CB-4

If a solution exists, it must be CB — 4. To show that CB — A4 really is a solution, substitute it for X:
C'[A+(CB-A)B'=C'[CBIB'=C"'CBB ' =1I=1.

Note: The Study Guide suggests that students ask their instructor about how many details to include in their
proofs. After some practice with algebra, an expression such as CC'(4 + X)B"' could be simplified directly to
(4 + X)B' without first replacing CC™' by I. However, you may wish this detail to be included in the
homework for this section.
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20.

a. Left-multiply both sides of (4 — 4X)"' = X 'B by X to see that B is invertible because it is the product
of invertible matrices.

b. Invert both sides of the original equation and use Theorem 6 about the inverse of a product (which
applies because X ' and B are invertible): 4 —AX=X"'B)'=B'(X")'=B"'X
Then A = AX+ B'X=(4 + B")X. The product (4 + B)X is invertible because 4 is invertible. Since
X is known to be invertible, so is the other factor, 4 + B, by Exercise 16 or by an argument similar
to part (a). Finally, A+ B ") '"A=UA+B)'4+B X=X

Note: This exercise is difficult. The algebra is not trivial, and at this point in the course, most students will
not recognize the need to verify that a matrix is invertible.

21.

22.

23.

24.

25.

26.

Suppose 4 is invertible. By Theorem 5, the equation Ax = 0 has only one solution, namely, the zero
solution. This means that the columns of 4 are linearly independent, by a remark in Section 1.7.

Suppose 4 is invertible. By Theorem 5, the equation Ax = b has a solution (in fact, a unique solution) for
each b. By Theorem 4 in Section 1.4, the columns of 4 span R".

Suppose 4 is nxn and the equation Ax = 0 has only the trivial solution. Then there are no free variables
in this equation, and so 4 has n pivot columns. Since A4 is square and the n pivot positions must be in
different rows, the pivots in an echelon form of 4 must be on the main diagonal. Hence A4 is row
equivalent to the n xn identity matrix.

If the equation Ax = b has a solution for each b in R", then 4 has a pivot position in each row, by
Theorem 4 in Section 1.4. Since 4 is square, the pivots must be on the diagonal of 4. It follows that 4 is
row equivalent to /,. By Theorem 7, 4 is invertible.

a b ) 0 0} x 0 .
J and ad — bc = 0. If a = b = 0, then examine = 0 This has the

Suppose 4 =
PP { c d|lx,

c

} . This solution is nonzero, except when a = b = ¢ = d. In that case, however, 4 is the
—c

solution x; = {

b
} . Then

zero matrix, and Ax = 0 for every vector x. Finally, if a and b are not both zero, set x, = [_
a

a bl||l-b —ab+ ba 0
Ax, = = = , because —cb + da = 0. Thus, x, is a nontrivial solution of Ax = 0.
c d a —cb+da 0

So, in all cases, the equation 4x = 0 has more than one solution. This is impossible when A4 is invertible
(by Theorem 5), so A4 is not invertible.

d -bl|a b da—bc 0 . )
= . Divide both sides by ad — bc to get CA = 1.
- allc d 0 —cb+ad

a bl d -b ad —bc 0 . ) ) Ly
= . Divide both sides by ad — bc. The right side is /. The left
c d-c a 0 —cb+da

L 1 a bl d -b a b 1 d -b
side is AC, because = =AC.
ad—bclc d|—-c a ¢ dlad—-bc|-c a
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27. a. Interchange 4 and B in equation (1) after Example 6 in Section 2.1: row; (BA4) = row; (B)-A. Then
replace B by the identity matrix: row; (4) = row; (IA) = row; (/)-A.
b. Using part (a), when rows 1 and 2 of 4 are interchanged, write the result as
row, (A4) row,([)-A4 row, (1)
row,(4) |=| row,(/)-4 |=| row,() |A=EA ™
row,(A) row,(/)-4 row, (/)
Here, E is obtained by interchanging rows 1 and 2 of /. The second equality in (*) is a consequence of
the fact that row; (EA) = row; (£)-A.
¢. Using part (a), when row 3 of A is multiplied by 5, write the result as
row, (A) row,(1)-4 row, (1)
row,(A4) |=| row,([)-4 |=| row,([) |A=FEA
5-row,(4) 5-row,([)-A4 5-row, (1)

Here, E is obtained by multiplying row 3 of / by 5.
28. When row 3 of 4 is replaced by rows(4) — 4-row(4), write the result as

row,(A4) row,(1)-4
row,(A4) row,([)-4
row;(A4)—4-row,(A4) row;([)-4—4-row,(])-A4

row,(/)-4 row, (/)
= row,(/)-4 row, (/) A=FEA
[row;(I)—4-row,()]-4 row;(l)—4-row,({)

Here, E is obtained by replacing rows(/) by row;(/) — 4-row,(/).

1 2 1 0]t 2 1 o]t 2 1 0]t o -7 2
29. [4 I]= ~ ~ ~
4 7 0 1110 -1 -4 1] ]0 1 4 -1]]0 1 4 -1

30[14[]_51010 1 2 1/5 o] [1 2 1/5 0
‘ 4 7 0 1|4 7 0o 1] |0 -1 -4/5 1

1 2 1/5 0] 1 o -7/5 2 A_]_—7/5 2
0 1 4/5 -1l |0 1 4/5 -1 | o4/5 -1
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1 0 =2 1 0 0 1 0 =2 1 0 0
3. [4 II=|-3 1 4 0 1 0|~|0 1 =2 3
2 -3 4 0 0 1|0 -3 8 =2 0
1 0 =2 1 0 0 1 0 0 8 3 1
~l0 1 =2 3 1 0|~/0 1 0 10 4 1
o 0o 2 7 3 1]|0 0o 2 7 3 1
1 0 0 8 3 1 8 3 1
~l0 1 0 10 4 1| 4'=]10 4 1
0 0 1 7/2 3/2 1/2 7/2 3/2 1/2
-2 0 0 1 =2 1 1 0 0

32. [4 Il1=| 4 -7 3 0 1 0(~0 1 -1 -4 1 0
-2 6 -4 0 0 1 o 2 -2 2 0 1

~10 1 -1 -4 1 0 |. The matrix A4 is not invertible.

1 0 0 0
-1 0 0
33. LetB=| 0 -1 1 ,and forj =1, ..., n, let a;, b;, and e; denote the jth columns of 4, B,
0 0 - -1 1]
and /, respectively. Note that forj =1, ..., n— 1, a; — a;,; = ¢; (because a; and a;;, have the same entries

except for the jth row), b;=¢;—e;;; anda,=b, =e,.

To show that 4B = I, it suffices to show that 4b; = e; for eachj. Forj=1, ...,n—1,

Ab; = A(e; — e;;) = Ae; — Ae;,; = a,— a;,, = ¢;and Ab, = e, = a, = e,. Next, observe thata;=e¢; +-- - + e,
for eachj. Thus, Ba,=B(e;+---+e,)=b;+---+b,=(¢—¢€y1) T (€1 —€p)+---+(e,.1—e,)te,=¢
This proves that B4 = I. Combined with the first part, this proves that B=A4"".

Note: Students who do this problem and then do the corresponding exercise in Section 2.4 will appreciate the
Invertible Matrix Theorem, partitioned matrix notation, and the power of a proof by induction.

1 0 0 - 0 1 0 0 0
1 2 0 0 -1/2 1/2 0
34, Let A=|1 2 3 O, andB=| 0 -1/3 1/3
12 3 - n] . 0 0 -1/n 1/n]
and forj =1, ..., n, let a;, b;, and e; denote the jth columns of 4, B, and /, respectively. Note that for
. . 1 1 1
j=1,..,n-1,a,=j(e+---+e,) b= ;ej _ﬁeﬁl’ and b, —;en.
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To show that 4B = I, it suffices to show that 4b; = e; for eachj. Forj=1, ..., n—1,

1 1 1 1
AijA(;ej _ﬁe.ﬁ'lj = ;aj —ﬁaj+1 :(ej—i- .. '+en)_(ej+l 4., +en):ej

1 1
Also, Ab, = A(—enj =—a, =e,.Finally, forj=1, ..., n, the sumb; + - - - + b, is a “telescoping sum”
n n

.1 1
whose value is ;ej. Thus, Ba;=j(Be;+---+Be,)=j(b;+---+b,)= j[;e]) =e;

which proves that B4 = I. Combined with the first part, this proves that B=A"".

Note: If you assign Exercise 34, you may wish to supply a hint using the notation from Exercise 33: Express
each column of 4 in terms of the columns ey, ..., e, of the identity matrix. Do the same for B.

35. Rowreduce [4 e;

36.

37.

38.

2 -7 -9
2 5

]:

0 1 3 4 1 1 3 4 1 1 3 4 1
0|~ 2 5 6 O0~/0 -1 -2 =2|~|0 -1 -2 =2
1

6
1 3 4 -2 -7 -9 0 0o -1 -1 2 0 o0 1 4
1 3 0 -15 1 3 0 -15 1 0 0 3
~l0 -1 0 6/~10 1 0 —-6|~/0 1 0 -6|.
0 0 1 4 0 0 1 4 0 0 1 4
3
Answer: The third column of 4™ is | —6 |.
4

[M] Write B=[A F], where F consists of the last two columns of /5, and row reduce:
25 -9 =27 0 O 1 0 O 3/2 -9/2

B=|546 180 537 1 0| ~|0 1 0 -—433/6 439/2
154 50 149 0 1 0 0 1 68/3 -69
1.5000  —4.5000
The last two columns of 4" are | =72.1667  219.5000
22.6667 —69.0000
1 1
-1 1

With only three possibilities for each entry, the construction of C can be done by trial and error. This is
probably faster than setting up a system of 4 equations in 6 unknowns. The fact that 4 cannot be
invertible follows from Exercise 25 in Section 2.1, because 4 is not square.

1

-1
There are many possibilities for C, but C = { 0} is the only one whose entries are 1, —1, and 0.

0
Write AD = A[d; d,] =[Ad, Ad,]. The structure of 4 shows that D =

- O O O

0
[There are 25 possibilities for D if entries of D are allowed to be 1, —1, and 0.] There is no 4x2 matrix C
such that CA4 = I. If this were true, then CAx would equal x for all x in R*. This cannot happen because
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the columns of 4 are linearly dependent and so Ax = 0 for some nonzero vector x. For such an x,
CAx = C(0) = 0. An alternate justification would be to cite Exercise 23 or 25 in Section 2.1.

.005 .002 .001 || 30 27
39. y=Df=].002 .004 .002 | 50 |=].30|. The deflections are .27 in., .30 in., and .23 in. at points 1, 2,
.001 .002 .005 || 20 23

and 3, respectively.

2 -1 0
40. [M] The stiffness matrix is D™'. Use an “inverse” command to produce D' =125/ -1 3 -1
0 -1 2

To find the forces (in pounds) required to produce a deflection of .04 cm at point 3, most students will
use technology to solve Df = (0, 0, .04) and obtain (0, -5, 10).

Here is another method, based on the idea suggested in Exercise 42. The first column of D™ lists the
forces required to produce a deflection of 1 in. at point 1 (with zero deflection at the other points). Since

the transformation y — D'y is linear, the forces required to produce a deflection of .04 cm at point 3 is
given by .04 times the third column of D', namely (.04)(125) times (0, -1, 2), or (0, -5, 10) pounds.

41. To determine the forces that produce a deflections of .08, .12, .16, and .12 cm at the four points on the
beam, use technology to solve Df =y, where y = (.08, .12, .16, .12). The forces at the four points are 12,
1.5, 21.5, and 12 newtons, respectively.

42. [M] To determine the forces that produce a deflection of .24 c¢m at the second point on the beam, use
technology to solve Df =y, where y = (0, .24, 0, 0). The forces at the four points are —104, 167, —113,
and 56.0 newtons, respectively. These forces are .24 times the entries in the second column of D™

Reason: The transformation y — D'y is linear, so the forces required to produce a deflection of .24 cm
at the second point are .24 times the forces required to produce a deflection of 1 cm at the second point.
These forces are listed in the second column of D™

Another possible discussion: The solution of Dx = (0, 1, 0, 0) is the second column of D
Multiply both sides of this equation by .24 to obtain D(.24x) = (0, .24, 0, 0). So .24x is the solution
of Df = (0, .24, 0, 0). (The argument uses linearity, but students may not mention this.)

Note: The Study Guide suggests using gauss, swap, bgauss, and scale toreduce [4 /], because
I prefer to postpone the use of ref (or rref) until later. If you wish to introduce ref now, see the
Study Guide’s technology notes for Sections 2.8 or 4.3. (Recall that Sections 2.8 and 2.9 are only covered
when an instructor plans to skip Chapter 4 and get quickly to eigenvalues.)

2.3 SOLUTIONS

Notes: This section ties together most of the concepts studied thus far. With strong encouragement from an
instructor, most students can use this opportunity to review and reflect upon what they have learned, and form
a solid foundation for future work. Students who fail to do this now usually struggle throughout the rest of the
course. Section 2.3 can be used in at least three different ways.

(1) Stop after Example 1 and assign exercises only from among the Practice Problems and Exercises 1
to 28. I do this when teaching “Course 3” described in the text's “Notes to the Instructor. ” If you did not
cover Theorem 12 in Section 1.9, omit statements (f) and (i) from the Invertible Matrix Theorem.
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(2) Include the subsection “Invertible Linear Transformations” in Section 2.3, if you covered Section 1.9.
I do this when teaching “Course 1” because our mathematics and computer science majors take this class.
Exercises 29—40 support this material.

(3) Skip the linear transformation material here, but discuss the condition number and the Numerical
Notes. Assign exercises from among 1-28 and 4145, and perhaps add a computer project on the condition
number. (See the projects on our web site.) I do this when teaching “Course 2” for our engineers.

The abbreviation IMT (here and in the Study Guide) denotes the Invertible Matrix Theorem (Theorem 8).

5 7
1. The columns of the matrix { 3 6} are not multiples, so they are linearly independent. By (e) in the

IMT, the matrix is invertible. Also, the matrix is invertible by Theorem 4 in Section 2.2 because the
determinant is nonzero.

-4 6
. The fact that the columns of { 6 9} are multiples is not so obvious. The fastest check in this case

may be the determinant, which is easily seen to be zero. By Theorem 4 in Section 2.2, the matrix is
not invertible.

. Row reduction to echelon form is trivial because there is really no need for arithmetic calculations:
5 0 0 5 0 0 5 0 0

-3 -7 0|~|0 =7 0|~|0 =7 0| The 3x3 matrix has 3 pivot positions and hence is
8 5 -1 0 5 -1 0 0 -1
invertible, by (¢) of the IMT. [Another explanation could be given using the transposed matrix. But see
the note below that follows the solution of Exercise 14.]

-7 0 4
. Thematrix | 3 0 —1| obviously has linearly dependent columns (because one column is zero), and
2 0 9

so the matrix is not invertible (or singular) by (e) in the IMT.

o 3 5] [ 1 0 2 1 0 2 1 0 2
511 0 2|~ 0 3 -5/~/0 3 =5|~|0 3 -5
-4 -9 7] |4 -9 7] |0 -9 15] [0 0 O

1 -5 4] [1 -5 -4 1 -5 —4
6.| 0 3 4(~/0 3 41~l0 3 4
-3 6 0| |0 =9 -12/ (0 0 0

-1 -3 0 1 -1 -3 0 1 -1 -3 0 1

- 3 5 8 3 B 0 4 8 0 B 0 4 8 0
-2 -6 3 2 0 0 3 0 0 0 3 0

0 -1 2 1 0o -1 2 1 0 0 0 1

The matrix is not invertible because it is not row equivalent to the identity matrix.

The matrix is not invertible because it is not row equivalent to the identity matrix.

The 4x4 matrix has four pivot positions and so is invertible by (c) of the IMT.
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1 3 7 4
105 9 6|, . . . . i
8. The 4x4 matrix 0 0 2 8 is invertible because it has four pivot positions, by (c) of the IMT.
0 0 0 10

4 0 -7 -7 -1 2 3 -1 -1 2 3 -1 -1 2 3 -1
9. [M] — 119 B -6 1 11 9 B 0o -11 -7 15]N 0 8 5 -1
7 -5 10 19 7 -5 10 19 0 9 31 12 0 9 31 12
-1 2 3 -1 4 0 -7 -7 0 8 5 -11 0o -11 -7 15
-1 2 3 -1 -1 2 3 -1 -1 2 3 -1
0 8 5 -11 0 8 5 -11 0 8 5 -11
Lo 0 25375 24375 | 0 0 25375 24375 | 0 0 1 1
L 0 0 —-.1250 -.1250 0 o0 1 1 0 0 25375 24375
-1 2 3 -1
0 8 5 -11
o 0o 11
10 0 0 -1
The 4x4 matrix is invertible because it has four pivot positions, by (c) of the IMT.
53 1 7 9 5 3 1 7 9 5 3 1 7 9
6 4 2 8 -8 0 4 .8 -4 -18.8 0 4 8 -4 -188
10. M] |7 5 3 10 9|~|0 .8 1.6 2 =36(~0 0 0 1 34
9 6 4 -9 -5 0 6 22 =216 -212 0 0 1 =21 7
18 5 2 11 4] [0 2 4 -2 -104] [0 0 O 0 -1
5 3 1 7 9]
0 4 8 -4 -188
~/0 0 1 =21 7
0 0 0 1 34
10 0 0 0 —1]
The 5x5 matrix is invertible because it has five pivot positions, by (c) of the IMT.
11. a. True, by the IMT. If statement (d) of the IMT is true, then so is statement (b).

b. True. If statement (h) of the IMT is true, then so is statement (e).

c¢. False. Statement (g) of the IMT is true only for invertible matrices.

d. True, by the IMT. If the equation 4x = 0 has a nontrivial solution, then statement (d) of the IMT is
false. In this case, all the lettered statements in the IMT are false, including statement (c), which
means that 4 must have fewer than » pivot positions.

e. True, by the IMT. If A" is not invertible, then statement (1) of the IMT is false, and hence statement
(a) must also be false.

12. a. True. If statement (k) of the IMT is true, then so is statement ( j).

True. If statement (e) of the IMT is true, then so is statement (h).

c¢. True. See the remark immediately following the proof of the IMT.
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d. False. The first part of the statement is not part (i) of the IMT. In fact, if 4 is any nxn matrix, the

linear transformation x > Ax maps R"into R", yet not every such matrix has » pivot positions.

e. True, by the IMT. If there is a b in R" such that the equation Ax = b is inconsistent, then statement
(g) of the IMT is false, and hence statement (f) is also false. That is, the transformation x — 4x
cannot be one-to-one.

Note: The solutions below for Exercises 13-30 refer mostly to the IMT. In many cases, however, part or all
of an acceptable solution could also be based on various results that were used to establish the IMT.

13. If a square upper triangular n xn matrix has nonzero diagonal entries, then because it is already in echelon
form, the matrix is row equivalent to /, and hence is invertible, by the IMT. Conversely, if the matrix is
invertible, it has » pivots on the diagonal and hence the diagonal entries are nonzero.

14. If 4 is lower triangular with nonzero entries on the diagonal, then these n diagonal entries can be used as
pivots to produce zeros below the diagonal. Thus 4 has n pivots and so is invertible, by the IMT. If one
of the diagonal entries in 4 is zero, 4 will have fewer than » pivots and hence be singular.

Notes: For Exercise 14, another correct analysis of the case when A has nonzero diagonal entries is to apply
the IMT (or Exercise 13) to 4. Then use Theorem 6 in Section 2.2 to conclude that since 4" is invertible so is
its transpose, 4. You might mention this idea in class, but I recommend that you not spend much time
discussing A" and problems related to it, in order to keep from making this section too lengthy. (The transpose
is treated infrequently in the text until Chapter 6.)

If you do plan to ask a test question that involves A" and the IMT, then you should give the students some
extra homework that develops skill using 4”. For instance, in Exercise 14 replace “columns” by “rows.”
Also, you could ask students to explain why an z xn matrix with linearly independent columns must also have
linearly independent rows.

15. If 4 has two identical columns then its columns are linearly dependent. Part (e) of the IMT shows that
A cannot be invertible.

16. Part (h) of the IMT shows that a 5x5 matrix cannot be invertible when its columns do not span R’.

17. If 4 is invertible, so is 4™, by Theorem 6 in Section 2.2. By (e) of the IMT applied to 4™, the columns of
A" are linearly independent.

18. By (g) of the IMT, C is invertible. Hence, each equation Cx = v has a unique solution, by Theorem 5 in
Section 2.2. This fact was pointed out in the paragraph following the proof of the IMT.

19. By (e) of the IMT, D is invertible. Thus the equation Dx = b has a solution for each b in R, by (g) of

the IMT. Even better, the equation Dx = b has a unique solution for each b in R’, by Theorem 5 in
Section 2.2. (See the paragraph following the proof of the IMT.)

20. By the box following the IMT, E and F are invertible and are inverses. So FE = = EF, and so E and F
commute.

21. The matrix G cannot be invertible, by Theorem 5 in Section 2.2 or by the box following the IMT. So (g),
and hence (h), of the IMT are false and the columns of G do not span R".

22. Statement (g) of the IMT is false for H, so statement (d) is false, too. That is, the equation Hx = 0 has a
nontrivial solution.

Copyright © 2016 Pearson Education, Inc.



2-18 CHAPTER2 -+ Matrix Algebra

23. Statement (b) of the IMT is false for K, so statements (¢) and (h) are also false. That is, the columns of K
are linearly dependent and the columns do not span R".

24. No conclusion about the columns of L may be drawn, because no information about L has been given.
The equation Lx = 0 al/ways has the trivial solution.

25. Suppose that 4 is square and AB = I. Then 4 is invertible, by the (k) of the IMT. Left-multiplying each
side of the equation 4B = I by A' onehas A 'AB=4""1, IB=4"' andB=4"

By Theorem 6 in Section 2.2, the matrix B (which is 4" is invertible, and its inverse is (4 '), which is
A.

26. If the columns of 4 are linearly independent, then since 4 is square, 4 is invertible, by the IMT. So 4%,
which is the product of invertible matrices, is invertible. By the IMT, the columns of 4> span R" .

27. Let W be the inverse of AB. Then ABW = I and A(BW) = 1. Since 4 is square, 4 is invertible, by (k) of the
IMT.

Note: The Study Guide for Exercise 27 emphasizes here that the equation A(BW) = I, by itself, does not show
that A4 is invertible. Students are referred to Exercise 38 in Section 2.2 for a counterexample. Although there is
an overall assumption that matrices in this section are square, I insist that my students mention this fact when
using the IMT. Even so, at the end of the course, I still sometimes find a student who thinks that an equation
AB = [ implies that 4 is invertible.

28. Let W be the inverse of AB. Then WAB = [ and (WA)B = I. By (j) of the IMT applied to B in place of 4,
the matrix B is invertible.

29. Since the transformation X > AX is not one-to-one, statement (f) of the IMT is false. Then (i) is also

false and the transformation x > Ax does not map R" onto R". Also, 4 is not invertible, which implies
that the transformation x — Ax is not invertible, by Theorem 9.

30. Since the transformation x — Ax is one-to-one, statement (f) of the IMT is true. Then (i) is also true and

the transformation x — Ax maps R" onto R". Also, 4 is invertible, which implies that the
transformation x > 4x is invertible, by Theorem 9.

31. Since the equation Ax = b has a solution for each b, the matrix 4 has a pivot in each row (Theorem 4 in
Section 1.4). Since 4 is square, 4 has a pivot in each column, and so there are no free variables in the
equation Ax = b, which shows that the solution is unique.

Note: The preceding argument shows that the (square) shape of 4 plays a crucial role. A less revealing proof
is to use the “pivot in each row” and the IMT to conclude that A is invertible. Then Theorem 5 in Section 2.2
shows that the solution of Ax = b is unique.

32. If Ax =0 has only the trivial solution, then 4 must have a pivot in each of its n columns. Since 4 is
square (and this is the key point), there must be a pivot in each row of A. By Theorem 4 in Section 1.4,

the equation Ax = b has a solution for each b in R".
Another argument: Statement (d) of the IMT is true, so 4 is invertible. By Theorem 5 in Section 2.2,

the equation Ax = b has a (unique) solution for each b in R".
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34.

3s.

36.

37.

38.

39.
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-5 9
(Solution in Study Guide) The standard matrix of 7'is 4 =[ 4 7}, which is invertible because

det 4 # 0. By Theorem 9, the transformation 7T is invertible and the standard matrix of 7' is 4", From

7 9
the formula for a 2X2 inverse, A= L 5}. So

T (x,x,) = 79 —(7x +9x,,4x +5x)
e %, =07x 2> %X 2

6 -8
The standard matrix of T'is 4 :[ s 7}, which is invertible because det 4 =2 # 0. By Theorem 9, T

7 8
1s invertible, and T _l(x) = Bx, where B = A7 :%L ‘

- 1|7 8|l x 7 5
Tl(xl,xz)zz{s 6}Lj2[gxl+4x2,5xl+3x2j

(Solution in Study Guide) To show that T is one-to-one, suppose that 7(u) = 7(v) for some vectors u and
vin R". Then S(7(u)) = S(T(v)), where S is the inverse of T. By Equation (1), u = S(7(u)) and S(7(v)) =
v, so u =v. Thus 7 is one-to-one. To show that T is onto, suppose y represents an arbitrary vector in R”
and define x = S(y). Then, using Equation (2), 7(x) = T(S(y)) = y, which shows that 7' maps R" onto R"
Second proof: By Theorem 9, the standard matrix 4 of 7 is invertible. By the IMT, the columns of 4 are

} . Thus

linearly independent and span R". By Theorem 12 in Section 1.9, T is one-to-one and maps R" onto R”

If T maps R" onto R", then the columns of its standard matrix 4 span R" by Theorem 12 in Section 1.9.
By the IMT, 4 is invertible. Hence, by Theorem 9 in Section 2.3, 7'is invertible, and A" is the standard

matrix of 7. Since A" is also invertible, by the IMT, its columns are linearly independent and span R”.
Applying Theorem 12 in Section 1.9 to the transformation 7", we conclude that 7' is a one-to-one

mapping of R" onto R".

Let A and B be the standard matrices of 7"and U, respectively. Then AB is the standard matrix of the
mapping x — T(U(x)), because of the way matrix multiplication is defined (in Section 2.1). By

hypothesis, this mapping is the identity mapping, so AB = I. Since 4 and B are square, they are invertible,
by the IMT, and B = A" Thus, B4 = I. This means that the mapping x — U(T(x)) is the identity

mapping, i.e., U(T(x)) = x for all x in R".

Let A4 be the standard matrix of 7. By hypothesis, T is not a one-to-one mapping. So, by Theorem 12 in
Section 1.9, the standard matrix 4 of 7 has linearly dependent columns. Since 4 is square, the columns

of A4 do not span R". By Theorem 12, again, T cannot map R" onto R"
Given any v in R", we may write v = 7(x) for some x, because T is an onto mapping. Then, the assumed

properties of S and U show that S(v) = S(T(x)) = x and U(v) = U(T(x)) = x. So S(v) and U(v) are equal for
each v. That is, S and U are the same function from R"into R"
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40. Givenu,vin R" let x =S(u) and y = S(v). Then T(x)=7(S(u)) = u and 7(y) = T(S(v)) = v, by
equation (2). Hence
S(u+v)=S(TX)+T(y))

=S(T(x+Yy)) Because T'islinear
=x+y By equation (1)
=S(u)+S(v)

So, S preserves sums. For any scalar 7,

S(ru)=S(rT(x))=S(T(rx)) Because Tislinear
=rx Byequation (1)
=rS(u)

So S preserves scalar multiples. Thus S ia a linear transformation.
41. [M]

a. The exact solution of (3) is x; = 3.94 and x, = .49. The exact solution of (4) is x; = 2.90 and
x; =2.00.

b. When the solution of (4) is used as an approximation for the solution in (3) , the error in using the
value of 2.90 for x, is about 26%, and the error in using 2.0 for x, is about 308%.

¢. The condition number of the coefficient matrix is 3363. The percentage change in the solution from
(3) to (4) is about 7700 times the percentage change in the right side of the equation. This is the same
order of magnitude as the condition number. The condition number gives a rough measure of how
sensitive the solution of 4x = b can be to changes in b. Further information about the condition
number is given at the end of Chapter 6 and in Chapter 7.

Note: See the Study Guide’s MATLAB box, or a technology appendix, for information on condition number.
Only the TI-83+ and TI-89 lack a command for this.

42. [M] MATLAB gives cond(4) = 23683, which is approximately 10*. If you make several trials with
MATLAB, which records 16 digits accurately, you should find that x and x; agree to at least 12 or 13
significant digits. So about 4 significant digits are lost. Here is the result of one experiment. The vectors
were all computed to the maximum 16 decimal places but are here displayed with only four decimal

places:
9501 -3.8493 9501
21311 5.5795 . 2311
x =rand(4,1) = ,b=4x= . The MATLAB solution is x; = A\b = .
.6068 20.7973 .6068
4860 .8467 4860
0171
4858 1 . . .
However, x — x; = 2360 x107*. The computed solution x; is accurate to about 12 decimal places.
2456
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43. [M] MATLAB gives cond(4) = 68,622. Since this has magnitude between 10* and 10°, the estimated
accuracy of a solution of Ax = b should be to about four or five decimal places less than the 16 decimal
places that MATLAB usually computes accurately. That is, one should expect the solution to be accurate
to only about 11 or 12 decimal places. Here is the result of one experiment. The vectors were all
computed to the maximum 16 decimal places but are here displayed with only four decimal places:

2190 | [15.0821] 2190 |
.0470 8165 .0470
x =rand(5,1)=|.6789 |, b=Ax = 19.0097 |. The MATLAB solution is x; = A\b = | .6789 |.
6793 -5.8188 6793
1.9347 | | 14.5557 | 1.9347 |
[ 3165
—-.6743
However, X —x; = | .3343 |x10™"". The computed solution X, is accurate to about 11 decimal places.
.0158
| —.0005 |

44. [M] Solve Ax = (0, 0, 0, 0, 1). MATLAB shows that cond(4) = 4.8x10°. Since MATLAB computes

numbers accurately to 16 decimal places, the entries in the computed value of x should be accurate to at
least 11 digits. The exact solution is (630, —12600, 56700, —88200, 44100).

45. [M] Some versions of MATLAB issue a warning when asked to invert a Hilbert matrix of order 12 or
larger using floating-point arithmetic. The product A4~ should have several off-diagonal entries that are
far from being zero. If not, try a larger matrix.

Note: All matrix programs supported by the Study Guide have data for Exercise 45, but only MATLAB and
Maple have a single command to create a Hilbert matrix. The HP-48G data for Exercise 45 contain a program
that can be edited to create other Hilbert matrices.

Notes: The Study Guide for Section 2.3 organizes the statements of the Invertible Matrix Theorem in a table
that imbeds these ideas in a broader discussion of rectangular matrices. The statements are arranged in three
columns: statements that are logically equivalent for any m xn matrix and are related to existence concepts,
those that are equivalent only for any n*n matrix, and those that are equivalent for any n Xp matrix and are
related to uniqueness concepts. Four statements are included that are not in the text’s official list of
statements, to give more symmetry to the three columns. You may or may not wish to comment on them.

I believe that students cannot fully understand the concepts in the IMT if they do not know the correct
wording of each statement. (Of course, this knowledge is not sufficient for understanding.) The Study
Guide’s Section 2.3 has an example of the type of question I often put on an exam at this point in the course.
The section concludes with a discussion of reviewing and reflecting, as important steps to a mastery of linear
algebra.

2.4 SOLUTIONS

Notes: Partitioned matrices arise in theoretical discussions in essentially every field that makes use of
matrices. The Study Guide mentions some examples (with references).

Every student should be exposed to some of the ideas in this section. If time is short, you might omit
Example 4 and Theorem 10, and replace Example 5 by a problem similar to one in Exercises 1-10. (A sample
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replacement is given at the end of these solutions.) Then select homework from Exercises 1-13, 15, and 21—
24.

The exercises just mentioned provide a good environment for practicing matrix manipulation. Also,
students will be reminded that an equation of the form 4B = I does not by itself make 4 or B invertible. (The
matrices must be square and the IMT is required.)

1. Apply the row-column rule as if the matrix entries were numbers, but for each product always write the
14+0C IB+OD}_{ 4 B }

"|EA+C EB+D

I 0|4 B
entry of the left block-matrix on the /eft. =
E EA+IC EB+ID

I1{|{C D

2. Apply the row-column rule as if the matrix entries were numbers, but for each product always write the
[EA +0C EB+ OD} ~ [EA EB}

[E o][4 B
entry of the left block-matrix on the /eft. }[ }: 04+ FC OB+FD FC FD

0o Fllc D

3. Apply the row-column rule as if the matrix entries were numbers, but for each product always write the
ow+1y 0x+I1zZ| |Y Z
IW+0Y IX+0Z| |W X

_ o Il[w Xx
entry of the left block-matrix on the lef?. =
I 0jlY Z

4. Apply the row-column rule as if the matrix entries were numbers, but for each product always write the
entry of the left block-matrix on the left.

I 0][4 B)| [14+0C B+0D| [ 4 B
-X I|lc D| |-xX4+IC -XB+ID| |-X4+C -XB+D
Al + BX AO+BY}

C 0j|X Y

A B||I O
5. Compute the left side of the equation: =
CI+0X CO0+0Y

Set this equal to the right side of the equation:
[A+BX BY}_{O I A+BX=0 BY=I

so that
C 0 Z 0 C=Z7 0=0

Since the (2, 1) blocks are equal, Z = C. Since the (1, 2) blocks are equal, BY = I. To proceed further,
assume that B and Y are square. Then the equation BY =/ implies that B is invertible, by the IMT, and
Y = B, (See the boxed remark that follows the IMT.) Finally, from the equality of the (1, 1) blocks,

BX=-A, B'BX=B'(-4), and X=-B'A.
The order of the factors for X is crucial.

Note: For simplicity, statements (j) and (k) in the Invertible Matrix Theorem involve square matrices
C and D. Actually, if 4 is nxn and if C is any matrix such that AC is the n*xn identity matrix, then C must be
n*n, too. (For AC to be defined, C must have n rows, and the equation 4C = [ implies that C has n columns.)
Similarly, DA = I implies that D is nxn. Rather than discuss this in class, I expect that in Exercises 5—8, when
students see an equation such as BY = [, they will decide that both B and Y should be square in order to use
the IMT.

. . X 0}4 0 XA+0B X0+0C XA 0
6. Compute the left side of the equation: = =

Y Z||B C YA+ZB Y0+ZC YA+7ZB ZC
) _ , . XA 0 I 0 XA=1 0=0
Set this equal to the right side of the equation: = so that
YA+ZB ZC 0 7 YA+ZB=0 ZC=1
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To use the equality of the (1, 1) blocks, assume that 4 and X are square. By the IMT, the equation

XA =I implies that 4 is invertible and X = 4", (See the boxed remark that follows the IMT.) Similarly,
if C and Z are assumed to be square, then the equation ZC = [ implies that C is invertible, by the IMT,
and Z= C'. Finally, use the (2, 1) blocks and right-multiplication by 4™ to get Y4 =—ZB =—C'B, then
YAA' =(-C'B)4™", and Y=-C"'BA™". The order of the factors for Y is crucial.

{XA+0+OB XZ+O+OI}

YA+0+IB YZ+0+1I

0 0
7. Compute the left side of the equation: [Y 0 J 0 0=
B

Set this equal to the right side of the equation:

XA XZ I 0 that XA=1 XZ=0
= so tha
YA+B YZ+1 0 7 YA+B=0 YZ+I=1

To use the equality of the (1, 1) blocks, assume that 4 and X are square. By the IMT, the equation X4 =/
implies that 4 is invertible and X = 4"'. (See the boxed remark that follows the IMT) Also, X is
invertible. Since XZ = 0, X 'XZ =X '0 =0, so Z must be 0. Finally, from the equality of the (2, 1)
blocks, Y4 = —B. Right-multiplication by 4™ shows that Y44 =—BA ™' and Y=-BA™". The order of the
factors for Y is crucial.

0 70 0 [ 0X+10 O0Y+10 0zZ+1

. . A B||X Y Z AX+B0 AY+B0 AZ+BI
8. Compute the left side of the equation: =
) . , . AX AY AZ+B I 0 0
Set this equal to the right side of the equation: =
0 0 1 0 0 [

To use the equality of the (1, 1) blocks, assume that 4 and X are square. By the IMT, the equation X4 =/
implies that 4 is invertible and X = 4". (See the boxed remark that follows the IMT. Since 4Y = 0, from
the equality of the (1, 2) blocks, left-multiplication by 4™ gives 4 '4Y=4"0=0, so ¥ = 0. Finally, from
the (1, 3) blocks, AZ = —B. Left-multiplication by A" gives 4'4Z = A™'(-B), and Z=— A™'B. The order
of the factors for Z is crucial.

Note: The Study Guide tells students, “Problems such as 5-10 make good exam questions. Remember to
mention the IMT when appropriate, and remember that matrix multiplication is generally not commutative.”
When a problem statement includes a condition that a matrix is square, I expect my students to mention this
fact when they apply the IMT.

9. Compute the left side of the equation:
I 0 04, A4, 1A, +04,, +04;, 14,404, +04;,

X I 0| A4y Ay|=| X4, +14, +04, XA, +1dy, +04s,
Y 0 I|| Ay Ay| | YA, +04y, +14y, YA, +0A, +1dy,

4, 4, By,
Set this equal to the right side of the equation: | X4, + 4,, XA, +4,, |=
YA, + 4y, YA, + 4,

& ® W

S}

0
0
4, =B, 4, =B,

so that X4, +4,, =0 XA, + 4, =B,, .
YA, + 45, =0 YA, + A4y, =By,
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10.

11.

12.

13.

Since the (2,1) blocks are equal, X4,, + 4,, = 0 and X4, = —4,,. Since 4, is invertible, right
multiplication by 4 gives X =—4,,4;]. Likewise since the (3,1) blocks are equal,

YA, + 45, =0 and YA, = —4;,. Since A4, is invertible, right multiplication by A gives Y =—4;,4;].
Finally, from the (2,2) entries, X4, + 4y, = B,,. Since X =—4,, 4, By, = A, — 4y, 45 4,,.

I 0 07 0 O I 0 O
Since the two matrices are inverses, |C [ 0| Z [ O0(=/0 [ 0
A B I|I|X Y I 0 0 I

Compute the left side of the equation:
I 0 07 O O 1I1+0Z+0X 10+0/+0Y [10+00+0/7

C I 0yZ I O0|=|CI+IZ+0X CO+II+0Y CO+10+01
A B I||X Y I Al +BZ+1X A0+BI+1Y A0+BO+11

1 0 0 I 0 0
Set this equal to the right side of the equation: C+7 1 0(=(0 [ O
A+BZ+X B+Y I 0 0 I
I1=1 0=0 0=0
so that C+7Z=0 I=1 0=0.

A+BZ+X=0 B+Y=0 I=1]

Since the (2,1) blocks are equal, C+Z =0and Z =—C . Likewise since the (3, 2) blocks are equal,
B+Y =0 and Y =-B. Finally, from the (3,1) entries, 4+ BZ+ X =0and X =—A4—- BZ.
SinceZ=-C, X=—A-B(-C)=—A+BC.

a. True. See the subsection Addition and Scalar Multiplication.
b. False. See the paragraph before Example 3.

a. True. See the paragraph before Example 4.
b. False. See the paragraph before Example 3.
You are asked to establish an if and only if statement. First, supose that 4 is invertible,

4 |D E B 0D E BD BE I 0
andlet 4 = . Then = =
F G 0 CIl||F G CF CG 0 I/

Since B is square, the equation BD = [ implies that B is invertible, by the IMT. Similarly, CG = I implies
that C is invertible. Also, the equation BE = 0 imples that £ = B'o=0. Similarly # = 0. Thus

L [B o' [p E] [B' o0
=0 ¢ TlE o - )
0 C

This proves that A4 is invertible only if B and C are invertible. For the “if” part of the statement, suppose
that B and C are invertible. Then (*) provides a likely candidate for A~ which can be used to show that

L B 0]B" 0 BB 0 I 0
A is invertible. Compute: = = .
0 Cjlo (! o cct'| |0 1
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Since A is square, this calculation and the IMT imply that A4 is invertible. (Don’t forget this final
sentence. Without it, the argument is incomplete.) Instead of that sentence, you could add the equation:

B 0B 0] |B'B 0 [ [I 0
o c'|lo ¢]| o cl'c| |0 I
You are asked to establish an if and only if statement. First suppose that 4 is invertible. Example 5 shows

that A, and Ay, are invertible. This proves that 4 is invertible only if A\ and 4, are invertible. For the if’
part of this statement, suppose that 4;; and A,; are invertible. Then the formula in Example 5 provides a

likely candidate for A" which can be used to show that 4 is invertible . Compute:

Ay Ay || A7 A7 A4y A A+ A0 Ay (A7) A A+ A A5
0 Ayl o A3 04+ 4,0 0(=A)ApAsy+ 4545

|1 A4y A A At A Ay
10 I

__[ ~ApAp+A,45 |10
0 I 0 I

Since 4 is square, this calculation and the IMT imply that A4 is invertible.
Compute the right side of the equation:
(104, Oof1 Y] [ 4, o1 Y] | 4y A,Y
| x 1]l o sjo 1] [x4, S|0 I] |X4, XA,Y+S
Set this equal to the left side of the equation:

[ 4, A4, Y |4y A4y so that A=Ay A4, Y =4,
| XAy, XA Y +S] |4y Ay XAy =4y XA, Y+S=4y

Since the (1, 2) blocks are equal, 4,,Y = 4,,. Since 4, is invertible, left multiplication by A1_11 gives
Y= Al_l1 A,,. Likewise since the (2,1) blocks are equal, X 41, = 4y,. Since A, is invertible, right

multiplication by A4, gives that X = 4, 4. One can check that the matrix S as given in the exercise
satisfies the equation X 4,,Y + S = A4,, with the calculated values of X and Y given above.

_ . _ I 0| I O I 0
Suppose that 4 and A4, are invertible. First note that = and
X I||-X 1 0 7
I Y\|I -Y| |[I O . . I 0 1Y
= . Since the matrices and are square, they are both
0 7|0 [ 0 7 X I 0 7

-1

I 0
invertible by the IMT. Equation (7) may be left multipled by {X J and right multipled by

1 v 4, 0] [1 o' [1 YT
to find = A .
0 7 0 S X I 0 7
N T U : : . : :
Thus by Theorem 6, the matrix 0 s is invertible as the product of invertible matrices. Finally,

Exercise 13 above may be used to show that S is invertible.
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17. The column-row expansions of G, and Gy, are:
G, =X X/
=col, (X, ) row, (X[ ) +-+col, (X, ) row, (X} )
and
Gy = Xk+1XkT+1
= col, (X, ) TOW, (X)) + oot Ol (X, ) 1ow (X)) + ol (X ) Tow,,, (X))
= col, (X, ) row, (X)) + -+ coly (X, ) row , (X ) +coly, (X p ) row, (X))
=Gy +coly, (X, ) Tow, (X))
since the first &£ columns of X}, are identical to the first £ columns of X;. Thus to update G, to produce
Gi+1, the number coliy (Xj+1) rowgs (X ,f ) should be added to G.

T T T

x’ X'x  X'x
18. Since W = [X XO] , the product W' W = [X x,]= °|. By applying the formula for S
X, X, X X)X,

from Exercise 15, S may be computed:
S=x{x, - xg X(X"X)"'X"x,
=x, (I, - X(X"X)" Xx")x,

—
=X, Mx,

19. The matrix equation (8) in the text is equivalent to (4 —s/,)x+Bu=0 and Cx+u=y
Rewrite the first equation as (4 —s/,)x =—Bu. When 4 — s/, is invertible,
x=(A4-sl, Y (~Bu)=—(4- sl, )" Bu
Substitute this formula for x into the second equation above:
c(—(4 —s]n)leu) +u=y,sothat 7/, u-C(4 —S],1)7lBu =y
Thus y=(/,, —C(A-sl, Y B If W(s)= 1, —C(A-sl, Y' B, then y = W (s)u. The matrix W(s) is the
Schur complement of the matrix 4 — s/, in the system matrix in equation (8)

A-BC—3sl,

B
c 7 } . By applying the formula for S from Exercise 15, S may

m

20. The matrix in question is {

be computed:
S=1,-(-C)(A-BC~-sl,)"'B
=1,+C(A-BC~-sI,)"'B

o g1 O] o]_[1+0 040] [1 0
SR Y| R | i R

Y B B 0] |4°+0 0+0 | [7 ©
' L -4l T -4 | 4-4 0+(-ap| |0 I
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22. Let C be any nonzero 2x3 matrix. Following the pattern in 21(a) with block matrices instead of numbers,
I; 0 . , |43 0 ||; O I;+0 0+0 I; 0
set M = and verify M~ = = , = .
¢ -1 C -L|C - CL-1,C 0+(=1) 0 I

23. The product of two 1x1 “lower triangular” matrices is “lower triangular.” Suppose that for n = £, the
product of two k xk lower triangular matrices is lower triangular, and consider any (k+1)x (k+1) matrices

r T
A, and B,. Partition these matrices as 4, = a 0 , B = b0
v A w B

where A and B are kxk matrices, v and w are in R", and @ and b are scalars. Since 4; and B, are lower
triangular, so are 4 and B. Then

Ap =@ O |fb 0T tab+ 0'w a0’ +0'B| | ab 0"
vy 4l|lw B vb+Aw  v0' + AB bv+Aw AB
Since A and B are kxk, AB is lower triangular. The form of 4,8, shows that it, too, is lower triangular.

Thus the statement about lower triangular matrices is true for n = k£ +1 if it is true for n = k. By the
principle of induction, the statement is true for all n > 1.

Note: Exercise 23 is good for mathematics and computer science students. The solution of Exercise 23 in the
Study Guide shows students how to use the principle of induction. The Study Guide also has an appendix on
“The Principle of Induction,” at the end of Section 2.4. The text presents more applications of induction in
Section 3.2 and in the Supplementary Exercises for Chapter 3.

1 0 0 - 0 1 0 0 -+ 0

110 0 -1 1 0 0
24 Let 4,=[1 1 1 0, B,=| 0 -1 1 0].

11 e 1] |0 Sl

By direct computation 4,8, = I,. Assume that for n = k, the matrix A,B; is I;, and write

1 0 1 0
A= and B ,, =
AT
where vand warein R, v/=[1 1 --- 1],andw'=[-1 0 --- 0]. Then
1 o']1 o] |[1+0'w 0" +0'B, 1 0
Ak+1Bk+1 = = T = = 1k+l
v A4 ||w B v+A4w v0 + 4B, 0 7
The (2,1)-entry is 0 because v equals the first column of 4., and 4;w is —1 times the first column of 4;.

By the principle of induction, 4,B, = I, for all n > 2. Since 4, and B, are square, the IMT shows that
these matrices are invertible, and B, = 4,".

Copyright © 2016 Pearson Education, Inc.



2-28 CHAPTER2 -+ Matrix Algebra

Note: An induction proof can also be given using partitions with the form shown below. The details are
slightly more complicated.

P L I B, 0
= an =
k+1 VT 1 k+1 WT 1

4, 0|[B. 0] | 4B +0w" A0+0| [I, ©
A B =| T =l 7 T T =l aT =L
v 1w V' B, +wW v 0+1 0" 1
The (2,1)-entry is 0" because v’ times a column of B, equals the sum of the entries in the column, and all

of such sums are zero except the last, which is 1. So v'B, is the negative of w’. By the principle of
induction, 4,8, = I, for all n > 2. Since 4, and B, are square, the IMT shows that these matrices are

invertible, and B, = 4"

25. First, visualize a partition of 4 as a 2x2 block—diagonal matrix, as below, and then visualize the
(2,2)-block itself as a block-diagonal matrix. That is,

1 2|0 0 O
A 2
3 5/0 0 0 4, 0 0 0 » 0
A=00200=OA,WhereA22=078=OB
0 0/0 7 8 2. 05 6
0 0[O0 5 6]
3 4
Observe that B is invertible and B = 95 3 5} . By Exercise 13, the block diagonal matrix 4,; is
5 0 0
invertible, and 4, = =0 3 -4
0 -25 35

-5 2
Next, observe that 4,; is also invertible, with inverse { 3 J . By Exercise 13, 4 itself is invertible,

and its inverse is block diagonal:

5 2 . 5 2 0 0 0
i 3 ] 3 .10 0 0

1 "4]11 0
A= = 5 0 0(=l0 05 0 0
0 4y 0 0 3 -4 0 0 0 3 -4
0 25 35[0 0 0 -25 35|

26. [M] This exercise and the next, which involve large matrices, are more appropriate for MATLAB,
Maple, and Mathematica, than for the graphic calculators.

a. Display the submatrix of 4 obtained from rows 15 to 20 and columns 5 to 10.
MATLAB: A(15:20, 5:10)
Maple: submatrix (A, 15..20, 5..10)
Mathematica: Takel[ A, {15,20}, {5,10} 1
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A
. To create B = 0

A 0 || x
. The algebra needed comes from the block matrix equation { ! }{ ! } :[

2.5 + Solutions 2-29

. Insert a 5x10 matrix B into rows 10 to 14 and columns 20 to 29 of matrix 4:

MATLAB: A(10:14, 20:29) = B ; The semicolon suppresses output display.
Maple: copyinto(B, A, 10, 20): The colon suppresses output display.
Mathematica: For [ i=10, i<=14, i++,
For [ j=20, j<=29, j++,
ALl i,7 11 = BII[ i-9, j-19 11 1 1; Colon suppresses output.

0
r} with MATLAB, build B out of four blocks:
A

B = [A zeros(30,20); zeros(20,30) A’];
Another method: first enter B = A ; and then enlarge B with the command
B(21:50, 31:50) = A’;
This places 4" in the (2, 2) block of the larger B and fills in the (1, 2) and (2, 1) blocks with zeros.
For Maple:
B := matrix(50,50,0):
copyinto(A, B, 1, 1):
copyinto( transpose(A), B, 21, 31):
For Mathematica:

B = BlockMatrix[ {{A, ZeroMatrix[30,20]}, {ZeroMatrix[20,30],
Transpose[A] }} ]

. [M] Construct 4 from four blocks, say Ci;, Ci», Cy1, and Cy,, for example with Cy; a 30x30 matrix

and C,; a 20x20 matrix.

MATLAB: Cll1 = A(1:30, 1:30) + B(1:30, 1:30)
Cl2 = A(1:30, 31:50) + B(1:30, 31:50)
C21 = A(31:50, 1:30)+ B(31:50, 1:30)
C22 = A(31:50, 31:50) + B(31:50, 31:50)

C = [Cl1l Cl1l2; cC21 c22]

The commands in Maple and Mathematica are analogous, but with different syntax. The first
commands are:

Maple: Cll := submatrix(A, 1..30, 1..30} + submatrix(B, 1..30, 1..30)
Mathematica: ¢11 := Takel A, {1,30}, {1,30} 1 + TakelB, {1,30), {1,30} 1

. The algebra needed comes from block matrix multiplication:

AB = {An 4 }{Bn B, } _ |:A11B11 +A4,B,y Ay B, + A By }
Ay Ay || By By Ay By + 4By, Ay By + Ay, By,
Partition both 4 and B, for example with 30x30 (1, 1) blocks and 20x20 (2, 2) blocks. The four
necessary submatrix computations use syntax analogous to that shown for (a).
b,
b,
are in R” and x, and b, are in R*’. Then 4,,x; = b, which can be solved to produce x;. Once X is

found, rewrite the equation A,;x; + 4»X, = b, as 4,Xx; = ¢, where ¢ = b, — 451Xy, and solve 4A»x, = ¢
for x,.

} , where x; and b,

b Ay |1 X,
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Notes: The following may be used in place of Example 5:

Example 5: Use equation (*) to find formulas for X, Y, and Z in terms of 4, B, and C. Mention any
assumptions you make in order to produce the formulas.

e
Y Z||4 B c 1
Solution:
This matrix equation provides four equations that can be used to find X, ¥, and Z:
X+0=1, 0=0
YI+ZA =C, YO+ZB=1 (Note the order of the factors.)

The first equation says that X = I. To solve the fourth equation, ZB = I, assume that B and Z are square.
In this case, the equation ZB = I implies that B and Z are invertible, by the IMT. (Actually, it suffices to
assume either that B is square or that Z is square.) Then, right-multiply each side of ZB = I to get

ZBB' =IB" and Z = B"'. Finally, the third equationis Y + Z4 = C.So, Y+ B'4=C,and Y = C— B 4.

The following counterexample shows that Z need not be square for the equation (*) above to be true.

1 0| 0 O
1 00 O O
O 1[0 O
0 0 0 O
1 1| 2 5=
I 201 3 1
1 1|(-1 -3
3 411 0 -1
1 -1 2 4
Note that Z is not determined by 4, B, and C, when B is not square. For instance, another Z that works in
. . 3 5 0
this counterexample is Z = .
-1 -2 0

2.5 SOLUTIONS

Notes: Modern algorithms in numerical linear algebra are often described using matrix factorizations. For
numerical work, this section is more important than Sections 4.7 and 5.4, even though matrix factorizations
are explained nicely in terms of change of bases. Computational exercises in this section emphasize the use of
the LU factorization to solve linear systems. The LU factorization is performed using the algorithm explained
in the paragraphs before Example 2, and performed in Example 2. The text discusses how to build L when no
interchanges are needed to reduce the given matrix to U. An appendix in the Study Guide discusses how to
build L in permuted unit lower triangular form when row interchanges are needed. Other factorizations are
introduced in Exercises 22-26.

1 0 0 3 -7 =2 -7
1. L=|-1 1 0l,U=|0 =2 1[,b=| 5|.First,solve Ly =b.
0
1

2 =5 1 0 0 1 2
1 0 0 -7 0 -7
[L b]=|-1 1 0 5|~/0 0 =2 | The only arithmetic is in column 4
2 -5 1 2 0 -5 1 16
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1 0 0 -7 -7
~0 1 0 2|, soy=|-2|
0 0 1 6 6
Next, solve Ux =y, using back-substitution (with matrix notation)
3 -7 =2 3 -7 =2 - -7 0 -19
W yl=|0 2 -1 =2(~|0 2 - -2 0 -8
0 0 -1 6 0 -6 0 -6
3 -7 0 -197[3 0 0 1 0 0 3
~|0 1 0 4/~10 1 0 4|~/0 1 0 4|, sox=|4
0 0 1 -6 0 0 1 -6 0 0 I -6 -6
To confirm this result, row reduce the matrix [4 b]'
3 -7 =2 71 [3 -7 =2 -2 7]
[4 b]=|-3 5 1 5|~0 2 - -1 2
6 4 0 2] |0 -1 6]
From this point the row reduction follows that of [U y] above, yielding the same result.
1 0 0 4 3 -5 2
.L={-1 1 0,U=|0 =2 2 |{,b=|-4|. First, solve Ly =b:
2 0 1 0o o0 2 6
1 0 0 2 1 0 0 2 2
[L b]=|-1 1 0 —4|~/0 1 0 -2|,s0oy=|-2]|

2 01 6] |0 0 1 2 2

Next solve Ux =y, using back-substitution (with matrix notation):
4 3 -5 2 4 3 -5 2 4 3 0 7
U yl=l0 -2 2 =2|~|0 -2 2 2|~|0 -2 0 -4
o o0 2 2 0 O 1 1 0 0 1 1

4 3 0 7 4 0 0 1 1 0 0 1/4 1/4
~0 1 0 2|~]0 1 0 2(~/0 1 0 2|,sox=| 2
0 0 1 1 0 0 1 1 0 0 1 1 1

To confirm this result, row reduce the matrix [4 b]:
4 3 -5 2 4 3 -5 2

[4 b]=|4 -5 7 —-4|-|0 2 2 =2
8 6 -8 6 o o 2 2

From this point the row reduction follows that of [U y] above, yielding the same result.
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1 0 0 2 -1 2 1
3. L=|-3 1 0 ,U: 0 -3 4|,b=|0]. First, solve Ly =b:
4 -1 1 0 1 4
1 1 1 1 0 0 1 1
[L b]=|-3 1 0 0|~ 103~0103,soy:3.
4 -1 -1 10 0 013 3
Next solve Ux =y, using back-substitution (with matrix notation):
-1 -1 0 5] [2 -1 0 -5 2 0
[Uu y]— 0 -3 4 3 -3 0 9|~{0 1 0 3|~/0 1
0 1 3 0 1 3]0 0 1 3 0 0
1 0 0 2 2 4 0]
4. L=|1/2 1 0L,U=|{0 -2 -1|,b=|-5|.First,solve Ly =h:
3/2 =5 1 0 0 -6 7]
1 0 0 1 0 0 O 1 0 0 0
[L b]=|1/2 1 0 =5|~|0 I 0 =5(~|0 1 0 -5|,s0y=
3/2 =5 1 7 0o -5 1 7 0 0 1 -18
Next solve Ux =y, using back-substitution (with matrix notation):
2 2 4 0 2 2 4 0 2 =2 0 -12
w y=0 -2 -1 -5(~|0 -2 -1 -5|~0 -2 0 =2
0 0 -6 -I18 0o o0 1 3 0 0 1 3
2 2 0 -12 2 0 0 -10 1 0 0 =5 =5
~10 1 0 1j~j0 1 0 I{~/0 1 0 1|, sox=| 1
0 o0 3 0 0 1 3 0 0 1 3 3
1 0 0 0 1 2 -4 -3 1]
2 1 0 0 0 -3 1 0 7 )
5. L= ,U = , b= . First solve Ly =b
-1 0 1 0 0o o0 2 1 0
-4 3 -5 1 0o 0 0 1 3]
1o o0 0 1] ]1 0 00 1] 1 O 00 1
21 0 0 7 0o 1 0 0 5 0 1 0 0 5
[L b]= ~ ~
-1 0 1 0 O 0 0 1 0 1 0 0 1 0 1
-4 3 -5 1 3 06 3 -5 1 7] |0 0 -5 1 -8
1
5 . o . . .
sOy= 1.NwmdwLk=yumgbmkwMMMmﬂwMummxmmmmy
-3
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Solutions

2.5

=h:

First, solve Ly

[L b]

0 0 O
0
1
0

1
0
0
0

y, using back-substitution (with matrix notation):

Next solve Ux

_Q_,.A_u|11_
o o o —
o o — o
N n o o
- o o o
l
1

1
-1
1
1

34 0
5 0
0
1

1
0 3
0
0

S AN o -
45A/_.O
cn o oon o O
- o o O
e —— |

Il

—

>

=)

—
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2
7. Place the first pivot column of {

5
4} into L, after dividing the column by 2 (the pivot), then add

3/2 times row 1 to row 2, yielding U.

B e
o [
{—3} (7/2)

+2  +7/2

v

1 10
, L=
[—3/2 J {—3/2 1}

8.Row reduce A4 to echelon form using only row replacement operations. Then follow the algorithm in
Example 2 to find L.

T g
© L

-3 {@

9 -2 @]

+3 +-3 +-8

1 1 0 0
-1 1 , L=|-1 1 0
3 2/3 1 3 2/3 1
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= 3 4] [-5 3 4[5 3 4
10. 4=|10 -8 —9|~| 0 €2 -1|~| 0 =2 —-1|=U

15 1 2 0 10 14 o 0 (©
|

D a1 |
10 | [€D)
15 LO} (@]
+-5+-2+9
I
1 1 0
-2 1 , L=-2 0
-3 -5 1 -3 -5 1

R -6 3] [3 -6 3] [3 -6 3
11. 4=| 6 -7 2|~ 3 -4|~|0 5 —4|=U
-1 7 0] |0 5 1] ]0 0
6 {@}l
-1 5] [
=3 =5 =5
1 1 0 0
2 1 , L= 2 1 0
-1/3 1 1 -1/3 1 1
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12. Row reduce 4 to echelon form using only row replacement operations. Then follow the algorithm in
Example 2 to find L. Use the last column of /3 to make L unit lower triangular.

13.

-10

(@ -4 2] [2 -4 2 -4 2
A= 1 5 —4|~lo0 @ -5|~|l0 7 -5|=U

-6 -2 4] [0 -14 10/ [0 0 O

| |

@1

L@

|6 [—14}

12 17

1 1 0

12 1 |, L=[12 1

-3 2 -3 2

-5 371 3 -5 =3 3 5 =3
5 8 4|0 & 3 1 2 3 1 ,

~ =U No more pivots!

2 -5 -7| |0 -10 15 5 0 0
4 7 5|10 2 =3 -1 0 0 0

2| Use the last two columns of /, to make L unit lower triangular.

+-2

}

5 1,
-1 0

S = O O

- O O O
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Solutions

2.5

5
)
6
12

-1

1
-1
-2

4

)
5

10

1
0
0
0

-2
1
-1

7
-3
6

U

2 -4 4 =2
~lo 3 -5 3
00 0

-2
3
-1

4
10

—4
0 ® -5
-6

2
0

@ -4 4 2
6 -9 7 -3|~
-1 -4 8 0

{

15. 4

0

-10|~| 0

14
~14

10

-1({~|0

5

3

16. 4

Copyright © 2016 Pearson Education, Inc.



2-38 CHAPTER2 -+ Matrix Algebra

_é_ éﬁ
14

—4
3
-6 -14
L & 21] Use the last three columns of 5 to make L unit lower triangular.
+2 =+
[ l1 i ] 1 0 0 0 0]
-2 1 -2 0 0 O
3/2 =2 1 Yo, L=(3/2 =2 1 0 0
-3 2 0 1 -3 2 0 1 0
| 4 -3 0 0 1] | 4 -3 0 0 1]
1 0 0 4 3 -5
17. L=|-1 1 0|, U=|0 -2 2| Tofind L™, use the method of Section 2.2; that is, row
2 0 1 0o o0 2
reduce [L []:
1 0 0 1 0 O 1 0 0 1 0 0
[L I]=|-1 1 0 O 1 O|~/0 1 O 1 1 of=[7 L],
2 0 1 0 0 1 0 01 -2 0 1
1 0 O
so L'=| 1 1 0].Likewise to find U ", row reduce [U I]:
-2 0 1
4 3 -5 1 0 0 30 1 0 5/2
[U I]=|0 -2 2 0 1 0|~ -2 0 0 1 -1
2 0 0 1

4 0 0 1 3/2 1 1
~0 =2 0 0 1 -1|~|0
0 0 2 0 0 1 0

0 1/4 3/8 1/4]
0 0 -1/2 1/2|=[1 U™,
1 0 0 1/2

4
0
o o0 2 0 0 1] (0 O
0
1
0

1/4  3/8 1/4

soU'=| 0 -1/2 1/2/|.Thus
0 0 1/2
1/4 3/8 1/4][ 1 0 0 1/8 3/8 1/4
A'=U"r'=| 0 -1/2 /2| 1 1 0|=[-3/2 -1/2 1/2
0 0 1/2/|-2 0 1 -1 0 1/2
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2.5 + Solutions 2-39

1 0 O 2 -1 2
L=|-3 1 0, U=|0 -3 4| TofindL", rowreduce[L I]:
4 -1 1 0 0 1
1 0 0 1 0 O 1 0 O 1 0 0
[L I]=|-3 1 0 0 1 Of~[0 1 0 3 1 0
4 -1 1 0 0 1 0 -1 1 -4 0 1
1 0 0 0 0
~lo 1 0 3 1 o:[l L‘l],
0 0 1 -1 1 1
1 0 0
so L= 3 1 O].Likewisetoﬁnd U™, row reduce [U I]:
-1 1 1
2 -1 2 1.0 O} |2 -1 0 1 0 =2 2 -1 0 1 0o 2
[U I]=|0 3 4 0 1 0|~/0 -3 0 0 1 —4|~/0 1 0 0 -1/3 4/3
0 0 1 0 0 1 0 0 1 0 O 1 0 0 1 0 0 1
2 0 0 I -1/3 -2/3 1 0 0 1/2 -1/6 -1/3
~0 1 0 0 -1/3 4/3|~|0 1 0 0 -1/3 4/3|=[1 U],
0 0 1 0 0 1 0 0 1 0 0 1
/2 -1/6 -1/3
soU'=| 0 -1/3 4/3|.Thus
0 0 1
/2 -1/6 -1/3)] 1 0 O /3 -1/2 -1/3
A'=UuT'r'=) 0 -1/3 4/3] 3 1 0(=|-7/3 1 4/3
0 0 Ifj-1 1 1 -1 1 1
Let 4 be a lower-triangular # X n matrix with nonzero entries on the diagonal, and consider the

augmented matrix [4 [].

The (1, 1)-entry can be scaled to 1 and the entries below it can be changed to 0 by adding multiples of
row 1 to the rows below. This affects only the first column of 4 and the first column of /. So the (2, 2)-
entry in the new matrix is still nonzero and now is the only nonzero entry of row 2 in the first #» columns
(because 4 was lower triangular).

The (2, 2)-entry can be scaled to 1, the entries below it can be changed to 0 by adding multiples of row 2
to the rows below. This affects only columns 2 and # + 2 of the augmented matrix. Now the (3, 3) entry
in 4 is the only nonzero entry of the third row in the first n columns, so it can be scaled to 1 and then
used as a pivot to zero out entries below it. Continuing in this way, 4 is eventually reduced to /, by
scaling each row with a pivot and then using only row operations that add multiples of the pivot row to
rows below.

The row operations just described only add rows to rows below, so the / on the right in [4 /] changes into
a lower triangular matrix. By Theorem 7 in Section 2.2, that matrix is A4 .
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20.

21.

22.

Let A = LU be an LU factorization for 4. Since L is unit lower triangular, it is invertible by Exercise 19.
Thus by the Invertible Matrix Theroem, L may be row reduced to /. But L is unit lower triangular, so it
can be row reduced to / by adding suitable multiples of a row to the rows below it, beginning with the top
row. Note that all of the described row operations done to L are row-replacement operations. If
elementary matrices £, E», ... E, implement these row-replacement operations, then

E,.EEA=(E,. EE)LU=IU=U
This shows that 4 may be row reduced to U using only row-replacement operations.

(Solution in Study Guide.) Suppose A = BC, with B invertible. Then there exist elementary matrices
E\, ..., E, corresponding to row operations that reduce B to /, in the sense that £, ... E\B = 1. Applying
the same sequence of row operations to 4 amounts to left-multiplying 4 by the product E, ... E;. By
associativity of matrix multiplication.

E,.EA=E,. EBC=IC=C
so the same sequence of row operations reduces 4 to C.

First find an LU factorization for 4. Row reduce A4 to echelon form using only row replacement
operations:

@ -4 2 3] [2 -4 =2 3] [2 -4 - 3] [2 -4 -2 3]

6 9 -5 8/ |0 ® 1 -1] |0 -1} |0 3 1 -1
A=| 2 -7 -3 9|~|0 -3 -1 6/|~|0 @ ~lo0 0o o0 s5|=U
4 =2 =2 -1 |0 6 2 -7| |0 0 0
-6 3 3 4] |0 -9 -3 13| |0 10/ ([0 0 0 0

\S]

S O O W
S O O =
|
(9}
[w)
S

then follow the algorithm in Example 2 to find L. Use the last two columns of /5 to make L unit lower
triangular.

4 6|5
|1—6] (-9 10

+2 =3 =5

bl
! ] 1 0 0 0 O]
3 1 3 0 0 O
1 -1 1 , L= 1 -1 0 0
2 2 -1 1 2 2 -1 1 0
3 3 20 1] [-3 3 2 0 1

Now notice that the bottom two rows of U contain only zeros. If one uses the row-column method to find
LU, the entries in the final two columns of L will not be used, since these entries will be multiplied zeros
from the bottom two rows of U. So let B be the first three columns of L and let C be the top three rows of
U. That is,
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10 0
3 0 2 4 2 3
B=| 1 -1 1,c={0 3 1 -1
2 2 -l 0 0 0 5
3 3 2]

Then B and C have the desired sizes and BC = LU = A. We can generalize this process to the case where
Ainm xn, A= LU, and U has only three non-zero rows: let B be the first three columns of L and let C be
the top three rows of U.

23. a. Express each row of D as the transpose of a column vector. Then use the multiplication rule for
partitioned matrices to write

Fal

A=CD=[¢, ¢, ¢ ¢, =¢d] +c,d] +edl +e,d!

d
dg

which is the sum of four outer products.

b. Since 4 has 400 x 100 = 40000 entries, C has 400 x 4 = 1600 entries and D has 4 x 100 = 400 entries,
to store C and D together requires only 2000 entries, which is 5% of the amount of entries needed to
store A4 directly.

24. Since Q is square and Q'Q = I, O is invertible by the Invertible Matrix Theorem and O ' = Q". Thus 4 is
the product of invertible matrices and hence is invertible. Thus by Theorem 5, the equation 4x =b has a
unique solution for all b. From Ax = b, we have ORx = b, O’ORx = Q'b, Rx = Q'b, and finally
x=R"'Q"b. A good algorithm for finding x is to compute O’b and then row reduce the matrix [ R Q'b ].
See Exercise 11 in Section 2.2 for details on why this process works. The reduction is fast in this case
because R is a triangular matrix.

25. A=UDV".Since Uand V" are square, the equations U’ U=1Iand V' V=T imply that U and " are
invertible, by the IMT, and hence U'=U"and (VT)*l = V. Since the diagonal entries o,,...,0, in D are
nonzero, D is invertible, with the inverse of D being the diagonal matrix with o7 ' 0, 'on the diagonal.

Thus 4 is a product of invertible matrices. By Theorem 6, 4 is invertible and
A'=wprHt='pD'u'=vD'U".

1 0 0
26. If A= PDP', where P is an invertible 3 x 3 matrix and D is the diagonal matrix D=|0 1/2 0
0 0 1/3

Then 4% =(PDP"\(PDP™")=PD(P"'P)DP™' = PDIDP™' = PD*P™" and since

1 0 o1 0 0 1 0 0 1 0 0
D*=|0 1/2 0o 1/2 ol=l0 1/2° 0l=l0 1/4 0
0 0 1/3]l0 0 1/3]| |o o 1/32| |0 0 1/9

1 0 0
A=P|l0 1/4 0P
0 0 1/9
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1 0 0 1 0 0
Likewise, 4°=PD’P ' soA*=P|0 1/2° 0|P'=P/0 1/8 0P
0 0o 1/3° 0 0 1/27
1 0 0
In general, 4" = PD'P',s0 4*=P|0 1/2* 0[P
0 0 1/3

First consider using a series circuit with resistance R, followed by a shunt circuit with resistance R, for
the network. The transfer matrix for this network is

1oofft -rR] [ 1 R,
~1/R, 1][0 1 | |-1/R, (R +R)/R,

For an input of 12 volts and 6 amps to produce an output of 9 volts and 4 amps, the transfer matrix must
satisfy

1 R, 12] 12-6R, [
~1/R, (R +R)/R, || 6| |(~12+6R +6R,)/R,| |4

Equate the top entries and obtain R, = %ohm. Substitute this value in the bottom entry and solve to

obtain R, =%0hms. The ladder network is

<

Next consider using a shunt circuit with resistance R, followed by a series circuit with resistance R, for
the network. The transfer matrix for this network is

1 -R, 1 0] |(R+R)/R -R,

0 1 ||-1/R 1| | -1/R 1
For an input of 12 volts and 6 amps to produce an output of 9 volts and 4 amps, the transfer matrix must
satisfy

(R +R,)/R  -R,|[12] [(2R +12R,)/R —6R,] [9
~1/R, 16| ~12/R, +6 14

Equate the bottom entries and obtain R; = 6 ohms. Substitute this value in the top entry and solve to

obtain R, :%Ohms. The ladder network is

b. i1 e R i2 i2 e g i3
! 5 1 \ 3/4 ohm |
v [} ] v [} ] V
1 | Sohms | 2 | | 3
[} ] [} ]
[} ] [} ]
| SR - | SRR o |
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28. The three shunt circuits have transfer matrices
1 o] 1 0] 1 0]
, , and
|-1/R, 1]|-l/R, 1] | -1/R; 1]
respectively. To find the transfer matrix for the series of circuits, multiply these matrices

1 o[ 1 0] 1 0] 1 0

, and =
| -1/Ry 1]|-1/R, 1] -U/R 1] |-(1/R +1/R, +1/Ry) 1

b

Thus the resulting network is itself a shunt circuit with resistance 1/R, +1/R, +1/R;.

0
29. a. The first circuit is a shunt circuit with resistance R; ohms, so its transfer matrix is { UR J . The
- 1

. .o . . . . . . .. YY) .
second circuit is a series circuit with resistance R, ohms, so its transfer matrix is {0 { } The third

circuit is a shunt circuit with resistance R; ohms so its transfer matrix is { 1} .The transfer
—liy

matrix of the network is the product of these matrices, in right-to-left order:

1ot R 1 0] (R +R,) /R, ~R,
~1/R, 1)|0 1 ||-1/R, 1| |—~(R+R,+R)/RR,) (R,+R;)/R,

b. To find a ladder network with a structure like that in part (a) and with the given transfer matrix 4, we

4/3 12| (R, +R))/R, -R,
-1/4 3 }_{—(Rl +R +R)/R, (R, +R3)/Rj
From the (1, 2) entries, R, = 12 ohms. The (1, 1) entries now give (R, +12)/R, =4/3, which may be
solved to obtain R, = 36 ohms. Likewise the (2, 2) entries give (R; +12)/R, =3, which also may be
solved to obtain R; = 6 ohms. Thus the matrix 4 may be factored as

1 0|1 =R, 1 0 1 o1 -12 1 0 )
A= = . The ladder network is
-1/R; 1]/0 1 -1/R, 1 -1/6 110 1 ||-1/36 1

must find resistances R;, R», and R; such tha A = {
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The transfer matrix of this network is the product of the individual transfer matrices, in right-to-left

4 1 -R, 1 0|1 -R (R, +R))/R, —R,—R(R,+Ry)/R,
order. =

0 1 ||-1/R, 1[0 1 -1/R, (R +R))/R,

By setting the matrix 4 from the previous exercise equal to this matrix, one may find that

(Ry+Ry)/R, —Ry—R(R,+Ry)/R, | | 43 -12

~1/R, (R, +Ry)/R, |-1/4 3

Set the (2, 1) entries equal and obtain R, = 4 ohms. Substitute this value for R,, equating the (2, 2) entries
and solving gives R; = 8 ohms. Likewise equating the (1, 1) entries gives R; = 4/3 ohms.

The ladder network is

Note: The Study Guide’s MATLAB box for Section 2.5 suggests that for most LU factorizations in this
section, students can use the gauss command repeatedly to produce U, and use paper and mental
arithmetic to write down the columns of L as the row reduction to U proceeds. This is because for Exercises
7—16 the pivots are integers and other entries are simple fractions. However, for Exercises 31 and 32 this is
not reasonable, and students are expected to solve an elementary programming problem. (The Study Guide
provides no hints.)

31. [M] Store the matrix 4 in a temporary matrix B and create L initially as the 88 identity matrix. The
following sequence of MATLAB commands fills in the entries of L below the diagonal, one column at a
time, until the first seven columns are filled. (The eighth column is the final column of the identity
matrix.)

L(2:8,1) = B(2:8,1)/B(1, 1)
B = gauss (B, 1)
L(3:8,2) = B(3:8, 2)/B(2, 2)
B = gauss (B, 2)

L(8:8,7) = B(8:8,7)/B(7,7)
U = gauss(B,7)
Of course, some students may realize that a loop will speed up the process. The for..end syntax is
illustrated in the MATLAB box for Section 5.6. Here is a MATLAB program that includes the initial
setup of B and L:
B = A
L eye (8)
for j=1:7
L(j+1:8, j) = B(j+1:8, j)/B(3, 3)
B = gauss (B, j)
end
U =B

a. To four decimal places, the results of the LU decomposition are
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!
-.25
-.25

- 0
0
0
0

| 0

4
0
0

. 0
0
0
0
0

0 0 0 0 0 0 0
1 0 0 0 0 0 0
—.0667 1 0 0 0 0 0
-2667 -.2857 1 0 0 0 0
0 -2679 -.0833 1 0 0 0
0 0 -2917 -2921 1 0 0
0 0 0 -2697 -.0861 1 0
0 0 0 0 —-2948 -2931 1|
-1 -1 0 0 0 0 0 |
375 =25 -1 0 0 0 0
0 3.7333 -1.0667 -1 0 0 0
0 0 3.4286  -.2857 -1 0 0
0 0 0 3.7083 -1.0833 -1 0
0 0 0 0 33919  -2921 .|
0 0 0 0 0 3.7052  -1.0861
0 0 0 0 0 0 3.3868 |

b. The result of solving Ly = b and then Ux =Yy is

x = (3.9569, 6.5885, 4.2392, 7.3971, 5.6029, 8.7608, 9.4115, 12.0431)
- 0318
.0227
.1045
.0591
3271
.1093
.0945

32.a. [M]

matrices, produce L =

2953 0866
0866 .2953
0945 .0509
0509 .0945
0318 .0227
0227 .0318
0010 .0082
1.0082 .0100

3 -1

-1 3

A=| 0 -1

0 0

0 0

.0945
.0509
3271
.1093
.1045
.0591
.0318
0227

0 0

-1 0

3 -1

-1 3

0 -1

.0509
.0945
.1093
3271
.0591
.1045
0227
.0318

.0509

- o O O O

b. Let s;+1 be the solution of Lsy.; =t, for k=0, 1, 2,
2, .... The results are

0227
0318

.0591

.1045
.1093
3271
.0509
.0945

3
0
and U=|0
0
0

.0010
.0082
0318
0227
.0945
.0509
.2953
.0866

S O O wiwe

.0082 |
.0100
0227
.0318
.0509
.0945
.0866
2953

0 O
-1 0
g
0o %
0 O

2.5

144

55 |

Solutions

. The commands shown for Exercise 31, but modified for 5x5

2-45

.... Then t;; is the solution of Uty = sy for k=0, 1,
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[10.0000 | [ 6.5556 ] [ 6.5556] [4.7407 |
15.3333 9.6667 11.8519 7.6667

s, =|17.7500 |,t, =| 10.4444 |,s, =| 14.8889 |,t, =| 8.5926 |,
18.7619 9.6667 15.3386 7.6667

[17.1636 | | 6.5556 | | 12.4121 | | 4.7407 |

[ 4.7407] [3.5988] [3.5988] [2.7922]
9.2469 6.0556 7.2551 4.7778

s, =[12.0602 |,t, =| 6.9012 |,s, =| 9.6219 |,t, =| 5.4856 |.
12.2610 6.0556 9.7210 4.7778

| 9.4222 3.5988 | | 7.3104 | 2.7922 |

2.6 SOLUTIONS

Notes: This section is independent of Section 1.10. The material here makes a good backdrop for the series
expansion of (I-C) ' because this formula is actually used in some practical economic work. Exercise 8 gives
an interpretation to entries of an inverse matrix that could be stated without the economic context.

1. The answer to this exercise will depend upon the order in which the student chooses to list the sectors.
The important fact to remember is that each column is the unit consumption vector for the appropriate
sector. If we order the sectors manufacturing, agriculture, and services, then the consumption matrix is

.10 .60 .60
C=(30 20 O
30 .10 .10

The intermediate demands created by the production vector x are given by Cx. Thus in this case the
intermediate demand is

10 .60 .60 0 60
Cx=|.30 .20 .00|{100|=]|20
30 .10 .10 0 10

2. Solve the equation x = Cx + d for d:
X, 10 .60 .60 || x, 9x, —.6x, —.6x, 0
d=x-Cx=|x, |—|.30 20 .00(x,|= —-.3x, +.8x, =118
X5 30 .10 10| x, =3x, —.1x, + .9x; 0
90 -60 -.60 0 1 0 0 3333
This system of equations has the augmented matrix| =30 .80 .00 18|~|0 1 0 35.00
-30 =10 9 O 0 0 I 1500
3333
Sox = |35.00].
15.00
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3. Solving as in Exercise 2:

X 10 .60 .60 || x, 9x, —.6x, —.6x;
d=x-Cx =|x, |—[.30 20 .00 x, |= —3x1+ 8x,
X, 30 .10 10| x4 =3x, —.1x, +. 9x3
This system of equations has the augmented matrix
90 -60 —-.60 18] [1 0 0O 40.00 40.00
-30 8 .00 O0|~[0 1 O 15.00]|, sox=|15.00
-30 —-10 90 O 0 0 1 15.00 15.00
4. Solving as in Exercise 2:
X, 10 .60 .60 || x, 9x, — —.6x;4
d=x-Cx=|x,|—-|.30 20 .00 x, |=|-3x,+. Sx2
X5 30 .10 10| x4 =3x, —.1x, + .9x;,
This system of equations has the augmented matrix
90 -60 -.60 18] [1 0 0 7333 73.33
-30 .80 .00 18(~/0 1 O 50.00(, sox=|50.00].
-30 =10 90 O 0 0 1 30.00 30.00

Note: Exercises 2—4 may be used by students to discover the linearity of the Leontief model.
., 1 =5 [50] [1.6 1][50] [110
5. x=(I-C) d= = =
-6 8] |30 1.2 2|30 120
L. [ 9 -6]]18 40/21 30/21|18 50
6. x=(/-C) 'd= = =
-5 8] [I1 25/21 45/21]11 45

. Lo [1e 1 ., 1.6 1][1] [1.6
7. a. From Exercise 5,(/ -C) " = sox,=(/-C) 'd, = =
1.2 2 1.2 210 1.2

which is the first column of (I =C)™".
o 1.6 1][51] [111.6
b. x,=/-C)"d, = =
1.2 230 121.2

50 110
c¢. From Exercise 5, the production x corressponding to d = {20}15 X= {120}'

Note that d, =d +d,. Thus
=(- C)ildz
=(I-C)"'(d+d,)
=(I-C)'d+({I-C)'d,

=X+X1
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8.

10.

11.

12.

13.

a. Given (/-C)x=d and (/ —C)Ax=Ad,
I-O)(x+Ax)=(-C)x+({-C)Ax=d+Ad
Thus x+Ax is the production level corresponding to a demand of d +Ad.

b. Since Ax =(/—C)"'Ad and Ad is the first column of 7, Ax will be the first column of (/ —C)™".

g =2 0

. Inthiscase/-C=[-3 9 -3|. Rowreduce [/ —C d] to find

-1 0 8

Z =2 .0 40.0 1 0 0 828
-3 9 -3 600|~(0 1 0 131.0|. Sox=(82.8,131.0, 110.3).
-1 .0 .8 80.0 0 0 1 1103

From Exercise 8, the (i, /) entry in (/ — C) ' corresponds to the effect on production of sector i when the
final demand for the output of sector j increases by one unit. Since these entries are all positive, an
increase in the final demand for any sector will cause the production of all sectors to increase. Thus an
increase in the demand for any sector will lead to an increase in the demand for all sectors.

(Solution in study Guide) Following the hint in the text, compute p’x in two ways. First, take the
transpose of both sides of the price equation, p = C"p + v, to obtain

p  =(C"p+v) =(C"p) +v =p"C+v"and right-multiply by x to get

px =(p'C+v)x=p’Cx+v'x

Another way to compute p’x starts with the production equation x = Cx + d. Left multiply by p” to get
p’x=p’ (Cx+d)=p"Cx+p’d. The two expression for p’x show thatp’ Cx+ v x=p’Cx+p’d so
v’x = p’d. The Study Guide also provides a slightly different solution.

Since D, =I+C+C*+..+C"" =I+C(I+C+..+C")=1+CD,,, D,,, may be found iteratively
by D, =1+CD,.
[ 0.8412 -0.0064 -0.0025 -0.0304 -0.0014 -0.0083 —0.1594]
-0.0057  0.7355 -0.0436 -0.0099 -0.0083 -0.0201 -0.3413
-0.0264 -0.1506  0.6443 -0.0139 -0.0142 -0.0070 -0.0236
[M] The matrix / — Cis| —=0.3299 —-0.0565 —0.0495  0.6364 -0.0204 —-0.0483 —0.0649 |so

-0.0089 -0.0081 -0.0333 -0.0295  0.6588 —0.0237 —0.0020
-0.1190 -0.0901 -0.0996 -0.1260 -0.1722  0.7632 -0.3369
| —0.0063 —-0.0126 -0.0196 -0.0098 -0.0064 —0.0132  0.9988

the augmented matrix [/ —C d] may be row reduced to find
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[ 0.8412
-0.0057
—0.0264
-0.3299
—0.0089
—0.1190
| —0.0063
10

S O O o o O
S O O O =

0

S O O = O O

0

—-0.0064

0.7355
-0.1506
—0.0565
—0.0081
-0.0901
-0.0126

S O = O O

0

S = O O O O

0

-0.0025
—-0.0436

0.6443
—-0.0495
—-0.0333
-0.0996
—-0.0196

-_- o O O O O

0

0
0
0
0
0
0
1

~0.0304
—0.0099
—0.0139
0.6364
-0.0295
—0.1260
-0.0098
99576 |
97703
51231
131570
49488
329554
13835 |

-0.0014
—0.0083
-0.0142
-0.0204

0.6588
-0.1722
—-0.0064

—-0.0083
-0.0201
-0.0070
—0.0483
—-0.0237

0.7632
-0.0132

—-0.1594
—-0.3413
—-0.0236
—-0.0649
—-0.0020
-0.3369

0.9988

2.6

74000 |
56000
10500
25000
17500
196000

5000 |

Solutions

2-49

so x = (99576, 97703, 51321, 131570, 49488, 329554, 13835). Since the entries in d seem to be accurate

to the nearest thousand, a more realistic answer would be x = (100000, 98000, 51000, 132000, 49000,

330000, 14000).

14. [M] The augmented matrix [/ —C d] in this case may be row reduced to find
-0.0025

[ 0.8412
—0.0057
—0.0264
—0.3299
—0.0089
—0.1190
| —0.0063

1 0

l
S O O o O
S O O O =

0 0

S O O = O O

0

—-0.0064

0.7355
—-0.1506
—0.0565
—0.0081
-0.0901
-0.0126

0

S O O = O O

S = O O O O

0

—-0.0304

—-0.0436 —0.0099

0.6443
—0.0495
—-0.0333

-0.0139
0.6364
—-0.0295

-0.0996 —0.1260

—-0.0196

S = O O O O O

0
0
0
0
0
0
1

—-0.0098

134034 |
131687
69472
176912
66596
443773
18431 |

—-0.0014
—0.0083
-0.0142
—-0.0204

0.6588
-0.1722
—-0.0064

—0.0083
—-0.0201
-0.0070
—0.0483
—-0.0237

0.7632
-0.0132

—-0.1594
—-0.3413
-0.0236
-0.0649
-0.0020
-0.3369

0.9988

99640 |
75548
14444
33501
23527
263985

6526

so x = (134034, 131687, 69472, 176912, 66596, 443773, 18431). To the nearest thousand, x = (134000,
132000, 69000, 177000, 67000, 444000, 18000).
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15. [M] Here are the iterations rounded to the nearest tenth:

x? =(74000.0, 56000.0, 10500.0, 25000.0, 17500.0, 196000.0, 5000.0)
x =(89344.2, 77730.5, 26708.1, 72334.7, 30325.6, 265158.2, 9327.8)
x? =(94681.2, 87714.5, 37577.3,100520.5, 38598.0, 296563.8, 11480.0)
x® =(97091.9, 92573.1, 43867.8, 115457.0, 43491.0, 312319.0, 12598.8)
x¥ =(98291.6, 95033.2, 47314.5, 123202.5, 46247.0, 320502.4, 13185.5)
x® =(98907.2, 96305.3, 49160.6, 127213.7, 47756.4, 324796.1, 13493.8)
x® =(99226.6, 96969.6, 50139.6, 129296.7, 48569.3, 327053.8, 13655.9)
x" =(99393.1, 97317.8, 50656.4, 130381.6, 49002.8, 328240.9, 13741.1)
x® =(99480.0, 97500.7, 50928.7, 130948.0, 49232.5, 328864.7, 13785.9)
x? =(99525.5,97596.8, 51071.9, 131244.1, 49353.8, 329192.3, 13809.4)
x" = (99549 .4, 97647.2, 51147.2,131399.2, 49417.7, 329364.4, 13821.7)
x" =(99561.9, 97673.7, 51186.8, 131480.4, 49451.3, 329454.7, 13828.2)
x"? =(99568.4, 97687.6, 51207.5, 131523.0, 49469.0, 329502.1, 13831.6)

so x1? is the first vector whose entries are accurate to the nearest thousand. The calculation of x'? takes

about 1260 flops, while the row reduction above takes about 550 flops. If C is larger than 20 x 20, then
fewer flops are required to compute x"'? by iteration than by row reduction. The advantage of the
iterative method increases with the size of C. The matrix C also becomes more sparse for larger models,
so fewer iterations are needed for good accuracy.

2.7 SOLUTIONS

Notes: The content of this section seems to have universal appeal with students. It also provides practice with
composition of linear transformations. The case study for Chapter 2 concerns computer graphics — see this
case study (available as a project on the website) for more examples of computer graphics in action. The
Study Guide encourages the student to examine the book by Foley referenced in the text. This section could
form the beginning of an independent study on computer graphics with an interested student.

1. Refer to Example 5. The representation in homogenous coordinates can be written as a partitioned matrix

A 0
of the form L)T J, where A 1s the matrix of the linear transformation. Since in this case

|
= {O J , the representation of the transformation with respect to homogenous coordinates is
1 25 0
0 1 0
0 0 1
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A 0 X
Note: The Study Guide shows the student why the action of L)T J on the vector L} corresponds to the

action of 4 on x.

-1

2. The matrix of the transformation is A :{ J , 5o the transformed data matrix is

-1 0[5 2 4] [-5 2 -4
AD: =
{01}{023}{0 2 3}

Both the original triangle and the transformed triangle are shown in the following sketch.

272 =272 0 V272 272 2

1 0 3
3. Following Examples 4-6, [~2/2  ~2/2 00 1 1|=[v2/2 272 242
0 0 110 0 1 0 0 1

L 0 Ofj1 0 =2 g 0 -16
4.0 12 00 1 3|=/0 12 3.6
0 0 1)(0 O 0 o0 1

(32 -2 olrr o ol [N3/2 12 0
5.1 12 J3/2 ollo -1 ol=| 172 =3/2 0

0 0 10 0 1] 0 0
1o ollv3/2 -12 ol [V3/2  -1/2 0]
6.10 -1 0ol 172 3/2 o0l=|-1/2 —3/2 0

0o o0 1y} O 0 1 0 0 1

7. A 60° rotation about the origin is given in homogeneous coordinates by the matrix
1/2 —3/2 0

V372 1/2 0. To rotate about the point (6, 8), first translate by (—6, —8), then rotate about the
0 0 1

origin, then translate back by (6, 8) (see the Practice Problem in this section). A 60° rotation about (6, 8)
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10.

is thus given in homogeneous coordinates by the matrix

10 6]l 172 =B/2 01 o 6 1/2 —3/2 3+43
0 1 8|[\3/2 /2 ol[o 1 -8|=[3/2  1/2 4-33
0 0 1 0 0 1|0 0 1 0 0 1

. A 45° rotation about the origin is given in homogeneous coordinates by the matrix

V272 =272 0

V272 \2/2 0. To rotate about the point (3, 7), first translate by (-3, —7), then rotate about the
0 0 1

origin, then translate back by (3, 7) (see the Practice Problem in this section). A 45° rotation about (3, 7)
is thus is given in homogeneous coordinates by the matrix

o 31vV2/2 272 olrp o 31 [V2/2 V272 3+242

1
0 1 7||v2/2 272 ollo 1 —7|=|V2/2 2/2 7-5{2
0 0 1 0 0 1/0 o 1 0 0 1

To produce each entry in BD two multiplications are necessary. Since BD is a 2 X 200 matrix, it will take
2x2x200 =800 multiplications to compute BD. By the same reasoning it will take 2x2x200= 800
multiplications to compute A(BD). Thus to compute A(BD) from the beginning will take 800 + 800 =
1600 multiplications.

To compute the 2 X2 matrix AB it will take 2X2x2 =8 multiplications, and to compute (4B)D it will
take 2x2x200=_800 multiplications. Thus to compute (4B)D from the beginning will take

8 + 800 = 808 multiplications.

For computer graphics calculations that require applying multiple transformations to data matrices, it is
thus more efficient to compute the product of the transformation matrices before applying the result to
the data matrix.

Let the transformation matrices in homogeneous coordinates for the dilation, rotation, and translation be
called respectively D, and R, and T. Then for some value of s, ¢, A, and &,

s 0 0 cosp —sing 0 1 0 &
D=0 s O|,R=|sing <cos¢p 0|, T=[0 1 %k
0 0 1 0 0 1 0 0 1

Compute the products of these matrices:
scosp —ssing 0 scosp —ssing 0
DR=|ssing scos¢p 0|, RD=|ssing scos¢p O],
0 0 1 0 0 1
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s 0 sh s 0 h
DT=|0 s sk|,TD=|0 s k]|,
0 0 1 0 0 1
cos@ —sing hcos@—ksing cos@p —sing h

RT =|sing cos@ hsing+kcose|,TR=|singp cos@p k
0 0 1 0 0 1

Since DR =RD, DT # TD and RT # TR, D and R commute, D and T do not commute and R and 7 do not
commute.

To simplify 4,4, completely, the following trigonometric identities will be needed:

1. —tang@cosp = —%cos(ﬂ =—sing

_ . _ 1 __ sing - _l-sin’¢p _ cos’g
2. secqp tan¢)sm¢7——cow s SINQ = —2TE =

=cosQ
Using these identities,
secp —tang O 1 0 0 secp—tan@sing —tan@cosep O
A4 = 0 1 Ofsing cosp Of= sin @ cos @ 0
0 0 1 0 0 1 0 0 1

cosp —sing 0
=|sing cosg 0|, which is the transformation matrix in homogeneous coordinates for a rotation in
0 0 1

RZ
To simplify this product completely, the following trigonometric identity will be needed:
l-cosp  sing

tang/2 =—
sin@ 1+ cos@

This identity has two important consequences:

1—cos¢

1-(tang@/2)(sing)=1- sing =cos @
sin@

(cos@)(—tan@/2)—tan@/2 =—(cos@ +1)tan@/2 =—(cos@ +1)
1+cos@

=—sin@

The product may be computed and simplified using these results:
1 —tang/2 0 1 0 0 —tan@/2 0
0 1 Ollsinp 1 O 1 0
0 0 L) O 0 1 0 1

—_

0 1 0
0 0 1

= sin@ 1

0

0
1-(tang/2)(singp) —tang@/2 O 1 —tan@/2 0

0

0 0 1
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13.

14.

15.

16.

[cosp —tang/2 01 —tanp/2 0 cosp (cos@)(—tang/2)—tangp/2 0
=| sin@ 1 010 1 0|=|sing —(sin@)(tang/2)+1 0
0 0 1](0 0 1 0 0 1

[cosp —sing 0
=|sing cos¢ 0|, which is the transformation matrix in homogeneous coordinates for a rotation in
0 0 1

RZ

Consider first applying the linear transformation on R’ whose matrix is 4, then applying a translation by
the vector p to the result. The matrix representation in homogeneous coordinates of the linear

transformation is { }, while the matrix representation in homogeneous coordinates of the

OT

translation is [OT } Applying these transformations in order leads to a transformation whose matrix

o , | Lopj4 0 14 p| , ,
representation in homogeneous coordinates is o 1ler 1 = o 1 which is the desired matrix.

172 —3/2 3+4/3

The matrix for the transformation in Exercise 7 was found to be \/5 /2 1/2 4- 3\/5 This matrix
0 0 1

172 =372 [3+43
NEYS IR V5 I PO N Y

I pijl4 0
written as L)T JL}T , that is, the composition of a linear transformation on R* and a translation.

The matrix 4 is the matrix of a rotation about the origin in R*. Thus the transformation in Exercise 7 is

3+43
4-33 |

Since (X, Y, Z, H)=(3,—4,1,2;), the corresponding point in R’ has coordinates

(x Z)_(iﬁé)_
VI )T

The homogeneous coordinates (1, -2, 3, 4) represent the point (1/4, —2/4,3/4)=(1/4,-1/2,3/4)

A
is of the form L)T T}, where 4 = { } . By Exercise 13, this matrix may be

the composition of a rotation about the origin and a translation by p = [

1 _1 1
%9%:% = (12,_6,3)
24 24 24

while the homogeneous coordinates (10, —20, 30, 40) represent the point
(10/40, -20/40,30/40)=(1/4,-1/2,3/4)

so the two sets of homogeneous coordinates represent the same point in R*.
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18.
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Follow Example 7a by first constructing that 3 X3 matrix for this rotation. The vector e; is not changed
by this rotation. The vector e, is rotated 60° toward the positive z-axis, ending up at the point (0, cos 60°,

sin 60°) = (0,1/2, NEY. 2). The vector e; is rotated 60° toward the negative y-axis, stopping at the point
(0, cos 150°, sin 150°) = (0, —\/5/2, 1/2). The matrix A for this rotation is thus

1 0 0
A=|0 1/2 —J3/2|. soin homogeneous coordinates the transformation is represented by the
0 32 1/2
1 0 0 0
mam{A 0}: 0 1/2 —3/2 0
0" 1) jo 32 12 0
0 0 0 1

First construct the 3 X3 matrix for the rotation. The vector e, is rotated 30° toward the negative y-axis,

ending up at the point (cos(-30)°, sin (-=30)°, 0) = (\/5 /2,-1/2,0). The vector e, is rotated 60° toward

the positive x-axis, ending up at the point (cos 60°, sin 60°, 0) =(1/2, J3/2, 0). The vector e; is not
Y32 12 0

changed by the rotation. The matrix 4 for the rotation is thus 4 =| —1/2 32 0 , SO In

0 0 1
J3i2 12 0 0
A 0 _
homogeneous coordinates the rotation is represented by the matrix{ . J= /2 3720 0
0 0 1 0
0 0 0 1
Following Example 7b, in homogeneous coordinates the translation by the vector (5, —2, 1) is represented
1 0 0 5
. 1 0 - .. .
by the matrix 0 o0 1 | . Thus the complete transformation is represented in homogeneous
0 0 0 1
10 0 5]V3/2 1/2 0 0] |[V3/2 1/2 0 5
0 1 0 2| - - _
coordinates by the matrix /2 3720 0 -| “I/2 V3720 2.
0 0 1 1 0 0 1 0 0 0 1 1
0 0 0 I 0 0 0 1 0 00 1

Referring to the material preceding Example 8 in the text, we find that the matrix P that performs a

1 0 0 0

. S . . .10 0 0
perspective projection with center of projection (0, 0, 10) is o 0 0 ol

0 0 -1 1
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The homogeneous coordinates of the vertices of the triangle may be written as (4.2, 1.2, 4, 1), (6,4, 2, 1),

42 6 2
. .| 1.2 . .
and (2, 2, 6, 1), so the data matrix for S is and the data matrix for the transformed triangle
1 1 1
1 0 0 042 6 2 42 6 2
10 1 0 0|12 4 2 1.2 4 2 . ) .
18 = . Finally, the columns of this matrix may be converted
0 0 0 0 4 2 6 0 0 0
0 0 -1 1 1 1 1 6 8 4

from homogeneous coordinates by dividing by the final coordinate:
(42,1.2,0,.6)—>(4.2/.6,1.2/.6,0/.6)=(7, 2,0)

(6,4,0,.8) —(6/.8,4/8,0/.8) =(7.5,5,0)

2,2,0,4) —(2/.4,2/4,0/.4)=(5,5,0)

So the coordinates of the vertices of the transformed triangle are (7, 2, 0), (7.5, 5, 0), and (5, 5, 0).

1 0 0 0
. . . . . . .. .10 1 0
20. As in the previous exercise, the matrix P that performs the perspective projection is 0 0 0
0 0 -1 1
The homogeneous coordinates of the vertices of the triangle may be written as (9, 3, -5, 1), (12, 8, 2, 1),

9 12 1.8

3 8 27
and (1.8, 2.7, 1, 1), so the data matrix for S is s o | and the data matrix for the transformed

I 1 1
1 0 0 0 9 12 18 9 12 1.8
0 1 0 o) 3 8 27 3 8 2
triangle is = . Finally, the columns of this matrix may
0 0 0)l-5 2 1 0 0 0

0 0 -1 1| 1 1 1 1.5 8 9
be converted from homogeneous coordinates by dividing by the final coordinate:
9,3,0,1.5) —(9/1.5,3/1.5,0/1.5)=(6, 2, 0)
12,8,0,.8) —(12/.8,8/.8,0/.8)=(15,10, 0)
(1.8,2.7,0,.9)—>(1.8/.9,2.7/.9,0/.9)=(2, 3, 0)
So the coordinates of the vertices of the transformed triangle are (6, 2, 0), (15, 10, 0), and (2, 3, 0).
21. [M] Solve the given equation for the vector (R, G, B), giving
R 61 29 15T'[x 22586 —1.0395 -3473| X
G|=|.35 .59 .063 Y |=]-1.3495 23441 0696 || Y
B .04 12 787 Z 0910 -3046 1.2777| Z
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22. [M] Solve the given equation for the vector (R, G, B), giving
R 299 587 1141y 1.0031 9548 6179 Y
G|=].596 -275 =321 I|=] 9968 —-2707 -.6448| I
B 212 =528 311| | Q 1.0085 —1.1105 1.6996 || QO

2.8 SOLUTIONS

Notes: Cover this section only if you plan to skip most or all of Chapter 4. This section and the next cover
everything you need from Sections 4.1-4.6 to discuss the topics in Section 4.9 and Chapters 57 (except for
the general inner product spaces in Sections 6.7 and 6.8). Students may use Section 4.2 for review, particu-
larly the Table near the end of the section. (The final subsection on linear transformations should be omitted.)
Example 6 and the associated exercises are critical for work with eigenspaces in Chapters 5 and 7. Exercises
31-36 review the Invertible Matrix Theorem. New statements will be added to this theorem in Section 2.9.

Key Exercises: 5-20 and 23-26.

1. The set is closed under sums but not under multiplication
by a negative scalar. A counterexample to the subspace
condition is shown at the right.

(-u

Note: Most students prefer to give a geometric counterexample, but some may choose an algebraic calcu-
lation. The four exercises here should help students develop an understanding of subspaces, but they may be
insufficient if you want students to be able to analyze an unfamiliar set on an exam. Developing that skill
seems more appropriate for classes covering Sections 4.1-4.6.

2. The set is closed under scalar multiples but not sums.
For example, the sum of the vectors u and v shown
here is not in H.

\' u+v
3.  No. The set is not closed under sums or scalar multiples. The subset / u” 3
consisting of the points on the line x, = x; is a subspace, so any / v Uty
“counterexample” must use at least one point not on this line.
Here are two counterexamples to the subspace conditions:
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4. No. The set is closed under sums, but not under multiplication by a
negative scalar.

5. The vector w is in the subspace generated by v, and v, if and
only if the vector equation x,v; + x,v, = w is consistent. The row
operations below show that w is not in the
subspace generated by v; and v,.

2 4 8] [2 -4 8] [@ -4 8
[v, v, wl~| 3 =5 2|~|0 1 -10|~l0 @ -10
-5 8 -9/ |0 =2 11| [0 0

-

/ ‘
(-Du

6. The vector u is in the subspace generated by {vi, v,, v3} if and only if the vector equation x;v; + x,v, +
X3v3 = u is consistent. The row operations below show that u is not in the subspace generated by

{V13V25V3}'
1 4 5 411 4 5 41 [ 4
-2 -7 -8 10| |0 1 2 2 |0 @©
[vi v, v5 u]~ ~ ~
4 9 6 7| |0 =7 -14 9] |0 0
3 7 5 =50 10 -5 -10 7] |0 0

S O N W

—4
2

®

17

Note: For a quiz, you could use w = (1, -3, 11, 8), which is in Span{vy, v,, v3}.

7. a. There are three vectors: vy, v, and v; in the set {vy, v, v3}.
b. There are infinitely many vectors in Span{vy, v, v;} = Col 4.

¢. Deciding whether p is in Col A4 requires calculation:

(2 -3 —4 6] [2 3 -4 6] [ -3
[4 p]~|-8 8 6 -10(~|0 -4 -10 14|~|0 &
6 -7 -7 11| |0 2 5 =71 ]0 0 0

The equation 4x = p has a solution, so p is in Col 4.

(3 2 0 11 [3 =2 0 1713 =2 o
8.[4 pl=| 0 2 -6 14|~ 0 2 -6 14|~ 0 Q@ -6
6 3 3 9/ |0 -1 3 -7 0 0 0

Yes, the augmented matrix [4

—4
-10 1

1
14
0

6
4
0

p] corresponds to a consistent system, so p is in Col 4.

9. To determine whether p is in Nul 4, simply compute Ap. Using 4 and p as in Exercise 7,

2 3 4 6 -2
Ap=|-8 8 6| -10|=|-62|. Since Ap # 0, p is not in Nul 4.
6 -7 7| 11 29
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13.
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To determine whether u is in Nul 4, simply compute 4u. Using A4 as in Exercise 7 and u = (-2, 3, 1),
-3 -2 0f-2 0
Au=| 0 2 —6| 3|=|0/|. Yes, uisin Nul 4.
6 3 3| 1 0

p=4and g =3. Nul 4 is a subspace of R* because solutions of Ax = 0 must have 4 entries, to match the
columns of 4. Col 4 is a subspace of R’ because each column vector has 3 entries.

p=3andq=4. Nul 4 is a subspace of R’ because solutions of Ax = 0 must have 3 entries, to match the

columns of 4. Col 4 is a subspace of R* because each column vector has 4 entries.

To produce a vector in Col 4, select any column of 4. For Nul 4, solve the equation Ax = 0. (Include an
augmented column of zeros, to avoid errors.)

32 1 =5 0] [3 2 1 -5 0] [3 2 -5 0
9 -4 1 7 0|~[0 2 4 -8 0|~[0 2 4 -8 0
9 2 -5 1 0| |0 -4 -8 16 0/ |0 0 0 0 O
32 1 -5 0] [ o -1 1 0] ® - xm+ ox=0
~l0 1 2 -4 of~l0 D 2 -4 0|, () + 2x; — 4xy =0
0 0 0 0 0|0 0 0 0 0 0=0

The general solution is x| = x3 — x4, and x, = —2x3 + 4x,, with x; and x, free. The general solution in
parametric vector form is not needed. All that is required here is one nonzero vector. So choose any
values for x; and x4 (not both zero). For instance, set x; = 1 and x; = 0 to obtain the vector (1, -2, 1, 0) in
Nul 4.

Note: Section 2.8 of Study Guide introduces the ref command (or rre£, depending on the technology),
which produces the reduced echelon form of a matrix. This will greatly speed up homework for students who
have a matrix program available.

14.

15.

16.

To produce a vector in Col 4, select any column of 4. For Nul 4, solve the equation Ax = 0:
1 2 3 0 1 2 3 0 1 2 3 0 0 -1/3 0
4 5 7 0|10 =3 =5 ol o 1 53 ofllo @ 53 o0
-5 -1 0 0 0 9 15 0 0 0 O 0 0 0 0 0
2 7 11 0 0 3 5 0 0 0 O 0 0 0 0 0
The general solution is x; = (1/3)x; and x, = (-=5/3) x3, with x; free. The general solution in parametric
vector form is not needed. All that is required here is one nonzero vector. So choose any nonzero value
of x;. For instance, set x; = 3 to obtain the vector (1, -5, 3) in Nul 4.

Yes. Let 4 be the matrix whose columns are the vectors given. Then 4 is invertible because its

determinant is nonzero, and so its columns form a basis for R’ by the Invertible Matrix Theorem (or by
Example 5). (Other reasons for the invertibility of 4 could be given.)

No. One vector is a multiple of the other, so they are linearly dependent and hence cannot be a basis for
any subspace.
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17. Yes. Place the three vectors into a 3x3 matrix 4 and determine whether 4 is invertible:
0 5 6 1 -7 31 [1 -7 31 [@® -7 3
A= 1 =7 3|~ 0 5 6|~|0 5 6/~[0 B 6
2 4 5] |2 4 5] |0 -10 11] [0 0 @)

The matrix 4 has three pivots, so 4 is invertible by the IMT and its columns form a basis for R* (as
pointed out in Example 5).

18. Yes. Place the three vectors into a 3%3 matrix 4 and determine whether A4 is invertible:
1 -5 771 [1 =5 7] [ -5 7
A= 1 -1 0|~l0 4 -7|~0 @ -7
2 2 -5/ 10 -8 9] |0 0 &

The matrix A has three pivots, so 4 is invertible by the IMT and its columns form a basis for R* (as
pointed out in Example 5).

19. No. The vectors cannot be a basis for R’ because they only span a plane in R*. Or, point out that the

3 6
columns of the matrix | =8 2 | cannot possibly span R’ because the matrix cannot have a pivot in
1 -5

every row. So the columns are not a basis for R”.
Note: The Study Guide warns students NOT to say that the two vectors here are a basis for R”.

20. No. The vectors are linearly dependent because there are more vectors in the set than entries in each
vector. (Theorem 8 in Section 1.7.) So the vectors cannot be a basis for any subspace.

21. False. See the definition at the beginning of the section. The critical phrases “for each” are missing.
True. See the paragraph before Example 4.
True. See Theorem 12.

True. See Example 5.

e a6 o

True. See the first part of the solution of Example 8.

22.

®

False. See the definition at the beginning of the section. The condition about the zero vector is only
one of the conditions for a subspace.

True. See Example 3.
True. See Theorem 12.
False. See the paragraph after Example 4.

e 0T

False. See the Warning that follows Theorem 13.
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4 5 9 21 [ 2 6 -5
23. (Solution in Study Guide) A={6 5 1 12|~|0 (1) 5 -6|.The echelon form identifies
3 4 8 -3 0 0 0 O

4115
columns 1 and 2 as the pivot columns. A basis for Col 4 uses columns 1 and 2 of 4: | 6 |,| 5 |. This is not
3114

the only choice, but it is the “standard” choice. A wrong choice is to select columns 1 and 2 of the
echelon form. These columns have zero in the third entry and could not possibly generate the columns
displayed in 4.

For Nul 4, obtain the reduced (and augmented) echelon form for 4x = 0:

o -4 7 0 @) —4x3+Tx, =0

0 @ 5 -6 0. This corresponds to: @)+ Sx3 — 6x4 = 0.
10 0 0 0 O 0=0
Solve for the basic variables and write the solution of 4x = 0 in parametric vector form:
[ x, 4x, —Tx, 4 -7 41 [-7

X, —5x;+6x, =5 6 ) =5

= =X + x4 . Basis for Nul 4: ,
X3 X3 1 0
Xy Xy 0 1 0 1

Notes: (1) A basis is a set of vectors. For simplicity, the answers here and in the text list the vectors without
enclosing the list inside set brackets. This style is also easier for students. I am careful, however, to
distinguish between a matrix and the set or list whose elements are the columns of the matrix.

(2) Recall from Chapter 1 that students are encouraged to use the augmented matrix when solving Ax =0,
to avoid the common error of misinterpreting the reduced echelon form of 4 as itself the augmented matrix
for a nonhomogeneous system.

(3) Because the concept of a basis is just being introduced, I insist that my students write the parametric
vector form of the solution of Ax = 0. They see how the basis vectors span the solution space and are
obviously linearly independent. A shortcut, which some instructors might introduce later in the course, is only
to solve for the basic variables and to produce each basis vector one at a time. Namely, set all free variables
equal to zero except for one free variable, and set that variable equal to a suitable nonzero number.

3 9 =2 7] [@® -3 6 9 -3 [-2
24. A= 2 -6 4 8|~|0 0 (@ 5|.BasisforCold:| 2|| 4/.
3 -9 =2 210 0 0 O 3112
For Nul 4, obtain the reduced (and augmented) echelon form for 4x = 0:
-3 0 150 0] GD-3x, +1.50x, =0
0o o @ 125 0] This corresponds to: ®+ 1.25x4 = 0.
0 0 O 0 0 0=0

Solve for the basic variables and write the solution of 4x = 0 in parametric vector form:
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X 3x, —1.5x, 3 -1.5 31| -1.5
1 0 1 0
. n =X |[+x, . Basis for Nul 4: , .
X, -1.25x, 0 -1.25 0| ]-1.25
Xy | X4 0 1 0 1
1 4 8 3 =71 [ 4 8 0 5 1| | 4]]-3
-1 2 7 3 4/ 10 @ 5 0 -1 _ 1| |2]] 3
25. A= ~ . Basis for Col 4: , ,
2 2 9 5 5010 0 o (D 4 =201 20| 5
|3 6 9 -5 -2 0 0 0 0 O 3]16]|-5
For Nul 4, obtain the reduced (and augmented) echelon form for Ax = 0:
o =2 o0 7 0 @ - 2x + 7x5 =0
4 0] 0 25 0 -5 0 +25% = .5x5 =0
0o 0 o O 4 of G+ 4x5 =0
0 0 0 O 0 0 0=0
[l [ 25-7x | [ 2] [-7]
X, —2.5x; +.5x5 -2.5 5
Thesolution of 4x = 0in parametric vector form: | x; | = X, =x; 1 |+x5| O
Xy —4x; 0 -4
x| | X5 | | 0 | | 1]
u v

Basis for Nul 4: {u, v}.

Note: The solution above illustrates how students could write a solution on an exam, when time is precious,
namely, describe the basis by giving names to appropriate vectors found in the calculations.

3 -1 7 3 9] [® -1 7 0 6 31[-1]73
2 2 =2 7 510 @ 4 0 3 _ =2 2|7
26. A= ~ . Basis for Col 4: , ,
-5 3 4/ 10 0 o (D 1 -5 9/’|3
-2 6 3 7,10 0 0 0 O 2] 6/|3
For Nul 4,
o 3 0 25 0 () +3x +25x5 =0
0 2 0 1.5 0 + 2x + 1.5x5 = 0
[A O]N @ ) @ 3 5
00 0O 1 0 + x5 =0
000 0 00 0=0

The solution of Ax = 0 in parametric vector form:

Copyright © 2016 Pearson Education, Inc.



27.

28.

29.

30.

31.

32.

33.

34.

3S.

36.

37.

2.8 + Solutions 2-63

(x| [=3x; —2.5x; | [-3] [—2.5]
X, —2x5 —1.5x;5 -2 -1.5
Xy |= X3 =x;| 1 |+x5 0
X4 —Xs 0 —1|. Basis for Nul 4: {u, v}.
xs | | X5 | | 0 | L 1]
IS

Construct a nonzero 3x3 matrix 4 and construct b to be almost any convenient linear combination of the
columns of 4.

The easiest construction is to write a 3x3 matrix in echelon form that has only 2 pivots, and let b be any

. 3 . .
vector in R™ whose third entry is nonzero.

(Solution in Study Guide) A simple construction is to write any nonzero 3x3 matrix whose columns are
obviously linearly dependent, and then make b a vector of weights from a linear dependence relation
among the columns. For instance, if the first two columns of 4 are equal, then b could be (1, -1, 0).

Since Col 4 is the set of all linear combinations of ay, ... , a,, the set {a,, ..., a,} spans Col 4. Because
{a;, ..., a,} is also linearly independent, it is a basis for Col 4. (There is no need to discuss pivot
columns and Theorem 13, though a proof could be given using this information.)

If Col F# IR, then the columns of F do not span R’. Since F is square, the IMT shows that F is not
invertible and the equation Fx = 0 has a nontrivial solution. That is, Nul F contains a nonzero vector.
Another way to describe this is to write Nul /' # {0}.

If Nul R contains nonzero vectors, then the equation Rx = 0 has nontrivial solutions. Since R is square,
the IMT shows that R is not invertible and the columns of R do not span R°. So Col R is a subspace of
R, but Col R # R°®.

If Col O = R*, then the columns of Q span R*. Since Q is square, the IMT shows that Q is invertible

and the equation Ox = b has a solution for each b in R*. Also, each solution is unique, by Theorem 5 in
Section 2.2.

If Nul P = {0}, then the equation Px = 0 has only the trivial solution. Since P is square, the IMT shows

that P is invertible and the equation Px = b has a solution for each b in R’. Also, each solution is unique,
by Theorem 5 in Section 2.2.

If the columns of B are linearly independent, then the equation Bx = 0 has only the trivial (zero) solution.
That is, Nul B = {0}.

If the columns of 4 form a basis, they are linearly independent. This means that 4 cannot have more

columns than rows. Since the columns also span R", 4 must have a pivot in each row, which means that
A cannot have more rows than columns. As a result, 4 must be a square matrix.

[M] Use the command that produces the reduced echelon form in one step (ref or rref depending
on the program). See the Section 2.8 in the Study Guide for details. By Theorem 13, the pivot columns of
A form a basis for Col 4.
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3 -5 0 -1 31 [ 0 25 -45 35 3115
-7 9 -4 9 -1 0 1.5 25 15 -7
A= ~ @ Basis for Col 4: ,
-5 7 =2 5 -7 0 0 0 0 0 -5
3 -7 -3 4 0 0 0 0 0 0 3117
For Nul 4, obtain the solution of 4x = 0 in parametric vector form:
@ + 2.5x; — 45x4 +3.5x5 =0
Solution: {x, = =1.5x; + 2.5x, — 1.5x5

38.

X3, X, and x5 are free

x| [-2.5x%+4.5x,-35x, | [-25] [45] [-3.5]
X, —1.5x; +2.5x, —1.5x5 -1.5 2.5 -1.5
X=|x; |= X3 =x;0 1 |+x,0 0 [+x5] O | =x3u+xav+asw
Xy Xy 0 1 0
x5 | | Xs ] L 0 | L 0 1]

By the argument in Example 6, a basis for Nul 4 is {u, v, w}.

5 2 0 -8 8] [ 0o 0o 60 122
4 1 2 -8 -9/ |0 (O 0 -154 -309
[M] A= ~ .
5 1 3 190 10 0o (O -47 -9
-8 -5 6 5 0 0 0 0 0
5 2110
The pivot columns of 4 form a basis for Col 4: , , i .
=8| |-5]]6
@ + 60x4 + 122x5 = 0
ForNul 4, solve Ax=0:  (x) — 154x;, — 309x5 = 0
(x9 - 47x, — 94x5 =0
x = —60x; — 122x5
. x, = 154x, + 309x;
Solution:
X3 = 47x, + 94x;
x4 and x5 are free
(x| [-60x, —122x5] [-60] [-122]
X, 154x, +309x; 154 309
X=|x; |=| 47x,+%x; |=x,| 47 |+x5| 94 | =xsu+xsv. By the method of Example 6, a basis
Xy Xy 1 0
Xs Xs | | 0 | |1 ]

for Nul 4 is {u, v}.
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Note: The Study Guide for Section 2.8 gives directions for students to construct a review sheet for the
concept of a subspace and the two main types of subspaces, Col 4 and Nul 4, and a review sheet for the
concept of a basis. I encourage you to consider making this an assignment for your class.

2.9 SOLUTIONS

Notes: This section contains the ideas from Sections 4.4—4.6 that are needed for later work in Chapters 5-7.
If you have time, you can enrich the geometric content of “coordinate systems” by discussing crystal lattices
(Example 3 and Exercises 35 and 36 in Section 4.4.) Some students might profit from reading Examples 1-3
from Section 4.4 and Examples 2, 4, and 5 from Section 4.6. Section 4.5 is probably not a good reference for
students who have not considered general vector spaces.

Coordinate vectors are important mainly to give an intuitive and geometric feeling for the isomorphism
between a k-dimensional subspace and R*. If you plan to omit Sections 5.4, 5.6, 5.7 and 7.2, you can safely
omit Exercises 1-8 here. Exercises 1-16 may be assigned after students have read as far as Example 2.
Exercises 19 and 20 use the Rank Theorem, but they can also be assigned before the Rank Theorem is
discussed.

The Rank Theorem in this section omits the nontrivial fact about Row 4 which is included in the Rank
Theorem of Section 4.6, but that is used only in Section 7.4. The row space itself can be introduced in Section
6.2, for use in Chapter 6 and Section 7.4.

Exercises 9-16 include important review of techniques taught in Section 2.8 (and in Sections 1.2 and 2.5).
They make good test questions because they require little arithmetic. My students need the practice here.

Nearly every time I teach the course and start Chapter 5, I find that at least one or two students cannot
find a basis for a two-dimensional eigenspace!

3
1. If [X]B = {2}, then x is formed from b, and b, using

weights 3 and 2:

X=3b; + 2D, = 3{ ﬂ”[—ﬂ:[ 71}

20f [x] = [ ;

=27 [3] [11 t
x=(1)b1+3b2=(—1)[ J+3H:[2} I
X 1

} , then x is formed from b; and b, using weights —1 and 3:

3. To find ¢, and ¢, that satisfy x = ¢1b; + ¢;b,, row reduce the augmented matrix:

1 2 -3 1 -2 =3 10 7 . . .
[b; b, x]= ~ ~ . Or, one can write a matrix equation as
-4 7 7,10 -1 =5] [0 1 5
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suggested by Exercise 7 and solve using the matrix inverse. In either case,

Nl

. . 1 -3 -7
4. Asin Exercise 3, [b, b, x]= ~
-3 5 5

1 =3 471 -3 4
5.[b, b, x]=| 5 =7 10|~[0 8 -10
3 5 -7 o 4 5

-3 7 11 1 5§ 0
0|~0 22 11|~
-4 -6 7 0 14 7

2
7. Fig. 1 suggests that w = 2b; — b, and x = 1.5b; + .5b,, in which case,[w]8= [ J and [X]B

b

3
confirm [X]B, compute 1.5b, +.5b, :1.5{0}#5[

f\\\\
\\\

Figure 1

N

o

0
0

3

<
]

1/4
—5/41, [X]B
0
-5/2
1721, [x], =
0

5|

1

MK

=
o

0

g

Figure 2

Note: Figures 1 and 2 display what Section 4.4 calls B -graph paper.

8. Fig. 2 suggests that x = 2b; — b,, y = 1.5b; + b,, and z =—b, — .5b,. If so, then

[x], - {_ﬂ [v], = Bﬂ and [2], = [‘IS]TO confirm [y],, and [2], , compute

men L meon- {3
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1 3 2 4] [O-3 2 —4
, _ -3 9 -1 5,10 0 &)-7].
9. The information 4= ~ is enough to see that columns 1, 3, and 4
2 -6 4 -3 0 0 O

-4 12 2 7 0O 0 0 o0
1 2|4
) =311-1 5

of A form a basis for Col 4: , , .

2 41 -3
-4 2 7

10.

For Nul 4, use the reduced echelon form, augmented with a zero column to insure that the equation
Ax =0 is kept in mind:

O -3 0 0 0] *@-3x =0 x| [3x, 3 3
0 0 0 0 =0 1 1
) . @ , X= i P R X, | So is
0 0 0 (O o =0 X3 0 0 0
0o 0 0 0 O X, is the free variable X4 0 0 0

a basis for Nul 4. From this information, dim Col 4 = 3 (because A4 has three pivot columns) and dim Nul
A =1 (because the equation Ax = 0 has only one free variable).

1 2 9 5 4 (D=2 9 5 4
1 -1 6 5 =3 |0 -3 0 -7
The information 4 = ~ O shows that columns 1, 2,
-2 0 -6 1 =210 0 0 (O -2
4 1 9 1 -9, [0 0 0 0 O
1| -21]|5
. 1| -1]|5
and 4 of A form a basis for Col A4: S ol 1l For Nul 4,
4 1|]1
0 3 0 0 0] () +3x =0
4 o] 0o -3 0 -7 o0 -3y —Tx=0
00 0o @D -2 of () = 2% = 0
0 0 0 0 0 O x; and x5 are free variables
(x] [ -3x | [-3] [0] (=311 0]
X, 3x;+ 7xs 3 7 317
X=|x|= X, =x;| 1|+x5]0|. BasisforNul4:| 1},| 0.
Xy 2x5 0 2 0] 2
| X5 | X5 | | 0] 1] | 0| 1]

From this, dim Col 4 = 3 and dim Nul 4 = 2.
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1 2 -5 0 1] [ 2 -5 0
. : 5 -8 4 3110 O 2 4
The information A4 = ~
3 9 9 -7 2010 0o o (D
3 10 =7 11 7 0 0 0 O
1 2 0
and 4 of 4 form a basis for Col A4: i , ; , . For Nul 4,
31110] [ 11
0 -9 0 5 0] -9 +5x=0
(4 O]No @ 2 0 3 0] (M+2y -3x5=0
o0 o0 @ 2 o (@) + 2x5 =0
0o 0 0 0 0 O x3 and x5 are free variables
[x ] [9%-5x ] [ 9] [-5] F 9|
X, —2x; + 3x; -2 3 -2
X=|x |= X =x;| 1|+x5| O BasisforNul4:| 1],
Xy —2X;5 0 -2
| Xs | X5 ] 0] 1] | 0] |

From this, dim Col 4 =3 and dim Nul 4 = 2.

1 2 -4 3 3 2 -4 3
100 -9 -7 8 0 0 -2
The information 4 = ~ @
4 8 -9 -2 7 0 0 0 0
-2 -4 5 0 -6 [0 0 0 O
1| |4 3
. 501-9 8
5 of A form a basis for Col A4: alloo || 7| For Nul 4
-2 5] -6
2 0 -5 0 0 P+ 2x, -—5x =0
(4 0 00 -2 0 0 @-2x, =0
000 o Q@ of @=0
0 0 0 0 0 O X, and x, are free variables
[x] [=2x, +5x,] 2] 5] 21T
X, X, 1 0 1
X=|x; |= 2x, =x,| O0|+x,| 2| BasisforNul4:| 0],
X, Xy 0 1 0
| X5 | 0 | 0 0 L 0] |

From this, dim Col 4 = 3 and dim Nul 4 = 2.
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13. The four vectors span the column space H of a matrix that can be reduced to echelon form:
1 3 2 4 1 3 2 -4 1 3 2 -4 -3 2 4
-3 9 -1 5 0o o0 5 -7 0o o0 5 -7 0o 0 ® -7
“lo 0o 0o s|jo 0o 0o 5/ lo 0 o0 @
-4 12 2 7 0 0 10 -9 0 0 0 5 0 0 0 0

Columns 1, 3, and 4 of the original matrix form a basis for H, so dim H = 3.

Note: Either Exercise 13 or 14 should be assigned because there are always one or two students who confuse
Col A4 with Nul 4. Or, they wrongly connect “set of linear combinations” with “parametric vector form” (of
the general solution of Ax = 0).

14. The five vectors span the column space H of a matrix that can be reduced to echelon form:
1 2 0 -1 3 1 2 0 -1 3 [ 2 o0 -1 3

-1 -3 2 4 =8/ |0 -1 2 3 -=5/|0 (=) 2 3 -5
2 -1 -6 -7 9/ |0 3 -6 -9 15/ [0 0 0 0 0
5.6 8 7 -5/ |0 -4 8 12 -200]10 0 0 0 0

Columns 1 and 2 of the original matrix form a basis for H, so dim H =2.

15. Col4= R’ because 4 has a pivot in each row and so the columns of 4 span R’. Nul 4 cannot equal

R’ , because Nul 4 is a subspace of R’°. 1t is true, however, that Nul 4 is two-dimensional. Reason: the
equation Ax = 0 has two free variables, because 4 has five columns and only three of them are pivot
columns.

16. Col A4 cannot be R’ because the columns of 4 have four entries. (In fact, Col 4 is a 3-dimensional

subspace of R**, because the 3 pivot columns of 4 form a basis for Col 4.) Since 4 has 7 columns and
3 pivot columns, the equation Ax = 0 has 4 free variables. So, dim Nul 4 = 4.

17. a. True. This is the definition of a B-coordinate vector.

b. False. Dimension is defined only for a subspace. A line must be through the origin in R" to be a
subspace of R".

¢. True. The sentence before Example 1 concludes that the number of pivot columns of 4 is the rank of
A, which is the dimension of Col 4 by definition.

d. True. This is equivalent to the Rank Theorem because rank 4 is the dimension of Col 4.
e. True, by the Basis Theorem. In this case, the spanning set is automatically a linearly independent set.

18. a. True. This fact is justified in the second paragraph of this section.
b. True. See the second paragraph after Fig. 1.

¢. False. The dimension of Nul 4 is the number of free variables in the equation Ax = 0.
See Example 2.

d. True, by the definition of rank.
e. True, by the Basis Theorem. In this case, the linearly independent set is automatically a spanning set.

19. The fact that the solution space of Ax = 0 has a basis of three vectors means that dim Nul 4 = 3. Since a
5x7 matrix A has 7 columns, the Rank Theorem shows that rank 4 =7 — dim Nul 4 = 4.
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Note: One can solve Exercises 19-22 without explicit reference to the Rank Theorem. For instance, in
Exercise 19, if the null space of a matrix 4 is three-dimensional, then the equation Ax = 0 has three free
variables, and three of the columns of 4 are nonpivot columns. Since a 5x7 matrix has seven columns, 4 must
have four pivot columns (which form a basis of Col 4). So rank 4 = dim Col 4 = 4.

20.

21.

22.

23.

24.

25

26.

27.

A 4x5 matrix 4 has 5 columns. By the Rank Theorem, rank 4 =5 — dim Nul 4. Since the null space is
three-dimensional, rank 4 = 2.

A 7x6 matrix has 6 columns. By the Rank Theorem, dim Nul 4 = 6 — rank 4. Since the rank is four, dim
Nul 4 = 2. That is, the dimension of the solution space of Ax = 0 is two.

Suppose that the subspace H = Span{vy, ..., vs} is four-dimensional. If {vy, ..., vs} were linearly
independent, it would be a basis for A. This is impossible, by the statement just before the definition of
dimension in Section 2.9, which essentially says that every basis of a p-dimensional subspace consists of
p vectors. Thus, {vy, ..., vs} must be linearly dependent.

A 3x4 matrix 4 with a two-dimensional column space has two pivot columns. The remaining two
columns will correspond to free variables in the equation 4x = 0. So the desired construction is possible.

W O * k%
There are six possible locations for the two pivot columns, one of whichis |0 B * *| A simple
0 0 0 O

construction is to take two vectors in R’ that are obviously not linearly dependent, and put two copies of
these two vectors in any order. The resulting matrix will obviously have a two-dimensional column
space. There is no need to worry about whether Nul 4 has the correct dimension, since this is guaranteed
by the Rank Theorem: dim Nul 4 = 4 — rank 4.

A rank 1 matrix has a one-dimensional column space. Every column is a multiple of some fixed vector.

To construct a 4x3 matrix, choose any nonzero vector in R, and use it for one column. Choose any
multiples of the vector for the other two columns.

. The p columns of 4 span Col 4 by definition. If dim Col 4 = p, then the spanning set of p columns is
automatically a basis for Col 4, by the Basis Theorem. In particular, the columns are linearly
independent.

If columns a,, as, as, and as of 4 are linearly independent and if dim Col 4 = 4, then {a,, a3, as, a5} is a
linearly independent set in a 4-dimensional column space. By the Basis Theorem, this set of four vectors
is a basis for the column space.

a. Start withB=[b, --- b,Jand4=[a; --- a,], where g > p. Forj=1, ..., g, the vector a; is
in W. Since the columns of B span ¥, the vector a; is in the column space of B. That is, a; = Bc; for

some vector ¢; of weights. Note that ¢; is in R” because B has p columns.

b. Let C=[¢; --- ¢,]. Then Cis a pxg matrix because each of the ¢ columns is in R”.
By hypothesis, g is larger than p, so C has more columns than rows. By a theorem, the columns of C
are linearly dependent and there exists a nonzero vector u in R’ such that Cu = 0.

¢. From part (a) and the definition of matrix multiplication 4 = [a; --- a,]=[Be; --- Bey]=BC.

From part (b), Au = (BC)u = B(Cu) = B0 = 0. Since u is nonzero, the columns of 4 are linearly
dependent.
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28. If A contained more vectors than 13, then A would be linearly dependent, by Exercise 27, because B
spans . Repeat the argument with B and A interchanged to conclude that B cannot contain more
vectors than A .

29. [M] Apply the matrix command ref or rref to the matrix [v; v, Xx]:
11 14 19 0 -1.667

5 -8 -13| |0 O 2667

10 13 18 0 0 0
7 10 15 0 0 0

The equation c;v; + c,v, = X is consistent, so x is in the subspace H. The decimal approximations suggest
¢1 =-5/3 and ¢, = 8/3, and it can be checked that these values are precise. Thus, the BB -coordinate of x is
(=573, 8/3).

30. [M] Apply the matrix command ref or rref to the matrix [v; v, v; X]:
-6 8 -9 41 [ o o0 3

4 -3 5 7110 Do 5

9 7 -8 -8/ |0 0o @ 2

4 -3 3 3 0 0 0 O

The first three columns of [v; v, v; X] are pivot columns, so vy, v, and v; are linearly independent.
Thus vy, v, and v; form a basis B for the subspace H which they span. View [v; v, v; x]asan

augmented matrix for ¢;v; + ¢,v, + ¢3v; = X. The reduced echelon form shows that x is in A and

3

[X]BZ 5.
2

Notes: The Study Guide for Section 2.9 contains a complete list of the statements in the Invertible Matrix
Theorem that have been given so far. The format is the same as that used in Section 2.3, with three columns:
statements that are logically equivalent for any m xn matrix and are related to existence concepts, those that
are equivalent only for any » xn matrix, and those that are equivalent for any n xp matrix and are related to
uniqueness concepts. Four statements are included that are not in the text’s official list of statements, to give
more symmetry to the three columns.

The Study Guide section also contains directions for making a review sheet for “dimension” and “rank.”

Chapter 2 SUPPLEMENTARY EXERCISES

1. a. True. If 4 and B are m xn matrices, then B has as many rows as 4 has columns, so AB" is defined.
Also, A’B is defined because A” has m columns and B has m rows.

b. False. B must have 2 columns. 4 has as many columns as B has rows.

¢. True. The ith row of A4 has the form (0, ..., d;, ..., 0). So the ith row of ABis (0, ..., d,, ..., 0)B, which
is d; times the ith row of B.

d. False. Take the zero matrix for B. Or, construct a matrix B such that the equation Bx = 0 has
nontrivial solutions, and construct C and D so that C # D and the columns of C — D satisfy the
equation Bx =0. Then B(C — D) =0 and BC = BD.
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1 0 0 0
e. False. Counterexample: 4 = and C= .
0 0 0 1

f. False. (4 + B)(4 — B) =A% — AB + BA — B*. This equals 4> — B’ if and only if 4 commutes with B.

g. True. An n*n replacement matrix has n + 1 nonzero entries. The nxn scale and interchange matrices
have n nonzero entries.

h. True. The transpose of an elementary matrix is an elementary matrix of the same type.
i. True. An nxn elementary matrix is obtained by a row operation on /,.

False. Elementary matrices are invertible, so a product of such matrices is invertible. But not every
square matrix is invertible.

Qo o

. True. If 4 is 3%3 with three pivot positions, then 4 is row equivalent to /5.
False. A must be square in order to conclude from the equation 4B = I that 4 is invertible.
.False. 4B is invertible, but (4B) ' = B'4"", and this product is not always equal to 4 'B .
. True. Given AB = BA, left-multiply by 4" to get B =A 'BA, and then right-multiply by 4" to obtain
BA'=4"B.
False. The correct equation is (r4) ' =7"'4"", because (r4)(r'4™") = (A4 =11=1

1
p. True. If the equation Ax = | 0 | has a unique solution, then there are no free variables in this equation,
0

which means that 4 must have three pivot positions (since 4 is 3x3). By the Invertible Matrix
Theorem, A is invertible.

s c=(c‘)1=i{ 7 —5}_{—7/2 5/2}

= 58 = r

e

-2|-6 4 3 2
0 0 O 0 0 0jj0 0 O 0 0 O
3. A=|1 0 0|, 4*=1 0 Of|f1 0 0|=|0 0 0
0 1 0 0 1 0jf0 1 0 1 0 0

[e)

1 0 0

0 0 oJ[o o o] [0 o

A=4-42=[1 0 0[/0 0 0|=/0 0

1 0 0| |0 0O

Next, [—A)I+A+A) =T+ A+ A — AT+ A+ A2) =1+ A+ A> - A4- A - =1-4.
Since A°=0, (I-A)I+A+A4>)=1.

4. From Exercise 3, the inverse of ] — A is probably / + A + 4>+ - - - + A" To verify this, compute
U-ADI+A++A")=T+ A+ -+ A" — AU+ A+ + A" =1-44"" =1- 4"
If A" =0, then the matrix B=1+ A4 + A>+ - -- + A" satisfies (/ — 4)B = I. Since ] — 4 and B are square,
they are invertible by the Invertible Matrix Theorem, and B is the inverse of / — A.
5. 4> =24 -1 Multiply by A: 4> = 24> — A. Substitute A* =24 —I: A =24 —1) —A=34-2I.
Multiply by 4 again: A* = 4(34 — 2I) = 34% — 24. Substitute the identity 4> = 24 — I again.
Finally, 4* =324 — 1) - 24 =44 - 31I.
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1 0 0 1 . . 2 2 0 1
6. Let A= 0 ) and B= L ol By direct computation, A =1, B =1, and AB = L 0 =—BA.

7. (Partial answer in Study Guide) Since A™'B is the solution of AX = B, row reduction of [4 B]to [I X]
will produce X = A™'B. See Exercise 12 in Section 2.2.

1 3 8|3 5 1 3 8 -3 5 1 3 8 -3 5
[4 B]=|2 4 11 1 5|~|0 =2 -5 7 =5|~|0 1 3 -6 1

1 2 5| 3 4 0 -1 3 6 -1 0 -2 -5 7 =5
1 3 8 -3 5 1 3 0 37 29 1 0 0 10 -1 10 -1
~0 1 3 -6 I[~]0 1. 0 9 10|~[0 1 0 9 10|. Thus,4'B=| 9 10].
0 01 -5 -3 0 01 -5 3 0 01 -5 3 -5 3

1 2 1 3
8. By definition of matrix multiplication, the matrix 4 satisfies AL’ 7} = [1 J.
. . . . 1 2 .
Right-multiply both sides by the inverse of 3 7| The left side becomes A. Thus,
1 3] 7 =21 [-2 1
A= = .
1 1{-3 1] 4 -1

5 4]
-2 3]

B {1 —3} . [s 4}[1 —3} [—3 13}
B = andA=(4AB)B™ = =
-2 7 -2 3|2 7 -8 27

Note: Variants of this question make simple exam questions.

7 3
9. Given AB= { and B = L J , notice that ABB™' = 4. Since det B=7 — 6 =1,

10. Since 4 is invertible, so is A”, by the Invertible Matrix Theorem. Then 4”4 is the product of invertible
matrices and so is invertible. Thus, the formula (4”4) '4” makes sense. By Theorem 6 in Section 2.2,

(ATA)*I'AT:A*I(AT)*IAT:A*II:A*l

An alternative calculation: (474)'4"-4 = (474) ' (4"4) = I. Since 4 is invertible, this equation shows that
its inverse is (474) '4".
%
11. a. Fori=1,...,np(x)=co+cx;+---+ cn_lxi”_l =row;(V)-| : |=row;(V)c.
Co1

By a property of matrix multiplication, shown after Example 6 in Section 2.1, and the fact that ¢ was
chosen to satisfy Ve=y, row;(V)e=row;(Ve)= row,;(y) =y,
Thus, p(x;) = y;. To summarize, the entries in V¢ are the values of the polynomial p(x) at xi, ..., x,.

b. Suppose xi, ..., x, are distinct, and suppose Ve = 0 for some vector ¢. Then the entries in ¢ are the
coefficients of a polynomial whose value is zero at the distinct points x, ..., x,. However, a nonzero
polynomial of degree n — 1 cannot have n zeros, so the polynomial must be identically zero. That is,
the entries in ¢ must all be zero. This shows that the columns of " are linearly independent.
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12.

13.

14.

15.

16.

17.

Matrix Algebra

¢. (Solution in Study Guide) When x, ..
(b). By the Invertible Matrix Theorem, ¥ is invertible and its columns span R". So, for every

., X, are distinct, the columns of V" are linearly independent, by

y =01, ..., y,) in R" there is a vector ¢ such that Ve =y. Let p be the polynomial whose coefficients
are listed in ¢. Then, by (a), p is an interpolating polynomial for (x1, y1), ..., (Xu, Y0)-

If A= LU, then col,(4) = L-col;(U). Since col;(U) has a zero in every entry except possibly the first,

L-col;(U) is a linear combination of the columns of L in which all weights except possibly the first are

zero. So col;(4) is a multiple of col;(L).

Similarly, coly(4) = L-coly(U), which is a linear combination of the columns of L using the first two

entries in coly(U) as weights, because the other entries in col,(U) are zero. Thus col,(4) is a linear
combination of the first two columns of L.

a. P’ = (uu”)(uu’) = u(u’u)u’ = u(l)u” = P, because u satisfies u’u = 1.
b. P'=@u’) =u"u"=uu’=pP
¢. O*=(-2P)I-2P)=1-12P)—-2PI+2P(2P)

=] — 4P + 4P* = I, because of part (a).

0
Given u=| 0 |, define P and Q as in Exercise 13 by
1
0 0 0 0] 1 00 0 0 0] [1 0 o0
P=uu’=0|0 0 1]=[0 0 0|, O9=7-2P=|0 1 0|-2(0 0 0|=[0 1 O
1 0 0 1] 0 0 1 0 0 1| |0 0 -1
1 0 0 off1] [o 1 0 o0]1 1
If x=|5|,thenPx={0 0 0 {5 =|0| and Ox= 1 0 5]{ 51.
3 0 0 1]3] |3 0 0 -1|3| |-3

Left-multiplication by an elementary matrix produces an elementary row operation:
B~EB~E,EB~E;E,E.B=C,so Bisrow equivalent to C. Since row operations are reversible, C is

row equivalent to B. (Alternatively, show C being changed into B by row operations using the inverse of
the E,‘ )

Since 4 is not invertible, there is a nonzero vector v in R" such that Av = 0. Place n copies of v into an
n*n matrix B. Then AB=A[v --- v]=[4v --- Av]=0.

Let A be a 6x4 matrix and B a 4x6 matrix. Since B has more columns than rows, its six columns are
linearly dependent and there is a nonzero x such that Bx = 0. Thus ABx = 40 = 0. This shows that the
matrix 4B is not invertible, by the IMT. (Basically the same argument was used to solve Exercise 22 in
Section 2.1.)

Note: (In the Study Guide) It is possible that BA is invertible. For example, let C be an invertible 4x4 matrix

C
and construct 4 = [ 0} and B=[C™" 0]. Then BA = L, which is invertible.

Copyright © 2016 Pearson Education, Inc.



18.

19.

20.

Chapter 2+ Supplementary Exercises 2-75

By hypothesis, 4 is 5x3, Cis 3x5, and AC = 5. Suppose x satisfies 4x = b. Then C4Ax = Cb. Since
CA = I, x must be Cb. This shows that Cb is the only solution of Ax = b.

(4 2 3 31 .26 .30
[M] Let A=|3 .6 .3|.Then 4>=|.39 .48 .39|.Instead of computing 4> next, speed up the
|3 2 4 30 26 .31
calculations by computing
(2875 2834 2874 2857 2857 .2857
A' = AA4% =| 4251 4332 4251, A% =4"A%=|.4285 4286 .4285
|.2874 2834 2875 2857 2857 .2857
2857 2857 .2857
To four decimal places, as k increases, AF | 4286 4286 4286 |, or, in rational format,
2857 2857 .2857
(277 2/7 2/7
AF 1317 3/7 3/7).
12/7 2/7 217
[0 2 3 29 .18 .18 2119 .1998  .1998
If B=|.1 .6 3|, then B>=|.33 44 33|, B*'=|.3663 .3764 .3663|
19 2 4 38 .38 .49 4218 4218 4339
2024 2022 2022 2022 2022 2022
B®=|.3707 3709 .3707|. To four decimal places, as k increases, B¥ —|.3708 3708 3708 |,
4269 4269 4271 4270 4270 4270
18/89 18/89 18/89

or, in rational format, B —[33/89 33/89 33/89|.
38/89 38/89 38/89

[M] The 4x4 matrix A4 is the 4x4 matrix of ones, minus the 4x4 identity matrix. The MATLAB

command is A4 = ones(4) - eye(4).Fortheinverse, use inv (A4).
[0 1 1 1 -2/3  1/3  1/3  1/3
1 0 1 1 . 1/3 -2/3 1/3 1/3
4, = A=
1 1 0 1 1/3 1/3 -2/3 1/3
1111 0 1/3 1/3 1/3 -2/3
0o 1 1 1 1] [=3/4 174 1/4 1/4 1/4]
1 0 1 1 1 1/4 -3/4 1/4 1/4 1/4
A={1 1 0 1 1}, AS_1= 1/4 1/4 -3/4 1/4 1/4
1 1 1 0 1 1/4 1/4 1/4 -3/4 1/4
11 1 1 1 0] | 1/4 1/4 1/4 1/4 -3/4|
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0 1 1 1 1 1 —4/5 1/5 /5 1/5 1/5 1/5]

1 0 1 1 1 1 1/5 —-4/5 1/5 1/5 15 1/5

S R U TR U Y 1/5 1/5 -4/5 1/5 1/5 1/5
/1t 110 1 1 °° /5 1/5 1/5 -4/5 1/5 1/5
1 11 10 1 /5 15 15 1/5 —-4/5 1/5

1 11110 /5 15 U5 15 1/5 -4/5]

The construction of 4¢ and the appearance of its inverse suggest that the inverse is related to /. In fact,

At + I is 1/5 times the 6x6 matrix of ones. Let J denotes the 7 xn matrix of ones. The conjecture is:
1

n—

Proof: (Not required) Observe that J* =nJ and 4,J = (J—1)J =J > —J = (n— 1) J. Now compute

A((n=1Y'"J-D=m-1)"4,J —4,=J—(J-I)=1 Since 4, is square, 4, is invertible and its inverse
is(n—1)y"'J-1.

A,=J—1, and 4,'=

J-1,
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Determinants

3.1 SOLUTIONS

Notes: Some exercises in this section provide practice in computing determinants, while others allow the
student to discover the properties of determinants which will be studied in the next section. Determinants
are developed through the cofactor expansion, which is given in Theorem 1. Exercises 33-36 in this
section provide the first step in the inductive proof of Theorem 3 in the next section.

3 0 4
) 3 2 2 2 2 3
1. Expanding along the firstrow: |2 3 2|=3 - +4 =3(-13)+4(10)=1
5 -1 0 -1 0 5
0 5 -1
Expanding along the second column:
304 2 2 3 4 3 4
2 3 2[=(-D"*.0 +(=1)""7.3 +(=1y’*".5 =3(-3)-5(-2) =1
()|0_1|(> o PO =303 -5(-2)
0 5 -1
0 4 1
) -3 0 50 5 3
2. Expanding along the firstrow: |5 -3 0|{=0 3 1—42 1+1 5 3 =—4(5)+1(15+6)=1
2 3 1
Expanding along the second column:
0 4 50 0 1 0 1
5 =3 0|=(-D""-4 +(=1)**"? (=3 +(=1)**-3 =—4(5)-3(=2)-3(-5) =1
231()21()()21()50()()()
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Determinants

3. Expanding along the first row:

2
3
1

2
3
1

-2
1
3

-2
1
3

3
2
-1

3
2
-1

_21 2 (2)3
I 1

Expanding along the second column:

_(_ l+2__ 3 2
= (-1) (2>|1 N

2
-1

4. Expanding along the first row:

1 2 4

1 1 31

3 1 1|=1 -2 +4
4 2 2 2

2 4 2

Expanding along the second column:
1 2 4

3
— _1 1+2'2
(=1) |2

5. Expanding along the first row:
2 3 3
4 0 3|=2

‘03
6 1 5

1 5

6. Expanding along the first row:
5 =2 2
3 3 0
0 3 =3|=5 -(=2)
-4 7 2
2 4 7

7. Expanding along the first row:

7 3 9 3

O N b

30

5 2| |6 2
5 2|=4 -3 +0
7 3

8. Expanding along the first row:
4 1 2

4 0 3|=4

|03| |43
-1
3 =2 5

-2 5 35

3
2 4

1 1
+(=1)** 1
5 (=1 |2

6
9

+3

1 3

2
+(=1)**? .1| |

2

-3 0
+2
7 2

4
3 2

-1

4 1
+(=1)**? -4|

5

31|

2| 41)=3(0)=4
4| = 1) -3(0)=

3 2
+(=1y°". 3|

3

1 ‘ =1(-2)-2(4)+4(10)=30

—34 3+—3 4 0—2—3—32—34——24
e i B SR ORE TR

0 | =4(6) - 1(11)+2(-8) =3

: | =2(-7)+2(-5)+(3)(8) =0

; | = 2(=5)+1(=5)=3(-5) =0

2(4) +1(=6)—4(~11) =30

3| Z 5(9)+2(6)+ 2(=6) = 45

9. First expand along the third row, then expand along the first row of the remaining matrix:
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4 0 0 5
1 7 2 -5 003 7 2
== 307 2 —5|=3.(=1)"* 5 =15(1)=15
300 0 (-1 (-1 31 (1)
31 7
8 3 1 7

10. First expand along the second row, then expand along either the third row or the second column of

11.

12.

13.

the remaining matrix.

1 2 5 2
0 0 3 0 b2
=(-)**".312 -4 5

2 4 -3 5
2 0 5

2 0 3 5

-2

5 _4‘]=(—3)(2(—2)+5(0))=12
1 2 2
=(-1"7-3]12 -4 5
2 0 5

or
4 -3

_ (_3)£(_1)3+1 2 _i §‘+(_1)3+3 '5‘ 1
1

0

2

2 0 3

2
0 3 0
5
5

FEPR ) j = (34 =12

1
2 5

=(—3)((—1)”2-(—2)2 :
2 5

There are many ways to do this determinant efficiently. One strategy is to always expand along the
first column of each matrix:

305 -6 4
2 3 -3
0 2 3 -3 "3 0 1 5 3(1)”1(2)1 > 3(-2)(3) =18
0 0 0 3
00 3
0 0 0

There are many ways to do this determinant efficiently. One strategy is to always expand along the
first row of each matrix:

30 0 O
7 2 0 0 =200 300
=-D".3] 6 3 0|=3-(-D'""-(-2) =3(=2)(-9) = 54
2 6 3 0 4 -3
-8 4 -3
3 -8 4 -3
First expand along either the second row or the second column. Using the second row,
4 0 -7 3 -5
4 0 3 -5
00 2 0 O
a3 A7 3 4 -8
7 3 -6 4 -8|=(-1D)"-2
50 2 -3
50 5 2 3
0 0 -1 2
00 9 -1 2
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Now expand along the second column to find:

4 3 -5
=-2| (-1)*"-3|5 2 -3
0 -1 2

2

Now expand along either the first column or third row. The first column is used below.

4 0 3

7 3 4
_12+3_2

D 50 2

0 0 -1

4 3

2| (-D)**.3|5 2

0 -1

_5 5
-3 =—6((—1)‘+1-4‘ |

2

res| 2 = corm-say =6
2 -1 2

14. First expand along either the fourth row or the fifth column. Using the fifth column,

4
1
2

Now expand along either the first column or second row. The first column is used below.

6 3 2 4 0
6 3 2 4
9 0 -4 1 0
s |9 0 -4 1
8 -5 6 7 1|=(-D)"1
2 0 0 O
2 0 0 0 O
4 2 3 2
4 2 3 2 0
Now expand along the third row to find:
6 3 2 4
9 0 4 1 302
—1)*.1 - =1/ (-1)**'-2]0 -4
(=1 5 0 0 0 (=D
2 3
4 2 2
3 2 4
3+l 1+1 -4 1
D" -2(0 -4 1||=2]/(-D"-3
3 2
2 3 2
1 0 4
15. |12 3 2
0 5 =2

= 6+0+40-0-10+0=24

0 3 1

2 4
+(=1)*" -2‘ 4 U =(2)(3(-11)+2(18)) =6

= (DB)(2) +(0)(2)(0) + (H(2)(5) = (M)B)E) - )21 = (-2)(2)(0)

16. |4 =5 0= (0)(=5)(1) + BG)O0)3) + (HH)#H) — BG)=5)(1) = (4)(0)(0) - (H(#B)

3 4 1

=0+0+16+15-0-12=19
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18.

19.

20.

21.

22

23.

24.

2S.

3.1 <+ Solutions 3-5

2 3 3

32 212D+ E3)@M +G)G)G) - (HR2)3) - (3)2)2) - DHEBX3)
1 3 -1

=4-6+27-6-12-9=—10
1 3 4
2 3 1= (DE)2)+B)D3) +#2)3) - (3B — G - (2)(2)(3)
33 2

=6+9+24-36-3-12=-12

a b
=ad —bc,

d
=cb—-da=—(ad —bc)
c d a b

The row operation swaps rows 1 and 2 of the matrix, and the sign of the determinant is reversed.

=ad —bc,

i =(a+kc)d —c(b+kd)=ad + ked —bc — ked = ad — be
c c

a b a+ ke b+kd‘

The row operation replaces row 1 with k times row 2 plus row 1, and the determinant is unchanged.

a b

=ad —bc,
c d

b
e kd ‘ = a(kd)—(kc)b = kad — kbc = k(ad — bc)

The row operation scales row 2 by £, and the determinant is multiplied by £.

3 2

=12-10=2,
5 4

=3(4+2k)—(5+3k)2=12+6k—-10-6k =2

S+3k  4+2k ‘
The row operation replaces row 2 with & times row 1 plus row 2, and the determinant is unchanged.
1

3 2
3 2 1|=a()-b(14)+c(7), |a b c|=3(6b—5c)-2(6a—-4c)+1(5a—4b)=—Ta+14b-Tc
4 5 6 4 5 6

a b c

The row operation swaps rows 1 and 2 of the matrix, and the sign of the determinant is reversed.
1 0 1 k0 &k
-3 4 A=1-)+1()=-7, |-3 4 —A4|=k(-8)+k()=-Tk

2 3 1 2 3 1

The row operation multiplies the first row by &, and the determinant is multiplied by k.

Since the matrix is triangular, by Theorem 2 the determinant is the product of the diagonal entries:
1 0 0
0 1 Oo=MMDHMD=1
0 £ 1
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26.

27.

28.

29.

30.

31.

32.

CHAPTER 3 ¢ Determinants

A cofactor expansion along row 1 gives

0 0 1
0 1

0 1 0}=1 =-1
1 0

1 0 0

Since the matrix is triangular, by Theorem 2 the determinant is the product of the diagonal entries:
1 0 0
0 1 o=bMD=1
k 0 1

Since the matrix is triangular, by Theorem 2 the determinant is the product of the diagonal entries:

k 0 0
0 1 0l=(kM)(1)=k
0 0 1

Since the matrix is triangular, by Theorem 2 the determinant is the product of the diagonal entries:
1 0 0

0 £ 0|=(D(K)D)=k

0 0 1

A cofactor expansion along row 1 gives

0 1 0
1 0

1 0 0|=-1 =-1
0 1

0 0 1

A 3 x 3 elementary row replacement matrix looks like one of the six matrices
1 0 0|l O O} O O|1L O O||L O k||l k£ O
k1 0,0 1 0,0 1 0,0 I k|,JjO 1 O[O0 1 O
0 0 1flk O 1|0 £ 1{{0O O 1|{O0O O 1[{0 O 1

In each of these cases, the matrix is triangular and its determinant is the product of its diagonal
entries, which is 1. Thus the determinant of a 3x3 elementary row replacement matrix is 1.

A 3 x 3 elementary scaling matrix with £ on the diagonal looks like one of the three matrices
k0 0|1 0 O}j1 0 O
0 1 0OLO £ OO 1 O
0 0 1{{0 O 1}{{0 O £k

In each of these cases, the matrix is triangular and its determinant is the product of its diagonal

entries, which is k. Thus the determinant of a 3 X 3 elementary scaling matrix with & on the diagonal
is k.
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34.
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36.

37.

38.

39.

40.

41.

3.1 <+ Solutions

1 % a b at+kc b+kd
E= , A= , EA=
0 1 c d c d

det £=1, det A= ad— bc,
det EA = (a + kc)d — c(b + kd) = ad + ked — be — ked = 1(ad — be) = (det E)(det A)

1 0 a b a b
E: ’A: ’EA:
[k 1} L d} {ka+c kb+d}

det £=1, det A= ad— bc,
det EA = a(kb + d) — (ka + ¢)b = kab + ad — kab — bc = 1(ad — bc) = (det E)(det A)

0 1 a b c d
E: ’A: ,EA=
oA dhel

det E=-1, det A =ad - bc,
det EA = cb — da = —1(ad — bc) = (det E)(det A)

1 0 a b a b
E= A= | EA=
[O k} L d} {kc kd}

det E=k,det A=ad - bc,
det EA = a(kd) — (kc)b = k(ad — bc) = (det E)(det A)

3 1 15 5
A [ }, SA:[ }, det A =2, det 54 = 50 # 5det 4

4 2 20 10

a b ka kb
A= , kA= , det A =ad - bc,
c d ke kd

det kA = (ka)(kd) — (kb)(kc) = k* (ad — bc) = k*det A

a. True. See the paragraph preceding the definition of the determinant.
b. False. See the definition of cofactor, which precedes Theorem 1.

a. True. See Theorem 1.
b. False. See Theorem 2.

3

The area of the parallelogram determined by u = [O

the parallelogram has length 3 and the height of the parallelogram is 2. By the same reasoning, the

3

area of the parallelogram determined by u = [O

}, X=|:;:|, u +x, and 0 is also 6.
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— o

L

\N

3 1 3
Also note that det[u v]= de{0 2} =6, and detfu x|= det{o ﬂ = 6. The determinant of the

matrix whose columns are those vectors which define the sides of the parallelogram adjacent to 0 is
equal to the area of the parallelogram

42. The area of the parallelogram determined by u = {Z} , V= [8} ,u+v,and 0 is ¢b, since the base of
the parallelogram has length ¢ and the height of the parallelogram is b.
X2
U
b &
ral X,

Also note that det[u v]= de{z (j =—cb,and det[v u]= det[g ;j = cb. The determinant of

the matrix whose columns are those vectors which define the sides of the parallelogram adjacent to 0

either is equal to the area of the parallelogram or is equal to the negative of the area of the
parallelogram.

1

43. [M] Answers will vary. The conclusion should be that it appears det(4™") = Totd
e

44. [M] Answers will vary. The conclusion should be that it appears det (48) = (det 4)(det B).

45. [M] Answers will vary. The conclusion should be that det(A4+ B) #det A+det B, most of the time.

46. [M] Answers will vary. For 4 x 4 matrices, the conclusions should be that det A" = det 4,
det(-4) = det 4, det(24) = 16det 4, and det(104) =10*det 4. For 5 x 5 matrices, the conclusions
should be that det 4" =det 4, det(-4) =—det 4, det(24) = 32 det 4, and det(104) =10°det A. For 6
X 6 matrices, the conclusions should be that det A" =det 4, det(—A4) = det 4, det(24) = 64 det 4, and
det(104) =10°det 4.
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3.2 SOLUTIONS

Notes: This section presents the main properties of the determinant, including the effects of row
operations on the determinant of a matrix. These properties are first studied by examples in Exercises 1—
20. The properties are treated in a more theoretical manner in later exercises. An efficient method for
computing the determinant using row reduction and selective cofactor expansion is presented in this
section and used in Exercises 11-14. Theorems 4 and 6 are used extensively in Chapter 5. The linearity
property of the determinant studied in the text is optional, but is used in more advanced courses.

1. Rows 1 and 2 are interchanged, so the determinant changes sign (Theorem 3b.).

2. The row replacement operation does not change the determinant (Theorem 3a.).
3. The constant 3 may be factored out of row 1 (Theorem 3c.).

4. The row replacement operation does not change the determinant (Theorem 3a.).

1 5 4| |1 5 -4 |1 5 -4
5 |-1 —4 =0 1 1/=/0 1 1]|=-3
2 8 7|0 2 -1l |0 0o -3
330 (11 -1 o1 -1 11 -1
6. 13 4 -4|=3]3 4 -4|=30 1 -1|=3/0 1 -1|=3(-8)=-24
3 -5/ [2 =3 =5/ |0 -5 3] |0 0 -8
1 30 2/t 30 2/]1 3 0 2|13 0o 2
S|z s 7 o4f_jo 17 o8 Joo1 7 g _fo1 7 8|
35 2 1|0 -4 2 =5/ o 0 30 27| |0 0 30 27
1 -1 2 =3/ |0 4 2 =5/ {0 0 30 27/ /0 0 0 0
3 02 4| |1 3 2 4| |1 3 2 -4 1 3 2 -4
N 2 5| _|o 2 -s{_fo 12 -5/ jo1 2 -5
7 6 =3 o 1 2 s/ oo o0 10 |00 1 -I5
3 -10 =7 2/ |0 -1 -1 =10/ [0 0 1 -15| [0 0 0O 10
1 -1 =3 ol [t -1 =3 ol |t -1 =3 o |1 -1 =3 0
o |0 1 5 4o 1 5 4 o s 4/ [0 1 s 4:7(_4):_28
-1 0 5 3 |0 -1 310 o0 71710 0 7 12
3 -3 =2 300 o 7 310 o 7 3]0 0o o0 -4
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10.

11.

12.

13.

-1 0 -2 1 3 -1 0 =2 1 3 -1 0 =2
o 2 4 -2 -6/ 1|0 2 4 2 -6/ (0 2 4 -2 -6
-2 -6 2 3 10/=(0 0 O 3 6|=/0 0 O 3 6
1 -6 2 3] [0 2 =5 -1 |10 0 -1 4 5
o 2 -4 5 9 10 2 4 99 10 0 0 7 15
1 3 -1 0 =2 1 3 -1 0 =2 1 3 -1 0 =2
0 2 4 -2 -6 0 2 4 -2 -6 0 2 4 2 -6
0 0 0 2(=-310 0 -1 4 5/=-3]0 0 -1 4 5/=(3)(2)=6
0 0 -1 5 0 0 0 1 2 0 0 0 1
0o 0o o 7 15 0o 0 o 7 15 0 0 0 O
First use a row replacement to create zeros in the second column, and then expand down the second

3 4 3 -1 3 4 -3 -1 1 3
30 1 -3 30 1 -3
column: = =—4|-6 -4 3
-6 0 4 3/ |-6 0 -4 3
0 2 1

6 8 4 -1 [0 0 2 1

Now use a row replacement to create zeros in the first column, and then expand down the first

3 1 -3 31 -3 5 3
column: —4|-6 -4 3 |(=-4|0 -2 3|= (—4)(3)‘ 5 1‘ =(—4)(3)(4)=-48
0 2 1 0o 2 1

First use a row replacement to create zeros in the fourth column, and then expand down the fourth
-1 2 3 0] |[-1 2 3 0

-1 2 3
34 30 34 30
column: = =3 3 4 3
4 6 6 30 =2 0
3 0 =2
4 2 4 3 4 2 4 3
Now use a row replacement to create zeros in the second column, and then expand down the second
-1 2 3 -1 2 3 s 3
column: 3| 3 4 3|=3] 5 0 -3|= 3(—2)| N | =3(-2)(-1)=6
3 0 =2 3 0 =2

First use a row replacement to create zeros in the fourth column, and then expand down the fourth

2 5 4 1 2 5 4 1

0 -3 =2
4 7 6 2 0 -3 -2 0

column: = =-11 6 -2 -4
6 2 -4 0 6 2 -4 0

-6 7 7

-6 7 7 0 |-6 7 7 0

Now use a row replacement to create zeros in the first column, and then expand down the first
0 -3 -2 0 -3 =2
column: -1 6 -2 —4|=-16 -2 -4|= (—1)(—6)‘ _;’ _i‘ = (=1)(-6)(1)=6
-6 7 7 0o 5 3
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14. First use a row replacement to create zeros in the fourth column, and then expand down the fourth

1 5 4 1 1 5 4 1
0 -2 -4
0 2 -4 0 0 -2 -4 0
column: = =-12 0 O
35 4 1 2 0 0 0
-6 5 5
-6 5 5 0/ |-6 5 5 0
0 2 4 5 4
Now expand along the secondrow: -1 2 0 0 =—1(—2)‘5 5‘z—l(—2)(10)=20
-6 5 5
a b ¢ a b ¢
15. |d e [f|=3]d e [f|=3T7)=21
3¢ 3h 3i g h i
a b ¢ a b c
16. |5d 5e 5f|=5|d e [f|=57)=35
g h i g h i
a+d b+e c+f| |a b ¢
17. | d e fol=|ld e [f|=7
g h i g h i
d e f a b ¢
18. |a b c|=—|d e [f|=-7
g h i g h i
a b c a b ¢ a b c
19. |2d+a 2e+b 2f+c|=(2d 2e 2f|=2|d e f|=2(7)=14
g h i g h i g h i
a b c a b ¢
20. |[d+3g e+3h f+3i|=|d e [f|=7
g h i g h i
2 6 0
21. Since |1 3 2|=2(-12)—6(—4) =0, the matrix is not invertible.
3 9 2
5 1 -1
22. Since |1 -3 -2|=5(1)—-(1)(8) =-3#0, the matrix is invertible.
0o 5 3
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23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

2 0 0 6
) 1 -7 -5 0 oL .
Since 3 8 6 0 =2(4)(-2)-6(1)(-2) = -4 # 0, the matrix is invertible.
0 5 4
4 -7 -3 (4 -7 3
Since |6 0 -5[=|6 0 -5|=-(-7)(0)=0, the columns of the matrix form a linearly

2 7 =21 |6 0 =5

dependent set.

7 -8 7
Since [-4 5  0[=-1#0, the columns of the matrix form a linearly independent set.
-6 7 -5
2 =2 0
32 =2
_ 5 -6 -1 0
Since 6 0 3 o0 =-2|5 -6 -—1|=-2(-6(-14)+3(-28)) =0, the columns of the
-6 0 3

4 7 0 =2

matrix form a linearly dependent set.

a. True. See Theorem 3.

b. False. Reduction to an echelon form may also include scaling a row by a nonzero constant, which
can change the value of the determinant.

¢. True. See the paragraph following Theorem 4.

d. False. See the warning following Example 5.

a. False. See Theorem 3.

b. False. See the paragraphs following Example 2.
¢. False. See Example 3.

d. False. See Theorem 5.

By Theorem 6, detB* = (det B)* = (-2)* =16.

Suppose the two rows of a square matrix 4 are equal. By swapping these two rows, the matrix A4 is
not changed so its determinant should not change. But since swapping rows changes the sign of the
determinant, det 4 = — det 4. This is only possible if det 4 = 0. The same may be proven true for

columns by applying the above result to A" and using Theorem 5.

By Theorem 6, (det A)(det A™") =det(44™") = detl =1, s0 detA™ =1/det A.

By Theorem 6 det 4> = (det A)*. Since det A4* =0, then (det 4)’ =0 . Thus det 4 =0, and 4 is not
invertible by Theorem 4.

33. By Theorem 6, det AB = (det A)(det B) = (det B)(det A) = det BA.
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36.

37.

38.

39.

40.

41.

42.

3.2 ¢ Solutions

By Theorem 6 and Exercise 31,
det (PAP™") = (det P)(det A)(det P™") = (det P)(det P~")(det A)

1
=(det P)| —— |(det A) =1det 4
(de )(detPj(e )=1de
=det 4

By Theorem 6 and Theorem 5, detU” U = (detU” )(detU) = (detU)*. Since U'U =1,
detU'U =detI =1, so (detU)2 =1. Thus det U= =1.

By factoring an r out of each of the n rows, det(r4)=r"det 4.

6 0
One may compute using Theorem 2 that det 4 =3 and det B =8, while 4B = [17 4} . Thus

det AB = 24 =3 (8) = (det A)(det B).

6 -9
One may compute that det 4 = 0 and det B =-9, while 4B = { 3} . Thus

det AB=0=0(—9) = (det 4)(det B).

a. By Theorem 6, det AB = (det A)(det B) = —3(4) =—12.
b. By Exercise 32, det54 = 5’det A =125(=3) = -375.

¢. By Theorem 5, detB” =detB=4.

d. By Exercise 31, det 4™ =1/det4=-1/3.

e. By Theorem 6, det 4> = (det A)* = (-3)’ =-27.

a. By Theorem 6, det AB = (det A)(det B)= =3(—1)=3.
b. By Theorem 6, det B’ = (det B)’ = (-1)’ =—1.
¢. By Exercise 32, det24=2"det A =16(-3) = —48.
d. By Theorems 5 and 6,
det A" BA = (det A”)(det B)(det A) = (det A)(det B)(det A) = —3(—=1)(=3)=—-9.
e. By Theorem 6 and Exercise 31,
det B! 4B = (det B™")(det A)(det B) = (1/ det B)(det A)(det B) =det A = 3.

detA=(a+e)d—c(b+f)=ad+ ed—bc—cf=(ad—bc)+ (ed—cf) =det B+ det C.

l+a

det(4+ B) = =(+a)l+d)—cb=1+a+d+ad —cb=detA+a+d+detB, so

1+d‘
det (4 + B)=det A + det Bif and only ifa + d = 0.
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43. Compute det 4 by using a cofactor expansion down the third column:
det A = (u, +v,)det 4,5 — (u, +v,)det A,; + (u; +v;)det 455
=u,det 4; —u,det 4y; + uydet A5 +v,det 4,5 —v,det 4, +v;det Ay,
=detB+detC

44. By Theorem 5, det AE = det(AE)". Since (AE)" =ET A", det AE =det(ET A"). Now E” is itself
an elementary matrix, so by the proof of Theorem 3, det(E” 4" )= (det E” )(det A" ). Thus it is true
that det AE = (det E” )(det A" ), and by applying Theorem 5, det AE = (det E)(det A).

45. [M] Answers will vary, but will show that det 4” 4 always equals 0 while det 44" should seldom
be zero. To see why A" 4 should not be invertible (and thus det A" 4=0), let A be a matrix with

more columns than rows. Then the columns of 4 must be linearly dependent, so the equation Ax =0
must have a non-trivial solution x. Thus (4" 4)x = 4" (4x)= A" 0=0, and the equation (4" A)x =0
has a non-trivial solution. Since 4" 4 is a square matrix, the Invertible Matrix Theorem now says
that A" A is not invertible. Notice that the same argument will not work in general for 44" since

A" has more rows than columns, so its columns are not automatically linearly dependent.

46. [M] One may compute for this matrix that det 4 =1 and cond 4 = 23683. Note that this is the /,
condition number, which is used in Section 2.3. Since det 4 # 0, it is invertible and
-19 -14 0 7
-549 —-401 -2 196
267 195 1 -95
-278 =203 -1 99

A=

The determinant is very sensitive to scaling, as det104 =10*det 4 =10* and

det0.14= (0.1)*det A=10"*. The condition number is not changed at all by scaling:
cond(104) = cond(0.14) = cond. When 4 =1,, det 4=1 and cond 4 = 1. As before the determinant

is sensitive to scaling: det104=10"det 4=10,000 and det0.14=(0.1)*det 4 =10"". Yet the
condition number is not changed by scaling: cond(104) = cond(0.14) =cond 4 = 1.

3.3 SOLUTIONS

Notes: This section features several independent topics from which to choose. The geometric
interpretation of the determinant (Theorem 10) provides the key to changes of variables in multiple
integrals. Students of economics and engineering are likely to need Cramer’s Rule in later courses.
Exercises 1-10 concern Cramer’s Rule, exercises 11-18 deal with the adjugate, and exercises 19-32
cover the geometric interpretation of the determinant. In particular, Exercise 25 examines students’
understanding of linear independence and requires a careful explanation, which is discussed in the Study
Guide. The Study Guide also contains a heuristic proof of Theorem 9 for 2 X2 matrices.
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7

5
. The system is equivalent to Ax = b, where 4= [2 4

3
} and b= [J We compute

3 7 5 3
Al(b)z{1 4},A2(b)=[2 J,detA=6,detAl(b)=5,detA2(b)=—1,

_det4(b) 5 _detdy(b) 1

NS 4etd 60T detd 6

4 1 6
. The system is equivalent to Ax = b, where 4= {3 2} and b = [7} . We compute

6 1 4 6
Al(lo){7 2},@@){3 7},detA:S,detAl(b):S,detAz(b)=10,

_detA(b) _5_, _detdy(b) _10

b , Xy = =2.
det 4 5 det 4 5

3 -2 3
. The system is equivalent to Ax = b, where 4 = { 4 6} and b= { 5} . We compute

3 -2 33
A (b) = , Ay(b) = ,det 4 =10, det 4,(b) =8, det 4, (b) = -3,
5 6 -4 -5
L detA(b) 8 4 _detd(b)_-3
' odetda 10 5777 detd 10

-5 2 9
. The system is equivalent to Ax = b, where A4 =[ 3 J and b = [ 4} . We compute

9 2 -5 9
Al(b){_4 _J,Az(b){ X _4},detA=—1,detAl(b)=—1,detA2(b)=—7,

_det4(b) -1 _ _det4(b) -7

X =1, x, =7.
det 4 -1 det 4 -1
1 1 0 3
. The system is equivalent to Ax =b, where 4={-3 0 2| and b=| 0 |. We compute
0 1 =2 2
3 1 0 1 3 0 1
4Mm)={0 0 2|,4Mb)=(-3 0 2,4Mb)=-3 0 0|,
2 1 =2 0 2 2 0

det A = -8, det 4 (b) = -2, det Ay(b) = —22, det A;(b) = -3,

_detA(b) 2 1 _detdy(b) 22 _11 _detdy(b) -3 _3

X =—, =—.
' detd -8 47 7% detd -8 4777 detdA -8 8
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1 3 1 4
6. The system is equivalent to Ax=b, where A=|-1 0 2| and b=|2|. We compute
310 2
4 3 1 1 4 1 1 3 4
AM)=12 0 2,4Mb)=|-1 2 2|,4Mb)=|-1 0 2|
2 1 0 3 20 31 2
det 4 =15,det 4,(b) =6,det A,(b) =12, det 4;(b)=18,
. _det4(b) _6 _2 . _det4,(b) 12 4 . _det4;(b) 18 6
'odetd 15 5777 det4a 15 5777 detda 15 5

4

6
7. The system is equivalent to Ax = b, where 4= { N 5
s

5
} and b ={ 2} . We compute

5 4 6s 5
Al(b)=[_2 2J,A2(b)=B _J,detAl(b)=105+8,detA2(b)=—12s—45.

Since det 4 =125> =36 =12(s> —=3) % 0 for s = /3, the system will have a unique solution when
s #++/3 . For such a system, the solution will be
_detA4(b) 10s+8  5s+4 _detA,(b) —12s—45 —4s-15
Tl 125°-3) 6(°-3)"7  detd  12(s°—3) 4(s°-3)

5

3
8. The system is equivalent to Ax = b, where 4 = [ ; s
s

3
} and b = {2} . We compute

305 3 3
Al(lo){2 SJ,AZ(b)zL; 2},detAl(b)=15s—10,detA2(b)=6s—36.

Since det 4 =15s" —60=15(s* —4) =0 for s =12, the system will have a unique solution for all

values of s # X2 . For such a system, the solution will be
_det4,(b) _ 155-10 3s-2 _det4,(b)  65-36 2s—12

= , X = .
detd  15(s2—=4) 3(s>=4)"""  detd 15(s>°—4) 5(s’—4)

1

2s

9. The system is equivalent to Ax = b, where 4= E 6
S

-1
} and b ={ 4} . We compute

-1 2s

Al(b):{ 4 65

-
}, A,(b) = B 4}, det 4,(b) = —14s, det A,(b) = 45+ 3.

Since det 4= 65> —6s = 6s(s—1)=0 fors =0, 1, the system will have a unique solution when s # 0,

1. For such a system, the solution will be
_det4(b) _ -l4s 7 _detA,(b)  4s5+3

dotd  6ss—1)  3G—-1""2" detd  6s(s—1)

1
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10. The system is equivalent to Ax = b, where 4 =[ * 4 } and b
s 4s

Al(b)=[21 ;ﬂ,Az(b)=[4z ﬂ,detAl(b)=4s+4,detA2(b)

33 Solutions

1
= L} . We compute

=-2s.

Since det A =4s> +8s=4s(s+2)=0 fors =0, —2, the system will have a unique solution when

s #0,—2. For such a system, the solution will be

_detA4(b) 4s+4 s+l . _det4y(b) 25 1
odetd  4s(s+2) s(s+2)) 0 detd  4s(s+2)  2(s+2)
11. Since det 4 = 5 and the cofactors of the given matrix are
C. - 0 0 _g C. = 5 0| S 0]
11_1 1_3 12— -1 1_ > 13__1 1_’
co_ -2 -1] 1o -1 L c 0 -2|
21 — 1 1 -5 22 — -1 1 - H 23 -1 1 4
=7 Meoo cy=-Y Mews cn=lY 10
31 T 0 0 ] 32 5 0 - > 33 ™ 5 0 - >
0 1 0 0 1/5 0]
adjd=|-5 -1 -5|and 47'= adjd=|-1 -1/5 -1|.
det 4
5 2 10 1 2/5 2]
12. Since det 4 = =3 and the cofactors of the given matrix are
co- 2 1] 21 5 -2 21 5
11 1 1 -5 12 = 0 1 ] 13— 0 1 - s
o3 _| o3, R L [
21 — 1 1 ] 22 — 0 1 b 23 — 0 1 - b
. 13 s B 13 7 C o 1 1 4
31_2 1_ > 32 7 -2 1_ H 33__2 2_’

1 2 -5 | -1/3 -2/3 5/3
adjid=| 2 1 —7|and 47'= adjd=|-2/3 -1/3 7/3|
det 4

-2 -1 4 2/3  1/3 -4/3

13. Since det 4 = 6 and the cofactors of the given matrix are

co- 0 1| c 11 . C 1 0 .

A S P | S P |
co_ 5 4| L oo 3 4 s o 35 5
S R | P2 | R R | A
c 5 4 _s C. - 3 4 1 C. o 3 5| 5
oo 7 S S | R I U | R
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-1 -1 5 -1/6 -1/6 5/6
adjid=| 1 -5 1|and A":dt adjd=| 1/6 —5/6 1/6|.
17 -5 © 1/6  7/6 -5/6
14. Since det 4 = -2 and the cofactors of the given matrix are
2 1 0 1 0 2
Ciy 0 4=8, 12:_2 4:27 C13:2 0__4:
-1 2 1 2 I -1
=g 4T @ 4T ST T
-1 2 1 2 1 -1
G = 5 12_55 32__0 12_1: 370 2:2,
8 4 5 . -4 -2 5/2
adid=| 2 0 —l|and 47'= adjd=|-1 0 1/2|
det 4
-4 -2 2 2 1 -1

15. Since det 4 = =5 and the cofactors of the given matrix are

1 0 -1 0 -1 1
N R e R e R
0 0 5 0 50
Cy=- 3 =0, Cp=| , _[=75 Cn=-| ) 5| =715
c - 9, I R P BT
31_1 0_> 32 ™ -1 O_’ 33__1 1_>
-1 0 0 1/5 0 0
adjd=|-1 -5 0] and A“:dt adjd={1/5 1 0]
1 15 5 © 1/5 3 -1
16. Since det 4 = 6 and the cofactors of the given matrix are
=" Mee =Y M=o =Y =0
11— 0 _2_’ 12 = 0 _2_9 13_0 0_5
2 4 1 4 1 2
CZI__O ) =4, 22=0 ) =-2, C23=_0 0205
c 2 4., R R o2,
31— _3 1_ H 32— 0 1 ] 33 0 _3 s
6 4 14 1 2/3 7/3
adjd=|0 -2 ~—l|and 4'= tAade: 0 -1/3 -1/6/|.
0 0 -3 ¢ 0 0 -1/2
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18.

19.

20.

21.

22.

23.

24.

25.

3.3 ¢ Solutions 3-19

Let A= {a cﬂ . Then the cofactors of 4 are C), =|d| =d, C, =—|c| =-c, Cy :—|b| =-b, and
c

C,, =|a|=a. Thus adez{ d

} . Since det 4 = ad — bc, Theorem 8 gives that
-  a

A=

adjA4 = !
det 4 ad —bc

—-C a

d -b
{ } . This result is identical to that of Theorem 4 in Section 2.2.

Each cofactor of 4 is an integer since it is a sum of products of entries in 4. Hence all entries in adj 4

will be integers. Since det 4 = 1, the inverse formula in Theorem 8 shows that all the entries in A
will be integers.

5 6
The parallelogram is determined by the columns of A4 = ) 4} , so the area of the parallelogram is
|det A| = |8| =8.
. . -2
The parallelogram is determined by the columns of 4 = 4 5} , S0 the area of the parallelogram

is |det A| = |-6| = 6.

First translate one vertex to the origin. For example, subtract (-2, 0) from each vertex to get a new
parallelogram with vertices (0, 0), (2,3), (3, 3), and (1, 0). This parallelogram has the same area as

the original, and is determined by the columns of 4 = {3 O} , so the area of the parallelogram is
|det A| = |-3| = 3.

First translate one vertex to the origin. For example, subtract (0, —2) from each vertex to get a new
parallelogram with vertices (0, 0),(5, 0),(=3, 3), and (2, 3). This parallelogram has the same area as

the original, and is determined by the columns of 4= [ 3} , so the area of the parallelogram is

|det A| = [15]=15.
1 1 5
The parallelepiped is determined by the columns of 4= 0 2 1], so the volume of the
-3 4 0
parallelepiped is |det 4| = 23| = 23.
1 2 -1
The parallelepiped is determined by the columns of A={3 0 3|, so the volume of the
0 2 -l

parallelepiped is |[det A| = |-18| = 18.
The Invertible Matrix Theorem says that a 3 X 3 matrix A4 is not invertible if and only if its columns

are linearly dependent. This will happen if and only if one of the columns is a linear combination of
the others; that is, if one of the vectors is in the plane spanned by the other two vectors. This is
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26.

27.

28.

29.

30.

equivalent to the condition that the parallelepiped determined by the three vectors has zero volume,
which is in turn equivalent to the condition that det 4 = 0.

By definition, p + § is the set of all vectors of the form p + v, where v is in S. Applying 7 to a typical
vector in p + .S, we have T(p + v) = T(p) + T(v). This vector is in the set denoted by 7(p) + 7(S). This
proves that 7 maps the set p + S into the set 7(p) + 7(S). Conversely, any vector in 7(p) + 7(S) has
the form 7(p) + T(v) for some v in S. This vector may be written as 7(p + v). This shows that every
vector in 7(p) + 7(S) is the image under 7 of some pointp+vinp +S.

Since the parallelogram S is determined by the columns of {_

-2 =2
det

is |det 4| {area of S} =3 - 4 = 12. Alternatively, one may compute the vectors that determine the

. 6 3|2 -2 =21 =27
image, namely, the columns of 4[b, b,]= Y T

5} , the area of S'is

=|—4|=4. The matrix 4 has det 4 = =3. By Theorem 10, the area of 7(S)

The determinant of this matrix is —12, so the area of the image is 12.

Since the parallelogram S is determined by the columns of {

4 0
det
BN

|det A|{area of S} =3 - 4 =12. Alternatively, one may compute the vectors that determine the image,

0
J , the area of S'is

5 2
=|4|=4.The matrix 4 has detAz‘1 1‘=3. By Theorem 10, the area of 7(S) is

5 2 4 0 6 2 . . :
namely, the columns of A[b, b,]|= Lol 1Tl . The determinant of this matrix

is 12, so the area of the image is 12.

The area of the triangle will be one half of the area of the parallelogram determined by v, and v,.
By Theorem 9, the area of the triangle will be (1/2)|det 4|, where A=[v, v,].

Translate R to a new triangle of equal area by subtracting (x;,y;) from each vertex. The new triangle
has vertices (0, 0), (x, —x;,¥, —»;), and (x, —x;,y, — ;). By Exercise 29, the area of the triangle

. 1 X —X; X, —X
w1llbe—de{ b 3}
2 Vi=Vs )
Now consider using row operations and a cofactor expansion to compute the determinant in the

x o n 1 x-—x »-y3 0 {

X=X V1~ )3

Xo=X3 V™ )3

formula: det| x, y, 1|=det|x,-x; y,—y; O0|=det } By Theorem 5,

X3y 1 X3 3 1
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31.

32.

33.

34.

3S.

3.3 ¢ Solutions 3-21

X=X NV | X —X3 Xy T X .
det =det . So the above observation allows us to state that the
X, =X3 V™ )s N=Vs V2=

x oy 1
. . 1 1% X 1
area of the triangle will be —| det =—|det|x, y, 1
2 Nh=Vs Va=V3 2
x5y 1
X x2 X ul
a. To show that 7(S) is bounded by the ellipsoid with equation —- + b—; +=3-=1,let u=|u, | and
a ¢
Uy

X

let x=|x, |=Au.Then u, =x,/a, u,=x,/b,and u; = x;/c, and u lies inside S (or

X3
L, o2 o2
u; +ujy +uy <1)if and only if x lies inside 7(S) (or —12+b—§+—zﬁl).
a c
b. By the generalization of Theorem 10,
{volume of ellipsoid} = {volume of 7'(S)}
4 4mbc

=|det 4| - {volume of S} = abc? = 3
a. A linear transformation 7 that maps S onto " will map e, to v,, e, to v,, and e, to v,; thatis,
T(e,))=v,, T(e,)=v,,and T(e;) = v;. The standard matrix for this transformation will be

A=[T(e)) T(ey)) T(e))]=[v, v, ;5]
b. The area of the base of S'is (1/2)(1)(1) = 1/2, so the volume of S'is (1/3)(1/2)(1) = 1/6. By part a.

7(S)= S, so the generalization of Theorem 10 gives that the volume of S is |det 4|{volume of
S} = (1/6)|det 4|.

[M] Answers will vary. In MATLAB, entries in B — inv(4) are approximately 107" or smaller.

[M] Answers will vary, as will the commands which produce the second entry of x. For example, the
MATLAB commandis x2 = det ([A(:,1) b A(:,3:4)])/det (A) while the Mathematica
command is x2 = Det [{Transpose[A] [[1]],b, Transpose [A] [[3]],

Transpose [A] [[4]] }]/Det [A].

[M] MATLAB Student Version 4.0 uses 57,771 flops for inv 4 and 14,269,045 flops for the inverse
formula. The inv (A) command requires only about 0.4% of the operations for the inverse formula.

Copyright © 2016 Pearson Education, Inc.



3-22 CHAPTER 3 <« Determinants

Chapter 3 SUPPLEMENTARY EXERCISES

1. a. True. The columns of 4 are linearly dependent.
. True. See Exercise 30 in Section 3.2.

. False. See Theorem 3(c); in this case det 54 =5det 4.

. 2 0 1 0 3 0
. False. Consider 4 = , B= ,and A+ B= .
0 1 0 3 0 4

e T o

[=7

. False. By Theorem 6, det 4° =2°.
False. See Theorem 3(b).
True. See Theorem 3(c¢).
True. See Theorem 3(a).

R om o

False. See Theorem 5.

o

False. See Theorem 3(c); this statement is false for n X n invertible matrices with » an even
integer.

k. True. See Theorems 6 and 5; det A" 4 = (det 4)*.

Qo o

1. False. The coefficient matrix must be invertible.
m. False. The area of the triangle is 5.
n. True. See Theorem 6; det 4> = (det A)’.
o. False. See Exercise 31 in Section 3.2.
p. True. See Theorem 6.

12 13 14| |12 13 14
2,15 16 17|= 3 3 3|=0
18 19 20 6 6 6

1 a b+c 1 a b+c 1 a b+c
3./11 b a+c|=|0 b—a a-b|=(b-a)c—a)]0 1 -1 |=0
1 ¢ a+b 0 ¢c—a a-c 0 1 -1

a b c b
4. la+x b+x c+x|=|x x x|=xl 1 1]|=0
y oy oy 1

aty b+y c+y 1 1
9 1 9 9 9
9 9 9 2
9 0 9 9 2 0 5
540050—(1)4050—(1)(2)939
' B 9 3 9 o
9 0 3 9 0 6 0 7
6 0 7 0
6 0 0 7 0
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10.

Chapter 3 + Supplementary Exercises 3-23

4 5
= (—1)(—2)(3)‘ 6 7 ‘ =(=D(=2)3)(-2)=-12

4 8 8 8 5

4 8 8 5
01 0 0 O 4 8 5
6 8 8 8 7|=() 6 8 87 =DH(2)|6 8 7=MD2)-3) +oo =D(2)(-3)(-2)=12

o 8 3 of - 6 7| -

0 8 8 3 0 0 3 0

0 2 0 O
0 8 2 0 O
Expand along the first row to obtain
box oy 1 1

X, X
1 x  nl=1 1 N Y1 +y "=
1 X W 1y I x
X W

This is an equation of the form ax + by + ¢ = 0, and since the points (x,,y,) and (x,,y,) are distinct,
at least one of a and b is not zero. Thus the equation is the equation of a line. The points (x;,y,) and
(x,,v,) are on the line, because when the coordinates of one of the points are substituted for x and y,
two rows of the matrix are equal and so the determinant is zero.

. Expand along the first row to obtain
I x vy
M N 1y 1 x _ _ ) .
1 x »|=1 -Xx +y =1(mx, — y;) —x(m) + y(1) = 0. This equation may
0 1 1 m 0 m 0 1
m

be rewritten as mx, —y, —mx+y =0, or y—y, =m(x—x)).

2 2
1 a a| |1 a a 1 a a?

detT=1 b b*|=|0 b—a b*-a’|=|0 b-a (b-a)b+a)
1 ¢ ¢ 0 c—-a *-a° 0 c¢c—a (c—a)ct+a)

2 2

1 a a 1 a a
=(b-—a)c—a)|0 1 b+a|=(h-a)c—a)|]0 1 b+a|=(0b-a)c—a)c—b)
0 1 c+a 0 0 c-b
Expanding along the first row will show that f(f)=detV =c, + ¢t + czt2 + c3t3. By Exercise 9,
1 x x12
co=—|1 x, x3|=(x,—x)0—x)(x;—x,)%0
1 x5 x32

since x,, x,,and x; are distinct. Thus f'(¢) is a cubic polynomial. The points (x,,0), (x,,0), and
(x5,0) are on the graph of f, since when any of x,, x, or x; are substituted for ¢, the matrix has two
equal rows and thus its determinant (which is f'(¢)) is zero. Thus f(x;,)=0 fori=1, 2, 3.
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11.

12.

13.

14.

To tell if a quadrilateral determined by four points is a parallelogram, first translate one of the
vertices to the origin. If we label the vertices of this new quadrilateral as 0, v,, v,, and v, , then

they will be the vertices of a parallelogram if one of v,, v,, or v, is the sum of the other two. In
this example, subtract (1, 4) from each vertex to get a new parallelogram with vertices 0 = (0, 0),
v, =(-2,1),v,=(2,5),and v, =(4,4). Since v, = v, +v,, the quadrilateral is a parallelogram as
stated. The translated parallelogram has the same area as the original, and is determined by the

-2 4
columns of A=[v, v;] ={ : 4} , so the area of the parallelogram is |det 4| = |-12| = 12.

A 2 X 2 matrix A4 is invertible if and only if the parallelogram determined by the columns of 4 has
nonzero area.

. 1 _ . . o .
By Theorem 8, (adj A) -mA = A'4 =1 . By the Invertible Matrix Theorem, adj 4 is invertible
e
1
and (adj4) ' =——4.
(ady 4) det 4

A
a. Consider the matrix A4, = {O } , where 1 <k < and 0 is an appropriately sized zero matrix.

k
We will show that det 4, =det 4 for all 1 <k <n by mathematical induction.

First let £ = 1. Expand along the last row to obtain

4 0
det 4= det|:0 1:| = (_1)(n+1)+(n+1) .1-det A =det A.
Now let 1 <k <n and assume that det 4,_, = det 4. Expand along the last row of 4, to obtain

4 0
det 4, = de‘{ 0 I } = (=1)"H0) . det 4, | =det 4, , = det 4. Thus we have proven the

k
result, and the determinant of the matrix in question is det 4.

I
b. Consider the matrix 4, = {Ck D} ,where 1 <k<n, C, isann X k matrix and O is an
k

appropriately sized zero matrix. We will show that det 4, =detD forall 1 <k<n by
mathematical induction.
First let k= 1. Expand along the first row to obtain
1
det 4, = det[
C

1

0 _ 141 _
=(=1)"" -1-detD =detD.
D
Now let 1 <k <n and assume that det 4, , =det D. Expand along the first row of A4, to obtain
I, 0
det4, = de‘{ck D} =(=1)"""-1-det 4, , =det 4, , =det D. Thus we have proven the result, and

k
the determinant of the matrix in question is det D.

¢. By combining parts a. and b., we have shown that

ERIE G CF
det =| det det = (det A)(det D).
C D 0 7 C D
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16.

From this result and Theorem 5, we have

A B A
det =det
0 D 0

1
a. Compute the right side of the equation: {X

B A
=det
D BT

0
1

Chapter 3

Supplementary Exercises

ZH = (det A7 )(det D" = (det A)(det D).

A B| [4 B
0 Y| | X4 XB+Y

3-25

Set this equal to the left side of the equation:
4 B| | 4 B
C D| | X4 XB+Y
Since X4 = C and 4 is invertible, X =CA™". Since XB+ Y=D, Y=D-XB=D-CA'B. Thus
by Exercise 14(c),

}sothat XA=C XB+Y=D

A B I 0 A B
det =det det .
C D cA' T 0 D-CA'B
= (det A)(det (D — CA™'B))
. From part a.,
A B -1 -1
det c ol (det A)(det(D — CA™'B)) =det[A(D — CA™'B)]

=det[AD — ACA™'B]=det[AD — CAA™'B]
=det[4D - CB]

. Doing the given operations does not change the determinant of 4 since the given operations are

all row replacement operations. The resulting matrix is

(a—b —-a+b 0 0
0 a-b —-a+b 0
0 0 a-b 0
| b b b a|

. Since column replacement operations are equivalent to row operations on A" and det A" =det 4

, the given operations do not change the determinant of the matrix. The resulting matrix is

fa—b 0 0 0
0 a-b 0 0
0 0 a-b 0
| b 2b 3b a+(n-1)0b |

¢. Since the preceding matrix is a triangular matrix with the same determinant as 4,
detA=(a—b)"(a+(n-1)b).
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b
=ab-b?,

17. First consider the case n = 2. In this case det B =‘
a

b b
=a(a—->b),detC =
a b

so det A=detB+detC =a(a—b)+ab-b*=a* -b* =(a-b)a+b)=(a-b)*"'(a+(2-1)b), and
the formula holds for n = 2.

Now assume that the formula holds for all (k— 1) X (k— 1) matrices, and let 4, B, and C be kX k
matrices. By a cofactor expansion along the first column,

a b ... b

a

b b k=2 k-1
detB=(a-b)|, _|=(@=b)a—b)"(a+(k-2)b)=(a-b)"(a+(k—2)b)

b b ... a
since the matrix in the above formula is a (k— 1) X (k— 1) matrix. We can perform a series of row

operations on C to “zero out” below the first pivot, and produce the following matrix whose
b b ... b

) . a=-b .. ) . . )
determinant is det C: | . . . . |. Since this is a triangular matrix, we have found that

0 0 ... a-—-b
detC =b(a—b)"". Thus
det A=detB+detC=(a-b)""(a+(k—-2)b)+bla—-b)" =(a-b)"(a+(k-1)b),
which is what was to be shown. Thus the formula has been proven by mathematical induction.
18. [M] Since the first matrix has a = 3, b =&, and n = 4, its determinant is
(3-8)""'3+(4-1)8) =(=5)*(3+24) = (-125)(27) =—3375. Since the second matrix has a =8, b =
3, and n = 5, its determinant is (8 —3)°"' (8 +(5-1)3) = (5)* (8 +12) = (625)(20) = 12,500.

11 1 1 1
11 1 1
I 1 1 1 2 2 2 2
1 2 2 2
19. [M] We find that |1 2 2=1,1 5y 3 3=1,1 2 3 3 3|=1
1 2 3 1 2 3 4 4
1 2 3 4
1 2 3 4 5
11 1
1 2 2
Our conjecture then is that [1 2 3 3|=1. To show this, consider using row replacement
1 2 3 ... n

operations to “zero out” below the first pivot. The resulting matrix is
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1 1 1 1
0 1 1
0o 1 2 .. 2 |. Now use row replacement operations to “zero out” below the second pivot,
0 1 2 n—1|
111 1]
0 1 1
and so on. The final matrix which results from this processis [0 0 1 ... 1|, whichisan
10 0 0 1]
upper triangular matrix with determinant 1.
L1 1T 1 1 1 1 1
I 1 1 1 3 3 3 3
1 3 3 3
20. [M] We find that |1 3 3:6,1 3 6 6=18,1 3 6 6 6|=54.
1 3 6 1 3 6 9 9
1 3 6 9
1 3 6 9 12
11 1 .. 1
1 3 3 .. 3
Our conjecture then is that |1 3 =2-3""% To show this, consider using row
1 3 6 ... 3n-1
replacement operations to “zero out” below the first pivot. The resulting matrix is
R S S Y 1]
0o 2 2 .. 2
0o 2 5 .. 5 .Now use row replacement operations to “zero out” below the second
10 2 5 ... 3(n-1)-1]
11 1 1 1 1 1]
0 2 2 2 2 2 2
0 0 3 3 3 3 3
pivot. The matrix which results from this processis |0 0 3 6 6 6 6
0 0 3 6 9 9 9
10 0 3 6 9 12 ... 3n-2)]

This matrix has the same determinant as the original matrix, and is recognizable as a block matrix of

A B 1 1
the form ,where 4= and
0 D 0 2
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33 3
6
D= 9
3 6 9 12

¢ Determinants

3(n-2)]

A
the determinant of the matrix {0

1
1
matrix, detD=3"2|1

1

N DN

2

1
2
3

3

A
determinant of the matrix {0

4

1 2

n-2

3

4

n—2

As in Exercise 14(c),

B
D} is (det A)(det D) =2 det D. Since Disan (n —2) X (n—2)

=3"2(1)=3""7, by Exercise 19. Thus the

B : n—2
1s 2detD=2-3"""
D
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Vector
Spaces

4.1 SOLUTIONS

Notes: This section is designed to avoid the standard exercises in which a student is asked to check ten
axioms on an array of sets. Theorem 1 provides the main homework tool in this section for showing that a
set is a subspace. Students should be taught how to check the closure axioms. The exercises in this section
(and the next few sections) emphasize R", to give students time to absorb the abstract concepts. Other
vectors do appear later in the chapter: the space S of signals is used in Section 4.8, and the spaces [P, of
polynomials are used in many sections of Chapters 4 and 6.

1. a. Ifuand v are in V, then their entries are nonnegative. Since a sum of nonnegative numbers is
nonnegative, the vector u + v has nonnegative entries. Thusu + visin V.

2
b. Example: If u= [2} and ¢ =—1, then u is in V' but cu is not in V.

X X cx
2. a. Ifu :{ } is in W, then the vector cu = c{ } ={ } is in W because (cx)(cy) =c*(xy)=0
y y &y

since xy = 0.
-1 2 . : .
b. Example: If u= and v= 3| then u and v are in W but u + v is not in W.

5]
3. Example: If u =[ and ¢ = 4, then u is in A but cu is not in H. Since H is not closed under scalar

multiplication, H is not a subspace of R>.

4. Note that u and v are on the line L, but u + v is not.

| u @ utv
®.

4-1
Copyright © 2016 Pearson Education, Inc.



4-2 CHAPTER 4 « Vector Spaces

5. Yes. Since the set is Span {¢*}, the set is a subspace by Theorem 1.

6. No. The zero vector is not in the set.
7. No. The set is not closed under multiplication by scalars which are not integers.

8. Yes. The zero vector is in the set H. If p and q are in A, then (p + q)(0) =p(0) + q(0)=0+0=0,
so p + qisin H. For any scalar ¢, (cp)(0) =c - p(0)=c - 0=0, so cp is in H. Thus H is a subspace by
Theorem 1.

1
9. The set H = Span {v}, where v=|3 |. Thus H is a subspace of R’ by Theorem 1.
2

2
10. The set H = Span {v}, where v=| 0. Thus H is a subspace of R’ by Theorem 1.
-1

5 [2
11. The set W= Span {u, v}, where u=| 1| and v=| 0|. Thus W is a subspace of R* by Theorem 1.

1]
1

12. The set W = Span {u, v}, where u = ) and v= Ll Thus W is a subspace of R* by Theorem 1.

_O_

13. a. The vector w is not in the set {v,,v,,v,;}. There are 3 vectors in the set {v,,v,,v;}.
b. The set Span{v,,v,,v;} contains infinitely many vectors.
c¢. The vector w is in the subspace spanned by {v,,v,,v,;} if and only if the equation

XV, + X,V, + x;v; =w has a solution. Row reducing the augmented matrix for this system of
linear equations gives

1 2 4 3 1 0 0 1
0o 1 2 1|~-/0 1 2 1},
-1 3 6 2 0 0 0 O

so the equation has a solution and w is in the subspace spanned by {v,,v,,v;}.
1 2 4 8 1 0 0 O

14. The augmented matrix is found as in Exercise 13¢c. Since | 0 1 2 4(~|0 1 2 0],
-1 3 6 7 0 0 0 1

the equation x,v, +x,v, +x;v; =w has no solution, and w is not in the subspace spanned by

{Vi, V5, V3.
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15.

16.

17.

18.

19.

20.

21.

22

23.

4.1 <« Solutions 4-3

Since the zero vector is not in W, W is not a vector space.
Since the zero vector is not in W, W is not a vector space.
1 -1 0 1| |-1 0
. . . 0 1 -1 0 | |-1]].
Since a vector w in /¥ may be written as w =a { +b +c e S= Al olel g 1sa
0 1 0 0 1 0
set that spans .
4 3 0 4113|110
. . . 0 0 0 01 10]10]].
Since a vector w in /¥ may be written as w =a 1 +b 1 +c | , S = el g 18 a set
-2 0 1 -2110] |1

that spans .

Let H be the set of all functions described by y(#) = c,cosw?+c,sinwt. Then H is a subset of the

vector space V of all real-valued functions, and may be written as H = Span {cos wt, sin wt}. By
Theorem 1, H is a subspace of /" and is hence a vector space.

a. The following facts about continuous functions must be shown.
1. The constant function f(¢) = 0 is continuous.
2. The sum of two continuous functions is continuous.
3. A constant multiple of a continuous function is continuous.
b. Let H= {fin Cla, b]: f(a) = (b)}.
1. Let g(¢) =0 for all ¢ in [a, b]. Then g(a) =g(b) =0, so g is in H.
2. Let g and h be in H. Then g(a) = g(b) and h(a) = h(b), and (g + h)(a) = g(a) + h(a) =
g(b) + h(b)=(g+h)(b),sog+hisin H.
3. Let g be in H. Then g(a) = g(b), and (cg)(a) = cg(a) = cg(b) = (cg)(b), so cg is in H.
Thus H is a subspace of Cla, b].

The set H is a subspace of M,,,. The zero matrix is in /, the sum of two upper triangular matrices is
upper triangular, and a scalar multiple of an upper triangular matrix is upper triangular.

The set H is a subspace of M,,,. The 2 X 4 zero matrix 0 is in A because FO = 0. If 4 and B are
matrices in H, then F(4 + By=FA+FB=0+0=0,s04 + Bisin H. If 4 is in H and c is a scalar,
then F(cA) = c(FA)=c0=10,so cA4 is in H.

a. False. The zero vector in V is the function f whose values f(¢) are zero for all tin R .

b. False. An arrow in three-dimensional space is an example of a vector, but not every arrow is a
vector.

c¢. False. See Exercises 1, 2, and 3 for examples of subsets which contain the zero vector but are not
subspaces.

d. True. See the paragraph before Example 6.

e. False. Digital signals are used. See Example 3.
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24.

25.
26.

27.

28.

29.

30.

31.

CHAPTER 4 « Vector Spaces

True. See the definition of a vector space.

True. See statement (3) in the box before Example 1.
True. See the paragraph before Example 6.

False. See Example 8.

o R TR

False. The second and third parts of the conditions are stated incorrectly. For example, part (ii)
does not state that u and v represent all possible elements of H.

2,4

e T

B e T #

A D W o

e e TP
A LW A

Consider u + (—1)u. By Axiom 10, u + (=1)u = lu + (-1)u. By Axiom &, lu+ (-l)u= (1 + (-1))u=
Ou. By Exercise 27, Ou = 0. Thus u + (-1)u = 0, and by Exercise 26 (-1)u = —u.

By Axiom 10, u = lu. Since ¢ is nonzero, c'¢=1,and u= (c_lc)u . By Axiom 9,
(c'eyu=c"(cu)=c"'0 since cu=0. Thus u=c"'0=0 by Property (2), proven in Exercise 28.
Any subspace H that contains u and v must also contain all scalar multiples of u and v, and hence

must also contain all sums of scalar multiples of u and v. Thus H must contain all linear
combinations of u and v, or Span {u, v}.

Note: Exercises 32-34 provide good practice for mathematics majors because these arguments involve
simple symbol manipulation typical of mathematical proofs. Most students outside mathematics might
profit more from other types of exercises.

32.

Both H and K contain the zero vector of } because they are subspaces of V. Thus the zero vector of V'
isin HN K. Letu and v be in H N K. Then u and v are in AH. Since H is a subspace u + v is in H.
Likewise u and v are in K. Since K is a subspace u + vis in K. Thus u + vis in H N K. Let u be in
H N K. Then u is in H. Since H is a subspace cu is in H. Likewise v is in K. Since K is a subspace cu
is in K. Thus cu is in H N K for any scalar ¢, and H N K is a subspace of V.

The union of two subspaces is not in general a subspace. For an example in R* let H be the x-axis
and let K be the y-axis. Then both H and K are subspaces of R*, but H U K is not closed under
vector addition. The subset / U K is thus not a subspace of R>.
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4.1 <« Solutions 4-5

Given subspaces H and K of a vector space V, the zero vector of V" belongs to H + K, because 0 is
in both H and K (since they are subspaces) and 0 = 0 + 0. Next, take two vectors in H + K, say
w, =u, +v, and w, =u, +v, where u, and u, arein /4, and v, and v, are in K. Then

W, +w, = +vp)+(u, +vy) = +u,)+(v,+v,)
because vector addition in V' is commutative and associative. Now u, +u, isin / and v, +v, is
in K because H and K are subspaces. This shows that w, + w, isin 4 + K. Thus H + K is closed
under addition of vectors. Finally, for any scalar c,

cw, =c(u; +v,)=cu, +cv,
The vector cu, belongs to / and cv, belongs to K, because H and K are subspaces. Thus, cw,

belongs to H + K, so H + K is closed under multiplication by scalars. These arguments show that
H + K satisfies all three conditions necessary to be a subspace of V.

. Certainly H is a subset of H + K because every vector u in H may be written as u + 0, where the

zero vector 0 is in K (and also in H, of course). Since H contains the zero vector of H + K, and H
is closed under vector addition and multiplication by scalars (because H is a subspace of V'), H is
a subspace of H + K. The same argument applies when H is replaced by K, so K is also a
subspace of H + K.

34. A proofthat A + K =Span{u,,.. U, Ve,V } has two parts. First, one must show that H + K is

a subset of Span{u,,...,u,,,v,,...,v }. Second, one must show that Span{u,,...,u,,,v,...,v } isa
subset of H + K.
(1) A typical vector H has the form ¢u, +...+¢,u, and a typical vector in K has the form

2)

dv,+...+ dqvq. The sum of these two vectors is a linear combination of Up,ee,U Vi,V

and so belongs to Span{ul,...,up,vl,...,vq}. Thus H + K is a subset of
Span{ul,...,up,vl,...,vq .
Each of the vectors u,,...,u ,,v,,...,v,_ belongs to H + K, by Exercise 33(b), and so any linear

combination of these vectors belongs to H + K, since H + K is a subspace, by Exercise 33(a).
Thus, Span{ul,...,up,vl,...,vq} is a subset of H + K.

8 -4 -7 9 1 0 0 1
35. [M] Since 3 6 - ~ 0 10 - , W is in the subspace spanned by {v,,v,,v;}.
-3 2 -5 -4 0 0 1 1
9 -8 -18 7 0 0 0 O
-5 -9 -4 1 0 0 -1/5
36. [M] Since [4 y]= 87 -6 %) 1010 =25 ,y is in the subspace spanned by the
-5 -8 3 6 0 0 1 3/5
2 2 -9 -5 0 0 O 0

columns of 4.
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37. [M] The graph of () is given below. A conjecture is that f(¢) = cos 4.

1

0.5

NN

The graph of g(7) is given below. A

1

V \/ | v 5\/6
conjecture is that g(¢) = cos 6.

L

38. [M] The graph of f(¢) is given below. A conjecture is that f(¢) = sin 3z.

1

0.5

VUV
AWAWA

The graph of g(7) is given below. A

1

0.5

l\j 3\] | \7
conjecture is that g(¢) = cos 4t.

AN

The graph of h(¢) is given below. A

1

\] \/ | \7 5\/6
conjecture is that h(f) = sin 5¢.

AL

VUV
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4.2 SOLUTIONS

Notes: This section provides a review of Chapter 1 using the new terminology. Linear tranformations are
introduced quickly since students are already comfortable with the idea from R". The key exercises are
17-26, which are straightforward but help to solidify the notions of null spaces and column spaces.
Exercises 30-36 deal with the kernel and range of a linear transformation and are progressively more
advanced theoretically. The idea in Exercises 7—14 is for the student to use Theorems 1, 2, or 3 to
determine whether a given set is a subspace.

-5 3 1 0
1. One calculates that Aw=| 6 -2 0f 3|=|0], sowisinNul 4.
-8 4 1{|—4 0
5 21 19 5 0
2. One calculates that Aw=|13 23 2| -3|=|0|, sowisin Nul 4.
8 14 1| 2 0

3. First find the general solution of Ax = 0 in terms of the free variables. Since

1 0 -7 6 0
[4 0] ~ [O | 4 o O}Jhe general solution is x; = 7x; —6x,, x, = —4x; +2x,, with x;

X, -4 2 ) ) —4 2
and x, free. So x= =X + x4 ,and a spanning set for Nul 4 is ,

X, 1 0 1 0

Xy 0 1 0 1

4. First find the general solution of Ax = 0 in terms of the free variables. Since

1 -6 0 0 0
[4 0] ~{ },the general solution is x; =6x,, x; =0, with x, and x, free. So
0 0 1 0 O

X 6 0 6|10

X, 1 0 : i 1{]0
X= =Xx,| |+x,| [ and a spanning set for Nul 4 is ,

X, 0 0 0110

X4 0 1 01

5. First find the general solution of Ax = 0 in terms of the free variables. Since

1 -2 4 0 0
[4 0]~|]0 0 1 -9 0 0} the general solution is x, = 2x, —4x,, x; =9x,, x5 =0, with
0 0 O
_xl_ 2] [-4] 2] [-4]
x, 1 0 1 0
x, and x, free.So x=| x; [=x,|0|+x,| 9|, and aspanning set for Nul4is ¢ |0, 9
X, 0 1 0 1
| X5 0 | 0] 0] 0]
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10.

11.

12.

CHAPTER 4 « Vector Spaces

. First find the general solution of Ax = 0 in terms of the free variables. Since

1 0 6 -8 1 0
[4 0]~]0 1 -2 1 0 0]},the general solution is x, = —6x; +8x, — x5, X, = 2x; — x,, with
0 0 0 0 0 O

X -6 8 -1
X, 2 -1 0
X;, x4, and x5 free. So x=| x; |[=x;| 1|+x,| O0|+x5| O/, and a spanning set for Nul 4 is
Xy 0 1 0
| X5 | | 0] | 0] | 1]
6] 8][-1]
20(-1{| O
1,] 0], O
0 /] 0
L 0] O] 1]

The set W is a subset of R>. If W were a vector space (under the standard operations in R?), then it

would be a subspace of R*. But ¥ is not a subspace of R’ since the zero vector is not in . Thus W
is not a vector space.

. The set W is a subset of R’. If W were a vector space (under the standard operations in R*), then it

would be a subspace of R*. But ¥ is not a subspace of R’ since the zero vector is not in . Thus W
is not a vector space.

. The set W is the set of all solutions to the homogeneous system of equations a — 26 — 4c¢ =0,
1 2 4 0
2a—c¢—3d=0. Thus W= Nul 4, where 4= {2 0 | 3} . Thus W is a subspace of R* by

Theorem 2, and is a vector space.

The set W is the set of all solutions to the homogeneous system of equations a +3b—c =0,
1 3 -1 0

a+b+c—d=0.Thus W=Nul 4, where A:L 1 { 1

}. Thus W is a subspace of R* by
Theorem 2, and is a vector space.

The set W is a subset of R* . If W were a vector space (under the standard operations in R*), then it

would be a subspace of R*. But Wisnota subspace of R* since the zero vector is not in . Thus W
is not a vector space.

The set W is a subset of R* . If W were a vector space (under the standard operations in R*), then it

would be a subspace of R*. But Wisnota subspace of R* since the zero vector is not in . Thus W
is not a vector space.
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1 -6 1 -6
13. An element w in /¥ may be writtenas w=c¢| 0 |+d| 1|=|0 1 LCJ , where ¢ and d are any real
1 0 1 0
1 -6
numbers. So W= Col 4 where A=|0 1|. Thus W is a subspace of R® by Theorem 3, and is a
1 0
vector space.
-1 2 -1 2
14. An element w in /¥ may be writtenas w=a| 1|+b|2|=| 1 -2 {a} , where a and b are any
3 -6 3 -6
-1 2]
real numbers. So W= Col A where A=| 1 —2|.Thus W is a subspace of R® by Theorem 3, and
3 6]
is a vector space.
0 [ 2 3 0o 2 3 .
15. An element in this set may be written as » ! +s 1} +t 2 = l ! b= s |, where r, s and ¢
4 1 0 4 1 O
3 -1 -1 3 -1 -1 !
0o 2 3
are any real numbers. So the set is Col 4 where A = i 1 é} .
3 -1 -1
1 -1 o] [1 -1 o0
b
16. An element in this set may be written as b 2 +c ! +d = lz ! ¢ |, where b, c and
0 5 —4 0 5 -4
0 0] 1 0 1 d

d are any real numbers. So the set is Col 4 where 4=

1

S O N =

|

N —=
|

A = O

N — |

17. The matrix A4 is a 4 X 2 matrix. Thus
(a) Nul 4 is a subspace of R”, and

(b) Col A is a subspace of R*.
18. The matrix 4 is a 4 X 3 matrix. Thus

(a) Nul 4 is a subspace of R?, and
(b) Col A is a subspace of R*.
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19.

20.

21.

22.

23.

24.

25.

The matrix 4 is a 2 X 5 matrix. Thus
(a) Nul 4 is a subspace of R, and
(b) Col 4 is a subspace of R>.

The matrix 4 is a 1 X 5 matrix. Thus
(a) Nul 4 is a subspace of R’, and
(b) Col 4 is a subspace of R' = R .

Either column of 4 is a nonzero vector in Col 4. To find a nonzero vector in Nul 4, find the general

1 -3 0
: . . . 0 o0 i
solution of Ax = 0 in terms of the free variables. Since [4 0] ~ o o0 ol the general solution
0 0 0

is x, =3x,, with x, free. Letting x, be a nonzero value (say x, =1) gives the nonzero vector

Xy 3 .
X= = | , which is in Nul 4.

Any column of 4 is a nonzero vector in Col 4. To find a nonzero vector in Nul 4, find the general

. . . : 1 0 -7 6 0
solution of 4x = 0 in terms of the free variables. Since [4 0] ~ 01 4 = ol the

general solution is x; = 7x; —6x,, x, =—4x; +2x,, with x; and x, free. Letting x; and x, be

X 1
. Xy =2 . ..
nonzero values (say x; =x, =1) gives the nonzero vector x = =l 1| which is in Nul 4.
X3
X, 1

1 -2 -1/3

, the system
0 0 0

Consider the system with augmented matrix [4 w]. Since [4 W] ~[

-6 1212 0
is consistent and w is in Col 4. Also, since Aw =[ 3 6}{1} = {0} , Wis in Nul 4.

1 -1/2

1
Consider the system with augmented matrix [4 w]. Since [4 w]~|0 1/2 1 ,the

=0, wisinNul 4.

0
1
0 0
-8 -2
system is consistent and w is in Col 4. Also, since Aw = l]

a. True. See the definition before Example 1.
b. False. See Theorem 2.
c. True. See the remark just before Example 4.

Copyright © 2016 Pearson Education, Inc.



26.

27.

28.

29.

30.
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d. False. The equation Ax = b must be consistent for every b. See #7 in the table on page 206.
True. See Figure 2.

- e

. True. See the remark after Theorem 3.

a. True. See Theorem 2.

b. True. See Theorem 3.

c. False. See the box after Theorem 3.

d. True. See the paragraph after the definition of a linear transformation.
e. True. See Figure 2.

f. True. See the paragraph before Example 8.

Let 4 be the coefficient matrix of the given homogeneous system of equations. Since Ax = 0 for
3
x=| 2|, xisin Nul4. Since Nul4 is a subspace of R’, it is closed under scalar multiplication.
-1
30
Thus 10x=| 20| is also in Nul4, and x; =30, x, =20, x; =—10 is also a solution to the system of
-10

equations.

Let 4 be the coefficient matrix of the given systems of equations. Since the first system has a

0
solution, the constant vector b=| 1 | is in Col4. Since Col 4 is a subspace of R”, it is closed under
9
0
scalar multiplication. Thus Sb=| 5| is also in Col 4, and the second system of equations must thus
45

have a solution.

a. Since A0 =0, the zero vector is in Col 4.
b. Since Ax+ Aw = A(x+w),Ax+ Aw is in Col 4.
¢. Since c(Ax) = A(cx),cAx isin Col 4.

Since T'(0,) =0y, , the zero vector 0, of W is in the range of 7. Let 7(x) and 7{(w) be typical
elements in the range of 7. Then since 7(x)+7(w)=T(x+w),T(x)+T(w) is in the range of 7T and
the range of T is closed under vector addition. Let ¢ be any scalar. Then since ¢7'(x) =T(cx), cT(x)
is in the range of 7 and the range of T is closed under scalar multiplication. Hence the range of T'is a
subspace of W.
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31.

32.

33.

a. Let p and q be arbitary polynomials in [P, , and let ¢ be any scalar. Then
P+ |_(p)+q©) | _|{pO)| |q(0)
T - = = = T T
P [(p ; q)(l)} L»(l) +q() } [p(l)} ' {q(l)} P+
(cp)(oq _ {pm)
(ep)(D) p(1)
b. Any quadratic polynomial q for which q(0)=0 and q(1) =0 will be in the kernel of 7. The

and T'(cp) :[ }= cT(p), so Tis a linear transformation.

X,
polynomial q must then be a multiple of p(¢) =¢(¢ —1). Given any vector { ! } in R?, the
X

polynomial p =x, +(x, —x,)t has p(0)=x, and p(l) = x,. Thus the range of T is all of R,

Any quadratic polynomial q for which q(0) =0 will be in the kernel of 7. The polynomial q must
then be q = at +bt>. Thus the polynomials p,(¢)=¢ and p,(z)=t> span the kernel of 7. If a vector

a
is in the range of 7, it must be of the form { } If a vector is of this form, it is the image of the

a

polynomial p(¢)=a in [P, . Thus the range of 7'is { {a} ‘a real}
a

a. Forany 4 and Bin M, , and for any scalar c,
T(A+B)=(A+B)+(A+B) =A+B+A" +B" =4+ A")+(B+B")=T(A)+T(B)
and T(cA)=(cA)" =c(A")=cT(A), so Tis a linear transformation.

b. Let B be an element of M,,, with B" =B, and let 4=1B. Then
T(A)=A+A4" :%B+(%B)T :%B+%BT :%B+%B:B

c. Part b. showed that the range of T contains the set of all Bin M, with B = B. It must also be
shown that any B in the range of T has this property. Let B be in the range of 7. Then B = T(4) for
some Ain M,,. Then B=A+ A", and B" =(4+A") =4" +(4") =4" + 4=4+4" =B, s0
B has the property that BT =B.

C

r |a b a c¢ 2a c+b 0 O
c d b d b+c 2d 0 O

Solving it is found that e =d =0 and ¢ =—b. Thus the kernel of T'is

[

a b
d. Let AZ[ d} be in the kernel of 7. Then T(4)=A+ A" =0, so

Copyright © 2016 Pearson Education, Inc.



34.

35.

36.

37.

38.
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Let f and g be any elements in C[0, 1] and let ¢ be any scalar. Then 7(f) is the antiderivative F of f
with F(0) = 0 and 7(g) is the antiderivative G of g with G(0) = 0. By the rules for antidifferentiation
F+G will be an antiderivative of f +g, and (F+G)(0)=F(0)+G(0)=0+0=0.Thus

T(f+g)=T(f)+T(g). Likewise cF will be an antiderivative of cf, and (cF)(0)=cF(0)=c0=0.
Thus T'(cf)=cT(f), and T is a linear transformation. To find the kernel of 7, we must find all

functions fin C[0,1] with antiderivative equal to the zero function. The only function with this
property is the zero function 0, so the kernel of T'is {0}.

Since U is a subspace of V, 0,, is in U. Since 7T is linear, 7(0, ) =0,. So 0,, is in 7(U). Let T(x) and
T(y) be typical elements in 7(U). Then x and y are in U, and since U is a subspace of V, X+ is also
in U. Since T is linear, 7T(x)+ T(y)=T(x+Yy). So T(x)+T(y) is in T(U), and T(U) is closed under

vector addition. Let ¢ be any scalar. Then since x is in U and U is a subspace of V, cx is in U. Since T
is linear, T (cx)=cT'(x) and c7(x) is in T(U ). Thus 7(U) is closed under scalar multiplication, and

T(U) is a subspace of W.

Since Z is a subspace of W, 0,, is in Z. Since 7'is linear, 7(0,)=0,,. So 0, isin U. Let x and y be
typical elements in U. Then 7(x) and 7(y) are in Z, and since Z is a subspace of W, T'(x)+T(y) is
also in Z. Since T'is linear, T(x)+7(y)=7(x+Yy). So T(x+y) isin Z,and x+Yy isin U. Thus U is

closed under vector addition. Let ¢ be any scalar. Then since x is in U, 7(x) is in Z. Since Z is a
subspace of W, cT(x) is also in Z. Since T is linear, ¢T(x) =T(cx) and T(cx) is in T(U). Thus cx is in

U and U is closed under scalar multiplication. Hence U is a subspace of V.

[M] Consider the system with augmented matrix [4  w]. Since

0 0 -1/95 1/95
1 0 39/19 -20/19
0 1 267/95 -172/95
0 0 0 0

7 6 —4 Iy 1 14

, the system is consistent and w is in ColA. Also, since

0
Aw = = , W is not in NulA.

[M] Consider the system with augmented matrix [4 w]. Since
1 0 -1 0 2
0o 1 =2 0 - . . . .
[4 w]~ 00 o 1 1l the system is consistent and w is in ColA4. Also, since
0 0 0 0 O
-8 5 2 0

, Wis in NulA4.

1
-5 2 1 =242
1
0

S O O O
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39. [M]
a. To show that a; and a, are in the column space of B, we can row reduce the matrices [B  a,]
1 0 0 1/3 1 0 0 10/3
01 0 1/3 0 1 0 -26/3 _
and [B ag]: [B ay]~ ,[B as]~ . Since both these
001 0 0 0 1 -4
000 O 0 0 0 0

systems are consistent, a, and a, are in the column space of B. Notice that the same conclusions
1 0 1/3 0 10/3
0 1 1/3 0 -26/3
0 0 1 -4
0 0 0 0 0

can be drawn by observing the reduced row echelon form for 4: 4 ~

b. We find the general solution of Ax = 0 in terms of the free variables by using the reduced row
echelon form of 4 given above: x; =(=1/3)x; —(10/3)x5, x, =(=1/3)x; +(26/3)x5, x, = 4x;5

X [-1/3]  [-10/3]
X, -1/3 26/3
with x; and x5 free. So x=| x; |=x; 1|+ xs 0 |,and a spanning set for Nul A4 is

X, 0 4

| X5 | | 0] i 1]
[-1/3][-10/3]
-1/31| 26/3
1], 0
0 4
L 0_ L 1_

¢. The reduced row echelon form of 4 shows that the columns of A are linearly dependent and do
not span R*. Thus by Theorem 12 in Section 1.9, 7 is neither one-to-one nor onto.

40. [M] Since the line lies both in H =Span{v,,v,} and in K =Span{v,,v,}, w can be written both as
Vv, +c,v, and ¢;v; +¢,v,. To find w we must find the ¢;’s which solve
eV, +6,V, —c;v3 —c,v, =0. Row reduction of [v, v, -v; -v, 0] yields
51 -2 0 0 |1 0 O -10/3 0
3 3 1 12 0|~/0 1 0 26/3 0],so the vector of ¢;’'s must be a multiple of
8 4 -5 28 O] [0 O 1 -4 0

(10/3,-26/3, 4, 1). One simple choice is (10, —26, 12, 3), which gives
w=10v, —26v, =12v; +3v, =(24,-48,-24) . Another choice for wis (1, -2, —1).
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SOLUTIONS

Notes: The definition for basis is given initially for subspaces because this emphasizes that the basis
elements must be in the subspace. Students often overlook this point when the definition is given for a
vector space (see Exercise 25). The subsection on bases for Nul 4 and Col 4 is essential for Sections 4.5
and 4.6. The subsection on “Two Views of a Basis” is also fundamental to understanding the interplay
between linearly independent sets, spanning sets, and bases. Key exercises in this section are Exercises
21-25, which help to deepen students’ understanding of these different subsets of a vector space.

1.

Consider the matrix whose columns are the given set of vectors. This 3 X 3 matrix is in echelon form,
and has 3 pivot positions. Thus by the Invertible Matrix Theorem, its columns are linearly

independent and span IR’. So the given set of vectors is a basis for R>.

. Since the zero vector is a member of the given set of vectors, the set cannot be linearly independent

and thus cannot be a basis for R’. Now consider the matrix whose columns are the given set of
vectors. This 3 X 3 matrix has only 2 pivot positions. Thus by the Invertible Matrix Theorem, its

columns do not span R’.

. Consider the matrix whose columns are the given set of vectors. The reduced echelon form of this

1 3 -3 1 0 9/2
matrixis | 0 2 =5|~|0 1 —=5/2]so the matrix has only two pivot positions. Thus its

-2 -4 1 0 0 0

columns do not form a basis for R”; the set of vectors is neither linearly independent nor does it
span R’.

. Consider the matrix whose columns are the given set of vectors. The reduced echelon form of this

2 1 -7 1 0 0
matrixis | -2 -3 5|~|0 1 0], so the matrix has three pivot positions. Thus its columns
1 2 4 0 0 1

form a basis for R>.

. Since the zero vector is a member of the given set of vectors, the set cannot be linearly independent

and thus cannot be a basis for R*. Now consider the matrix whose columns are the given set of
1 =2 0 0 1 0 0 O

vectors. The reduced echelon form of this matrix is | =3 9 0 -3|~/0 1 O O],sothe
0O 0 0 5 0 0 0 1

matrix has a pivot in each row. Thus the given set of vectors spans R’.

. Consider the matrix whose columns are the given set of vectors. Since the matrix cannot have a pivot

in each row, its columns cannot span R’; thus the given set of vectors is not a basis for R*. The

1 —4 1 0
reduced echelon form of the matrixis | 2 —-5|~|0 1], so the matrix has a pivot in each
-3 6 0 0

column. Thus the given set of vectors is linearly independent.
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7. Consider the matrix whose columns are the given set of vectors. Since the matrix cannot have a pivot

10.

in each row, its columns cannot span R’ ; thus the given set of vectors is not a basis for R’. The

-2 6 1 0
reduced echelon form of the matrixis | 3 —1|~|0 1], so the matrix has a pivot in each column.
0 5 0 0

Thus the given set of vectors is linearly independent.

. Consider the matrix whose columns are the given set of vectors. Since the matrix cannot have a pivot

in each column, the set cannot be linearly independent and thus cannot be a basis for R®. The
1 0 3 0 1 0 0 -3/2

reduced echelon form of this matrixis | -4 3 -5 2|1~10 1 0 =1/2], sothe matrix has
3 -1 4 =2 0 0 1 1/2

a pivot in each row. Thus the given set of vectors spans R’.

. We find the general solution of Ax = 0 in terms of the free variables by using the reduced echelon

1 0 -3 2 1 0 -3 2
formof4: |0 1 -5 4|~/0 1 -5 4|.So x, =3x-2x,, x, =5x; —4x,, with x; and
3 2 1 =210 0 0 O

x, 3 -2 312

* 5 —4 . 5] |4
x, free. So x= =x;| |+ xy ,and a basis for Nul 4 is ,

X; 1 0 1 0

X, 0 1 0 1

We find the general solution of Ax = 0 in terms of the free variables by using the reduced echelon
1 0 -5 1 4 1 0 -5 0 7

formof4: |-2 1 6 -2 -2|~/0 1 -4 0 6] Sox =5x-Tx5, x, =4x; —06xs,
02 -8 1 910 0 O 1 -3

X, [5] -7
X, 4 -6
x4 =3x5, with x; and x5 free. So x=| x; [=x;| | |[+x5| O |,and a basis for Nul 4 is

Xy 0
L X5 ] 10} LA

"1 7]

4| 1-6

1{,| O

0 3

_0_ L 1_
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Let A=[1 2 1]. Then we wish to find a basis for Nul 4. We find the general solution of Ax = 0 in
x -2 -1
terms of the free variables: x =—2y —z with y and z free. So x=| y |=y| 1|+2z| 0 |,and a basis for
z 0 1
=2 |-1
Nul 4 is 1, O
0 1

We want to find a basis for the set of vectors in R” in the line 5x —y=0. Let 4= [5 -1]. Then we

wish to find a basis for Nul 4. We find the general solution of Ax = 0 in terms of the free variables: y

1 1
= 5x with x free. So x= [x} = X[S} and a basis for Nul 4 is { L} }
y

Since B is a row echelon form of 4, we see that the first and second columns of 4 are its pivot
-2 4

columns. Thus a basis for Col 4 is 21,6
-3 8

To find a basis for Nul 4, we find the general solution of Ax = 0 in terms of the free variables:
x, =—6x; —5x4, x, =(-5/2)x; —(3/2)x,, with x; and x, free. So

X -6 -5 -6 -5
-5/2 -3/2 =5/21|-3/2
x=| "= X, + x4 ,and a basis for Nul 4 is ,
X5 1 0 1 0
X4 0 1 0 1
Since B is a row echelon form of 4, we see that the first, third, and fifth columns of 4 are its pivot
1| |-5]|-3
. ) 21 |-5
columns. Thus a basis for Col 4 is Aol s
31 [-5] |2

To find a basis for Nul 4, we find the general solution of Ax = 0 in terms of the free variables,
mentally completing the row reduction of B to get: x, =-2x, —4x,, x; =(7/5)x,, x5 =0, with x,

X, -2 -4 -2 -4

X, 1 0 1 0

and x, free. So x=| x; [=x,| 0|+x,|7/5|,and a basis for Nul 4 is 01,]7/5
X, 0 1 0 1

| X5 | | 0] | 0] L 0] | 0]
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17.

Vector Spaces

This problem is equivalent to finding a basis for Col 4, where A=[v, v, v; v, v].Since
1 0 -3 1 2 1 0 3 0 4
0o 1 -4 -3 1 01 4 0 -5
the reduced echelon form of 4 is ~ ,
-3 2 1 -8 -6 0 0 0 1 =2

2 3 6 7 9,10 0 0 0 O

we see that the first, second, and fourth columns of 4 are its pivot columns. Thus a basis for the

1 0 1
space spanned by the given vectors is (3) , 21 , _Z
2113 7
This problem is equivalent to finding a basis for Col 4, where A=[v, v, v; v, v].Since
1 2 6 5 0 1 0 0 -1 =2
the reduced echelon form of 4 is o= ~ 0 10 =5 , we see that the
-1 2 3 -1 0 0 1 O
1 1 -1 -4 1 0 0 0 0 O
first, second, and third columns of 4 are its pivot columns. Thus a basis for the space spanned by the
1] |2 6
given vectors is 0 , ! , -l
0 -1 2
1 1] |-1
[M] This problem is equivalent to finding a basis for Col 4, where A=[v, v, v; v, vs].
8 4 -1 6 -1][1 0 0 -1/2 3]
9 5 4 8 4 0o 1 0 5/2 -7
Since the reduced echelon form of 4 is | -3 1 -9 4 11|~|{0 0 1 0 -3|,we
-6 -4 6 -7 -8 0 0 0 0 0
|10 4 -7 10 -7] [0 0 O 0 0]
see that the first, second, and third columns of 4 are its pivot columns. Thus a basis for the space
S 91T 47 [—1]
9 5014
spanned by the given vectorsis 1 | =3 |,| 1|,| -9
—6| | 4 6
| 0] | 4] [-7]
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[M] This problem is equivalent to finding a basis for Col 4, where A=[v, v, v; v, vl

(-8 8 -8 1 -9] [1 0 5/3 0 4/3
7 -7 7 4 3 0 1 2/3 0 1/3
Since the reduced echelon formof 4is | 6 -9 4 9 —4(~/0 O 0 1 -1, we
5 -5 5 6 -1 0 0 0 0 0
-7 7 -7 =7 0] |0 O 0 0 0]

see that the first, second, and fourth columns of 4 are its pivot columns. Thus a basis for the space

-8 8 1

-7 4

spanned by the given vectors is 6(,]-91,| 9
51 1-5 6

=71 7] -7

Since 4v, +5v, —3v, =0, we see that each of the vectors is a linear combination of the others. Thus
the sets {v,,v,}, {v,,v;}, and {v,,v,} all span H. Since we may confirm that none of the three
vectors is a multiple of any of the others, the sets {v,,v,}, {v,,v;}, and {v,,v;} are linearly
independent and thus each forms a basis for H.

Since v, —3v, +5v; =0, we see that each of the vectors is a linear combination of the others. Thus
the sets {v,,v,}, {v,,v;}, and {v,,v,} all span H. Since we may confirm that none of the three
vectors is a multiple of any of the others, the sets {v,,v,}, {v,,v;}, and {v,,v;} are linearly
independent and thus each forms a basis for H.

a. False. The zero vector by itself is linearly dependent. See the paragraph preceding Theorem 4.

b. False. The set {b,,...,b,} must also be linearly independent. See the definition of a basis.

¢. True. See Example 3.
d. False. See the subsection “Two Views of a Basis.”
e. False. See the box before Example 9.

a. False. The subspace spanned by the set must also coincide with H. See the definition of a basis.

b. True. Apply the Spanning Set Theorem to V instead of H. The space V is nonzero because the
spanning set uses nonzero vectors.

¢. True. See the subsection “Two Views of a Basis.”
d. False. See the two paragraphs before Example 8.
e. False. See the warning after Theorem 6.

Let A=[v, v, v, v,]|. Then 4 issquare and its columns span R* since
R* = Span{v,,v,,v;,v,}. So its columns are linearly independent by the Invertible Matrix Theorem,

. . 4
and {v,,v,,v;,v,} is a basis for R".

Let A=[v, ... v,]. Then A4 is square and its columns are linearly independent, so its columns

span R" by the Invertible Matrix Theorem. Thus {v,,...,v,} is a basis for R".
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25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

In order for the set to be a basis for /, {v,,v,,v;} must be a spanning set for /7; that is,

H =Span{v,,v,,v,}. The exercise shows that H is a subset of Span{v,,v,,v,}. but there are vectors
in Span{v,,v,,v,;} which are notin H (v, and v,, for example). So H # Span{v,,v,,v,;}, and
{v,,v,,v;} is not a basis for H.

Since sin 7 cos ¢ = (1/2) sin 2¢, the set {sin ¢, sin 2¢} spans the subspace. By inspection we note that
this set is linearly independent, so {sin ¢, sin 2¢} is a basis for the subspace.

The set {cos ax, sin ax} spans the subspace. By inspection we note that this set is linearly
independent, so {cos ax, sin a¥} is a basis for the subspace.
The set {e™”, te””'} spans the subspace. By inspection we note that this set is linearly independent,

so {e” te™™} is a basis for the subspace.

Let 4 be the n X k matrix [v, ... v,]. Since 4 has fewer columns than rows, there cannot be a

pivot position in each row of 4. By Theorem 4 in Section 1.4, the columns of 4 do not span R" and
thus are not a basis for R".

Let 4 be the n X k matrix [v, ... v,]. Since 4 has fewer rows than columns rows, there cannot be
a pivot position in each column of 4. By Theorem 8 in Section 1.6, the columns of A4 are not linearly
independent and thus are not a basis for R" .

Suppose that {v,,...,v,} is linearly dependent. Then there exist scalars ¢,...,c, not all zero with
¢vy+...+¢,v,=0. Since T'is linear, T(c;v,+...+c,v,)=¢T(v))+...+¢,T(v,) and
T(evy+...+¢,v,)=T(0)=0.

Thus ¢,T(v,)+...+¢,T(v,)=0 and since not all of the ¢; are zero, {T'(V,),...,T(v,)} is linearly

dependent.

Suppose that {T'(v,),...,T(v,)} is linearly dependent. Then there exist scalars ¢;,...,c, not all zero
with ¢T(v)+...+¢,T(v,)=0. Since T'is linear,
T(evi+...+c,v,)=cT(v)+...+¢,T(v,)=0=T(0). Since T is one-to-one
T(¢vy+...+¢,v,)=T(0) implies that ¢;v, +...+¢,v, =0. Since not all of the ¢; are zero,

{Vis...,v,} 1s linearly dependent.

Neither polynomial is a multiple of the other polynomial. So {p,,p,} is a linearly independent set in

IP, . Note: {p,,p,} is also a linearly independent set in [P, since p, and p, both happen to be in P, .

By inspection, p; =p, +p,, or p, +p, —Pp; = 0. By the Spanning Set Theorem,
Span{p,,p,,p;} =Span{p,,p,} . Since neither p, nor p, is a multiple of the other, they are linearly
independent and hence {p,,p,} is a basis for Span{p,,p,.p;}-
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Let {v,,v;} be any linearly independent set in a vector space V, and let v, and v, each be linear
combinations of v, and v,. For instance, let v, =u, and v, =u,, thenset v, =5v, and

v, =V, +v,. Then {v,,v,;} is a basis for Span{v,,v,,v;,v,}.

[M] Row reduce the following matrices to identify their pivot columns:
1 0 3 3
2 2 4 0 1 -1 . .
[, uw, w]= 0 -1 1] 0 0 O,so {u,,u,} is a basis for H.
-1 1 -4 0 0 O
(2 2 -1] [1 0 0
-2 3 4 0 1 0 . :
[vi v, vi]= s 6] 0o o 1% {V,,V,,V,} is a basis for K.
| 3 6 2 0 0 O
1 o0 3 =2 2 - 1 0 3 =2 0 0
2 2 -2 3 4 0 1 -1 1 0 0
o w v v b=, sl oo 0 0 1 of ¥
-1 1 4 3 -6 2 0 0 0 0 0 1

{u,,u,,v,,v,;} is a basis for 7 + K.

[M] For example, writingc, -+ ¢, -sin ¢ + ¢;cos 2t +¢,sin t cos t =0 with =0, .1, .2, .3 gives the
following coefficent matrix 4 for the homogeneous system Ac = 0 (to four decimal places):
0 sin0 cosO sin0OcosO 0 0 1 0
.1 sin.1 cos.2 sin.lcos.l .1 .0998 9801 .0993 ) L. .
A= . ) = . This matrix is invertible, so
2 sin.2 cos.4 sin.2cos.2 20 1987 9211 .1947
.3 sin.3 cos.6 sin.3cos.3 32955 8253 .2823

the system Ac = 0 has only the trivial solution and {z, sin #, cos 2¢, sin ¢ cos ¢} is a linearly
independent set of functions.

[M] For example, writing ¢, -1+ ¢, -cost +c; - cos’t + ¢, - €S t + ¢5 -cos*t + ¢4 -cos’t + ¢, -cos’t =0
with
t=0,.1,.2,.3, 4, .5, .6 gives the following coefficent matrix 4 for the homogeneous system A¢ =0

1 cosO cos’0 cos’0 cos*0 cos’0 cos®0
1 cos.l cos’.l cos’.l cos*.l cos’.1 cos®.1
1 cos.2 cos’.2 cos’2 cos*2 cos’2 cos®2
(to four decimal places): A=|1 cos.3 cos’.3 cos’.3 cos*.3 cos’.3 cos®.3
1 cos4 cos’4 cos®4 cos*4d cos’4 cos®4
1 cos.5 cos’.5 cos’.5 cos’.5 cos’.5 cos®.s
|1 cos.6 cos’.6 cos’.6 cos*.6 cos’.6 cos’ .6 |
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1
.9802
9226
.8330
7197
.5931
4640

1
9753
.9042
7958
.6629
5205
.3830

1

.9704
.8862
7602
.6106
4568

3161 |

. This matrix is invertible, so the system Ac =0

has only the trivial solution and {1, cos ¢, cos’, cos’t, cos't, cos’t, cos’t} is a linearly independent set

1 1 1 1
1 .9950 .9900 .9851
1 .9801 .9605 .9414
=|1 .9553 9127 .8719
1 9211 .8484 .7814
1 8776 .7702 .6759
|1 .8253 .6812 .5622
of functions.
44  SOLUTIONS

Notes: Section 4.7 depends heavily on this section, as does Section 5.4. It is possible to cover the R”
parts of the two later sections, however, if the first half of Section 4.4 (and perhaps Example 7) is
covered. The linearity of the coordinate mapping is used in Section 5.4 to find the matrix of a
transformation relative to two bases. The change-of-coordinates matrix appears in Section 5.4, Theorem §
and Exercise 27. The concept of an isomorphism is needed in the proof of Theorem 17 in Section 4.8.
Exercise 25 is used in Section 4.7 to show that the change-of-coordinates matrix is invertible.

1. We calculate that x=15

2. We calculate that x =38

1 5 41 -1
3. We calculate that x=3| -4 |[+0| 2|+ (-D|-T7|=|-5].
| 3 -2 0 9
-1 3 4 0
4. We calculate that x=(-4)| 2 |+8| 5|+(-7)|-7|=| 1|.
0 2 31 |5
, 1 0 8 [
5. The matrix [b, b, x| row reduces to 0 1 s so [x]z =
_ 1 0 -6 I
6. The matrix [b, b, x| row reduces to 0o 1 ol [x]g =

HERE
HEEHEH
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0 0 -1 -1
. The matrix [b, b, b; x| rowreducesto |0 1 0 -1, so[x]z=|-1]|
0 0 3 3
[1 0 0 -2 -2
. The matrix [b, b, b; x| rowreducesto [0 1 0 0], so [x]z=
0 0 1 5

2 1
. The change-of-coordinates matrix from B to the standard basis in R is Py =[b, b,] =[ 9 8}'

The change-of-coordinates matrix from B to the standard basis in R? is
3 2 8

P;=[b, b, by]=|-1 0 -2
4 -5 7

Since P;~' converts x into its 3 -coordinate vector, we find that

sl T L 2H

Since P;~' converts x into its 3 -coordinate vector, we find that

A A D R

We must find ¢, , ¢,, and ¢, such that ¢,(1+£*)+c,(t +*) +c;(1+ 2t +1°) =p(t) =1+ 4t + 71>

Equating the coefficients of the two polynomials produces the system of equations
¢ + g =1

¢, + 2¢; = 4. Werow reduce the augmented matrix for the system of equations to
q + ¢ + ¢ =17
find
1 0 1 1 1 0 0 2 2
0 1 2 4|~0 1 0 6so[plz=| 6]
1 11 7010 0 1 -1 -1

One may also solve this problem using the coordinate vectors of the given polynomials relative to the
standard basis {1, ¢, 7}; the same system of linear equations results.

We must find ¢, ¢,, and ¢, such that ¢,(1—£*)+c,(t—t>) +¢;(2—2t +1*) =p(t) =3 +1 — 61>

Equating the coefficients of the two polynomials produces the system of equations
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17.

18.

19.

¢ + 2¢c;, = 3
¢, — 2¢; = 1. Werow reduce the augmented matrix for the system of equations to
- — ¢ + ¢ = -6
1 0 2 3 1 00 7 7
find| 0 1 -2 1|~{0 1 0 =3|so[plz=|-3|
-1 -1 1 -6 0 0 1 =2 -2

One may also solve this problem using the coordinate vectors of the given polynomials relative to the
standard basis {1, ¢, #*}; the same system of linear equations results.

a. True. See the definition of the BB -coordinate vector.
b. False. See Equation (4).

c. False. [P, is isomorphic to R*. See Example 5.

a. True. See Example 2.
b. False. By definition, the coordinate mapping goes in the opposite direction.

¢. True. If the plane passes through the origin, as in Example 7, the plane is isomorphic to R>.

1 2 -3 1
We must solve the vector equation Xx; [ 3} +x, [ 8} + X3 [ 7} = [J . We row reduce the augmented

-3 -8 7 1110 1 1 =2

X, =545x; and x, =-2—Xx;, where x; can be any real number. Letting x; =0 and x; =1 produces

. _ 1 2 31 1 0 -5 5
matrix for the system of equations to find ~ . Thus we can let

two different ways to express [J as a linear combination of the other vectors: 5v, —2v, and

10v, —=3v, + v, . There are infintely many correct answers to this problem.

0
For each k, b, =0-b, +---+1-b, +---+0-b, ,s0 [b,]; = —e,.

0

The set S spans ¥ because every x in V has a representation as a (unique) linear combination of
elements in S. To show linear independence, suppose that S ={v,,...,v,} and that

v, +--+c¢,v, =0 for some scalars c,, ..., ¢,. The case when ¢, =---=¢, =0 is one possibility.

By hypothesis, this is the unique (and thus the only) possible representation of the zero vector as a
linear combination of the elements in S. So S is linearly independent and is thus a basis for V.
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20. For win V there exist scalars k,, k,, ky, and k, such that w=kv, +k,v, +k;v; + k,v,because
{v,,v,,V5,V,} spans V. Because the set is linearly dependent, there exist scalars ¢,, ¢,, ¢;, and ¢,
not all zero, such that 0 =¢,v, +¢,v, +¢;v; +¢,v,. Adding there two equations gives
w=w+0=(k +¢)v,+(k, +c,)v, + (ks +c;)vy + (kg +c,)v,. Atleast one of the weights in the
third equation differs from the corresponding weight in the first equation because at least one of the
¢; is nonzero. So w is expressed in more than one way as a linear combination of v,, v,, v, , and

V,.

1 =21 (9 2
21. The matrix of the transformation will be P, = { } = { }

-4 9 4 1
22. The matrix of the transformation willbe 2, =[b, --- b,] .
G
23. Suppose that [u]z =[w]z =| : |. By definition of coordinate vectors, u=w=c¢b, +---+¢,b,.
c

n

Since u and w were arbitrary elements of V, the coordinate mapping is one-to-one.

24. Given y = (y,,...,»,) in R" let u=yb, +---+ y,b, . Then, by definition, [u]; =y . Since y was
arbitrary, the coordinate mapping is onto R".

25. Since the coordinate mapping is one-to-one, the following equations have the same solutions

CpyeeesCy

cu; ++--+c,u, =0 (the zero vector in V') and [clu1 +otcu, ]B = [0]5 (the zero vector in R"). Since the coordine

independent if and only if {[u;],...,[u,]s} is linearly independent. This result also follows directly

from Exercises 31 and 32 in Section 4.3.

26. By definition, w is a linear combination of u,,...,u » if and only if there exist scalars ¢,.. »Cp such
that
w=qu, +---+c,u, . Since the coordinate mapping is linear, [W]s = ¢;[u; ]z +---+c,[u, 15

Conversely, the second equation implies the first equation because the coordinate mapping is one-to-
one. Thus w is a linear combination of u,...,u,, if and only if [w]; is a linear combination of

[u];,....[u],.

Note: Students need to be urged to write not just to compute in Exercises 27-34. The language in the
Study Guide solution of Exercise 31 provides a model for the students. In Exercise 32, students may have
difficulty distinguishing between the two isomorphic vector spaces, sometimes giving a vector in R’ as
an answer for part (b).
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27.

28.

29.

30.

31.

The coordinate mapping produces the coordinate vectors (1, 0, 0, 2), (2, 1, -3, 0), and (0, -1, 2, -1)
respectively. We test for linear independence of these vectors by writing them as columns of a matrix
1 2 0 1 0 O

0 1 -1 0 1
0 -3 2 0 0 1
2 0 -1 0 0 0

columns (and thus the given polynomials) are linearly independent.

The coordinate mapping produces the coordinate vectors (1, 0, -2, 1), (0, 1, 0, 2), and (1, 1, -2, 0)

respectively. We test for linear independence of these vectors by writing them as columns of a matrix
1 0 1 1 0 0

0 1 1 0 1
-2 0 -2 0 0
-1 2 0 0 0 O

columns (and thus the given polynomials) are linearly independent.

and row reducing: . Since the matrix has a pivot in each column, its

and row reducing: . Since the matrix has a pivot in each column, its

The coordinate mapping produces the coordinate vectors (1, -2, 1, 0), (0, 1,2, 1), and (1, -3, 3,-1)
respectively. We test for linear independence of these vectors by writing them as columns of a matrix

1 0 1 1 0 1
. -2 1 =310 1 -1| . . o
and row reducing: ~ . Since the matrix does not have a pivot in each
1 =2 3] (0 0 O
0 1 -1 |0 0 O

column, its columns (and thus the given polynomials) are linearly dependent.

The coordinate mapping produces the coordinate vectors (8, —12, 6, -1), (9, —6, 1, 0), and (1, 6, -5,1)
respectively. We test for linear independence of these vectors by writing them as columns of a matrix
8 9 1 1 0 -1

-12 -6 6 0 1 1
1 -5 0 0
-1 0 1 0 0 O

column, its columns (and thus the given polynomials) are linearly dependent.

and row reducing: . Since the matrix does not have a pivot in each

In each part, place the coordinate vectors of the polynomials into the columns of a matrix and reduce
the matrix to echelon form.

1 -3 -4 1 1 -3 4 1

a. -3 5 5 0|~|0 -4 -7 3|. Since there is not a pivot in each row, the original
5 -7 -6 -1 0O 0 0 0

four column vectors do not span R*. By the isomorphism between R* and [P, , the given set of

polynomials does not span [P, .
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0o 1 -3 2 1 -2 2 0

b. 5 8 4 3|~|0 2 -6 -3|. Since there is a pivot in each row, the original four
1 -2 2 0 0 0 0 7/2

column vectors span R’. By the isomorphism between R* and IP, , the given set of polynomials

spans P, .

a. Place the coordinate vectors of the polynomials into the columns of a matrix and reduce the
1 0 1 1 0 1

matrix to echelon form: {0 1 1|~|0 1 1]|. The resulting matrix is invertible since it

1 -3 3 0 0 -1
row equivalent to /;. The original three column vectors form a basis for R* by the Invertible
Matrix Theorem. By the isomorphism between R’ and [P, , the corresponding polynomials form

a basis for P, .

b. Since [q]; =(-1,1,2), q=—p, +p, +2p;. One might do the algebra in P, or choose to compute
1 0 1}-1 1
0 1 1y 1|=| 3. This combination of the columns of the matrix corresponds to the
1 -3 3| 2 -10

same combination of p,, p,, and p;. So q(t)=1+3t-10¢".

The coordinate mapping produces the coordinate vectors (3, 7, 0, 0), (5, 1, 0, -2), (0, 1, -2, 0) and
(1, 16, 6, 2) respectively. To determine whether the set of polynomials is a basis for P, , we
investigate whether the coordinate vectors form a basis for R* . Writing the vectors as the columns
35 0 1 1 00 2
. . 7 1 1 16 0 1
of a matrix and row reducing ~
0 0 2 -6 0 0
0o 2 0 2 00

, we find that the matrix is not

0 O
row equivalent to /,. Thus the coordinate vectors do not form a basis for R*. By the isomorphism
between R* and PP, , the given set of polynomials does not form a basis for P, .

The coordinate mapping produces the coordinate vectors (5, -3, 4, 2), (9, 1, 8, -6), (6,2, 5, 0), and
(0, 0, 0, 1) respectively. To determine whether the set of polynomials is a basis for PP, , we

investigate whether the coordinate vectors form a basis for R* . Writing the vectors as the columns
5.9 6 0 1 0 3/4 0
-3 1 =2 0| |0 1 1/4 0
4 8 50/ |00 0
2 -6 0 1| [0 O 0 0

of a matrix, and row reducing we find that the matrix is

not row equivalent to /,. Thus the coordinate vectors do not form a basis for R*. By the
isomorphism between R* and IP, , the given set of polynomials does not form a basis for P, .
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3S.

36.

37.

38.

To show that x is in H =Span{v,,v,}, we must show that the vector equation x,v, + x,v, =x hasa
solution. The augmented matrix [v, v, x| may be row reduced to show
11 14 19 1 0 -5/3
-5 -8 -13| |0 1 8&/3 ) , ) . )
~ . Since this system has a solution, x is in A. The solution allows
10 13 18] (0 O
7 10 15] |0 O 0

-5/3
us to find the B -coordinate vector for x: since x =x,v, + x,v, =(=5/3)v, +(8/3)v,, [X]z = { 8/ 3} .

To show that x is in H = Span{v,,v,,v,}, we must show that the vector equation
XV, +%,V, + x;v; = x has a solution. The augmented matrix [v, v, v; x| may berow

reduced to show

-6 8 -9 4 1 0 0 3
4 -3 5 7 0O 1 0 5 ) .
~ . The first three columns show that B is a basis for H.
-9 7 -8 -8 0O 0 1 2

4 -3 3 3] 10 0 0 O

Moreover, since this system has a solution, x is in /. The solution allows us to find the B -

3
coordinate vector for X: since X =x,V, + x,V, + x3V; =3v, +5v, +2v;, [X]z =] 5
2
1/2 26| (0 0
We are given that [X]z; =|1/4 |, where B=< |-1.5|,{3|,| 0| ;. To find the coordinates of x
1/6 0[]0 |48
relative to the standard basis in R’, we must find x. We compute that
26 0 0(1/2 1.3
x=Fx]z=|-15 3 01/4|= 0
0 0 48]|1/6 0.8
1/2 26|10 0
We are given that [x]; =|1/2 |, where B=4 | -1.5(,|3|,| 0| ;. To find the coordinates of x
1/3 0[]0 |4.8

relative to the standard basis in R*, we must find x. We compute that
26 0 0]1/2 1.3]

x=FPg[x]zp=|-15 3 0)1/2]=]0.75].
0 0 48| 1/3 1.6 |
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4.5 SOLUTIONS

Notes: Theorem 9 is true because a vector space isomorphic to R” has the same algebraic properties as
R"; a proof of this result may not be needed to convince the class. The proof of Theorem 9 relies upon
the fact that the coordinate mapping is a linear transformation (which is Theorem 8 in Section 4.4). If you
have skipped this result, you can prove Theorem 9 as is done in Introduction to Linear Algebra by Serge
Lang (Springer-Verlag, New York, 1986). There are two separate groups of true-false questions in this
section; the second batch is more theoretical in nature. Example 4 is useful to get students to visualize
subspaces of different dimensions, and to see the relationships between subspaces of different
dimensions. Exercises 31 and 32 investigate the relationship between the dimensions of the domain and
the range of a linear transformation; Exercise 32 is mentioned in the proof of Theorem 17 in Section 4.8.

1 -2
1. This subspace is H =Span{v,,v,}, where v, =| 1| and v, =| 1. Since v, and v, are not
0 3

multiples of each other, {v,,v,} is linearly independent and is thus a basis for /. Hence the
dimension of H is 2.

4 0
2. This subspace is H =Span{v,,v,}, where v, =|-3| and v, =| 0|. Since v, and v, are not
0 -1

multiples of each other, {v,,v,} is linearly independent and is thus a basis for 4. Hence the
dimension of H is 2.

0 0
. . 1 -1 .
3. This subspace is H =Span{v,,v,,v;}, where v, = ol v, = L and v, = 5| Theorem 4 in
1 2 0

Section 4.3 can be used to show that this set is linearly independent: v, #0, v, is not a multiple of
v,, and (since its first entry is not zero) v, is not a linear combination of v, and v,. Thus
{v,,v,,v,;} is linearly independent and is thus a basis for H. Alternatively, one can show that this set
is linearly independent by row reducing the matrix [v, v, v; 0]. Hence the dimension of the

subspace is 3.

4. This subspace is H =Span{v,,v,}, where v, =

1

2 0 .

3 and v, = Ll Since v, and v, are not
0 -1

multiples of each other, {v,,v,} is linearly independent and is thus a basis for 4. Hence the

dimension of H is 2.
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5.

10.

1
. This subspace is H=Nul 4, where 4={0 1 -2/|. Since [4 0]~|0

—4 -2
. . 2 5 4|
This subspace is H =Span{v,,v,,v;}, where v, = L v, = ,and v, = 5| Since
-3 7 6

vy =-2v,, {v,,V,,v,} is linearly dependent. By the Spanning Set Theorem, v, may be removed
from the set with no change in the span of the set, so H =Span{v,,v,}. Since v, and v, are not
multiples of each other, {v,,v,} is linearly independent and is thus a basis for 4. Hence the
dimension of H is 2.

6 -1
. . 6 - _ .
This subspace is H =Span{v,,v,,v;}, where v, = ol v, = S| and v, = 5| Since
-3 1 1

vy =—(1/3)v,, {v,,v,,v;} is linearly dependent. By the Spanning Set Theorem, v, may be
removed from the set with no change in the span of the set, so # =Span{v,,v,}. Since v, and v,
are not multiples of each other, {v,,v,} is linearly independent and is thus a basis for /. Hence the
dimension of H is 2.

1 -3 1

S = O

0 0
0 0], the
0o 2 -1 0 1 0

homogeneous system has only the trivial solution. Thus H = Nul 4 = {0}, and the dimension of H is
0.

From the equation a — 3b + ¢ = 0, it is seen that (a, b, ¢, d) = b(3, 1, 0, 0) + c¢(-1, 0, 1, 0) + d(0, 0, 0,
1). Thus the subspace is H =Span{v,,v,,v;}, where v, =(3,1,0,0), v, =(-10,1,0), and

v, =(0,0,0,1). It is easily checked that this set of vectors is linearly independent, either by appealing
to Theorem 4 in Section 4.3, or by row reducing [v, v, v; 0]. Hence the dimension of the

subspace is 3.

a 1 0
This subspace is H =< | b |:a,bin R =Span{v,,v,}, where v, =| 0| and v, =| 1 |. Since v,
a 1 0

and v, are not multiples of each other, {v,,v,} is linearly independent and is thus a basis for H.
Hence the dimension of H is 2.

2 -4 =3 1 -2 0
The matrix 4 with these vectors as its columns row reduces to ~ .
-5 10 6 0 0 1

There are two pivot columns, so the dimension of Col 4 (which is the dimension of H) is 2.
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The matrix 4 with these vectors as its columns row reduces to
1 3 9 -7 1 0 -3 2

01 4 3|~10 1 4 3|
21 -2 1] (0 0 O O

There are two pivot columns, so the dimension of Col 4 (which is the dimension of the subspace
spanned by the vectors) is 2.

The matrix 4 with these vectors as its columns row reduces to
1 -3 -8 -3 1 0 7 0
-2 4 6 0|~|{0 1 5 0]
0 1 5 7 0 0 0 1

There are three pivot columns, so the dimension of Col 4 (which is the dimension of the subspace
spanned by the vectors) is 3.

The matrix 4 is in echelon form. There are three pivot columns, so the dimension of Col 4 is 3.
There are two columns without pivots, so the equation Ax = 0 has two free variables. Thus the
dimension of Nul 4 is 2.

The matrix 4 is in echelon form. There are three pivot columns, so the dimension of Col 4 is 3.
There are three columns without pivots, so the equation Ax = 0 has three free variables. Thus the
dimension of Nul 4 is 3.

The matrix 4 is in echelon form. There are two pivot columns, so the dimension of Col 4 is 2. There
are two columns without pivots, so the equation Ax = 0 has two free variables. Thus the dimension
of Nul 4 is 2.

3 4 1 0
The matrix 4 row reduces to { 6 10} ~ {0 J. There are two pivot columns, so the dimension of

Col 4 is 2. There are no columns without pivots, so the equation Ax = 0 has only the trivial solution
0. Thus Nul 4 = {0}, and the dimension of Nul 4 is 0.

The matrix 4 is in echelon form. There are three pivot columns, so the dimension of Col 4 is 3.
There are no columns without pivots, so the equation Ax = 0 has only the trivial solution 0. Thus Nul
A = {0}, and the dimension of Nul 4 is 0.

The matrix 4 is in echelon form. There are two pivot columns, so the dimension of Col 4 is 2. There
is one column without a pivot, so the equation Ax = 0 has one free variable. Thus the dimension of
Nul 4 is 1.

a. True. See the box before Example 5.
b. False. The plane must pass through the origin; see Example 4.
c. False. The dimension of [P is n + 1; see Example 1.

d. False. The set S must also have n elements; see Theorem 12.
e. True. See Theorem 9.
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20.

21.

22

23.

a. False. The set R? is not even a subset of R,

b. False. The number of free variables is equal to the dimension of Nul 4; see the box before
Example 5.

c¢. False. A basis could still have only finitely many elements, which would make the vector space
finite-dimensional.

d. False. The set .S must also have n elements; see Theorem 12.

e. True. See Example 4.

The matrix whose columns are the coordinate vectors of the Hermite polynomials relative to the

1 0 =2 0
0o 2 0 -12

standard basis {l,t,tz,t3} of P, is A= o 0 4 ol This matrix has 4 pivots, so its columns
0 0 0 8

are linearly independent. Since their coordinate vectors form a linearly independent set, the Hermite
polynomials themselves are linearly independent in P, . Since there are four Hermite polynomials

and dim [P, =4, the Basis Theorem states that the Hermite polynomials form a basis for PP, .

The matrix whose columns are the coordinate vectors of the Laguerre polynomials relative to the

1 1 2 6

. 2 3 . 0 -1 -4 -18 . . . .

standard basis {1,¢,t7,¢°} of P, is 4= 0 o | ol This matrix has 4 pivots, so its

o o0 0 -1
columns are linearly independent. Since their coordinate vectors form a linearly independent set, the
Laguerre polynomials themselves are linearly independent in [P, . Since there are four Laguerre
polynomials and dim [P, = 4, the Basis Theorem states that the Laguerre polynomials form a basis

for P .

The coordinates of p(f)=7—12¢—8¢* +12¢* with respect to B satisfy
() +c,(20) + 5 (2 +4t2) + ¢, (12t +87) =T 12t —8¢% +12¢° .

Equating coefficients of like powers of # produces the system of equations

G - 2c = 7
2c, - 12¢, = -12
4c, = -8

8, = 12
3
. . . 3

Solving this system gives ¢, =3, ¢, =3, ¢;=-2, ¢, =3/2, and [p]z = 5

3/2
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The coordinates of p(f) =7 —8t +3t* with respect to B satisfy
a(D)+c,(1—t)+cy(2—4t+12) =7 -8t +3¢°

Equating coefficients of like powers of ¢ produces the system of equations

q + ¢ + 2¢5 = 7
-, — 4¢g = =8
g = 3
5
Solving this system gives ¢, =5, ¢, =4, ¢; =3, and [p]z =| 4|
3

Note first that n > 1 since S cannot have fewer than 1 vector. Since n > 1, V' # 0. Suppose that S spans
V and that S contains fewer than 7 vectors. By the Spanning Set Theorem, some subset S” of S'is a
basis for V. Since S contains fewer than n vectors, and S’ is a subset of S, S” also contains fewer
than n vectors. Thus there is a basis S” for V with fewer than n vectors, but this is impossible by
Theorem 10 since dim} = n. Thus S cannot span V.

IfdimV'=dim H =0, then V= {0} and H= {0}, so H = V. Suppose that dim V'=dim H > 0. Then H
contains a basis S consisting of # vectors. But applying the Basis Theorem to V, S is also a basis for
V. Thus H = V' = SpanS.

Suppose that dim [P = k <eo. Now P, is a subspace of I’ for all n, and dim P, | =, so dim PP,_, =

dim IP. This would imply that P, = P, which is clearly untrue: for example p(¢)=¢* is in P but

not in IP,_, . Thus the dimension of P cannot be finite.

The space C(R ) contains P as a subspace. If C(R ) were finite-dimensional, then P would also be
finite-dimensional by Theorem 11. But [P is infinite-dimensional by Exercise 27, so C(IR ) must
also be infinite-dimensional.

a. True. Apply the Spanning Set Theorem to the set {v,,...,v,} and produce a basis for V. This
basis will not have more than p elements in it, so dimV/ < p.

b. True. By Theorem 11, {v;,...,v,} can be expanded to find a basis for V. This basis will have at

least p elements in it, so dimV = p.

¢. True. Take any basis (which will contain p vectors) for /" and adjoin the zero vector to it.

a. False. For a counterexample, let v be a non-zero vector in R’, and consider the set {v, 2v}. This
is a linearly dependent set in R’ but dim R’ =3>2.

b. True. If dimV < p, there is a basis for V' with p or fewer vectors. This basis would be a spanning
set for V' with p or fewer vectors, which contradicts the assumption.

¢. False. For a counterexample, let v be a non-zero vector in R?, and consider the set {v, 2v}. This
is a linearly dependent set in R’ with 3 — 1 =2 vectors, and dim R* =3.

Since H is a nonzero subspace of a finite-dimensional vector space V, H is finite-dimensional and has
abasis. Let {u;,...,u,} be abasis for H. We show that the set {7'(u,),...,T(u,)} spans T(H). Lety
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be in 7(H). Then there is a vector x in A with 7(x) =y. Since X is in H and {u,,...,u,} is a basis for
H, x may be written as x=c¢ju, +...+c,u, for some scalars ¢,...,c,. Since the transformation 7'is
linear, y=T(x)=T(cu; +...+c,u,)=¢T(u)+...+¢,T(u,). Thusy is a linear combination of
T(uw,),...,T(u,), and {T'(u,),...,T(u,)} spans I(H). By the Spanning Set Theorem, this set contains
a basis for 7(H). This basis then has not more than p vectors, and dim7(H) < p = dim H.

32. Since H is a nonzero subspace of a finite-dimensional vector space V, H is finite-dimensional and has
a basis. Let {u;,...u,} be a basis for /. In Exercise 31 above it was shown that {T'(w,),...,7(u )}
spans 7(H). In Exercise 32 in Section 4.3, it was shown that {T'(w,),...,T'(u )} is linearly
independent. Thus {7'(w,),...,7(u )} is a basis for 7(H), and dim7(H) = p = dim H.

33. [M]

. 5 . . .
a. To find a basis for R’ which contains the given vectors, we row reduce

9 9 6 100 0 0]t 0o0 -1/300 1 3/7]
7 4 70 1000|010 000 1 57
8 1 -8 0 0 1 0 0[~/0 0 1 -1/3 0 0 0 -3/7|
-5 6 5000 10/]000 010 3 22/7
7 7 70 0 0 0 1] |0 00O 0 0 1 -9 -53/7]

The first, second, third, fifth, and sixth columns are pivot columns, so these columns of the
original matrix ({v,,v,,v;,e,,e;} ) form a basis for R>:
b. The original vectors are the first £ columns of A. Since the set of original vectors is assumed

to be linearly independent, these columns of 4 will be pivot columns and the original set of
vectors will be included in the basis. Since the columns of 4 include all the columns of the

identity matrix, Col 4 = R".

34. [M]
a. The B -coordinate vectors of the vectors in C are the columns of the matrix
(1 0 -1 0 1 0 1]

01 0 -3 0 5 0
0 0 2 0 -8 0 18
P=0 0 0 4 0 =20 0].
0 0 0 0 8 0 -48
0o 0 0 O 0 16 0
0 0 0 0 o0 0 32

The matrix P is invertible because it is triangular with nonzero entries along its main
diagonal. Thus its columns are linearly independent. Since the coordinate mapping is an
isomorphism, this shows that the vectors in C are linearly independent.

b. We know that dim H = 7 because B is a basis for H. Now C is a linearly independent set,
and the vectors in C lie in H by the trigonometric identities. Thus by the Basis Theorem, C
is a basis for H.
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4.6 SOLUTIONS

Notes: This section puts together most of the ideas from Chapter 4. The Rank Theorem is the main result
in this section. Many students have difficulty with the difference in finding bases for the row space and
the column space of a matrix. The first process uses the nonzero rows of an echelon form of the matrix.
The second process uses the pivots columns of the original matrix, which are usually found through row
reduction. Students may also have problems with the varied effects of row operations on the linear
dependence relations among the rows and columns of a matrix. Problems of the type found in Exercises
19-26 make excellent test questions. Figure 1 and Example 4 prepare the way for Theorem 3 in Section
6.1; Exercises 27-29 anticipate Example 6 in Section 7.4.

1. The matrix B is in echelon form. There are two pivot columns, so the dimension of Col 4 is 2. There
are two pivot rows, so the dimension of Row 4 is 2. There are two columns without pivots, so the
equation Ax = 0 has two free variables. Thus the dimension of Nul 4 is 2. A basis for Col 4 is the

1| |4
pivot columns of 4: { | —=1|,| 2| ;. A basis for Row A4 consists of the pivot rows of B:
5/ 1-6

{(1,0,—1,5), (0, —2,5,—6)}. To find a basis for Nul 4 row reduce to reduced echelon form:

1 0 -1 5
A ~[ } The solution to Ax=0 in terms of free variables is x; = x; —5x,,

0 1 -5/2 3
1| |-5
. . ) 5/2||-3
x, =(5/2)x; —3x, with x; and x, free. Thus a basis for Nul 4 is Ul o
0 1

2. The matrix B is in echelon form. There are three pivot columns, so the dimension of Col 4 is 3.
There are three pivot rows, so the dimension of Row 4 is 3. There are two columns without pivots,
so the equation Ax =0 has two free variables. Thus the dimension of Nul A4 is 2. A basis for Col 4 is

1 4 9
. 2| |-6|-10 ) . )
the pivot columns of 4: AL 3 . A basis for Row 4 is the pivot rows of B:
3 4 0
{(1,—3,0,5,—7),(0, 0,2,-3,8),(0,0, 0,0,5)}. To find a basis for Nul 4 row reduce to reduced echelon
1 -3 0 5 0
0 0 1 -3/2 0 . . . .
form: 4~ . The solution to Ax =0 in terms of free variables is
0 0 0 0 1
0 0 0 0 0
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x,=3x, =5x4, x;=(3/2)x,, x; =0, with x, and x, free. Thus a basis for Nul 4 is

311 -5
1| o
0[,13/2
0 1

_O_ L O_

3. The matrix B is in echelon form. There are three pivot columns, so the dimension of Col 4 is 3.
There are three pivot rows, so the dimension of Row 4 is 3. There are two columns without pivots,
so the equation Ax =0 has two free variables. Thus the dimension of Nul 4 is 2. A basis for Col 4 is

2 6 2
. 20131 |3 . . .
the pivot columns of A4: Al ol st A basis for Row 4 is the pivot rows of B:
-2 3| |4

{(2, -3,6,2,5),(0,0,3,-1,1),(0,0, 0,1,3)}. To find a basis for Nul 4 row reduce to reduced echelon
1 =3/2 0 0 -9/2]
0 0 1 0 4/3
form: A~ . The solution to 4x =0 in terms of free variables is
0 0 0 1 3
0 0 0 O 0]

X =3/2)x, +(9/2)x5, x3=—(4/3)x5, x, =—3x;, with x, and x; free. Thus a basis for Nul 4 is

[3/27 [ 9/2]
1 0
0, -4/3
of| -3

L 0_ L 1_

4. The matrix B is in echelon form. There are three pivot columns, so the dimension of Col 4 is 3.
There are three pivot rows, so the dimension of Row 4 is 3. There are three columns without pivots,
so the equation Ax =0 has three free variables. Thus the dimension of Nul A4 is 3. A basis for Col 4

1 7
1 21110
is the pivot columns of 4: 1{,| =1|,| 1] ;.A basis for Row 4 is the pivot rows of B:
Il |-3]]-5
1] 1-2] | 0]
{(1, 1,-3,7,9,-9),(0,1,-1,3,4,-3),(0,0,0,1,—-1, - 2)} .To find a basis for Nul 4 row reduce to
10 2 0 9 2]
o 1 -1 0 7 3
reduced echelon form: A~|0 0 0 1 -1 =2{. The solutionto Ax =0 in terms of free
0o 0 0 0 0 O
00 0 0 0 0]
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11.

12.

13.

14.

15.

16.

17.
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variables is x; = 2x; —9x5 —2x¢, x, = x3 — Tx5 —3x¢, x, = x5 +2x,, With x;, x5, and x, free. Thus a

21 1-91 -2

1| (-7 |-3

) ) 1 0 0
basis for Nul 4 is , R

0 1 2

0 1 0

(0] [ O] | 1]

. By the Rank Theorem, dim Nul 4 =8 —-rank 4=8-3=5. Since

dim Row 4 = rank A4,dim Row 4 =3. Since rank 4" =dim Col A" =dim Row 4, rank 4”7 =3.

. By the Rank Theorem, dim Nul 4 =3 —-rank 4 =3-3=0. Since

dim Row 4 =rank 4, dim Row 4 =3. Since rank A’ =dim Col 4" = dim Row 4, rank 4" =3.

. Yes, Col 4 =R*. Since 4 has four pivot columns, dim Col A4 =4.Thus Col 4 is a four-dimensional

subspace of R*, and Col 4= R*.
No, Nul 4# R’ It is true that dim Nul 4 =3, but Nul 4 is a subspace of R’ .

. Since 4 has four pivot columns, rank 4 =4, and dimNul A =6—-rank 4=6—-4 =2,

No. Col 4# R* . It is true that dim Col 4 = rank 4 =4, but Col 4 is a subspace of R”.

. Since dim Nul 4A=4,rank A=6—dimNul A=6—-4=2. So dim Col 4=rank 4=2.

Since dim Nul 4=5,rank A=6—-dimNul A=6-5=1. So dim Col A=rank 4=1.
Since dim Nul 4 =2, rank 4=5—dim Nul A=5-2=3. So dim Row 4 =dim Col 4 =rank 4 =3.
Since dim Nul A=4,rank A=6—dimNul A=6—-4=2. So dim Row 4 =dim Col 4=rank 4 =2.

The rank of a matrix 4 equals the number of pivot positions which the matrix has. If 4 is either a
7x5 matrix or a 5X7 matrix, the largest number of pivot positions that A could have is 5. Thus the
largest possible value for rank 4 is 5.

The dimension of the row space of a matrix A4 is equal to rank 4, which equals the number of pivot
positions which the matrix has. If 4 is either a 4X3 matrix or a 3X4 matrix, the largest number of
pivot positions that 4 could have is 3. Thus the largest possible value for dim Row 4 is 3.

Since the rank of 4 equals the number of pivot positions which the matrix has, and 4 could have at
most 6 pivot positions, rank 4 <6. Thus dim Nul 4 =8 -rank 4 >8-6=2.

Since the rank of 4 equals the number of pivot positions which the matrix has, and 4 could have at
most 4 pivot positions, rank 4<4. Thus dim Nul 4=4—-rank 4 >24-4=0.

a. True. The rows of 4 are identified with the columns of 4”. See the paragraph before Example 1.

b. False. See the warning after Example 2.
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18.

19.

20.

21.

22.

23.

24.

¢. True. See the Rank Theorem.
d. False. See the Rank Theorem.
e. True. See the Numerical Note before the Practice Problem.

False. Review the warning after Theorem 6 in Section 4.3.

False. See the warning after Example 2.

. True. See the remark in the proof of the Rank Theorem.

True. This fact was noted in the paragraph before Example 4. It also follows from the fact that the

rows of 4" are the columns of (4”)" = 4.

B e T

e. True. See Theorem 13.

Yes. Consider the system as Ax =0, where A is a 5X6 matrix. The problem states that
dim Nul 4 =1. By the Rank Theorem, rank 4 = 6 —dim Nul 4 =5. Thus dimCol 4 =rank 4 =5,

and since Col 4 is a subspace of R’, Col 4= R’. So every vector b in R’ is also in Col 4, and
Ax =b, has a solution for all b.

No. Consider the system as 4x =b, where A is a 6X8 matrix. The problem states that
dim Nul 4 =2. By the Rank Theorem, rank 4 =8 —dim Nul 4 =6. Thus dim Col 4 =rank 4 =6,

and since Col 4 is a subspace of R®, Col 4= R°® So every vector b in R® is also in Col 4, and
Ax =Db has a solution for all b. Thus it is impossible to change the entries in b to make Ax=b into
an inconsistent system.

No. Consider the system as 4x =b, where 4 is a 9X10 matrix. Since the system has a solution for

allbin R’ , A must have a pivot in each row, and so rank4 =9. By the Rank Theorem,
dimNul4 =10-9 =1. Thus it is impossible to find two linearly independent vectors in Nul 4.

No. Consider the system as Ax =0, where 4 is a 10x12 matrix. Since 4 has at most 10 pivot
positions, rank4 <10. By the Rank Theorem, dimNul4 =12 —rank4 > 2. Thus it is impossible to find
a single vector in Nul 4 which spans Nul 4.

Yes, six equations are sufficient. Consider the system as Ax =0, where 4 is a 12X8 matrix. The
problem states that dimNul 4 = 2. By the Rank Theorem, rank 4 =8 —dimNul 4 = 6. Thus
dimCol 4 =rank 4 =6. So the system Ax =0 is equivalent to the system Bx =0, where B is an

echelon form of 4 with 6 nonzero rows. So the six equations in this system are sufficient to describe
the solution set of Ax=0.

Yes, No. Consider the system as Ax =b, where 4 is a 7X6 matrix. Since 4 has at most 6 pivot
positions, rank 4 <6. By the Rank Theorem, dim Nul 4 =6 —rank 4>0. If dimNul 4 =0, then the

system Ax=b will have no free variables. The solution to Ax =b, if it exists, would thus have to be
unique. Since rank 4 <6, Col A will be a proper subspace of R’ . Thus there exists a b in R’ for

which the system Ax=b is inconsistent, and the system Ax=b cannot have a unique solution for
all b.
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26.

27.

28.

29.

30.

31.

32.
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No. Consider the system as 4Ax =b, where 4 is a 10x12 matrix. The problem states that
dim Nul4 = 3. By the Rank Theorem, dimCol 4 =rank 4 =12 —dimNul 4 =9. Thus Col 4 will be a

proper subspace of R'’. Thus there exists a b in R for which the system Ax=b is inconsistent,
and the system Ax=b cannot have a solution for all b.

Consider the system Ax =0, where 4 is a mX#n matrix with m > n. Since the rank of 4 is the
number of pivot positions that 4 has and 4 is assumed to have full rank, rank 4 = n. By the Rank
Theorem, dim Nul4=#n—-rank 4=0. So Nul 4 = {0}, and the system Ax =0 has only the trivial
solution. This happens if and only if the columns of 4 are linearly independent.

Since A is an m X n matrix, Row 4 is a subspace of R", Col 4 is a subspace of R™, and Nul 4 is a

subspace of R". Likewise since A’ is an n x m matrix, Row A" is a subspace of R” , Col4" isa
subspace of R”, and Nul 4" is a subspace of R™. Since Row 4=Col A" and Col 4=Row 4",
there are four dinstict subspaces in the list: Row 4, Col 4, Nul 4, and Nul 4”.

a. Since A is an m X n matrix and dim Row 4 =rank A4,

dim Row 4 + dim Nul 4 = rank 4 + dim Nul 4 = n.

b. Since A" is an n X m matrix and dim Col 4 = dim Row A =dim Col 4" =rank 4",

dim Col 4+ dim Nul A7 =rank A" +dim Nul 4" =m.

Let A be an m X n matrix. The system Ax = b will have a solution for all b in R™ if and only if 4 has
a pivot position in each row, which happens if and only if dim Col 4 = m. By Exercise 28 b.,

dim Col 4 = m if and only if dim NulA” =m—m =0, or Nul4” ={0}. Finally, Nul 4" ={0} if and

only if the equation 4" x =0 has only the trivial solution.

The equation Ax = b is consistent if and only if rank [4 b]=rank 4 because the two ranks will be

equal if and only if b is not a pivot column of [A b]. The result then follows from Theorem 2 in
Section 1.2.

2 2a  2b  2c
Compute that uv’ = -3 |[a b c¢]=|-3a -3b -3c|. Each column of uv’ is a multiple of u,
5 S5a 5b 5S¢

so dimColuv’ =1, unless a = b = ¢ = 0, in which case uv’ is the 3 x 3 zero matrix and
dimCol uv’ =0.

In any case, rank uv’ =dimColuv’ <1

Note that the second row of the matrix is twice the first row. Thus if v = (1, -3, 4), which is the first
row of the matrix,

uvT:M[l -3 4]:{21 :Z ﬂ
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33.

34.

3S.

Let A=[u; u, wu,], and assume that rank 4 = 1. Suppose that u, # 0. Then {u,} is basis for

Col 4, since Col 4 is assumed to be one-dimensional. Thus there are scalars x and y with u, = xu,

1
and uy = yu,, and A=uv", where v=|x|. If u, =0 but u, # 0, then similarly {u,} is basis for
Y
Col 4, since Col 4 is assumed to be one-dimensional. Thus there is a scalar x with u; = xu, , and
0 0

A=u,v", where v=|1|If u, =u, =0 but u; #0, then A=u;v’, where v=|0]|.

X 1

Let 4 be an m X n matrix with of rank » > 0, and let U be an echelon form of 4. Since A can be
reduced to U by row operations, there exist invertible elementary matrices £, ..., E , with

(E, - E)A=U. Thus 4=(E, ---El)_l U, since the product of invertible matrices is invertible. Let
E=(E, ---El)fl; then
A =EU. Let the columns of E be denoted by ¢,,...,c,. Since the rank of 4 is r, U has r nonzero

rows, which can be denoted dlr yer .,df. By the column-row expansion of 4 (Theorem 10 in Section
2.4):

_d{_
T
A=EU=[¢, ... ¢,] dOr =¢,d/ +...+¢,d’, which is the sum of r rank 1 matrices.
_0_
[M]
1 0 13/2 0 5 0 -3]
0 1 11/2 0 172 0 2
a. Begin by reducing 4 to reduced echelon form: A4~|0 0 o 1 -11/2 0 7
0 0 0 0 0 1 1
0 0 0 0 0 0 0]

A basis for Col 4 is the pivot columns of A4, so matrix C contains these columns:
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A basis for Row 4 is the pivot rows of the reduced echelon form of 4, so matrix R contains
13/2

11/2

these rows: R =

1 0
1
0

0 0

0
0

0 5
0 1/2
1 -11/2
0 0

1

To find a basis for Nul 4 row reduce to reduced echelon form, note that the solution to Ax =0
in terms of free variables is x; = —(13/2)x; — 5x5 4+ 3x,, x, =—(11/2)x; = (1/2)x5 — 2x,,

x, =(11/2)x5 = 7x;, x4 =—x,, with x;, x5, and x, free. Thus matrix N is

[-13/2
-11/2
1

S O O O

b. The reduced echelon form of A7 is 47 ~

=5
-1/2
0
11/2
1

0

0

S O O O O ~

0

S O O O O ~= O

0

0

0 0
1 28/11|, so the solution to
0

0

S O O O = O O

0 0

A"x =0 in terms of free variables is x, = (2/11)x5, x, =(41/11)x5, x; =0, x, =—(28/11)xs,

with x; free. Thus matrix M is M =

2/11
41/11

0l

-28/11
1

The matrix S = [RT N ] i1s 7 X 7 because the

columns of R” and N are in R” and dimRow 4 + dimNul 4 = 7. The matrix T=[C M] is 5
X 5 because the columns of C and M are in R® and dimCol 4+ dimNul 4 =5. Both S and T are

invertible because their columns are linearly independent. This fact will be proven in general in
Theorem 3 of Section 6.1.

36.|[M] Answers will vary, but in most cases C will be 6 x 4, and will be constructed from the first 4
columns of 4. In most cases R will be 4 x 7, N will be 7 x 3, and M will be 6 x 2.

37. [M] The C and R from Exercise 35 work here, and 4 = CR.

38. [M] If 4 is nonzero, then A = CR. Note that CR = [Cr1

columns of R. The columns of R are either pivot columns of R or are not pivot columns of R.

Cr, ... Cr,],wherer,, ..., r, arethe
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Consider first the pivot columns of R. The i™ pivot column of R is e, , the i™ column in the identity
matrix, so Ce, is the /™ pivot column of 4. Since 4 and R have pivot columns in the same locations,

when C multiplies a pivot column of R, the result is the corresponding pivot column of 4 in its
proper location.

Suppose r; is a nonpivot column of R. Then r; contains the weights needed to construct the jth
column of 4 from the pivot columns of 4, as is discussed in Example 9 of Section 4.3 and in the

paragraph preceding that example. Thus r; contains the weights needed to construct the jth column

of A from the columns of C, and er =a,.

4.7 SOLUTIONS

Notes: This section depends heavily on the coordinate systems introduced in Section 4.4. The row

reduction algorithm that produces P can also be deduced from Exercise 12 in Section 2.2, by row

Cc<B
reducing [PC |PB}. to [[ | PC_IPB] . The change-of-coordinates matrix here is interpreted in Section 5.4

as the matrix of the identity transformation relative to two bases.

_ 6 9 6 9
1. a. Since b, =6¢, —2¢, and b, =9¢, —4c,, [b/]. ={ }, [b,]; :{_4} and cI:B =[_2 _4}.

' N = <A
b. Since x =-3b, +2b,, [X]z= 5 and [x], = P [x]z= =

-1 5] -1 5
2. a. Since b, =—¢, +4c, and b, =5¢, -3¢,, [b/]; :{ } [b,]. :[ ,and P :{ }

. 5 -1 5|5 |10
b. Since x =5b, +3b,, [X]z = 3 and [x]C:C£B[x]B= 4 sl T]

3. Equation (ii) is satisfied by P for all x in V.
4. Equation (i) is satisfied by P for all x in V.
4 -1
5. a. Since a; =4b, -b,, a, =-b, +b, +b;, and a; =b, - 2b;, [a]z=| 1|, [a,]z =] 1|,
0 1
0 4 -1 0
[a;]z=| 1|, and B£A= -1 1
-2 o 1 =2
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3 4 -1 0}3 8
b. Since x =3a, +4a, +a;, [x],=|4| and [X]B:BI:A: -1 1 L||4]=|2].
1 0 1 =2]1] |2
2 0
6.a. Since f, =2d,-d, +d;, f, =3d, +d;,and f; =-3d, + 2d;, [f;], =| 1|, [£,]p, =] 3|,
1 1
-3 2 0 -3
[f;1p=| 0], and D£f= -1 3 0]
2 1 1 2
1 2 0 3| 1] |4
b. Since x =f, —2f, + 2f,, [x]- =|-2| and [x]szff[x]fz -1 3 0f-=2(=-7].
2 1 1 2 2 3

7. Tofind P , row reduce the matrix [c1 ¢, b, bz]:
ceB

1 0 -3 1 -3 1 o[22 01
[, ¢ b, b,]~ . Thus P = ,and P = P~ = :
0 1 -5 2 cB |-5 2 BeC C<B -5 3

8. Tofind P ,row reduce the matrix [¢;, ¢, b, b,]: so
ceB

1 0 3 =2 3 =2 g 13 2
[, ¢ b, b,]~ . Thus P = ,and P = P = .
0 1 4 3 ces |4 3

9. To find CP , tow reduce the matrix [¢;, ¢, b, b,]:
B

10 9 -2 9 —2 )
[, ¢ b, by~ . Thus P = ,and P = P~ = :
0 1 -4 1 ceB |4 1

10. To find P ,row reduce the matrix [c1 ¢, b, bz]:
ceB

& o bonle]

1 0 8 3
0 1 -5 =2f

11. a. False. See Theorem 15.
b. True. See the first paragraph in the subsection “Change of Basis in R".”

12. a. True. The columns of P are coordinate vectors of the linearly independent set B. See the
ceB

second paragraph after Theorem 15.

b. False. The row reduction is discussed after Example 2. The matrix P obtained there satisfies
[x]c = P[x]z
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13. Let B=1{b,,b,,b,} = {1-2t+¢*,3-5t+4¢*,2t +3¢*} and let C={¢,, ¢,,¢;} =1{1,¢,£°}. The

1 3 0
C -coordinate vectors of b, b,, and b, are [b;], =| =2 |,[b,]. =| =5|,[bs]. =|2|. So
1 4 3
1 3 0
C£B: -2 =5 2|. Letx=—1+2t. Then the coordinate vector [X]; satisfies
1 4 3
-1
Cfg[x] g =[x]o =| 2. This system may be solved by row reducing its augmented matrix:
0
I 3 0 -1 1 0 0 5 5
-2 =5 2 2|~/0 1 0 =2|s0[x]z=|-2
1 4 3 0 0 0 1 1 1

14. Let B={b,,b,,b,} ={1-3¢*,2+1—5¢*,1+2¢} and let C={c,,¢,, ¢} ={1,¢,¢°}. The C -coordinate

1 2 1 1 2 1
vectors of b;, b,,and b, are [b,],=| 0|, [b,].=| 1}|,[b;],=[2]. So C£B= 0 1 2].
-3 -5 0 -3 -5 0
0
Let x =¢>. Then the coordinate vector [x], satisfies P =[x], =] 0. This system may be
|
1 2 10 1 0 0 3 3
solved by row reducing its augmented matrix: | 0 1 2 0(~|0 1 0 -=2[so[x]z=|-2
-3 -5 0 1 0 0 1 1 1

and #* =3(1-3t%) =22+ —5¢") + (1+2¢).

15. (a) B isabasis for V'
(b) the coordinate mapping is a linear transformation
(c) the product of a matrix and a vector
(d) the coordinate vector of v relative to B
1

0
16. (a) [b].=0[b,]15=0] . |=0e,

(®) [b,]e
(©) [ble=0[b, ]z =0e,
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17. [M]
a. Since we found P in Exercise 34 of Section 4.5, we can calculate that
(32 0 16 0 12 0 10]
0 32 0 24 0 20 O
0 0 16 0 16 0 15
Pl=1lo 0 0o 8 0 10 o
32 0O 0 0 O 4 0 6
o o o o0 o 2 0
L0 0 0 0 0 0 1]

b. Since P is the change-of-coordinates matrix from C to B, P~' will be the change-of-

coordinates matrix from B to C . By Theorem 15, the columns of P~" will be the C -
coordinate vectors of the basis vectors in 3. Thus

cos’t = %(1 + cos 2t)

cos’t = i(3cos ¢t +cos 3¢)
cos’t = %(3 +4cos 2t + cos 4t)
cos’t = %(lOcos t +5cos 3t +cos 5¢)

cos’t =3L2(10+15005 2t +6c0s 4t + cos 6t)

18. [M] The C -coordinate vector of the integrand is (0, 0, 0, 5, —6, 5, —12). Using P! from the
previous exercise, the 3 - coordinate vector of the integrand will be

P7(0,0,0,5,—6,5 —12)=(—6,55/8,-69/8,45/16,-3,5/16,—3/8)

Thus the integral may be rewritten as
j—6 +Ecos t —Qcos 2t + fcos 3t —3cos 4t +icos 5t —Ecos 6t dt,
8 8 16 16

which equals

—6t+§sint—Qsin 2t+1—55in 3t—§sin 4¢ +Lsin St—Lsin 6t+C.
8 16 16 4 16 16
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19. [M]
a. If C isthebasis {v,,v,,v;}, then the columns of P are [u,],, [u,],, and [u;].. So
u,=[v, v, viJ[u;]p, and [u; w, w;]=[v, v, v;]P. Inthe current exercise,
-2 8 7| 1 2 -1 -6 -6 -5
[y w, wl= 2 5 2|3 -5 0(=[-5 -9 0|
3 2 6 4 6 1 21 32
b. Analogously toparta., [v, v, vi]=[w, w, w;]P,so[w, w, w;]=
[v, v, v;]P7". In the current exercise,
2 8 71 2 -1
[w, w, wy]=| 2 5 2|3 -5 0
3 2 6| 4 6 1
-2 =8 =74 5 8 5 28 38 21
=2 5 2|3 -5 3|=(-9 -13 7|
3 2 6|2 -2 -1 -3 2 3

-1

200a. P =P P
DB D<CCB

Let x be any vector in the two-dimensional vector space. Since P is the change-of-coordinates
cB

matrix from B to C and P is the change-of-coordinates matrix from C to D,
DeC
=P d = P =P P . Butsince P is the change-of-coordinates
[x]c C<—B[X]B and [x]p D<—C[X]C DPCC(_B[X]B . g

matrix from B to D, [x], = DPB[X]B' Thus DPB[X]B = DPCCPB[X]B for any vector [X]; in

R’,and P = P P .
DB DeCCeB

o[ ] eo[J m-{[ 5] o

we can calculate the change-of-coordinates matrices:
1 2 7 -3 1 0 -3 1 -3 1
~ = P =
=5 2 5 -1 01 -5 2 cB | =5 2
-1 1 1 =2 1 0 0 -8/3 0 -8/3
~ = P =
&8 -5 -5 2 0 I 1 -14/3| opec |1 -14/3
-1 1 7 -3 1 0 40/3 -16/3 o p - 40/3 -16/3
8§ =5 5 -l 0 1 61/3 -25/3| o8 |61/3 -25/3

. 40/3 -16/3 0 -8/3||-3 1
One confirms easily that P = = =P P
peB | 61/3 -25/3 1 -14/3||-5 2| pDecees

Copyright © 2016 Pearson Education, Inc.



4.8 + Solutions 4-47

4.8 SOLUTIONS

Notes: This is an important section for engineering students and worth extra class time. To spend only one
lecture on this section, you could cover through Example 5, but assign the somewhat lengthy Example 3 for
reading. Finding a spanning set for the solution space of a difference equation uses the Basis Theorem
(Section 4.5) and Theorem 17 in this section, and demonstrates the power of the theory of Chapter 4 in
helping to solve applied problems. This section anticipates Section 5.7 on differential equations. The
reduction of an »™ order difference equation to a linear system of first order difference equations was
introduced in Section 1.10, and is revisited in Sections 4.9 and 5.6. Example 3 is the background for Exercise
26 in Section 6.5.

1. Let y, =2F. Then
Vioy + 20 =8y, =282 42281 -8(2%) =28 (22 +27 -8) =2"(0) =0 forall k
Since the difference equation holds for all £, 2* is a solution.
Let y, = (—4)* . Then
Yerr + 291 =83 = (47 +2(-4)" =8(-4)" = (4" (-4) + 24 -8) =(-4)" (0) =0 for all k

Since the difference equation holds for all £, (-4)* is a solution.

2. Let y, =3 Then
Vi =9y, =32 —9(3") =35 (3> -9) =3*(0) =0 for all k
Since the difference equation holds for all k, 3% is a solution.
Let y, = (-3)*. Then
Vw2 =9 =(3)7 =9(=3)" =(3)"((-3)* =9) =(-3)(0) =0 for all k

Since the difference equation holds for all £, (—3)k is a solution.

3. The signals 2" and (—4)k are linearly independent because neither is a multiple of the other; that is,

there is no scalar ¢ such that 2° = ¢(—4)* for all k. By Theorem 17, the solution set H of the difference
equation y,,, +2y,,, —8y, =0 is two-dimensional. By the Basis Theorem, the two linearly independent

signals 2" and (—4)" form a basis for H.

4. The signals 3* and (—3)k are linearly independent because neither is a multiple of the other; that is,

there is no scalar ¢ such that 3 = c(—3)k for all k. By Theorem 17, the solution set H of the difference
equation y,,, —9y, =0 is two-dimensional. By the Basis Theorem, the two linearly independent signals

3% and (-3)* form a basis for H.

5. Let y, =(=3)*. Then
Vesr + 0¥ +99; =(=3) +6(=3)" +9(=3)" =(=3)"((-3) +6(=3) +9) =(-3)(0) =0 for all k
Since the difference equation holds for all , (=3)* is in the solution set H.
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Let y, =k(=3)*. Then

Vior F6V,0 +9y, = (k+2)(=3)"% +6(k + 1)(=3)"" +9k(=3)" = (=3)* ((k +2)(-3)* + 6(k +1)(—3) + k)
=(-3)" (9k +18—18k —18+9k) =(-3)*(0) =0 for all k

Since the difference equation holds for all £, k(=3)" is in the solution set H.

The signals (=3)" and k(=3)" are linearly independent because neither is a multiple of the other; that is,
there is no scalar ¢ such that (=3)* =ck(=3)" for all k and there is no scalar ¢ such that ¢(=3)* = k(=3)*

for all k. By Theorem 17, dim H = 2, so the two linearly independent signals 3* and (—3)k form a basis
for H by the Basis Theorem.

6. Let y, =5"cos’Z. Then

2 2
Vi +25y, =505 +2 7, 25(5" cos -2 k2 j = 5k (52 w+ 25 cos%”j

=25- 5"[cos(%+7zj+cos%} 25.5%(0)=0forall k

since cos(¢ + 7) = —cos ¢ for all z. Since the difference equation holds for all &, 5* cosZ is in the solution
set H.

Let y, =5"sinZ. Then

Viws +257, =5°2sin & +22)” +25(5k k2 j 5 (52 (k +22)” +25 sin%zj

=25.5F (sm [% + 7[] +sin %) 25-5%(0)=0forall k

since sin(z + 77) = —sin ¢ for all z. Since the difference equation holds for all &, 5* sin"T” is in the solution
set H.

The signals 5* costZ and 5 sin‘Z are linearly independent because neither is a multiple of the other. By

Theorem 17, dim H = 2, so the two linearly independent signals 5* cos Z and Sksm form a basis for
H by the Basis Theorem.

7. Compute and row reduce the Casorati matrix for the signals 1°, 2*, and (—Z)k , setting k= 0 for

convenience:

12" " 11 0 o
2 ' ~-l0o 1 0
12 2% (=2*| [0 0 1

This Casorati matrix is row equivalent to the identity matrix, thus is invertible by the IMT. Hence the set
of signals {lk,2k,(—2)k} is linearly independent in S. The exercise states that these signals are in the
solution set H of a third-order difference equation. By Theorem 17, dim H = 3, so the three linearly
independent signals 1, 2%, (=2)" form a basis for H by the Basis Theorem.
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Compute and row reduce the Casorati matrix for the signals 2%, 4%, and (—S)k, setting k = 0 for
22 4 ="Moo oo

convenience: | 2' 4' (=5)'|~|0 1 0]. This Casorati matrix is row equivalent to the identity
22 42 (5% |0 0 1

matrix, thus is invertible by the IMT. Hence the set of signals 25,45 (-5} is linearly independent in §.
The exercise states that these signals are in the solution set H of a third-order difference equation. By
Theorem 17, dim H = 3, so the three linearly independent signals 2*, 4%, (—S)k form a basis for H by
the Basis Theorem.

kn

. Compute and row reduce the Casorati matrix for the signals 1¢, 3* cos£Z, and 3¥sinz, setting k = 0 for

2,
1° 3%o0s0 3%in0

convenience: |1 3 cos% 3! sinZ- | ~ . This Casorati matrix is row equivalent to the

(R

0
1
0

- o O

1> 3%cosz  3’sinz
identity matrix, thus is invertible by the IMT. Hence the set of signals {1*,3* cos"T”,3k sin "7”} is linearly

independent in S. The exercise states that these signals are in the solution set A of a third-order
difference equation. By Theorem 17, dim H = 3, so the three linearly independent signals 1°, 3* costZ,

and 3 sin’Z, form a basis for H by the Basis Theorem.

Compute and row reduce the Casorati matrix for the signals (=1, k(=1)*, and 5*, setting k= 0 for

D" o-=D" 5| o o
convenience: | (1)) 1(-=1)' 5'|~|0 1 0/. This Casorati matrix is row equivalent to the
(-1)* 2(-1* 5| [0 0 1

identity matrix, thus is invertible by the IMT. Hence the set of signals {(— D, k(-DF, 5%} is linearly
independent in S. The exercise states that these signals are in the solution set A of a third-order
difference equation. By Theorem 17, dim H = 3, so the three linearly independent signals (—l)k ,

k(=1)*, and 5* form a basis for H by the Basis Theorem.

The solution set H of this third-order difference equation has dim H =3 by Theorem 17. The two signals
(—l)k and 3* cannot possibly span a three-dimensional space, and so cannot be a basis for H.

The solution set H of this fourth-order difference equation has dim H =4 by Theorem 17. The two
signals 1° and (—1)k cannot possibly span a four-dimensional space, and so cannot be a basis for H.

2

The auxiliary equation for this difference equation is »* —r +2/9 = 0. By the quadratic formula

(or factoring), » = 2/3 or r = 1/3, so two solutions of the difference equation are (2/ 3)k and (1/ 3)k .
The signals (2/ 3)¢ and (1/3)F are linearly independent because neither is a multiple of the other.
By Theorem 17, the solution space is two-dimensional, so the two linearly independent signals (2/ 3)F

and (1/3)* form a basis for the solution space by the Basis Theorem.
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14.

15.

16.

17.

18.

The auxiliary equation for this difference equation is »> —7r +12 = 0. By the quadratic formula (or

factoring), » = 3 or r = 4, so two solutions of the difference equation are 3* and 4*. The signals 3* and
4* are linearly independent because neither is a multiple of the other. By Theorem 17, the solution space

is two-dimensional, so the two linearly independent signals 3% and 4* form a basis for the solution
space by the Basis Theorem.

The auxiliary equation for this difference equation is > —25 = 0. By the quadratic formula (or

factoring), » = 5 or r = -5, so two solutions of the difference equation are 5 and (—S)k. The signals 5*
and (-5)" are linearly independent because neither is a multiple of the other. By Theorem 17, the

solution space is two-dimensional, so the two linearly independent signals 5* and (=5)* form a basis for
the solution space by the Basis Theorem.

The auxiliary equation for this difference equation is 1672 + 8 — 3 = 0. By the quadratic formula (or

factoring), r = 1/4 or r = —3/4, so two solutions of the difference equation are (1/ 4)* and (=3/4)*. The
signals (1/4)" and (=3/4)" are linearly independent because neither is a multiple of the other. By
Theorem 17, the solution space is two-dimensional, so the two linearly independent signals (1/4)* and

(—3/4)" form a basis for the solution space by the Basis Theorem.

Letting a = .9 and b = 4/9 gives the difference equation Y,,, —1.3Y,,, +.4Y, =1. First we find a particular
solution ¥, =T of this equation, where T is a constant. The solution of the equation 7—1.37+ 4T =1is
T'=10, so 10 is a particular solution to ¥, ,, —1.3Y,,, +.4Y, =1. Next we solve the homogeneous
difference equation Y, —1.3Y,,, +.4Y, = 0. The auxiliary equation for this difference equation is

r* —1.3r +.4=0. By the quadratic formula (or factoring), = .8 or r =5, so two solutions of the
homogeneous difference equation are .8* and .5*. The signals (.8)" and (.5)" are linearly independent
because neither is a multiple of the other. By Theorem 17, the solution space is two-dimensional, so the
two linearly independent signals (.8)" and (.5) form a basis for the solution space of the homogeneous

difference equation by the Basis Theorem. Translating the solution space of the homogeneous difference
equation by the particular solution 10 of the nonhomogeneous difference equation gives us the general

solution of ¥, , —1.3Y,,, +.4Y, =1: Y, = ¢,(.8)" +¢,(.5)" +10. As k increases the first two terms in the
solution approach 0, so ¥, approaches 10.

Letting a = .9 and b = .5 gives the difference equation Y, ,, —1.35Y,,, +.45Y, =1. First we find a
particular solution ¥, =7 of this equation, where 7 is a constant. The solution of the equation
T—-135T+ .45T=1is T'=10, so 10 is a particular solution to ¥,,, —1.35Y,,, +.45Y, = 1. Next we solve
the homogeneous difference equation Y, ,, —1.35Y,,, +.45Y, = 0. The auxiliary equation for this
difference equation is »* —1.35 +.45 = 0. By the quadratic formula (or factoring), = .6 or r = .75, so
two solutions of the homogeneous difference equation are .6° and .75*. The signals (.6)" and (.75)" are
linearly independent because neither is a multiple of the other. By Theorem 17, the solution space is two-
dimensional, so the two linearly independent signals (.6)" and (.75)" form a basis for the solution space

of the homogeneous difference equation by the Basis Theorem. Translating the solution space of the
homogeneous difference equation by the particular solution 10 of the nonhomogeneous difference

equation gives us the general solution of ¥,,, —1.35Y,,, +.45Y, =1: ¥, =¢,(.6)" +¢,(.75)* +10.
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19. The auxiliary equation for this difference equation is 7> + 47 +1= 0. By the quadratic formula,
r==2+3 or r=—2-3 , so two solutions of the difference equation are (—2+ \/g)k and (-2- NE) )k.

The signals (-2 + NG )k and (-2 -3 )k are linearly independent because neither is a multiple of the
other. By Theorem 17, the solution space is two-dimensional, so the two linearly independent signals
(—2+ V3 )" and (-2- \/g)k form a basis for the solution space by the Basis Theorem. Thus a general

solution to this difference equation is y, =¢,(-2+ NE) Yo+ o (—2- NE) ).

20. Let a=—2++/3 and b=—2—-+/3 . Using the solution from the previous exercise, we find that

y, =ca+c,b=5000 and yy =c,a” +c,b" =0. This is a system of linear equations with variables

Lo 50005"
) a b 5000 bNa—aVb

¢, and ¢, whose augmented matrix may be row reduced: | ~ N

a b 0 01 5000a
b a—a"b
50005" 5000a"
So ¢ = ,Cy = . (Alternatively, Cramer’s Rule may be applied to get the same
N N SR L RN R ( y y be app g

solution). Thus
5000(a*b" —a"b")

k k
yVi=qa tcb" =
b¥a-a"b

21. The smoothed signal z, has the following values: z, =(9+5+7)/3=7, z,=(5+7+3)/3=5,
z=(7+3+2)/3=4, z,=3+2+4)/3=3, z,=(2+4+6)/3=4, z,=(4+6+5)/3=5,
z;=(6+5+7)/3=6, z=(5+7+6)/3=6, zg=(7+6+8)/3=7, z,=(6+8+10)/3=8,
z,=8+10+9)/3=9, z,=(10+9+5)/3=8, z;=09+5+7)/3="17.

-m- original data

-+ smoothed data

> 4 6 8 10 12 14
22. a. The smoothed signal z, has the following values:

zy =35y, +.5y, +.35y, =.35(0) +.5(.7) +.35(3) =1.4,

z; =.35y; +.5y, +.35y, =.35(=.7) +.5(0) +.35(.7) =0,
35(=.3)+.5(-.7)+.35(0) =—-1.4,
35(=7)+.5(=.3)+.35(-.7) = -2,

z, =35y, +.5y5 +.35y, =.35(0) +.5(=.7) +.35(=.3) =14,

zs =35y, +.5y, +.35y5 =.35(.7) +.5(0) +.35(-.7) =0,

zg =35y, +.5y, +.35y, =.35(3) +.5(.7) +.35(0) = 1.4,
35(.7)+.53)+.35(.7) =2,
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Zg =350 +.500 +.357 =.35(0)+.5(.7) +.35(3) =1 4,...

b. This signal is two times the signal output by the filter when the input (in Example 3) was
y = cos(zt/4). This is expected because the filter is linear. The output from the input 2cos(7z #/4) +
cos(3t/4) should be two times the output from cos(7z #/4) plus the output from cos(3 7z #/4) (which is
Zero).

23. a. y,,, —1.0ly, =-450, y,=10,000.
b. [M] MATLAB code to create the table:
pay =450, y=10000, m=0, table=[0;vVy]
while y>450
y=1.01l*y-pay
m=m+1

table= [table [m;y]]

end

m,y

Mathematica code to create the table:

pay = 450; y = 10000; m = 0; balancetable = {{0, y}};

While[y > 450, {y = 1.01*y - pay; m = m + 1,
AppendTo [balancetable, {m, v}1}1;

m

Y
c. [M] At month 26, the last payment is $114.88. The total paid by the borrower is $11,364.88.

24. a. y,,, -1.005y, =200, y, =1,000.

b. [M] MATLAB code to create the table:
pay =200, y=1000, m=0, table=[0;vy]
for m=1: 60
y=1.005*y+pay
table = [table [m;y]]
end
interest =y-60*pay-1000
Mathematica code to create the table:
pay = 200; y = 1000; amounttable = {{0, v}};
Do[{y = 1.005*y + pay;
AppendTo [amounttable, {m, v}1},{m,1,60}1;
interest =y-60*pay-1000

¢. [M] The total is $6213.55 at k=24, $12,090.06 at k = 48, and $15,302.86 at k = 60. When k = 60, the
interest earned is $2302.86.

25. To show that y, =k* is a solution of Viss 3V —4y, =10k +7, substitute y, = K,y =(k+1)%,
and y,,, =(k+2)":
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Viwr F3V0 =4y, = (k+2)" +3(k +1) —4k* = (k* + 4k +4) +3(k* + 2k +1) — 4k*
=k* + 4k +4+3k* + 6k +3—4k* =10k + 7 for all k

The auxiliary equation for the homogeneous difference equation y,,, +3y,,, —4y, =0 is * +3r—4=0.
By the quadratic formula (or factoring), ¥ =—4 or » = 1, so two solutions of the difference equation are
(—4)k and 1%, The signals (—4)" and 1% are linearly independent because neither is a multiple of the other.
By Theorem 17, the solution space is two-dimensional, so the two linearly independent signals (—4)k and
1¥ form a basis for the solution space of the homogeneous difference equation by the Basis Theorem. The
general solution to the homogeneous difference equation is thus ¢,(—4)" +¢, -1° =¢,(—4)* +¢,. Adding the
particular solution k* of the nonhomogeneous difference equation, we find that the general solution of the

difference equation y,,, +3y,,, -4y, =10k +7 is y, =k> +¢,(-4)" +c¢,.

To show that y, =14k is a solution of y,,, —8y,,, +15y, =8k + 2, substitute y, =1++k,
Vim =1+(k+1)=2+k, and y,,, =1+(k+2)=3+k:

Vier — 8V H15y, =3+ k)82 +k)+15(1+k) =3+k—-16-8k +15+15k =8k +2forall k
The auxiliary equation for the homogeneous difference equation y,,, —8y,,, +15y, =0 is

r? —8r+15=0. By the quadratic formula (or factoring), » = 5 or » = 3, so two solutions of the difference
equation are 5° and 3*. The signals 5* and 3* are linearly independent because neither is a multiple of
the other. By Theorem 17, the solution space is two-dimensional, so the two linearly independent signals
5% and 3* form a basis for the solution space of the homogeneous difference equation by the Basis
Theorem. The general solution to the homogeneous difference equation is thus ¢, -5* +¢, -3*. Adding
the particular solution 1+ & of the nonhomogeneous difference equation, we find that the general solution
of the difference equation y,,, —8y,,, +15y, =8k +2 is y, =1+k+¢ 54,38

To show that y, =2 -2k isasolution of y,,, —(9/2)y,,, + 2y, =3k +2, substitute y, =2 -2k,
Vew =2-2(k+1)=—2k, and y,,, =2-2(k+2)=-2-2k:

Vier =9/ 2) 1 + 2y, =(2-2k)—(9/2)(-2k) +2(2 - 2k) =—2-2k + 9k +4—4k =3k +2forall k
The auxiliary equation for the homogeneous difference equation y,,, —(9/2)y,,, +2y, =0 is

— (9/2)r +2=0. By the quadratic formula (or factoring), » = 4 or r = 1/2, so two solutions of the
difference equation are 4° and (1/2)*. The signals 4° and (1/2)* are linearly independent because
neither is a multiple of the other. By Theorem 17, the solution space is two-dimensional, so the two
linearly independent signals 4 and (1/2)" form a basis for the solution space of the homogeneous
difference equation by the Basis Theorem. The general solution to the homogeneous difference
equation is thus ¢ 4 4 ¢, - (1/ 2)F = G 4 4 c, 27k Adding the particular solution 2 — 2k of the
nonhomogeneous difference equation, we find that the general solution of the difference equation
Viers =(9/2)yy + 2y, =3k +2 is y, =2-2k+¢,-4" +¢,- 27",

To show that y, =2k -4 is asolution of y,,, +(3/2)y,,, — ¥, =1+ 3k, substitute y, =2k -4,
Vinn =2(k+1)-4=2k-2, and y,,, =2(k+2)-4=2k:
Vier T B2y — v =2k +(3/2)(2k - 2) - (2k —4) =2k +3k-3-2k+4 =1+3k forall k
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The auxiliary equation for the homogeneous difference equation y,,, +(3/2)y,,; =y, =0 is

¥’ +(3/2)r —1=0. By the quadratic formula (or factoring), » = —2 or r = 1/2, so two solutions of the
difference equation are (-2)" and (1/2)*. The signals (-2)" and (1/2)* are linearly independent
because neither is a multiple of the other. By Theorem 17, the solution space is two-dimensional, so the
two linearly independent signals (=2)" and (1/2)* form a basis for the solution space of the
homogeneous difference equation by the Basis Theorem. The general solution to the homogeneous
difference equation is thus ¢, (22" + c, - (1/ 2)F = q (22 + ¢ 27k, Adding the particular solution

2k — 4 of the nonhomogeneous difference equation, we find that the general solution of the difference

equation y,,, +(3/2)y,, -y, =143k is y, =2k —4+¢ - (-2)" +¢,- 27

Vi _J’k+1 0 1 0 O
0 0 1 0
29. Let x, =| 2" |. Then x,,, =| *** |= L
yk+2 yk+3 0 0 0 1 yk+2
| Vi+3 | | Vi+a | _9 -6 -8 6 | Vi+3
_J’k 1 _J’k+1 17 0 1 0] Yk
30. Let X, =| ¥44; |- Then X, =| Vyn | = 0 0 || yeo |=4X,.
| Vi+2 | | Vie+3 | __1/16 0 3/4_ Yi+2

31. The difference equation is of order 2. Since the equation y,,; +5y,,, +6y,,, =0 holds for all &,

it holds if & is replaced by k — 1. Performing this replacement transforms the equation into
Visa T 5V 6y, =0, which is also true for all k. The transformed equation has order 2.

32. The order of the difference equation depends on the values of a,, a,, and a;. If a; #0, then the
orderis 3. If a; =0 and a, #0, then the orderis 2. If a; =a, =0 and a, # 0, then the order is 1.
If a; =a, =a, =0, then the order is 0, and the equation has only the zero signal for a solution.

K 2k |k
33. The Casorati matrix C(k) is C(k)z[ Yoo }:{ ]

. In particular,
(k+1)? 2k+1)|k+1]|

Yirl  Zk+

0 0 1 -2 4 -8
C(0)= L 2}, C(-1)= {0 0} and C(=2)= { | 2} , none of which are invertible. In fact, C(k) is

not invertible for all %, since

det C(k) =2k (k+1)| k+1|=2(k +1)*k |k | =2k(k + 1) (k |k +1]| - (k+1)| k)

Ifk=0ork=-1,det C(k)=0.1fk>0,thenk+1>0and k| k+ 1 |- (k+ D) k|=k(k+1)—(k+ 1)k=0,
sodet C(k)=0.1fk<-1,thenk+1<Oandklk+1|-(k+ 1) k|=—k(k+ 1)+ (k+ 1)k=0,s0

det C(k) = 0. Thus detC(k)=0 for all &, and C(k) is not invertible for all £. Since C(k) is not invertible

for all £, it provides no information about whether the signals {y,} and {z,} are linearly dependent

or linearly independent. In fact, neither signal is a multiple of the other, so the signals {y,} and {z, }
are linearly independent.

34. No, the signals could be linearly dependent, since the vector space V' of functions considered on the
entire real line is not the vector space S of signals. For example, consider the functions f(f) = sinmn,
g(f) = sin 27t, and /() = sin 37¢. The functions f, g, and 4 are linearly independent in V since they have
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different periods and thus no function could be a linear combination of the other two. However, sampling
the functions at any integer n gives f(n) = g(n) = h(n) = 0, so the signals are linearly dependent in S.

Let {y,} and {z,} bein S, and let  be any scalar. The k" term of {y,}+{z,} is y, +z,, while the k"
term of »{y,} is ry,. Thus

Ty +{za) =T + 2} =k + Z00) Fa(Vpy +2400) +0(y; + 2;)
= (Vpsr ¥ Wy T 0V) + (244 Hazyy, +0z,) =T{y, } +T{z, },and

T(riv}) =Ty} =1y +a(ry) +0(ry) =r(Vin + aye, +by) =rT{y}
so T has the two properties that define a linear transformation.
Let z be in V, and suppose that X, in V' satisfies 7(x,) =Z. Let u be in the kernel of 7 then 7(u) = 0.

Since T'is a linear transformation, 7(u+x,)=7(u)+7(x,) =0+z =2, so the vector X =u+X,, satisfies

the nonhomogeneous equation 7(x) = z.

We ComPUte that (TD)(yanlayzs"'):T(D(yanlay25"')) :T(ano,ylayZV")z(yoayl’yz"")
while (DT)(yoayl’yz""):D(T(yoayl’yz"")):D(y1>y2>y3>"')Z(Osylayz’y3>"-)
Thus TD = I (the identity transformation on S,), while DT # I.

SOLUTIONS

Notes: This section builds on the population movement example in Section 1.10. The migration matrix is
examined again in Section 5.2, where an eigenvector decomposition shows explicitly why the sequence of
state vectors X, tends to a steady state vector. The discussion in Section 5.2 does not depend on prior
knowledge of this section.

1.

a. Let N stand for “News” and M stand for “Music.” Then the listeners’ behavior is given by the table
From:
N M ‘ To:
76 ‘ N
3 4 M

g 6
so the stochastic matrix is P :[ 3 4}.

1
b. Since 100% of the listeners are listening to news at 8:15, the initial state vector is X, = {0} .

c. There are two breaks between 8:15 and 9:25, so we calculate x, :

g 6|1 7

X, = PXO = =
3 4]0 3
g 6.7 .67

X, = PX1 = =
3 43 33

Thus 33% of the listeners are listening to news at 9:25.
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2. a. Let the foods be labelled “1,” “2,” and “3.” Then the animals’ behavior is given by the table
From:
1 2 3 To:

.5 25 2511

25 S 25
25 .25 S 13
S 25 25
so the stochastic matrix is P={.25 .5 .25].
25 25 5
1
b. There are two trials after the initial trial, so we calculate x,. The initial state vector is | O |.
0
525 251 5
x,=Px,=|25 5 25|0|=|.25
25 .25 5[0 |25

S5 25 250 5 375
X,=Px,=|.25 .5 .25|.25|=].3125
|25 25 5|25 [3125

Thus the probability that the animal will choose food #2 is .3125.

3. a. Let H stand for “Healthy” and / stand for “Ill.” Then the students’ conditions are given by the

table
From:
H 1 ‘ To:
95 45 H
.05 .55 |
) o 95 45
so the stochastic matrix is P = .
.05 .55

8
b. Since 20% of the students are ill on Monday, the initial state vector is X, = { 2} . For Tuesday’s

percentages, we calculate x,; for Wednesday’s percentages, we calculate x, :
95 4511 .8 .85

X, = PXO = =
05 55|12 15

95 45| .85 875
X, :PX1 = =
05 55].15 125

Thus 15% of the students are ill on Tuesday, and 12.5% are ill on Wednesday.
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1
c¢. Since the student is well today, the initial state vector is X, = [O} We calculate x,:

95 451 .95

X, = PXO = =
.05 .55]/0 .05
95 451 .95 925

X2 = PXI = =
.05 .55]|.05 .075

Thus the probability that the student is well two days from now is .925.

. a. Let G stand for good weather, / for indifferent weather, and B for bad weather. Then the change
in the weather is given by the table

From:
G I B | To:
.6 4 4 |G
3 3 S
.1 3 .1 | B
6 4 4
so the stochastic matrixis P={.3 3 .5/
d 3 1
S
b. The initial state vector is |.5 |. We calculate x;:
0
6 4 4|5 S
x,=Px,=|.3 3 S5|.5|=|3
d 3 1]0 2
Thus the chance of bad weather tomorrow is 20%.
0
c. The initial state vector is X, =| .4 |. We calculate x,:
.6
(6 4 4Alfo] [4
x,=Px,=|3 3 5| .4|=|42
.13 1.6 18
[6 4 4] 4] [ .48
X, =Px,={.3 3 .5|.42|=|.336
1.3 118 184

Thus the chance of good weather on Wednesday is 48%.
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-9 6 .
. Row reducing
9 -6

5. We solve Px = x by rewriting the equation as (P — /)x = 0, where P—1 =[
the augmented matrix for the homogeneous system (P — /)x = 0 gives
-9 6 0 1 -2/3 0 X 2/3 R 2
~ . Thus x= =X, , and one solution is . Since
9 -6 0 0 0 0 X, 1 3

2 2/5 4
the entries in [3} sum to 5, multiply by 1/5 to obtain the steady-state vector q = {3/5} =[ 6}'

-2 5 .
. Row reducing

6. We solve Px = x by rewriting the equation as (P — /)x =0, where P—1 :[ 5 5

the augmented matrix for the homogeneous system (P — /)x = 0 gives

-2 50 1 -5/2 0 x, 5/2 5
~ . Thus x= =X, , and one solution is . Since
2 =5 0] [0 0 0 X, 1 2

5 5/17 714
the entries in [2} sum to 7, multiply by 1/7 to obtain the steady-state vector q = [2/7} [ 786 }

-3 .1
7. We solve Px = x by rewriting the equation as (P —I)x =0, where P-I=| 2 -2 2|. Row
A1 =3
reducing the augmented matrix for the homogeneous system (P — 1 )x = 0 gives
-3 1 10 1 0 -1 0 X, 1 1
2 =2 2 0|~|0 1 -2 O0f. Thus x=|x, |[=x3| 2|, and one solution is | 2 |. Since
1 =3 0 0 0 0 O X, 1 1]
1 1/4 25
the entries in | 2 | sum to 4, multiply by 1/4 to obtain the steady-state vector q =|1/2 |=| .5|.
1 1/4 25
-3 2 2
8. We solve Px = x by rewriting the equation as (P —I)x =0, where P-I=| 0 -8 4| Row
3 6 -6
reducing the augmented matrix for the homogeneous system (P — I )x = 0 gives
-3 2 20 1 0 -1 0 X, 1 2
0 -8 4 0|~|0 1 =1/2 0. Thus x=|x, |=x;|1/2|, and one solution is | 1 |.
3 6 -6 0 0 0 0 0 X, 1 2
2 2/5 4
Since the entries in | 1 | sum to 5, multiply by 1/5 to obtain the steady-state vector q=| 1/5 |=| .2 |.
2 2/5 4
9. Since P’ = [?: ' } has all positive entries, P is a regular stochastic matrix.
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1
0

stochastic matrix.

1-.8"
10. Since P* :{ . } will have a zero as its (2,1) entry for all &, so P is not a regular
8

T .6 -3 .6
11. From Exercise 1, P = [ 3 4}, so P—1 :{ 3 6}' Solving (P — I)x = 0 by row reducing the

L -3 6 0 1 2 0 X 2 .
augmented matrix gives ~ . Thus x= =x,| . |, and one solution
3 -6 0 0O 0 O X, 1

2 2
is [J Since the entries in [J sum to 3, multiply by 1/3 to obtain the steady-state vector
_|2/3] | .667
=37 333

S 25 25 -5 25 25
12. From Exercise 2, P=|.25 .5 25|, s0o P-I=|.25 -5 .25|. Solving (P—-1I)x =0 by row

V)]

2
25 25 5 25 25 =5

-5 25 25 0 1 0 -1 0
reducing the augmented matrix gives | .25 -5 .25 0|~|0
25

1 -1 O0]. Thus
25 =5 0 0 0 0 O
X, 1 1 1
X=|x, |=x;|1|, and one solution is {1 . Since the entries in |1 | sum to 3, multiply by 1/3 to
X, 1 1 1

1/3 333

obtain the steady-state vector q =|1/3 |=|.333 |. Thus in the long run each food will be preferred
1/3 333

equally.

. 95 45 -05 .45 ,
13. a. From Exercise 3, P= , 80 P—1I= 05 45| Solving (P — I)x = 0 by row

05 .55
) . -05 45 0 1 9 0
reducing the augmented matrix gives ~ . Thus
05 -45 0 0 0 0

X 9 9 9
X :{ 1}: X L}, and one solution is L} Since the entries in [J sum to 10, multiply by 1/10

X

. 9/10 9
to obtain the steady-state vector q = = .
1/10 A

b. After many days, a specific student is ill with probability .1, and it does not matter whether that
student is ill today or not.
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14.

15.

16.

6 4 4 -4 4 4
From Exercise 4, P=|.3 3 5|,so P-I=| 3 =7 .5| Solving (P—1I)x=0Dbyrow
d 3 1 d 3 -9

-4 4 4 0 1 0 3 0

reducing the augmented matrix gives | 3 -7 5 0(~|0 1 -2 0
d 3 -9 0 0 0 0 O

X 3 3 3
Thus Xx=| x, |=x;| 2|, and one solution is | 2 |. Since the entries in | 2 | sum to 6, multiply by 1/6
X, 1 1 1
1/2] 5
to obtain the steady-state vector q=|1/3 |=|.333 |. Thus in the long run the chance that a day has
1/6 167

good weather is 50%.

[—.0129 .0027
| .0129  -.0027
-.0129 0027 0 1 -209302 O

~ . Thus

9871 .0027
0129  .9973

[M] Let P= { }, so P-1= } Solving (P — I)x = 0 by row reducing

0129  -.0027 0 0 0

X, 209302 .. 1209302 .. 1-209302
X= =X, ! , and one solution is { . Since the entries in ! sumto 1.
X2

209302 , multiply by

the augmented matrix gives [

173077

1/1.209302 to obtain the steady-state vector q =
.826923

}. Thus about 17.3% of the total U.S.

population would eventually live in California.

90 .01 .09 -10 .01 .09
[M] Let P=|.01 90 .01|, so P-I=| .01 -10 .01|. Solving (P—1I)x =0 by row
.09 .09 .90 09 .09 -1

-10 .01 .09 0 1 0 -919192 0
reducing the augmented matrix gives | .01 -10 .01 0|~/0 1 -=191919 0

09 09 -1 0] [0 O 0 0
X, 919192 919192 919192
Thus Xx=| x, |=x;|.191919 |, and one solution is | .191919 |. Since the entries in |.191919 | sum
X, 1 1 1
435407
to 2.111111, multiply by 1/2.111111 to obtain the steady-state vector q =|.090909 |. Thus on a
473684
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typical day, about (.090909)(2000) = 182 cars will be rented or available from the downtown
location.

a. The entries in each column of P sum to 1. Each column in the matrix P — [ has the same entries as
in P except one of the entries is decreased by 1. Thus the entries in each column of P — / sum to 0,
and adding all of the other rows of P — [ to its bottom row produces a row of zeros.

b. By part a., the bottom row of P — I is the negative of the sum of the other rows, so the rows of P —
[ are linearly dependent.

¢. By part b. and the Spanning Set Theorem, the bottom row of P — I can be removed and the
remaining (7 — 1) rows will still span the row space of P — /. Thus the dimension of the row space
of P — I is less than n. Alternatively, let 4 be the matrix obtained from P — I by adding to the
bottom row all the other rows. These row operations did not change the row space, so the row
space of P — I is spanned by the nonzero rows of 4. By part a., the bottom row of 4 is a zero row,
so the row space of P — [ is spanned by the first (n — 1) rows of 4.

d. By part c., the rank of P — [ is less than n, so the Rank Theorem may be used to show that
dimNul(P — I) = n — rank(P — I') > 0. Alternatively the Invertible Martix Theorem may be used
since P — [ is a square matrix.

1 0 : 0
If o= f=0 then P= [o 1}' Notice that Px =x for any vector xin R, and that M e M N

two linearly independent steady-state vectors in this case.

If ¢+ 0 or f+0, we solve (P — I)x = 0 where P—I:[

. -a p 0| |a =B 0
matrlxglves[a B 0} {0 0 0}

}. Row reducing the augmented
a —

x
So ax, = fx,, and one possible solution is to let x, = B, x, = «. Thus x :{ 1}: {'B} Since the
X, o

1
entries in [g} sum to + £, multiply by 1/(ax+ [) to obtain the steady-state vector q = y [ﬂ }
o

a. The product Sx equals the sum of the entries in x. Thus x is a probability vector if and only if its
entries are nonnegative and Sx = 1.
b. Let P:[p1 p, ... pn], where p,, p,, ..., p, are probability vectors. By part a.,
SP=[Sp, Sp, ... Sp,|]=[1 1 .. 1]=S

¢. By partb., S(Px) = (SP)x = §x = 1. The entries in Px are nonnegative since P and x have only
nonnegative entries. By part a., the condition S(Px) = 1 shows that Px is a probability vector.
Let P=[p, p, ... P,|,so P =PP=[Pp, Pp, .. Pp,] ByExercise 19c., the columns

of P* are probability vectors, so P? is a stochastic matrix. Alternatively, SP = S by Exercise 19b.,
since P is a stochastic matrix. Right multiplication by P gives SP* = SP, so SP = S implies that

. .. . .. o) 2 . .
SP* = S. Since the entries in P are nonnegative, so are the entries in P>, and P~ is stochastic
matrix.
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21. [M]

a. To four decimal places

2779
3368
.1847
.2005

P? =

2816
3355
1819
.2009

pPt=p=

2780
3355
1861
.2004

2816
3355
1819
.2009

* Vector Spaces

.2803
3357
1833
2007

2941
3335 »
1697
2027

2816 2816
3355 3355
1819 (1819
2009 .2009

2817
3356
T 1817
2010

2817
.3356
1817
2010

2817
3355
1819
2010

2816
3355

vector as k increases. The steady state vector q for Pis q =

the columns of P are converging.

b. To four decimal places,

[.8222
0" =|.0324
1453

7477
0" =|.0783
1740

7372
0" =|.0867
| .1761

7356
0" =|.0880
1764

4044
3966
1990

.6815
1329
.1856

7269
0951
.1780

7340
.0893
1767

7353

1765

5385 | 7674
1666 |, 0% =|.0637
2949 | 1688
7105 ] [.7401
1074 |, 0% =| .0843
1821 |.1756
7315 7360
0913 |, 0% =|.0876
1772 .1763
7347 | 7354
0887 |,0* =| .0881
1766 | 1764
7353 7353

0882 0882

1765 .1765 |

.6000
2036
.1964

7140
.1057
.1802

7320
.0909
1771

7348
.0887
1766

2814
3352
1825 |
2009

k .
. The columns of P* are converging to a common

, which is the vector to which

.1819
.2009

66907
1326
1984 |

7257 |
.0960
1783

7338 ]
.0894

b

1767

7351
.0884
1765

9
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7353
The steady state vector q for O is q =|.0882 | Conjecture: the columns of P*, where P is a
1765

regular stochastic matrix, converge to the steady state vector for P as k increases.
c. Let P be an n X n regular stochastic matrix, q the steady state vector of P, and e the j * column
of the n X n identity matrix. Consider the Markov chain {x,} where x,,, = Px, and X, =e;. By

Theorem 18, x;, = kao converges to q as k — oo, But P* X, = Pre ;» which is the jth column of

P*. Thus the ;™ column of P* converges to q as k — oo; thatis, P* >[q q ... q].

22. [M] Answers will vary.

MATLAB Student Version 4.0 code for Method (1):
A=randstoc (32); flops(0);

tic, x=nulbasis (A-eye(32));
g=x/sum(x); toc, flops

MATLAB Student Version 4.0 code for Method (2):
A=randstoc (32); flops(0);

tic, B=A"100; g=B(: ,1); toc, flops

Chapter4 SUPPLEMENTARY EXERCISES

1. a. True. This setis Span{vy,...v,}, and every subspace is itself a vector space.

\4

b. True. Any linear combination of v, ..., V PR

-1 18 also a linear combination of v, ..., V

using the zero weighton v ,.

¢. False. Counterexample: Take Vv, =2v,. Then {v,...v p} is linearly dependent.

d. False. Counterexample: Let {e,, e,,e;} be the standard basis for R’. Then {e,;,e,} is alinearly

independent set but is not a basis for R’.
e. True. See the Spanning Set Theorem (Section 4.3).

True. By the Basis Theorem, S is a basis for V' because S spans V and has exactly p elements. So
S must be linearly independent.

g. False. The plane must pass through the origin to be a subspace.

2 5 20
h. False. Counterexample: [0 0 7 3.
0 0 00

i. True. This statement appears before Theorem 13 in Section 4.6.

j. False. Row operations on 4 do not change the solutions of Ax = 0.

1 2
k. False. Counterexample: 4= [3 6} ; A has two nonzero rows but the rank of 4 is 1.
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1. False. If U has k nonzero rows, then rank 4 =k and dimNul 4 = n — k by the Rank Theorem.
True. Row equivalent matrices have the same number of pivot columns.
n. False. The nonzero rows of 4 span Row A4 but they may not be linearly independent.
True. The nonzero rows of the reduced echelon form £ form a basis for the row space of each
matrix that is row equivalent to E.
p. True. If H is the zero subspace, let 4 be the 3 X 3 zero matrix. If dim H =1, let {v} be a basis
for H and set A=[V v V]. If dim H =2, let {u,v} be a basis for H and set A=[u v V] ,
for example. If dim H =3, then H = R’, s0 A can be any 3 x 3 invertible matrix. Or, let
{u, v, w} be a basis for H and set 4 = [u v w] .
0 .
q. False. Counterexample: A= 0o 1 ol If rank A = n (the number of columns in A), then the
transformation x — A4x is one-to-one.
r. True. If x = Ax is onto, then Col 4 = R" and rank 4 = m. See Theorem 12(a) in Section 1.9.
s. True. See the second paragraph after Theorem 15 in Section 4.7.
.th .
t. False. The j~ column of C}:B is [bj JC .
1] |2 5
. 2 5 L
2. The set is SpanS, where S = gl . Note that S is a linearly dependent set, but each
3 1 1
-2
. . . . 2 5
pair of vectors in S forms a linearly independent set. Thus any two of the three vectors gl
3 1
5
-8 . :
will be a basis for SpanS.

3. The vector b will be in W =Span{u,, u,} if and only if there exist constants ¢, and ¢, with

cu, +c,u, =b. Row reducing the augmented matrix gives

-2
4
-6

1 5| |2 1 b,
2 b|~| 0 4 2b, +b,
-5 b 0 0 b +2b,+bs

so W =Span{u,,u,} is the set of all (b, b,, b;) satisfying b, +2b, + b; =0.

4. The vector g is not a scalar multiple of the vector f, and f is not a scalar multiple of g, so the set {f,
g} is linearly independent. Even though the number g(¢) is a scalar multiple of (¢) for each ¢, the
scalar depends on .
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. The vector p, is not zero, and p, is not a multiple of p,. However, p; is 2p, +2p,, so p; is

discarded. The vector p, cannot be a linear combination of p, and p, since p, involves ¢* but p,

and p, do not involve #*. The vector p; is (3/2)p, —(1/2)p, +p, (which may not be so easy to see
at first.) Thus p is a linear combination of p,, p,, and p,, so ps is discarded. So the resulting

basis is {p;,P,,P4}-

. Find two polynomials from the set {p,,...,p,} that are not multiples of one another. This is easy,

because one compares only two polynomials at a time. Since these two polynomials form a linearly
independent set in a two-dimensional space, they form a basis for H by the Basis Theorem.

You would have to know that the solution set of the homogeneous system is spanned by two
solutions. In this case, the null space of the 18 X 20 coefficient matrix 4 is at most two-dimensional.

By the Rank Theorem, dimCol A4 =20 —dimNul 4 >20—2 = 18. Since Col 4 is a subspace of R'®,
Col 4 = R"™. Thus Ax = b has a solution for every b in R'®.

. If n =10, then H and ¥V are both the zero subspace, and H = V. If n > 0, then a basis for H consists of n

linearly independent vectors u,,...,u,. These vectors are also linearly independent as elements of V.

But since dim} = n, any set of n linearly independent vectors in /' must be a basis for }J' by the Basis
Theorem. So wu,,...,u, span V, and H =Span{u,,...,u,}=V.

. Let T:R" — R"™ be a linear transformation, and let 4 be the m X n standard matrix of 7.

a. If T'is one-to-one, then the columns of 4 are linearly independent by Theoerm 12 in Section 1.9,
so dimNul 4 = 0. By the Rank Theorem, dimCol 4 = n — 0 = n, which is the number of columns
of A. As noted in Section 4.2, the range of T is Col 4, so the dimension of the range of T is n.

b. If Tmaps R” onto R™, then the columns of 4 span R™ by Theoerm 12 in Section 1.9, so
dimCol A = m. By the Rank Theorem, dimNul 4 =#n — m. As noted in Section 4.2, the kernel of
Tis Nul 4, so the dimension of the kernel of T is n — m. Note that n — m must be nonnegative in
this case: since A must have a pivot in each row, n > m.

Let S={v,,...,v,}. If S were linearly independent and not a basis for ¥, then S would not span V.
In this case, there would be a vector v ,,; in ¥ that is not in Span{vy,...,v,}. Let
§’={v},...,v,,V,.i}. Then S’ is linearly independent since none of the vectors in S’ is a linear
combination of vectors that precede it. Since S has more elements than S, this would contradict the

maximality of S. Hence S must be a basis for V.

If S is a finite spanning set for ¥, then a subset of S is a basis for V. Denote this subset of S by §”.
Since S is a basis for ¥, §* must span V. Since S is a minimal spanning set, S’ cannot be a proper
subset of S. Thus S’ =S, and S is a basis for V.

a. Lety be in Col AB. Then y = ABx for some x. But ABx = A(Bx), so y = A(Bx), and y is in Col 4.
Thus Col 4B is a subspace of Col 4, so rank AB = dimCol 4B < dimCol 4 =rank A by Theorem
11 in Section 4.5.

b. By the Rank Theorem and part a.: rank 4B =rank(4B)" =rank B" A" <rank B =rank B
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13.

14.

15.

16.

17.

18.

By Exercise 12, rank PA < rank A4, and rank 4 =rank(P'P)4 =rank P~ (PA)<rank PA, so
rank P4 =rank A4.

Note that (40)" =0" A". Since O” is invertible, we can use Exercise 13 to conclude that

rank(4Q)" =rank Q" 4" =rank A4". Since the ranks of a matrix and its transpose are equal (by the
Rank Theorem), rank 4Q = rank A.

The equation AB = () shows that each column of B is in Nul 4. Since Nul 4 is a subspace of R" , all
linear combinations of the columns of B are in Nul 4. That is, Col B is a subspace of Nul 4. By
Theorem 11 in Section 4.5, rank B = dimCol B < dimNul 4. By this inequality and the Rank
Theorem applied to 4, n=rank A + dimNul 4 >rank 4 + rank B

Suppose that rank 4 =7 and rank B =r,. Then there are rank factorizations 4 =C,R, and B =C,R,
of 4 and B, where C, is mx# withrank #, C, is mxr, withrank »,, R, is ryxn withrank 7, and

R, is r, xn withrank r,. Create an m X (s +r,) matrix C=[C, G)]andan (1, + ) xn matrix R
R
by stacking R, over R,. Then 4+ B=CR, +C,R, =|[C, Cz][Rl} =CR.
2

Since the matrix CR is a product, its rank cannot exceed the rank of either of its factors by Exercise
12. Since C has 7 +r, columns, the rank of C cannot exceed 7, +r,. Likewise R has 7 +r, rows, so

the rank of R cannot exceed 7 +r,. Thus the rank of 4 + B cannot exceed 7 + r, =rank 4 + rank B,
or rank (4 + B) <rank 4 + rank B.

Let 4 be an m X n matrix with rank r.

(a) Let 4, consist of the » pivot columns of 4. The columns of 4, are linearly independent, so 4,
is an m X r matrix with rank r.

(b) By the Rank Theorem applied to A4,, the dimension of Row4, is r, so A4, has r linearly
independent rows. Let 4, consist of the r linearly independent rows of 4,. Then 4, isanrxr
matrix with linearly independent rows. By the Invertible Matrix Theorem, A4, is invertible.

Let 4 be a 4 X 4 matrix and B be a 4 X 2 matrix, and let u,...,u; be a sequence of input vectors in
R2
a. Use the equation x,,, = 4x, + Bu, for k=0,...,4, k=0, ...,4, with x, =0.

X, = AX, + Bu, = Bu,

X, = AX, + Bu, = ABu, + Bu,

X, = AX, + Bu, = A(ABu, + Bu,) + Bu, = A’Bu, + ABu, + Bu,
X, = AX, + Bu, = A(4°Bu, + ABu, + Bu,) + Bu, = A’ Bu, + A°Bu, + ABu, + Bu,

=[B 4B 4B 4B] o M
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Note that M has 4 rows because B does, and that M has 8 columns because B and each of the
k 8
matrices 4' B have 2 columns. The vector u in the final equation is in R , because each U« is in
RZ
b. If (4, B) is controllable, then the controlability matrix has rank 4, with a pivot in each row, and

the columns of M span R* . Therefore, for any vector vin R*, there is a vector u in R* such
that v = Mu. However, from part a. we know that x, = M u when u is partitioned into a control

sequence u,,...,u, . This particular control sequence makes x, =v.

19. To determine if the matrix pair (4, B) is controllable, we compute the rank of the matrix
[B AB AzB]. To find the rank, we row reduce:

0 1 0 1 0 0
-9 81|~0 1 0
S 025 0 0 1

B AB A’B|=|1
[ Jl

The rank of the matrix is 3, and the pair (4, B) is controllable.

20. To determine if the matrix pair (4, B) is controllable, we compute the rank of the matrix

1 5 .19
[B AB AZB]. To find the rank, we note that : [B AB AZB]= 1 .7 .45).
0 0 0

The rank of the matrix must be less than 3, and the pair (4, B) is not controllable.

21. [M] To determine if the matrix pair (4, B) is controllable, we compute the rank of the matrix
[B AB A’B A3B]. To find the rank, we row reduce:

1 0 0 1771 0 0 -1
) s 0 -1 16/ |0 1 0 -16
[B AB  A*B AB]: ~ .
0 -1 16 -9/ |0 0 1 -16
1 16 -96 -024| |0 0 0 0

The rank of the matrix is 3, and the pair (4, B) is not controllable.

22. [M] To determine if the matrix pair (4, B) is controllable, we compute the rank of the matrix
[B AB A’B A3BJ. To find the rank, we row reduce:

1 0 0 111 0 0 o0
) X 0o 0 -l 50 1o 1 0 0

[B AB A*B AB}: ~
-1 5 11450 |0 0 1 0
1 5 1145 -10275| |0 0 0 1

The rank of the matrix is 4, and the pair (4, B) is controllable.
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Eigenvalues and
Eigenvectors

5.1 SOLUTIONS

Notes: Exercises 1-6 reinforce the definitions of eigenvalues and eigenvectors. The subsection on
eigenvectors and difference equations, along with Exercises 33 and 34, refers to the chapter introductory
example and anticipates discussions of dynamical systems in Sections 5.2 and 5.6.

1. The number 2 is an eigenvalue of 4 if and only if the equation 4x =2x has a nontrivial solution.

3 8 0 2 3 6
columns of 4 are obviously linearly dependent, so (4 —27/)x =0 has a nontrivial solution, and so 2 is

. . . 3 2 2 0 1 2
This equation is equivalent to (4—2/)x=0. Compute 4 -2/ = { } —{ } = { } . The

an eigenvalue of 4.

2. The number -2 is an eigenvalue of 4 if and only if the equation Ax =-2x has a nontrivial solution.

7 3 2 0 9 3
This equation is equivalent to (4+2/)x=0. Compute 4+ 2/ = [3 J + {0 2} = [3 J . The

columns of 4 are obviously linearly dependent, so (4+2/)x =0 has a nontrivial solution, and so -2
is an eigenvalue of 4.

-3 11 1 1 1

3. Is Ax a multiple of x? Compute = #A|l |. So is not an eigenvector of 4.

-3 8|4 29 4 4

-1+242
3442

shows that if Ax is a multiple of x, then that multiple must be 3 + V2. Check 3++/2 times the first
entry of x:

(3+J§)(—1+J§):—3+[J§j2+2f:—1+2ﬁ

The second entries of x and Ax

1 4 1

2 1] -
4. Is Ax a multiple of x? Compute }{ I+ \/E} =

Copyright © 2016 Pearson Education, Inc. 5-1



5-2 CHAPTER 5 -« Eigenvalues and Eigenvectors

-1+

This matches the first entry of Ax, so { } is an eigenvector of 4, and the corresponding

eigenvalue is 3+ V2.

37 9| 4 0 4
5. Is Ax a multiple of x? Compute | -4 -5 1||-3|=|0]|. So | =3 | is an eigenvector of A4 for the
2 4 4| 1 0 1
eigenvalue 0.
3 6 7| 1 -2 1 1
6. Is Ax a multiple of x? Compute |3 3 7| -2|=| 4|=(-2)|—2| So | -2 | is an eigenvector of
5 6 5| 1 -2 1 1

A for the eigenvalue —2.

7. To determine if 4 is an eigenvalue of 4, decide if the matrix 4—4/ is invertible.
3 0 -1 4 0 O -1 0 -1
A-4l=| 2 3 1|-|0 4 0|=| 2 -1 1|. Invertibility can be checked in several
-3 4 5 0 0 4 -3 4 1

ways, but since an eigenvector is needed in the event that one exists, the best strategy is to row
reduce the augmented matrix for (4—-4/)x=0:

-1 0 -1 0 -1 0 -1 0 1 0 1 0
2 -1 I 0|~ 0 -1 -1 O|~{0 -1 -1 O|. Theequation (4—-4/)x=0 hasa
-3 4 1 0 0 4 4 0[]0 0 0 O
nontrivial solution, so 4 is an eigenvalue. Any nonzero solution of (4—4/)x =0 is a corresponding
eigenvector. The entries in a solution satisfy x; +x; =0 and —x, —x; =0, with x; free. The general
solution is not requested, so to save time, simply take any nonzero value for x; to produce an
eigenvector. If x; =1, then x=(-1,-1,1).

Note: The answer in the text is (1,1, —1), written in this form to make the students wonder whether the
more common answer given above is also correct. This may initiate a class discussion of what answers
are “correct.”

8. To determine if 3 is an eigenvalue of 4, decide if the matrix 4—3/ is invertible.
1 2 2 300 -2 2 2

A-3I=/3 -2 1|-|0 3 0|=| 3 -5 1|. Row reducing the augmented matrix
0 1 1 0 0 3 0 1 2
-2 2 20 1 -1 -1 0 1 0 -3 0
[(A=37) 0] yields: | 3 -5 1 0|~|0 1 -2 0(~|0 1 -2 0]. Theequation
0 1 2 0 0 2 4 0 0 0 0 O
(A —-371)x =0 has a nontrivial solution, so 3 is an eigenvalue. Any nonzero solution of (4—-3/)x=0

is a corresponding eigenvector. The entries in a solution satisfy x; —3x; =0 and x, —2x; =0, with
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x, free. The general solution is not requested, so to save time, simply take any nonzero value for x;
3
to produce an eigenvector. If x; =1, then x=|2|.
1
50 1 0 4 0 _ _
9. For A=1: A-1I= {2 J - {0 J = [2 0} . The augmented matrix for (4—1)x=0 is

4 0 0
L 0 O}' Thus x; =0 and x, is free. The general solution of (4—-7)x=0 is x,e,, where

0
e, = L}, and so e, is a basis for the eigenspace corresponding to the eigenvalue 1.

5 0] 1|5 0 0 0 .
For A=5: A-5I= - = . The equation (4—-57)x=0 leads to
2 1 0 5 2 -4
x| [2x, 2 2
= =x,| | So
X, X, 1 1

10 -9 4 0 6 -9 ) )
10. For A=4: A-4]= 4 - = . The augmented matrix for (4—4/7)x=0 is

2x; —4x, =0, so that x, =2x, and x, is free. The general solution is

is a basis for the eigenspace.

2| o 4| |4 -6

6 -9 0 1 -9/6 0 : o
~ . Thus x, =(3/2)x, and x, is free. The general solution is
4 -6 0] |0 0 0

2
[2]

4 =2 10 0 -6 -2 ) ,
11. 4-10/= - = . The augmented matrix for (4—-10/)x=0 is
-3 9 0 10 -3 -1

X, 1

(3/2)x, 3/2 ) . ) L 132 )
=x, . A basis for the eigenspace corresponding to 4 is Ll Another choice

-6 -2 0 1 173 0 . o
~ . Thus x, =(=1/3)x, and x, is free. The general solution is
-3 -1 0] [0 O O

x|
x, B

N !
choice is .

~(1/3)x,

X

-1/3
= xz[ J. A basis for the eigenspace corresponding to 10 is { )

}. Another
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7 4 1 0 6 4 . ,
12. For A=1: A-I= 3 Ul 1 = 3 ol The augmented matrix for (4—1)x=0 is

6 4 0 1 2/3 0 . . .
~ . Thus x, =(-2/3)x, and x, is free. A basis for the eigenspace
-3 2 0 0 0 0

. .| =2/3 .
corresponding to 1 is Ll Another choice is 5|

7 4 50 2 4 . .
For A=5: A-5I= 3 U7lo s = . The augmented matrix for (4—5/)x=0 is

2 4 0 1 2 0 . o
~ . Thus x, =-2x, and x, is free. The general solution is
-3 -6 0] [0 0 O

] e s [
= =X, . A basis for the eigenspace is .
X, X, 1 1
4 0 1 1 0 0 3 0 1
13. For A=1: A4-1I=|-2 1 0|-|0 1 0|=|-2 0 0]. Theequations for (4—1)x=0 are
-2 0 1] 10 0 1 -2 0 0
3x,+x;,=0 ) . .
easy to solve: {_le _ } . Row operations hardly seem necessary. Obviously X, is zero, and
hence x; is also zero. There are three-variables, so x, is free. The general solution of (4—-/7)x=0 is
0
x,e,, where e, =| 1 | and so e, provides a basis for the eigenspace.
0
4 0 1] 12 0 0 2 0 1
ForA=2: A-2I=/-2 1 0|-{0 2 O0|=(-2 -1 0].
-2 0 1 0 0 2 -2 0 -1
2 0 1 0l [2 o 1 0] [®o 12 0
[(4-21) 0]=|-2 -1 O O ~{0 -1 1 0|~|0 (D -1 0]. So
-2 0 -1 0 0 0 0 O 0 0 0 O

-1/2
x, =—(1/2)x;, x, = x;, with x; free. The general solution of (4—-27)x=0 is x;| 1 |. A nice basis
1
-1
vector for the eigenspaceis | 2 |.
2

Copyright © 2016 Pearson Education, Inc.



14.

15.

5.1 < Solutions 5-5

173 0 0 1 0 1
Fork3A3I——210}030——2 -2 0.
2 0 1/]0 0 3| |2 0 -2
1 0 10 0 1 0 0 1 0
[(4-31) 0]=|-2 =2 00~0—220~0®—1O.Soxlz—x3,x2:x3,
2 0 -2 0[]0 0 0 0] |0 0 0 O

-1
with x; free. A basis vector for the eigenspaceis | 1.
1

10 -1} [2 0 0] [3 0 -1
For A=-2: A-(-21)=A+2[=|1 -3 0|+/0 2 O0|=|1 -1 0] Theaugmented
14 -13 1 0 0 2 4 -13 3
matrix for [A—(-2)[]x=0, or (4+21)x=0, is
3 0 -1 0] [1 0 -1/3 0 1 0 -1/3 0
[(4+2]) 0]=|1 -1 0 0}~|0 1 -3 0|~|{0 1 -=1/3 0]. Thus
4 -13 3 0] |0 -13 13/3 0 0 0 0 0
1/3
x, =(1/3)x;,x, =(1/3)x;, with x; free. The general solution of (4+2/)x=0 is x;|1/3|. A basis for
1
1/3 1
the eigenspace corresponding to —2 is | 1/3 |; anotheris | 1 |.
1 3
1 2 3 0 1 2 3 0
For A=3: [(4-3]) 0]=|-1 -2 -3 0|~|0 O O O] Thus x, +2x, +3x, =0, with x,
2 4 6 0 0 0 0 O
—2x, = 3x, -2 -3
and x; free. The general solution of (4-3/)x=0, is x= X, =x,| 1|+x;] 0| Abasis
X, 0 1
-21]1-3
for the eigenspace is: 1| 0
0 1

Note: For simplicity, the text answer omits the set brackets. I permit my students to list a basis without
the set brackets. Some instructors may prefer to include brackets.
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For
30 2 0|4 0 0 O -1 0 2 0
1 3 1 0 0 4 0 0 1 -1 0
A=4: A-4]= - = .
0 1 1 0 0 0 4 0 0 1 -3 0
0 0 0 4/]10 0 0 4 0O 0 0 O
-1 0 2 0 O 1 0 -2 0 O
1 -1 1 0 0 0 1 -3 0 0 ,
[(A-41) 0]= L3 0 0l7lo 0o o o0 of So x, =2x;,x, =3x;, with x; and
0 0 0 0 O 0 0 0 0 O
X || 2x, 2 0
. . : Xy || 3% 3 0
x, free variables. The general solution of (4-4/)x=0is x= = =Xy [+x4] |- A
X, X, 1 0
X, X, 0 1
2110
. . . 3110
basis for the eigenspace is: o
01

Note: 1 urge my students always to include the extra column of zeros when solving a homogeneous
system. Exercise 16 provides a situation in which failing to add the column is likely to create problems
for a student, because the matrix A4 —4/ itself has a column of zeros.

17.

18.

19.

20.

0
The eigenvaluesof [0 2 5] are 0, 2, and —1, on the main diagonal, by Theorem 1.
0 0 -I]
4 0 _
The eigenvaluesof |0 0 are 4, 0, and -3, on the main diagonal, by Theorem 1.
10 -3
1 2 3
The matrix |1 2 3| is not invertible because its columns are linearly dependent. So the number 0
1 2 3
is an eigenvalue of the matrix. See the discussion following Example 5.
5 55
The matrix A=|5 5 5| is not invertible because its columns are linearly dependent. So the
5 55

number 0 is an eigenvalue of 4. Eigenvectors for the eigenvalue 0 are solutions of 4x =0 and
therefore have entries that produce a linear dependence relation among the columns of 4. Any

nonzero vector (in R*) whose entries sum to 0 will work. Find any two such vectors that are not
multiples; for instance, (1,1,—2) and (1, -1, 0).
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23.

24.

25.

5.1 < Solutions 5-7

. False. The equation Ax =Ax must have a nontrivial solution.

. True. See the paragraph after Example 5.

. True. See the discussion of equation (3).

. True. See Example 2 and the paragraph preceding it. Also, see the Numerical Note.

o & 6 T &

. False. See the warning after Example 3.

a. False. The vector x in Ax = Ax must be nonzero.

=n

. False. See Example 4 for a two-dimensional eigenspace, which contains two linearly independent
eigenvectors corresponding to the same eigenvalue. The statement given is not at all the same as
Theorem 2. In fact, it is the converse of Theorem 2 (for the case r=2).

¢. True. See the paragraph after Example 1.
d. False. Theorem 1 concerns a triangular matrix. See Examples 3 and 4 for counterexamples.

e. True. See the paragraph following Example 3. The eigenspace of 4 corresponding to A is the null
space of the matrix A —Al.

If a 2x2 matrix 4 were to have three distinct eigenvalues, then by Theorem 2 there would
correspond three linearly independent eigenvectors (one for each eigenvalue). This is impossible
because the vectors all belong to a two-dimensional vector space, in which any set of three vectors is
linearly dependent. See Theorem 8 in Section 1.7. In general, if an nX#n matrix has p distinct
eigenvalues, then by Theorem 2 there would be a linearly independent set of p eigenvectors (one for
each eigenvalue). Since these vectors belong to an n-dimensional vector space, p cannot exceed 7.

A simple example of a 2x2 matrix with only one distinct eigenvalue is a triangular matrix with the
same number on the diagonal. By experimentation, one finds that if such a matrix is actually a
diagonal matrix then the eigenspace is two dimensional, and otherwise the eigenspace is only one
dimensional.

4 1 4 5
Examples: and .
0 4 0 4

If X is an eigenvalue of 4, then there is a nonzero vector x such that Ax =Ax. Since 4 is invertible,
A7'Ax = A7'(Ax), and so x = M(47'x). Since x# 0 (and since 4 is invertible), A cannot be zero.

Then A ™'x = A™'x, which shows that A™' is an eigenvalue of 47"

Note: The Study Guide points out here that the relation between the eigenvalues of 4 and A4~ is
important in the so-called inverse power method for estimating an eigenvalue of a matrix. See Section 5.8.

26.

27.

Suppose that A” is the zero matrix. If Ax =Ax for some x # 0, then
A*x = A(Ax) = A(Ax) = Mdx = A*x. Since x is nonzero, A must be zero. Thus each eigenvalue of 4 is

zZero.
Use the Hint in the text to write, for any A,(4—A)" = A" —=(M)" = 4" =\, Since (4-M)" is

invertible if and only if 4—AJ is invertible (by Theorem 6(c) in Section 2.2), it follows that 4" —AJ

is not invertible if and only if 4—AJ is not invertible. That is, A is an eigenvalue of 4" if and only
if A is an eigenvalue of 4.
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Note: If you discuss Exercise 27, you might ask students on a test to show that 4 and 4" have the same
characteristic polynomlal (dlscussed in Sectlon 5. 1)_ Slnce det A=detA”, for any square matrix A,
det(4-M) =det(A-A)" =det(4” —(M)") =det(4" -

28.

29.

30.

31.

33.

34.

3S.

If 4 is lower triangular, then A" is upper triangular and has the same diagonal entries as 4. Hence,

by the part of Theorem 1 already proved in the text, these diagonal entries are eigenvalues of A”. By
Exercise 27, they are also eigenvalues of 4.

Let v be the vector in R” whose entries are all ones. Then Av = sv.

Suppose the column sums of an nXn matrix 4 all equal the same number s. By Exercise 29 applied
to A" in place of 4, the number s is an eigenvalue of A”. By Exercise 27, s is an eigenvalue of 4.

Suppose T reflects points across (or through) a line that passes through the origin. That line consists
of all multiples of some nonzero vector v. The points on this line do not move under the action of A4.
So T(v)=v. If 4 is the standard matrix of 7, then Av =v. Thus v is an eigenvector of 4

corresponding to the eigenvalue 1. The eigenspace is Span {v}. Another eigenspace is generated by

any nonzero vector u that is perpendicular to the given line. (Perpendicularity in R* should be a
familiar concept even though orthogonality in R” has not been discussed yet.) Each vector x on the

line through u is transformed into the vector —x. The eigenvalue is —1.
(The solution is given in the text.)
a. Replace k by k+1 in the definition of x,, and obtain x,,, = cl/IkHu +o 1 Ky,
b. Ax, = A(cA'u+c,u*v)
=c A Au+c,u* Av by linearity
=c, A" Au+c,u* uv since u and v are eigenvectors

= Xp1

You could try to write X, as linear combination of eigenvectors, v,,..., v e If Ay, , are

corresponding eigenvalues, and if X, =¢;v, +---+¢,v,,, then you could define

_ k k
X, =4 v+ +cpﬂp »

In this case, for £=0,1,2, ...
Ax, = A(c Ay, +-+c /1kv )

p’ptp
= A AV +- o+ cp/illevp Linearity

_ gkl k4l -
=ch v ++c, 47 v, Thev, are eigenvectors.

P

= X4l

Using the figure in the exercise, plot 7'(u) as 2u, because u is an eigenvector for the eigenvalue 2 of
the standard matrix A. Likewise, plot 7(v) as 3v, because v is an eigenvector for the eigenvalue 3.
Since T is linear, the image of wis T(w)=T(u+v)=T(u)+T(v).
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36. As in Exercise 35, T(u) =—u and 7' (v) =3v because u and v are eigenvectors for the eigenvalues

—1 and 3, respectively, of the standard matrix A. Since T is linear, the image of w is
Tw)=T(u+v)=T)+T(v).

Note: The matrix programs supported by this text all have an eigenvalue command. In some cases, such
as MATLAB, the command can be structured so it provides eigenvectors as well as a list of the
eigenvalues. At this point in the course, students should not use the extra power that produces
eigenvectors. Students need to be reminded frequently that eigenvectors of 4 are null vectors of a
translate of 4. That is why the instructions for Exercises 35-38 tell students to use the method of Example
4.

It is my experience that nearly all students need manual practice finding eigenvectors by the method
of Example 4, at least in this section if not also in Sections 5.2 and 5.3. However, [M] exercises do create
a burden if eigenvectors must be found manually. For this reason, the data files for the text include a
special command, nulbasis for each matrix program (MATLAB, Maple, etc.). The output of
nulbasis (A) is a matrix whose columns provide a basis for the null space of 4, and these columns
are identical to the ones a student would find by row reducing the augmented matrix [4 0]. With
nulbasis, student answers will be the same (up to multiples) as those in the text. I encourage my students
to use technology to speed up all numerical homework here, not just the [M] exercises,

37. [M] Let 4 be the given matrix. Use the MATLAB commands eig and nulbasis (or equivalent
commands). The command ev = eig (A) computes the three eigenvalues of 4 and stores them in a

vector ev . In this exercise, ev =(3,13,13). The eigenspace for the eigenvalue 3 is the null space of
A-3I. Use nulbasis to produce a basis for each null space. If the format is set for rational

5/9
display, the resultis nulbasis(A-ev(1l)*eye (3))=|-2/9|. For simplicity, scale the entries
1
5
by 9. A basis for the eigenspace for A=3:| -2
9
-2 -1
For the next eigenvalue, 13, compute nulbasis(A-ev(2)*eye(3))=| 1 0] Basisfor
0 1
=2 ||-1
eigenspace for A=13: 1],/ 0] . There is no need to use ev (3) because it is the same as
0
ev(2).
38. [M] ev=eig(n)=(13,-12,-12,13). For A=13:
-1/2  1/3 -1 1
nulbasis (A-ev(l)*eye(4))= (1) 43 . Basis for eigenspace : 0 , -
0 1 0 3
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2/7 0 2 0
1 - . 711-1
For A=—12: nulbasis(A-ev(2)*eye(4))= : . Basis: 21 o
0 0 1
[ 2][-1][2] =21 3]
-1 1[0 7 7
39. [M] For A =35, basis: 1,| 0[,]0]| ;. ForA=-2, basis: | -51,| =5
0 1[(0 5 0
| O] O]|1] | 0| 5]

40. [M] ev=eig(A)=(21.68984106239549,-16.68984106239549,3,2,2). The first two eigenvalues
are the roots of A> =51 —362=0.

[-0.33333333333333] [—0.33333333333333 |
2.39082008853296 —0.80748675519962
Basis for A=ev(l):| 0.33333333333333 |, for A=ev(2):| 0.33333333333333|.
0.58333333333333 0.58333333333333
| 1.000000000000000 | | 1.00000000000000 |
[ 0] 21 [-5]
-2 1 5
For the eigenvalues 3 and 2, the eigenbases are | 0 |, and 0,] 0] ¢, respectively.
1 1 0
| 0] L 0] 1)

Note: Since so many eigenvalues in text problems are small integers, it is easy for students to form a
habit of entering a value for A in nulbasis (A -AI) based on a visual examination of the eigenvalues
produced by eig (A) when only a few decimal places for A are displayed. Exercise 40 may help your
students discover the dangers of this approach.

5.2 SOLUTIONS

Notes: Exercises 9—14 can be omitted, unless you want your students to have some facility with
determinants of 3x3 matrices. In later sections, the text will provide eigenvalues when they are needed
for matrices larger than 2x2. If you discussed partitioned matrices in Section 2.4, you might wish to
bring in Supplementary Exercises 12—14 in Chapter 5. (Also, see Exercise 14 of Section 2.4.)

Exercises 25 and 27 support the subsection on dynamical systems. The calculations in these exercises
and Example 5 prepare for the discussion in Section 5.6 about eigenvector decompositions.
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2 7 2 7 A 0 2-4 7 .. .
A=Al = - = . The characteristic polynomial
7 2 7 2 0 A 7 2-4

isdet(A—Al)=(2—-A) =7* =4—4L+A* =49 =A% =4\ —45 . In factored form, the characteristic
equation is (A —9)(A +5) =0, so the eigenvalues of 4 are 9 and 5.

5 3 5-4 3 .. o
A= ,A—Al = . The characteristic polynomial is
35 3 5-4

det(A-A)=(5-A)(5-1)-3-(3)=A* =104 +16. Since A* —104+16=(1—8)(1-2), the
eigenvalues of 4 are 8 and 2.
3 =2 3-4 2 . .
A= ,A—Al = . The characteristic polynomial is
1 -1 1 -1-4
det(4—A)=B-A)(=1-1)=(-2)1) =A% =2k —1. Use the quadratic formula to solve the

~btNb* —dac  2+~4+4 14
> +

2a

2.

characteristic equation and find the eigenvalues: A =

5 =3 5-4 3 . . .
. A= 3| A=Al = . The characteristic polynomial of 4 is

4 4 3-1
det(4—AI) =(5-A)(3-A) - (=3)(—4) = A* =84+ 3. Use the quadratic formula to solve the

/1:8i./64—4(3) :812@:41@

2 2

characteristic equation and find the eigenvalues:

-1 -1 4-)
det(A-A)=2-N)@4-A)—1)(=1)=A* —6A+9=(A—3). Thus, 4 has only one eigenvalue 3,
with multiplicity 2.

2 1 2-A 1 . . :
. A= 4l A-Al = . The characteristic polynomial of 4 is

4 4 8-2

det(A—Al)=(3-A)(8-A) —(-4)(4) =A> =111+ 40 . Use the quadratic formula to solve
—_ + _ _ —

det (A—AD)=0: A= 11 121 4(40) _ lliz'\/ 39

real numbers, so 4 has no real eigenvalues. There is no nonzero vector x in R? such that Ax = Ax,
because a real vector Ax cannot equal a complex multiple of x.

3 4 3-4 -4 o o
. A= g | A-Al = . The characteristic polynomial is

. These values are complex numbers, not

5 3 5-4 3 . -
. A= 4 4 ,A—Al = Al The characteristic polynomial is

det(A—-Al)=(5-A)(4-2A)—(3)(—4)=A* —94+32 . Use the quadratic formula to solve
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10.

11.

. These values are complex numbers, not real

+ - —
det (4-AI)=0: gﬁ—@ji\é 47

numbers, so 4 has no real eigenvalues. There is no nonzero vector x in R? such that Ax = Ax,
because a real vector Ax cannot equal a complex multiple of x.

2 2 3-4

det(A— Al =(7-A)(B3 =) - (-2)(2) =A* =104+ 25. Since A* —104+25=(1—-5)*, the only
eigenvalue is 5, with multiplicity 2.

7 -2 T7-4 =2 . o
. A= 3 ,A—Al = . The characteristic polynomial is

1-4 0 -1
det(4d—Al)=det| 2 3-4A -1 |. From the special formula for 3x3 determinants, the
0 6 0-4

characteristic polynomial is
det(A-Al)=(1-A)B-A(=A)+0+(-D(2)(6)-0—(6)(-1)(1-4) -0

= (1 —4A+3) (=) -12+6(1-1A)

=-A +42* -31-12+6-64

= +412-91-6
(This polynomial has one irrational zero and two imaginary zeros.) Another way to evaluate the

determinant is to interchange rows 1 and 2 (which reverses the sign of the determinant) and then
make one row replacement:

1-2 0 -1 2 3-4 -1
det| 2 3-4 -1 |=—det|1-4 0 -1
0 6 0-4 0 6 0-4
2 3-4 -1
=—det|0 0+(54-.5)(3-4) -1+(54-.5)(-1)|. Next, expand by cofactors down the first
0 6 0-4

column. The quantity above equals

(5A-5)(3-4) -5-.51
6 A

—2det = 2[(5A-.5)B = A=A - (=.5-.52)(6)]

=(1-AB - -1+ A)(6)=(1* —4A+3)(-) -6-61=-1 +41> -91-6

0-4 3 1
det(4—Al)=det| 3 0-4 2 |. From the special formula for 3x3 determinants, the
1 2 0-1
characteristic polynomial is
det(4—AD) =(-A)(-A)(-A)+3-2-1+1-3-2-1-(-A)-1-2-2-(-4)—(-4)-3-3
=—A+6+6+A+44+9A=-1" +141+12

The special arrangements of zeros in 4 makes a cofactor expansion along the first row highly
effective.
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13.

14.

15.

16.
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4-1 0 0
3-4 2
det(A—-Al)=det| 5 3-4 2 |=(@4-A)det
0 2-4
-2 0 2-4
=(4-DB-NQ2-A) =4 - -51+6)=-A +91> —261+24

If only the eigenvalues were required, there would be no need here to write the characteristic
polynomial in expanded form.

Make a cofactor expansion along the third row:
-1-4 0 1
-1-4 0
det(A—Al)=det| -3 4-4 1 [=(Q2-A)-det 3
0 0 2-4
=Q2-A=1-D@d-D)=-A +54-21-8

Make a cofactor expansion down the third column:
6-4 2 0
6-4 2
det(A—Al)=det| -2 9-4 0 |=@B-A)-det
-2 9-4
5 8 3-4
=B =-D(6-4)(9-1)—(-2)(-2)] =B =A)(A* =151 +50)
=-A*+184% =954 +150 or 3—A)(A-5)(A-10)

Make a cofactor expansion along the second row:
5-4 =2 3
5-4 3
det(A—Al)=det] 0 1-4 0 =(1—/1)-de‘{ }
6 2-4
6 7 2-4
=(1-2) [5-A(-2-2)-3-6]=(1-A)(A* -341-28)
= +422 +254-28 or (1-A(A-T)(A+4)

Use the fact that the determinant of a triangular matrix is the product of the diagonal entries:
4-4 -7 0 2
0 3-4 4 6
det(4 — AI) = det =(4-HB-A(1-4
(A= A1) 0 0 a4 g |F@-AG-20-2
0 0 0 1-4

The eigenvalues are 4, 3, 3, and 1.

The determinant of a triangular matrix is the product of its diagonal entries:
5-4 0 0 0
-4-4 0
7 1-4
1 -5 2 1-4

det(A4—Al) = det =(5-)(-4-H)1-2)*

The eigenvalues are 5, 1, 1, and —4.
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17.

18.

19.

20.

21.

22

23.

24.

25.

The determinant of a triangular matrix is the product of its diagonal entries:

[3-4 0 0 0 0

-5 1-4 0 0 0

3 8 0-4 0 0 |=G-)*(1-21)*(=1)
-7 2 1-4 0

—4 1 9 -2 3-4]

The eigenvalues are 3, 3, 1, 1, and 0.

Row reduce the augmented matrix for the equation (4—-5/)x=0:
0 -2 6 -1 0] |0 =2 6 -1 0 0 1 -3
0 -2 A 0 0] |0 0 A-6 1 0 0

0
0 0 0 4 0 0 0 0 4 0 0 0 0
0 0 0 -4 0 0 0 0 4 0 0 0 0 0

Byl
\
- o O
S O O

(e}

For a two-dimensional eigenspace, the system above needs two free variables. This happens if and
only if 7=6.

Since the equation det(4—Al)= (A, —A)(A, —A)--- (A, —A) holds for all A, set A =0 and conclude
that det A=A\, -+ A,
det(A" =AI)=det(4” —AIT)

=det(4-A1)" Transpose property

=det(4—-Al) Theorem 3(c)

False. See Example 1.
False. See Theorem 3.

True. See Theorem 3.

B e T #

False. See the solution of Example 4.

False. See the paragraph before Theorem 3. The absolute value of det 4 equals the volume.

False. See Theorem 3.

o T8

True. See the paragraph before Example 4.

d. False. See the warning after Theorem 4.
If 4=QR, with Q invertible, and if 4, = RQ, then write 4, =0 'ORQ =040, which shows that

A, is similar to 4.

First, observe that if P is invertible, then Theorem 3(b) shows that
1=det] =det(PP™") = (det P)(det P'). Use Theorem 3(b) again when 4= PBP",

det A =det(PBP™") = (det P)(det B)(det P™") = (det B)(det P)(det P™') = det B .

Example 5 of Section 4.9 showed that Av, = v,, which means that v, is an eigenvector of 4
corresponding to the eigenvalue 1.
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a. Since 4 is a 2X2 matrix, the eigenvalues are easy to find, and factoring the characteristic
polynomial is easy when one of the two factors is known.

det['6 ;/1 7'3 /J =(6-A(7-A)-(3)(4) =4 -134+.3=(1-1)(A-.3). The eigenvalues

are 1 and .3.

. 6-3 3 0 3 3 0 1 1 0
For the eigenvalue .3, solve (4—-.3/)x=0: = ~ .
4 J-3 0 4 4 0] 10 0 O

Here x, +x, =0, with x, free. The general solution is not needed. Set x, =1 to find an

eigenvector v, ={ | } A suitable basis for R? is {v,,v,}.

1/2 317 -1
b. Write X, =v, +c¢v,: L/z} = {4/7} +c[ J. By inspection, ¢ is —1/14. (The value of ¢ depends

on how v, is scaled.)

¢. For k=1,2,..., define x, = 4*x,. Then x, = A(v, +¢v,) = Av, +cAv, = v, +¢(.3)v,, because
v, and v, are eigenvectors. Again
X, = AX; = A(v, + c(.3)v,) = Av, + ¢(.3)Av, = v, + c(.3)(.3)v,. Continuing, the general pattern is

X, =V, +¢(.3)" v,. As k increases, the second term tends to 0 and so x, tends to v,.

b a b
26. If a#0, then A= 4 ~ ., |=U, and det A=(a)(d—ca™'b)=ad —bc. If a=0,
c d 0 d-ca'b

0 b d
then 4= { d} ~ {g b} =U (with one interchange), so det 4 =(=1)'(cb) = 0—bc = ad — bc.
c

27. a. Av,=v,, Av,=.5v,, Av,=.2v,.
b. The set {v,,v,,Vv;} is linearly independent because the eigenvectors correspond to different

eigenvalues (Theorem 2). Since there are three vectors in the set, the set is a basis for R*. So
there exist unique constants such that x, =¢,v, +¢,v, +¢;v5, and

w'x, =¢w' v, +c,w' v, +c;w v,. Since x, and v, are probability vectors and since the entries
in v, and v, sum to 0, the above equation shows that ¢, =1.
¢. By (b), x, =¢v, +¢c,v, +¢;v;. Using (a),
x, = Axy = AV, +c, AV, + e, AV, = v+ ¢, (5) v, + 5 (2) vy > v, ask oo
28. [M] Answers will vary, but should show that the eigenvectors of 4 are not the same as the

eigenvectors of A”, unless, of course, A" = A.

29. [M] Answers will vary. The product of the eigenvalues of 4 should equal det A.
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30. [M] The characteristic polynomials and the eigenvalues for the various values of a are given in the

following table:

a Characteristic Polynomial Eigenvalues
31.8 —4-26t+4t* -1 3.1279,1,-.1279
31.9 8-3.8t+4t: -1 2.7042, 1, .2958
32.0 2-5t+4r -1 2,1,1
32.1 32-62t+41* -1 1.5+.9747i,1
322 A4—TAr+47% =1 1.5£1.4663i,1

The graphs of the characteristic polynomials are:

— a=31.8

-------- a=31.9

---- a=32.0

----- a=32.1

-~ a=322

Notes: An appendix in Section 5.3 of the Study Guide gives an example of factoring a cubic polynomial
with integer coefficients, in case you want your students to find integer eigenvalues of simple 3x3 or
perhaps 4x4 matrices.

The MATLAB box for Section 5.3 introduces the command poly (2), which lists the coefficients
of the characteristic polynomial of the matrix 4, and it gives MATLAB code that will produce a graph of
the characteristic polynomial. (This is needed for Exercise 30.) The Maple and Mathematica appendices
have corresponding information. The appendices for the TI and HP calculators contain only the
commands that list the coefficients of the characteristic polynomial.

5.3 SOLUTIONS

2 3 1

g [ 3 7] e 16 0] [5 7]f16 o] 3 -7]_[226 525
= , = , an = = .
2 5 0 1 2 3]lo 1][-2 5] ]9 -209

5 7 2.0 -1 4 4 p-1
1. P= ,D= 0 ,A=PDP~, and A" = PD"P~". We compute
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2 3 I 0 -1 4 4p-1
. P= ,D= 0 12 ,A=PDP™", and A" = PD"P~". We compute

4|53 1 0 2 =341 0 |5 3| 1] 151 90

1 4 4

P = ,D" = ,and 4" = =— .
3 2 0 1/16 -3 5|0 1/16]|3 2| 16|/-225 -134

i O] o 10
o 13 1o pHl|-3 1|

a* 0
3gk —3pF  pk|

. A =pDFp =

3472 of-1 4}_ 4-3.28 122012
o L1 =3] [ 1-2¢ 4203 ]

. By the Diagonalization Theorem, eigenvectors form the columns of the left factor, and they
correspond respectively to the eigenvalues on the diagonal of the middle factor.

1 1 2
A=5:1;A=1:| O},|-1].
1 -1 0
-1 2110
. As in Exercise 5, inspection of the factorization gives: A=4:| 2;A=5:| 0],/ 1
0 {0

. Since A4 is triangular, its eigenvalues are obviously 1.

0 0
ForA=1: A-1I= {6 2}. The equation (4 —1/)x =0 amounts to 6x, —2x, =0, so x; =(1/3)x,

1/ 1
with x, free. The general solution is xz[ J, and a nice basis vector for the eigenspace is v, = {3}

2.0
ForA=-1: A+11:[6 0}. The equation (4 +1/)x=0 amounts to 2x, =0, so x;, =0 with x,

0 0
free. The general solution is x, L}, and a basis vector for the eigenspace is v, = L}

1
3

0 1
From v, and v, construct P =[V1 Vz} ={ J. Then set D= {O }, where the eigenvalues

in D correspond to v, and v, respectively.
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5-18 CHAPTER S5 -+ Eigenvalues and Eigenvectors

8.

10.

Since 4 is triangular, its only eigenvalue is obviously 5.
0 1 . .
ForA=5: A-51= o ol The equation (4—-5/)x=0 amounts to x, =0, so x, =0 with x, free.

1
The general solution is x, {0} Since we cannot generate an eigenvector basis for R*, 4 is not

diagonalizable.
. To find the eigenvalues of 4, compute its characteristic
polynomial: det(A — 1) = det| ~ ; & :J =B-MG-1)-(=D(1) =2 -8 +16=(L—4)*. Thus
the only eigenvalue of 4 is 4. )
ForA=4: A-4] = {_1 _1 . The equation (4—4/)x=0 amounts to x, + x, =0, so x, =—x, with

x, free. The general solution is x, { J. Since we cannot generate an eigenvector basis for R?,A4is

not diagonalizable.

To find the eigenvalues of A, compute its characteristic polynomial:

det(4— A1) =de‘{ 3 }:(2—7@(1—70—(3)(4) =22 —34-10=(A—5)(A+2). Thus the

4  1-)
eigenvalues of 4 are 5 and —2.

-3 3
ForA=5: A-51 :{ 4 4}. The equation (4—57)x=0 amounts to x, —x, =0, so x;, =x, with
. 1 : . . 1
x, free. The general solution is x, Ll and a basis vector for the eigenspace is v, = Ll
4 3 )
ForA=-2: 4+2] = 4 30 The equation (4 +1/)x =0 amounts to 4x, +3x, =0, so
. L -3/4 . :

x, =(-3/4)x, with x, free. The general solution is x, L and a nice basis vector for the

! ! {_3}
cigenspace is v, =| .

1 -3 5 0
From v, and v, construct P =[v1 VZ] = L 4}. Then set D :{O 2} where the eigenvalues

in D correspond to v, and v, respectively.
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11. The eigenvalues of 4 are given to be 1, 2, and 3.

12.

-4 4 2 1 0 -1/4 0
ForA=3: A-3I=|-3 1 0}, and row reducing [4—3/ 0] yields [0 1 -3/4 0| The
-3 1 0 0 0 0 0
1/4 1
general solution is x;| 3/4 |, and a nice basis vector for the eigenspace is v, =| 3
1 4
-3 4 2 1 0 -2/3 0
ForA=2: A-2I1=|-3 2 0|, and row reducing [4—2/ 0] yields |0 1 -1 0. The
-3 1 1 0 0 0
2/3 2
general solution is x;| 1|, and a nice basis vector for the eigenspace is v, =| 3
1 3
-2 4 2 1 0 -1 0
ForA=1: A-1={-3 3 0|, androw reducing [4—1/ 0] yields |0 1 -1 0/ The
-3 1 2 0 0 0 O
1 1
general solution is x;| 1 |, and a basis vector for the eigenspace is v, =| 1.
1 1
1 2 1 300
From v,,v, and v; construct Pz[vl v, V3}= 3 3 1| Thenset D=0 2 0], where
4 3 1 0 0 1
the eigenvalues in D correspond to v,,v, and v, respectively.
The eigenvalues of 4 are given to be 2 and 8.
-4 2 2 1 0 -1 0
ForA=8: A-81=| 2 -4 2|, androw reducing [4—8/ 0] yields [0 1 -1 0] The
2 2 4 0 0 0 0
1 1
general solution is x; {1 , and a basis vector for the eigenspace is v, =|1|.
1 1
2 2 2 1 1 1 0
ForA=2: A-2I=|2 2 2|, androw reducing [4—2] 0] yields |0 0 O O [. The general
2 2 2 0 0 0 O
-1 -1 -1||-1
solutionis x,| 1|+x;| 0], and a basis for the eigenspace is {v,,v;} = 1 ,{ 0] ¢
0 1 0 1
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1 -1 -1 8 0 0
From v,,v, and v; construct Pz[v1 v, VJZ 1 1 0} Thenset D={0 2 0|, where
1 0 1 0 0 2

the eigenvalues in D correspond to v,,v, and v, respectively.

13. The eigenvalues of 4 are given to be 5 and 1.
-3 2 -1 1 01 O
ForA=5: 4A-5I=| 1 -2 -1/, androw reducing [A—5] 0] yields |0 1 1 0. The
-1 2 3 0 0 0 O
-1 -1
general solution is x;| —1|, and a basis for the eigenspace is v, =| —1|.
1 1
1 2 -] 1 2 -1 0
ForA=1: A-1/=| 1 2 -1/, androw reducing [A—1 0] yields (0 0 0 0| The
-1 2 1 0 0 0 O
-2 1 =211
general solution is x,| 1|+x;|0 [, and a basis for the eigenspace is {v,,v;} = 1 ,{0] .
0 1] 01
-1 -2 1 5 0 0]
From v,,v, and v; construct Pz[v1 v, v3}= -1 1 0} Thenset D=|0 1 0], where
1 0 1 0 0 1]
the eigenvalues in D correspond to v,,v, and v, respectively.
14. The eigenvalues of 4 are given to be 5 and 4.
-1 0 =2 1 0 2 0
ForA=5: A-5I=| 2 0 4|, and row reducing [4—5/ 0] yields |0 0 0 0. The
0 0 O 0 0 0 O
0 -2 —2110
general solution is x,| 1 [+x;| 0|, and a basis for the eigenspace is {v,,v,} = 0,1
0 1 110
0 0 -2 1 /2 0 0
ForA=4: A-41=|2 1 4|, and row reducing [4—4] 0] yields | 0 0 1 O] The
0 1 0 0 0 O

0

-1/2 -1

general solution is x; 1|, and a nice basis vector for the eigenspace is v, =| 2 |.
0

Copyright © 2016 Pearson Education, Inc.



15.

16.

5.3 ¢ Solutions

-2 0 -1 5
From v,,v, and v; construct Pz[v1 v, VJZ 0 1 2| Thenset D=|0
1 0 0 0

the eigenvalues in D correspond to v,,v, and v, respectively.

The eigenvalues of 4 are given to be 3 and 1.
4 4 16 1 1 4
ForA=3: A-3I=| 2 2 8|, androw reducing [4—3/ 0] yields [0 0 0
-2 2 -8 0 0 O
-1 —4 -1
general solutionis x,| 1|+x;| 0|, and a basis for the eigenspace is {v,,v,} = { 1
0 1 0
6 4 16 1 0 2
Forh=1: A-I=| 2 4 8|, androwreducing [A—7 0] yields |0 1 1
-2 -2 -6 0 0 O
-2 -2
general solution is x;| —1 |, and a basis for the eigenspace is v; =| —1]|.
1 1
-1 4 2 3
From v,,v, and v; construct Pz[v1 v, VJ = 1 0 -1} Thenset D=|0
0 1 1 0

where the eigenvalues in D correspond to v,,v, and v, respectively.

The eigenvalues of 4 are given to be 2 and 1.
-2 -4 -6 1 2 3
ForA=2: A-21=| -1 -2 -3/, and row reducing [4—2] 0] yields [0 0 0O
1 2 3 0 0 0
-2 -3 -2
general solution is x,| 1|+x;| O], and a basis for the eigenspace is {v,,v,} = { 1
0 1 0
-1 4 -6 1 0 2
ForA=1: A-I=|-1 -1 -3|, androw reducing [A—7 0] yields |0 1 1
1 2 4 0 0 O
-2 -2
general solution is x;| —1 |, and a basis for the eigenspace is v; =| —1]|.
1 1
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-2 -3 2 2 0 0
From v,,v, and v; construct Pz[v1 v, v3}= 1 0 -1|. Thenset D={0 2 O0f,
0o 1 1 0 0 1

where the eigenvalues in D correspond to v,,v, and v, respectively.
17. Since 4 is triangular, its eigenvalues are obviously 4 and 5.

0 0 O 1 0 0 O
ForA=4: A-4I/={1 0 0|, androw reducing [4—4] 0] yields |0 0 1 0|. The general
0 0 1 0 0 0 O
0 0
solution is x,| 1 |, and a basis for the eigenspace is v, =| 1 |.
0 0

Since A =5 must have only a one-dimensional eigenspace, we can find at most 2 linearly
independent eigenvectors for 4, so 4 is not diagonalizable.

-2
18. An eigenvalue of A4 is given to be 5; an eigenvector v, =| 1] is also given. To find the eigenvalue
2
-7 -16 4] =2 6
corresponding to v,, compute 4v, =| 6 13 -2|| 1|=|-3|=-3v,. Thus the eigenvalue in

12 16 1 2 -6

question is —3.

-12 -16 4
ForA=5. A-5I=| 6 8 -2/, and row reducing [4—5] 0] yields
|12 16 —4
1 43 -1/3 0] —4/3 1/3
0 0 0 0]. The general solution is x, 1|+x;] 0], and a nice basis for the
0 0 0 0] 0 1
41
eigenspace is {v,,vs}=4| 31,/ 0
3
-2 -4 1 -3 0 0
From v,,v, and v; construct P=[V1 v, V3}= 1 3 O0f Thenset D=| 0 5 0], where
2 0 3 0 0 5

the eigenvalues in D correspond to v,,v, and v, respectively. Note that this answer differs from the
text. There, P =[v, v; v, ] and the entries in D are rearranged to match the new order of the

eigenvectors. According to the Diagonalization Theorem, both answers are correct.
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19. Since 4 is triangular, its eigenvalues are obviously 2, 3, and 5.

3 -3 0 9 1 0 1 1 0
Forn=2: a-2i=|0 ' 1 7 , and row reducing [4—21 0] yields 0 b b=0
0 0 0 ©0 0 0 0 0O
0 0 0 ©0 0 0 0 0O
-1 -1
The general solution is x; _i +x, ol and a nice basis for the eigenspace is
0
-1]|-1
-1]] 2
{Vi,vy) = 1Pl o
0 1
2 -3 0 9
ForA=3: A4-3I= {g 0 i _é , and row reducing [4—3/ 0] yields
0 0 0 -1

1 -3/2 0 0 O 3/2
0 0 1 0 O . 1 . . . .
. The general solution is x, , and a nice basis for the eigenspace is
0 0 0 1 0 0
0 0 0 0 O 0
3
2
vy=| |
1o
0
0 -3 0 9 01 0 0 O
0 -2 1 -2 . ) 0 01 0 0
ForA=5. A4-51= , and row reducing [4—51 0] yields .
0 -3 0 0 0 0 1 O
0 0 -3 0 0 0 0 O

The general solution is x,

0
0
1
0 ) . .
ol and a basis for the eigenspace is v, =
0

S O O =
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-1 -1 3 1
-1 2 2 0
From v,,v,,v; and v, construct P=[V1 vV, Vs, V4J= Lo o0 ol Then set
0 1 0 0
2 0 0 O
0 2 0 O . . ~
D= 0o 0 3 ol where the eigenvalues in D correspond to v,,v,, Vv, and v, respectively. Note
0 0 0 5

that this answer differs from the text. There, P ={v, v; v, v,| and the entries in D are rearranged to

match the new order of the eigenvectors. According to the Diagonalization Theorem, both answers
are correct.

20. Since 4 is triangular, its eigenvalues are obviously 4 and 2.

0 0 0 O] 100 20
0 0 0 O _ _ 0 01 00
ForA=4: A-4I= , and row reducing [4—41 0] yields .
0 0 =2 0 0 0 0 0 O
1 0 0 -2 0 0 0 0O
0 2] 0][2
. 1 0 . . . 110
The general solution is x, 0 + X4 ol and a basis for the eigenspace is {v,,v,}= oll o
0 1] 011
2 0 0 O 1 0 0 0 O
0 2 0 O , , 01 0 0 O
ForA=2: A-2I= , and row reducing [4 -2/ 0] yields . The
0 0 0 O 0 0 0 0 O
1 0 0 O 0 0 0 0 O
0 0 0[]0
L 0 0 : . . 0[]0
general solution is x; ) +x, ol and a basis for the eigenspace is {v;,v,} = o
0 1 011
0 2 0 O
1 0 0 O
From v,,v,,v; and v, construct P=[v, v, vy v, |= 0o o0 1 of Then set
0 1 0 1

, where the eigenvalues in D correspond to v,,v, and v, respectively.

S O O b
S O O
S N O O
N O O O
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22.

23.

24.

25.

26.

27.

28.

5.3 ¢ Solutions 5-25

a. False. The symbol D does not automatically denote a diagonal matrix.
b. True. See the remark after the statement of the Diagonalization Theorem.

c. False. The 3x3 matrix in Example 4 has 3 eigenvalues, counting multiplicities, but it is not
diagonalizable.

d. False. Invertibility depends on 0 not being an eigenvalue. (See the Invertible Matrix Theorem.)
A diagonalizable matrix may or may not have 0 as an eigenvalue. See Examples 3 and 5 for both
possibilities.

a. False. The n eigenvectors must be linearly independent. See the Diagonalization Theorem.

b. False. The matrix in Example 3 is diagonalizable, but it has only 2 distinct eigenvalues. (The
statement given is the converse of Theorem 6.)

¢. True. This follows from AP = PD and formulas (1) and (2) in the proof of the Diagonalization
Theorem.

d. False. See Example 4. The matrix there is invertible because 0 is not an eigenvalue, but the matrix
is not diagonalizable.

A is diagonalizable because you know that five linearly independent eigenvectors exist: three in the
three-dimensional eigenspace and two in the two-dimensional eigenspace. Theorem 7 guarantees that
the set of all five eigenvectors is linearly independent.

No, by Theorem 7(b). Here is an explanation that does not appeal to Theorem 7: Let v, and v, be

eigenvectors that span the two one-dimensional eigenspaces. If v is any other eigenvector, then it
belongs to one of the eigenspaces and hence is a multiple of either v, or v,. So there cannot exist

three linearly independent eigenvectors. By the Diagonalization Theorem, 4 cannot be
diagonalizable.

Let {v,} be a basis for the one-dimensional eigenspace, let v, and v, form a basis for the two-
dimensional eigenspace, and let v, be any eigenvector in the remaining eigenspace. By Theorem 7,
{vy, V,, V5, v,} is linearly independent. Since 4 is 4x 4, the Diagonalization Theorem shows that 4
is diagonalizable.

Yes, if the third eigenspace is only one-dimensional. In this case, the sum of the dimensions of the
eigenspaces will be six, whereas the matrix is 7x7. See Theorem 7(b). An argument similar to that
for Exercise 24 can also be given.

If A is diagonalizable, then 4= PDP™" for some invertible P and diagonal D. Since 4 is invertible, 0
is not an eigenvalue of 4. So the diagonal entries in D (which are eigenvalues of A) are not zero, and
D is invertible. By the theorem on the inverse of a product,

A =(PDP Y =(PYy'D'P' =PD'P". Since D' is obviously diagonal, 47" is
diagonalizable.

If 4 has n linearly independent eigenvectors, then by the Diagonalization Theorem, 4 = PDP~" for
some invertible P and diagonal D. Using properties of transposes,

A" =(PDP™) =(P)' D"P" =(P")'DP"=0DQ™", where 0=(P")"". Thus 4" is
diagonalizable. By the Diagonalization Theorem, the columns of Q are n linearly independent
eigenvectors of 4.
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29. The diagonal entries in D, are reversed from those in D. So interchange the (eigenvector) columns of

I 1
P to make them correspond properly to the eigenvalues in D,. In this case, B = { ) J and

3 0
D, = [O 5}. Although the first column of P must be an eigenvector corresponding to the

1 -3
eigenvalue 3, there is nothing to prevent us from selecting some multiple of [ 2}, say { 6} and

-3
letting P, = { 6 J. We now have three different factorizations or “diagonalizations” of 4:

A=PDP"' =RDP" = P,D,F;’

30. A nonzero multiple of an eigenvector is another eigenvector. To produce P, simply multiply one or
both columns of P by a nonzero scalar unequal to 1.

31. For a 2x2 matrix 4 to be invertible, its eigenvalues must be nonzero. A first attempt at a
construction might be something such as B ﬂ, whose eigenvalues are 2 and 4. Unfortunately,
a2x2 matrix with two distinct eigenvalues is diagonalizable (Theorem 6). So, adjust the

2 3 b
construction to [0 2}, which works. In fact, any matrix of the form {a } has the desired

a

properties when a and b are nonzero. The eigenspace for the eigenvalue « is one-dimensional, as a
simple calculation shows, and there is no other eigenvalue to produce a second eigenvector.

32. Any 2x2 matrix with two distinct eigenvalues is diagonalizable, by Theorem 6. If one of those
. ) a b
eigenvalues is zero, then the matrix will not be invertible. Any matrix of the form { O} has the
desired properties when a and b are nonzero. The number a must be nonzero to make the matrix

0 0
diagonalizable; b must be nonzero to make the matrix not diagonal. Other solutions are { } and

a b
0 a
0 bl

-6 4 0 9
33, 4|2 O DO , ev=eig(A)=(5,1,-2,-2).

-1 2 1 0

-4 4 0 7
1.0000 2

nulbasis (A-ev (1) *eye(4)) = 05000 , A basis for the eigenspace of A =5 is

—0.5000 -1
1.0000 2
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[ 1.0000 2

, —-0.5000 _ i !
nulbasis (A-ev(2) *eye(4)) = , A basis for the eigenspace of A =11is

—-3.5000 -7

1.0000 2

[1.0000] [ 1.5000
1.0000 | | -0.7500

lbasis (A- 3) * 4)) = , , A basis for the eigenspace of
nulbasis (A-ev (3) *eye (4)) 1.0000 0 gensp
0 1.0000
1 6
1]]|-3
A==-21s , .
1 0
0 4
2 2 1 6 50 0 0
-1 1 3 O 1 0 O
Thus we construct P = and D=
-1 -7 1 0 0o 0 -2 0
2 2 0 4 0 0 0 -2
0 13 8 4
34A4 8 ig(A)=(-4,24,1,-4)
. A= v =eil =(-4,24,1,-4).
8 PR
0O 5 0 -4
=21]-1
. 0 0 . .
nulbasis (A-ev (1) *eye(4)) = ol A basis for the eigenspace of
0 1
=21]-1
0
A=—41s ,
1
0 1
5.6000
. 5.6000 . . .
nulbasis (A-ev(2) *eye(4)) = 79000 - A basis for the eigenspace of A =24 is
| 1.0000
" 1.0000
1.0000 . . .
nulbasis (A-ev(3) *eye(4)) = . A basis for the eigenspace of A=11is
—2.0000
| 1.0000
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Thus we construct P =

Eigenvalues and Eigenvectors

28 1 —4 0 0 0

28 1 0 -4 0 0
and D= .

36 -2 0 0 24 0

5 1 0 0 0 1

(11 -6 4 -10 -4

35. 4=|-8 12 3 12 4], ev = eig(nr)=(5,1,3,5,1).

1 6 -2 3 -1
8§ -18 8 -14 -1

[ 2.0000] [ 1.0000 |
—-0.3333 | | -0.3333

nulbasis (A-ev (1) *eye (5)) =|-1.0000 [,| —=1.0000 | . A basis for the eigenspace of

A=51s

nulbasis (A-ev (2) *eye (5))

A=11is

1.0000 0
0 1.0000

[ 0.8000] [ 0.6000]
—0.6000 | | —0.2000

= | —-0.4000 [,| —=0.8000 | . A basis for the eigenspace of

1.0000 0
0| 1.0000]
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5.3 « Solutions
[ 0.5000 | [ 2
—-0.2500 -1
nulbasis (A-ev (3) *eye (5)) =|-1.0000 |. A basis for the eigenspace of A=3is | -4 |.
—-0.2500 -1
| 1.0000 | | 4

Thus we construct P =

o N O B

15

12
20
28

11
10
14

6 3 4 3 2 50 0 0 O
-1 -1 3 -1 -1 0 5 0 0 O
-3 -3 -2 -4 —-4|land D=0 0 1 0 O]
30 5 0 -1 0 0 0 1 0
0 3 0 5 4] 10 0 0 0 3]
-2

2

4|, ev=eig(A)=(3,5,7,5,3).

-6

_3_

[ 2.0000 | [—1.0000 |
-1.5000 0.5000

nulbasis (A-ev (1) *eye (5)) =| 0.5000 [,| 0.5000|. A basis for the eigenspace of

1.0000 0
| 0| 1.0000
41 o]
-3 1
A=3is| 1 1|
2 0
L O_ L 2_
i 0] [-1.0000 |
—-0.5000 1.0000
nulbasis (A-ev(2)*eye(5)) =] 1.0000 |, 0|. A basis for the eigenspace of
0| |-1.0000
i 0| 1.0000
0][-1]
-1 1
A=5is| 2|, O
0]]-1
0| 1]
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[0.3333 ] 1
0.0000 0
nulbasis (A-ev (3) *eye(5)) =0.0000 |. A basis for the eigenspace of A=71s |0 |.
1.0000 3
| 1.0000 | 13]
4 2 0 -1 1] (30 0 0 O]
-3 1 -1 0 0 3 0 0 0
Thus we construct P=| 1 1 2 0 Ojland D=0 0 5 0 O
2 0 0 -1 3 0 0 0 50
L0 2 0 1 3] 10 0 0 0 7]

Notes: For your use, here is another matrix with five distinct real eigenvalues. To four decimal places,
they are 11.0654, 9.8785, 3.8238, —3.7332, and —6.0345.

6 8 5 3 0

|
w
|
|
)]
|
W
®© L L O

The MATLAB box in the Study Guide encourages students to use eig (A) and nulbasis to
practice the diagonalization procedure in this section. It also remarks that in later work, a student may
automate the process, using the command [P D]= eig (A).You may wish to permit students to use
the full power of eig in some problems in Sections 5.5 and 5.7.

5.4 SOLUTIONS

3 -1
1. Since T'(by) =3d, -5d,,[T(b,)]p =[ 5}. Likewise T'(b,)=—d, +6d, implies that [7'(b,)], =[ 6}
0
and 7T'(b;)=4d, implies that [T(b;)], = L} Thus the matrix for T'relative to B and D is

T(b)][T(b,)]s[T(b _| 3 o
[[TO)LITO)LITOL = o |

2
2. Since T7'(d,)=2b, =3b,,[T(d))]z = {_3}. Likewise 7'(d,)=—4b, +5b, implies that

: . . 2 4
[7(d,)]z :{ 5 } Thus the matrix for T relative to D and B is [[T(dl)]B[T(dz)]B} = [_3 5}.

3. a. T(e;)=0b, —1b, +bs, T(e,) =—Ib, —Ob, — Ib,, T(e;) = 1b, —1b, + Ob,
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0 -1 1
b. [T(e)]g=|-1|[T(e)]zg=| 0, [T(e;)]z=]|-1
1 -1 0

0 -1 1
¢. The matrix for T'relative to E and B is [ [T(e))]z [T(ey)]s [T(e;)]z]= {—1 0 —1].
1 -1 0

2 —4
4. Let E={e,,e,} be the standard basis for R*. Since [T(b)le=T())= [0}, [T(by)]e=T(b,) ={ J,
5 . .
and [T(b;)]g =T(b;) = [3}, the matrix for 7 relative to B and
0 -1 3

) 2 4 5
E is [[T(b)]e [T(by)]e [T(b3)]E]:|: }

5.a. T(P)=0+5Q2-t+t*)=10-3t+41> +¢1
b. Let p and q be polynomials in P;, and let ¢ be any scalar. Then
T(p(1)+q(®) = +3)[p()+q(®)] = (+5)p(1) + (£ +5)q(?)

=T(p(1) +T(q(?))
T(c-p(0)=@+5)[c-p(O)]=c-(+5)p(1)
= c-T[p(1)]
and T'is a linear transformation.
5
¢. Let B={l,¢,£*} and C={l,4,£°,¢’}. Since T(b,)=T(1)=(t+5)(1)=¢+5, [T(b))], = (1) .
0
0
Likewise since T'(b,)=T(t) = (t+5)(¢t) = £ +5¢, [T(b,)], = T , and since
0
0
T(by)= T(*) = (t+5) (%) =1 +5¢2, [T(bs)], = 2 . Thus the matrix for 7' relative to B and C
1
5 00
. 1 50
is [[T(b)]e [T(by)]e [T(b3)]c]= 0o 1 sl
0 0 1
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6. a. T(P)=QR—-t+)+1°Q—t+1*)=2—1+3> - +¢*

b. Let p and q be polynomials in IP,, and let ¢ be any scalar. Then

T(p(1)+q(1) =[p(1) +q()]+°[p(t) + q(1)]
=[p(1) +’p()]+[q(1) + q(®)]
=T(p())+T(q(?))

T(c-p(t))=[c-p)]+[c-p()]
=c-[p(t) +1°p(1)]
=c-T[p(?)]

and T is a linear transformation.

1
0
c. Let B={l,t,#*} and C={l,¢,7°,£,¢*} . Since T(b,)=T()=1+>(1)=£*+1,[T(b)]. =| 1 |.
0
_0_
o
1
Likewise since T(b,)=T(¢) =t+(*)(¢) =t +¢,[T(b,)]. =| 0|, and
1
_0_
o
0
since T(b,)=T(*) =" +(*)*)=t" +1*,[T(b,)], =| 1 |. Thus the matrix for T relative to
0
_1_
1 0 0]
0 1 0
B and C [ [T(b)]. [T(by))]. [T(by)l]=|1 0 1
0 1 0
0 0 1]
3
7. Since T'(b,)=T(1)=3+5¢[T(b,)]z =| 5| Likewise since
0
0 0
T(b,)=T(t)=-2t+4¢*,[T(b,)]z =| -2 |, and since T(b,)=T(¢*)=¢>,[T(b;)]z =|0|. Thus the
4 1
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3 00
matrix representation of 7 relative to the basis B is [[T(bl)]B [T(by)]z [T(b, )]B} =5 -2 0]
0 4 1

Perhaps a faster way is to realize that the information given provides the general form of 7'(p)
as shown in the figure below:

T
a, +ayt + a,t’ —— 3a, +(5a, - 2a,)t + (4a, + a,)t’

coordinate coordinate
mapping mapping
a 3a
0 multiplication 0
a, o Sa,—2a,
YL 1s
a, 4a,+a,

The matrix that implements the multiplication along the bottom of the figure is easily filled in by
inspection:

7?7 ?a, 3a, 3 0 0
? 7 7| |=|5a,2a, | implies that [T]z =5 -2 0
77 ?)a, 4a,+a, 0 4 1
3 0 -6 1] 3 24
8. Since [3b, —4b,]z =| 4|, [T(3b,—4b,)]; =[T]3[3b, —4b,]z=|0 5 -1} -4|=|-20| and
0 1 -2 7| 0 11

T(3b, —4b,) = 24b, —20b, +11b,.

5+3-1] [2
9. a. T(p)=| 5+3(0) |=|5
5+3) | |8

b. Let p and q be polynomials in [P, , and let ¢ be any scalar. Then

P+ED | (pD+a=D | |pC=D| |q(-D
T(p+q)=| (p+q)(0) |=| p(0)+q0) |=| p(0) |+| q0) [=T(p)+T(q)
(p+d) p()+q(D) p() q()
(c-p)ED | e (p(=D) p(-1)
T(c-p)=| (c-p)0) |=| c-(p(0)) |=c-| p(0) |=c-T(p)
(c-p)D) c-(p(1)) p()
and 7'is a linear transformation.

c. Let B={l,£,£*} and £={e,, e,, e,} be the standard basis for R*. Since

1 -1
[T()]e =T(b)=T1) =1}, [T(by)]g =T(b,)=T(r)=| 0|, and
1 1
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1
[T(by)]g =T(by)=T(t*)= {O], the matrix for 7 relative to B and & is

1
-1 1
0 0].
1 1

10. a. Let p and q be polynomials in [P, , and let ¢ be any scalar. Then

P+-=3)| [p(3)+q(-3)| |[p(3)]| [q(-3)
Tpeq | @FOCD || PED+AED|_IpED| oD
(P+e) p()+q() p) q)
(P+q)(3) p3)+q(3) p@3) q(3)
(c-p)=3)| | e (p(-3) p(-3)
T |ep)ED | fe(p=D)) | pCD |
(c'p)= = =c: =
(c-p)D) c-(p() p()
(c-p)3) c-(p(3) pQ3)
and 7 is a linear transformation.

b. Let B={l,1, 2, t3} and & = {e,, e,, e;, e,} be the standard basis for R*. Since

—_—

([T [Th,) [T(bs)]e] {

=T(p)+7T(q)

c-T(p)

9
1
1l
9

1 -3
1 -1
[T(b)]e =T(b))=T(1)= LI [T(by)]g =T(b,)=T(t)= L [T(by)]e =T(by) =T () =
1 3
=27
-1
and [T(b,)]c =T(b,)=T(’) = Ll the matrix for T relative to B and E is
27
1 3 9 =27
1 -1 1 -1
[[T(b)Ie [Tyl [T(by)]e [T(by)]e]= L1 Ll
1 3 9 27
1
11. Following Example 4, if P= [bl bz] ={ 2}, then the B -matrix is

2
1
P‘IAP—lz -3 42 1] [t 5
501 2 -1 =1]-1 2| o 1
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5.4 « Solutions 5-35

3 -1
Following Example 4, if P = [bl bz] = {2 J, then the BB -matrix is

S O M S

Start by diagonalizing 4. The characteristic polynomial is A* — 4 +3 = (A—1)(A—3), so the
eigenvalues of 4 are 1 and 3.

ForA=1: A—I:{
3

1
3}. The equation (4—17)x=0 amounts to —x, +x, =0, so x; =x, with x,

1
free. A basis vector for the eigenspace is thus v, = L}

For A =3: A—3I={ 3

1
J. The equation (4 —37/)x=0 amounts to —-3x, +x, =0, so x; =(1/3)x,
with x, free. A nice basis vector for the eigenspace is thus v, = L}

1 1
From v, and v, we may construct P = [Vl Vz} = [1 3} which diagonalizes 4. By Theorem 8, the

basis B ={v,,v,} has the property that the B -matrix of the transformation x> Ax is a diagonal
matrix.

Start by diagonalizing 4. The characteristic polynomial is A* — 61 —16 = (A —8)(A+2), so the
eigenvalues of 4 are 8 and 2.

ForA=8: 4A-8] ={ 7}. The equation (4 —-8/)x=0 amounts to x; +x, =0, so x; =-x, with

-1
x, free. A basis vector for the eigenspace is thus v, = { }
1

7

-3
ForA=—-2:4+2] ={ 3}. The equation (4+27)x =0 amounts to 7x, —3x, =0, so

3
x; =(3/7)x, with x, free. A nice basis vector for the eigenspace is thus v, = {7}

-1 3
From v, and v, we may construct P = [Vl VJ =[ { 7} which diagonalizes 4. By Theorem 8,

the basis B ={v,,v,} has the property that the 3 -matrix of the transformation x> A4x is a diagonal
matrix.
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15.

16.

17.

Start by diagonalizing 4. The characteristic polynomial is A* =74 +10 = (A—5)(A —2), so the
eigenvalues of 4 are 5 and 2.

ForA=5: A-51= { 2}. The equation (4 —57)x=0 amounts to x; +2x, =0, so x; =—2x,

-2
with x, free. A basis vector for the eigenspace is thus v, = { J.

2
ForA=2: 4A-2]= { J. The equation (4—27)x =0 amounts to x, —x, =0, so x;, =x, with

1
x, free. A basis vector for the eigenspace is thus v, ={ }
1

-2 1
From v, and v, we may construct P = [vl VJ =[ 1 J which diagonalizes 4. By Theorem 8§,

the basis B ={v,,v,} has the property that the 3 -matrix of the transformation x > A4x is a diagonal
matrix.

Start by diagonalizing 4. The characteristic polynomial is A* — 5, = A(A—5), so the eigenvalues of 4
are 5 and 0.

ForA=5: A-51 :{ 2}. The equation (4—57)x=0 amounts to x, +2x, =0, so x;, =—2x,

with x, free. A basis vector for the eigenspace is thus v, = {_ J.

2
For A=0: A—OI={

3}. The equation (4—-0/)x=0 amounts to x;, —3x, =0, so x; =3x,
. , . : 3
with x, free. A basis vector for the eigenspace is thus v, = Ll

-2 3
From v, and v, we may construct P = [Vl Vz} =[ | J which diagonalizes 4. By Theorem 8,

the basis B={v,,v,} has the property that the I3 -matrix of the transformation x > A4x is a diagonal
matrix.

1 1||1) |2
a. We compute that 4b, =[ : 3}[1} = [2} =2b, . so b, is an eigenvector of 4 corresponding to

the eigenvalue 2. The characteristic polynomial of 4 is 1> —4A+4 = (L —2)*, so 2 is the only

1
eigenvalue for 4. Now A4 -2/ ={ J , which implies that the eigenspace corresponding to the

eigenvalue 2 is one-dimensional. Thus the matrix 4 is not diagonalizable.
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19.

20.

21.

22.

23.

24.

25.

26.

5.4 « Solutions 5-37
b. Following Example 4, if P = [bl bz}, then the B -matrix for T'is
O -4 5| 1 1|1 5 1 5 2 -1
P AP = = = .
I —1)-1 3|1 4 1 4 0 2
If there is a basis B such that [T']; is diagonal, then A4 is similar to a diagonal matrix, by the second

paragraph following Example 3. For this to happen, 4 would have three linearly independent
eigenvectors. However, this is not necessarily the case, because A4 has only two distinct eigenvalues.

If A is similar to B, then there exists an invertible matrix P such that P~' AP = B. Thus B is invertible
because it is the product of invertible matrices. By a theorem about inverses of products,

B =P A (P = P"' 47" P, which shows that A™" is similar to B~

If A=PBP™', then 4> =(PBP")Y(PBP')=PB(P'P)BP' =PB-1-BP' =PB*P™'. So 4* is
similar to B~

By hypothesis, there exist invertible P and Q such that P'BP =4 and O"'CQ = A. Then
P'BP=07'CQ. Left-multiply by O and right-multiply by 0" to obtain

OP'BPO™' =007'CO0™". So C=0P'BPO™' =(PO™")"'B(PO™"), which shows that B is similar
to C.

If 4 is diagonalizable, then 4= PDP™" for some P. Also, if B is similar to 4, then B=0A4Q™" for
some Q. Then B=Q(PDP")Q™' =(QP)D(P'Q™")=(OP)D(QOP)™". So B is diagonalizable.

If Ax=Xx,x#0, then P"'Ax=AP"'x. If B=P'4P, then
B(P'x)=P'AP(P"'x)=P ' Ax =P 'x

by the first calculation. Note that P~'x # 0, because x #0 and P~ is invertible. Hence (*) shows

that P'x is an eigenvector of B corresponding to A. (Of course, A is an eigenvalue of both 4 and B
because the matrices are similar, by Theorem 4 in Section 5.2.)

If A=PBP™", then rank 4 =rank P(BP™") =rank BP™', by Supplementary Exercise 13 in Chapter 4.

Also, rank BP™' =rank B, by Supplementary Exercise 14 in Chapter 4, since P is invertible. Thus
rank 4 =rank B.

If A=PBP™', then
tr(4) = tr(PB)P™") = tr(P"'(PB)) By the trace property
= tr(P"'PB) = tr(IB) = tr(B)
If B is diagonal, then the diagonal entries of B must be the eigenvalues of 4, by the Diagonalization

Theorem (Theorem 5 in Section 5.3). So tr 4 = tr B = {sum of the eigenvalues of A}.

If A=PDP™" for some P, then the general trace property from Exercise 25 shows that
tr A=tr[(PD)P"']= tr[P"'PD]=tr D. (Or, one can use the result of Exercise 25 that since 4 is

similar to D, tr A=tr D.) Since the eigenvalues of 4 are on the main diagonal of D, tr D is the sum
of the eigenvalues of 4.
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27.

28.

29.

30.

31.

For each j,I(b;)=b,. Since the standard coordinate vector of any vector in R" is just the vector
itself, [/(b;)], =b . Thus the matrix for / relative to B and the standard basis E is simply

[bl b, .. bn] This matrix is precisely the change-of-coordinates matrix Py defined in Section
44,

Foreach j,I(b;)=b,, and [/(b,)]. =[b,].. By formula (4), the matrix for / relative to the bases

J°

and C is M = [[bl]c (bl - [bn]c}. In Theorem 15 of Section 4.7, this matrix was denoted

by CPB and was called the change-of-coordinates matrix from B to C.

If B=1{b,,...,b,}, then the B -coordinate vector of b, is e, the standard basis vector for R". For
instance, by =1-b; +0-b, +--+0-b, . Thus [/(b;)]; =[b;]; =¢;, and

[71s =[[1(b)]s - [1(,)]s]=[e; e, ]=1

[M] If P is the matrix whose columns come from 5 then the 5 -matrix of the transformation
x> Ax is D= P 'AP. From the data in the text,

-14 4 -14 -1 -1 -1
A=|-33 9 -31|,P=[b, b, b=|-2 -1 -2|

1 -4 11 1 1 0

2 -1 1|[-14 4 -14)-1 -1 -1] [8 3 -6
D=|-2 1 0-33 9 -31||-2 -1 =2{=|0 1 3

-1 0 -1j 11 -4 111 1 o) |0 0 -3

[M] If P is the matrix whose columns come from 13, then the 3 -matrix of the transformation
X Ax is D= P 'AP. From the data in the text,

-7 -48 -16] -3 2 3
A= 1 14 6 P=[b, b, bj=| 1 1 -I|,

-3 45 -19 -3 -3 0

-1 -3 -13|[-7 -48 -16][-3 -2 3 -7 -2 -6
D=1 3 0y 1 14 6] 1 1 -1|=| 0 4 -6
0 -1 -13||-3 -45 -19||-3 -3 0 0 0 -1
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15 —-66 -44 -33

32. [M] A= 0 132t - , ev=eig(A)=(2, 4, 4, 5).
1 -15 21 12
2 -18 22 8
0.0000
nulbasis (A-ev (1) *eye(4)) = _12338 . A basis for the eigenspace of A=2 is
1.0000
0
b, = !
3
2
—10.0000 | | 13.0000
nulbasis (A-ev(2) *eye (4)) = 23333 , 1.6667 . A basis for the eigenspace of
1.0000 0
0]] 1.0000
=301 |39
=4 is bybyt=1| || >
E— 3 0
3
2.7500
nulbasis (A-ev(4) *eye(4)) = _(1)3(5)38 . A basis for the eigenspace of A =35 is
1.0000
11
b, = -
4
4

The basis B =1{b,, b,,b;,b,} is a basis for R* with the property that [7]; is diagonal.

Note: The Study Guide comments on Exercise 25 and tells students that the trace of any square matrix 4
equals the sum of the eigenvalues of 4, counted according to multiplicities. This provides a quick check
on the accuracy of an eigenvalue calculation. You could also refer students to the property of the
determinant described in Exercise 19 of Section 5.2.
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9.9 SOLUTIONS

1 -2 -4 -2 ,
Lod=| LA-Al=| 7T det( A=A =(1-W(3-1) - () =17 ~4h+5. Usethe
411620
2

finding one eigenvector, and Example 5 shows how to write the other eigenvector with no effort.

quadratic formula to find the eigenvalues: A = =2+j. Example 2 gives a shortcut for

ForA=2+i: A—(2+i)1:{ } The equation (4—-Al)x=0 gives

—i
(-1-9)x, —2x,=0

x+(1-ix,=0
As in Example 2, the two equations are equivalent—each determines the same relation between x,

and x,. So use the second equation to obtain x; = —(1-7)x,, with x, free. The general solution is

—1+i —1+i
X, { } and the vector v, = { } provides a basis for the eigenspace.
1 1

_ | -1=i
ForA=2—-i: Letv,=v = { . } The remark prior to Example 5 shows that v, is automatically

an eigenvector for 2 +i. In fact, calculations similar to those above would show that {v,} is a basis
for the eigenspace. (In general, for a real matrix 4, it can be shown that the set of complex conjugates
of the vectors in a basis of the eigenspace for A is a basis of the eigenspace for A.)

5 —
2. A= L J. The characteristic polynomial is A* —6X +10, so the eigenvalues of 4 are
A= 6-1_-\/326—40 —345

i
ForA=3+i A—(3+i)l={ .

) } The equation (4 —(3+1i)/)x=0 amounts to
—2-i

x +(=2-1)x, =0, so x, =(2+i)x, with x, free. A basis vector for the eigenspace is thus
{2 + z}
v, = .
1
. . . _ 2—i
For A =3 —i: A basis vector for the eigenspace is v, =v| = .

1

1 5
3. A= { 5 3}. The characteristic polynomial is A* —4A +13, so the eigenvalues of 4 are

2y =AEN=36 \5—36=2J_r3i,
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-1-3i 5

ForA=2+3i: A-(2+3i)] ={ } The equation (A4 —(2+3i)/)x =0 amounts to

1-3i . . . . .
—2x,+(1-3i)x, =0, so x, = Tlxz with x, free. A nice basis vector for the eigenspace is thus

1-3i
i,

_ | 1+3i
For A =2 —3i: A basis vector for the eigenspace is v, =vi = { 5 }

5 —
A= L 3}. The characteristic polynomial is A* =81 +17, so the eigenvalues of 4 are
A= 8iT V=4 44

-2
—1-i

x +(=1-i)x, =0, so x;, =(1+i)x, with x, free. A basis vector for the eigenspace is thus
{1 +i }
Vv, = .
1

_ 1—i
For A=4—i: A basis vector for the eigenspace is v, =vi ={ ! }

1—i
ForA=4+i A—(4+i)1=[ ll } The equation (4—(4+i)/)x=0 amounts to

1
A :{ 9 4}. The characteristic polynomial is A* —4A +8, so the eigenvalues of 4 are
p=AEV-16 \;16 =2+72i.

-2-2i 1
-8 2-2i

(=2-2i)x, +x, =0, so x, =(2+2i)x, with x, free. A basis vector for the eigenspace is thus

1
VvV, = .
Y242

_ 1
For A =2 —2i: A basis vector for the eigenspace is v, =vi = {2 5 }
—2i

ForA=2+2i: A-(2+2i)]= { } The equation (4 —(2+2i)/)x =0 amounts to

4 3
. A :{ 3 4}. The characteristic polynomial is A% — 8\ + 25, so the eigenvalues of 4 are

r=SEE30 g3
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3
ForA=4+3i: A-(4+3i)] =[ 3]. The equation (4 —(4+3i)/)x =0 amounts to x; +ix, =0,
—3i

. . . . -1
so x, =—ix, with x, free. A basis vector for the eigenspace is thus v, =[ | }
. . . — i
For A=4—3i: A basis vector for the eigenspace is v, =v| = L}

N
1 3

X Ax is r=|A|= \/(\/5)2 +1% =2. For the angle of rotation, plot the point (a,b) = (\/5,1) in the
xy-plane and use trigonometry:

@=arctan (b/a) = arctan (1/ V3 )=m/6 radians.

7. A= . From Example 6, the eigenvalues are V3 % i. The scale factor for the transformation

2

¢ @ = /6 radians

3

Note: Your students will want to know whether you permit them on an exam to omit calculations for a

a
matrix of the form L } and simply write the eigenvalues a = bi. A similar question may arise about

1
the corresponding eigenvectors, [ } and {} which are announced in the Practice Problem. Students
i i

may have trouble keeping track of the correspondence between eigenvalues and eigenvectors.

Na . From Example 6, the eigenvalues are /3 £3i. The scale factor for the
-3 3

transformation x> AXx is r=|A|= \/(\/g ) +3% = 2+/3. From trigonometry, the angle of rotation ¢
is arctan (b/a) = arctan (=3/ NE) ) =—7/3 radians.

—/3/2 1/2
) A{ .

. From Example 6, the eigenvalues are 312+ (1/2)i. The scale factor for the
~112 =32

transformation x> AX is r=|A|= \/ (—\/5/ 2)? +(1/2)* =1. From trigonometry, the angle of rotation
@ is arctan (b/a) = arctan ((—1/2)/ (—\/g/ 2)) =—5m/6 radians.
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-5 -5
10. 4= { s 5}. From Example 6, the eigenvalues are —5+ 5i. The scale factor for the transformation

X AX is r=|L|=4/(=5)* +5% = 542. From trigonometry, the angle of rotation ¢ is
arctan(b/a) = arctan(5/(=5)) = 3m/4 radians.

B B
11. 4 { J. From Example 6, the eigenvalues are .1+.1i. The scale factor for the transformation

1

X Ax is r=| A=+ D)? +(1)? = J2/10. From trigonometry, the angle of rotation ¢ is
arctan (b/a) = arctan (—.1/.1) = —m/4 radians.

3
X Ax is 7 =|A|=4/0? +(.3)* =.3. From trigonometry, the angle of rotation ¢ is arctan (b/a) =

arctan (—oo) =—m/2 radians.

0 3
12. 4 :{ 0}. From Example 6, the eigenvalues are 0% .3i. The scale factor for the transformation

-1-i
13. From Exercise 1, A =21, and the eigenvector v = { . } corresponds to A =2 —i. Since

-1 -1 -1 -1
Re V=|: J and Im V=|: O} take Pz[ : O}' Then compute

» 0 1|1 -2j-1 -1 0 1|3 -1 2 -1
C=P AP= = = . Actually, Theorem 9
-1 1|1 3 1 O -1 -1 2 -1 1 2

gives the formula for C. Note that the eigenvector v corresponds to a —bi instead of a + bi. If, for

1
instance, you use the eigenvector for 2+, your C will be { i 2}.

Notes: The Study Guide points out that the matrix C is described in Theorem 9 and the first column of C
is the real part of the eigenvector corresponding to a —bi, not a + bi, as one might expect. Since students
may forget this, they are encouraged to compute C from the formula C = P"' 4P, as in the solution above.

The Study Guide also comments that because there are two possibilities for C in the factorization of a
2x?2 matrix as in Exercise 13, the measure of rotation of the angle associated with the transformation
X Ax is determined only up to a change of sign. The “orientation” of the angle is determined by the
change of variable x = Pu. See Figure 4 in the text.

5
14. A= L } From Exercise 2, the eigenvalues of 4 are A =3+, and the eigenvector

2—-i 2 -1
v:{ { l} corresponds to A =3—i. By Theorem 9, P=[Rev Im v]:{1 } and

S i ”

Copyright © 2016 Pearson Education, Inc.



5-44 CHAPTER 5 -+ Eigenvalues and Eigenvectors

1
15. A:{

5
3}. From Exercise 3, the eigenvalues of 4 are A =2 £3i, and the eigenvector

1+3i 1 3
V={ 5 l} corresponds to A =2—3i. By Theorem 9, P=[Rev Imv]= {2 } and

0
Ccopigpe ] 0 =3 1 5|1 3] [2 -3
B o6l=2  1]=2 3|2 o] |3 2

5 2

16. A= L 3}. From Exercise 4, the eigenvalues of 4 are A =4 =xi, and the eigenvector

1-i -
v={ ll} corresponds to A =4—i. By Theorem 9, P=[Rev Im V]:[l 0} o
-1 0 1)5 =241 -l 4 -l
C=P AP = - ‘
-1 1){1 31t o0 14

1 -8
17. A= L 5 2}. The characteristic polynomial is A* +1.21+1, so the eigenvalues of 4 are

A =-.6x.8i. To find an eigenvector corresponding to —.6—.8i, we compute
1.6 +.8i -8
4 -1.6+.8i

4x, +(-1.6+.8i)x, =0, so x; =((2-i)/5)x, with x, free. A nice eigenvector corresponding to

A—(—6-.8)I= { } . The equation (4 —(—.6—.8i)/)x =0 amounts to

) 2—1i 2 -1
—.6—.8i is thus v= s | By Theorem 9, P=[Rev Imv]= s o and
i 11 0 1|1 =82 -1 -6 -8
C=P AP=— = .
5/1-5 21||4 -22]|5 0 8 -6
I -1 .- C g 2 . .
18. A= 4 6l The characteristic polynomial is A” —1.6A+1, so the eigenvalues of 4 are A =.8+.6i.

2+.6i -1 }

To find an eigenvector corresponding to .8 —.6i, we compute 4—(.8—.6i)] = { 1 o
. —.2+.01

The equation (4 —(.8—.6i1)/)x =0 amounts to .4x, +(—.2+.6i)x, =0, so x; =((1-3i)/2)x, with x,

—-3i
free. A nice eigenvector corresponding to .8 —.6i is thus v = { 5 } By Theorem 9,

1 -3 1 1l 0 3|11 -1{1 =3 8 -6
P:[Rev Imv]: and C=P AP =— = .
2 0 6|—2 1|14 .6]2 0 .6 .8

1.52 -7
19. 4 ={ 56 4}. The characteristic polynomial is A% —1.92A +1, so the eigenvalues of 4 are

A=.96 1 .28i. To find an eigenvector corresponding to .96 —.28i, we compute
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56+ .28i -7
.56 -.56+.28i
S56x, +(=.56+.28)x, =0, so x;, =((2-1)/2)x, with x, free. A nice eigenvector corresponding to

A—(96-.28i)] = [ } . The equation (4—(.96—.28i)/)x =0 amounts to

2—i 2 -1
.96 — .28 is thus V=|: 5 l}. By Theorem 9, P=[Rev Im V]=[ } and

2 0
Copigpel 0 1152 =72 -17 [96 -28
B 212 2| 56 42 ol |28 96|

-1.64 24
20. 4 ={ 162 2 2}. The characteristic polynomial is A —.56A+1, so the eigenvalues of 4 are
A=.281.96i. To find an eigenvector corresponding to .28 —.96i, we compute
-1.92 +.96i 2.4 .
A—(28-.96i)I = . The equation (A4 —(.28-.96i)/)x =0 amounts to
1.92 1.92 +.96i

21.

22.

23.

24.

1.92x, +(1.92 4+ .96i)x, =0, so x, =((-2—-1)/2)x, with x, free. A nice eigenvector corresponding to

—2-i -2 -1
. By Theorem 9, P=[Rev Imv]= 5 and

.28 —.96i is thus v ={ 0

» 11 O 1|-1.64 24| -2 -1 28 =96
C=P AP=— = .
2|-2 24| 192 22 2 O 96 .28
The first equation in (2) is (—.3 +.6i)x; —.6x, =0. We solve this for x, to find that

2
X, =((=.3+.60)/.6)x; =((—1+2i)/2)x,. Letting x; =2, we find that y = [_1 . 21] is an eigenvector

. . 2 —1+2i|2-4i| -1+2i .
for the matrix 4. Since y = __r g v, the vector y is a complex
-1+2i 5 5 5

multiple of the vector v, used in Example 2.

Since A(ux)= u(Ax)=u(rx)=AMux),ux is an eigenvector of 4.

(a) properties of conjugates and the fact that X’ = X_T

(b) Ax = AX and A is real

(c) x' AX is a scalar and hence may be viewed as a 1x1 matrix
(d) properties of transposes

(e) A" =4 and the definition of ¢

X Ax =X (Ax) =A-X'x because X is an eigenvector. It is easy to see that X’ x is real (and positive)
because Zz is nonnegative for every complex number z. Since X’ Ax is real, by Exercise 23, so is A.
Next, write x =u+iv, where u and v are real vectors. Then Ax = A(u+iv)= Au+idvand

Ax =Au+ikv. The real part of Ax is 4u because the entries in 4, u, and v are all real. The real

part of Ax is Au because A and the entries in u and v are real. Since 4x and Ax are equal, their real
parts are equal, too. (Apply the corresponding statement about complex numbers to each entry of
Ax.) Thus Au=2u, which shows that the real part of x is an eigenvector of 4.
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25. Write x =Re x+i(Im x), so that 4x = 4A(Re x) +i4(Im x). Since 4 is real, so are A(Re x) and
A(Im x). Thus A(Re x) is the real part of Ax and A(Im x) is the imaginary part of 4x.

26. a. If A=a—bi, then Av=Av=(a—-bi)(Rev+ilmv)=(a Rev+bImv)+i(a Imv-b Rev). By

Re 4v Im A4v

Exercise 25,

A(Rev)=ReAv=a Rev+bImv
A(lmv)=ImAv=-bRev+almyv

b. Let P=[Rev Imv]. By (a), A(Rev):P{a},A(Imv):P{_b}. So
a

b
a -b a -b
AP=[A(Rev) A(lmv)]=|P P P =PC.
b a b a
i 1.1 20 17
-2.0 -40 -86 -74 . . . . .
27. [M] 4= 0 5 10 10 . v=eig(A) =(.2+.51i,.2-.51,.3+.11,.3-.11)

1.0 28 60 53

For A =.2-.5i, an eigenvector is

0.5000 - 0.50001
-2.0000 + 0.00001i
nulbasis (A-ev(2) *eye(4)) = |, sothat
0.0000 - 0.00001
1.0000
5-.5i
-2
v, = 0
1
For A =.3-.1i, an eigenvector is
—-0.5000 — 0.0000i1 -5
0.0000 + 0.50001 .5i
nulbasis(A-ev(4)*eye(4))= . |,sothatv,= .
—0.7500 — 0.25001 —.75-.25i
1.0000 1
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Hence by Theorem 9, P = [Re v, Imv, Rev, Im vz} = | and

2 =5 0 0

5 2 0 0 . . -1
C= 0 0 3 Ll Other choices are possible, but C must equal P~ AP.

0 0o .1 3

-14 20 -2.0 =20
-1.3 -.8 -1 -6

28. [M] 4= .ev=eig(A)=(-.4+41i,-.4-1,-.2+.51i,-.2-.51)
3 -19 -16 -14

20 33 23 26

For A =-.4—1i, an eigenvector is

-1.0000 - 1.00001 -1-i
) -1.0000 + 1.00001 —1+i
nulbasis (A-ev(2) *eye(4)) = |, sothat v, = e
1.0000 - 1.00001 1-i
1.0000 1
For A =-.2—-.5i, an eigenvector is
0.0000 - 0.00001i 0
) -0.5000 - 0.50001 —-1-i
nulbasis (A-ev(4) *eye(4)) = .|, sothat v, = )
-0.5000 + 0.50001 -1+
1.0000 2
-1 -1 0 O
-1 1 -1 -1
Hence by Theorem 9, Pz[Re v, Imv, Rev, Im V2}= | : | . and
1 0 2 0
-4 -1 0 0
1 -4 0 0 . . -1
C= . Other choices are possible, but C must equal P~ AP.

0 0 -2 =5
0 0o 5 -2

5.6 SOLUTIONS

1. The exercise does not specify the matrix A4, but only lists the eigenvalues 3 and 1/3, and the

1 -1 9
corresponding eigenvectors v, = [J and v, ={ J. Also, x, = L}

Copyright © 2016 Pearson Education, Inc.



5-48 CHAPTER S5 -+ Eigenvalues and Eigenvectors

a. To find the action of 4 on x,, express X, in terms of v, and v,. Thatis, find ¢, and ¢, such
that x, =¢,v, +¢,v,. This is certainly possible because the eigenvectors v, and v, are linearly
independent (by inspection and also because they correspond to distinct eigenvalues) and hence
form a basis for R>. (Two linearly independent vectors in R* automatically span R*.) The row

1 1 1 0 1 -4
v, are eigenvectors (for the eigenvalues 3 and 1/3):

Ax, =5A4v, —4A4v, =5-3v, —4-(1/3) 151 =473 14973
X, =Ax, =54v, —44v,=5-3v,—4- v, = - =
! 0 ! 2 ! 2115 4/3| | 41/3

) 1 -1 9 1 0 5 )
reduction [Vl v, XO} = ~ shows that x, =5v, —4v,. Sincev, and

b. Each time 4 acts on a linear combination of v, and v,, the v, term is multiplied by the

eigenvalue 3 and the v, term is multiplied by the eigenvalue 1/3:
X, = Ax, = A[5-3v, —4(1/3)v,]1=5(3)* v, - 4(1/3)* v,
In general, x, = 53)F A\ 4(1/3) v,, for £20.

1 2 -3
2. The vectors v, =| 0|,v,=| 1|,v5=|-3| are eigenvectors of a 3x3 matrix 4, corresponding to
-3 -5 7
-2
eigenvalues 3, 4/5, and 3/5, respectively. Also, x, =| =5 |. To describe the solution of the equation
3

X, =Ax, (k=1,2,..), first write x, in terms of the eigenvectors.
1 2 -3 2 1 0 0 2
Vi v, v; x]=[ 0 1 3 =50~10 1 0 1|=x,=2v,+v,+2v,
-3 -5 7 3] 10 0 1 2
Then, x; = A(2v, + v, +2v;)=2A4v, + Av, +24vy =2-3v, +(4/5)v, +2-(3/5)v;. In general,
1
X, = 2.3% v, +(4/5)kv2 +2-(3/5)" v,. For all & sufficiently large, x, = 2.3 v, = 2.3 0].
-3

S 4
3. A= [ - J, det(4—Al)=(5-2)1.1-2)+.08 = 1> =1.64 +.63. This characteristic

polynomial factors as (4 —.9)(4—.7), so the eigenvalues are .9 and .7. If v, and v, denote
corresponding eigenvectors, and if x, =¢,v, +¢,v,, then

X, =A(q Vv, +¢c,v,) = Av, + ¢, Av, = ¢ (9)v, +¢,(.7)v,, and for k=1,
X, =¢,(.9)" v, +¢,(.7)" v, . For any choices of ¢, and c,, both the owl and wood rat populations

decline over time.

-.12
polynomial factors as (4 —1)(A —.6), so the eigenvalues are 1 and .6. For the eigenvalue 1, solve

S 4
4. A= { : J, det(A—AI)=(5-A)(1.1-A)=(4)(-.125)= A* =1.64 +.6. This characteristic
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-5 4 0 -5 4 0 . _ _ 4
(A-Dx=0: ~ . A basis for the eigenspace is v, =| _|. Let v, be an
-125 1 0 0 0 O 5

eigenvector for the eigenvalue .6. (The entries in v, are not important for the long-term behavior of
the system.). If x, =¢,v, +¢,v,, then x, =¢ 4v, +c,4v, =¢,v, +¢,(.6)v,, and for & sufficiently

4 4
large, x, =¢ L_} +6,(.6)v, =¢ [5} . Provided that ¢, # 0, the owl and wood rat populations each

stabilize in size, and eventually the populations are in the ratio of 4 owls for each 5 thousand rats. If
some aspect of the model were to change slightly, the characteristic equation would change slightly
and the perturbed matrix 4 might not have 1 as an eigenvalue. If the eigenvalue becomes slightly
large than 1, the two populations will grow; if the eigenvalue becomes slightly less than 1, both
populations will decline.

4 3
5 4 =[ 05 1 2}, det(4—AI)=A* —1.6A+.5775. The quadratic formula provides the roots of the
1.6+/1.6° —4(.5775) 1.6+
characteristic equation: A= 5 ( ) =1 6 5 25 =1.05 and .55.

Because one eigenvalue is larger than one, both populations grow in size. Their relative sizes are
determined eventually by the entries in the eigenvector corresponding to 1.05. Solve

-65 3 0 -13 6 0 . ) 6
~ . An eigenvector is v, = .
=325 15 0 0 0 0 13

Eventually, there will be about 6 spotted owls for every 13 (thousand) flying squirrels.

(4-1.050)x=0: {

4 3
6. When p=.5, A:{ 5 12}, and det(4—Al)=A* —1.6A4+.63=(A-.9)(A-.7).

The eigenvalues of 4 are .9 and .7, both less than 1 in magnitude. The origin is an attractor for the
dynamical system and each trajectory tends toward 0. So both populations of owls and squirrels
eventually perish.

The calculations in Exercise 4 (as well as those in Exercises 35 and 27 in Section 5.1) show that if
the largest eigenvalue of 4 is 1, then in most cases the population vector x, will tend toward a

multiple of the eigenvector corresponding to the eigenvalue 1. [If v, and v, are eigenvectors, with
v, corresponding to A =1, and if x, =¢,v, +¢,V,, then x, tends toward ¢, v,, provided ¢, is not

zero.] So the problem here is to determine the value of the predation parameter p such that the largest
eigenvalue of 4 is 1. Compute the characteristic polynomial:

A4-4 3
de‘{ 12 /J =(4-D(1.2-+3p=2" 1.6+ (48+3p) . By the quadratic
—p o

1.6%1.6% —4(48+ 3p)
2

1.6+\/1.62 —4(484+.3p)=2and \/2.56—1.92—1.2p =.4. In this case, .64—-1.2p =.16, and
p=.4.

formula, A = . The larger eigenvalue is 1 when

7. a. The matrix 4 in Exercise 1 has eigenvalues 3 and 1/3. Since |3|>1 and |1/3| <1, the origin is a
saddle point.
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b. The direction of greatest attraction is determined by v, :{ J, the eigenvector corresponding to

the eigenvalue with absolute value less than 1. The direction of greatest repulsion is determined

1
by v, = L}, the eigenvector corresponding to the eigenvalue greater than 1.

¢. The drawing below shows: (1) lines through the eigenvectors and the origin, (2) arrows toward
the origin (showing attraction) on the line through v, and arrows away from the origin (showing

repulsion) on the line through v,, (3) several typical trajectories (with arrows) that show the
general flow of points. No specific points other than v, and v, were computed. This type of
drawing is about all that one can make without using a computer to plot points.

Note: If you wish your class to sketch trajectories for anything except saddle points, you will need to go
beyond the discussion in the text. The following remarks from the Study Guide are relevant.

Sketching trajectories for a dynamical system in which the origin is an attractor or a repellor is more
difficult than the sketch in Exercise 7. There has been no discussion of the direction in which the
trajectories “bend” as they move toward or away from the origin. For instance, if you rotate Figure 1 of
Section 5.6 through a quarter-turn and relabel the axes so that x; is on the horizontal axis, then the new
figure corresponds to the matrix 4 with the diagonal entries .8 and .64 interchanged. In general, if 4 is a
diagonal matrix, with positive diagonal entries a and d, unequal to 1, then the trajectories lie on the axes
or on curves whose equations have the form x, =r(x;)’, where s=(Ind)/(Ina) and r depends on the
initial point X,. (See Encounters with Chaos, by Denny Gulick, New York: McGraw-Hill, 1992, pp. 147—
150.)

8. The matrix from Exercise 2 has eigenvalues 3, 4/5, and 3/5. Since one eigenvalue is greater than 1
and the others are less than one in magnitude, the origin is a saddle point. The direction of greatest
repulsion is the line through the origin and the eigenvector (1,0,—3) for the eigenvalue 3. The

direction of greatest attraction is the line through the origin and the eigenvector (—3,-3,7) for the
smallest eigenvalue 3/5.

1.7 -3 ,
9. A= o[ detA=AD) =17 =250 +1=0,

-1.2
2.5442.5°-4(1)  2.5+42. RE3S L .
A= \/ﬁ = = > 225 = 25 > 1.5 =2 and .5. The origin is a saddle point because one
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eigenvalue is greater than 1 and the other eigenvalue is less than 1 in magnitude. The direction of
greatest repulsion is through the origin and the eigenvector v, found below. Solve

-3 =30 1 1 0 , -1
(A-2D)x=0: ~ , SO X =—X, and x; is free. Take v, = . The
-1.2 -12 0 0 0 O 1
direction of greatest attraction is through the origin and the eigenvector v, found below. Solve
1.2 -3 O} [ 1 =25 0

(A-5DH)x=0:
-12 3 0 0 0 0

1
}, so x, =—25x,, and x, is free. Take v, =[4}.

3 4 ,
A=| L[| detd-An =22 -140+ 45 =0,

- 1.4+./1.4% — 4(.45) 141416 1.4+.4
2 2 2
eigenvalues are less than 1 in magnitude. The direction of greatest attraction is through the origin and

=.5and .9. The origin is an attractor because both

) -2 4 0 1 -2 0
the eigenvector v, found below. Solve (4-.5)x=0: ~ , SO X, =2x,,
-3 6 0 0 0 0

2
and x, is free. Take v, =L}.

4 5
11. 4= , det(A-A1)=A* =170 +.72=0,
-4 13
1717 =4(72) 1.7+ T,
A= (72) = L7 01 = L7£1 =.8 and .9. The origin is an attractor because both

2 2
eigenvalues are less than 1 in magnitude. The direction of greatest attraction is through the origin and

. -4 5 0 1 -125 0
the eigenvector v, found below. Solve (4—-.81)x=0: ~ , SO
-4 5 0 0 0 0

5
x; =1.25x,, and x, is free. Take v, :{ }
4

S 6
12. A= , det(A-AI1)=2*—1.91+.88=0.
-3 14
194419 —4(.88) 1.9+4/. 9.
A= 5 (8%) _19 5 ®_1 92 3 =.8 and 1.1. The origin is a saddle point because one

eigenvalue is greater than 1 and the other eigenvalue is less than 1 in magnitude. The direction of
greatest repulsion is through the origin and the eigenvector v, found below. Solve

-6 6 0 1 -1 0 , 1
(4-1.11)x=0: ~ , SO X, =Xx,, and x, is free. Take v, =| |. The
-3 3 0 0 0 0 1

direction of greatest attraction is through the origin and the eigenvector v, found below. Solve

-3 6 0 1 -2 0 . 2
(4-.8)x=0: ~ , SO Xx; =2X,, and x, is free. Take v, =| |.
-3 6 0 0 0 0 1
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8 3
13. A{ A 15} det(A—A1)=2*—-231+1.32=0,

- 2.3+4/2.32 - 4(1.32) _ 234401 23%.1

2 2 2
eigenvalues are greater than 1 in magnitude. The direction of greatest repulsion is through the origin

=1.1and 1.2. The origin is a repellor because both

. -4 3 0 1 =75 0
and the eigenvector v, found below. Solve (4-1.2/)x=0: ~ , SO
-4 3 0] |0 0 0

3
x, =.75x,, and x, is free. Take v, :{ }
4

1.7 .6 ,
4 d=| | de(A-M) =27 -240+143=0,

24+247 -4(1.43) 24404 24%2
2

2 2
eigenvalues are greater than 1 in magnitude. The direction of greatest repulsion is through the origin

=1.1and 1.3. The origin is a repellor because both

_ 4 6 0 1 1.5 0
and the eigenvector v, found below. Solve (4-1.3/)x=0: ~ , SO
-4 -6 0 0 0 0

3]
x, =—1.5x,, and x, is free. Take v, ={ .
2

4 0 2 1
15. A4=|.3 .8 .3|. Given eigenvector v, =|.6 | and eigenvalues .5 and .2. To find the eigenvalue for
3 2 5 |3
4 0 2.1 .1
v,, compute 4Av,={.3 .8 3|.6|= {6 =1-v, Thus v, is an eigenvector for 4 =1.
32 53 3
- 2 0 I 0 =2 0| x=2x 2
ForA=.5: | 3 3 3 0]~{0 1 0], x,==3x;. Setv, =|-31|.
i 2 0 0 0 0 x, 1s free 1
2 0 2 0 1 01 0 x=-x -1
ForA=2: |3 6 3 O]~ 0 1 0 0|, x,=0 .Setvy=| 0
13 2 3 0 0 0 0 Of xjisfree 1

Given x, =(0,.3,.7), find weights such that x, =¢,v, +cv, +c;v;.
d 2 -1 0 1 0 0 1

vi v, v, x|=[6 3 0 3|0 1 0 .1|
3 1 1 7710 0 1 3
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X, =V, +.lv, +.3v,
X, = Av, +.14v, + 34v, = v, +.1(.5)v, +.3(.2)v;, and

X, =V, +.1(.5)fv,+.3(.2)F v,. As k increases, X, approaches v,.

16. [M]
90 .01 .09 1.0000
A=1.01 90 .01|-ev=eig(n)=|0.8900 |.To four decimal places,
09 .09 .90 .8100
[0.9192 91/99
v, =nulbasis (A-ev(1l)*eye(3))=|0.1919 |. Exact: |19/99
| 1.0000 1
S
v, =nulbasis (A-ev(2)*eye(3))=| 1
L 0_
e

v, =nulbasis (A-ev(3)*eye(3))=| 0

The general solution of the dynamical system is x, = c,v, +¢,(.89)" v, +¢;(.81)" v,.

5-53

Note: When working with stochastic matrices and starting with a probability vector (having nonnegative
entries whose sum is 1), it helps to scale v, to make its entries sum to 1. If v, =(91/209,19/209, 99/209),
or (.435,.091,.474) to three decimal places, then the weight ¢, above turns out to be 1. See the text’s

discussion of Exercise 27 in Section 5.2.

0 1.6
17. a. A=
3 .8

-4 1.6

3 g /J =A* —.81—.48=0. The eigenvalues of 4 are given by

b. det[

81/(—.8)" —4(—48) 8+:256 .8+I. L
A= ) ( ) _8£v2.56 3 216:1.2 and —.4. The numbers of juveniles and

2 2

adults are increasing because the largest eigenvalue is greater than 1. The eventual growth rate of
each age class is 1.2, which is 20% per year. To find the eventual relative population sizes, solve

-12 1.6 0] [1 —4/3 0] x =(4/3)x,
3 -4 0| |0 0 of

there will be about 4 juveniles for every 3 adults.

(A-1.2DH)x=0: { .
x, is free

4
tv, = {3} Eventually,

c. [M] Suppose that the initial populations are given by x, =(15,10). The Study Guide describes
how to generate the trajectory for as many years as desired and then to plot the values for each

population. Let x, =(j;,a;). Then we need to plot the sequences {j, }, {a,}, {j, +a,}, and

{ji/a,}. Adjacent points in a sequence can be connected with a line segment. When a sequence is
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plotted, the resulting graph can be captured on the screen and printed (if done on a computer) or
copied by hand onto paper (if working with a graphics calculator).

0 0 42
18. a. 4=|6 O 0
0 .75 95
0.0774 +0.4063i
b. ev=eig(A)=|0.0774-0.4063i |. The long-term growth rate is 1.105, about 10.5 % per year.
1.1048
0.3801
v=nulbasis(A-ev(3)*eye (3))=|0.2064 |. For each 100 adults, there will be
1.0000

approximately 38 calves and 21 yearlings.

Note: The MATLAB box in the Study Guide and the various technology appendices all give directions
for generating the sequence of points in a trajectory of a dynamical system. Details for producing a

graphical representation of a trajectory are also given, with several options available in MATLAB, Maple,
and Mathematica.

5.7 SOLUTIONS

1. From the “eigendata” (eigenvalues and corresponding eigenvectors) given, the eigenfunctions for the
differential equation x’= Ax are v,e* and v,e”. The general solution of X’ = Ax has the form

-3 -1
q { }e‘" + cz[ }32’. The initial condition x(0) =[ } determines ¢, and ¢, :
1 1 1

=31 40 1| 20 |76 _ -3 -1 -6 1 0 5/2
¢ e’ +c, e’ = . Solving the system: ~ .
1 1 1 1 1 1 0 1 -3/2

-3 -1
Thus ¢, =5/2,¢, =-3/2, and x(¢) 2 e 3 e
2| 1 2| 1

2. From the eigendata given, the eigenfunctions for the differential equation x’= Ax are Vle_3' and

-1 1
v,e ", The general solution of x’= Ax has the form c{ Je” +c, L}e”. The initial condition

— 2 ; . -1 -3(0) 1 -10) _ 2 ; .
x(0)= 3 determines ¢, and ¢,: ¢ L€ +c, e = NE Solving the system:

-1 1 2 1 0 1/2 -1 5 501
~ . Thus ¢, =1/2,¢, =5/2, and x(¢) =— e +—| |e.
1 1 3 0 1 5/2 21 1 2|1

2 3
3. 4 ={ 1 2}, det(4—AI)=A* —1=(L—1)(A+1)=0. Eigenvalues: 1 and —1.
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3 0 1 3 0 _ -3
ForA=1: ~ ol so x, =—3x, with x, free. Take x, =1 and v, = Ll

1
-1 -3 0 0 0

3 30 1 1 0
ForA=-1: ~ , S0 x; =—x, with x, free. Take x, =1 and
-1 -1 0 0 0 O
-1
V2 = 1 .

3
For the initial condition x(0) = {2}, find ¢, and ¢, such that ¢;v, +c,v, =x(0):

[ o]=|7 2 h 0 =2 5/2,¢, =9/2, and
vV, VvV, X = ~ . us ¢, =—-5/2,¢, =9/2, an
b L1 2] [0 1 92 1 ?

x(t) = —%[_ﬂet +%{_ﬂe”.

Since one eigenvalue is positive and the other is negative, the origin is a saddle point of the
dynamical system described by x"= Ax. The direction of greatest attraction is the line through v,

and the origin. The direction of greatest repulsion is the line through v, and the origin.
-2 -5 ) )
. A= L4l det(4—Al)=1"-2A-3=(A+1)(A—-3)=0. Eigenvalues: —1 and 3.

-5 -5 0 1 1 0 . -1
For A =3: ~ , S0 x; =—x, with x, free. Take x, =1 and v, = .
1 1 0/ |0 O O 1

-1 -5 0 1 50 , -5
ForA=-1: ~ , S0 x; ==5x, with x, free. Take x, =1 and v, = .
1 5 0 0 0 O 1
L iy 3
For the initial condition x(0) = 5| find ¢, and ¢, such that ¢,v, +¢,v, =x(0):

-1 =5 3] [1 0 13/4
(v v, x(0)]= ~ . Thus ¢, =13/4,¢, =—5/4, and
1 1 2] |0 1 -54

_E -1 3t_§ =5
x(1) = 4[ Je 4{ Je .

Since one eigenvalue is positive and the other is negative, the origin is a saddle point of the
dynamical system described by x"= Ax. The direction of greatest attraction is the line through v,

and the origin. The direction of greatest repulsion is the line through v, and the origin.
7 _1 2 .
. A= N det(A—Al)=A"—10A+24 =(A—4)(L—6)=0. Eigenvalues: 4 and 6.
3 -1 0 1 -1/3 0 , 1
For A = 4: 3 ~ ol so x; =(1/3)x, with x, free. Take x, =3 and v, = 5|

-1 0 0 0
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1 -1 0 1 -1 0 , 1
For A = 6: ~ , S0 x; =x, with x, free. Take x, =1 and v, =| |.
3 -3 0/ [0 0 O 1

3

For the initial condition x(0) = {2

}, find ¢, and ¢, such that ¢;v, +¢,v, =x(0):

1 2 0 1 72

__ll 4 Zl 61
x(¢) = 2|:3i|€ +2L}e.

Since both eigenvalues are positive, the origin is a repellor of the dynamical system described by
x’ = Ax. The direction of greatest repulsion is the line through v, and the origin.

11 3] [1 o -1/2
(v v, x(O)]{3 }[ } Thus ¢, =—1/2,¢, =7/2, and

1 2
6. A= L 4}, det(A-A)=A" +30+2=(A+1)(A+2)=0. Eigenvalues: —1 and —2.

3 -2 0 1 -2/3 0 ) 2
For A=-2: ~ , S0 x; =(2/3)x, with x, free. Take x, =3 and v, =| _|.

3 =2 0] |0 0 0 3

2 -2 0 1 -1 0 _ 1
ForA=-1: ~ , SO x; =x, with x, free. Take x, =1 and v, =| |.

3 -3 0] |0 0 O 1

3
For the initial condition x(0) = {2}, find ¢, and ¢, such that ¢;v, +¢,v, =x(0):

[ (0)] R l,¢c, =5, and x(f) 22 sl
vV, V, X = ~ . us ¢, =—1,¢c, =5, and x(¢)=— e e .
b2 31 2110 1 5 ! 2 3 1

Since both eigenvalues are negative, the origin is an attractor of the dynamical system described by
X’ = Ax. The direction of greatest attraction is the line through v, and the origin.

7 -1 1 1
7. From Exercise 5, A= {3 3}, with eigenvectors v, = {3} and v, = L} corresponding to
. . ) , 1 1
eigenvalues 4 and 6 respectively. To decouple the equation x"= Ax, set P=[v, v,]= - and let
4 0 _1 _1 . . . 7

D= 0 6l sothat 4=PDP~ and D= P~ AP. Substituting x(¢) = Py(¢) into x"= Ax we have

d - . .

E(P y)= A(Py)=PDP'(Py)=PDy . Since P has constant entries, %(Py) = P(% (y)), so that

. o L 0] [4 0] n)
left-multiplying the equality P(£ (y))=PDy by P yields y'=Dy, or | °, = .
Y, (1) 0 6] 1@
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1 2 1
From Exercise 6, 4= {3 4}, with eigenvectors v, = L} and v, = L} corresponding to

2 1
eigenvalues —2 and —1 respectively. To decouple the equation x’ = Ax, set Pz[v1 Vz} = L’ J

-2 0
and let D ={ 0 J, sothat 4= PDP™" and D=P™'AP. Substituting x(¢) = Py(¢) into X’ = Ax

we have %(Py) = A(Py)=PDP™'(Py)= PDy . Since P has constant entries, 4 (Py) = P(%(y)), SO

that left-multiplying the equality P(%(y)) = PDy by P yields y’= Dy, or
{y;m} {z ow(o}
3 (0) 0 —1j[»n®

-1 -1

-3 2 1—i
. A= { } An eigenvalue of 4 is —2 +i with corresponding eigenvector v =[ { l}. The

complex eigenfunctions ve™ and ve" form a basis for the set of all complex solutions to X’ = Ax.
. . 1-i (—2+i)t 1+i (—2-i)t .
The general complex solution is ¢, L le +c, Ll , where ¢, and ¢, are arbitrary

complex numbers. To build the general real solution, rewrite ve!™"" as:

1= ‘ 1-i .
ye 2 = | }e—”e”:{ | }e‘m(cost+ismt)

B . .. 2 .
cost—icost+isint —i s1nt} o
= e

cost+isint

[cost+sint | sint —cost
= e 24 ) et
cost sint

_ cost+sint | _,, sint —cost | _,,
The general real solution has the form ¢, . e +c - e, where ¢ and c,
cos sin

now are real numbers. The trajectories are spirals because the eigenvalues are complex. The spirals
tend toward the origin because the real parts of the eigenvalues are negative.

+i
5 } The complex

3 1 .
A :{ X J. An eigenvalue of 4 is 2 +i with corresponding eigenvector v :{

eigenfunctions ve™ and Ve form a basis for the set of all complex solutions to x’= Ax. The

c . 1+i (2+i)t 1-i (2-i)t .
general complex solution is ¢ e +c, e , where ¢, and c, are arbitrary complex
2 2

(2+i)t

numbers. To build the general real solution, rewrite ve as:
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11.

12. 4

N Y RN ,
ve ! = Z}e”e’t=[ 2}em(costﬂ'smt)

cost +icost +isint +i’ sinl} Y
= e

—2cost —2isint

[cost—sint| ,, [sint+cost] ,,
e’ +i . e
—2cost —2sint

_ cost—sint | ,, sint + cost?
The general real solution has the form ¢, )
—2cost

_ e*', where ¢, and c,
—2sint

now are real numbers. The trajectories are spirals because the eigenvalues are complex. The spirals
tend away from the origin because the real parts of the eigenvalues are positive.

-3 -9 =3+3i
A= { 5 3}. An eigenvalue of 4 is 3i with corresponding eigenvector v = { 5 } The

complex eigenfunctions ve™ and Ve form a basis for the set of all complex solutions to X" = Ax.
o =3+3i| 4, =330 Ly )
The general complex solution is ¢, 5 e +e, 5 e """, where ¢, and c, are arbitrary
complex numbers. To build the general real solution, rewrite ve®” as:
Giy | 3430 .
ve = 5 (cos3t +isin3¢)
{—3 cos 3t —3sin 31 _[—3 sin 3¢ + 3cos 31
= i

2cos3t 2sin 3¢

2cos3t 2sin 3¢

¢, now are real numbers. The trajectories are ellipses about the origin because the real parts of the

) —3cos3¢t —3sin 3¢ —3sin 3¢ +3cos 3t
The general real solution has the form ¢ )

}, where ¢, and

eigenvalues are zero.

-7 10 3-i

:{ 4 5}. An eigenvalue of 4 is —1+ 2i with corresponding eigenvector v ={ 5 } The

complex eigenfunctions ve™ and V™' form a basis for the set of all complex solutions to x" = A4x.
c o 3-i (—142i)t 3+i (—1-2i)¢ .

The general complex solution is ¢, 5 e +c, 5 e , where ¢, and ¢, are arbitrary

(—1+2i)t

complex numbers. To build the general real solution, rewrite ve as:

) 3-i
velT1F20t — { 5 }et (cos2t+isin2t)

3cos2t+sin2t | _, |3sin2t—cos2t| _,
= e’ +i _ e
2cos2t 2sin 2t
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) 3cos2t+sin2t| _, 3sin 2t —cos 2t
The general real solution has the form ¢, c,

2cos2t 2sin 2t

¢, now are real numbers. The trajectories are spirals because the eigenvalues are complex. The

}et , where ¢, and
spirals tend toward the origin because the real parts of the eigenvalues are negative.

4 -3 1+
A= {6 2}. An eigenvalue of 4 is 1+ 3i with corresponding eigenvector v ={ 5 } The complex

t

eigenfunctions ve™ and Ve form a basis for the set of all complex solutions to x’= 4x. The

c . 1+1i (143i)¢ 1-i (1-3i)¢ .
general complex solution is ¢, e +c, e , where ¢, and c, are arbitrary complex
2 2

(14+3i)t

numbers. To build the general real solution, rewrite ve as:

. 1+i
vel1301 :{ 5 l}e’ (cos 3t +isin3¢)

cos3t—sin3¢t | , |sin3f+cos3t| ,

= i e
2cos3t 2sin 3¢

2cos 3t 2sin 3t

, cos3t—sin3¢ | sin 3¢+ cos 3t
The general real solution has the form ¢, )

}et, where ¢, and ¢,

now are real numbers. The trajectories are spirals because the eigenvalues are complex. The spirals
tend away from the origin because the real parts of the eigenvalues are positive.

-2 1
A= { g 2}. An eigenvalue of 4 is 2i with corresponding eigenvector v = { 4

l}. The complex

eigenfunctions ve™ and Ve form a basis for the set of all complex solutions to x’= Ax. The
S 1-i (2i)t 1+i (=20t .
general complex solution is ¢, 4 e+, 4 e """, where ¢, and ¢, are arbitrary complex

i)t

numbers. To build the general real solution, rewrite ve*™”" as:

) 1-i
vel?) =[ A l}(cos 2t +isin 2¢)

cos 2t +sin 2t L sin 2t —cos 2t
4cos2t 4sin 2t

, cos 2t +sin 2t sin 2t —cos 2t
The general real solution has the form ¢,

4cos2t 4sin 2t

are real numbers. The trajectories are ellipses about the origin because the real parts of the
eigenvalues are zero.

}, where ¢, and ¢, now
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15.

16.

-8 -12 -6 [ 1.0000
M] 4=| 2 1 2|. The eigenvalues of 4 are: ev=eig(A)= |—1.0000
7 12 5 | —2.0000
—1.0000 [—4
nulbasis (A-ev (1) *eye(3))=| 0.2500 |, sothat v,=| 1].
1.0000 | 4
~1.2000 | -6
nulbasis (A-ev(2) *eye (3))=| 0.2000 |, sothat v,=| 1].
1.0000 | |5
—1.0000 | (-1
nulbasis (A-ev(3)*eye(3))=| 0.0000|, sothat v;=| 0.
—1.0000 | I
—4 -6 ~1]
Hence the general solution is x(¢/)=c¢,| 1|e' +¢,| 1|e” +¢;| 0|e™. The origin is a saddle point.
4 5 1

A solution with ¢, =0 is attracted to the origin while a solution with ¢, =¢; =0 is repelled.

-6 -11 16 4.0000
M] 4=| 2 5 —4|. The eigenvalues of 4 are: ev =eig(2a)={3.0000
-4 -5 10 2.0000
2.3333 7
nulbasis (A-ev (1) *eye (3)) =| —0.6667 |, sothat v,=|-2]|.
1.0000 3
3.0000 3
nulbasis (A-ev (2) *eye(3)) = | —1.0000 |, sothat v,=|-1].
1.0000 1
2.0000 2
nulbasis (A-ev(3) *eye (3)) =|0.0000 |, sothat v;=|0].
1.0000 1
7 3 2
Hence the general solution is x(¢) =¢,| -2 |e* +¢c,| —1|e* +¢4| 0 e*'. The origin is a repellor,
3 1 1

because all eigenvalues are positive. All trajectories tend away from the origin.
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30 64 23
[M] A=|-11 23 -9|. The eigenvalues of 4 are:
6 15 4
5.0000 + 2.00001
ev=eig(A)=|5.0000 - 2.00001
1.0000
7.6667 - 11.33331 23-34i
nulbasis (A-ev (1) *eye(3))= |-3.0000 + 4.66671i|, sothat v,=|-9+14i].
1.0000 3
7.6667 + 11.33331 234 34i
nulbasis (A-ev(2)*eye(3))= |-3.0000 - 4.66671 |, sothat v,=|-9-14i|.
1.0000 3
-3.0000 -3
nulbasis (A-ev(3)*eye(3))=| 10000 |, sothat vi=| 1].
1.0000 1
23-34i 23+34i -3
Hence the general complex solution is x(¢) =¢,| =9 +14i [e®* +¢,| =9 —14i [e® 7 +¢;| 1]
3 3 1
Rewriting the first eigenfunction yields
23-34i 23cos 2t +34sin2¢ 23sin2¢ —34cos2¢
~9+14i | (cos2t +isin2t) =| —=9cos 2t —14sin2¢ | +i| —9sin2¢ +14cos2t | |
3 3cos2t 3sin 2¢
Hence the general real solution is
23cos 2t +34sin 2¢ 23sin 2t —34cos 2t -3

X(t)=c,| —9cos2t —14sin2¢ [e” +c,| —9sin2¢ +14cos2t |e* +¢;| 1|e', where ¢, c,, and c; are

3cos2t 3sin 2t 1

real. The origin is a repellor, because the real parts of all eigenvalues are positive. All trajectories
spiral away from the origin.

53 =30 -2
[IM] 4={90 -52 -3 |. The eigenvalues of 4 are:
20 -10 2
—7.0000
ev=eig(A)= 5.0000 + 1.00001
5.0000 - 1.00001i
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19.

20.
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0.5000 1
nulbasis (A-ev (1) *eye (3)) =| 1.0000 |, sothat v,=|2].
0.0000 0
0.6000 + 0.20001 6+2i
nulbasis (A-ev(2)*eye(3))= |0.9000 + 0.30001i|, sothat v,=|9+3i|.
1.0000 10
0.6000 - 0.20000 6-2i
nulbasis (A-ev (3) *eye(3))=|0.9000 - 0.30001i|, so that v; =|9-3i |.
1.0000 10
1 6+2i 6—2i
Hence the general complex solution is x(£) =c¢,| 2 |e 7" +¢,| 9+3i [e® +¢,| 9-3i |7,
0 10 10

Rewriting the second eigenfunction yields
6+2i 6cost —2sint 6sint + 2cost

9+3i |e”(cost +isint) =| 9cost —3sint | + i| 9sint +3cost |
10 10cost 10sin¢

1 6cost —2sint 6sint + 2cost
Hence the general real solution isx(f)=c,| 2 |e " +¢,| 9cost —3sint |e +c,| 9sint +3cost |,
0 10cost 10sin¢

where ¢, c,, and c; are real. When ¢, =c; =0 the trajectories tend toward the origin, and in other
cases the trajectories spiral away from the origin.

[M] Substitute R, =1/5, R, =1/3, C, =4, and C, =3 into the formula for 4 given in Example 1, and

-2 3/4
use a matrix program to find the eigenvalues and eigenvectors: 4 = { : J,

1 -3
A ==5:v, = L} Ay =-25:v, =[ 2}. The general solution is thus

1 _s =3 s i 4] . ) 1 =3|¢qg 4
x(H)=¢ 5 e +c, 5 e . The condition x(0) = 4 implies that , = A .Bya
)

t 1 -3
matrix program, ¢, =5/2 and ¢, =—-1/2, so that M =x(?) 2 e 1 e,
v, (1) 2|2 20 2

[M] Substitute R, =1/15, R, =1/3, C; =9 and C, =2 into the formula for 4 given in Example 1,
-2 1/3
and use a matrix program to find the eigenvalues and eigenvectors: 4= L’ /2 3 2}, .

1 -2
AM=-1liv, = L} Ay=-25:v, ={ 3}. The general solution is thus
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1| 2| 5 . 30, . 1 2|¢ 3
X(1)=¢ 3 e +c, 3 e . The condition x(0)= 3 implies that 3 3lle = 5| By a
2

t 1 -2
matrix program, ¢, =5/3 and ¢, =-2/3, so that %o =x(?) =2 e’ _2 e,
v, (6) 3|3 3| 3

M A{ 5 -5

}. Using a matrix program we find that an eigenvalue of 4 is -3+ 6/ with

i
corresponding eigenvector v :{ s } The conjugates of these form the second

eigenvalue-eigenvector pair. The general complex solution is

2+6i
x(t)=¢ 5

Rewriting the first eigenfunction and taking its real and imaginary parts, we have

. 2+ 6i
vl 3o _ !
5

{2cos6t—6sin 61 i, .{ZSin 61+ 6.c0s 61} L
= i e

< 2-6i , .
}eH%’)’ + c{ 5 }e(_h’”” , where ¢, and ¢, are arbitrary complex numbers.

}e‘” (cos 6t +isin 6t)

5cos 6t 5sin 6¢

, 2c0s6t —6sin6t | _, 2sin6t +6¢cos6t | _,
The general real solution has the form x(¢) =¢, e +¢, , e,
Scos 6t 5sin 6t

0
where ¢, and ¢, now are real numbers. To satisfy the initial condition x(0) = {15} we solve
2 6 0
a s +c, ol=11s to get ¢, =3,c¢, =—1. We now have
,(t 2 cos 6t — 6sin 6¢ 2sin 67 + 6.¢cos 6¢ —20sin 6¢
|:lL( )}z <0) :3[ cos sin } o _{ sin cos } o { sin } =

ve(?) Scos 6t Ssin 6¢ 15cos 6t —5sin 6¢

[M] A:[

4 8}' Using a matrix program we find that an eigenvalue of 4 is —.4 +.8i with

-1-2i
corresponding eigenvector v = { . } The conjugates of these form the second eigenvalue-

1 1

where ¢, and c¢, are arbitrary complex numbers. Rewriting the first eigenfunction and taking its real

. . . —1-2i (—4+.8i)t —1+2i (—.4-8i)t
eigenvector pair. The general complex solution is x(¢) = ¢, e " +e, e T

and imaginary parts, we have

. -1-2i
vel A8 :{ . }e"” (cos.8¢ +isin.8¢)
—cos.8t+2sin.8t | _,, |—sin.8t—2cos.8¢| _,,
= e +i _ e
c0s.8¢ sin .8t
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—C0s.8¢+2sin.8¢ | _,, —sin.8t —2cos.8¢ | _,,
e +c, e,

The general real solution has the form x(¢) = ¢, [
cos.8t

sin .8t

0
where ¢, and ¢, now are real numbers. To satisfy the initial condition x(0) = Lz}, we solve

-1 -2 0
c{ l}-c{ O}:[lz} to get ¢, =12,¢, =—6. We now have

i (t —C08.8¢ + 2sin . 8¢ —sin.8¢ —2cos.8¢ 30sin.8¢
{ L( ):|=X(t):12|: :|e—.4t _6|: :|e—.4l‘ :|: j|e—.4t

ve(t) cos.8t sin.8¢ 12cos.8¢ —65in.8t

5.8 SOLUTIONS

1. The vectors in the given sequence approach an eigenvector v,. The last vector in the sequence,

1
X, =[ 3326} is probably the best estimate for v,. To compute an estimate for A, examine

X, =

4.9978
1.6652
of A, is 4.9978.

}. This vector is approximately A,v,. From the first entry in this vector, an estimate

2. The vectors in the given sequence approach an eigenvector v,. The last vector in the sequence,

1
[-1.2536
! { 5.0064
estimate of A, is 5.0064.

—-.2520
X, =[ }, is probably the best estimate for v,. To compute an estimate for A, examine

}. This vector is approximately A,v,. From the second entry in this vector, an

3. The vectors in the given sequence approach an eigenvector v,. The last vector in the sequence,

5188
X, =[ . }, is probably the best estimate for v,. To compute an estimate for A, examine

4594
X, :{ 9075}. This vector is approximately A,v,. From the second entry in this vector, an estimate
of A, is .9075.

4. The vectors in the given sequence approach an eigenvector v,. The last vector in the sequence,

1
X, =[ 7502}, is probably the best estimate for v,. To compute an estimate for A, examine
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-.4012
X, =[ 3009}. This vector is approximately A,v,. From the first entry in this vector, an estimate
of A, is —.4012.
, 5 24991 . ) )
. Since A°x= is an estimate for an eigenvector, the vector
-31241
1 24991 =.7999 | . . . .
V=——— = is a vector with a 1 in its second entry that is close to an
31241| -31241 1
. . . . 4.0015
eigenvector of 4. To estimate the dominant eigenvalue A, of 4, compute Av = 50020 | From the

second entry in this vector, an estimate of A; is —5.0020.

_ 5 -2045 | | . . 1 |-2045 —.4996 | .
. Since A’x = is an estimate for an eigenvector, the vector v=—— = 18
4093 4093| 4093 1
a vector with a 1 in its second entry that is close to an eigenvector of 4. To estimate the dominant
—2.0008
eigenvalue A, of 4, compute Av =[ 4 0024}. From the second entry in this vector, an estimate of
A, is 4.0024.
6 7 1 _ . . .
. [M] 4= g s X, = ol The data in the table below was calculated using Mathematica, which
carried more digits than shown here.
k 0 1 2 3 4 5
H 75 1 9932 1 9998
X
0 1 .9565 1 .9990 1
y {6} 11.5 12.6957 12.9592 12.9927 12.9990
X
k 8 11.0 12.7826 12.9456 12.9948 12.9987
H 8 11.5 12.7826 12.9592 12.9948 12.9990

The actual eigenvalue is 13.

1
5
carried more digits than shown here.

2 1
8. [M] 4= [4 }, X, = {O} The data in the table below was calculated using Mathematica, which

LR L P B b
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y 2 2 1.5714 1.5116 1.5019 1.5003
X
g 4 7 6.1429 6.0233 6.0039 6.0006

My 4 7 6.1429 6.0233 6.0039 6.0006

The actual eigenvalue is 6.

8 0 12 1
9. [M] A=|1 2 1|, x,=|0|. The data in the table below was calculated using Mathematica,
0 3 0 0

which carried more digits than shown here.

k 0 1 2 3 4 5 6
1] 1] 1 1 1 1 1
X, 0 125 .0938 .1004 0991 .0994 .0993
10| | 0 .0469 .0328 .0359 0353 0354
(8] [ 8] 8.5625 8.3942 8.4304 8.4233 8.4246
Ax, 1 75 .8594 8321 .8376 .8366 .8368
KJ 1.375 ] 2812 3011 2974 2981 2979
U, 8 8 8.5625 8.3942 8.4304 8.4233 8.4246

Thus u =8.4233 and u, =8.4246. The actual eigenvalue is (7++/97)/2, or 8.42443 to five
decimal places.

1 2 =2 1
10. [M] A4=|1 1 91,x, =| 0. The data in the table below was calculated using Mathematica,
0 1 9 0
which carried more digits than shown here.
k 0 1 2 3 4 5 6
[1] [1] 1 3571 .0932 0183 .0038
X, 0 1 .6667 1 1 1 1
10 10 3333 7857 9576 .9904 9982
[1] [3] 1.6667 7857 1780 0375 0075
Ax, 1 2 4.6667 8.4286 9.7119 9.9319 9.9872
10 1] 3.6667 8.0714 9.6186 9.9136 9.9834
Y 1 3 4.6667 8.4286 9.7119 9.9319 9.9872

Thus s =9.9319 and u, =9.9872. The actual eigenvalue is 10.
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11. [M] 4= L 2}, X, = {0} The data in the table below was calculated using Mathematica, which
carried more digits than shown here.
k 0 1 2 3 4
1 1 1 1 1
X
g 0 4 4828 4971 4995
y 5 5.8 5.9655 5.9942 5.9990
X
g 2 2.8 2.9655 2.9942 2.9990
YA 5 5.8 5.9655 5.9942 5.9990
R(x;) 5 5.9655 5.9990 5.99997  5.9999993

The actual eigenvalue is 6. The bottom two columns of the table show that R(x,) estimates the

eigenvalue more accurately than .

20

5.8 Solutions

-3 2 1
12. [M] 4= [ } X, = [0} The data in the table below was calculated using Mathematica,

which carried more digits than shown here.

k 0 1 2 3 4
1 -1 1 -1 1
X
k 0 6667 —.4615 5098 —.4976
) -3 43333 -3.9231 4.0196 -3.9951
X
k 2 ~2.0000 2.0000 ~2.0000 2.0000
U, -3 —4.3333 -3.9231 -4.0196 ~3.9951
R(x,) -3 -3.9231 ~3.9951 -3.9997 -3.99998

The actual eigenvalue is —4. The bottom two columns of the table show that R(x, ) estimates the
eigenvalue more accurately than .

13. If the eigenvalues close to 4 and —4 have different absolute values, then one of these is a strictly

5-67

dominant eigenvalue, so the power method will work. But the power method depends on powers of

the quotients A,/A, and A,/A, going to zero. If |A,/A, | is close to 1, its powers will go to zero

slowly, and the power method will converge slowly.

14. If the eigenvalues close to 4 and —4 have the same absolute value, then neither of these is a strictly
dominant eigenvalue, so the power method will not work. However, the inverse power method may

still be used. If the initial estimate is chosen near the eigenvalue close to 4, then the inverse power
method should produce a sequence that estimates the eigenvalue close to 4.
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15. Suppose Ax =Ax, with x #0. For any &, Ax —alx = (A —)x. If « is not an eigenvalue of 4, then
A—al isinvertible and A —« is not 0; hence x=(4—al) ' (A—a)x and (A—a) 'x=(4—al)'x
This last equation shows that x is an eigenvector of (4— )™ corresponding to the eigenvalue

h-—a).

16. Suppose that 4 is an eigenvalue of (4—of)™" with corresponding eigenvector x. Since
(A—al)'x=ux, x=(A-al)(ux)= A(ux)—-(al)(ux) = u(Ax)—oux, solving this equation for

Ax, we find that Ax = [l] (apux+x)= [05 + l}x . Thus A =a+(1/u) is an eigenvalue of 4 with
u u

corresponding eigenvector X.
10 -8 —4 1
17. [M] 4=|-8 13  4|,x,=|0|,a=3.3. The data in the table below was calculated using
-4 5 4 0

Mathematica, which carried more digits than shown here.

k 0 1 2
1 1 1
X, 0 7873 7870
0 0908 0957
26.0552 47.1975 47.1233
Y 20.5128 37.1436 37.0866
2.3669 45187 4.5083
n 26.0552 47.1975 47.1233
v 3.3384 332119 3.3212209

Thus an estimate for the eigenvalue to four decimal places is 3.3212. The actual eigenvalue is
(25-+/337)/2, or 3.3212201 to seven decimal places.

8 0 12 1
18. [M] A4=|1 2 1[,x, =|0|,a¢=-1.4. The data in the table below was calculated using
0 3 0 0
Mathematica, which carried more digits than shown here.
k 0 1 2 3 4
1 1 1 1 1
X, 0 3646 3734 3729 3729
0 —-.7813 —-.7854 —-.7854 —-.7854
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40 -38.125 -41.1134 —-40.9243 —40.9358

0 14.5833 -14.2361 —-15.3300 —-15.2608 —-15.2650
-31.25 29.9479 32.2888 32.1407 32.1497

My 40 -38.125 -41.1134 —-40.9243 —40.9358
Vv, -1.375 —-1.42623 —1.42432 —1.42444 —1.42443

Thus an estimate for the eigenvalue to four decimal places is —1.4244. The actual eigenvalue is
(7- Jo7 )/2, or —1.424429 to six decimal places.

10

19. [M] 4=

WL N W
—_
()
O

7 9 10 0

(a) The data in the table below was calculated using Mathematica (with & = 0), which carried
more digits than shown here.

k 0 1 2 3
1 1 [.988679 ] [.961467 |
0 7 709434 691491
Xk 0 3 1 1
0 7 .932075 | 942201 |
10 26.2 [29.3774 ] [29.0505 |
p 7 18.8 21.1283 20.8987
Xk 8 26.5 30.5547 30.3205
7 24.7 | 28.7887 | | 28.6097 |
U, 10 26.5 30.5547 30.3205
k 4 5 6 7
[.958115]] [.957691 ] [.957637 ] [.957630 |
.689261 .688978 .688942 .688938
Xk 1 1 1 1
.943578 | 1.943755| 943778 | .943781 |
[29.0110] [29.0060]  [29.0054 ] [29.0053 ]
y 20.8710 20.8675 20.8671 20.8670
Xk 30.2927 30.2892 30.2887 30.2887
| 28.5889 | |28.5863| | 28.5859 ] | 28.5859 |
U, 30.2927 30.2892 30.2887 30.2887
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Thus an estimate for the eigenvalue to four decimal places is 30.2887. The actual eigenvalue is
30.2886853 to seven decimal places. An estimate for the corresponding eigenvector is
957630

.688938
{ .
943781

(b) The data in the table below was calculated using Mathematica (with & =0 ), which carried
more digits than shown here.

k 0 1 2 3 4
1 [—.609756] [-.604007] [-.603973] [-.603972]
0 1 1 1 1

X 0 —.243902 -.251051 ~251134 -251135
0 | .146341 | | .148899 | | .148953 | | .148953 |
25 [-59.5610] [-59.5041] [-59.5044] [-59.5044
—41 98.6098 98.5211 98.5217 98.5217

Vi 10 -24.7561 -24.7420 —24.7423 —-24.7423
-6 | 14.6829| | 14.6750| | 14.6751] | 14.6751

L —41 98.6098 98.5211 98.5217 98.5217

v, | —.0243902  .0101410 0101501 .0101500 .0101500

Thus an estimate for the eigenvalue to five decimal places is .01015. The actual eigenvalue is
.01015005 to eight decimal places. An estimate for the corresponding eigenvector is

—-.603972
1
-251135 |
.148953
1 2 3 2
2 12 13 11 0
20. [M] 4= X0 = |-
-2 3 0 2 0
4 5 7 2 0
(a) The data in the table below was calculated using Mathematica, which carried more digits than
shown here.
k 0 1 2 3 4
1 25 159091 .187023 .184166
0 5 1 1 1
X 0 -5 272727 .170483 .180439
0 1 181818 442748 402197
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1 1.75 3.34091 3.58397 3.52988
) 2 11 17.8636 19.4606 19.1382
Xk -2 3 3.04545 3.51145 3.43606
4 2 7.90909 7.82697 7.80413
m 4 11 17.8636 19.4606 19.1382
k 5 6 7 8 9
[.184441] [.184414 | [.184417 | [.184416 ] [.184416 |
1 1 1 1 1
Xk .179539 179622 179615 179615 179615
407778 | 407021 | | .407121 | .407108 | 407110 |
[3.53861 | [3.53732] [3.53750 | [3.53748 ] [3.53748 ]
) 19.1884 19.1811 19.1822 19.1820 19.1811
Xk 3.44667 3.44521 3.44541 3.44538 3.44539
7.81010 | | 7.80905 | | 7.80921 | | 7.80919 | 7.80919 |
U 19.1884 19.1811 19.1822 19.1820 19.1820

Thus an estimate for the eigenvalue to four decimal places is 19.1820. The actual eigenvalue is
19.1820368 to seven decimal places. An estimate for the corresponding eigenvector is

184416
1
179615 |
407110
(b) The data in the table below was calculated using Mathematica, which carried more digits than
shown here.
k 0 1 2
1 o1 1]
0 226087 222577
a 0 921739 ~.917970
0 | 660870 | 660496 |
115 [ 81.7304 81.9314 |
26 18.1913 18.2387
Vi ~106 ~75.0261 752125
76 | 53.9826 | 54.1143 |
YA 115 81.7304 81.9314
v .00869565 .0122353 .0122053
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Thus an estimate for the eigenvalue to four decimal places is .0122. The actual eigenvalue is
.01220556 to eight decimal places. An estimate for the corresponding eigenvector is
L

2225717
-917970 |
.660496 |
8 0] 5 , .
21. a. A= 0 2 ,X = s . Here is the sequence A"x for k=1,...5:

A 1.32|].256| |.2048 | | .16384 . s . . 4
, , , , . Notice that A°x is approximately .8(4"x).
A11.0211.004(|.0008 | |.00016

Conclusion: If the eigenvalues of 4 are all less than 1 in magnitude, and if x #0, then A*x is
approximately an eigenvector for large &.

1 0 .5
b. A:[O 8}’)‘:{5}' Here is the sequence A*x for k=1,...5:

S S S 5 5 ) ‘ ) 5
, , , , . Notice that 4*x seems to be converging to .
A411.32]].256]|.2048 | |.16384 0

Conclusion: If the strictly dominant eigenvalue of 4 is 1, and if x has a component in the
direction of the corresponding eigenvector, then {4*x} will converge to a multiple of that
eigenvector.

8 0 .5 . .
c. A= . ,X = 5| Here is the sequence 4"x for k=1,...5:

41132256 | 2048 | | 16384 , . % . .
s , , s . Notice that the distance of 4"x from either eigenvector of
1 2 4 8 16

A is increasing rapidly as k increases.

Conclusion: If the eigenvalues of 4 are all greater than 1 in magnitude, and if x is not an
eigenvector, then the distance from 4*x to the nearest eigenvector will increase as k — oo.

Chapter 5 SUPPLEMENTARY EXERCISES

1. a. True. If 4 is invertible and if Ax=1-x for some nonzero X, then left-multiply by A~ to obtain
x = A”'x, which may be rewritten as 4™'x =1-x. Since x is nonzero, this shows 1 is an
eigenvalue of 47"

b. False. If 4 is row equivalent to the identity matrix, then A4 is invertible. The matrix in Example 4
of Section 5.3 shows that an invertible matrix need not be diagonalizable. Also, see Exercise 31
in Section 5.3.

¢. True. If 4 contains a row or column of zeros, then A4 is not row equivalent to the identity matrix
and thus is not invertible. By the Invertible Matrix Theorem (as stated in Section 5.2), 0 is an
eigenvalue of 4.
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False. Consider a diagonal matrix D whose eigenvalues are 1 and 3, that is, its diagonal entries
are 1 and 3. Then D? is a diagonal matrix whose eigenvalues (diagonal entries) are 1 and 9. In
general, the eigenvalues of 4> are the squares of the eigenvalues of 4.

True. Suppose a nonzero vector x satisfies Ax = Ax, then 4°x = A(Ax) = A(Jx) = Adx = °x

This shows that x is also an eigenvector for 4°.

True. Suppose a nonzero vector X satisfies 4x = Ax, then left-multiply by 4" to obtain

x = A" (Ax) = A47'x. Since 4 is invertible, the eigenvalue A is not zero. So A~'x = 4™'x, which
shows that x is also an eigenvector of 4™,

False. Zero is an eigenvalue of each singular square matrix.

True. By definition, an eigenvector must be nonzero.

False.See Example 4 of Section 5.1.

True. This follows from Theorem 4 in Section 5.2

False. Let 4 be the 3x3 matrix in Example 3 of Section 5.3. Then A4 is similar to a diagonal
matrix D. The eigenvectors of D are the columns of 7;, but the eigenvectors of 4 are entirely

different.
2 0 1 0 _ .
False. Let A= 0 3l Then e, = 0 and e, = : are eigenvectors of 4, but e, +e, is not.

(Actually, it can be shown that if two eigenvectors of 4 correspond to distinct eigenvalues, then
their sum cannot be an eigenvector.)

False. A/l the diagonal entries of an upper triangular matrix are the eigenvalues of the matrix
(Theorem 1 in Section 5.1). A diagonal entry may be zero.

True. Matrices A and A" have the same characteristic polynomial, because

det(A” —AI)=det(4—AI)" =det(4—Al), by the determinant transpose property.

False. Counterexample: Let 4 be the 5x5 identity matrix.

True. For example, let 4 be the matrix that rotates vectors through /2 radians about the origin.
Then Ax is not a multiple of x when x is nonzero.

False. If 4 is a diagonal matrix with O on the diagonal, then the columns of 4 are not linearly
independent.

True. If Ax=A4x and Ax =A4,x, then Ax=4x and (4 —4,)x=0. If x#0, then 4 must equal
A,.

False. Let 4 be a singular matrix that is diagonalizable. (For instance, let 4 be a diagonal matrix
with 0 on the diagonal.) Then, by Theorem 8 in Section 5.4, the transformation x> AX is

represented by a diagonal matrix relative to a coordinate system determined by eigenvectors of
A.

True. By definition of matrix multiplication,

A=Al =Ale, e, - e, ]=[Ae, Ae, --- Ae,]

If Aej = djej for j=1,...,n, then 4 is a diagonal matrix with diagonal entries d,, ...,d,

ne

. True. If B=PDP™', where D is a diagonal matrix, and if 4= QBQ_I, then

A=Q(PDP Q™ =(QP)D(PQ)™", which shows that 4 is diagonalizable.
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v. True. Since B is invertible, 4B is similar to B(4B)B™', which equals BA.

w. False. Having n linearly independent eigenvectors makes an nxn matrix diagonalizable (by the
Diagonalization Theorem 5 in Section 5.3), but not necessarily invertible. One of the eigenvalues
of the matrix could be zero.

x. True. If 4 is diagonalizable, then by the Diagonalization Theorem, 4 has » linearly independent

eigenvectors v, ...,v, in R". By the Basis Theorem, {v,,...,v,} spans R". This means that

n

each vector in R” can be written as a linear combination of v,,...,v

> n*

2. Suppose Bx #0 and ABx =Ax for some A. Then A(Bx)=Ax. Left-multiply each side by B and
obtain BA(Bx) = B(Ax)=A(Bx). This equation says that Bx is an eigenvector of B4, because
Bx#0.

3. a. Suppose Ax =Ax, with x #0. Then (5] — A)x =5x— Ax =5x —Ax =(5—A)x. The eigenvalue
is 5-A.
b. (5 =34+ A*)x =5x —3A4x + A(Ax) = 5x = 3(Ax) + A’x = (5= 31 + A?)x. The eigenvalue is
5-30+A%

4. Assume that Ax = Ax for some nonzero vector x. The desired statement is true for m =1, by the
assumption about A. Suppose that for some & >1, the statement holds when m = k. That is, suppose

that 4A“x = A*x. Then 4"*'x = 4(4"x) = 4(1*x) by the induction hypothesis. Continuing,
Ax = AF Ax = A**'x, because x is an eigenvector of 4 corresponding to 4. Since x is nonzero, this
equation shows that A**' is an eigenvalue of A4**', with corresponding eigenvector x. Thus the
desired statement is true when m =k +1. By the principle of induction, the statement is true for each
positive integer m.
5. Suppose Ax =Ax, with x# 0. Then

p(AX=(cyl +c,A+c,A* + ...+ ¢, A")x

=X+ AX+c, X +..+ ¢, A"x

= CoX +AX + A X + ..+ ¢, A X = p(M)x

So p()) is an eigenvalue of p(A).

6. a. If A=PDP”', then 4 =PD*P”', and
B=5I-34+ 4" =5PIP"' -3PDP™' + PD’P""'
=P(51-3D + D?)P!
Since D is diagonal, so is 5/ —3D + D*. Thus B is similar to a diagonal matrix.
b. p(A)=c,l +¢,PDP™" +¢,PD*P™' +---+¢,PD"P”"

=P(c +¢D+c,D? +---+¢c D")P!
= Pp(D)P!

This shows that p(A) is diagonalizable, because p(D) is a linear combination of diagonal

matrices and hence is diagonal. In fact, because D is diagonal, it is easy to see that
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2) 0
p(D){p() }

0 p()

If A=PDP™", then p(4)=Pp(D)P™", as shown in Exercise 6. If the ( j, j) entry in D is A, then
the (J, /) entry in D* is A¥, and so the (j, ) entry in p(D) is p()). If p is the characteristic
polynomial of 4, then p(A)=0 for each diagonal entry of D, because these entries in D are the
eigenvalues of 4. Thus p(D) is the zero matrix. Thus p(4)=P-0-P' =0.

. a. If A is an eigenvalue of an nxn diagonalizable matrix 4, then 4= PDP™" for an invertible

matrix P and an nxn diagonal matrix D whose diagonal entries are the eigenvalues of 4. If the
multiplicity of A is n, then A must appear in every diagonal entry of D. That is, D = Al. In this

case, A=P(A)P' = APIP™' = APP™' = AI.

3 1
b. Since the matrix 4= {0 3} is triangular, its eigenvalues are on the diagonal. Thus 3 is an

eigenvalue with multiplicity 2. If the 2X2 matrix 4 were diagonalizable, then 4 would be 31, by
part (a). This is not the case, so 4 is not diagonalizable.

. If I — 4 were not invertible, then the equation (/ — A)x =0. would have a nontrivial solution x. Then

x—Ax=0 and Ax =1-x, which shows that 4 would have 1 as an eigenvalue. This cannot happen if
all the eigenvalues are less than 1 in magnitude. So / — 4 must be invertible.

To show that A" tends to the zero matrix, it suffices to show that each column of A" can be made as
close to the zero vector as desired by taking & sufficiently large. The jth column of 4 is Ae;, where

e, is the jth column of the identity matrix. Since 4 is diagonalizable, there is a basis for R"
consisting of eigenvectors v,,...,v,, corresponding to eigenvalues A,...,A,. So there exist scalars

s Vo

¢y ¢y, such that €; =¢ vy +--+¢,v, (an eigenvector decomposition of e ;). Then, for
k=1,2,..., the vector Akej =c,(M) v, ++-+c,(A,) v,. If the eigenvalues are all less than 1 in

absolute value, then their kth powers all tend to zero. So the equation shows that 4*e ; tends to the

zero vector, as desired.

a. Take x in H. Then x =cu for some scalar ¢. So Ax = A(cu) = c(Au) = c¢(Au) = (cA)u, which
shows that A4x isin H.

b. Let x be a nonzero vector in K. Since K is one-dimensional, K must be the set of all scalar
multiples of x. If K is invariant under 4, then Ax is in K and hence Ax is a multiple of x. Thus x
is an eigenvector of 4.

Let U and V' be echelon forms of 4 and B, obtained with » and s row interchanges, respectively, and
no scaling. Then det 4 =(—1)"det U and det B=(-1)"det V

Using first the row operations that reduce 4 to U, we can reduce G to a matrix of the form

u v
G = [ 0 B}' Then, using the row operations that reduce B to ¥V, we can further reduce G’ to
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13.

14.

15.

16.

17.

’’

U Y
= { 0 V}' There will be »+s row interchanges, and so

4 X U Y] U Y], . . .
det G =det =(-1)"det Since is upper triangular, its determinant
0 B (V4 (VN 4

equals the product of the diagonal entries, and since U and V" are upper triangular, this product also
equals (det U ) (det V). Thusdet G = (—1)""*(det U)(det V) = (det A)(det B).

For any scalar A, the matrix G —AJ has the same partitioned form as G, with 4—Al and B—Al as
its diagonal blocks. (Here / represents various identity matrices of appropriate sizes.) Hence the
result about det G shows that det(G —Al) =det(4—Al)-det(B—Al)

By Exercise 12, the eigenvalues of 4 are the eigenvalues of the matrix [3] together with the

4 3

5 2
eigenvalues of { 3}. The only eigenvalue of [3] is 3, while the eigenvalues of [ } are

1 and 7. Thus the eigenvalues of 4 are 1, 3, and 7.

1 5
By Exercise 12, the eigenvalues of 4 are the eigenvalues of the matrix [2 4} together with the

= 1 5
eigenvalues of { 3 J. The eigenvalues of {2 4} are —1 and 6, while the eigenvalues of

-7 -4
{ 3 J are —5 and —1. Thus the eigenvalues of 4 are —1,—5, and 6, and the eigenvalue —1 has

multiplicity 2.

Replace 4 by A—A in the determinant formula from Exercise 16 in Chapter 3 Supplementary
Exercises.

det(A-AD)=(a=b-1)""a=k+(n-1)b]

This determinant is zero only if a—b—A =0 or a—A+(n—1)b=0. Thus A is an eigenvalue of 4 if

and only if A=a—b or A =a+(n—1)b. From the formula for det(4—Al) above, the algebraic
multiplicity is n—1 for a—b and 1 for a + (n-1)b.

The 3x3 matrix has eigenvalues 1-2 and 1+ (2)(2), thatis, —1 and 5. The eigenvalues of the 5x5
matrix are 7—3 and 7+ (4)(3), thatis 4 and 19.

Note that det(4 A1) = (a;, =A)(ay —A) = appdy =27 = (@) +ayp) A +(a),a5 — @505
=A% = (tr A)A +det 4, and use the quadratic formula to solve the characteristic equation:

ie tr A+ /(tr A)* —4det 4

2

The eigenvalues are both real if and only if the discriminant is nonnegative, that is,

2
(tr A)* —4det 4> 0. This inequality simplifies to (tr 4)* >4det 4 and (%Aj > det 4.
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18. The eigenvalues of 4 are 1 and .6. Use this to factor 4 and 4.
-1 3)1 01| 2 3
A= L
2 2]0 6|42 -1
ot 3 o0 1f2 3
2 2o 6|42 -1

1 {—1 —3} 2 3
T4 2 2|26 —(6)F

1 —2+6(.6)F -3+3(.6)
4 4-4(6Y  6-2(.6)

1{—2 —3}
—— ask —oo

4 4 6

0 1
19. C, = 5} det(C, ~M)=6-5A+A% = p(h)

C 0 1 0
20. C,=| 0 0 1f; det(C,—AI)=24-261+91> =LA = p(h).
24 26 9

21. If p is a polynomial of order 2, then a calculation such as in Exercise 19 shows that the characteristic
polynomial of C,, is p(A)= (=1)* p(L), so the result is true for n =2. Suppose the result is true for

n=k for some k=2, and consider a polynomial p of degree k +1. Then expanding det(C, —Al)

by cofactors down the first column, the determinant of C, —A/ equals

1 0
(=A)det (‘) . +(-D)"q,
-a, -—a, —a, —\

The kxk matrix shown is C, —Al, where q(¢)=a, +ayt+---+ aktk’l +1*. By the induction
assumption, the determinant of C, —A[ is (-=1)*g(X). Thus
det(C, =M1 = (=1 gy + (-M)(=D*q(V)
=(=D)""a, + Ma, +--+a, A+ 0]
=D p()

So the formula holds for #n =k +1 when it holds for n = k. By the principle of induction, the formula

for det(C, —Al) is true for all n>2.
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22

23.

24.

25.

26.

0o 1 0
a. C,=| 0 0 1
-a, -a -a,

b. Since A is a zero of p, a, + a,h+a,\* +1’ =0 and —a, —a,h—a,\> =A°. Thus
1 A A
C|M\|= Al =|A?|. Thatis, C,(1,A,A*) = A(,A,A*), which shows that (1,A,A%)
A |may—ak—a | )3

is an eigenvector of C,, corresponding to the eigenvalue A .

From Exercise 22, the columns of the Vandermonde matrix V are eigenvectors of C,, corresponding

to the eigenvalues A,,A,,A; (the roots of the polynomial p). Since these eigenvalues are distinct, the

eigenvectors from a linearly independent set, by Theorem 2 in Section 5.1. Thus ¥ has linearly
independent columns and hence is invertible, by the Invertible Matrix Theorem. Finally, since the
columns of V" are eigenvectors of C,, the Diagonalization Theorem (Theorem 5 in Section 5.3)

shows that V’ICPV is diagonal.

[M] The MATLAB command roots (p) requires as input a row vector p whose entries are the
coefficients of a polynomial, with the highest order coefficient listed first. MATLAB constructs a
companion matrix C, whose characteristic polynomial is p, so the roots of p are the eigenvalues of

C,. The numerical values of the eigenvalues (roots) are found by the same QR algorithm used by

the command eig (2).

[M] The MATLAB command [P D] =eig(A) produces a matrix P, whose condition number is
1.6x10%, and a diagonal matrix D, whose entries are a/most 2, 2, 1. However, the exact eigenvalues

of A are 2,2, 1, and A4 is not diagonalizable.

[M] This matrix may cause the same sort of trouble as the matrix in Exercise 25. A matrix program
that computes eigenvalues by an interative process may indicate that 4 has four distinct eigenvalues,

all close to zero. However, the only eigenvalue is 0, with multiplicity 4, because A4* =0.
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Orthogonality and
Least Squares

6.1 SOLUTIONS

Notes: The first half of this section is computational and is easily learned. The second half concerns the
concepts of orthogonality and orthogonal complements, which are essential for later work. Theorem 3 is
an important general fact, but is needed only for Supplementary Exercise 13 at the end of the chapter and
in Section 7.4. The optional material on angles is not used later. Exercises 27-31 concern facts used later.

-1 4 .
1. Since u= and v=| |, wru=(=1>+2>=5v-u=4(-1)+6(2) =8, and u:g
2 6 u-u 5

3 6
2. Since w=| —1[and x=|-2|, W-w=3"+(=1)> +(=5)> =35, x - w=6(3) + (-2)(=1) + 3(-5) = 5,
-5 3
and Xx-w :i:l'
w-w 35 7
3 3/35
3. Since w=| 1|, w-w=3>+(=1)*+(-5)* =35, and w=|-1/35].
-5 W -1/7
1] 1 -1/5
4. Since u= , u-u:(—l)2+22:5 and —u= .
| 2] u-u 2/5
, 1] 4 y
5. Since u= 5 and v= 6 u-v=(-1)4)+2(6)=8, v-v=4"4+6"=52, and

u-v 214 8/13
—_— V:— = .
V'V 13| 6 12/13

6-1
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10.

11.

12.

13.

CHAPTER 6 « Orthogonality and Least Squares

6 3
Since x=| -2 | and w=| -1, x- w=6(3) + (-2)(=1) + 3(-5) = 5, X-X=6" +(-2)* +3% =49, and
3 -5
6 30/49
(ﬂszi —2 |=|-10/49|.
X-X 49
| 3] | 15/49
3
. Since w=| =1|, [|w=vw-w =/32 + (-1)* +(=5)? =/35.
=5
6

. Since x=| 2|, || x|=v/x-x =46 +(-2)* +3> =/49 = 7.
3

. A unit vector in the direction of the given vector is

1 -30 _L 30| -3/5
I(_30)2 +402| 40 50| 40| | 4/5

A unit vector in the direction of the given vector is

-6 61 |-6//61
! al=—L| 4|=| a/v61

Jeor+a7+ (32| 5| YoU 5| | e

A unit vector in the direction of the given vector is

7/4 7/4] |7/3/69
! 12— | 1/2]=|2/v69

2 2 2 J69716
Jar? + 27 +12 | U | ave

A unit vector in the direction of the given vector is
1 {8/3}_ 1 [8/3}_{4/5}
J@®/3)2+22 L 2] ~100/9] 2] [3/5
- 10 -1 2 2 2
Since x = 4 and y = 5| Ix=y|'=[10-(-D] +[-3—(-5)]" =125 and

dist (x,y) =+/125 =5/5.
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14.

15.
16.
17.
18.

19.

20.

21.

22

23.

24.

6.1 + Solutions 6-3

0 —4
Since u=|-5| and z=| -1|, [[u—z|*=[0—(—4)]* +[-5- (=D’ +[2-8]* =68 and
2 8

dist (u,z) =~/68 =24/17.

Since a - b=8(-2) + (-5)(-3) =—1 #0, a and b are not orthogonal.

Since u - v=12(2) + (3)(-3) + (-5)(3) = 0, u and v are orthogonal.

Since u - v=3(-4) + 2(1) + (-5)(-2) + 0(6) = 0, u and v are orthogonal.
Sincey - z=(-3)(1) + 7(=8) + 4(15) + 0(=7) = 1 # 0, y and z are not orthogonal.

a. True. See the definition of || v ||.
b. True. See Theorem 1(c).
¢. True. See the discussion of Figure 5.

1 1
d. False. Counterexample: {0 0}.

®

True. See the box following Example 6.

True. See Example 1 and Theorem 1(a).

False. The absolute value sign is missing. See the box before Example 2.
True. See the defintion of orthogonal complement.

True. See the Pythagorean Theorem.

o &0 T8

True. See Theorem 3.

Theorem 1(b): (ll+V)-W=(ll+V)TW=(llT +VT)W=llTW+VTW=ll-W+V-W. The second and
third equalities used Theorems 3(b) and 2(c), respectively, from Section 2.1. Theorem 1(c):
(cu)-v=(cu) v=c(u’v)=c(u-v). The second equality used Theorems 3(c) and 2(d), respectively,
from Section 2.1.

Since u - u is the sum of the squares of the entries in u, u - u = 0. The sum of squares of numbers is
zero if and only if all the numbers are themselves zero.

One computes that u - v = 2(—7) + (=5)(—4) + (-1)6 = 0, ||u|*=u-u=2% +(=5)* +(=1)* =30,

| v|P=v-v=(=7) +(—4)* +6* =101, and |[u+Vv|*=(u+V)-(u+v)=

Q+ (7)) +(-5+(4)* +(-1+6)* =131.

One computes that |[u+V|*=+V)-(@+v)=u-u+2u-v+v-v=|ul* +2u-v+| v|* and
||u—V||2=(u—v)-(u—v):u-u—2u‘V+V-V=||u||2 —?_u-v+||v||2 , SO

2 2 2 2 2 2 2 2
[t v+ u=v[ Flul” +2u-v+ [ v]" + [ ul]" 2u-v+| V[ =2 [[u]” 2] v]]".
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25.

26.

27.

28.

29.

30.

31.

32.

CHAPTER 6 « Orthogonality and Least Squares

When v = {Z}, the set H of all vectors {x
y

entries satisfy ax + by = 0. If a # 0, then x = — (b/a)y with y a free variable, and H is a line through

} that are orthogonal to v is the subspace of vectors whose

-b
the origin. A natural choice for a basis for H in this case is { [ } } Ifa=0and b #0, then by = 0.

a

Since b # 0, y = 0 and x is a free variable. The subspace H is again a line through the origin. A

1
natural choice for a basis for A in this case is { [0} }, but { [
a

} } 1s still a basis for A since a =0

and b #0.Ifa=0and b =0, then H= R* since the equation Ox + Oy = 0 places no restrictions on x
or y.

Theorem 2 in Chapter 4 may be used to show that 17 is a subspace of R’ because ¥ is the null
space of the 1 x 3 matrix u’ . Geometrically, W is a plane through the origin.

Ify is orthogonal to u and v, then y - u =y - v =0, and hence by a property of the inner product,
y-(utv)=y-u+y-v=0+0=0. Thusy is orthogonal to u + v.

An arbitrary w in Span{u, v} has the form w = c,u + ¢,v . If y is orthogonal to u and v, then

u-y=v-y=0. By Theorem 1(b) and 1(c),
w-y=(cut+c,v) y=cu-y)+tc,(v-y)=0+0=0

A typical vector in W has the form W=¢V, +...+¢,V,. If x is orthogonal to each V;, then by
Theorems 1(b) and 1(c),
w-x=(qV;+...4¢, v, ) x=¢ (V- X)+...+¢, (v, x)=0

So x is orthogonal to each w in .

a. Ifzisin W™, uisin W, and c is any scalar, then (cz) - u = ¢(z - u) = ¢0 = 0. Since u is any
element of W, cz is in W*.

b. Let z, and z, be in W*. Then forany uin W, (z, +z,)-u=z,-u+z,-u=0+0=0. Thus
z,+z, isin W'

c. Since 0 is orthogonal to every vector, 0 is in #W*. Thus W * is a subspace.

Suppose that X is in # and W*. Since x is in W™, x is orthogonal to every vector in /¥, including x
itself. So x - x = 0, which happens only when x = 0.

[M]

a. One computes that || a, ||=||a, ||=||a, ||=||a, ||=1 and that a,-a, =0 fori=.

b. Answers will vary, but it should be that || Au ||=||u |[and || AV || =|| v ||.

¢. Answers will again vary, but the cosines should be equal.

d. A conjecture is that multiplying by A does not change the lengths of vectors or the angles

between vectors.
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33. [M] Answers to the calculations will vary, but will demonstrate that the mapping

X T(x)= [ﬂj v (for v # 0) is a linear transformation. To confirm this, let x and y be in R",
V-V

let ¢ be any scalar. Then

T(Hy):[wjvz(wjv =(ﬂjv+[ujV=T(x)+T(y)
V-V V-V

V-V V-V
and
T(cx)=(wjv=(c(xw)jv=c(x.vjv=cT(x)
V-V V-V V-V

s -
-1 1 0 5 0 -1/3
34. [M] One findsthat N=| 1 O[,R={0 1 1 0 -4/3].
0 -1 0 0 0 1 1/3

6-5

and

The row-column rule for computing RN produces the 3 X 2 zero matrix, which shows that the rows of
R are orthogonal to the columns of . This is expected by Theorem 3 since each row of R is in Row

A and each column of N is in Nul 4.

6.2 SOLUTIONS

Notes: The nonsquare matrices in Theorems 6 and 7 are needed for the QR factorization in Section 6.4. It
is important to emphasize that the term orthogonal matrix applies only to certain square matrices. The
subsection on orthogonal projections not only sets the stage for the general case in Section 6.3, it also
provides what is needed for the orthogonal diagonalization exercises in Section 7.1, because none of the
eigenspaces there have dimension greater than 2. For this reason, the Gram-Schmidt process (Section 6.4)

is not really needed in Chapter 7. Exercises 13 and 14 are good preparation for Section 6.3.

-7 3
1. Since | 4 || 4 |=2#0, the set is not orthogonal.
=3 -7
1] o 1] [-5] [o][-5
2. Since | =2 || 1|=|-2]|-2|=| 1|:| -2 |=0, the set is orthogonal.
1] ]2 1 1 2 1
6] 3
3. Since | -3 || 1|=-30#0, the set is not orthogonal.
911-1
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10.

CHAPTER 6 + Orthogonality and Least Squares
F 210 2 4] [0 4]
Since | =5|-|0|=|-5]-|-2|=|0]-| =2 |=0, the set is orthogonal.
|-3] 10 -3 6| |0 6]
F 3] [-1 31 13] [-1][3]
, -2 3 2118 3118 .
. Since : = | = -| _ | =0, the set is orthogonal.
1|3 1|7 =317
| 3] 4 3110] [ 4]0}
41 3
, 1 3 .
Since 311 s =-32#0, the set is not orthogonal.
| 8] -1
Since u, -u, =12-12=0, {u,,u,} is an orthogonal set. Since the vectors are non-zero, u, and u,

are linearly independent by Theorem 4. Two such vectors in R* automatically form a basis for R’.
So {u,,u,} is an orthogonal basis for R*. By Theorem 5,

X-u, X-u,

X =

1
u, =3u, + Euz

u - u;-u,

. Since u, -u, =-6+6=0, {u,,u,} is an orthogonal set. Since the vectors are non-zero, u, and u,

are linearly independent by Theorem 4. Two such vectors in R* automatically form a basis for R”.
So {u,,u,} is an orthogonal basis for R*. By Theorem 5,
_xX-uy X U,

3 3
X= u, + u, =——u, +—u,
u -u; u,-u, 2 4

. Since u, -u, =u,-uy; =u, -u; =0, {u,,u, uy} isan orthogonal set. Since the vectors are non-zero,

u,, u,, and u, are linearly independent by Theorem 4. Three such vectors in R’ automatically

form a basis for R’. So {u |,u,,u,} is an orthogonal basis for R’. By Theorem 5,

X-u X U, XU 5
X= u, + u, + u; =—u, ——u, +2u,
u -u, u,-u, u;-u, 2

Since u, -u, =u,-uy; =u, -u; =0, {u,,u, u,} is an orthogonal set. Since the vectors are non-zero,
u,, u,, and u, are linearly independent by Theorem 4. Three such vectors in R’ automatically
form a basis for R*. So {u,,u,,u,} is an orthogonal basis for R’. By Theorem 5,

X-u X-u, X-u, 4 1 1

X= u, + u, + u; =—u; +-u, +—uy
u - u,-u, u; -u, 3 3 3
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11.

12.

13.

14.

15.

16.

17.

18.

6.2 + Solutions 6-7

1 —4
Let y= {7} and u ={ 2}. The orthogonal projection of y onto the line through u and the origin is

-2
the orthogonal projection of y onto u, and this vector is y =—u= Eu = { J .

1 -1
Lety ={ J and u =[ 3}. The orthogonal projection of y onto the line through u and the origin is

. ) . . y-u 2 2/5
the orthogonal projection of y onto u, and this vectoris y =—u=——u= 6/5|

=

S A & 13 -4/5
The orthogonal projection of y ontou is y =——u=

__u—
u-u 65 7/5

) .| 14/5 R R -4/5 14/5
orthogonaltouis y—y = et Thus y=y+(y-y)= 7/s + o5 |

} . The component of y

<

S A ‘u 2 14/5
The orthogonal projection of y onto u is y =

u=—u-=
u-u 5 2/5

) . |45 R R 14/5 —-4/5
touis y—-y= 2375 | Thus y=y+(y—-y)= 55 + 2575 |

} . The component of y orthogonal

The distance from y to the line through u and the origin is ||y — ¥ ||. One computes that

. 3 8] 3/5 N
y_y:y—Hu: J—% 6 :[ 4/J,so ly =¥ |=v9/25+16/25 =1 is the desired distance.
u-u -

The distance from y to the line through u and the origin is ||y — ¥ ||- One computes that

. =31 J[1] [-6 .
y-y=y-Ttu= }_3 { 3},30||y—y||:x/36+9=3\/§isthedesireddistance.

u-u |9 12|
1/3 -1/2
Letu=[1/3|, v= 0. Since u - v =0, {u, v} is an orthogonal set. However, lulf=u-u=1/3
1/3 1/2

and || v|*=v-v=1/2, so {u, v} is not an orthonormal set. The vectors u and v may be normalized to
form the orthonormal set

V33| [212
{L,L}: B3l o
YNNG
V33| | V212
0 0
Letu=|1|, v=|-1|. Sinceu-v=-1#0, {u, v} is not an orthogonal set.
0 0
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19.

20.

21.

22.

23.

24.

25.

CHAPTER 6 « Orthogonality and Least Squares

-6 8
Let u={ 8} V={ 6} Since u - v =0, {u, v} is an orthogonal set. Also, ||u|*=u-u=1 and

| V|F=v-v=1, so {u, v} is an orthonormal set.

-2/3 1/3
Letu=| 1/3|, v=|2/3/|. Sinceu-v=0, {u, v} is an orthogonal set. However, ||u|’=u-u=1
2/3 0
and || v|*=v-v=5/9, so {u, v} is not an orthonormal set. The vectors u and v may be normalized
/37| A5
to form the orthonormal set {L,L}: 1/3], 2/\/§
EINETR I

1/4/10 3/4/10 0]
Let u=|3/420 , V= ~1/:/20 ,and w= —1/\2 .Sinceu-v=u-w=v-w=0, {u,v,w}isan

3/3/20 ~1/320 1/42 |

orthogonal set. Also, lulf=u-u=L ||v|f=v-v=L and |[W|f=w-w=1, so {u, v, w} is an
orthonormal set.

1/4/18 1142 -2/3
Let u=|4/+/18 , V= 0|, and w=| 1/3|. Sinceu-v=u-w=v-w=0, {u, v, w} is an

1/J18 “1/42 —2/3

orthogonal set. Also, lulf=u-u=L ||v|F=v-v=L and |[W|f=w-w=1, so {u, v, w} is an
orthonormal set.

True. For example, the vectors u and y in Example 3 are linearly independent but not orthogonal.
True. The formulas for the weights are given in Theorem 5.

False. See the paragraph following Example 5.

False. The matrix must also be square. See the paragraph before Example 7.

o &0 T8

False. See Example 4. The distance is ||y — y ||.

True. But every orthogonal set of nonzero vectors is linearly independent. See Theorem 4.

S

. False. To be orthonormal, the vectors is S must be unit vectors as well as being orthogonal to each
other.

c¢. True. See Theorem 7(a).
d. True. See the paragraph before Example 3.
e. True. See the paragraph before Example 7.

To prove part (b), note that
(Ux) (Uy)=(Ux) Uy)=x"U"Uy=x"y =x-y
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26

27

28

29

30

31

32

33

6.2 + Solutions 6-9

because U'U =1 .If y = x in part (b), (Ux) - (Ux) = x - x, which implies part (a). Part (c) of the
Theorem follows immediately fom part (b).

. A set of n nonzero orthogonal vectors must be linearly independent by Theorem 4, so if such a set
spans W it is a basis for . Thus W is an n-dimensional subspace of R", and W =R".

. If U has orthonormal columns, then U"U =1 by Theorem 6. If U is also a square matrix, then the
equation U”U = I implies that U is invertible by the Invertible Matrix Theorem.

. If Uis an n x n orthogonal matrix, then 7 =UU ' =UU" . Since U is the transpose of U”, Theorem
6 applied to U says that U” has orthogonal columns. In particular, the columns of U are linearly
independent and hence form a basis for R” by the Invertible Matrix Theorem. That is, the rows of U
form a basis (an orthonormal basis) for R" .

. Since U and V are orthogonal, each is invertible. By Theorem 6 in Section 2.2, UV is invertible and

VY =v'U" =v'U" =(UV)", where the final equality holds by Theorem 3 in Section 2.1. Thus
UV is an orthogonal matrix.

. If U is an orthogonal matrix, its columns are orthonormal. Interchanging the columns does not
change their orthonormality, so the new matrix — say, V' — still has orthonormal columns. By
Theorem 6, V'V = 1. Since Vis square, ¥ =¥ " by the Invertible Matrix Theorem.

. Suppose that y = DALY Replacing u by cu with ¢ # 0 gives
u-u

YWy 6w (c)uzi(y’u)u:y'uu_A
(cu)-(cu) c“(u-u) c’(u-u) u-u

So y does not depend on the choice of a nonzero u in the line L used in the formula.

. If v, -v, =0, then by Theorem 1(c) in Section 6.1,

(V1) (eyvy) = [vy (V)] =16y (V- V) = ¢6,0=0

. Let L = Span{u}, where u is nonzero, and let 7(x) = Xy . For any vectors x and y in R" and any
u-u

scalars ¢ and d, the properties of the inner product (Theorem 1) show that
T(cx+dy) = (ex+dy)-u
u-u
_cx-ut dy-u u
u-u

cx-u dy-u
= ut+

u
u-u u-u

=cT(x)+dT(y)
Thus T is a linear transformation. Another approach is to view 7T as the composition of the following
three linear mappings: X > a=x:v,at> b=a/v-v,and b bv.
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34. Let L = Span{u}, where u is nonzero, and let 7'(x) = refl,y = 2proj,y —y . By Exercise 33, the
mapping y +> proj,y is linear. Thus for any vectors y and z in R" and any scalars ¢ and d,
T(cy+dz)=2proj,(cy+dz)—(cy+dz)
=2(c proj,y +d proj,;z)—cy —dz
=2c proj,y —cy +2d proj,z—-dz
=c(2 proj,y—-y)+d(2proj,z—z)
=cT(y)+dT(z)

Thus 7 is a linear transformation.

35. [M] One can compute that A" 4=1001 4 Since the off-diagonal entries in 4" A are zero, the columns
of 4 are orthogonal.

36. [M]
a. One computes that U Tu=1 4> While

82 0 20 8 6 20 24 0

0 42 24 0 20 6 20 -32
20 24 58 20 0 32 0 6
1 8 0 20 8 24 20 6 0
166j 6 20 0 24 18 0 -8 20
20 6 32 20 0 58 0 24
24 20 0 6 -8 0 18 -20
0 32 6 0 20 24 20 42

UUTz(

The matrices U'U and UU” are of different sizes and look nothing like each other.

b. Answers will vary. The vector p=UU Ty is in Col U because p=U(U Ty) . Since the columns of
U are simply scaled versions of the columns of 4, ColU = ColA. Thus each p is in Col 4.

c¢. One computes that U'z=0.

d. From (c), z is orthogonal to each column of 4. By Exercise 29 in Section 6.1, z must be

orthogonal to every vector in Col 4; that is, z is in (Col A
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6.3 SOLUTIONS

Notes: Example 1 seems to help students understand Theorem 8. Theorem 8 is needed for the Gram-
Schmidt process (but only for a subspace that itself has an orthogonal basis). Theorems 8 and 9 are
needed for the discussions of least squares in Sections 6.5 and 6.6. Theorem 10 is used with the QR
factorization to provide a good numerical method for solving least squares problems, in Section 6.5.
Exercises 19 and 20 lead naturally into consideration of the Gram-Schmidt process.

10
. . 72 -6 .
1. The vector in Span{u,} is X% u,=—u, =2u, = . Since
2
10 10 0
. =8| | -6 -2
X =qu, +cu, +c5uy +ﬂu4, the vector x — — 4 u, = - = is in
uy -uy u, -uy, 2 -2
0 2 -2
Span{u,,u,,u;}.
2
. . Ve, 14 4 . v-u,
2. The vector in Spanf{u,} is 0 =—u =2u= . Since x = u, +c,u, +cuy +c,uy,
L 2 u -u,
2
2 2
Ve, 51 |4 L. .
the vector v———-u, = - . |= 1s in Span{u,,u;,u,}.
lll 'lll _3 2 -
31 |2 1

3. Since u, -u, =-1+1+0=0, {u,,u,} is an orthogonal set. The orthogonal projection of y onto

1 -1 -1
N . . 3 5 3 5
Span{u,,u,} is ¥ = Yy u, + y U u,=—u+-u,==|1|+=| 1|= :
u, -u, u,-u, 2 2 2 0 2 0 0

4. Since u, -u, =-12+124+0=0, {u,,u,} is an orthogonal set. The orthogonal projection of y onto

3 -4 |6
. : : 30 15 6 3
Span{u,,u,} is y = Y u, + y'i ,=—u-—u=—=4|-= 3|=|3].
u -u u,-u, 25 25 5 0 5 0 0

Copyright © 2016 Pearson Education, Inc.



6-12 CHAPTER 6 < Orthogonality and Least Squares

S. Since u,-u, =3+1-4=0, {u,,u,} is an orthogonal set. The orthogonal projection of y onto

3 1 -1]
A : : 7 15 1 5
Span{u,,u,} 18 y = Y u, + y' i u,=—u,——u,=—|-1|-=| -1|=
u - u,-u, 14 6 2 5 2 5

6. Since u,-u, =0-1+1=0, {u,,u,} is an orthogonal set. The orthogonal projection of y onto

—4 0] [6]

N . . 27 5 3 5
Span{u;,u,} is y = YO g+ Xy =2y 42w, =2 -1 [+2| 1| =4
ul.ul ll2'u2 18 2 2 1 1 1

7. Since u,-u, =5+3-8=0, {u,,u,} is an orthogonal set. By the Orthogonal Decomposition

5 10/3 -7/3
Theorem, y = y' i u, + y i u,=0u, +-u,=| 2/3,z=y-y=| 7/3|andy= y+z, where
foth i . 8/3 7/3

y isin Wand z is in w*.

8. Since u,-u, =—-1+3-2=0, {u,,u,} isan orthogonal set. By the Orthogonal Decomposition

| 3/2 -5/2
Theorem, y = Yy u, + Yl u, =2u,+—u,=7/2|,z=y-y=| 1/2| andy= y+z, where §
u - u,-u, 2 i 5

isin Wand z is in W+,

9. Since u,-u, =u; -u; =u, -uy; =0, {u,,u,,u;} is an orthogonal set. By the Orthogonal
Decomposition Theorem,
2
‘u ‘u ‘u
yu u + y-u u, y-us
u - u, -, Uz -y

y=

y isin Wand z is in w*.

10. Since u,-u, =u,-u; =u, -u; =0, {u,u,,u,} is an orthogonal set. By the Orthogonal

Decomposition Theorem,

y=

5
M I A B A 1 14 5 _ 2
u; -u : u,-u, ? u;-u, 3 3 3 3

6

where § isin Wand z is in ™.

Copyright © 2016 Pearson Education, Inc.
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11.

12.

13.

14.

15.

16.

6.3 « Solutions 6-13

Note that v, and v, are orthogonal. The Best Approximation Theorem says that y, which is the
orthogonal projection of y onto W = Span{v,,v,}, is the closest point to y in /. This vector is

3
. . -1
y= Y Vi v, + Y Vs V2=1V1+§V2=
vV, vV, Vv, 2 2 1
-1

Note that v, and v, are orthogonal. The Best Approximation Theorem says that y, which is the
orthogonal projection of y onto W =Span{v,,v,}, is the closest point to y in /. This vector is

-1
) ) -5
y= y Vi v, + Y ¥ v, =3v, +1lv, =
Vivi V' V) -
9

Note that v, and v, are orthogonal. By the Best Approximation Theorem, the closest point in

-1
.. ZV Z-V 2 7 -3
Span{v,,v,} tozis Z= Lv, + 2y, ==v,——v, = :
vi-V, vV, V, 3 3 -2
3

Note that v, and v, are orthogonal. By the Best Approximation Theorem, the closest point in

1
- . . 1 0
Span{v,,v,} tozi1s z= 2 v, + 2V vV, =—v, +0v, = .
vV, vV, V, 2 -1/2
-3/2

. . . 3 . :
The distance from the point y in R toa subspace W is defined as the distance from y to the closest
point in . Since the closest point in Wtoy is y = proj, y, the desired distance is ||y — y||. One

3 2
computes that y=|-9 [,y—y=|0|, and ||y—§’||=\/%=2\/ﬁ.
-1 6

4
The distance from the point y in R t0a subspace W is defined as the distance from y to the closest
point in . Since the closest point in Wto y is y = proj, y, the desired distance is ||y — y||. One

-1

;and ||y - y[[=8.

4
= . |4
computes that y = YTY= 4

4
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17.

18.

19.

20.

21.

22.

8/9 -=2/9 2/9

o |10 r
a.UU—0 1,UU——2/9 5/9 4/9|.
2/9  4/9 5/9

b. Since U'U =1,, the columns of U form an orthonormal basis for /7, and by Theorem 10
8/9 -2/9 2/9]4 2
proj,y=UU"y=|-2/9 5/9 4/9|/8|=|4]|.

2/9  4/9 591 |5

1/10 =3/10]
~3/10  9/10

a. U'U=[1]=1, UUT:{
b. Since U'U =1, {u,} forms an orthonormal basis for /¥, and by Theorem 10
o v = UUTy = 1710 =3/10 | 7| | -2
PROWY=22Y21 310 97109 7| 6

By the Orthogonal Decomposition Theorem, u; is the sum of a vector in W =Span{u,,u,} and a

vector v orthogonal to . This exercise asks for the vector v:
0 0 0

. 1 1
v:u3—pr0JWu3:u3—(—§ul+Eu2J: 0(—|-2/5|=|2/5|. Any multiple of the vector v will
1 4/5 1/5

also be in W=.

By the Orthogonal Decomposition Theorem, u, is the sum of a vector in W = Span{u,,u,} and a
vector v orthogonal to 7. This exercise asks for the vector v:

0 0 0
V=u, —proj,u, =u, —(lul —iuzj =|1|=| 1/5|=|4/5]|. Any multiple of the vector v will
6 30 0 |-2/5 2/5

also be in W+,

a. True. See the calculations for z, in Example 1 or the box after Example 6 in Section 6.1.

b. True. See the Orthogonal Decomposition Theorem.

c¢. False. See the last paragraph in the proof of Theorem 8, or see the second paragraph after the
statement of Theorem 9.

d. True. See the box before the Best Approximation Theorem.

°®

True. Theorem 10 applies to the column space W of U because the columns of U are linearly
independent and hence form a basis for .

True. See the proof of the Orthogonal Decomposition Theorem.
True. See the subsection “A Geometric Interpretation of the Orthogonal Projection.”

True. The orthgonal decomposition in Theorem 8§ is unique.

B e T &

False. The Best Approximation Theorem says that the best approximation to y is proj, y.
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23.

24.

25.

6.3 « Solutions 6-15

e. False. This statement is only true if x is in the column space of U. If n > p, then the column space
of U will not be all of R", so the statement cannot be true for all x in R” .

By the Orthogonal Decomposition Theorem, each x in R" can be written uniquely as x = p + u, with
p in Row 4 and u in (RowA)l. By Theorem 3 in Section 6.1, (Row A)l =Nul 4, so u is in NulA4.

Next, suppose Ax = b is consistent. Let x be a solution and write x = p + u as above. Then
Ap = A(x —u) = Ax — Au =b — 0 = b, so the equation Ax = b has at least one solution p in Row 4.

Finally, suppose that p and p, are both in RowA and both satisfy Ax =b. Then p —p, isin
Nul 4= (Row 4)", since A(p —p,)=4p—Ap, =b-b =0. The equations p =p, + (p —p,) and

p=p + 0 both then decompose p as the sum of a vector in Row4 and a vector in (Row A)" . By the
uniqueness of the orthogonal decomposition (Theorem 8), p =p,, and p is unique.

a. By hypothesis, the vectors w, ..., W, are pairwise orthogonal, and the vectors v, ..., v, are
pairwise orthogonal. Since w; is in /¥ for any i and V; is in Wt forany j, W, -v,; =0 for any i

and j. Thus {W;,...,W,,Vy,...,V } forms an orthogonal set.

b. Foranyyin R", write y = §+ z as in the Orthogonal Decomposition Theorem, with § in # and

zin W* . Then there exist scalars ¢;,...,¢, and dy,...,d, such that

y=y+z= qW;+...4c,W,+d\v; +...+d v, . Thus the set {W,...,W,,V;,...,V } spans R".
c. The set {W;,...,W,,V|,...,V,} is linearly independent by (a) and spans R" by (b), and is thus a

basis for R" . Hence dimW +dimW* = p+¢=dim R" .

[M] Since U Tu=1 4, U has orthonormal columns by Theorem 6 in Section 6.2. The closest point to
[1.2]
A4
1.2
1.2
4
1.2
4
4

y in Col U is the orthogonal projection § of y onto Col U. From Theorem 10, y=UU"y =

Copyright © 2016 Pearson Education, Inc.
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26.[M] The distance from b to ColU'is || b — b||, where b = UU"b. One computes that

2 .8

.92 .08

44 .56

~ 1 ~ 0 N A

b=UU"b = 5 ,b-b= g ,||b—b||=%. which is 2.1166 to four decimal places.

—.44 -.56

.6 -1.6

-92 -.08

6.4 SOLUTIONS

Notes: The QR factorization encapsulates the essential outcome of the Gram-Schmidt process, just as the
LU factorization describes the result of a row reduction process. For practical use of linear algebra, the
factorizations are more important than the algorithms that produce them. In fact, the Gram-Schmidt
process is not the appropriate way to compute the QR factorization. For that reason, one should consider
deemphasizing the hand calculation of the Gram-Schmidt process, even though it provides easy exam
questions.

The Gram-Schmidt process is used in Sections 6.7 and 6.8, in connection with various sets of
orthogonal polynomials. The process is mentioned in Sections 7.1 and 7.4, but the one-dimensional
projection constructed in Section 6.2 will suffice. The QR factorization is used in an optional subsection
of Section 6.5, and it is needed in Supplementary Exercise 7 of Chapter 7 to produce the Cholesky
factorization of a positive definite matrix.

-1
1. Set v, =x,; and compute that v, =x, — X Vi v, =X, —3v, =| 5. Thus an orthogonal basis for W
v,V 3
31]-1
1S 01(,] 5
-1|(-3
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5
2. Set v, = x, and compute that v, =X, — LW V=X, —lv1 =| 4 |. Thus an orthogonal basis for W
vV, 2 g
0 5
1s4(41,] 4
21 1-8
3
3. Set v, =x, and compute that v, =x, — X2 Vi Vv, =X, ——V, =| 3/2 |. Thus an orthogonal basis for
i 3/2
2 3
wis | =5],|3/2
1f|3/2
3
4. Set v, =x, and compute that v, =x, — X2 Vi v, =X, —(=2)v, =| 6 |. Thus an orthogonal basis for
1"V 3
3
Wis < | -4,
5
5
5. Set v, =x, and compute that v, =x, — f}z ':1 vV, =X, -2V, = i . Thus an orthogonal basis for ¥/
1° V1 -
-1
1 5
-4 1
1] o] -4
1]|-1
4
6. Set v, =x, and compute that v, =x, — f}z ':1 v, =X, —(3)v, = i . Thus an orthogonal basis for
'V -
0
3 4
W is -1 , 6
2113
-1 0
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7. Since || v, ||:\/% and || v, ||=V27/2 :3\/6/2, an orthonormal basis for W is
2/330| | 2/+/6

{ N Y2 Lot o5/430 || 1746

vl lhvy |l ol e

8. Since || v, ||=\/% and || v, ||=\/5_4 =36, an orthonormal basis for I is

3/J50 | | 1/4/6

{HVIH’—HVZH}: —4/350 |, 2//6
A% \%

T 5/50 | | 1/4/6

9. Call the columns of the matrix x,, x,, and x; and perform the Gram-Schmidt process on these

vectors:
v, =X,
1
X,V 3
V=X, ~ 2 V=X, —(2)v, =
v, -V, 3
-1
-3
X,V Xy -V 3 1 1
V3 =Xy - v =2V, =X, —Vl_(_—szz
ViV, vV, Vv, 2 2 1
3
3 1| ]-3
. ) 1 3 1
Thus an orthogonal basis for W is sl
311-1 3

10. Call the columns of the matrix x,, x,, and x; and perform the Gram-Schmidt process on these

vectors:
vV, =X,
3
X,V 1
e XMy o _
vV, =X V=X, —(S3)v, =
V]'Vl 1
-1
-1
B X; V) X;:V, 1 5 -1
V3 =X3— - 25X =V TV,
vi'V, V,:V, 2 2 3
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-1 31 1-1

. . 1] -1

Thus an orthogonal basis for /¥ is T
1| |-1]]-1

11. Call the columns of the matrix x,, x,, and x; and perform the Gram-Schmidt process on these

vectors:
vV, =X,
"3
0
vV, =X, —MV1 =x, —(-Dv,=| 3
ViV 3
L 3_
"o
0
V=X — X% v, — =B v, =X; —4v, —(—ljvz =| 2
V-V, vV, V, 3
2
__2_
ST 31T 2T
-1 0
Thus an orthogonal basis for Wis < | -1|,| 3|, 2
1|3 2
L 1] 3] [-2]

12. Call the columns of the matrix x,, x,, and x; and perform the Gram-Schmidt process on these

vectors:
Vi=Xx
o
1
X,V
- 2 Vi _
vV, =X, — v, =X, —4v,=| 2
\’R 4 {
(- 1_
s
; 3
X5V X,V 7
V=x,————Ly, -2y =x;,——v,—-=v,=| 0
. . 2 2
VitV Va2 Vs _3
- 3_
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1] -1 3
-1 1 3
Thus an orthogonal basis for WV is 0(,] 21, 0
1 1|]-3
L 1] 1] 3]
5 9
13. SinceAananregiven,R=QTA=[ 3/6 176 =3/6 1/6} b ={6 12]
-1/6 5/6 1/6 3/6| -3 -5 0 6
5
-2 3
14. SinceAananregiven,RzQTAz[_z/7 ST 20T 4/7} > 7 ={7 7}.
5/7 2/7 47 2/7| 2 2 0o 7
4 6
15. The columns of Q will be normalized versions of the vectors v,, v,, and v, found in Exercise 11.
C s 12 12
-1//5 0 0 5 =5 45
Thus O=|-1/{/5 12 1/2|,R=0"4=] 0 6 -2/
N5 -2 12 00 4
N5 12 —1/2)
16. The columns of Q will be normalized versions of the vectors v, v,, and v, found in Exercise 12.
12 —1/V2)  1/2]
-1/2  1/(2J2) 172 2 8 7
Thus O=| 0 1/32 0l,R=0"4=|0 22 3J2/|.
172 1/\2) -1/2 0 0 6
| 1/2 1/(22)  1/2)
17. a. False. Scaling was used in Example 2, but the scale factor was nonzero.

. True. See (1) in the statement of Theorem 11.

¢. True. See the solution of Example 4.

18.

. False. The three orthogonal vectors must be nonzero to be a basis for a three-dimensional

subspace. (This was the case in Step 3 of the solution of Example 2.)

was used for v,,, in the proof of Theorem 11.

True. See Theorem 12.

True. If x is not in a subspace W, then x cannot equal proj, x , because proj, x is in . This idea
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19.

20.

21.

22

23.

24.

6.4« Solutions 6-21

Suppose that x satisfies Rx = 0; then ORx = 00 = 0, and Ax = 0. Since the columns of 4 are linearly
independent, x must be 0. This fact, in turn, shows that the columns of R are linearly indepedent.
Since R is square, it is invertible by the Invertible Matrix Theorem.

Ify is in Col4, then y = Ax for some x. Then y = ORx = Q(Rx), which shows that y is a linear
combination of the columns of O using the entries in Rx as weights. Conversly, suppose that y = Ox

for some x. Since R is invertible, the equation 4 = QR implies that O = AR™ . So
y = AR™'x = A(R"'x), which shows that y is in Col A.

Denote the columns of O by {q,...,q,} . Note that n < m, because 4 is m X n and has linearly

independent columns. The columns of Q can be extended to an orthonormal basis for R” as follows.
Let f, be the first vector in the standard basis for R” that is not in W, = Span{q,...,q,}, let

u, =f, —proj,, f;, and let q,,, =u, /| u, ||. Then {q,.....q,.q,,,} is an orthonormal basis for

W,., =Spani{q,,....q,.q,,, - Nextlet f, be the first vector in the standard basis for R"” that is not

in w,,,, let w, =f, —proj,, f,, andlet q,,, =u,/|u,||. Then {q,,....q,.q,,1.q,,,} isan

orthogonal basis for W, , = Span{q,,....q,.q,,,.9,,,}. This process will continue until m —n vectors

have been added to the original » vectors, and {q,,...,q,.q,,,---,9,,} 15 an orthonormal basis for

R". Let Oy=[q,s; --- 4,] and O =[Q Q,]. Then, using partitioned matrix multiplication,
R

) |: 0} =0R=4.

We may assume that {u,,...,u p} is an orthonormal basis for /¥, by normalizing the vectors in the

original basis given for 7, if necessary. Let U be the matrix whose columns are u,...,u,,. Then, by

Theorem 10 in Section 6.3, T(x) = proj, x=(UU T)X for x in R". Thus 7T is a matrix transformation
and hence is a linear transformation, as was shown in Section 1.8.

Given 4 = QR, partition A=[A4, 4], where 4, has p columns. Partition O as O=[0, O]

Rll R12

where Q, has p columns, and partition R as R :{ }, where R, is a p X p matrix. Then

22
Rl 1 Rl2

a<la, al-or-lo, ol ]
22

} =[OR, OR,+0ORy]

Thus 4, = Q,R,,. The matrix Q, has orthonormal columns because its columns come from Q. The
matrix R, is square and upper triangular due to its position within the upper triangular matrix R. The
diagonal entries of R, are positive because they are diagonal entries of R. Thus Q,R,, isa QR
factorization of 4, .

[M] Call the columns of the matrix x,, x,, x;, and x, and perform the Gram-Schmidt process on
these vectors:

vV, =X,
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vV, =X, ———V, =X, —(=l)v, =| -3

0
5
V4:X4_f’j :11 Vl_f’z':”z ) f’;‘ :z 3:)(4——v1—(—1)v2—(——Jv3— 0
0
__5_
[-10] [ 3][6]] O]
2 0 5
Thus an orthogonal basis for W is -6,|-3[,|6/,] O
16 6 0
| 2] 3]0 |-5]

25. [M] The columns of O will be normalized versions of the vectors v,, v,, and v, found in Exercise
24. Thus

[ 172 172 143 0
5 20 —20 -—10 10
/10 1/2 fo 1/ T o 6 g 6
=| — — ’R: A:
O=|-3/10 -1/2 1/43 0 0 0 0 653 3%
4/5 0 1/3 0 0 0 0 583
| 1710 1/2 0 -1/42]

26. [M] In MATLAB, when A4 has n columns, suitable commands are
Q = A(:,1)/norm(A(:,1))
% The first column of Q
for j=2: n
v=A(:,]) -Q*(Q"*A(:,]))
Q(:,3)=v/norm(v)
% Add a new column to Q

end

Copyright © 2016 Pearson Education, Inc.



6.5 <« Solutions 6-23

6.5 SOLUTIONS

Notes: This is a core section — the basic geometric principles in this section provide the foundation
for all the applications in Sections 6.6-6.8. Yet this section need not take a full day. Each example
provides a stopping place. Theorem 13 and Example 1 are all that is needed for Section 6.6. Theorem 15,
however, gives an illustration of why the QR factorization is important. Example 4 is related to Exercise
17 in Section 6.6.

1. To find the normal equations and to find X, compute

-1 2 4
;o [-12 - 6 117 ., [-1 2 -l —4
A" A= 2 3= : A'b= 1=l .
2 3 3 -1 22 2 3 3 11

-1 3 2

6 -—l11 —4
a. The normal equations are (4’ A)x=A4"b: M :
11 22||x, | |11

P Ny 6 —117'[-47 122 11][-4] 1 [33] [3
b. Compute X=(A4" A)" A'b= =— =— = .
-11 22 1] 111t 6| 11| 11]22 2

2. To find the normal equations and to find x, compute
2
r 2 2 2
A A= -2
1 0 3
2

(12 8 «x 24
a. The normal equations are (ATA)X: A s 10 { 1}:{ .

oo 120 8T'[24] 110 -8|[-24] 1[-224] [4
b. Compute X=(4"4) A’ b= =— =— = .
8 10| | —2| 56/-8 12| —2| 56| 168 | |3

3. To find the normal equations and to find X, compute

12 8 o[22 2 —24
= ; A'b= 8|= .
8 10 10 3 -2

W O =

1 2 3
7 I -1 0 2(-1 2 6 6 7 1 -1 0 2 1 6
A A= = ; A'b = = .
-2 2 3 5|0 3 6 42 -2 2 3 5|4 -6
2 5 2
6 6| x 6
a. The normal equations are (ATA)X: A M= .
6 42| x, —6

e a6 6T T6] 1[4 -6 6
b. Compute x=(A"A) A'b= =— .
6 42| |-6| 216/-6 6] -6

1 [288] [ 4/3

216 =72 |-1/3
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4. To find the normal equations and to find X, compute
1 3 5

ATA_F 1 1} _— _{3 3] Arb_[l 1 1} | _[ 6}
13 -1 1 BERRE 13 -1 1| |14
11 0

3 3 6
a. The normal equations are (ATA)X =A"b: M .
3 11|x | |14]

e o 3 376 111 3)6] 1[24] [1
b. Compute x=(A"A)  A'b= =— =— =|_|.
3011 14| 24|-3  3|[14] 24|24| |1

5. To find the least squares solutions to Ax = b, compute and row reduce the augmented matrix for the
4 2 2 14 1 0 1 5

system A" Ax=A"b: [ATA ATsz 2 2 0 4|~-/0 1 -1 =3}, so all vectors of the
2 0 2 10 0 0 0 O

5 -1
form X=| =3 |+x3| 1| are the least-squares solutions of 4x = b.
0 1

6. To find the least squares solutions to Ax = b, compute and row reduce the augmented matrix for the
6 3 3 27 1 o 1 5

system A’ Ax=A"b [ATA ATb]z 3 3 0 12(~]0 1 -1 -1},so0all vectors of the
303 15/]0 0 0 0

5 -1
form X=|—1|+x;| 1| are the least-squares solutions of 4x = b.
0 1
1 -2 3
) -1 2 1 . 43|
7. From Exercise 3, A= , b= ,and X = . Since
0 3 —4 -1/3
2
1 2 3 2 3 -1
) -1 20 453 1 -2 1| [-3 .
AX—-b = - = - = , the least squares error is
0 3(-13| |4 -1| |4 3
2 5 2 1 2 -1
| AX—b =20 =245.
1 3 5 |
8. From Exercise 4, A=|1 -1|, b=|1], and ﬁ:[l}. Since
1 1 0
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1 3 5 5 -1
1 .
Ax-b=|1 -1 [J— 1|=]0|—|1]|=|-1]|, the least squares error is || AX—b||=+/6.
1 1 0 0 2

9. a. Because the columns a, and a, of 4 are orthogonal, the method of Example 4 may be used to

find b, the orthogonal projection of b onto Col 4:

5 1
f): b-al al+ b'az az=ga1 +132=2 3 +l 1 = 1 .
a].al az'az 7 7 7
) 4| o

b. The vector % contains the weights which must be placed on a, and a, to produce b. These

2/7
weights are easily read from the above equation, so X = .
/7

10. a. Because the columns a, and a, of 4 are orthogonal, the method of Example 4 may be used to

find b, the orthogonal projection of b onto Col 4:

b b | 1 . 2 4
b=—""a +2 %2 5 =32 +—a,=3-1|+=|4|=|-1|.
a, -2, a,-a, 2
1 2 4

b. The vector % contains the weights which must be placed on a, and a, to produce b. These

3
weights are easily read from the above equation, so X = .
1/2

11. a. Because the columns a,, a, and a, of 4 are orthogonal, the method of Example 4 may be used

to find b, the orthogonal projection of b onto Col A4:

LA a, + b-a, a, + b-a, a, =%a] +0a, +la3
a -a, a,-a, a;-a, 3
4 0 1 3
211 =50 1| 1 1
== |+0 +— = :
3|6 1| 31 0 4
1 -1 =5] | -1
b. The vector % contains the weights which must be placed on a,, a,, and a, to produce b. These
2/3
weights are easily read from the above equation, so X=| 0.
1/3

12. a. Because the columns a,, a, and a, of 4 are orthogonal, the method of Example 4 may be used

to find b, the orthogonal projection of b onto Col 4:
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pold, by, b L +Ea2+(—§}13

a, -a, : a,-a, g a;-a, P33 3
1 1 0 5
11 14(0) 5]-1| |2
T30 3|1 31| |3
-1 1 -1 6
b. The vector % contains the weights which must be placed on a,, a,, and a, to produce b. These
1/3
weights are easily read from the above equation, so X=| 14/3 |.
-5/3
11 0
13. One computes that Au=|-11|{,b—Au=| 2 ,||b—Au||=\/E;
11 -6
7 4
Av=|-12|,b—Av=| 3|,|[b-Av|=+29.
7 -2

Since Av is closer to b than Au is, Au is not the closest point in Col A4 to b. Thus u cannot be a least-
squares solution of Ax = b.

3 2
14. One computes that Au=|8 |,b—Au=| 4 ,||b—Au||:\/ﬁ;
2 2
7 -2
Av=[2|,b—dAv=| 2|, |b-A4v|=+24.
8 —4

Since Au and Av are equally close to b, and the orthogonal projection is the unigue closest point in
Col 4 to b, neither Au nor Av can be the closest point in Col 4 to b. Thus neither u nor v can be a
least-squares solution of Ax =b.

N 3 5 7
15. The least squares solution satisfies RX = QT b. Since R = {O J and O'b ={ J , the augmented

. - 35 7 1 0 4
matrix for the system may be row reduced to find [R 0 b] = 0 1 U lo 1 { and so

4
X =[ } is the least squares solution of Ax = b.
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. 2 3 17/2
The least squares solution satisfies RX = QTb. Since R = {0 5} and O'b =[

, the augmented
9/2

) r 2 3 17/2 1 0 29
matrix for the system may be row reduced to find [R 0 b]: o s o9l lo 1 9 , and

2.
SO X = { 9} is the least squares solution of Ax = b.

. True. See the beginning of the section. The distance from Axto b is || 4x—Db ||.

. True. See the comments about equation (1).

a
b
c. False. The inequality points in the wrong direction. See the definition of a least-squares solution.
d. True. See Theorem 13.

e

. True. See Theorem 14.

a. True. See the paragraph following the definition of a least-squares solution.

b. False. If x is the least-squares solution, then 4 X is the point in the column space of 4 closest to
b. See Figure 1 and the paragraph preceding it.

c¢. True. See the discussion following equation (1).

d. False. The formula applies only when the columns of 4 are linearly independent. See Theorem
14.

e. False. See the comments after Example 4.
f. False. See the Numerical Note.

a. If Ax =0, then 4”7 Ax = A0 = 0. This shows that Nul 4 is contained in Nul 4" 4.
b. If A" Ax=0, then x” 4” Ax =x" 0= 0. So (A4x)" (4x) =0, which means that || Ax |*=0, and

hence Ax = 0. This shows that Nul A7 4 is contained in Nul 4.

Suppose that 4x = 0. Then A" Ax = A70=0. Since 4" 4 is invertible, x must be 0. Hence the
columns of 4 are linearly independent.

a. If 4 has linearly independent columns, then the equation Ax = 0 has only the trivial solution. By

Exercise 19, the equation 4”7 Ax =0 also has only the trivial solution. Since 4’ 4 is a square
matrix, it must be invertible by the Invertible Matrix Theorem.

b. Since the 7 linearly independent columns of 4 belong to R™, m could not be less than n.
¢. The n linearly independent columns of 4 form a basis for Col 4, so the rank of 4 is n.

Note that A" 4 has n columns because 4 does. Then by the Rank Theorem and Exercise 19,

rank A" A=n—dimNul A” 4=n—dimNul 4 = rank 4

By Theorem 14, b=Ak= A(AT A)_1 A"b. The matrix A(ATA)_l A" is sometimes called the hat-
matrix in statistics.

Since in this case 4" A=1, the normal equations give % = 4”b.
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25.

26.

6.6

CHAPTER 6 + Orthogonality and Least Squares

2 2| x 6
The normal equations are {2 2}{ } = {6} whose solution is the set of all (x, y) such that x + y = 3.
¥

The solutions correspond to the points on the line midway between the lines x + y =2 and x + y =4.

[M] Using .7 as an approximation for V272, a, = a, =.353535 and q, =.5. Using .707 as an
approximation for v/2 /2, a, =a, =.35355339, a,=.5.

SOLUTIONS

Notes: This section is a valuable reference for any person who works with data that requires statistical
analysis. Many graduate fields require such work. Science students in particular will benefit from
Example 1. The general linear model and the subsequent examples are aimed at students who may take a
multivariate statistics course. That may include more students than one might expect.

1

. . . 1

. The design matrix X and the observation vector y are X = |
1

1

. . ) 1

. The design matrix X and the observation vector y are X = .
1

1
. . ) 1

. The design matrix X and the observation vector y are X = ) Ll y=
1

6 14
y=.9+ 4x.

r 4 6| 6| 4 T ol T 9 . .
X' X= ,X'y= 1" P=X"X)" X'y= 4l The least-squares line y = g, + f,x is thus

, and one can compute

xx=| 5 Ry o] Ol pox x xTy = T The least li B+ B i
= 5 = 5 = = . € least-squares line = + 1S
12 a6 Y7 25 Y= 7 d V=Pt P
thus y =—6 + .7x.

-1

2

2 71 4 1.1
5 6} X'y= [10}, B=X"X)"Xx"y= [1‘3} . The least-squares

line y= g, + fx isthusy=1.1+ 1.3x.

and one can compute X' X :{
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, and one can compute

<
Il
S = N W

AN L W BN

1

. . . 1

4. The design matrix X and the observation vector y are X = |
1

I -7] The least-squares line y = g, + fBx is

thus y=4.3 — .7x.

4 16 6| . 43
XTX=[ },XTy=L7}ﬁ=(XTX)‘1XTy=[

5. If two data points have different x-coordinates, then the two columns of the design matrix X cannot
be multiples of each other and hence are linearly independent. By Theorem 14 in Section 6.5, the
normal equations have a unique solution.

6. If the columns of X were linearly dependent, then the same dependence relation would hold for the
vectors in R® formed from the top three entries in each column. That is, the columns of the matrix
1 x X
1 x, x;| would also be linearly dependent, and so this matrix (called a Vandermonde matrix)
1 x x
would be noninvertible. Note that the determinant of this matrix is (x, — x;)(x; — x,)(x; = x,) # 0
since x,, x,,and x, are distinct. Thus this matrix is invertible, which means that the columns of X

are in fact linearly independent. By Theorem 14 in Section 6.5, the normal equations have a unique
solution.

7. a. The model that produces the correct least-squares fit is y = X+ ¢ where

11 [1.8] 6
2 4 2.7 €
X=|3 9|,y=|34 ,ﬂ={ﬁl},ande= &
4 16 3.8 % €
5 25] |39 &

~ | 1.76
b. [M] One computes that (to two decimal places) B :{ 20} so the desired least-squares equation
is y=1.76x—.20x"

8. a. The model that produces the correct least-squares fit is y = X8+ € where

2 3
X5 X N B S|
X=|: : S Ly=|: [LB=|0, |,ande=
2 3
X, X, X, Y By €n
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4 16 64 | [1.58]
36 216 2.08
64 512 2.5
b. [M] For the given data, X = 10-100- 1000 andy = 28 , SO
12 144 1728 3.1
14 196 2744 34
16 256 4096 3.8
|18 324 5832 14.32 |
5132
B =(X"x) "' X"y =|-03348 |, and the least-squares curve is
.001016

y=.5132x—.03348x* +.001016x".

9. The model that produces the correct least-squares fit is y = X+ € where

cosl sinl 7.9 y 3
X=|cos2 sin2|,y= 5.4,,3={B},ande= 6
cos3 sin3 -9 &

10. a.  The model that produces the correct least-squares fit is y = X+ € where

_e_,oz(m) 2~ 0700) ] 1347 _61
o2 =070 20.68 y 6
X =| 202 =070 |y =) 20.05 |, B = {MA}, ande=|¢ |,
o020 07014 18.87 B €
o0205)  ,=0705) | 18.30 | | € |
b. [M] One computes that (to two decimal places) /9 = Bi?é , so the desired least-squares

equation is ¥ =19.94¢% +10.10e™""".

11. [M] The model that produces the correct least-squares fit is y = X+ € where

1 3 cos .88 3 €
1 2.3cosl.1 2.3 €
X=|1 1.65cosl.42|,y=[1.65|,0= {/j}, and € =| ¢; |. One computes that (to two decimal
1 1.25co0s1.77 1.25 ¢ &
|1 1.01cos2.14 ] 1 1.01] | € |

811
produces 7 = 1.33 when &= 4.6.

~ |1
places) z[ } . Since e = .811 < 1 the orbit is an ellipse. The equation »= £/ (1 — e cos &)
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12. [M] The model that produces the correct least-squares fit is y = X+ €, where

1 3.78] 91 6
1 411 98 €
X=|1 439|,y=[103|,8= [ﬂo}, and € =| ¢; |. One computes that (to two decimal places)
1 473 110 A €
|1 4.88] 1112 & |

~ |18.56
p= [19 24} , so the desired least-squares equation is p = 18.56 + 19.24 In w. When w =100, p = 107

millimeters of mercury.

13. [M]
a. The model that produces the correct least-squares fit is y = X3+ € where
1 0 o0 0] _ -
TS TS B 0 %
L 2 2 2 8.8 €
29.9 €
13 23 ’
, \ 62.0 &
L4 4 4 104.7 p €
15 55 159.1 ﬂ‘) €
X=[1 6 6 6 |y=2220]8= ﬂl ,and e =| ¢ |. One computes that (to four
17 77 294.5 ﬂz €
1 8 &2 g3 380.4 : €&
1 9 92 ¢ 471.1 €
1 10 10 10° ST o
686.8 €
o112 1r !
809.2 | €,
112 122 12°] ¢ -
—.8558
_ ~ | 4.7025 . o
decimal places) f = 55554 " so the desired least-squares polynomial is
-.0274

(t) =—8558+4.7025¢ +5.5554¢> — 02741
b. The velocity v(¢) is the derivative of the position function y(¢), so
v(t)=4.7025+11.1108¢ —.0822¢*, and v(4.5) = 53.0 ft/sec.

14. Write the design matrix as [1  x|. Since the residual vector € =y — X ,B is orthogonal to Col X,
0=1-e=1-(y-XB)=1"y-1"X)8

b . A
:(y1+...+y")—[n ZXJ{BO =Zy—nﬁ0—ﬁlzx=ny—nﬁo—nﬂlx
1
This equation may be solved for y to find y = ,[;’0 + ,Bly_c.
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1 x N
15. Notice XU(:[I 1}5 D= " ZXQ ;Xryz[l 1} : {Zq. The
X ... X, 1 Zx Zx X ... X, y 2xy

'x}’l

equations (7) in the text follow immediately from the normal equations X' XfB=X"y.

16. The determinant of the coefficient matrix of the equations in (7) is ”Z x* - (Z x)%. Using the 2 x 2

et

/z}nzxt@xf T W S

. A )-CoCw) 5 1Y w-Coy)
Hence /i, = nz:x2 —(Z:x)2 hi= nz:x2 —(Z:x)2 '

Note: A simple algebraic calculation shows that Z y= (Z X) Bl =n ,[;’0 , which provides a simple

formula for the inverse of the coefficient matrix, [

formula for £, once [, is known

17. a. The mean of the data in Example 1 is X = 5.5, so the data in mean-deviation form are

1 =35
1 -

(3.5, 1), (-.5,2), (1.5, 3), (2.5, 3), and the associated design matrix is X = ) sl The columns
1 25

of X are orthogonal because the entries in the second column sum to O.
9

4 0
b. The normal equations are X' XB=X"y, or { }[ﬂo} = {7 5

0 21| 4

~ 9/4 .
p= {5/14} , so the desired least-squares line is ¥y =(9/4)+(5/14)x =(9/4)+(5/14)(x—-5.5).

}. One computes that

1
o v oo e 2
18. Since X" X = D= , X" X is a diagonal matrix when Zx:O.
1 x

2
xl X Zx Zx

19. The residual vector e =y — X, ,[5’ is orthogonal to Col X, while y=X ,B is in Col X. Since € and y are
thus orthogonal, apply the Pythagorean Theorem to these vectors to obtain

SS(T) =y [P=(§+el*=|IF I +|leF=)| XA} +||y - XBI*=SS(R) +SS(E).

n
n

20. Since ,5’ satisfies the normal equations, X’ Tx ,3 =X Ty, and
| XBIP=(XB) (XB)=p" X" XB=5"X"y. since | XB|'=SS(R) and y'y =y =SS(T),
Exercise 19 shows that SS(E) =SS(T)-SS(R) =y’ y — BTX Ty .
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6.7 SOLUTIONS

Notes: The three types of inner products described here (in Examples 1, 2, and 7) are matched by
examples in Section 6.8. It is possible to spend just one day on selected portions of both sections.
Example 1 matches the weighted least squares in Section 6.8. Examples 2—6 are applied to trend analysis
in Seciton 6.8. This material is aimed at students who have not had much calculus or who intend to take
more than one course in statistics.

For students who have seen some calculus, Example 7 is needed to develop the Fourier series in
Section 6.8. Example 8 is used to motivate the inner product on Cla, b]. The Cauchy-Schwarz and
triangle inequalities are not used here, but they should be part of the training of every mathematics
student.

1. The inner product is (x, y) =4x,y, +5x,y,. Letx=(1, 1),y = (5, -1).
a. Since ||X|’=(x,x)=9, || x| =3. Since ||y |’=(y, y) =105, Hszx/ﬁ Finally,
|(x,y) P=15% =225.
b. A vector z is orthogonal to y if and only if (x, y) = 0, that is, 20z, —5z, =0, or 4z, = z,. Thus

1
all multiples of L} are orthogonal to y.

2. The inner product is (x, y) =4x,y, +5x,y,. Letx= (3, -2), y = (-2, 1). Compute that
Ix[P=(x,x) =36, ||y |*=(y, ») =21, [|x|P||y|'=56-21=1176, (x, y) =34, and |(x, y) =1156.
Thus | (x, v) > <|| x|y |, as the Cauchy-Schwarz inequality predicts.

3. The inner product is { p, g) = p(—1)g(-1) + p(0)g(0) + p(1)g(1), so
(4+1,5-41) =3(1)+4(5)+5(1) = 28.

4. The inner product is { p, g) = p(~1)q(-1) + p(0)q(0) + p(1)g(1), so (3¢ _12, 3 +2t2> _
(=4)(5)+0(3) +2(5) = -10.

5. The inner product is { p, g) = p(—1)g(-1) + p(0)g(0) + p(1)g(1), so
(p,p)=(4+t,4+1) =3’ +4+5" =50 and I pl=N{p: P =50 =542 . Likewise
(0.9)=(5-4,5-4) =1 +5 +1" =27 and || ¢ |=q,9) =+/27 =343

6. The inner product is { p, g) = p(-1)g(~1) + p(0)g(0) + p(1)g(1), so {p, p) =(3t—1*,3t~1*) =
(—4)* +0% +22 =20 and || p||=Kp, p) =+/20 =24/5. Likewise {¢g,q) =(3+2t*,3+21*) =
52+32+5% =59 and || ¢|l=+/(¢,q) =~/59.

7. The orthogonal projection ¢ of ¢ onto the subspace spanned by p is

(p,p) 50 25 25
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8.

10.

11.

12.

13.

14.

The orthogonal projection ¢ of ¢ onto the subspace spanned by p is

c}zwpz—ﬁ(%—tz):—émlzz.

(p.p) 20 2 2

. The inner product is (p, ¢) = p(-3)q(-3) + p(-1)g(-1) + p(1)q(1) + p(3)g(3).

a. The orthogonal projection p, of p, onto the subspace spanned by p, and p, is

5, = Prpo) <Pz»Pl>p1 =§(1)+£t=5.

(Porpo) . (pipy) 4 20

b. The vector ¢=p, —p, =¢* -5 will be orthogonal to both p, and p, and {p,, p;,q} will be an
orthogonal basis for Span{p,, p,, p,}. The vector of values for g at (-3, -1, 1, 3) is (4, 4, 4, 4),

so scaling by 1/4 yields the new vector ¢ = (1/4)(t> =5).

The best approximation to p = r by vectors in W = Span{p,, p,,q} Will be
2 —_—
(p.po) ., (P:PD) +<p,(I>qz9(1)+164(t)+%(t 5} 41

D =projy, p= — =—
T pere) T pep) T (g 4 20 4 5

The orthogonal projection of p= £ onto W = Span{p,, p,, p,} Will be

A . , , , 0 34 0 17
p:prOJWp: <p p0> + <p p1> + <p p2> pz =_(1)+E(t)+ﬁ(t2_2):

0 | —t.
<p0,po> <P1aP1> <p2,P2> 5 5

Let W =Span{p,, p,, p,}. The vector p, = p—proj, p=t —(17/5)t will make {p,, p,, p,, ps} an
orthogonal basis for the subspace P; of P4. The vector of values for p, at(-2,-1,0,1,2) is

(—6/5, 12/5, 0, -12/5, 6/5), so scaling by 5/6 yields the new vector p; = (5/6)t* —(17/5)f) =
(5/6) —(17/6)t.

Suppose that A4 is invertible and that (u, v) = (4u) - (4v) for u and v in R" . Check each axiom in the
definition of an inner product space, using the properties of the dot product.

. (u,v)=(4u): (4v)=(4v) - (4u) =(v, u)

ii. (utv,w)y=Au+v)):(Aw)=(4u+ Av) - (Aw)=(4u) - (AW) + (4AV) - (AW) = (u, W) + (v, W)

iii. {(cu, v) = (4A(cu)) - (4v) = (c(4n)) - (AV) = c((4u) - (4V)) = {u, V)

iv. (uu)=(4u)-(4u)=|| Au|*>0, and this quantity is zero if and only if the vector Au is 0. But
Au = 0 if and only u = 0 because 4 is invertible.

Suppose that T is a one-to-one linear transformation from a vector space ¥ into R" and that (u, v) =

T(u) - T(v) for u and v in R" . Check each axiom in the definition of an inner product space, using
the properties of the dot product and 7. The linearity of 7 is used often in the following.

. (u,vy=T) - T(v)=T(v) - T(u) = (v, u)

ii. (wtv,w)y=Tu+v):-T(w)=(T(u)+ T(v)) - T(w)=T(u) - T(w) + T(v) - T(w) =u, w) + (v, w)
iii. {cu, vy =T(cu) - T(v) = (cT(n)) - T(v) = c«(T(u) - T(v)) = c{u, v)

iv. (uu)=T(u)-T(u)=||7(u)|*>0, and this quantity is zero if and only if u = 0 since T is a one-
to-one transformation.
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Using Axioms 1 and 3, (u, cv) ={cv, u) = (v, u) = c(u, v).
Using Axioms 1, 2 and 3,
Ju-v[’=-v,u-v)=(uu-v)—(v,u-v)
= (u,u) —(u, v) —(v,w) +<v,v) =(u,u) - 2(u, v) +(v,v)
=[ulf =2(u,v) +[| v|f
Since {u, v} is orthonormal, || ulP’=||v|*=1 and (u, v) = 0. So |[u—v]|}=2.
Following the method in Exercise 16,
[u+v|*=@+v,u+v)=(uu+v)+{(v,u+v)
=, u) +(u, v) +(v,u) + (v, V) =(u,u) + 2(u, v) + (v, V)
=[]’ +20u, v) +] v
Subtracting these results, one finds that ||u+v > =lu=v|*=4u,v), and dividing by 4 gives the

desired identity.

In Exercises 16 and 17, it has been shown that ||[u—v|*=||u|* =2(u,v) +|| v|]* and ||u+v|}’=

||u||2 +2(u,v) +|| V||2 . Adding these two results gives||u+V||2 +||u—V||2=2Hu||2 +2] v||2 .

b
let u= Ja and v= Vb . Then || u|f=a+b, ||v|’=a+b, and (u,v):Z\/E. Since a and b are
Jb Ja

nonnegative, || u||=va+b, || v|=+va+b. Plugging these values into the Cauchy-Schwarz

inequality gives 2Jab = |(w,v)| < ||u|l|v|]|=Va+bva+b=a+b. Dividing both sides of this
equation by 2 gives the desired inequality.

The Cauchy-Schwarz inequality may be altered by dividing both sides of the inequality by 2 and then
2 2 2
a
squaring both sides of the inequality. The result is [(u,;)j < Fui J vil . Now let u= [J and

1
V= [J .Then |[u|’ =a* +b%, | v|} =2, and (u, v) = a + b. Plugging these values into the
inequality above yields the desired inequality.
The inner product is (£, g) = j; F()g(n)dr. Let f(t)=1-3¢", g(t)=t—t. Then

<f,g)=J;(1—3t2)(t—t3)dt=I;3t5 —4° +1dt=0.

The inner product is (f,g) = IOI F()g(t)dt. Letf(f)="5t—3, g(t)=t —t*. Then

(f,g)zjol (5¢=3)(# —tz)dt=J; 5t — 882 +31%dt = 0.
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23. The inner product is (/.g) = [, /(g(t) dr. 50 (f. /)= (1=3)dt=[ 9" —6/* +1dt =415, and

1/ 1I=F Sy =2/45.

24. The inner product is { f, g) =J01f(t)g(t) dt, so (g,g) :J‘OI(t3 —tz)zdtzjolt" 265 1%t =1/105, and
I gll=+/{g.g) =1/+/105.

25. The inner productis { f/,g) = J_llf(t)g(t)dt. Then 1 and ¢ are orthogonal because (1, 1) = J_llt dt=0.

So 1 and ¢ can be in an orthogonal basis for Span{l, ¢, tz}. By the Gram-Schmidt process, the third

., .0
LL  &n
1,1) = J._lll dt =2, and (¢*,t) = I_llt3dt =0, the third basis element can be written as — (1/3). This

basis element in the orthogonal basis can be 1> — t. Since (£*,1) = Ll]tzdt =2/3,

element can be scaled by 3, which gives the orthogonal basis as {1, 3> —1}.

26. The inner productis (f,g) = I_zzf(t)g(t)dt. Then 1 and ¢ are orthogonal because (1, ¢) = I_zzt dt=0.

So 1 and ¢ can be in an orthogonal basis for Span{l, 7, 12}. By the Gram-Schmidt process, the third

e,
LD (t,0)

1,1y = J._zzl dt =4, and (¢, 1) = J‘_22t3dt — 0, the third basis element can be written as > —(4/3). This

basis element in the orthogonal basis can be 7> t. Since (£*,1) = J._zztzdz =16/3,

element can be scaled by 3, which gives the orthogonal basis as {1,7,3t* —4}.

27. [M] The new orthogonal polynomials are multiples of —177 + 57> and 72 —155¢% +35¢*. These
polynomials may be scaled so that their values at -2, —1, 0, 1, and 2 are small integers.

28. [M] The orthogonal basis is f,(t) =1, f,(t)=cost, f,(t)= cos’t —(1/2) =(1/2)cos 2¢, and
fi(t)=cos’t —(3/4)cos t = (1/4)cos 3t.

6.8 SOLUTIONS

Notes: The connections between this section and Section 6.7 are described in the notes for that section.
For my junior-senior class, I spend three days on the following topics: Theorems 13 and 15 in Section 6.5,
plus Examples 1, 3, and 5; Example 1 in Section 6.6; Examples 2 and 3 in Section 6.7, with the
motivation for the definite integral; and Fourier series in Section 6.8.

1. The weighting matrix W, design matrix X, parameter vector £, and observation vector y are:

1 00 0 0 1 2] 0
0 20 0 0 1 -1 0
w=l0 0 2 0 0[,X=|1 O,ﬁ={ﬂ0},y=2.
000 2 0 1 h 4
0 0 0 0 1] 12 4]
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The design matrix X and the observation vector y are scaled by W:

1 =2 0
2 -2 0

wx =2 o|mwy=|4].
2 8
1 2] 4]

, 14 0 . 28
Further compute . (WX)" WX = 0 16 ,(WX) Wy = 4 and find that

2

3/2

. e (114 07287
B=((WX) WX)” (WX) Wy{ 0 1/16}{24}[

} . Thus the weighted least-squares line is
y=2+3/2)x.

. Let X be the original design matrix, and let y be the original observation vector. Let /¥ be the
weighting matrix for the first method. Then 21 is the weighting matrix for the second method. The
weighted least-squares by the first method is equivalent to the ordinary least-squares for an equation

whose normal equation is (WX)" WX,B =(WX)" Wy, while the second method is equivalent to the
ordinary least-squares for an equation whose normal equation is (2WX)" (W)X, ,B =2WX)" 2W)y.

Since the second equation can be written as 4(WX)T WX,B = 4(VW()T Wy, it has the same solutions
as the first equation).

. From Example 2 and the statement of the problem, p,(¢t)=1, p,(t)=t, p,(?) =1 -2,

pi(t)=(5/ 6)t> —(17/6)t, and g=(3,5,5,4,3). The cubic trend function for g is the orthogonal
projection p of g onto the subspace spanned by p,, p,, p,,and p, :

(g, Po) + (g, 1) n (g, P2) n (g, P3)
(Po>Po) ’ (P> p1) : (P2>P2) ? (P3>P3)

=?(1) Ly +_—7(t2 -2) +£[§t3 —1—7tJ

132 3

10 14 10\ 6 6
=4—Lt—l(t2 —2)+l Sp s 2, e 1p
10 2 5\6 6 3 2 6

This polynomial happens to fit the data exactly.

. The inner product is { p, g) = p(-5)q(=5) + p(-3)q(=3) + p(=1)g(-1) + p(1)q(1) + p(3)q(3) + p(5)q(5).
a. Begin with the basis {l,7, t2} for P,. Since 1 and ¢ are orthogonal, let p,(1)=1 and p,(¢)=¢.
2 2
Then the Gram-Schmidt process gives p,(f)=1* — D 1- (0 t=1> 0 =1 _»
(LY & 6
vector of values for p, is (40/3, -8/3, -32/3,-32/3, -8/3, 40/3), so scaling by 3/8 yields the new
function p, =(3/8)(t* —(35/3))=(3/8)t* —(35/8).

b. The data vectoris g = (1, 1, 4, 4, 6, 8). The quadratic trend function for g is the orthogonal
projection p of g onto the subspace spanned by p,, p, and p,:

. The
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polgp) o (g +(g,p2>pzz%aH@Hi(}tz_ﬁJ

(Porro) oy (P pa) 70 84l8 8

5 1(3, 35} 59 5 3
=4+—t+—| -t —— |=—+—t+—¢
7 14(8 8 16 7 112

. . 2
5. The inner product is (f, g) = jo f(g@)dt. Let m # n. Then

(sin mt, sin nt) = Jjﬂ sin mt sin nt dt = %J.OM cos((m —n)t)—cos((m+n)t)dt =0. Thus sin m¢ and

sin nt are orthogonal.
6. The inner productis (f,g) = _[Omf(t)g(t)dt. Let m and n be positive integers. Then

(sin mt, cos nt) = joz” sin m cos nt df = % joz” sin((m + n)t) +sin((m—n)t)dt =0 . Thus sin m¢ and

cos nt are orthogonal.
7. The inner product is (f,g) = J-OM f(t)g(t)dt. Let k be a positive integer. Then

2z 2z
|| cos kt ||*=(cos kt,cos kt) = _[0 cos’kt dt = %jo 1+cos 2kt dt =7z and

. . . 2z, 1,2
|| sin k¢ ||*=(sin kt,sin kt) = Ioﬂsmzkt dt zajoﬁl—cos 2ktdt=r.

. . a, 11 c27 1 2z
8. Let f{t) =t — 1. The Fourier coefficients for fare: —= ——J. f(@)dt= —.[ t=ldt=-1+x
2 2rxd0 2770

and for k>0, @, = ljz” f(t)cos kt dt = ljz” (t—1)cos kt di =0, and
770 7T 70

bo=L [ rwysin ke dr = L [ e~ 1ysin kt de = 2 The third-order Fourier approximation to fis
790 /AdY k

thus a7°+b1sint+bzsin 2t +bysin 3t =147 —2sin ¢ —sin 2t—§sin 3.

2z 2z
9. Let f(f) =27z — t. The Fourier coefficients for fare: @:llj f(@® dtzij‘ 27—t dt =7 and
2 2xd0 2 70
1 ¢27 1 ¢27
for k>0, akz—_[ f(t)cosktdtz—j (27 —t) cos kt dt =0and
70 70

2z 2z
b, = 1 jo f(¢)sin kt dt = ljo (27 —t) sin kt dt 2% .The third-order Fourier approximation to f'is
V4 V4

a . . : . . 2 .
thus 70+ bsin t +b,sin 2t + bysin 3t =77 + 2 sin ¢ +sin 2t +§s1n 3t.

1 forO0<t<rm
-1 forz<t<2m
a, 1

?:%lj‘;ﬂf(t) dt =2—J‘;dt—2LLj”dt =0, and for k>0,
V4 4 V4

. The Fourier coefficients for fare:

10. Let £(?) ={
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a =lj2”f(t) cos kt d =lj”cos ke dz—ljz”cos ki di =0 and
790 770 Ve

4/(km)  for k odd

b —ljz”f(z)sinkzdt—lj”sinkzdz—ljz”smkzdt—
Ko 790 R 0 forkeven’

. . o . . : 4 . 4 .
The third-order Fourier approximation to f'is thus b;sin ¢ + bysin 3t = —sin ¢ + 3—s1n 3t.
V4 T

. . : . . I 1 :
The trigonometric identity cos 2 =1-2 sin’ shows that . sin’z = 5 ECOS 2t . The expression on

the right is in the subspace spanned by the trigonometric polynomials of order 3 or less, so this
expression is the third-order Fourier approximation to sin” ¢ .

. . . 3 1
The trigonometric identity cos 3t =4cos’t —3cost shows that cos’t = ZCOS t+ Zcos 3t. The

expression on the right is in the subspace spanned by the trigonometric polynomials of order 3 or
less, so this expression is the third-order Fourier approximation to cos’z.

Let fand g be in C [0, 27t] and let m be a nonnegative integer. Then the linearity of the inner product
shows that {( f'+ g), cos mt) = ( f, cos mt) + (g, cos mt) and {( f+ g), sin mt) = ( f, sin mt) +{ g, sin
mt).

Dividing these identities respectively by (cos m¢, cos mt) and (sin mt¢, sin m¢) shows that the Fourier
coefficients a,, and b, for f+ g are the sums of the corresponding Fourier coefficients of f'and of g.

Note that g and /4 are both in the subspace H spanned by the trigonometric polynomials of order 2 or
less. Since 4 is the second-order Fourier approximation to f; it is closer to fthan any other function in
the subspace H.

[M] The weighting matrix ¥ is the 13 X 13 diagonal matrix with diagonal entries 1, 1, 1, .9, .9, .8, .7,
.6,.5,.4,.3,.2,.1. The design matrix X, parameter vector £, and observation vector y are:

1 0 0 0] )
o111 0.0
1 2 22 2 8.8
s o 29.9
1 4 £ 4§ 020
104.7

15 5 5 b 159.1

xX=[l 6 6 6| 8= A ,y=[222.01.
1 7 77 7 P 294.5
1 8 ]2 {3 ﬂ3 380.4
1 9 92 93 471.1
1 10 10° 10° STLT
1 11 112 1P Zig'i
112 122 12°) -
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16.

The design matrix X and the observation vector y are scaled by W:

[1.0 0.0 0.0 0.0 ] " 0.00]
1.0 1.0 1.0 1.0 8.80
1.0 2.0 4.0 8.0 29.90
9 27 81 243 55.80
9 36 144 576 94.23
.8 4.0 200 100.0 127.28
WX=|.7 42 252 151.2|,Wy=|155.40
.6 42 294 2058 176.70
S 40 320 256.0 190.20
4 3.6 324 2916 188.44
3 3.0 30.0 300.0 171.51
2 22 242 2662 137.36
| .1 1.2 144 172.8] | 80.92 |
Further compute
6.66 22.23 120.77 797.19 747.844
r 22.23  120.77 797.19 5956.13 r 4815.438
X))y WX = ,(WX) Wy =
120.77  797.19  5956.13  48490.23 35420.468
797.19 5956.13 48490.23 420477.17 285262.440
—-0.2685
and find that £ = (WX)" Wx) (Wx)" Wy = 360951
5.8576
-0.0477

Thus the weighted least-squares cubic is ¥ = g(¢) =—.2685+3.6095¢ +5.8576t> —.0477¢’. The

velocity at £ =4.5 seconds is g'(4.5) = 53.4 ft./sec. This is about 0.7% faster than the estimate
obtained in Exercise 13 of Section 6.6.

1 forO0<t<rw ) .
[M] Let f(¢)= . The Fourier coefficients for f have already been found to be
-1 form<t<2rx
4/(krr)  for k odd

. Thus
0 for k even

a, =0 forall k>0 and bk={

f.(0) = isin t+ isin 3tand f5(t)= isin t+ isin 3t+ isin 5t. A graph of f, over the interval
T RY/4 T 3z RY/4

[0, 27] is
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A graph of f; over the interval [0, 27] is

A graph of f; over the interval [-27, 27] is
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Chapter 6 SUPPLEMENTARY EXERCISES

s

R -0 & e

o

B

. False. The length of the zero vector is zero.

True. By the displayed equation before Example 2 in Section 6.1, with ¢ =—1,
= =1 EDx = =1l fF = x .
True. This is the definition of distance.
False. This equation would be true if 7|| v || were replaced by | 7 ||| v ||.
False. Orthogonal nonzero vectors are linearly independent.
True. Ifx-u=0andx-v=0,thenx-(u-v)=x-u—x-v=0.
True. This is the “only if” part of the Pythagorean Theorem in Section 6.1.
True. This is the “only if” part of the Pythagorean Theorem in Section 6.1 where v is replaced
by —v, because ||~V ||’ is the same as || V|.
False. The orthogonal projection of y onto u is a scalar multiple of u, not y (except when y
itself is already a multiple of u).
True. The orthogonal projection of any vector y onto W is always a vector in W.

True. This is a special case of the statement in the box following Example 6 in Section 6.1 (and
proved in Exercise 30 of Section 6.1).

False. The zero vector is in both W and W,
True. See Exercise 32 in Section 6.2. If v; -V, =0, then (¢;v;)-(c;v;)=¢c;(V;-v;)=¢,c;0=0.

False. This statement is true only for a square matrix. See Theorem 10 in Section 6.3.

0. False. An orthogonal matrix is square and has orthonormal columns.

T

True. See Exercises 27 and 28 in Section 6.2. If U has orthonormal columns, then U'U = 1. If
U is also square, then the Invertible Matrix Theorem shows that U is invertible and U™ =U".
In this case, UU T=p , which shows that the columns of U’ are orthonormal; that is, the rows
of U are orthonormal.

True. By the Orthogonal Decomposition Theorem, the vectors proj, v and v — proj, v are
orthogonal, so the stated equality follows from the Pythagorean Theorem.

False. A least-squares solution is a vector X (not 4 X) such that A X is the closest point to b

in Col 4.

False. The equation X = (ATA)_1 A'b describes the solution of the normal equations, not the

matrix form of the normal equations. Furthermore, this equation makes sense only when 4" 4
is invertible.

2. If {v,,v,} is an orthonormal set and x = ¢,v, +¢,Vv,, then the vectors ¢,v, and c,v, are orthogonal

(Exercise 32 in Section 6.2). By the Pythagorean Theorem and properties of the norm

2 2 2 2 2 2 2 2
Ix[I"=llqvi+ vy [IP=llav I +lleva [F=(@ I vi D"+ (e v D" o |+ e |

So the stated equality holds for p = 2. Now suppose the equality holds for p = k, with k> 2. Let
{V|,...,V,,} bean orthonormal set, and consider x = ¢, v, +...+ ¢, V; + ;. Vis1 = U +CriiVigrs
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where u, =c;v, +...+¢,v,. Observe that u, and c,,,v,,, are orthogonal because V; - v,,; =0 for;
= 1,...,k. By the Pythagorean Theorem and the assumption that the stated equality holds for &, and
2 2 2 2
because || Crr1 Vit | :|Ck+l ul Vit I* = Cr+1 %
2 2 2 2 2 2
I x["=[lwg + Vi [F=l0e 7+ e Vi 1=l [P+ A e |
Thus the truth of the equality for p = k implies its truth for p = k£ + 1. By the principle of induction,
the equality is true for all integers p > 2.
3. Given x and an orthonormal set {V;,...,V,} in R",let X be the orthogonal projection of x onto the
subspace spanned by Vy,...,V, . By Theorem 10 in Section 6.3, X=(XV))V, +.. +(x-v,)v,. By
Exercise 2, || X|]* =| X'V, P+ 4] X'V, * . Bessel’s inequality follows from the fact that

|| %|]* <||x|P*, which is noted before the proof of the Cauchy-Schwarz inequality in Section 6.7.

4. By parts (a) and (c) of Theorem 7 in Section 6.2, {Uv,,...,Uv,} is an orthonormal set in R" . Since

there are n vectors in this linearly independent set, the set is a basis for R" .

5. Suppose that (U x)«(Uy) =x-y forall x,y in R", and let e,,...,e, be the standard basis for R" . For
Jj=1,...,n, Ue; is the jth column of U. Since || Ue, ||2=(Uej)-(Uej) =e,-e; =1, the columns of U
are unit vectors; since (Ue;)-(Ue,)=e; -e, =0 forj # k, the columns are pairwise orthogonal.

6. If Ux = Ax for some x # 0, then by Theorem 7(a) in Section 6.2 and by a property of the norm,
Ix||=||Ux||=]| Ax||=]|A||| x ||, which shows that | A | = 1, because x # 0.

7. Let u be a unit vector, and let OQ=7—2uu’. Since (uu’)’ =u""u’ =uu’,

O =(-2uu") =7-2uu’) =/-2uu’ =Q

Then
00" =0* =(I-2uu’ )* =7 —2uu’ —2uu’ +4(uu’ )(uu’)

Since u is a unit vector, w”’ u=u-u=1, so (uu’ )(uu’)=u(@’ Y(wu’ =uu’, and
00" =1 -2uu’ —2uu’ +4uu’ =7

Thus Q is an orthogonal matrix.

8. a. Suppose that x - y = 0. By the Pythagorean Theorem, || x|*+|y|*=|x+y]|. Since T preserves
lengths and is linear,

1T + 17 = Tx+Y) 1= T(x) +T(y) |

This equation shows that 7(x) and 7(y) are orthogonal, because of the Pythagorean Theorem.
Thus T preserves orthogonality.

b. The standard matrix of T is [T () ... T (en)] , where e,,...,e, are the columns of the identity
matrix. Then {7'(e,),...,T(e,)} is an orthonormal set because 7 preserves both orthogonality and
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9.

10.

11.

12.

13.

14.

lengths (and because the columns of the identity matrix form an orthonormal set). Finally, a
square matrix with orthonormal columns is an orthogonal matrix, as was observed in Section 6.2.

Let W= Span{u, v}. Given zin R", let Z = proj,z. Then Z is in Col 4, where A=[u  V]. Thus
there is a vector, say, X in R?, with4%=7%.So0, X isa least-squares solution of 4x = z. The normal

equations may be solved to find X, and then Z may be found by computing 4 x.

Use Theorem 14 in Section 6.5. If ¢ # 0, the least-squares solution of Ax = cb is given by
(A" 4y A" (cb), which equals (A" A A", by linearity of matrix multiplication. This solution is ¢
times the least-squares solution of Ax = b.

X a 1 v’ 1 =2 5
Let x=|y|, b=|b|, v={-2|,and 4=|v’ |=|1 -2 5. Then the given set of equations is
z c 5 vl |1 =2 5

Ax = Db, and the set of all least-squares solutions coincides with the set of solutions of the normal
equations 4”7 Ax = A”b . The column-row expansions of A’ 4 and 4”b give

A" A=w +w +w =3w A’ b=av+bv+ev=(a+b+c)v
Thus 4" Ax=3(vv" )x=3v(v'x) =3(v' X)V since v'x is a scalar, and the normal equations have

become 3(VTX)V =(a+b+c)v, so 3(VTX) =a+b+c, or V. x= (a+b+c)/3. Computing v'x gives
the equation x — 2y + 5z = (a + b + ¢)/3 which must be satisfied by all least-squares solutions to Ax =
b.

The equation (1) in the exercise has been written as VA = b, where 7 is a single nonzero column
vector v, and b = Av. The least-squares solution A of VA = b is the exact solution of the normal
equations VA =V "b. In the original notation, this equation is v/ vA = v’ Av. Since v'v is
nonzero, the least squares solution A is V' A4v/(v' V). This expression is the Rayleigh quotient

discussed in the Exercises for Section 5.8.

a. The row-column calculation of Au shows that each row of 4 is orthogonal to every u in Nul 4. So

each row of 4 is in (Nul A)l. Since (Nul A)l is a subspace, it must contain all linear

combinations of the rows of 4; hence (Nul A)l contains Row 4.

b. If rank 4 = r, then dimNul 4 = n — r by the Rank Theorem. By Exercsie 24(c) in Section 6.3,
dimNul 4+ dim(Nul A)" =n, so dim(Nul 4)" must be ». But Row 4 is an #-dimensional

subspace of (Nul At by the Rank Theorem and part (a). Therefore, Row A4 =(Nul A
¢. Replace 4 by A" in part (b) and conclude that Row 4" =(Nul A”)". Since Row 4" =Col 4,
Col A=(Nul 4")*.

The equation Ax = b has a solution if and only if b is in Col 4. By Exercise 13(c), Ax =b has a
solution if and only if b is orthogonal to Nul A", This happens if and only if b is orthogonal to all

solutions of A7x=0.
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If 4=URU" with U orthogonal, then 4 is similar to R (because U is invertible and U’ =U "), so 4
has the same eigenvalues as R by Theorem 4 in Section 5.2. Since the eigenvalues of R are its n real
diagonal entries, 4 has n real eigenvalues.

a If U=[u1 u, ... un], then AU=[7»1u1 Au, ... Au,,]. Since u, is a unit vector and
u,.,...,u, are orthogonal to u,, the first column of U” AU is U (Au) =AU u, =\e,.

b. From (a),
)\’1 % k % %

U"AU =

: 4
0

View U" AU as a2 x 2 block upper triangular matrix, with 4, as the (2, 2)-block. Then from

Supplementary Exercise 12 in Chapter 5,

det(U" AU —\1,) =det(\, —AI))-det(4 —A 1, )= (A, —A)-det(4 —AT, )

This shows that the eigenvalues of U T4U, namely, A,,...,A,, consist of A, and the eigenvalues

ne

of 4, . So the eigenvalues of 4, are A,,...,A

[M] Compute that || Ax |/|| x || = .4618 and cond(A4)x(||Ab||/||b|)) =3363x(1.548x10™")=.5206.
In this case, || Ax ||/|| x || is almost the same as cond(A4) X || Ab ||/|| b ||.

[M] Compute that || Ax ||/|| x || = .00212 and cond(4) X (|| Ab ||/|| b ||) = 3363 x (.00212) = 7.130. In
this case, || Ax ||/|| x || is almost the same as || Ab |//|| b ||, even though the large condition number
suggests that || Ax ||/|| x || could be much larger.

[M] Compute that || Ax||/||x||=7.178x10"* and cond(A4)x(||Ab||/||b]|)=23683x(2.832x107*) =

6.707. Observe that the relative change in x is much smaller than the relative change in b. In fact the
theoretical bound on the relative change in x is 6.707 (to four significant figures). This exercise
shows that even when a condition number is large, the relative error in the solution need not be as
large as you suspect.

[M] Compute that || Ax |/ x || = .2597 and cond(A)x (|| Ab||/||b||) =23683x(1.097x107)=.2598 .

This calculation shows that the relative change in x, for this particular b and Ab, should not exceed
.2598. In this case, the theoretical maximum change is almost acheived.
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Symmetric Matrices
and Quadratic
Forms

7.1 SOLUTIONS

Notes: Students can profit by reviewing Section 5.3 (focusing on the Diagonalization Theorem) before
working on this section. Theorems 1 and 2 and the calculations in Examples 2 and 3 are important for the
sections that follow. Note that symmetric matrix means real symmetric matrix, because all matrices in the
text have real entries, as mentioned at the beginning of this chapter. The exercises in this section have
been constructed so that mastery of the Gram-Schmidt process is not needed.

Theorem 2 is easily proved for the 2 X 2 case:

b
If A{a d}, then /1=%(a+di«/(a—d)2+4b2).

C

If b = 0 there is nothing to prove. Otherwise, there are two distinct eigenvalues, so 4 must be

-A
diagonalizable. In each case, an eigenvector for A is { b }

35
1. Since A= 5 7} = A", the matrix is symmetric.
. [ 3 -5 T .. .
2. Since A= s 3 = 4", the matrix is symmetric.
. 2 r . :
3. Since 4= 4 4 # A", the matrix is not symmetric.
[0 8 3
4. Since A=|8 0 —4|#A", the matrix is not symmetric.
13 2 0
[ -6 2 0
5. Since 4=| 2 -6 2|=A", the matrix is symmetric.
0 2 -6

7-1
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g —-6].8 -6

6 .8
matrix, P is orthogonal and P~ = P" :[ }

orthogonal.

-4/5 3/5 -
. Let P= , and compute that P" P =

3/5 4/5

P is a square matrix, P is orthogonal and pP'l=pP = {

1/3  2/3

Let P=|2/3 1/3
2/3 -2/3

1/3  2/3
P'P=(2/3 1/3
2/3 -2/3

P is orthogonal and P~ =P" =|2/3 1/3  =2/3].

2/3  2/3
Let P=| O 1/3

5/3 —4/3

2/3 0
P'P={2/3 1/3

1/3 -2/3
orthogonal.

8 -6

-1|1 -1}|0

. Since 4 is not a square matrix 4# A" and the matrix is not symmetric.

6 8 r 6 8|6 .8
. Let P= g 6l and compute that P P = =

:

} =1,. Since P is a square

11 r I 11 12 0 _
. Let P= L -1l and compute that P* P = ) 5 =21, #1,.Thus P is not

-4/5 3/5|-4/5 3/5 1 0 .
= =1,. Since
3/5 4/5

0 1

= I;. Since P is a square matrix,

3/5 4/5
—4/5 3/5
3/5 4/5}'
2/3
-2 /3|, and compute that
1/3
2/311/3  2/3 2/3] [1 0 0
-2/312/3 1/73 -2/3|=]0 1 0
1/3(/2/3 -2/3 /3] |0 0 1

/3  2/3 2/3]

2/3 -2/3  1/3]

1/3

—2/3 |, and compute that
-2/3

5/3112/3 2/3 1/3 29/9 -16/9

—4/3 0 1/3 =2/3|=|-16/9
-2/3|5/3 -4/3 -2/3 -8/9
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15.
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S 5 =5 =5
S5 5
Let P= , and compute that
S =5 =5
S =5 5 =5
S5 5 5|5 5 =5 =5 1 0 0 O
r S5 =5 =5)|5 5 5 . 01 0 O ) )
P P= = =1,. Since P is a square
-5 5 =5 5|5 =5 =5 5 0 01 O
-5 5 5 =55 -5 5 =5 0 0 0 1
S5 5 05
. . I S5 =5 =5
matrix, P is orthogonal and P~ =P’ = .
-5 5 =5 5
-5 5 5 =5

3 1
Let A= [1 3}. Then the characteristic polynomial of 4 is

(3—]»)2 -1=A*-61+8= (A—4)(A-2), so the eigenvalues of 4 are 4 and 2. For A = 4, one
1/\/5}' For

1
computes that a basis for the eigenspace is L} , which can be normalized to get u, = { 5
1/~/2

A =2 one computes that a basis for the eigenspace is {_J, which can be normalized to get

- - 4 0
u, = 12 .Let P=[u, u,|= 142 12 and D:[ } Then P orthogonally
1132 /N2 142 0 2
diagonalizes 4, and 4=PDP™".
1 -
Let A= [ J. Then the characteristic polynomial of 4 is (1-A)* —25=A% 2124

= (A —-6)(1+4),s0 the eigenvalues of 4 are 6 and —4. For A = 6, one computes that a basis for the

-1/2

eigenspace is [_ } which can be normalized to get u, =
1 1/+2

}. For A = —4 , one computes that

. : |1 . . 1/42
a basis for the eigenspace is L}, which can be normalized to get u, = { \/_} Let

1/:2
o ]{—1/\5 1/\2

pP=

1/V2 1/42

6 0 . .
} and D = {0 4} . Then P orthogonally diagonalizes 4, and

A=PDP".

3 4
Let A= [4 9}. Then the characteristic polynomial of 4 is (3—A)(9—A)—16=4>—124+11

=(A=11)(A1-1), so the eigenvalues of 4 are 11 and 1. ForA = 11, one computes that a basis for
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16.

17.
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. . . . 1/+/5
the eigenspace is { }, which can be normalized to get u, = V5 . For A= 1, one computes that
2 2/45
. . - . . -2/5
a basis for the eigenspace is t which can be normalized to get u, = 5l Let
1/+/5

1 -2 11
P=[u, wu,]|= s s and D = [ 0} . Then P orthogonally diagonalizes 4, and
2/5 145 1
A=PDP".
6 —
Let 4= [ 9}. Then the characteristic polynomial of 4 is (6—A)(9—A)—4 =A% —151+50

=(A=5)(1-10), so the eigenvalues of 4 are 5 and 10. For A = 5, one computes that a basis for the

5
}. For A =10, one computes that a

1/5
~1/+5
\/_ . Let
2/+5

2
eigenspace is [ J, which can be normalized to get u, = [

-1
basis for the eigenspace is [ 2}, which can be normalized to get u, ={

{2/@ —1/\/5} " D{s

0
P=[u, w,]= 10} . Then P orthogonally diagonalizes 4, and

/5 2/45 0

A=PDP™".

1 1 5
Let A=|1 5 1|. The eigenvalues of 4 are -4, 4, and 7. For A = —4 , one computes that a basis
5 1 1

-1 ~1/\2
for the eigenspace is | 0|, which can be normalized to get u, = 0 . For A =4, one
1 1/2
{ 1/6
computes that a basis for the eigenspace is | -2 |, which can be normalized to get u, =| -2/ J6 .
1 1/46

1
For A= 7, one computes that a basis for the eigenspace is | 1 |, which can be normalized to get
1

1/3 -1/\2 146 1743 4 0 0
u,=1/V3 | Let P=[u, w, wuy]= 0 —2/v6 1//3|andD=| 0 4 0|. ThenP
1/3 142 16 143 00 7

orthogonally diagonalizes 4, and 4= PDP™",
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1 -6 4
18. Let A=| -6 2 -2|. The eigenvalues of 4 are =3, —6 and 9. For A = =3, one computes that a
4 -2 -3
1 1/3
basis for the eigenspace is | 2 |, which can be normalized to get u, =|2/3|. For A =—-6, one
2 2/3
-2 -2/3
computes that a basis for the eigenspace is | —1 |, which can be normalized to get u, =| —1/3|. For
2 2/3
2
A =9, one computes that a basis for the eigenspace is | =2 |, which can be normalized to get
1
2/3 1/3 -2/3  2/3 -3 00
u,={-2/3|. Let P=[u;, w, wuy]=|2/3 -1/3 -2/3|and D= 0 -6 0| ThenP
1/3 2/3  2/3 1/3 0 0 9

orthogonally diagonalizes 4, and 4= PDP™".

3 -2 4
19. Let A=|—2 6 2/|. The eigenvalues of 4 are 7 and —2. For A = 7, one computes that a basis for
4 2

3
1|1
the eigenspace is 2 [,/ 0| +. This basis may be converted via orthogonal projection to an
0f1

—-1]|4
orthogonal basis for the eigenspace: 2|,/ 2| ;. These vectors can be normalized to get
0
~1/3/5 4//45 2
u, = 2/:5 , Uy, = 2/J45|. For A =-2 , one computes that a basis for the eigenspace is | —1 |,
0 5//45 2
273 ~1/\5 4/\45 -2/3
which can be normalized to get uy =| —1/3 |. LetP=[u, w, uy]=| 2/J5 2/45 -1/3
2/3 0 5/\45  2/3
7 0 0
and D=0 7  0|. Then P orthogonally diagonalizes 4, and 4=PDP".
0 0 2
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20.
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5 8§ -4
Let A=| 8 5 —4/|. The eigenvalues of 4 are —3 and 15. For A = =3, one computes that a
-4 -4 -1
[ 2][-1
basis for the eigenspace is <| —1|,| 2 |} which is orthogonal and can be normalized to get
| 2] 2
2/3][-1/3]
{u, u,}=1<|-1/3],| 2/3|;. For A =15, one computes that a basis for the eigenspace is | 2|,
2/3|( 2/3] -1
2/3 2/3 -1/3 2/3
which can be normalized to get u, =| 2/3|. Let P=[u, w, w,|=|-1/3 2/3 2/3|and
-1/3 2/3 2/3 -1/3
-3 0 0
D=| 0 -3 0|. Then P orthogonally diagonalizes 4, and 4=PDP™".
0 0 15
4 3 1 1
Let A= ? T ‘1‘ ; . The eigenvalues of 4 are 1, 5, and 9. For A =1, one computes that a basis
1 1 3 4
-1 0
for the eigenspace is é , (1) , r Which is an orthogonal set and can be normalized to get
0 1

—1/32][ 0 1
1/32 0 -1

sl For A =5, one computes that a basis for the eigenspace is Ll

-

{u,u,}=

0
0 || 12 !
-1/2
which can be normalized to get u; = _1 ;z . For 4 =9, one computes that a basis for the
1/2
1 1/2
: . 1 . . 1/2
eigenspace is ot This vector can be normalized to get u, = Ual Let
1 1/2
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-1/ 0 -1/2 1/2 1 0 0 0
1/2 0 ~1/2 1/2 01 0 0
P=[u u, u, ul= and D = . Then P
0 -1/2 1/2 172 00 50
0 0 0 9

0 /N2 12 172
orthogonally diagonalizes 4, and A= PDP™".

4 0 1 0
0 4 0 1 ) .
Let A= Lo 4 ol The eigenvalues of 4 are 3 and 5. For A = 3, one computes that a basis for
0 1 0 4
-1 0
. . 0f|-1 . - . :
the eigenspace is ool This basis is an orthogonal basis for the eigenspace, and these
0
—1/32(| 0
. 0 ||-1/42
vectors can be normalized to get {u;.u, }= , . For A =5, one computes that a
1/42 0
0 1/+2
1[0
. . 101 o .
basis for the eigenspace is Llolf which is orthogonal and can be normalized to get
01
121 0 152 0 142 0
] AR UER | : 1| o -2 0 142
Uz uy, = , .Let P=|u, w, u; wu,|=
Tl o S O V2N T RS VAN - N
0 |[1/42 0 N2 0 142
3000
0 3 0 0 . . -1
and D= 0 0 5 ol Then P orthogonally diagonalizes 4, and 4=PDP™".
0 0 0 5
4 -1 -1 1 4 -1 -1}||1 2 1
Let A=|-1 4 —1].Sinceeachrowofdsumsto2, A{1|=|-1 4 -1||1|=|2|=2|1|and
-1 -1 4 1 -1 -1 4|1 2 1

1
1 |is an eigenvector of A with corresponding eigenvalue A =2 . The eigenvector may be
1
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1/43
normalized to get u, =|1/ J3|.For A=5 , one computes that a basis for the eigenspace is

1//3

-1|]|-1
1{,/] 0], so A=35 isaneigenvalue of 4. This basis may be converted via orthogonal
0 1
-1||-1
projection to an orthogonal basis 1,| =1 ;for the eigenspace, and these vectors can be
ol 2

~1/2 -1//6
normalized to get u, = 1/+/2 | and u; = ~1//6|. Let

0 2/+/6
1/3 -1/42 -1/6

2 0 0
P=[u, w, w]=|1/v/3 1/J2 -1/J6|and D={0 5 0|. Then P orthogonally
1/3 0 2/J6 0 0 5
diagonalizes 4, and 4=PDP".
2 -1 1 -1 -1 -1
24. Let 4=|-1 2 -1|. One may compute that 4| 0|=| 0|,so v,=| 0] is an eigenvector of 4
I -1 2 1 1 1
with associated eigenvalue A4, =1. For A, =1, one computes that a basis for the eigenspace is
-1
01,| 1| ;. This basis may be converted via orthogonal projection to an orthogonal basis for the
1|0
-1 1 4 1
eigenspace: {v,,v;}= 0|,/ 2| ;. Likewise one may compute that 4| -1|=|—-4|=4|-1], so
1|1 1 4 1
1
v, =|—1| is an eigenvector of 4 with associated eigenvalue 4. The eigenvectors v,, v,, and v,
1
YN 1/43 1//6
may be normalized to get the vectors u, = 0 |, u=|-1/ V3|, and u, =2/ J6 |. Let

1/42 1/3 1/6
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28.

29.

30.

31.

32.

33.

7.1 + Solutions 7-9

~1/32 13 146
P=[u, w, wl=| 0  -1/y3 2/J6|and D=

/N2 13 1/46

diagonalizes 4, and A= PDP™".

[
S b~ O

0
0|. Then P orthogonally
1

a. True. See Theorem 2 and the paragraph preceding the theorem.
b. True. This is a particular case of the statement in Theorem 1, where u and v are nonzero.
c. False. There are n real eigenvalues (Theorem 3), but they need not be distinct (Example 3).

d. False. See the paragraph following formula (2), in which each u is a unit vector.

a. False. See Theorem 2.
b. True. See the displayed equation in the paragraph before Theorem 2.

¢. False. An orthogonal matrix can be symmetric (and hence orthogonally diagonalizable), but not
every orthogonal matrix is symmetric. See the matrix P in Example 2.

d. False. See Theorem 3(b).

Let 4 be an n X n symmetric matrix. Then (4X)y = (AX)Ty = XTATy = XTAy =x+(Ay), since
A"=4.

Since 4 is symmetric, (B’ AB)" = B" A" B = B" 4B and B” AB is symmetric. Applying this result
with 4 = I gives B" B is symmetric. Finally, (BB" ) =B""B" =BB" , so BB" is symmetric.

Since A is orthogonally diagonalizable, 4= PDP™', where P is orthogonal and D is diagonal. Since 4
is invertible, 4" =(PDP")" =PD'P™". Notice that D" isa diagonal matrix, so A" is
orthogonally diagonalizable.

If A and B are orthogonally diagonalizable, then 4 and B are symmetric by Theorem 2. If AB = BA,

then (AB)" =(BA)" = A"B" = AB. So AB is symmetric and hence is orthogonally diagonalizable by
Theorem 2.

The Diagonalization Theorem of Section 5.3 says that the columns of P are linearly independent
eigenvectors corresponding to the eigenvalues of A listed on the diagonal of D. So P has exactly £
columns of eigenvectors corresponding to A. These & columns form a basis for the eigenspace.

If A=PRP”', then P AP=R. Since P is orthogonal, R = P" AP. Hence

R" =(P"4P)" = P" A" P™" = P 4P = R, which shows that R is symmetric. Since R is also upper
triangular, its entries above the diagonal must be zeros to match the zeros below the diagonal. Thus R
is a diagonal matrix.

It has previously been found that 4 is orthogonally diagonalized by P, where
~1/N2 -1/46 1743 8 0 0

P=[u, w, w]=| 1/J2 -1/J6 1/\3|and D={0 6 0|. Thus the spectral
0 2/\6 1/43 0 0 3
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decomposition of 4 is

A=Auu” +Auu,” + Luu =8uu,” +6u,u,” +3uu,”

/2 -1/2 0 1/6 /6 -2/6 /3 1/3 1/3
=8| -1/2 1/2 0|+6] 1/6 /6 -2/6|+3|1/3 1/3 1/3].
0 0 0 -2/6 -2/6 4/6 /3 1/3 1/3
34. It has previously been found that 4 is orthogonally diagonalized by P, where
/52 -1/18 -2/3 7 0 0
P=[u, w, w]=| 0 4/J18 -1/3|and D=|0 7 0|
/N2 118 2/3 0 0 -2

Thus the spectral decomposition of 4 is

_ T T T _ T T T
A=Auu’ +Auu,” +Auuy’ =7uu +7uu,’ —2u,u,

1/2 0 1/2 1/18 -4/18 -1/18 4/9 2/9 -4/9
=7 0 O 0|+7|-4/18 16/18  4/18|-2| 2/9 1/9 -2/9
1/2 0 1/2 -1/18  4/18 1/18 -4/9 -2/9 4/9

35. a. GivenxinR", bx= (uuT)x :u(uTX) = (uT X)u, because u’ x is a scalar. So Bx = (x - u)u. Since
u is a unit vector, Bx is the orthogonal projection of x onto u.
b. Since B' =(uu’)" =u""u’ =uu’ =B, B is a symmetric matrix. Also,
B* =(uu”)(uu”) =u(u’u)u’ =uu’ =B because u’u=1.

c. Since u'u=1, Bu= (uuT Ju= u(uTu) =u(l)=u, so u is an eigenvector of B with corresponding
eigenvalue 1.

36. Givenany y inR", let § =By andz=y — y . Suppose that B” = B and B* = B. Then
B'"B=BB=B.
a. Since z-§=(y~)-(By)=y-(By)~§-(By)=y By~ (By)' By=y By-y B'By=0,zis
orthogonal to y.
b. Any vector in W = Col B has the form Bu for some u. Noting that B is symmetric, Exercise 28
gives (y—y)-(Bu)=[B(y—-y)]-u=[By—BBy]-u=0,since B> =B. Soy—y isin wt, and
the decomposition y =y + (y —y ) expresses y as the sum of a vector in W and a vector in W *.

By the Orthogonal Decomposition Theorem in Section 6.3, this decomposition is unique, and so
y must be proj,y.
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6 2 9 -6
6 -6 9 ,
37. [M] Let 4= 6 . The eigenvalues of 4 are 19, 11, 5, and —11. For A =19, one
-6 9 2 6
-1 -1/2
. . . : : 1/2
computes that a basis for the eigenspace is Ll which can be normalized to get u, = a2l For
1 1/2
1
. . |1 . .
A =11, one computes that a basis for the eigenspace is it which can be normalized to get
1
1/2 1
1/2 : . . 1 .
u, = a2l For A =5, one computes that a basis for the eigenspace is 40 which can be
1/2 -1
1/2 1
, 1/2 , ) .| -1
normalized to get uy = U2l For A = —11, one computes that a basis for the eigenspace is At
-1/2 1
1/2
. . -1/2
which can be normalized to get u, = ol Let
1/2
-1/2 1/2  1/2 1/2 19 0 0 0
/2 1/2  1/2 -1/2 0 11 0 0
P=[u;, w, wu; u,l= and D = . Then P
-1/2 1/2 -1/2 -1/2 0 5 0
/2 1/2 -1/2  1/2 0 0 0 -11

orthogonally diagonalizes 4, and 4= PDP™".

63 —18 —-.06 -.04
-.18 84 —-04 12 .
38. [M] Let 4= . The eigenvalues of 4 are .5, .55, .8, and 1. For A =.5,
-.06 -.04 72 =12
—-.04 A2 —12 .66

one computes that a basis for the eigenspace is , which can be normalized to get u, = . For

— NN A
SR NN
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-1
A =.55, one computes that a basis for the eigenspace is _2 , which can be normalized to get
4
-2 2
u, = | For A=.8 , one computes that a basis for the eigenspace is _4 , which can be
.8 2
4 -2
, -2 . . .| 4
normalized to get uy = gl For A =1, one computes that a basis for the eigenspace is ,
4 2
-4 8 =2 4 -4
hich b lized to oet 8 Let P=| ] 4 -4 -2 8
which can be normalized to ge = . Let P= =
S, e e o I VR S
4 2 8 4 4
S 0 00
0 55 0 0
and D = 0 0 8 ol Then P orthogonally diagonalizes 4, and A= PDP™".
0 0 0 1

31 58 .08 44

58 -56 44 -58 _
39. [M] Let A= . The eigenvalues of 4 are .75, 0, and —1.25. For A =.75,
08 44 19 -08

44 -58 -.08 31

1
: : . 0 : . :
one computes that a basis for the eigenspace is ol . This basis may be converted via
1

1|3
o . ]10]| 4 .
orthogonal projection to the orthogonal basis ol . These vectors can be normalized to get
1

/72 | 31450 ] -2
0 4//50 -1
0 4/:/50
132 |—3/4/50 | 2
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-2/5
. : -1/5 .
which can be normalized to get u; = 45| For A =—1.25, one computes that a basis for the
2/5
-2 -2/5
: : : : 4/5
eigenspace is Ll which can be normalized to get u, = sl Let
2 2/5

/52 3/4J50 —2/5 —2/5
0 4/J50 -1/5 4/5

P=[u, uw, u, u]=P= V50 and
0 4/J50 4/5 -1/5

/N2 =3/450 2/5  2/5

75 0 0 0
0 .75 0 0 . . -1
D= 0 0 0 ol Then P orthogonally diagonalizes A, and A= PDP" .
0 0 0 -1.25
8 2 2 -6 9]
2 8 2 -6 9
[M] Let A=| 2 2 8 -6 9 |. The eigenvalues of 4 are 6, 30, 30, and 15. For A =6,
-6 -6 -6 24 9
L9 9 9 9 -21]
SRI,
-1/|0
one computes that a basis for the eigenspace is 0 |,| 1 | ;. This basis may be converted via
0 0
L 0 4 L O .
11T
-1]] 1
orthogonal projection to the orthogonal basis 0 |,| =2 | ;. These vectors can be normalized to get
0
L 0 Jd L 0 -
A - 1/46] (1]
~1/2 1//6 1
u = 0 uy=|_p//e| For A =30, one computes that a basis for the eigenspace is | 1],
0 0 -3
L 0 i 0] L 0]
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1/:12
1/12

which can be normalized to get u; =| 1 /\/ﬁ . For A =-30, one computes that a basis for the

-3/12

0

e 1/420
| 1/420

eigenspace is | 1|, which can be normalized to get u, =| 1/4/20 |. For A =15, one computes
1 1/420

=4 | —4/4/20 |

. 145
1 1145
that a basis for the eigenspace is | 1 |, which can be normalized to get us =|1/+/5 |- Let
1 1/4/5
1 1145

N2 16 11z 1420 145
N2 e 112 1420 145
P=[u1 u, u; u, u5]= 0 —2/\/5 1/\/5 1/\/% 1/\/5 and
0 0 -3/¥12 120 1/45
0 0 0 —-4/320 1/45

6 0 0 0
0 6 0 0 0
D=0 0 30 0 |. Then P orthogonally diagonalizes 4, and 4=PDP"".
0 0 0 =30 O
10 0 0 0 15]

7.2 SOLUTIONS

Notes: This section can provide a good conclusion to the course, because the mathematics here is widely
used in applications. For instance, Exercises 23 and 24 can be used to develop the second derivative test
for functions of two variables. However, if time permits, some interesting applications still lie ahead.
Theorem 4 is used to prove Theorem 6 in Section 7.3, which in turn is used to develop the singular value
decomposition.
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o

Cx Ax =[x xz][

6
. When x= {
1
. When xz[
3
CxAx =[x, x,
[-2
. When x =
| 5
142
. When x=
1/\2

. The matrix of the quadratic form is

. The matrix of the quadratic form is

5 1/3
1/3 1

I

}, X’ Ax=5(6)* +(2/3)(6)(1) + (1)* = 185.

X

2

32 0]x

]2 2
0 1

The matrix of the quadratic form is

The matrix of the quadratic form is

1l x, [=3x2 +2x2 +4x,x, +2x,x
2 1 2 1%2 2X3

01| x5

. The matrix of the quadratic form is | -3

. The matrix of the quadratic form is | 3

. The matrix of the quadratic formis | 2

Copyright © 2016 Pearson Education, Inc.

2
} = lez +—xx, + xf
3

}, X' Ax=5(1)" +(2/3)1)(3) +(3)* =16.

“1], X Ax=3(=2)* +2(=1)* +4(=2)(-1) +2(-1)(5) = 12.

7.2 '+ Solutions

7-15

142 |, X" Ax=31/32)2 +2(1/N2) +4(1/V2)(1/2) +2(1/42)(1/42) =11/2.
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0 -1 0
b. The matrix of the quadratic formis | -1 0 2.
0 2 4

1 5
7. The matrix of the quadratic formis A= [5 J. The eigenvalues of 4 are 6 and —4. An eigenvector

1/42
1/42

}. Then A=PDP™", where

1 -1
for A=61s [J , which may be normalized to u, = { } An eigenvector for A =4 is [ J,

~1/42

which may be normalized to u, =
1/42

B Nz -2
P=[u, uz]_L/\/E N

the new quadratic form is X' Ax =(Py)” A(Py)=y’ P' APy =y’ Dy =6y} —4y3.

6 0
} and D= [0 _4} The desired change of variable is x = Py, and

9 -4 4
8. The matrix of the quadratic formis 4={-4 7 0|. The eigenvalues of 4 are 3, 9, and 15. An
4 0 11
=2 -2/3
eigenvector for A =3 is | -2 |, which may be normalized to u, =| —2/3 |. An eigenvector for A =9
1 1/3
-1 -1/3 2
is | 2|, which may be normalized to u, =| 2/3|. An eigenvector for A=15is | -1 |, which may
2 2/3 2
2/3 -2/3 -1/3  2/3
be normalized to w, =| —1/3 |. Then A=PDP"', where P=[u, uw, wuy|=-2/3 2/3 -1/3
2/3 /3 2/3  2/3
30 O
and D={0 9 0. The desired change of variable is x = Py, and the new quadratic form is
0 0 15

x" Ax=(Py)' A(Py)=y'P" APy =y' Dy =3){ +9)5 +15)5 .

9. The matrix of the quadratic formis A4 = [ 5 4

}. The eigenvalues of 4 are 6 and 2, so the

-1
quadratic form is positive definite. An eigenvector for A =6 is [ J, which may be normalized to

-1/~2 1/~2
u, = . Then
1/+2 1/~42

1
. An eigenvector for 4 =2is [J, which may be normalized to u, = {
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A=PDP"', where P=[u, u,]=

~1/\2 1/42
/42 142

variable is x = Py, and the new quadratic form is

x"Ax=(Py)' A(Py)=y" P APy =y" Dy =6y] +2y;.

6 0
} and D = {O 2}. The desired change of

2 3
The matrix of the quadratic form is 4 = [3 6} The eigenvalues of 4 are —7 and 3, so the

quadratic form is indefinite. An eigenvector for A = -7 is [_3} which may be normalized to

W |10 3/410
YN 1/410 |

-7 0
Then A=PDP"', where P =[u, u2]={ } and D:{ 0 3}. The desired

3
. An eigenvector for 4 =3 is [J, which may be normalized to u, = {

~1/410  3/4/10
3/J10  1/410

change of variable is x = Py, and the new quadratic form is

x" Ax = (Py)" A(Py)=y" P APy =y" Dy =7y} +3y3

-2
J. The eigenvalues of 4 are —2 and 3, so the

The matrix of the quadratic form is 4 = [

quadratic form is indefinite. An eigenvector for A = =2 is {2} which may be normalized to

R -2/
Yl2is 1/45]

-2 0
} and D z[ 0 3}. The desired change

-2
}, An eigenvector for A =3 is [ J, which may be normalized to u, ={

Then A=PDP”', where P=[u, u,]=

1/\5 =2/+5
2/5 145

of variable is x = Py, and the new quadratic form is

x"Ax =(Py)" A(Py)=y"P" APy =y" Dy =-2){ +3y3 .

-1 -1

The matrix of the quadratic form is 4 = { J. The eigenvalues of 4 are —2 and 0, so the

quadratic form is negative semidefinite. An eigenvector for A = =2 is [J, which may be

1/2
1/\2

- - -2 0
u, = 12 . Then A=PDP', where P=[u, u,]= V2 -1V and D=[ }.The
1/2 /N2 142 0 0

desired change of variable is x = Py, and the new quadratic form is

x' Ax=(Py)" A(Py)=y' P APy =y’ Dy =2y}

-1
normalized to u, = l: . An eigenvector for 4 =0 is { J, which may be normalized to
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13.

14.

15.

1 -3

The matrix of the quadratic form is 4 :[ 9}. The eigenvalues of 4 are 10 and 0, so the

quadratic form is positive semidefinite. An eigenvector for A =10 is [ 3}, which may be

1/10
-3/10

3
normalized to u, = { } An eigenvector for A =0 is L}, which may be normalized to

10 0
u, = 3/3/10 . Then A=PDP™", where P=[u, u,]= 1/410 3/410 and D:[ } The
iy -3/410  1/4/10 00

desired change of variable is x = Py, and the new quadratic form is

x' Ax=(Py)" A(Py)=y' P" APy =y’ Dy =10y;
: : : 3 2 .
The matrix of the quadratic formis A= [2 0}. The eigenvalues of 4 are —1 and 4, so the

quadratic form is indefinite. An eigenvector for A = —1 is [; } which may be normalized to

- 2
u, = 1735 . An eigenvector for 4 =4 is [ }, which may be normalized to u, = 2135 . Then
2/45 1 1/35
- -1 0
A=PDP™", where P=[u, u,]= N5 2045 and D:{ } The desired change of
2/\5 1745 0 4

variable is x = Py, and the new quadratic form is
X' Ax=(Py)" A(Py)=y' P' APy =y' Dy =] +4y;
-3 2 2 2
. . . 2 0 :
[M] The matrix of the quadratic form is 4 = - 10 51 The eigenvalues of 4 are
2 0 3 -10

—13, =9, —7 and —Iso the quadratic form is negative definite. The corresponding eigenvectors

3 0 -1 0
1 -2 1 0
may be computed: A=-1: ) S A=-T7: Ll A=-9: . , A=-13: 1.These
1 1 1 1
eigenvectors may be normalized to form the columns of P, and A= PDP', where
3/12 0 -1/2 0 1 0 0 o0
1/\12 =2/J6 172 0 0 -7 0 0
P= Ve and D = . The desired change of
N2 e 12 -1/42 o 0 -9 0
N2 e 12 142 0 0 0 -3

variable is x = Py, and the new quadratic form is
X' Ax=(Py)" A(Py)=y'P' APy =y' Dy ==y =7y, =93 ~13y;
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4 4 0
16. [M] The matrix of the quadratic form is 4 = 4 ‘; i . The eigenvalues of 4 are —1 and 9,
-3 0 4
so the quadratic form is indefinite. The corresponding eigenvectors may be computed:
(4] [ 5 41 [-5]
A=-1: _35 , _3 , A=9: i _f) . These bases may be converted via orthogonal
| 0] 3 0 3]
projections and scalings to orthogonal bases for the respective eigenspaces:
(4773 4113
=511 0 5010 )
A=-1: s Pl al A=9: 3 4 . Normalize these vectors to form the columns of
105 0]]5

17.

4/J50  3/4050 4/450 -3/4/50
—5//50 0 5/+50 0

, an
3/J50 —4/50 3/J50  4/450

0 5/50 0 5/450

P,and A=PDP"', where P = d

-1 0 0 0
0 -1 0 0 . . . . .
D= o 0 9 ol The desired change of variable is x = Py, and the new quadratic form is
0 0 0 9

x"Ax=(Py)" A(Py)=y"P" APy =y" Dy =-1y{ =135 +9y5 +9y;.

11 8 0 -6
[M] The matrix of the quadratic form is 4 = 3 1; 1? . The eigenvalues of 4 are 21 and
-6 0 8 11
1, so the quadratic form is positive definite. The corresponding eigenvectors may be computed:
4115 411-5
A=1: _z , _04 , A=21: z , - . These bases may be converted via orthogonal
0] 3 0
projections and scalings to orthogonal bases for the respective eigenspaces:
4 3 41 -3
A=1 _35 , 04 , A=21 51 . Normalize the vectors to form the columns of P,
0 5 0] 5
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18.

19.

20.

21.

4/J50  3/450 4/450 -3/4/50

1 0 0 O
-5/~/50 0 5/450 0 0 1 0 O
and A=PDP', where P = \/7 \/7 and D =
3/4J50 —4/450 3/4/50  4/4/50 00 21 0
0 5/4350 0 5/50 00 0 21
The desired change of variable is x = Py, and the new quadratic form is
x"Ax = (Py) A(Py)=y" P" APy =y Dy = y] + y3 +21y; +21y; .
2 -3 3 3
. . . -3 2 -3 3 .
[M] The matrix of the quadratic formis A= 3 3 o Ll The eigenvalues of 4 are -7, 1,
-3 3 -1 0
and 5, so the quadratic form is indefinite. The corresponding eigenvectors may be computed:
1 0 -1 | -1
1 0 1| |-1 . .
A=-T7 Ll A=1: i A=5: ol These eigenvectors may be normalized to
1 1 1

/42 0 -1/42 -1/2
1/~2 0 /2 -1/2
form the columns of P, and A=PDP™", where P = 2 2 and

12 =1/42 0 1/2
/42 142 0 1/2

-7 0 0 O
0 1 0 O _ . . . .
D= 0 0 5 ol The desired change of variable is x = Py, and the new quadratic form is
0 0 0 5

X' Ax=(Py)' A(Py)=y'P'APy=y' Dy ==Ty} +y; +5y; +5);.

Since 8 is larger than 5, the xf term should be as large as possible. Since xl2 +x§ =1, the largest
value that x, cantakeis 1, and x, =0 when x, =1. Thus the largest value the quadratic form can

take when x’x =1 is 5(0) + 8(1) = 8.

Since 5 is larger in absolute value than —3, the )cl2 term should be as large as possible. Since

xl2 + x22 =1, the largest value that x, cantakeis 1, and x, =0 when x, =1. Thus the largest value

the quadratic form can take when x”x =1 is 5(1) — 3(0) = 5.

a. True. See the definition before Example 1, even though a nonsymmetric matrix could be used to
compute values of a quadratic form.

b. True. See the paragraph following Example 3.

c¢. True. The columns of P in Theorem 4 are eigenvectors of 4. See the Diagonalization Theorem in
Section 5.3.

Copyright © 2016 Pearson Education, Inc.



22.

23.

24.

25.

26.

27.

7.2 '+ Solutions 7-21

d. False. O(x) =0 when x = 0.
e. True. See Theorem 5(a).
f. True. See the Numerical Note after Example 6.

a. False. See the paragraph before Example 1.

b. False. The matrix P must be orthogonal and make P” AP diagonal. See the paragraph before
Example 4.

c. False. There are also “degenerate” cases: a single point, two intersecting lines, or no points at all.
See the subsection “A Geometric View of Principal Axes.”

d. True. See the definition before Theorem 5.
e. False. See Theorem 5(b). If x” Ax has only negative values for x # 0, then x” Ax is negative
definite.

The characteristic polynomial of A may be written in two ways:
b

d-A
(A=A)A—-A) =27 —(A +A4)A+AA,. The coefficients in these polynomials may be equated to
obtain 4, + 4, =a+d and A4, =ad—b* =det 4.

-A
det(A—M)=det[ab }=/12—(a+d)/1+ad—b2 and

If det 4 > 0, then by Exercise 23, 4,4, > 0, so that 11 and /72 have the same sign; also,

ad =det A+b* >0.

a. If det 4 > 0 and a > 0, then d > 0 also, since ad > 0. By Exercise 23, A4, + A, =a+d >0 . Since
ﬁl and /72 have the same sign, they are both positive. So Q is positive definite by Theorem 5.

b. If det 4 > 0 and a <0, then d <0 also, since ad > 0. By Exercise 23, 4, + 4, =a+d <0 . Since
ﬂl and ﬂz have the same sign, they are both negative. So Q is negative definite by Theorem 5.

c. If det 4 <0, then by Exercise 23, 4,4, <0. Thus /7., and /12 have opposite signs. So Q is
indefinite by Theorem 5.

Exercise 28 in Section 7.1 showed that B” B is symmetric. Also X' B' Bx=(Bx)" Bx=|| Bx|| >0, so
the quadratic form is positive semidefinite, and the matrix B’ B is positive semidefinite. Suppose
that B is square and invertible. Then if x’ B” Bx =0, || Bx || = 0 and Bx = 0. Since B is invertible, x =
0. Thus if x# 0, x"B"Bx >0 and B’ B is positive definite.

Let A=PDP", where P" = P~'. The eigenvalues of 4 are all positive: denote them Aok, LetC

be the diagonal matrix with \/k—l ,...sa/A, onits diagonal. Then D=C?=C’C .If B=PCP", then B

n

is positive definite because its eigenvalues are the positive numbers on the diagonal of C. Also
B'B=(PCP") (PCP")=(P" C" P"\(PCP")= PC"CP" = PDP" = A4 since P"P=1.
Since the eigenvalues of 4 and B are all positive, the quadratic forms x’ Ax and x’ Bx are positive

definite by Theorem 5. Let x # 0. Then x” Ax >0 and x’ Bx >0, so XT(A +B)x= x’ Ax+x'Bx>0,

and the quadratic form x’ (A+ B)X is positive definite. Note that 4 + B is also a symmetric matrix.
Thus by Theorem 5 all the eigenvalues of 4 + B must be positive.
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28. The eigenvalues of 4 are all positive by Theorem 5. Since the eigenvalues of 4~" are the reciprocals
of the eigenvalues of 4 (see Exercise 25 in Section 5.1), the eigenvalues of 4~" are all positive. Note
that 47" is also a symmetric matrix. By Theorem 3, the quadratic form x’ 47'x is positive definite.

7.3 SOLUTIONS

Notes: Theorem 6 is the main result needed in the next two sections. Theorem 7 is mentioned in Example
2 of Section 7.4. Theorem 8 is needed at the very end of Section 7.5. The economic principles in Example
6 may be familiar to students who have had a course in macroeconomics.

5 2 0
1. The matrix of the quadratic form on the leftis 4=|2 6 -2 |. The equality of the quadratic
0 -2 7
forms implies that the eigenvalues of 4 are 9, 6, and 3. An eigenvector may be calculated for each
1/3 2/3 -2/3
eigenvalue and normalized: A =9: 2/3(,A=6: | 1/3|, A=3: 2/3|. A desired change
-2/3 2/3 1/3

1/3 2/3 =-2/3
of variable is x = Py, where P=| 2/3 1/3 2/31.
-2/3 2/3 1/3

3 3 1
2. The matrix of the quadratic form on the leftis 4=|3 3 1|. The equality of the quadratic forms
1 1 5

implies that the eigenvalues of 4 are 7, 4, and 0. An eigenvector may be calculated for each
1/43 ~1//6 ~1/+2

eigenvalue and normalized: A =7: 1/\3 , A=4: ~1//6 , A=0: 1/42|. A desired
1/43 2/6 0

/3 -1/\6 -1/42
change of variable is x = Py, where P = 1/\3 -1/406 142
/43 2/46 0
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o

5. The matrix of the quadratic formis A= [

a.

7.3 '« Solutions 7-23

By Theorem 6, the maximum value of x” Ax subject to the constraint x’ x =1 is the greatest

eigenvalue A of 4. By Exercise 1, 4, =9.

. By Theorem 6, the maximum value of x” Ax subject to the constraint x’ x =1 occurs at a unit

-1/3
eigenvector u corresponding to the greatest eigenvalue 4, of 4. By Exercise 1, u=+|-2/3|.
2/3

. By Theorem 7, the maximum value of x” Ax subject to the constraints x’ x =1 and x"u=0 is

the second greatest eigenvalue A, of 4. By Exercise 1, 4, =6.
By Theorem 6, the maximum value of x” Ax subject to the constraint x’ x =1 is the greatest
eigenvalue A, of 4. By Exercise 2, 4, =7.

By Theorem 6, the maximum value of x’ 4x subject to the constraint x’ x =1 occurs at a unit
/3
eigenvector u corresponding to the greatest eigenvalue 4, of 4. By Exercise 2, u==1| 1/ V31

/43

By Theorem 7, the maximum value of x" Ax subject to the constraints x'x =1 and x"u =0 is
the second greatest eigenvalue 4, of 4. By Exercise 2, 4, =4.

1 -5
J. The eigenvalues of 4 are A, =6 and A, = 4.

By Theorem 6, the maximum value of x’ Ax subject to the constraint x’ x =1 is the greatest
eigenvalue A, of 4, which is 6.

By Theorem 6, the maximum value of x’ Ax subject to the constraint x’x =1 occurs at a unit
-1
eigenvector u corresponding to the greatest eigenvalue A, of 4. One may compute that [ J is
~1/42
N2 |

By Theorem 7, the maximum value of x" Ax subject to the constraints x'x =1 and x"u =0 is
the second greatest eigenvalue A, of 4, which is —4.

an eigenvector corresponding to 4, =6, so u = il:

3 4
6. The matrix of the quadratic formis 4 = [4 9}. The eigenvalues of 4 are 4, =11 and 4, =1.

a.

By Theorem 6, the maximum value of x’ Ax subject to the constraint x’ x =1 is the greatest
eigenvalue A, of 4, whichis 11.
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b. By Theorem 6, the maximum value of x” 4x subject to the constraint x” x =1 occurs at a unit
1
eigenvector u corresponding to the greatest eigenvalue 4, of 4. One may compute that [2} is
1/~/5
2/45

c. By Theorem 7, the maximum value of X’ 4x subject to the constraints x’ x=1 and x"u=0 is
the second greatest eigenvalue A, of 4, which is 1.

an eigenvector corresponding to 4, =11, so u = i{

7. The eigenvalues of the matrix of the quadratic form are 4, =2, 4, =-1, and A, =—-4. By Theorem 6,

the maximum value of x” Ax subject to the constraint x’ x =1 occurs at a unit eigenvector u

1/2
corresponding to the greatest eigenvalue A, of 4. One may compute that 1| is an eigenvector
1
1/3
corresponding to A, =2, so u=%|2/3|.
2/3

8. The eigenvalues of the matrix of the quadratic form are 4, =9, and A, = -3. By Theorem 6, the

maximum value of x’ Ax subject to the constraint x’ x =1 occurs at a unit eigenvector u
-1 -2
corresponding to the greatest eigenvalue A, of 4. One may compute that | 0 | and | 1| are linearly
1 0
independent eigenvectors corresponding to 4, =9, so u can be any unit vector that is a linear
-1 -2
combination of | 0| and | 1|. Alternatively, u can be any unit vector which is orthogonal to the
1 0
1
eigenspace corresponding to the eigenvalue 4, = —3. Since multiples of | 2 | are eigenvectors
1
1
corresponding to 4, = -3, u can be any unit vector orthogonal to | 2 |.
1

9. This is equivalent to finding the maximum value of x” Ax subject to the constraint x’x =1. By
Theorem 6, this value is the greatest eigenvalue A, of the matrix of the quadratic form. The matrix of

7 -1
the quadratic form is 4 ={ 1 3}, and the eigenvalues of 4 are 4, = 5+\/§, A =5 —\/g . Thus

the desired constrained maximum value is 4 =5+ J5.
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11.

12.

13.

14.
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This is equivalent to finding the maximum value of x” Ax subject to the constraint x’ x=1. By
Theorem 6, this value is the greatest eigenvalue A, of the matrix of the quadratic form. The matrix of

the quadratic formis 4= { |

-1
5}, and the eigenvalues of 4 are 4, = 1++/17, A =1 —17. Thus
the desired constrained maximum value is 4, =1+ J17.

Since x is an eigenvector of A4 corresponding to the eigenvalue 3, 4x = 3x, and x Ax=x" 3x)=

3(x'x)=3| x||* =3 since x is a unit vector.

Let x be a unit eigenvector for the eigenvalue A. Then x Ax = xT(ﬂx) = ﬂ(xTx) =A since x'x=1.
So A must satisfty m< A <M.

If m =M, then lett=(1—-0)m+ O0M=m and x =u,. Theorem 6 shows that uZAun =m. Now
suppose that m < M, and let ¢ be between m and M. Then 0 <¢—m < M — m and
0<(@—m)/(M-m)<1.Leta=(t—m)/(M—m), and let X =J1-a u, +Ja u,. The vectors

\/g( u, and \/Zl u, are orthogonal because they are eigenvectors for different eigenvalues (or one
of them is 0). By the Pythagorean Theorem

x'x = x|P=[Vi-om, |+ Vo [P=[1-alu, | +| ]| |P=(1~)+@r=1, since u, and u,

are unit vectors and 0 < ot < 1. Also, since u, and u, are orthogonal,

X Ax= (ﬂun + \/g(ul ) A(Mun + \/Eul)
= (\/@un + \/g(ul ) (mﬂun +M \/g(ul)
=|1-a|muu,+|a| Mu v, =(1-a)ym+aM =t
Thus the quadratic form x’ 4x assumes every value between m and M for a suitable unit vector x.

0 3/2 5/2 17/2
. ) ) 3/2 0 7/2 5/2 .
[M] The matrix of the quadratic form is 4 = . The eigenvalues of 4 are
5/2 7/2 0 3/2
7/2 5/2 3/2 0
A=15/2, A4, =-1/2, A;=-5/2, and 4, =-9/2.
a. By Theorem 6, the maximum value of x’ 4x subject to the constraint x" x =1 is the greatest
eigenvalue A, of 4, which is 15/2.
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b. By Theorem 6, the maximum value of x” Ax subject to the constraint x’ x =1 occurs at a unit

1
: . : 1.
eigenvector u corresponding to the greatest eigenvalue 4, of 4. One may compute that | is an
1
1/2
: . 1/2
eigenvector corresponding to 4, =15/2, so u== Ual
1/2

c. By Theorem 7, the maximum value of x” 4x subject to the constraints x’ x=1 and x"u=0 is
the second greatest eigenvalue A, of 4, whichis -1/2.

4 -3 -5 -5
, , ) -3 0 -3 -3 .
15. [M] The matrix of the quadratic formis 4= s 3 o0 -1f The eigenvalues of 4 are A4, =9,
-5 -3 -1 0

A, =3, A =1, and 4, = 9.

a. By Theorem 6, the maximum value of x’ Ax subject to the constraint x’ x =1 is the greatest
eigenvalue A, of 4, which is 9.

b. By Theorem 6, the maximum value of x” Ax subject to the constraint x’ x =1 occurs at a unit

-2

eigenvector u corresponding to the greatest eigenvalue 4, of 4. One may compute that is

-2//6
0

/6 |
1/:/6

c. By Theorem 7, the maximum value of X’ Ax subject to the constraints x’x =1 and x"u = 01is the
second greatest eigenvalue A, of 4, which is 3.

an eigenvector corresponding to 4, =9, so u=x=

-6 -2 -2 2

0
16. [M] The matrix of the quadratic form is 4= N The eigenvalues of 4 are

A =—4, A, =-10, A;=-12, and 4, =-16.

a. By Theorem 6, the maximum value of x” Ax subject to the constraint x”x =1 is the greatest
eigenvalue A, of 4, which is —4.
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b. By Theorem 6, the maximum value of x’ Ax subject to the constraint x’ x =1 occurs at a unit
-3

eigenvector u corresponding to the greatest eigenvalue 4, of 4. One may compute that is

[—3/412]
1/\12
/12 |

V12

c. By Theorem 7, the maximum value of x’ 4x subject to the constraints x'x=1 and x"u =0 is
the second greatest eigenvalue 4, of 4, which is —10.
0 1/2 3/2 15
. . _ 1/2 0 15 3/2 .
17. [M] The matrix of the quadratic formis 4 = . The eigenvalues of 4 are
3/2 15 0 1/2
15 3/2 1/2 0

A =17, 4, =13, 4y =14, and 4, =-16.

an eigenvector corresponding to 4, =—4, so u==

a. By Theorem 6, the maximum value of x” Ax subject to the constraint x” x =1 is the greatest
eigenvalue A, of 4, whichis 17.

b. By Theorem 6, the maximum value of x” Ax subject to the constraint x’ x =1 occurs at a unit

1
. . . 1.
eigenvector u corresponding to the greatest eigenvalue 4, of 4. One may compute that { 1s an
1
1/2
. . 1/2
eigenvector corresponding to A, =17, so u== ol
1/2

c. By Theorem 7, the maximum value of x” 4x subject to the constraints x’ x=1 and x"u=0 is
the second greatest eigenvalue 4, of 4, which is 13.

7.4 SOLUTIONS

Notes: This section presents a modern topic of great importance in applications, particularly in computer
calculations. An understanding of the singular value decomposition is essential for advanced work in
science and engineering that requires matrix computations. Moreover, the singular value decomposition
explains much about the structure of matrix transformations. The SVD does for an arbitrary matrix almost
what an orthogonal decomposition does for a symmetric matrix.
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1 0 r 1 0]
1. Let A= . Then 4" A=
0 -3] 10 9]

order) 4, =9 and A, =1. Thus the singular values of 4 are 0} =/9=3 and o, =\1=1.

, and the eigenvalues of 4" 4 are seen to be (in decreasing

-3 0] (9 0]
2. Let 4= 0 ol Then A" 4= o ol and the eigenvalues of A" 4 are (in decreasing order)

A, =9 and A, =0. Thus the singular values of 4 are 0, =9=3 and o, = Jo=0.

6
13

2 3 r 4
3. Let A= . Then 4" A=
0 2 6

, and the eigenvalues of A" 4 are (in decreasing order)

A, =16 and A, =1. Thus the singular values of 4 are 0, :\/E =4 and o, =J1=1.

3 0 r
4. Let A= o 3.ThenAA=

73
24

order) 4, =81 and A, =1. Thus the singular values of 4 are 0, =/81=9 and o =1=1.

9}, and the eigenvalues of A" 4 are seen to be (in decreasing

=2 0 4 0
5. Let A= 0 0}' Then A" 4= {O 0}, and the eigenvalues of A" 4 are seen to be (in decreasing

1
order) A, =4 and A, = 0. Associated unit eigenvectors may be computed: A, =4: {0},
0 _ , 1 0 _
A, =0: 1l Thus one choice for Vis V = o 1l The singular values of 4 are 0, =\/Z =2 and

N 2.0 1 -1
o, =\/6 =0. Thus the matrix X is X = 0 ol Next compute u; =— A4v, = ol Because
0,
Av, =0, the only column found for U so far is u;. The other column of U is found by extending {u,}

0 -1 0
to an orthonormal basis for R*. An easy choice is u; = [ J. Let U :{ 0 J. Thus

o {3 0

-3 0 9 0
6. Let A4 =[ 0 2}. Then A" A= {0 4}, and the eigenvalues of 4" 4 are seen to be (in decreasing
1
order) 4, =9 and A, =4. Associated unit eigenvectors may be computed: 4, =9: {O}

0 1 0
A =4 [J . Thus one choice for Vis V = [0 J. The singular values of 4 are 0} = J9=3 and

3.0 1 -l
0,
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1 0 -1 0
u, =—Av, = . Since {u,,u,} is a basis forR*, let U = . Thus
o, -1 0 -1
; [-1 0]f3 o]t o
A=UZZV' = .
0 -1jJj0 20 1
2 - r (8 2 .. . T , -
7. Let A= ol Then A" A= 5 5| and the characteristic polynomial of A" 4 is

A* =134+36=(A—9)(A—4), and the eigenvalues of 47 4 are (in decreasing order) 4, =9 and

2 -1
/5 A4 /N5

1/-/5 2/+5

A, = 4. Associated unit eigenvectors may be computed: 4, =9: { } . Thus

one choice for Vis V' = 2035 -1 . The singular values of 4 are O'l:\/§=3 and
VNCI NG
3.0
o, =/4 =2. Thus the matrix X is Z:[ } Next compute u, =LAV1 = 15 ,
0 2 : 2/45
1 -2/5 1 -2
u, =—Av, = . Since {u,,u,} is a basis for R, let U = s s . Thus
0, 1/4/5 2/5 145
I B VNC NG [3 o} 25 145
A=UZV" = .
25 UVSL0 2] 145 2045
16

24
A* —681+256 = (A —64)(A—4), and the cigenvalues of A7 4 are (in decreasing order) 4, = 64 and

4 6
8 Let A= [0 4}. Then A" 4 :{ 52} and the characteristic polynomial of 4" 4 is

. . 1/~/5 —2/4/5
A, = 4. Associated unit eigenvectors may be computed: 1, =64: V5 , A, =4 s .
2/5 1/~/5

Thus one choice for Vis V' = NS 2045 . The singular values of 4 are 0, =64 =8 and
2/ 1AN5
8 0
o, =4 =2. Thus the matrix = is Zz{ } Next compute u, =LAV1 = 213 ,
0 2 1 1/5
1 ~1/+5 _
u, =—A™4Av, = . Since {u,,u,} is a basis for R?, let U = 205 -INs . Thus
o, 2/5 15 2/45
+ 2735 —1/d5)8 0] 145 2/45
A=UZV = .
15 2/45]0 2|2/ 1445
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3 -3
10 -8
9. Let A=|0 0| Then 4”4 :[ e 1 O} and the characteristic polynomial of 4" 4 is

1 1

A? =20A+36=(A—-18)(A—2), and the eigenvalues of A’ 4 are (in decreasing order) 4, =18 and
-1/~2 1/+2
\/—}, A, =2 l: \F}

A, =2. Associated unit eigenvectors may be computed: 4, =18: {

1/2 1/42

. . -1/42 1/~2 .
Thus one choice for Vis V' = 2 2 . The singular values of 4 are 0; = J18 =3V2 and
132 142
W2 0 -1
1
o, =\/§. Thus the matrix 2 is X = 0 2| Next compute u; =—A4v, =| 0],
lof
0 0 !
. 0
u,=—2Av, =| 0. Since {u,,u,} is not a basis for R’, we need a unit vector u, that is orthogonal
0,
1

to both u, and u,. The vector u, must satisfy the set of equations u/x=0 and u;x=0. These are

0 0
equivalent to the linear equations 1+ 0%, + 0 ZO, sox=| 1|,and uy =| 1|. Therefore let
0x, +0x, + x;=0
0 0
1 0 0 -1 0 0|32 0
. -1/N2 142
U=/ 0 0 1[.Thus A=UXV "=l 0 0 1| 0 2 :
0 10 0 1 o o ol V2 142
7 1 7
10. Let 4=|5 5|. Then ATA:{32 ) 6}’ and the characteristic polynomial of 4" 4 is
0 0

A* =1004+900 = (4 —90)(A—10), and the eigenvalues of 47 4 are (in decreasing order) 4, = 90
and A, =10. Associated unit eigenvectors may be computed:

A=90: l:z/\/g},ﬂzlo: {_1/\/5}. Thus one choice for V'is V:{z/\/g _1/\/5} The

1/45 2/45 135 2/45)
ENITUR(
singular values of 4 are 0 =/90 =310 and o, =+/10. Thus the matrix is X = 0 10|,
0 0
1/42 ~1/32
Next compute u, =O_LAV1 =11/42 ], u, =O_LAV2 =| 1/2]. Since {u,,u,} is not a basis for
1 0 ? 0
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R’, we need a unit vector u, that is orthogonal to both u, and u,. The vector u, must satisfy the

set of equations ulT x=0 and ug x=0. These are equivalent to the linear equations

—%xl+%x2+0x3=0 0 0 N2 -2 0
X X , sox=|0/,andu; =| 0| Therefore let U = 1/N2 1/42 0]. Thus
ﬁ)ﬁﬁ'ﬁ)@ +0x3=0 1 1 O 0 1

/42 -1/42 o] 3J10 0
A=UXVT=[1/\42  1/42 0 0 10

0 0 1 0 0

2/\5 145
~1/5 2/45]

-3 1

81 =27

Let A=| 6 —2|. Then 4" 4 ={ . 9}, and the characteristic polynomial of 4" 4 is
6 2

A* =904 = AA-90), and the cigenvalues of A7 4 are (in decreasing order) 4, = 90 and 4, = 0.

Associated unit eigenvectors may be computed: 4, =90: 3/310 A, =0: 17310 . Thus one
~1/~10 3/+/10
choice for V'is V' = 3410 1410 . The singular values of 4 are 0, = \/% = 3\/5 and
~1/5/10 3/4/10

310 0 ~1/3

o, =/0 =0. Thus the matrix = is = 0 0] Next compute u, =LAV1 =| 2/3|. Because
o
0 0 : 2/3

Av, =0, the only column found for U so far is u;. The other columns of U can be found by extending
{u,} to an orthonormal basis for R*. In this case, we need two orthogonal unit vectors u, and u; that
are orthogonal to u;. Each vector must satisfy the equation ulTX =0, which is equivalent to the
equation —x, + 2x, + 2x; = 0. An orthonormal basis for the solution set of this equation is

2/3 2/3 -1/3  2/3 2/3
u, =|—-1/3|,uy=| 2/3|. Therefore,let U=| 2/3 -1/3 2/3|. Thus
2/3 -1/3 2/3  2/3 -1/3

A=UXVT=| 2/3 -1/3 2/3 0 0

~1/3  2/3  2/3[310 0{
2/3 2/3 -1/3 0 0

3/J10  —=1/410
1310 3/410 |

I 1
2 0
Let A=| 0 1| Then 4"4= {0 3}, and the eigenvalues of 4" 4 are seen to be (in decreasing
-1 1

order) A4, =3 and A, = 2. Associated unit eigenvectors may be computed: A, =3: [J,
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13.

1 _ _ 0 1 _
A, =2 ol Thus one choice for Vis V = Lol The singular values of 4 are 0} =\/§ and

NER 1/:3
o, =+/2. Thus the matrix Tis ==| 0 /2 |. Next compute u, =LAV1 =11//3|,
(o}
0 0 : 1/3
1 1/42
u, =—Av, = 0. Since {u,,u,} is not a basis for R’, we need a unit vector u, that is
o
’ ~1/\2
orthogonal to both u, and u,. The vector u, must satisfy the set of equations ulsz 0 and ugxzo.
1 1//6
. i ) X+ x,+x;,=0
These are equivalent to the linear equations ,s0x=|-2|, anduy =| -2/ Je .
X +0x,—x;=0
1 1//6

V3 N2 146
Therefore let U =| 1/ \/5 0o -2/ \/g . Thus

U3 —1N2 146
U3 N2 16|\

0

0

A=UxvT =|1/3 0 —2/6] 0 2 Lol
U3 =142 16| 0 0

17

302

3 2 2
Let A= .Then A" =2 3|, A"A4"=44" =
2 3 =2 8

}, and the eigenvalues of
-2

A™ A" are seen to be (in decreasing order) A, =25 and A, =9. Associated unit eigenvectors may

1/\5} 1o {—1/&

be computed: A =25: { } . Thus one choice for V'is

1/2 /2
V= N2 12 . The singular values of A" are O'1=\/E=5 and O, =/9 =3. Thus the
N2 12
5 0 1/\2 ~1/418
matrix Xis =0 3. Next compute u, ZLATV1 =1/\2 ,uzziATvzz 1/~4/18 |. Since
0, 0,
0 0 0 ~4/18

{u,,u,} is not a basis for R’, we need a unit vector u, that is orthogonal to both u, and u,. The

vector u, must satisfy the set of equations ulTX =0 and ugx =0. These are equivalent to the linear
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-2 -2/3
. +x,40x; = 0
equations M T T ,sox=| 2|, anduy=| 2/3|. Therefore let
X +x,—4x; = 0 /3

/A2 -1/418  =2/3
U=|1/2  1/418  2/3|. Thus
0 —-4/\18 1/3

/N2 -1/418 =2/3

AT=usvT=|1/N2 118 273 |0

(9]

(3’ {1/\/5 V2

}. An SVD for 4 is computed by

—1/\2 1/42
0 —4/J18 1/3 |0 © V22
/N2 142 0
/2 =125 0 o
takingtransposes:Az{ V2 \/_]{0 3 O} -1/\18 1/\18 —-4//18].
N2 12 /3 2/3 1/3
2/\5  —1/45

14. From Exercise 7, A= USVT with 17 :{ } Since the first column of V' is a unit

s 245

eigenvector associated with the greatest eigenvalue 4, of A" A, so the first column of ¥ is a unit
vector at which || Ax || is maximized.

15. a. Since 4 has 2 nonzero singular values, rank 4 = 2.

40| [ =78 .58
b. By Example 6, {u,,u,}= 371, =33 | ¢ isabasis for Col 4 and {v,} =< | —.58 | ; is a basis
-84 |-.52 .58

for Nul 4.

16. a. Since 4 has 2 nonzero singular values, rank 4 = 2.

-.86 || -.11
b. By Example 6, {u,,u,}= 311, .68 | ; isa basis for Col 4 and
Al =73
65 || -.34
.08 42 . ,
{v3, vy} = , is a basis for Nul 4.
-.16 || —.84
-73||-.08

17. First note that the determinant of an orthogonal matrix is +1, because 1=det/ =detU U=

(detU" )(detU) = (detU). Suppose that A4 is square and A=UZV". Then X is square, and
det A= (detU)(detZ)(detV" ) =*detE=10;...0,.
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18.

19.

20.

21.

22.

23.

24.

Let A=UXVT =UZV™". Since 4 is square and invertible, rank 4 = n, and all of the entries on the
diagonal of ¥ must be nonzero. So At =wzrH'=zvrx'ut=rz'v.

Since U and V are orthogonal matrices,
A A=y vy’ =vz'vTuzyT =vEep Tt = ETe)pr!

If 0,,...,0, are the diagonal entries in X, then >73 is a diagonal matrix with diagonal entries

0'12,. . .,O'r2 and possibly some zeros. Thus ¥ diagonalizes 4" 4 and the columns of ¥ are

eigenvectors of A” A by the Diagonalization Theorem in Section 5.3. Likewise
a4 =uzrtwozvh =uzy'vE' vt =uEEHUT =uEEhHuT!
so U diagonalizes 44" and the columns of U must be eigenvectors of 44" . Moreover, the

. o 2 2 .
Diagonalization Theorem states that o, ,...,0," are the nonzero eigenvalues of A" 4 . Hence
0,,...,0, are the nonzero singular values of 4.

r

Let A=UXV". The matrix PU is orthogonal, because P and U are both orthogonal. (See Exercise 29

in Section 6.2). So the equation PA=(PU)ZV" has the form required for a singular value
decomposition. By Exercise 19, the diagonal entries in X are the singular values of PA.

The right singular vector v, is an eigenvector for the largest eigenvector A, of 4" 4. By Theorem 7
in Section 7.3, the second largest eigenvalue 4, is the maximum of X (4" A)x over all unit vectors

orthogonal to v, . Since X' (A" A)x =|| Ax|]*, the square root of A,, which is the second largest
singular value of 4, is the maximum of || 4x || over all unit vectors orthogonal to v,.

If 4 is positive definite, then 4= PDP" , where P is an orthogonal matrix and D is a diagonal matrix.
The diagonal entries of D are positive because they are the eigenvalues of a positive definite matrix.

Since P is an orthogonal matrix, PP” = and the square matrix P’ is invertible. Moreover,
(PT )_1 = (P_l)_1 =P= (PT )T, so P’ is an orthogonal matrix. Thus the factorization 4= PDP" has
the properties that make it a singular value decomposition.

From the proof of Theorem 10, US=[oy;, ... ou, 0 ... 0]. The column-row expansion

T
v

of the product (UZ)V" shows that A=UZV' =(UZ)| | |= ouyv, +...+0ou,v,’  where ris

rertr o

the rank of 4.

. . 0 fori#j
From Exercise 23, AF =0'1V1“1T +...+0'rvruf. Then since u,-Tuj :{1 foriz i’
ori=j

T T T T T
Au;=(Ovu +..+ovu)u, =0, vu;))u;=0,v,(uu,)=0,v,

roror
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25. Consider the SVD for the standard matrix 4 of T, say A=UXV" . Let B={v,,...,v,} and
C={u,,...,u,} bebases for R" and R" constructed respectively from the columns of V" and U.
Since the columns of V are orthogonal, Vv ; =e;, where €; is the jth column of the n X n identity
matrix. To find the matrix of 7 relative to B and C, compute
T(v,)=4v; =UZVij =UZe; =Uoce; =0oUe;,=0u,, so [T(vj)]c =0se;. Formula (4) in the

discussion at the beginning of Section 5.4 shows that the “diagonal” matrix X is the matrix of T
relative to B and C.

-18 13 -4 4 528 =392 224 -176
2 19 -4 12 r =392 1092 -176 536
26. [M] Let A= . Then A" A= , and the
-14 11 -12 8 224 -176 192 -128
-2 21 4 8 -176 536 -128 288
eigenvalues of 4" 4 are found to be (in decreasing order) 4, =1600, A, = 400, A, =100, and
-4 .8 4
. o 8 4 -2
A, = 0. Associated unit eigenvectors may be computed: A, : 5| A Al Ay gl
4 2 4
-2 -4 8 4 -2
-4 _ , 4 -2 -4 )
Ay 4 .Thus one choice for V'is V' = 4 g . The singular values of 4 are
8 4 2 4 8
40 0 0 O
e 0 20 0 O
0,=40, 0,=20, 0,=10, and o, =0. Thus the matrix X is X = o 10 ol Next compute
0 0 0 O
S -5 -5
1 S 1 S 1 5
u =—A4Av, = ,U, =—A4v, = , U =—Av, = . Because Av, = 0, only three columns
o, S o, -5 o; )
S S -5

of U have been found so far. The last column of U can be found by extending {u;, u, us} to an
orthonormal basis for R* . The vector u, must satisfy the set of equations . x=0, uix=0, and
-1

T . . . -1
u; X =0.These are equivalent to the linear equations —x, + x, —x; +x, =0, sox = ,

X +x,tx;+x,=0

X +Xx,+x;,-x,=0
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-5 S5 =5 =5 -5
-5 S 5 5 =5
andu, = . Therefore, let U = . Thus
S S =5 . 5
S S5 5 =5 5
S =5 =5 =5|40 O 0j-4 8 -2 4
r |5 5 5 =5]0 20 0 0 8 4 4 2
A=UZV" = .
S =5 5 5] 0 0 10 O 4 -2 -8 4
S 5 =5 500 0 0 0f-2 -4 4 38
[ 41 32 38 14 8]
6 8 4 5 A4
7 s 6 4 -32 118 -3 -92 74
27. [M] Let 4= L 8 2 2 .Then 4"4={-38 -3 121 10 -52|, and the
4 -92 10 &1 -72
-1 -2 4 4 -8
| 8 74 =52 =72 100 |

eigenvalues of 4" A4 are found to be (in decreasing order) A, =270.87, A, =147.85, A, =23.73,
A, =18.55, and A = 0. Associated unit eigenvectors may be computed:

[—.10] -39 [-.74] A1 36
.61 29 =27 -.50 -.48
A | =210 A4 B4, A4 | =07, A 45|, As: | =19 [.Thus one choice for V' is
-.52 -.14 38 -.23 =72
| .55 | —.19 ] | 49 | 58] | —.29 |
-10 -39 -74 41 -36]
61 29 -27 -50 -48
V={-21 .84 -07 .45 -.19|. The nonzero singular values of 4 are o, =16.46,
-52 -14 38 -23 -72
| 55 —19 49 58 -29]
16.46 0 0 0 0
. 0 12.16 0 0 0
0,=12.16, 0,=4.87, and o, =4.31. Thus the matrix X is X = .
0 0 4387 0 0
0 0 0 431 0
-.57 -.65 -42
1 .63 1 -.24 1 -.68
Next compute u; =— Av, = Uy =—Av, = , Uy =—Av,; = ,
o, .07 o, -.63 05 .53
-.51 34 -.29
27 =57 -65 -42 27
1 -.29 ) ) ) 4 .63 =24 -68 -29
u,=—Av, = . Since {u,,u,,uy,u,} isabasis for R, let U = .
o, -.56 .07 -63 .53 -.56
=73 =51 34 -29 -73
Thus 4=UzV"
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[-10 .61 -21 -52 55|
-57 —-65 -42 27][16.46 0 0 0

0
-39 29 84 -14 -19
.63 -24 -68 -29 0 12.16 0 0 0
= =74 =27 =07 38 49|.
07 -63 .53 -56 0 0 4.87 0 0
0 41 -50 45 -23 58

-51 34 -29 -73 0 0 0 431
|-.36 —48 -19 -72 -29]
4 0 -7 -7 102 -43 27 52
-6 1 11 9 r -43 30 -33 -88 .
28. [M] Let 4= . Then A" A= , and the eigenvalues of
7 =5 10 19 27 =33 279 335
-1 2 3 -1 52 —-16 335 492

A" A are found to be (in decreasing order) A, =749.979, A, =146.201, A, =6.82061, and
A, =.000001 The singular values of 4 are thus o, =27.3857, o, =12.0914, 0, =2.61163, and
0, =.001156 The condition number o, / 0, = 23683

53 1 7 9 [255 168 90 160  47]
6 4 2 8 -8 168 111 60 104 30
29. [M]Let 4={7 5 3 10 9| Then 4"4=| 90 60 34 39 8 |, and the
9 6 4 -9 -5 160 104 39 415 178
8 5 2 11 4] | 47 30 8 178 267]

eigenvalues of 4" A4 are found to be (in decreasing order) A, =672.589, A, =280.745,

Ay =127.503, 4, =1.163, and A = 1.428x107. The singular values of 4 are thus 0, =25.9343,
0, =16.7554, 0,=11.2917, 0, =1.07853, and o5 =.000377928. The condition number
0,/05=068,622.

7.5 SOLUTIONS

Notes: The application presented here has turned out to be of interest to a wide variety of students,
including engineers. I cover this in Course Syllabus 3 described in the front matter of the text, but I only
have time to mention the idea briefly to my other classes.

19 22 6 3 2 20

and the sample mean is
12 6 9 15 13 5

1. The matrix of observations is X =[

6| 60 10
7 10 -6 -9 -10
so B=
2 4 -1 5 3 -5

1. 1] 430 -135] [ 86 -27
S=— BB =— = .
6-1 5/-135 80| |-27 16

1172 12
M= —{ } :{ } The mean-deviation form B is obtained by subtracting M from each column of X,

}. The sample covariance matrix is
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1 5 2 6 7 3

2. The matrix of observations is X =
3 11 6 8 15 11

} and the sample mean is

1|24 4
M= 6[54} = [9} The mean-deviation form B is obtained by subtracting M from each column of X,

-6 2 -3 -1 6
28 40 56 8
S= LBBT = l = .
6-1 5140 90 8 18
3. The principal components of the data are the unit eigenvectors of the sample covariance matrix S.

86 27
=27 16

-3 1 -2 2 3 -1 . o
so B= 5| The sample covariance matrix is

One computes that (in descending order) the eigenvalues of S ={ } are A, =95.2041 and

—2.93348
A, =6.79593. One further computes that corresponding eigenvectors are v, ={ } and

1

.340892
v, = { ! } These vectors may be normalized to find the principal components, which are
946515 322659
= for A4, =95.2041 and u, = for 4, =6.79593.
—-.322659 946515

4. The principal components of the data are the unit eigenvectors of the sample covariance matrix S.

56 8
One computes that (in descending order) the eigenvalues of S :{ g 18} are A, =21.9213 and

490158
A, =1.67874. One further computes that corresponding eigenvectors are v, =[ } and

1

—-2.04016
v, = { ! } These vectors may be normalized to find the principal components, which are
44013 —-.897934
= for 4, =21.9213 and u, = for 4, =1.67874.
.897934 44013

164.12 32.73 81.04
5. [M] The largest eigenvalue of §=| 32.73 539.44 249.13|1is A4, =677.497, and the first
81.04 249.13 189.11
129554
principal component of the data is the unit eigenvector corresponding to A, , which is u, =|.874423
467547

. The fraction of the total variance that is contained in this component is
A /tr(S)=677.497/(164.12 +539.44 +189.11) =.758956 so 75.8956% of the variance of the data

is contained in the first principal component.
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. Since the unit eigenvector corresponding to A, = 95.2041 is u, :[

. Since the unit eigenvector corresponding to A, =21.9213 is u; = {
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29.64 18.38  5.00
[M] The largest eigenvalue of §=| 18.38 20.82 14.06 | is A, =51.6957, and the first principal
5.00 14.06 29.21
615525
component of the data is the unit eigenvector corresponding to 4,, which is u, =|.599424 |. Thus
511683

one choice for the new variable is y, =.615525x, +.599424x, +.511683x,. The fraction of the total

variance that is contained in this component is
A,/ tr(S)=51.6957/(29.64 +20.82+29.21) =.648872, so 64.8872% of the variance of the data is

explained by y,.

946515
-.322659
new variable is y, =.946515x, —.322659x,. The fraction of the total variance that is contained in this
component is A, / tr(S) =95.2041/(86 +16) =.933374, so 93.3374% of the variance of the data is
explained by y,.

} one choice for the

44013
.897934
variable is y, =.44013x, +.897934x,. The fraction of the total variance that is contained in this
component is A, /r(S)=21.9213/(5.6+18) =.928869, so 92.8869% of the variance of the data is
explained by y,.

}, one choice for the new

5 20
. The largest eigenvalue of S={2 6 2| is A, =9, and the first principal component of the data is
0 2 7
1/3
the unit eigenvector corresponding to 4,, which is u, =| 2/3|. Thus one choice for y is
2/3

y=(01/3)x, +(2/3)x, + (2/3)x,, and the variance of y is 4, =9.

5 4 2
[M] The largest eigenvalue of S={4 11 4] is A, =15, and the first principal component of the
2 4 5

1//6
data is the unit eigenvector corresponding to 4, whichis u, =| 2/ J6 |. Thus one choice for yis

1/6
y= (1/\/6))61 +(2/\/6)x2 +(l/\/€)x3, and the variance of y is 4, = 15.
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11. a. If wis the vector in R" with a 1 in each position, then [X; ... Xy|w=X+...+ X =0 since
the X, are in mean-deviation form. Then
(Y, o Y Iw=[PTX L PTX w=PTX L X Jw=PT0=0

Thus Y, +...+Y, =0, and the Y, are in mean-deviation form.
b. By part a., the covariance matrix Sy of Y,...,Y, is

1

Y=ﬁ[y1 oYY, Y]
:ﬁpf[x1 o X PTIX e Xy DT
=pf(ﬁ[xl XX XN]T)PszSP

since the X, are in mean-deviation form.

12. By Exercise 11, the change of variables X = PY changes the covariance matrix S of X into the
covariance matrix P’ SP of Y. The total variance of the data as described by Y is tr(P’ SP).

However, since P’ SP is similar to S, they have the same trace (by Exercise 25 in Section 5.4). Thus
the total variance of the data is unchanged by the change of variables X = PY.
13. Let M be the sample mean for the data, and let Xk =X, —M. Let B= [Xl XN] be the

matrix of observations in mean-deviation form. By the row-column expansion of BB’ , the sample
covariance matrix is

S=LBBT
N-1
1 Xy
Zﬁ[xl XN:| A
X
—Lﬁx AT—Li(X ~-M)(X, -M)’
N-15 KNk N-1& k k

Chapter 7 SUPPLEMENTARY EXERCISES

1. a. True. This is just part of Theorem 2 in Section 7.1. The proof appears just before the statement
of the theorem.

0 -1
b. False. A counterexample is 4 = [ i 0}.

¢. True. This is proved in the first part of the proof of Theorem 6 in Section 7.3. It is also a
consequence of Theorem 7 in Section 6.2.
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False. The principal axes of x’ Ax are the columns of any orthogonal matrix P that
diagonalizes A. Note: When A4 has an eigenvalue whose eigenspace has dimension greater than
1, the principal axes are not uniquely determined.

False. A counterexample is P = L J. The columns here are orthogonal but not

orthonormal.

False. See Example 6 in Section 7.2.
0

1
3} and X=|:0:|. Then x” Ax=2>0, but x’ Ax is an

False. A counterexample is 4 = {0

indefinite quadratic form.

True. This is basically the Principal Axes Theorem from Section 7.2. Any quadratic form can be
written as x’ Ax for some symmetric matrix A.

False. See Example 3 in Section 7.3.

False. The maximum value must be computed over the set of unit vectors. Without a restriction
on the norm of x, the values of x” Ax can be made as large as desired.

False. Any orthogonal change of variable x = Py changes a positive definite quadratic form into
another positive definite quadratic form. Proof: By Theorem 5 of Section 7.2., the classification
of a quadratic form is determined by the eigenvalues of the matrix of the form. Given a form

x’ Ax, the matrix of the new quadratic form is PilAP, which is similar to 4 and thus has the
same eigenvalues as A.

False. The term “definite eigenvalue” is undefined and therefore meaningless.
True. If x = Pu, then X’ Ax = (Pu)’ A(Pu)=u’ P" APu=u"P"'4Pu.

1
False. A counterexample is U = L } The columns of U must be orthonormal to make

UU"x the orthogonal projection of x onto Col U.

True. This follows from the discussion in Example 2 of Section 7.4., which refers to a proof
given in Example 1.

True. Theorem 10 in Section 7.4 writes the decomposition in the form U ZVT, where U and V'
are orthogonal matrices. In this case, V'" is also an orthogonal matrix. Proof: Since V is
orthogonal, V' is invertible and ¥ ' =77 . Then (VT)_l :(VI)T =(VT)T, and since V' is square

and invertible, " is an orthogonal matrix.
2 0
False. A counterexample is 4 = {0 J. The singular values of 4 are 2 and 1, but the singular

values of A7 A4 are 4 and 1.

. Each term in the expansion of 4 is symmetric by Exercise 35 in Section 7.1. The fact that

(B+ C)T =B"+ (" implies that any sum of symmetric matrices is symmetric, so 4 is
symmetric.

. Since uju, =1 and uJT'ul =0 forj#1,

Copyright © 2016 Pearson Education, Inc.



7-42

CHAPTER 7 « Symmetric Matrices and Quadratic Forms

Au; =(uu) ), +.. A+ uul e =hu @ u)+. .+ u, (wla) =\,
Since u, # 0, X, is an eigenvalue of 4. A similar argument shows that 7»_1- is an eigenvalue of 4
forj=2,...,n.
If rank 4 = r, then dimNul 4 = n — r by the Rank Theorem. So 0 is an eigenvalue of 4 with
multiplicity #n — r, and of the n terms in the spectral decomposition of 4 exactly n — r are zero. The

remaining » terms (which correspond to nonzero eigenvalues) are all rank 1 matrices, as mentioned
in the discussion of the spectral decomposition.

a. By Theorem 3 in Section 6.1, (Col A)" =Nul A" =Nul 4 since 4” = 4.
b. Lety be in R". By the Orthogonal Decomposition Theorem in Section 6.3,y = y + z, where y is
in Col A and z is in (Col 4)". By part a., z is in Nul 4.

If Av = Av for some nonzero A, then v= Al Av = AOCIV), which shows that v is a linear
combination of the columns of A4.

. Because A4 is symmetric, there is an orthonormal eigenvector basis {u,,...,u,} forR". Let » =rank 4.

If » =0, then 4 = O and the decomposition of Exercise 4(b) isy =0 +y for each y in R"; if » = n then
the decomposition is y =y + 0 for each y in R".

Assume that 0 < » <n. Then dimNul 4 = n — r by the Rank Theorem, and so 0 is an eigenvalue of 4
with multiplicity n — r. Hence there are » nonzero eigenvalues, counted according to their

multiplicities. Renumber the eigenvector basis if necessary so that u,,...,u, are the eigenvectors
corresponding to the nonzero eigenvalues. By Exercise 5, u,...,u, are in Col 4. Also, u,,,,...,u,

are in Nul 4 because these vectors are eigenvectors corresponding to the eigenvalue 0. For y in R”,
there are scalars ¢,...,c, such that

y=cu +...tcu, +c, u,,, +...+cu,
5‘7 z

This provides the decomposition in Exercise 4(b).

. If A=R"R and R is invertible, then 4 is positive definite by Exercise 25 in Section 7.2.

Conversely, suppose that 4 is positive definite. Then by Exercise 26 in Section 7.2, A=B"B for
some positive definite matrix B. Since the eigenvalues of B are positive, 0 is not an eigenvalue of B
and B is invertible. Thus the columns of B are linearly independent. By Theorem 12 in Section 6.4, B
= QR for some n X n matrix Q with orthonormal columns and some upper triangular matrix R with

positive entries on its diagonal. Since Q is a square matrix, QTQ=I , and
A=B"B=(0OR) (OR)=R"O"OR=R"R

and R has the required properties.

. Suppose that 4 is positive definite, and consider a Cholesky factorization of 4=R’ R with R upper

triangular and having positive entries on its diagonal. Let D be the diagonal matrix whose diagonal
entries are the entries on the diagonal of R. Since right-multiplication by a diagonal matrix scales the

columns of the matrix on its left, the matrix L =R"D™" is lower triangular with 1’s on its diagonal.
If U=DR, then A=R"D'DR=LU.
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If A is an m x n matrix and x is in R”, then X’ A" Ax = (Ax)" (4x) =|| Ax|[* 0. Thus A" 4 is positive
semidefinite. By Exercise 22 in Section 6.5, rank A" A=rank A.
If rank G = r, then dimNul G = n — r by the Rank Theorem. Hence 0 is an eigenvalue of G with
multiplicity n — r, and the spectral decomposition of G is

G=\uu +...+iuu’

Also L,,..., A, are positive because G is positive semidefinite. Thus

G=(\/k—1ul)(\/k_lulT)+...+(\/k—rur)(\/Zurr)

By the column-row expansion of a matrix product, G = BB" where B is the n X r matrix
B :[\/XTUI «/Xrllr} Finally, G=4"4 for 4=B".

Let A=UZV" be a singular value decomposition of 4. Since U is orthogonal, U'U = and

A=UZU'UV" =PQ where P=UXU’ =UXU " and Q=UV". Since = is symmetric, P is
symmetric, and P has nonnegative eigenvalues because it is similar to %, which is diagonal with
nonnegative diagonal entries. Thus P is positive semidefinite. The matrix Q is orthogonal since it is
the product of orthogonal matrices.

a. Because the columns of 7. are orthonormal,
A4y =U, DV )V, DU )y =U,DD"U )y =U,Uy
Since U, U, ,T Y is the orthogonal projection of y onto Col U, by Theorem 10 in Section 6.3, and

since ColU, =Col 4 by (5) in Example 6 of Section 7.4, AA"y is the orthogonal projection of
y onto Col 4.
b. Because the columns of U, are orthonormal,

A" Ax = (VDU YU,DV )x=(V,.D' DV, )x =V, ¥ x

Since VFVFTX is the orthogonal projection of x onto Col ¥, by Theorem 10 in Section 6.3, and

since Col 7, = Row 4 by (8) in Example 6 of Section 7.4, A" Ax is the orthogonal projection of
x onto Row 4.

c. Using the reduced singular value decomposition, the definition of 4", and the associativity of
matrix multiplication gives:

A4" 4=(U,DV,; \V,D"'U] \U,DV;")=(U,DD"'U] U, DV;")
=U.DD'DV =U.DV! =4
A" 44" =V, DU U,V YV, DU ) =(v,D"' DV, )V, D'U;)
=V.D'DD'U =V.D'U = 4"
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13. a. If b =Ax, then x" = 4™b = 4" Ax. By Exercise 12(a), x" is the orthogonal projection of x onto
Row 4.

b. From part (a) and Exercise 12(c), AX" = A(A"Ax)=(AA" A)x= Ax=b.

c. Let Au=b. Since x" is the orthogonal projection of x onto Row A4, the Pythagorean Theorem

shows that ||u|f*=||x"|]* +|lu=x"||* >||x" |*, with equality only if u = x".

14. The least-squares solutions of Ax = b are precisely the solutions of Ax = b, where b is the
orthogonal projection of b onto Col 4. From Exercise 13, the minimum length solution of Ax = b is
A+f), so A*b is the minimum length least-squares solution of 4x = b. However, b = 44"b by

Exercise 12(a) and hence A*b = 4 44"b = A*b by Exercise 12(c). Thus 4*b is the minimum
length least-squares solution of Ax =b.

15. [M] The reduced SVD of 4 is A= UrDVrT , where

966641 253758 —.034804
9.84443 0 0
185205 —.786338 —.589382
U, = , D= 0 2.62466 0],
125107  -398296  .570709
0 0 1.09467

125107 -.398296  .570709

[—.313388  .009549  .633795]
-313388  .009549  .633795
and V, =| —-.633380  .023005 -.313529

.633380 -.023005  .313529
035148 .999379  .002322 |

So the pseudoinverse A" = V,D_IU ,T may be calculated, as well as the solution x = 4"b for the
system Ax = b:

[-.05 -35 325 325
-.05 -35 325 325

AT =|-05 .15 =175 -175[,%=|-.
05 =15 175 175 .8
| .10 =30 -.150 -.150] | 6]
Row reducing the augmented matrix for the system A’z =% shows that this system has a solution, so
0]|-1
0 1
% isin Col A" =Row A. A basis for Nul 4 is {a,a,}=4 |11, 0], and an arbitrary element of
1 0
0 0

Nul 4 is u = ca, + da,. One computes that || X||=+v131/50, while || X+u|= \/(131/50) +2¢% +2d°.
Thus ifu#0,||X| <|[X + u||, which confirms that % is the minimum length solution to Ax = b.
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16. [M] The reduced SVD of 4 is A=U, DV, where

~337977 936307  .095396
12.9536 0 0
591763 290230 —.752053
U, = D= 0 1.44553 0|,
~231428 062526 —.206232
0 0 337763

—.694283 -.187578 —.618696

[—.690099 721920  .050939 ]
0 0 0
andV, =| .341800 .387156 —.856320
.637916 .573534 513928

0 0 0

So the pseudoinverse A" = V,D_IU,T may be calculated, as well as the solution x = 4b for the

system Ax = b:
5 0 —05 -15] [23]
0 0 0 0 0
A'=l0 2 5 1.5,x=|5.0
S -1 =35 -1.05 -9
100 0 0 | 0]
Row reducing the augmented matrix for the system 4’z =% shows that this system has a solution, so
0110
1110
% isin Col A" =Row 4. A basis for Nul 4 is {a,,a,}=41101,/ 0| ¢, and an arbitrary element of
0110
_0_ _1_

Nul 4 is u = ca, + da,. One computes that || X||=+/311/10, while || f(—i—ullz\/(3ll/10)+c2 +d?.

Thus ifu#0, || x| <|/x+ u ||, which confirms that % is the minimum length solution to Ax = b.
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The Geometry of
Vector Spaces

8.1 SOLUTIONS

Notes. This section introduces a special kinds of linear combination used to describe the sets created
when a subspace is shifted away from the origin. An affine combination is a linear combination in which
the coefficients sum to one. Theorems 1, 3, and 4 connect affine combinations directly to linear
combinations. There are several approaches to solving many of the exercises in this section, and some of
the alternatives are presented here.

R O ORI
S s HERE

Solve (v, — Vi) + ¢c3(v3 — Vi) + c4(v4 — V) =y — v by row reducing the augmented matrix.
-3 -1 2 4 -3 -1 2 4 -3 0 45 45 1 0 -15 -15

{ 0 25 1}[ 0 1 25 .5}[ 0 1 25 .5}{0 125 .5}

The general solution is ¢; = 1.5¢4 —1.5, ¢3 =-2.5¢4 + .5, with ¢4 free. When ¢, =0,
y—-vi=—1.5(v;—v))+.5(v;—vy) and y=2v;—1.5v,+.5v;

Ifc4,=1, then ¢, =0 and
y—-vi==2(vs—v)+1(vy—vy) and y=2v,—-2v;+v,

If ¢4, = 3, then

y—vi=3(va—=v)—=T7(v3=vy))+3(vs—vy) and y=2v;+3v,—Tv3+3vy

Of course, many other answers are possible. Note that in all cases, the weights in the linear
combination sum to one.

1 -1 3 5 -2 2 4
2. vy = 1,V2= 2,V3= 2,y= 7,SOV2—V1= 1,V3—V1= l,andy—vlz 6

Solve cy(v, — vi) + ¢3(vs3 — V) = y—v; by row reducing the augmented matrix:
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-2 2 4 1 -1 -2 1 0 2
1 1 6 0 2 8 01 4

The general solutionisc;,=2and c3=4,s0 y—v; = 2(v;—v;) +4(v;—v;) and
y = =5v; + 2v; + 4v;. The weights sum to one, so this is an affine sum.

3.  Row reduce the augmented matrix [v, —v; v3—v; Yy —v;]to find a solution for writing y — v; in
terms of v, —v; and v; — v;. Then solve for y to get y =—3v, + 2v, + 2v;. The weights sum to one,
so this is an affine sum.

4. Row reduce the augmented matrix [v, —v; v3—Vv; Yy —v;]to find a solution for writing y — v; in
terms of v, — v; and v; — v;. Then solve for y to gety = 2.6v, — .4v, — 1.2v;. The weights sum to
one, so this is an affine sum.

5. Since {by, by, b3} is an orthogonal basis, use Theorem 5 from Section 6.2 to write

P,b, T b,

b
1 b, + 21 2
b, b,

b, b, by b, ’

p=

a. p; =3b; — b, —b; € aff S since the coefficients sum to one.
b. p»=2b; +0b, + by ¢ aff S since the coefficients do not sum to one.
¢. p;=—b; +2b, + 0b; € aff S since the coefficients sum to one.

6. Since {by, b,, b3} is an orthogonal basis, use Theorem 5 from Section 6.2 to write

) b )
pj: p] 1b1+pj 2b2+p] 3b3
b, b, b, b, by b,
a. p; =—4b; +2b, +3b; € aff S since the coefficients sum to one.

b. p.=.2b; +.5b, + .3b; € aff S since the coefficients sum to one.

c. p;=b;+by+b; ¢ aff §since the coefficients do not sum to one.

1 00 2 2 2

. 010 1 -4 2

7. The matrix [v; v, v3 p; p2 ps] row reduces to 00 1 -1 3 2
000 0O 0 -5

Parts a., b., and c. use columns 4, 5, and 6, respectively, as the “augmented” column.

a. p;=2v;tvy,—vs3 s0p;isinSpan S. The weights do not sum to one, so p; ¢ aff S.

b. p,=2v,—4v,+3v;, s0pyisin Span S. The weights sum to one, so p, € aff S.

c. P; € Span Sbecause 0 = —5, so p; cannot possibly be in aff S.
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1 00 3 0 -2
The matrix [v; v2 v3 p1 p> ps] row reduces to 010 -106 .

00 1 0 -3

000 O I O

Parts a., b., and c. use columns 4, 5, and 6, respectively, as the “augmented” column.
a. p;=3v;—V,+ Vs s0p;isinSpan S. The weights do not sum to one, so p; ¢ aff S.

b. p. ¢ Span S because 0 = 1 (column 5 is the augmented column), so p, cannot possibly be

in aff S.
c. p3=-2v; +6v, —3v;, so p;is in Span S. The weights sum to one, so p; € aff S.

Choose v, and v, to be any two points on the line x = x;u + p. For example, take x; =0 and x; =1 to

-3 1
get v, ={ O} and v, = { 2} respectively. Other answers are possible.

Choose v and v, to be any two points on the line x = x;u + p. For example, take x; =0 and x; = 1 to
1 6

getv; =| =3 | and v, =| =2 | respectively. Other answers are possible.
4 2

True. See the definition at the beginning of this section.
False. The weights in the linear combination must sum to one. See the definition.

True. See equation (1).

B T

False. A flat is a translate of a subspace. See the definition prior to Theorem 3.

True. A hyperplane in R® has dimension 2, so it is a plane. See the definition prior to Theorem 3.

®

False. If §= {x}, then aff = {x}. See the definition at the beginning of this section.

s ®

True. Theorem 2.

¢

True. See the definition prior to Theorem 3.

d. False. A flat of dimension 2 is called a hyperplane only if the flat is considered a subset of R*. In
general, a hyperplane is a flat of dimension n — 1. See the definition prior to Theorem 3.
e. True. A flat through the origin is a subspace translated by the 0 vector.

Span {v, — v;, v — v;} is a plane if and only if {v, — v, v — v;} is linearly independent. Suppose c,
and c; satisfy cy(vo — vi) + ¢3(vs — vi) = 0. Then c;v, + ¢3v3 — (c2 + ¢3)vi =0. Then ¢, =c¢3=0,
because {v|, v, v3} is a linearly independent set. This shows that {v, — v,, v; — v} is a linearly
independent set. Thus, Span {v, — v, v3 — v} is a plane in R’.

Since {vi, v,, v3} is a basis for R’, the set W = Span {v, — v, v3 — v;} is a plane in R?, by
Exercise 13. Thus, W + v, is a plane parallel to W that contains v;. Since v, = (v, — V) + vy,

W + v, contains v,. Similarly, W + v, contains v;. Finally, Theorem 1 shows that aff {vi, v, v3}
is the plane W + v, that contains v, v,, and vs.

Let S= {x: Ax=b}. To show that S is affine, it suffices to show that § is a flat, by Theorem 3.
Let W= {x: Ax=0}. Then W is a subspace of R", by Theorem 2 in Section 4.2 (or Theorem 12
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in Section 2.8). Since S = W + p, where p satisfies Ap = b, by Theorem 6 in Section 1.5, S'is a
translate of 7, and hence S is a flat.

Suppose p, q € Sand r € R. Then, by properties of the dot product (Theorem 1 in Section 6.1),
[(M=-p+ttq]l-v=0-HPp-V)+tit(q-V)=(1-0k+tk =k
Thus, [(1 = H)p + ¢ q] € S, by definition of S. This shows that S is an affine set.

A suitable set consists of any three vectors that are not collinear and have 5 as their third entry. If
5 is their third entry, they lie in the plane x; = 5. If the vectors are not collinear, their affine hull

1101
cannot be a line, so it must be the plane. For example use S =<0 |,| 1|,| 1
5015115

A suitable set consists of any four vectors that lie in the plane 2x; + x, — 3x; = 12 and are not col-
linear. If the vectors are not collinear, their affine hull cannot be a line, so it must be the plane.

6(]0 0 3
For exampleuse S =<0 (,|12,] 0 |,| 3
o0 ||-4]|-1

If p, q € £(S), then there existr, s € S such that f(r) = p and f(s) = q. Given any 7 € R, we must

show that z= (1 — f)p + ¢ q is in £(S). Since f'is linear,
z=-pgp+tiq=~A-f(0)+1f(s)=f(A-Dr+ts)

Since S is affine, (1 —f)r+¢se S. Thus, z is in S and f(S) is affine.

Given an affine set T, let S= {x € R": f(x) € T}. Considerx,y € Sand € R. Then

SA=x+ty)=1-0f(x)+1f(y)

Butf(x)e Tandf(y) e T,so (1 —¢) f(x)+¢f(y) € Tbecause T is an affine set. It follows that
[(1-fHx+ty]e S. Thisistrue forall x,y € Sand ¢t € R, so S is an affine set.

Since B is affine, Theorem 1 implies that B contains all affine combinations of points of B. Hence
B contains all affine combinations of points of 4. That is, aff 4 C B.

Since B C aff B, we have A C B C aff B. But aff B is an affine set, so Exercise 21 implies
aff A C aff B.

Since A C (4 U B), it follows from Exercise 22 that aff 4 C aff (4 U B).
Similarly, aff B C aff (4 U B), so [aff A U aff B] C aff (4 U B).

One possibility is to let 4 ={(0, 1), (0, 2)} and B = {(1, 0), (2, 0)}. Then (aff A) U (aff B) consists of
the two coordinate axes, but aff (4 U B) =R’

Since (4 N B) C 4, it follows from Exercise 22 that aff (4 N B) C aff 4.
Similarly, aff (4 N B) C aff B, so aff (4 N B) C (aff 4 N aff B).

One possibility is to let 4 = {(0, 0), (0, 1)} and B = {(0, 2), (0, 3)}. Then both aff 4 and aff B are
equal to the x-axis. ButANB=J,soaff (4 N B)=O.
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8.2 SOLUTIONS

Notes: Affine dependence and independence are developed in this section. Theorem 5 links affine
independence to linear independence. This material has important applications to computer graphics.

3 0 2 -3 -1 ) _ )
1. Let v, = 3 ,Vy = 6 , V3 = ol Thenv, —v, = 9 ,V3— V)= 3| Since v; — v; is a multiple

of v, — vy, these two points are linearly dependent. By Theorem 5, {vy, v,, v3} is affinely dependent.
Note that (v, — vi) — 3(vs — v;) = 0. A rearrangement produces the affine dependence relation
2vy + v, — 3v; = 0. (Note that the weights sum to zero.) Geometrically, v;, v,, and v; are not collinear.

2 5 -3 3 -5 _
2. vy = ! ,Vy = 4 , V3= Dy V)=V = 3 , V3=V, = 3l Since v; — v; and v, — v, are not

multiples, they are linearly independent. By Theorem 5, {v,, v, v3} is affinely independent.
3. The set is affinely independent. If the points are called v, v,, v3, and v, then row reduction of
[Vi V2 v3 V4] shows that {vy, v,, v3} is a basis for R and v, = 16v, + 5v, — 3v;. Since there is

unique way to write vy in terms of the basis vectors, and the weights in the linear combination do not
sum to one, v, is not an affine combination of the first three vectors.

2 3 0

4. Name the points vy, v, v3, and v4. Then v, —v; = =8|, v3—v;=|-T7|, v,—v;=| 2|. To study
4 -9 -6

the linear independence of these points, row reduce the augmented matrix for Ax = 0:

2 3 00 2 3 00 2300 1 0 -6 0
-8 =7 2 0]|~|0 5 2 0(~/0 5 2 0|~|0 1 .4 O0]|. The first three columns
4 -9 -6 0 0 -15 -6 0 0 00O 00 00

are linearly dependent, so {v;, v,, v3, v4} is affinely dependent, by Theorem 5. To find the affine
dependence relation, write the general solution of this system: x; = .6x3, x, = —.4x;, with x5 free. Set
x3 =5, for instance. Then x; =3, x, = -2, and x3 = 5. Thus, 3(v; —v{) = 2(v3 = v{) + 5(v4 —v;) = 0.
Rearrange to obtain —6v; + 3v, — 2v; + S5v4, = 0.

Alternative solution: Name the points vy, v,, v3, and v;. Use Theorem 5(d) and study the
homogeneous forms of the points. The first step is to move the bottom row of ones (in the
augmented matrix) to the top to simplify the arithmetic:

1 1 1 1} |1 0 0 1.2

2 0 1220 lo1 0 -6
A R e N I
3 7 =6 3| o0 o0 o0

Thus, x; + 1.2x4 =0, x, — .6x4 = 0, and x; + .4x4 = 0, with x4 free. Take x4 = 5, for example, and
get x; =—6, x,=3,and x; = —2. An affine dependence relation is —6v; + 3v, —2v; + S5v, = 0.

5. —4v,+5v,—4v; + 3v, =0 1is an affine dependence relation. It can be found by row reducing the
matrix [V, Vv, V5 V,],and proceeding as in the solution to Exercise 4.
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6. The set is affinely independent, as the following calculation with homogeneous forms shows:

1 1 11710 00

1 0 2310100
MERCERE v4]~3—155~0010
1 =2 20| 0o 0 0 1

Alternative solution: Row reduction of [v; v, v3; vy4] shows that {vy, v,, v3} is a basis for R* and

vy =-=2v| + 1.5v, + 2.5v;, but the weights in the linear combination do not sum to one, so this v, is
not an affine combination of the basis vectors and hence the set is affinely independent.

Note: A potential exam question might be to change the last entry of v, from 0 to 1 and again ask if
the set is affinely independent. Notice that row reduction of this new set of vectors [v; v, V3 V4]

shows that {vy, v,, v3} is a basis for R®and v, = =3v, + v, + 3v; is an affine combination of the basis.

7. Denote the given points as vy, v, v3, and p. Row reduce the augmented matrix for the equation

X1Vi + x5V, + x3v3 = p. Remember to move the bottom row of ones to the top as the first step to
simplify the arithmetic by hand.

11 1 1 [ 1 0 0 -2]

1 2 1 5 0 1 0 4

[V, v, V5 Pp]~|-1 1 2 4(~ 0 0 1 -1
2 0 2 -2 0 0 0 0

11 0 2|0 0 0 O]

Thus, x; =-2,x, =4, x3=—1,and p = -2V, + 4V, — V3, so p = —2v; + 4v, — v3, and the barycentric
coordinates are (-2, 4, —1).
Alternative solution: Another way that this problem can be solved is by “translating” it to the origin.
That is, compute v, — v, v3 — vy, and p — vy, find weights ¢, and ¢; such that

c(va—vi) ta(vi—vy) = p-v

and then write p = (1 — ¢, — ¢3)vi + oV + ¢3v3. Here are the calculations for Exercise 7:

2 1 1 1 1 0 5 1 4
1 -1 2 2 -1 3 4 -1 5
VA —V = —_ = . V7 —V = _ = . -V, = —_ =
2ol | 2 20 2 T2 ] 2 4l PV L0 2 —4
1 1 0 0 -1 2 1 1
1 0 4 1 0 4
2 3 5 0 1 -1
[Va=vi vs=vi p-v] ~ 2 -4 -4/ 1o o0 o
0 -1 1 0O 0 O

Thus p—vy = 4(va—v))—1(vs—Vvy), and p = -2 v, +4v,—v;.
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Denote the given points as vy, v,, v3, and p. Row reduce the augmented matrix for the equation
xﬁl + Xz;’z + X3;’3 = f)

11 1 1] [1 0 o0 2]
0 1 1 -1 0 1 0 -1
[V v, V5 p]~| 1 1 4 1|~ 0 0 1 0
2 0 -6 —4 0 0 0 0
|1 2 5 0/ |0 0 0 O]

Thus. p =2V, — v, + 0v3, so p = 2v, — v,. The barycentric coordinates are (2, —1, 0).
Notice v3=3v| + v,.

a. True. Theorem 5 uses the point v; for the translation, but the paragraph after the theorem
points out that any one of the points in the set can be used for the translation.
b. False, by (d) of Theorem 5.

c. False. The weights in the linear combination must sum to zero, not one. See the definition at the
beginning of this section.

d. False. The only points that have barycentric coordinates determined by S belong to aff S. See the
definition after Theorem 6.

e. True. The barycentric coordinates have some zeros on the edges of the triangle and are only
positive for interior points. See Example 6.

False. By Theorem 5, the set of homogeneous forms must be linearly dependent, too.

a
b. True. If one statement in Theorem 5 is false, the other statements are false, too.

g

False. Theorem 6 applies only when S is affinely independent.

=

False. The color interpolation applies only to points whose barycentric coordinates are
nonnegative, since the colors are formed by nonnegative combinations of red, green, and blue.
See Example 5.

e. True. See the discussion of Fig. 5.
When a set of five points is translated by subtracting, say, the first point, the new set of four

points must be linearly dependent, by Theorem 8 in Section 1.7, because the four points are in R>.
By Theorem 5, the original set of five points is affinely dependent.

Suppose vy, ..., V,are in R"and p >n + 2. Sincep —1=n+ 1, the points v, = Vi, V3 = Vi, ... , V, — V|
are linearly dependent, by Theorem 8 in Section 1.7. By Theorem 5, {v, v,, ..., v, } is affinely
dependent.

If {vy, v»} is affinely dependent, then there exist ¢; and ¢,, not both zero, such that ¢, + ¢, = 0, and
cvy T v = 0. Then ¢ = — ¢; # 0 and ¢;v; = — ¢V, = ¢V, which implies that v; = v,.
Conversely, if vi = v, let ¢; =1 and ¢; = —1. Then ¢1vy + v, = vy +(=1)v;= 0and ¢; + ¢; =0,
which shows that {vy, v,} is affinely dependent.

Let S; consist of three (distinct) points on a line through the origin. The set is affinely dependent
because the third point is on the line determined by the first two points. Let S, consist of two
(distinct) points on a line through the origin. By Exercise 13, the set is affinely independent
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15.

16.

17.

18.

19.

because the two points are distinct. (A correct solution should include a justification for the sets
presented.)
1
2
independent. By Theorem 5, S is affinely independent.
695 1 14 _5_1 6 _57 115
b. pl ( {2 8" 8) p2 (O ) p3 ( 8> 8)’ p4<_)(8, 8’8)’ p5(_>(4’8’8)

C. pf) iS (_’ T +): p7 IS (Oa +: _)a and p8 IS (+a +: _)'

®

The vectors v, — v; = [ } andvy;— v, = { 2} are not multiples and hence are linearly

1
a. The vectors v, — v; = L} and v; — v| = L} are not multiples and hence are linearly

independent. By Theorem 5, § is affinely independent.

PlH(_7>7»7) PzH(— —757) p3 < 3,3,3
Ps

p4 H(-I_:_’_)) pS <_>(+>+7_)7

p6 > (+,+,+), p7 > (_,0,"‘).
See the figure to the right. Actually,

2 3
p4<_)(14=_14a 14) pSH(143145_ﬁ)a /

p6 & (H: Ha H)a p7 g (_5, 51) pz /

Suppose S = {by, ..., b;} is an affinely independent set. Then (7) has a solution, because p is in
aff S. Hence (8) has a solution. By Theorem 5, the homogeneous forms of the points in S are
linearly independent. Thus (8) has a unique solution. Then (7) also has a unique solution,
because (8) encodes both equations that appear in (7).

The following argument mimics the proof of Theorem 7 in Section 4.4. If S = {by, ..., b;} is
an affinely independent set, then scalars ¢, ..., ¢; exist that satisfy (7), by definition of aff S.
Suppose x also has the representation

X:d1b1+"‘+dkbk and d1+"‘+dk:1 (73.)
for scalars dj, ..., d,. Then subtraction produces the equation
0=x-x=(ci—d)b;+ -+ (cx —dp)by (7b)

The weights in (7b) sum to zero because the ¢’s and the d’s separately sum to one. This is
impossible, unless each weight in (8) is zero, because S is an affinely independent set. This
proves thatc; =d; fori=1, ..., k.

X X a 0 0 0
Let p=|y|. Then |y =Zo|+2]p|+3]0 +(1—£—Z——j 0| So the barycentric coordi-
a b c a b ¢
z z 0 0 c 0

nates are x/a, y/b, z/c, and 1 — x/a — y/b — z/c. This holds for any nonzero choices of a, b, and c.

If {p1, p2, p3} is an affinely dependent set, then there exist scalars ¢, ¢2, and c¢3, not all zero, such
that cp; + c;p2 + c3ps =0 and ¢, + ¢, + ¢; = 0. But then, applying the transformation £,
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afP)+ef(py)+af(p3) = flap;+cepy +eps) = f(0) =0,

since f'is linear. This shows that {f(p;), f(P,), f(P3)}is also affinely dependent.

20. If the translated set {p; + q, p> + q, p; + q} were affinely dependent, then there would exist real
numbers ¢, ¢;, and ¢;, not all zero and with ¢, + ¢; + ¢; = 0, such that

capirt@ta@Etq) tapstq)=0.
But then,

ciprtapatapst(cteatea)g=0.
Since ¢+ ¢; + ¢3 =0, this implies c¢;p; + ¢, p> + ¢z p; = 0, which would make {pi, p,, p3} affinely
dependent. But {p, p», ps} is affinely independent, so the translated set must in fact be affinely
independent, too.

b aq b ¢ a ay 1

a c

21. Let a:{ 1},b:{ l}, andc:{ 1}. Then det[a b ¢] = det|a, b, ¢, |=det| b b, 1],
) by &

I 1 1 aq ¢ 1
by using the transpose property of the determinant (Theorem 5 in Section 3.2). By Exercise 30 in
Section 3.3, this determinant equals 2 times the area of the triangle with vertices at a, b, and c.

22. If p is on the line through a and b, then p is an affine combination of a and b, so p is a linear

combination of a and b. Thus the columns of [a b p] are linearly dependent. So the determinant
of this matrix is zero.

-
23.If [a b ¢]|s|=p, then Cramer’s rule gives » = det[p b ¢] /det[a b ‘¢]. By Exercise 21, the
t

numerator of this quotient is twice the area of Apbe, and the denominator is twice the area of Aabc.
This proves the formula for ». The other formulas are proved using Cramer’s rule for s and z.

24. Let p=(1 —x)q + xa, where q is on the line segment from b to ¢. Then, because the determinant
is a linear function of the first column when the other columns are fixed (Section 3.2),

det[p b ¢] = det[(1-x)q+xa b ¢]= (1 -x)-det[q b ¢] +x-det[a b ¢].
Now, [q b ¢] is a singular matrix because q is a linear combination of b and ¢. So

det[q b ¢] =0and det[p b ¢] = x-det[a b ¢].

6 2 - &
25. v;—v;=|0|, vy—v; =6, and a—v;=|-3|. Solve [v,—v; v3—v, -b]lc|=a-v,.
1 4 15 t

6 2 -14 -1 1 4 31 15 1 4 31 15
0 6 -15 -3|~10 6 -1.5 =-3|~10 2 =05 -1
1 4 31 15 0 -22 -20 -91 0 -22 20 -91
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10 4.1 17 1 0 0 0.6
~10 2 =05 -1{~10 2 O 1 Thus, ¢, =0.6, ¢3=0.5, and t=4.
0 0 255 -102 0 01 4
0 1.4 5.6
The intersection pointis x(4) = a+4b = |0(+4| 15| =| 6.0| and
9 -3.1 -34
1 7 3 5.6
x(4) = 1-0.6-0.5)v; +0.6v, +0.5v5 = —=0.1] 3|+0.6| 3[+0.5 9| =| 6.0].
-6 -5 -2 -34

The first barycentric coordinate is negative, so the intersection point is not inside the triangle.

2 -1 (&)
26. v,-v;=| 0|, vi—v;=|8|, and a—v;=| -2|. Solve [v,—-Vv; v3-v; -b]c;|=a-v,.
-1 2 12 t

7 2 -09 -1 (1 2 =37 -12 1
0 8 -2 =2(~/0 8 =2 =2/~l0 4 -1 -1
-1 2 37 12 0 16 25 83 0

1 -2 3.7 -12] 1 -2 0 -09 1 0 0 0.1
~10 4 -1 -1]~/0 4 0 2(~10 1 0 05
0 o0 1 3 0 01 3 001 3

Thus, ¢, =0.1, ¢3=0.5, and = 3.

0 0.9 2.7
The intersection pointis x(3) = a+3b =|0(+3| 2.0| =| 6.0 | and
8 -3.7 -3.1
1 8 3 2.7
x(3) = 1-0.1-0.5)v; +0.1v, +0.5v53 = 0.4 2|+0.1] 2|+0.5/10| =] 6.0].
—4 =5 -2 -3.1

The barycentric coordinates are all positive, so the intersection point is inside the triangle.
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8.3 SOLUTIONS

Notes: The notion of convexity is introduced in this section and has important applications in computer
graphics. Bézier curves are introduced in Exercises 21-24 and explored in greater detail in Section 8.6.

0
1. Theset V = { }:O <y< 1} is the vertical line segment from (0,0) to
y

(0,1) that includes (0,0) but not (0,1). The convex hull of S includes B

each line segment from a point in V' to the point (2,0), as shown in the S
figure. The dashed line segment along the top of the shaded region
indicates that this segment is not in conv S, because (0,1) is not in S.

2. a. Conv S includes all points p of the form

1/2 X 1/24+t(x-1/2) 2
p=(0-1) +t = , where
2 1/x 2—-t(2-1/x)
x2>1/2 and 0 <t <1. Notice that if 7 = a/x, then
1/24+a-a/(2x) i 1/2+a o )
p(x) = , | and lim p(x)= , establishing that there are points
2-2a/x-alx X 2

arbitrarily close to the line y = 2 in conv S. Since the curve y = 1/x is in S, the line segments
between y =2 and y = 1/x are also included in conv S, whenever x >1/2.

b. Recall that for any integer 7, sin(x + 2nz) = sin(x). Then

{ X } { x+2nr } {x+2nm}
p=(0-1) +t = € conv S. . .

sin(x) sin(x + 2n7r) sin(x)

Notice that sin(x) is always a number between -1 and 1. Fora
fixed x and any real number 7, an integer # and a number ¢ (with 0 <7 <1) can be chosen so that
r=Xx+2nmut.

¢. Conv S includes all points p of the form

=(1 0 ol h >20and 0<t<1
P—(—l){o}-t\/; —t\/;,werex_ and 0<t<1.

2 4
) a
Letting t = a/x lim p = {0} establishing that there are points arbitrarily close to y = 0 in the set.

2

7 X—doo

3. From Exercise 5, Section 8.1,

a. p; =3b; —by—b; & conv S since some of the coefficients are negative.

b. p»=2b; +0b, + b; ¢ conv S since the coefficients do not sum to one.

¢. p;=—b; +2b, +0b; & conv S since some of the coefficients are negative.
4. From Exercise 5, Section 8.1,

a.p; =—4b; +2b, +3b; & conv S since some of the coefficients are negative.

b. p»=.2b; +.5b, + .3b; € conv S since the coefficients are nonnegative and sum to one.
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c. p;=b;+by+b; & conv S since the coefficients do not sum to one.

5. Row reduce the matrix [, Vv, ¥; ¥V, P, P,]toobtain the barycentric coordinates
pi=-ivi+lv,+2vi+Llv,,sopigconvS,andp,=Lv, +1v, +1vi+1lv, sop,e convS.

6. Let W be the subspace spanned by the orthogonal set S = {vi, v, v3}. As in Example 1, the
barycentric coordinates of the points py, ..., ps with respect to S are easy to compute, and they
determine whether or not a point is in Span S, aff S, or conv S.

: -V Y Y
a. prOJWp1=p1 Ly 4P Voo PIV3 o

Vl'Vl 1 V2'V2 2 V3'V3 3
2 0 -2 -1
1l o) 12 |2
Tal T2 2 T o T3 T
2 1 s

This shows that p; is in W= Span S. Also, since the coefficients sum to 1, p; is an aff S.
However, p; is not in conv S, because the coefficients are not all nonnegative.

9 9 9

T T el 1 1
b. Similarly, proj =4 v+24v,+2v, = —v,+—V,+—V; = p,. This shows that
Y, ProJyy P2 g 1Ty V2TV 21T V2 T3 P2 p2

lies in Span S. Also, since the coefficients sum to 1, p, is in aff S. In fact, p, is in conv S,
because the coefficients are also nonnegative.

. 1 . .
C. projy ps3 = %Vl +%V2 —38V3 = v, +V, —2v; = p3. Thus p;isin Span S. However, since

the coefficients do not sum to one, p; is not in aff S and certainly not in conv S.

d. projy ps = %Vl +%V2 +%V3 # p4. Since projy P4 is the closest point in Span S to pa, the

point p4 is not in Span S. In particular, p, cannot be in aff S or conv S.

-1 2 4 2 3 2 0
7. V1:|: Oj|5 V2=|:3j|’ V3:|:1j|> p1:|:1:|> p2:|:2j|’ p3:|:oj|5 p4:|:2:|aT: {Vly Vo, V3}

a. Use an augmented matrix (with four augmented columns) to write the homogeneous forms of
P1, ---, P4 in terms of the homogeneous forms of vy, v,, and v, with the first step interchanging
rows 1 and 3:

1
P11 1111 [toozo0 5 3
[V V2 Vs By Py By by |~|-1 2 4 23 2 0[~[0 1 0L 1 1 3
0 3 1120 2 1 1 3 _1
00133 3 7%

13 13 15 - 1 1 1 -
The first four columns reveal that +v, ++v, + v, =p, and 1v, +£v, + vy =p,. Thus column 4

contains the barycentric coordinates of p; relative to the triangle determined by 7. Similarly,
column 5 (as an augmented column) contains the barycentric coordinates of p,, column 6
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8.3 ¢ Solutions 8-13

contains the barycentric coordinates of p3;, and column 7 contains the barycentric coordinates of
P4

b. p; and p, are outside conv 7, because in each case at least one of the barycentric coordinates is
negative. p; is inside conv 7, because all of its barycentric coordinates are positive. p, is on the
edge v;v, of conv 7, because its barycentric coordinates are nonnegative and its first coordinate

1s 0.

a. The barycentric coordinates of p;, p2, ps3, and p4 are, respectively, (}—2,%,—%), (%,%,%),

201 9 _1 5

(3’0’3)’ and (13’ 13’ 13)'

b. The point p; and p4 are outside conv 7 since they each have a negative coordinate. The point p; is
inside conv 7 since the coordinates are positive, and p; is on the edge v,;v; of conv T.

—_

The points p, and ps are outside the tetrahedron conv S since their barycentric coordinates contain
negative numbers. The point p, is on the face containing the vertices v,, v;, and v, since its first
barycentric coordinate is zero and the rest are positive. The point p4 is inside conv S since all its
barycentric coordinates are positive. The point ps is on the edge between v, and v; since the first and
third barycentric coordinates are positive and the rest are zero.

The point q; is inside conv S because the barycentric coordinates are all positive. The point q; is

outside conv S because it has one negative barycentric coordinate. The point qq is outside conv § for
the same reason. The point g; is on the edge between v, and v; because (0,2,1,0) shows that g; is
a convex combination of v, and v;. The point qs is on the face containing the vertices vy, v,, and v;

because (%, 1.1 0) shows that qs is a convex combination of those vertices.

a. False. In order for y to be a convex combination, the ¢’s must also all be nonnegative. See the
definition at the beginning of this section.

b. False. If §'is convex, then conv S is equal to S. See Theorem 7.

c. False. For example, the union of two distinct points is not convex, but the individual points are.

a. True. See the definition prior to Theorem 7.

b. True. Theorem 9.

c. False. The points do not have to be distinct. For example, S might consist of two points in R®. A
point in conv S would be a convex combination of these two points. Caratheodory’s Theorem
requires 7 + 1 or fewer points.

If p, q € f(S), then there exist r, s € S such that f(r) = p and f(s) = q. The goal is to show that the
line segmenty = (1 —f)p +¢q, for 0 <¢< 1, is in f(S). Since f is linear,

y=>0-9gp+iq =(1-0f(r)+1f(s)= f((1 - Or +15)
Since S'is convex, (1 —)r+¢se Sfor0<r<1. Thusy € f(S) and f(S) is convex.

Supposer,s € Sand 0 <¢<1. Then, since f is a linear transformation,

SIA =or+1s]=(1-1)f(r) +1/(s)
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15.

16.

17.

18.

19

But f(r) e Tand f(s) € T,so (1 —¢)f(r) +¢f(s) € Tsince T is a convex set. It follows that
(1 —fHr+ts e S, because S consists of all points that f maps into 7. This shows that S is convex.

It is straightforward to confirm the equations in the problem: (1) 1 IV +1 IV2 +4 < V3 +1 <V4 =P and

(2) vi—v,+v3—vs=0. Notice that the coefficients of v; and v; in equation (2) are positive. With
the notation of the proof of Caratheodory’s Theorem, d; =1 and d; = 1. The corresponding
coefficients in equation (1) are ¢; = § and ¢; = ¢. The ratios of these coefficients are ¢; /d; = §

3
and ¢y /dy = %. Use the smaller ratio to eliminate v; from equation (1). That is, add —% times
equation (2) to equation (1):
P=G-VitGTOVa+(E—oVs+(g+ Vs = ¢Vi+5V, +3Vy
To obtain the second combination, multiply equation (2) by —1 to reverse the signs so that d, and d
become positive. Repeating the analysis with these terms eliminates the v, term resulting in
p=1v,+iv,+1v;.

-1 0 3 1 1
vy = { 0} vV, = [3} V3 = L}, V4 = {_J , P = {2} It is straightforward to confirm the equa-

tions in the problem: (1) -v; +Zxv, +3Lvs+dvy =p and (2) 10v,—6vy+7v;—11v,=0.

Notice that the coefficients of v; and v; in equation (2) are positive. With the notation of the proof of
Caratheodory’s Theorem dy =10 and d; =7. The corresponding coefﬁcients in equation (1) are

¢; =37 and ¢; = 3L The ratios of these coefficients are ¢, /d; = - +10 = ' and
e /dy = 121 +7 = W Use the smaller ratio to eliminate v; from equatlon (1). Thatis, add —m
times equation (2) to equation (1):

1 72 7 1 _3 3 1
P = (3 1210)V1 (5ot 1210)"2 +(121 AR ST 1210)V4 sV2TigV3tigVs

To obtain the second combination, multiply equation (2) by —1 to reverse the signs so that ¢, and d,
become positive. Repeating the analysis with these terms eliminates the v, term resulting in

— (1, 10 g2 _ 6 37 L 7 - 6 4
P = (121+121)V1+(121 121)V2+(121+121)V3+( 121)4 11V1+11V2+11V3

Suppose 4 C B, where B is convex. Then, since B is convex, Theorem 7 implies that B contains

all convex combinations of points of B. Hence B contains all convex combinations of points of 4.
That is, conv 4 C B.
Suppose 4 C B. Then 4 C B C conv B. Since conv B is convex, Exercise 17 shows that

conv 4 C conv B.

a. Since A C (4 U B), Exercise 18 shows that conv 4 C conv (4 U B). Similarly,
conv B C conv (4 U B). Thus, [(conv A) U (conv B)] C conv (4 U B).

b. One possibility is to let 4 be two adjacent corners of a square and B be the other two corners.
Then (conv 4) U (conv B) consists of two opposite sides of the square, but conv (4 U B) is the
whole square.
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20. a. Since (4 N B) C A4, Exercise 18 shows that conv (4 N B) C conv 4. Similarly,
conv (4 N B) C conv B. Thus, conv (4 N B) C [(conv 4) N (conv B)].

b. One possibility is to let 4 be a pair of opposite vertices of a square and let B be the other pair
of opposite vertices. Then conv 4 and conv B are intersecting diagonals of the square. 4 N B
is the empty set, so conv (4 N B) must be empty, too. But conv 4 N conv B contains the
single point where the diagonals intersect. So conv (4 N B) is a proper subset of
conv 4 N conv B.

21.

23. g() = (1 — Dfo(2) + t£1(?)
=(1=0[(1 = 0po + tpi] + (1 = O)py + tp2] = (1 — 1)’ po + 21(1 — 1)py + £°po.

The sum of the weights in the linear combination for g is (1 — £)* + 24(1 — £) + ¢*, which equals
(1 =2t+ )+ (2t —2¢) + t* = 1. The weights are each between 0 and 1 when 0 <7< 1, so g(¢) is in

conv{p, pi, P2}-

24. h(¢) = (1 —6)gi(¢t) + tg>(¢). Use the representation for g,(¢) from Exercise 23, and the analogous
representation for g,(f), based on the control points p;, p», and ps, and obtain

h(r) = (1 = )[(1 = )po + 21(1 = Hpy + £pa] + 1[(1 = 1°py + 26(1 — D)py + £7ps]
=1 =’po+2t(1 =2t + py + (> = )+ t(1 = 2t + ) py +2°(1 = )py + s
=(1=3t+3 = )po+ 2t — 42+ 265p, + (1> = )ps
+(t =20+ )+ Q- 20)p, + ps
=(1=3t+32 = P)po+ (Bt — 62+ 3)p, + 312 = 38)p + £ps

By inspection, the sum of the weights in this linear combination is 1, for all . To show that the
weights are nonnegative for 0 < ¢ < 1, factor the coefficients and write

h(®) = (1 = ©’po + 31(1 = £)p; + 3£(1 = )po + ps for 0<r< 1

Thus, h(?) is in the convex hull of the control points py, pi, p2, and ps.
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8.4 SOLUTIONS

Notes: In this section lines and planes are generalized to higher dimensions using the notion of
hyperplanes. Important topological ideas such as open, closed, and compact sets are introduced.

-1 3 31 |1 4
1. Letv, :[ 4} and v, :L} Then v, —v; :{J—[ 4}2[ 3}. Choose n to be a vector orthogonal

3
tov, — v, , for example let n= L} . Then f(x, xo) =3x; +4x, and d = f(v))=3(-1) +4(4)=13.

This is easy to check by verifying that f(v,) is also 13.

1 -2 -2 1| |3
2. Letv,= L} and v, = { J. Then v, —v; :{ 1} - L} :{ 5}. Choose n to be a vector orthogonal

5
tov, —v,, for example let n ={ 3} . Then f(x1, x2) =5x; — 3xpand d= f(v))=5() — 3(4)=-T7.

The set is open since it does not contain any of its boundary points.

a
b. The set is closed since it contains all of its boundary points.

e

The set is neither open nor closed since it contains some, but not all, of its boundary points.

&

The set is closed since it contains all of its boundary points.

e

The set is closed since it contains all of its boundary points.

The set is closed since it contains all of its boundary points.

T ®

The set is open since it does not contain any of its boundary points.

e

The set is neither open nor closed since it contains some, but not all, of its boundary points.

&

The set is closed since it contains all of its boundary points.
e. The set is open since it does not contain any of its boundary points.

5. a. The setis not compact since it is not closed, however it is convex.
b. The set is compact since it is closed and bounded. It is also convex.
c. The set is not compact since it is not closed, however it is convex.
d. The set is not compact since it is not bounded. It is not convex.

e. The set is not compact since it is not bounded, however it is convex.

6. a. The setis compact since it is closed and bounded. It is not convex.
b. The set is not compact since it is not closed. It is not convex.
c. The set is not compact since it is not closed, however it is convex.
d. The set is not compact since it is not bounded. It is convex.

e. The set is not compact since it is not closed. It is not convex.
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1 2 -1 a
a. Let vi=| 1|, v, ={4]|, v3 =| 2|, n=| b | and compute the translated points
3 1 5 c
1 -2
V2 _Vl = 3 . V3 Vl =|-3
-2 2

To solve the system of equations (v, —v;) - n =0 and (v; — v;) * n = 0, reduce the augmented
matrix for a system of two equations with three variables.

a a
1 3 -2]b|=0, [2-3 2]|b|=0.
C C

. 1 3 -2 0 1 0 0 O _
Row operations show that sy 3 2 ol” 0 . A suitable normal vector

0
isn=|2]1.
3

b. The linear functional is f(x;,X,,X%3) = 2x, +3x3,s0d = f(1,1,3) = 2+9 = 11. Asa check,

evaluate f at the other two points on the hyperplane: f(2,4,1) = 8+3 = 11 and
f(=1,-2,5 = —4+15 = 11.
4

a. Find a vector in the null space of the transpose of [v, — v; v3 —v;]. For example, take n=| 3.
-6

b. f(x)=4x,+3x; — 6x3, d=f(v)=-8

a. Find a vector in the null space of the transpose of [v, —v; v;—v; v4—v;]. For example, take

b. f(x)=3x;—x+2x3+ x4, d=f(v)=5

a. Find a vector in the null space of the transpose of [v, — v; v; —v; v4—v;]. For example, take
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b. f(x)=-2x;+3x,—5x;tx4, d=f(v))=4

11.n:p=2; n-0=0<2; n-v;=5>2; n-v,=-2<2; n-v3;=2. Hence v, is on the same side of H
as 0, v, is on the other side, and v; is in H.

12. Let H=[f:d ], where f(x1, X2, x3) = 3x1 +x, —2x35. f(a;)==5, f(ay)=4. f(a3) =3, f(by)) =7,
f(by)=4,and f(b;) =6. Choose d =4 so that all the points in A are in or on one side of A and all
the points in B are in or on the other side of H. There is no hyperplane parallel to H that strictly
separates A and B because both sets have a point at which f takes on the value of 4. There may be
(and in fact is) a hyperplane that is not parallel to H that strictly separates 4 and B.

13. Hi={x:n,-x=d}and H,={x:n,-x=d,}. Since p, € Hy,d, =n,-p, =4. Similarly,
d»=n, - py,=22. Solve the simultaneous system [l 2 4 2]x=4 and [2 3 1 5x=22:

1 2 4 2 47 1 0-10 4 32
2 3 1 5 22 0o 1 7 -1 -14

The general solution provides one set of vectors, p, vi, and v,. Other choices are possible.

32 10 -4 32 10 -4

-14 =7 1 -14 =7 1

X= 0 + x5 1 + Xy 0 =p+x3v, +x4V,, where p= 0 , V= { ,Vy) = 0
0 0 1 0 0 1

Then Hi N H, = {X:X=p+x3V] T x4V2}.
14. Since each of F; and F, can be described as the solution sets of 4;x = b, and 4,x = b, respectively,

A b
where 4; and A, have rank 2, their intersection is described as the solution set to { ! }( = {bl } .
2 2

A
Since 2 < rank[{Al D <4, the solution set will have dimensions 6-2=4,6-3=3,0r 6—-4=2.

2
15. f(xl, X2, X3, X4) = Ax =X — 3XZ + 4X3 — 2X4 andd=b=5
16. f(x1, x2, X3, X4, X5) = AX =2x; + 5x, — 3x3 + 6xs and d = b= 0

17. Since by Theorem 3 in Section 6.1, Row B = (Nul B) 1 , choose a nonzero vector ne Nul B. For

1
example take n = | =2 |. Then [ (x;, X2, X3) =x; —2x; +x3and d = 0
|1
18. Since by Theorem 3, Section 6.1, Row B = (Nul B) L , choose a nonzero vector n € Nul B . For
-11
example taken=| 4 |. Then f(x;, x2, x3) =—11x; +4x, +x3and d =0
1

19. Theorem 3 in Section 6.1 says that (Col B)" = Nul B”. Since the two columns of B are clearly linear
independent, the rank of B is 2, as is the rank of B". SodimNul B =1, by the Rank Theorem, since
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21.

22,

23.

24.

25.

8.4 « Solutions 8-19

there are three columns in B”. This means that Nul B” is one-dimensional and any nonzero vector n
in Nul B” will be orthogonal to H and can be used as its normal vector. Solve the linear system
B'x = 0 by row reduction to find a basis for Nul B”:
=5
1 4 -7 0 1 0 5 O
~ = n=| 3
0 2 -6 0 0 1 -3 0

1

Now, let f(xy, x2, x3) =—5x; + 3x, + x3. Since the hyperplane H is a subspace, it goes through the
origin and d must be 0.

The solution is easy to check by evaluating f at each of the columns of B.

Since by Theorem 3, Section 6.1, Col B = (Nul B") 1 , choose a nonzero vector n in Nul B" . For
-6
example taken=| 2 |. Then f(x;, x2, x3) = —6x; +2x, +x3and d =0
1

a. False. A linear functional goes from R" to R. See the definition at the beginning of this section.

. False. See the discussion of (1) and (4). There is a 1xn matrix 4 such that f'(x) = 4x for all x in
R”. Equivalently, there is a point n in R” such that /(x) =n - x for all x in R”".

=p

True. See the comments after the definition of strictly separate.

2 e

. False. See the sets in Figure 4.

True. See the statement after (3).

= ®

. False. The vector n must be nonzero. If n =0, then the given set is empty if d # 0 and the set
is all of R" if d = 0.

¢. False. Theorem 12 requires that the sets 4 and B be convex. For example, A could be the

boundary of a circle and B could be the center of the circle.

d. False. Some other hyperplane might strictly separate them. See the caution at the end of
Example 8.

-2
Take f'(x1, x2) =3x; —2x, . Then f(v2) =f(v3) =9 and f(p) =10 so any d satisfying 9 <d <10 will
work. There are other possible answers.

N - 3
Notice that the side of the triangle closest to p is v,v, . A vector orthogonal to v,v, isn= { } .

_ - -2
Notice that the side of the triangle closest to p is v,v, A vector orthogonal to v,v,is n= { 3 } .

Take f(x1, x2) = —2x; +3x, . Then f(vy)=f(v3) =4 and f(p) =5 so any d satisfying 4 <d <5 will
work. There are other possible answers.

Let L be the line segment from the center of B(0, 3) to the center of B(p, 1). This is on the line
through the origin in the direction of p. The length of L is (4* + 1?)"* ~ 4.1231. This exceeds the
sum of the radii of the two disks, so the disks do not touch. If the disks did touch, there would be no
hyperplane (line) strictly separating them, but the line orthogonal to L through the point of tangency
would (weakly) separate them. Since the disks are separated slightly, the hyperplane need not be
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exactly perpendicular to L, but the easiest one to find is a hyperplane H whose normal vector is p.
So define f by f(x)=p-x.

To find d, evaluate f at any point on L that is between the two disks. If the disks were tangent,
that point would be three-fourths of the distance between their centers, since the radii are 3 and 1.
Since the disks are slightly separated, the distance is about 4.1231. Three-fourths of this distance is
greater than 3, and one-fourth of this distance is greater than 1. A suitable value of d is f(q), where
q=(250+(75)p=(3,.75). Sod=p+q=4(3) + 1(.75)=12.75.

26. The normal to the separating hyperplane has the direction of the line segment between p and q. So,
4
letn=p-q= { 2} . The distance between p and q is 20, which is more than the sum of the radii

of the two balls. The large ball has center q. A point three-fourths of the distance from q to p will be
greater than 3 units from q and greater than 1 unit from p. This point is

6 21 [5.0
x=.75p + .25q=.75| |+.25| |=
1 3] | L5

[ x
Compute n+x =17. The desired hyperplane is { } c4x-2y= 17} .
y

27. Exercise 2(a) in Section 8.3 gives one possibility. Or let S = {(x,y) : x’y* =1 and y > 0}. Then
conv S is the upper (open) half-plane.

28. One possibility is B= {(x, ) : x’y*=1and y >0} and 4 = {(x, y) : |x|< 1 and y = 0}.
29. Letx,y € B(p,d) and suppose z= (1 —#)x + ty, where 0 <7< 1. Then

A =x+ey]=pl = (A -)x=p) Ty -p)
SA-)[x=pl+dly-pll <(A-0)d+15= 15

1z = pll

where the first inequality comes from the Triangle Inequality (Theorem 17 in Section 6.7) and the
second inequality follows from x, y € B(p, d). It follows that z € B(p, d) and B(p, 0) is convex.

30. Let Sbe abounded set. Then there exists a 0 > 0 such that S C B(0, ). But B(0, J) is
convex by Exercise 29, so Theorem 9 in Section 8.3 (or Exercise 17 in Section 8.3) implies that
conv S C B(p, o) and conv S is bounded.

8.5 SOLUTIONS

Notes: A polytope is the convex hull of a finite number of points. Polytopes and simplices are important
in linear programming, which has numerous applications in engineering design and business management.
The behavior of functions on polytopes is studied in this section.

1. Evaluate each linear functional at each of the three extreme points of S. Then select the extreme

point(s) that give the maximum value of the functional.
a. f(p) =1, f(p) = —1,and f(p;) = -3,som=1atp,.
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b. f(p1) = 1, f(p2) = S,and f(p;) = 1,som=5atp,.
c. f(p) =3, f(p2) = -3,and f(ps) = 5,s0m =35 at ps.

Evaluate each linear functional at each of the three extreme points of S. Then select the point(s) that
give the maximum value of the functional.

a. f(p1) =—1, f(p2) = 3,and f(p3) = 3, so m =3 on the set conv {p,, p3}.
b. f(p) =1, f(p2) = 1,and f(p;) = —1, so m =1 on the set conv {py, p.}.
c. f(p1) = -1, f(po) = -3,and f(p;) = 0,s0om =0 at ps.

Evaluate each linear functional at each of the three extreme points of S. Then select the point(s) that

give the minimum value of the functional.
a. f(p)) = 1, f(p2) = —1,and f(ps) = -3, so m =-3 at the point ps

b. f(p1) = 1, f(p2) = 5,and f(ps) = 1,som = 1 on the set conv {py, p3}.

c. f(p1) = -3, f(po) = -3,and f(p;) = 5, so m =-3 on the set conv {p;, p>}.

Evaluate each linear functional at each of the three extreme points of S. Then select the point(s) that
give the minimum value of the functional.

a. f(p1) =-1, f(po) = 3,and f(p3) = 3, som=—1 at the point p;.
b. f(p) =1, f(p2) = 1,and f(p;) = —1, so m =—1 at the point ps.

c. f(p1) = -1, f(po) = -3,and f(p;) = 0, so m =-3 at the point p,.

The two inequalities are (a) x; + 2x, < 10 and (b) 3x; + x, £ 15. Line (a) goes from (0,5) to (10,0).
Line (b) goes from (0,15) to (5,0). One vertex is (0,0). The x;-intercepts (when x, = 0) are 10 and 5,
so (5,0) is a vertex. The x,-intercepts (when x; = 0) are 5 and 15, so (0,5) is a vertex. The two lines

0||5]14]10
intersect at (4,3) so (4,3) is a vertex. The minimal representation is {0} , {O} , [3} , {5}}

The two inequalities are (a) 2x; + 3x, < 18 and (b) 4x; + x, < 16. Line (a) goes from (0,6) to (9,0).
Line (b) goes from (0,16) to (4,0). One vertex is (0,0). The x;-intercepts (when x, = 0) are 9 and 4, so
(4,0) is a vertex. The x,-intercepts (when x; = 0) are 6 and 16, so (0,6) is a vertex. The two lines

0141310
intersect at (3,4) so (3.,4) is a vertex. The minimal representation is {O} , {0} L} , {6}}

The three inequalities are (a) x; + 3x; < 18, (b) x1 + x, £ 10, and (c) 4x; + x, £ 28. Line (a) goes from

(0,6) to (18,0). Line (b) goes from (0,10) to (10,0). And line (¢) goes from (0,28) to (7,0). One
vertex is (0,0). The x,-intercepts (when x, = 0) are 18, 10, and 7, so (7,0) is a vertex. The x,-
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10.
11.

12.

13.

intercepts (when x; = 0) are 6, 10, and 28, so (0,6) is a vertex. All three lines go through (6,4), so

0117116110
(6,4) is a vertex. The minimal representation is NN R .
0110][4]]|6

The three inequalities are (a) 2x; + x, < 8, (b) x; + x, <6, and (c) x; + 2x, < 7. Line (a) goes from
(0,8) to (4,0). Line (b) goes from (0,6) to (6,0). And line (c) goes from (0,3.5) to (7,0). One vertex is
(0,0). The x;-intercepts (when x, = 0) are 4, 6, and 7, so (4,0) is a vertex. The x,-intercepts (when x;
=0)are 8, 6, and 3.5, so (0,3.5) is a vertex. All three lines go through (3,2), so (3,2) is a vertex. The

o o104 13 0
minimal representation is sl s A s

The origin is an extreme point, but it is not a vertex. It is an
extreme point since it is not in the interior of any line segment
that lies in S. It is not a vertex since the only supporting
hyperplane (line) containing the origin also contains the line
segment from (0,0) to (3,0).

One possibility is a ray. It has an extreme point at one end.

One possibility is to let S be a square that includes part of the boundary but not all of it. For example,
include just two adjacent edges. The convex hull of the profile P is a triangular region.

S conv P =

a. fo(S°) =6, fi(S°) =15, £2(S°) =20, £5(S°) =15, f«(S°)=6,and 6 — 15+20 - 15+ 6=2.
b.

fo fi /2 /3 fa
s! 2
s? 3
s° 4 6 4
s* 5 10 10 5
5° 6 15 20 15 6

" n+l1 a al . . . .
L (8 = , where = ———— is the binomial coefficient.
k+1 b))~ bla—b)!

a. To determine the number of k-faces of the 5-dimensional hypercube C °, look at the pattern that is
followed in building C * from C’. For example, the 2-faces in C * include the 2-faces of C * and
the 2-faces in the translated image of C . In addition, there are the 1-faces of C° that are
“stretched” into 2-faces. In general, the number of k-faces in C' " equals twice the number of -
faces in C "~ ' plus the number of (k— 1)-faces in C”"~'. Here is the pattern: fi(C") = 2/ (C" ")
+fi(C" Y. Fork=0,1,...,4,and n =5, this gives fo(C°)=32, f1(C°) =80, f(C")= 80,
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15.

16.

17.

18.

19.

8.5 ¢ Solutions 8-23

f3(C°)=40, and f4C°)=10. These numbers satisfy Euler’s formula since, 32 — 80 + 80 — 40 +
10=2.

n a !
b. The general formulais f;(C") = 2" 71 where =% is the binomial coefficient.
k b b'(a—Db)!
a. X'is aline segment ./?)/. Vi X? is a parallelogram Vi
V2
b. fo(X?)=6, f1(X*)=12, f»(X*)=8. X is an octahedron.

foXH =8, AlxH =24, £L(XH =32, (X" =16, 8-24+32-16=0

e

n a !
S (XM= 2k , 0<k<n-1, where =2 is the binomial coefficient.
k+1 b) bla-b)!

&

o

. fo(P")= fo(Q) +1
- SlP") = fil(OQ) + fi-1(0)
So1(P") = fu2(Q) +1

. True. See the definition at the beginning of this section.

[cI -

. True. See the definition after Example 1.
False. S must be compact. See Theorem 15.

2o T

. True. See the comment after Fig. 7.

&

. False. It has six facets (faces).

=2

. True. See Theorem 14.

c. False. The maximum is always attained at some extreme point, but there may be other points that
are not extreme points at which the maximum is attained. See Theorem 16.

d. True. Follows from Euler’s formula with n = 2.

Let v be an extreme point of the convex set Sand let 7= {y € S:y#v}. Ify and z are in 7, then
yz C S since S is convex. But since v is an extreme point of S, v & yz, so yz C T. Thus Tis
convex.

Conversely, suppose v € S, but v is not an extreme point of S. Then there exist y and z in S such
thatve yz,withv#yandv#z It follows thaty and z are in 7, but yz ¢ T. Hence T is not

convex.
Let S be convex and let x € ¢S + dS, where ¢ > 0 and d > 0. Then there exist s; and s, in .S such that
X = ¢$; +ds,. Butthen x = c¢s;+ds, = (c+d € s +—2%—s, |. Since S is convex,

| +ds, pHdsy; =( )(c+d1 c+d2j

f_ 7 S +%ds2 € Sand x € (c + d)S. For the converse, pick a typical point in (¢ + d)S and show it
c c

1sin ¢S + dS.
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20. For example, let S = {1,2} in R'. Then 2§ = {2,4},38 = {3, 6} and 2 + 3)S = {5, 10}.
However, 25 +3S§ = {2,4} +{3,6} = {2+3,4+3,2+6,4+6} = {5,7,8,10} #(2 +3)S.
21. Suppose 4 and B are convex. Letx,y € 4+ B. Then there exista, ¢ € 4 and b, d € B such that
x=a+bandy=c+d. Forany ¢suchthat0<¢<1, we have
w=(1-0)x+ty = (-t)(a+b)+t(c+d)
= [(1-na+zc]+[(1-1)b+d]

But (1 —¢)a + tc € A4 since 4 is convex, and (1 — )b + td € B since B is convex. Thus wisin 4 + B,
which shows that 4 + B is convex.

22. a. Since each edge belongs to two facets, k7 is twice the number of edges: k» = 2e. Since each edge
has two vertices, sv = 2e.

b. V—€+V:2,SO%—9+2/€—6=2 = %4. = +

Q=

1
2

=

c. A polygon must have at least three sides, so £ > 3. At least three edges meet at each vertex,

so s = 3. But both & and s cannot both be greater than 3, for then the left side of the equation
in (b) could not exceed 1/2.
When k=3, we get %—% - %, so s =3,4,or5. For these values, we get e =6, 12, or 30,
corresponding to the tetrahedron, the octahedron, and the icosahedron, respectively.
When s = 3, we get %— % = %, so k=3,4,or5and e=6, 12, or 30, respectively.
These values correspond to the tetrahedron, the cube, and the dodecahedron.

8.6 SOLUTIONS

Notes: This section moves beyond lines and planes to the study of some of the curves that are used to
model surfaces in engineering and computer aided design. Notice that these curves have a matrix
representation.

1. The original curve is x(£) = (1 — £’po + 31(1 — £)’p; + 3¢t*(1 — )p, + £'ps (0 <t <1). Since the
curve is determined by its control points, it seems reasonable that to translate the curve, one
should translate the control points. In this case, the new Bézier curve y(f) would have the
equation

y(©) = (1 —1)’(po + b) + 3¢(1 — H)*(p; + b) + 3%(1 — )(p> + b) + £:(ps + b)
=(1-10’°po+3t(1 —1)’p1 + 321 —)p, + £ps + (1 —’b +3¢(1 —6)’b + 37 (1 — )b + £°b

A routine algebraic calculation verifies that (1 —£)° + 361 — 6> + 3t2(1 =)+ ¢ = 1 for all .
Thus y(f) = x(¢) + b for all ¢, and translation by b maps a Bézier curve into a Bézier curve.
2. a. Equation (15) reveals that each polynomial weight is nonnegative for 0 <¢< 1, since 4 — 3¢ >
0. For the sum of the coefficients, use (15) with the first term expanded: 1 — 3¢ + 61> — ¢°.
The 1 here plus the 4 and 1 in the coefficients of p; and p,, respectively, sum to 6, while the
other terms sum to 0. This explains the 1/6 in the formula for x(¢), which makes the
coefficients sum to 1. Thus, x(¢) is a convex combination of the control points for 0 <7< 1.

b. Since the coefficients inside the brackets in equation (14) sum to 6, it follows that
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b=1[6b]= %[(1 —1’b+ (3 —612 + Db+ (-3 +3t> +3t+ b + z3b] and hence x(7) +
may be written in a similar form, with p; replaced by p; + b for each i. This shows that x(¢) +

b is a cubic B-spline with control points p; + b fori =0, ..., 3.

X'(f)= (-3 + 6t = 3t7)po + (3 —12¢ + 9£°)p; + (61— 9¢°)p, + 3¢°ps, 50 X'(0) =—3po + 3p1=3(p1 — Po),
and x'(1) =-3p, + 3p; = 3(p; — p2)- This shows that the tangent vector x'(0) points in the
direction from p, to p; and is three times the length of p; — po. Likewise, x'(1) points in the
direction from p; to p; and is three times the length of p; — p,. In particular, x’(1) = 0 if and only
if p3 = po.

x"(t)=(6—-61)py + (—12 + 18/H)p; + (6 — 18¢)p, + 62ps, so that

x"(0) = 6po — 12p; + 6p2 = 6(po — P1) + 6(P2 — P1)

and x"(1) = 6p; — 12p, + 6p3 = 6(p; — p2) + 6(p3 — p2)

For a picture of x"(0), construct a coordinate system with the origin at p,, temporarily, label p,

as po — p1, and label p, as p, — p;. Finally, construct a line from this new origin through the sum
of po — p: and p, — p1, extended out a bit. That line points in the direction of x"'(0).

0:p1

P2 —P1

1

w = {po—p)+{P2—p1) = cx(0)
Po—P1 W

X'(0) =%[(—3z2 +61=3)py +(9r2 ~12¢)py +(-97% +61+3)p, +3t2p3}

x'(0) = %(pz _Po) and x'(1)= %(P3 —P1)
(Verify that, in the first part of Fig. 10, a line drawn through p, and p, is parallel to the
tangent line at the beginning of the B-spline.)

When x'(0) and x'(1) are both zero, the figure collapses and the convex hull of the set of
control points is the line segment between py and p;, in which case x(7) is a straight line.
Where does x(¢) start? In this case,

x(f) = %[(—4? +66% +2)pg + (4 — 61> + 4)p3}
x(0)= Ipo+3p; and x(1)= 2p,+1p;

The curve begins closer to p; and finishes closer to po. Could it turn around during its travel?
Since x'(¢) = 2t(1 — £)(po — p3), the curve travels in the direction py — ps3, so when x'(0) = x'(1)
= 0, the curve always moves away from p; toward p, for 0 <¢< 1.

xX"(t)=(1-10)po+ (-2 +3)p: + (1 =30)p, + tps
x"(0) =po—2p: +P2=(Po—P1) + (P2~ P1)
and  x"(1)=pi=2p2+Pps = (P1 —P2) + (P — P2)
For a picture of x"'(0), construct a coordinate system with the origin at p,, temporarily, label

Po as Po — P1, and label p; as p, — p;. Finally, construct a line from this new origin to the sum of
Po — p1 and p, — pi. That segment represents x"'(0).
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For a picture of x"'(1), construct a coordinate system with the origin at p,, temporarily, label
P: as p1 — P2, and label p; as p; — p,. Finally, construct a line from this new origin to the sum of
p: — p2 and p; — p2. That segment represents x"'(1).

P1—P2

w P:—P2

5. a. From Exercise 3(a) or equation (9) in the text,

x'(1) =3(ps —p2)
Use the formula for x'(0), with the control points from y(¢), and obtain

y'(0)=-3ps + 3ps = 3(ps — p3)
For C' continuity, 3(ps — p2) = 3(ps — p3), 0 ps = (P4 + P2)/2, and ps is the midpoint of the
line segment from p, to ps.

b. Ifx'(1)=y'(0) =0, then p, = p; and p; = p4. Thus, the “line segment” from p, to p4 is just
the point p;. [Note: In this case, the combined curve is still C' continuous, by definition.
However, some choices of the other control points, py, p1, ps, and ps can produce a curve
with a visible “corner” at ps, in which case the curve is not G' continuous at p;.]

6. a. With x(¢) as in Exercise 2,
X(0) = (po +4p1 + p2)/6 and x(1) = (p: +4p2+ p3)/6
Use the formula for x(0), but with the shifted control points for y(#), and obtain

y(0) = (pi +4p> + p3)/6
This equals x(1), so the B-spline is G° continuous at the join point.

b. From Exercise 4(a),

xX'()=(ps—p1)/2 and x'(0) = (p>—po)/2
Use the formula for x'(0) with the control points for y(¢), and obtain

y'(0)=(ps—p)2=x'(1)
Thus the B-spline is C' continuous at the join point.

7. From Exercise 3(b),
x"(0) = 6(po—p1) + 6(p2—p1) and x"(I)=6(p1 —p2) + 6(ps — P2)
Use x'/(0) with the control points for y(7), to get

y"'(0) = 6(ps — p4) + 6(ps — p4)
Set x”(1) = y"”(0) and divide by 6, to get

(P1—p2) T (P3—P2) = (P3—Pa) T (Ps — Pa) (*)
Since the curve is C' continuous at ps, the point p; is the midpoint of the segment from p; to ps, by

Exercise 5(a). Thus p; = %(p2 +p4) , which leads to ps — p3 = p; — p». Substituting into (*) gives

(P1—p2) +(P3—pP2)= —(Ps—P2) T Ps— P4
(P1—P2) +2(ps — P2) + P4 =ps
Finally, again from C' continuity, ps = ps + ps — p>. Thus,
ps=pst (p1—p2) +3(ps— p2)
So p4 and ps are uniquely determined by p;, p,, and p;. Only pe can be chosen arbitrarily.
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10.

11.

12.

13.

14.

8.6 + Solutions

From Exercise 4(b), x"/(0) = po — 2p; + p> and x'/(1) = p; — 2p, + p3. Use the formula for x'/(0), with

the shifted control points for y(z), to get
y"(0)= pi—2p>+2p; =x""(1)
Thus the curve has C* continuity at x(1).

Write a vector of the polynomial weights for x(¢), expand the polynomial weights and factor the
vector as Mpu(?):

-drv6? -4+t 4 6 o4 1] 1 4 6 -4 1]
4r-1202+1260 -4 | |0 4 -12 12 -4 ! 0 4 -12 12 -4
62 -128+624 =0 0 6 —-12 6], Mz=|0 0 6 -12 6
48 —as* 0 0 0 4 47 0 0 0 4 -4

4 0 0 0 0 1 0 0 0 0 1

Write a vector of the polynomial weights for x(¢), expand the polynomial weights, taking care to
write the terms in ascending powers of ¢, and factor the vector as Msu(?):

=33 33 [ 1 3 3 -1
1| 4-6:+38 114 0 -6 3|1 114 0 -6 3
6l 1aaea? o3t | 6|1 3 3 32| MO M=ol 3 -3

3 0 0 0 1|z 0 0 0 1

®

True. See equation (2).

b. False. Example 1 shows that the tangent vector x'(¢) at p, is two times the directed line segment
from po to p;.

c. True. See Example 2.

a. False. The essential properties are preserved under translations as well as linear transformations.

See the comment after Figure 1.
b. True. This is the definition of G° continuity at a point.

c. False. The Bézier basis matrix is a matrix of the polynomial coefficients of the control points.
See the definition before equation (4).

a. From(12), q; -q, = %(131 —-Py) :%Pl _%Po- Since q, =p,, q :%(Pl +Pg)-
From (13), 8(q3s —q2) =—Po—Pp1 + P2+ Ps. S0 8qs +po+ p1—p2—P; =8qa.
c. Use (8) to substitute for 8qs, and obtain
8¢2=(po +3p1 +3p2 T p3) T Po+ P —P2—Ps = 2po t4p:1 +2p;
Then divide by 8, regroup the terms, and use part (a) to obtain
q :%Po +%P1 +%P2 = (ﬁpo +%P1)+(%P1 +%P2) =%‘l1 +%(P1 +Ppy)
=%(‘]1 +%(P1 +p2))

a. 3(r;—r1;) =12/(1), by (9) with z'(1) and r; in place of x/(1) and p;.
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15. a.

z'(1)=.5x'(1), by (11) with = 1.
S5x/(1) = (.5)3(ps — p2), by (9).
From part (a), 6(rs —1r2) = 3(ps = P2), r3—r; =+p; —1p,.and r; —Lp; +1p, =r,.
Since r; = ps, this equation becomes r, = 1-(p; +p,)-
3(r1 — ry) =2'(0), by (9) with z'(0) and r; in place of x'(0) and p;.
z'(0) = .5x'(.5), by (11) with = 0.
Part (c) and (10) show that 3(r — 1) = 3 (~po — p1 + p2 + p3). Multiply by £ and rearrange to
obtain 8r; =—po—p; + p2 + p; + 8r.
From (8), 8ro = po + 3p: + 3p2 + p;. Substitute into the equation from part (d), and obtain
8r; = 2p; + 4p, + 2ps. Divide by 8 and use part (b) to obtain
=P+ 3Pyt 4Ps = (4Pt 4P2) 4 (P2t P3) =35 (P +P2) + 31y
Interchange the terms on the right, and obtain r; = %[r2 + %(p1 +py)].

From (11), y'(1) = .5x'(.5) = z'(0).

Observe that y'(1) = 3(q; — q2). This follows from (9), with y(#) and its control points in
place of x(7) and its control points. Similarly, for z(¢) and its control points, z'(0) = 3(r; — ry).
By part (a) 3(q; — q2) = 3(r; — ry). Replace ry by (3, and obtain 3 — q» = r; — q3, and hence
q3=(q2t1)/2.

Set q¢ = po and r; = p;. Compute q; = (po + p1)/2 and r, = (p, + p3)/2. Compute m = (p; + p,)/2.
Compute q, = (q; + m)/2 and r; =(m + r;)/2. Compute q; =(q, +r;)/2 and setry,=qs3.

16. A Bézier curve is completely determined by its four control points. Two are given directly: py =
x(0) and p; = x(1). From equation (9), x'(0) = 3(p; — po) and x'(1) = 3(p; — p2). Solving gives

Pi=pot 1x'(0) and p,= ps— 1x'(1).

17. a.

The quadratic curve is w(?) = (1 — ) *po + 24(1 — £)p; + t* p,. From Example 1, the tangent
vectors at the endpoints are w/(0) = 2p; — 2po and w'(1) = 2p, — 2p;. Denote the control
points of x(¢) by ry, ry, I, and r;. Then

ro=x(0)=w(0)=po and r;=x(1)=w(l)=p;
From equation (9) or Exercise 3(a) (using r; in place of p;) and Example 1,

=3ry + 3r; =x'(0) =w'(0) = 2p; — 2po

2p; -2
SO —potr = % and
+2
r = Po 3 P (l)
Similarly, using the tangent data at # = 1, along with equation (9) and Example 1, yields
=3r, +3r;=x'(1)=w/'(1) = 2p, — 2py,
2p, -2 2p, -2
= P2 —<P; = py- P> — 2Py . and
3 3
2
I = P ;' P> (i)
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8.6 + Solutions 8-29

Write the standard formula (7) in this section, with r; in place of p; for i = 1, ..., 4, and then
replace ry and r; by po and p», respectively:
x(1)=(1-3t+32 - )po+ (3t — 68 + 3, + 37 - 3)r, + £°p, (iii)
Use the formulas (i) and (if) for r; and r, to examine the second and third terms in (iif):
(Bt —61> +36 ) =1 (3t — 61" +3)p, + 2 (3t — 61" +31))p,
=(t =26 +17)py + (2t —41* +20°)p,
(3t* =30, =2 (3> -38)p, +1(3¢* -31)p,

=262 =20)p, + (= )p,
When these two results are substituted in (ii7), the coefficient of py is
(1-3t+32 -+ (=202 +)=1-2t+1>=(1 - 1)
The coefficient of p; is
Qt =4 +26°) + 217 = 20%) =2t = 21> =241 — 1)
The coefficient of p, is (¢ — £°) + £ = % So x(r) = (1 — £)’po + 24(1 — £)p; + t*p,, which
shows that x(¢) is the quadratic Bézier curve w(?).

Po
—3po +3p;
3py —6p; +3p,
—Po +3p; —3p, +P3
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