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The formation of a blast wave by a very intense explosion
I. Theoretical discussion

By Sib Geoffrey Taylor, F.R.S.

( 860ctober 1949)

Summary and introduction

This paper was written early in 1941 and circulated to the Civil Defence Research
Committee of the Ministry of Home Security in June ofthat year. The present writer
had been told that it might be possible to produce a bomb in which a very large
amount of energy would be released by nuclear fission—the name atomic bomb had
not then been used—and the work here described represents his first attempt to form
anidea ofwhat mechanical effects might be expected if such an explosion could occur.
In the then common explosive bomb mechanical effects were produced by the sudden
generation of a large amount of gas at a high temperature in a confined space. The
practical question which required an answer was: Would similar effects be produced
if energy could be released in a highly concentrated form unaccompanied by the
generation of gas? This paper has now been declassified, and though it has been
superseded by more complete calculations, it seems appropriate to publish it asit was
firstwritten, without alteration, except for the omission ofa few lines, the addition of
this summary, and a comparison with some more recent experimental work, so that
the writings of later workers in this field may be appreciated.

An ideal problem is here discussed. A finite amount of energy is suddenly released
in an infinitely concentrated form. The motion and pressure of the surrounding air is
calculated. It is found that a spherical shock wave is propagated outwards whose
radius B is related to the time t since the explosion started by the equation

R = S(y)t*Eip~™,

where pGs the atmospheric density, E is the energy released and a calculated

function ofy, the ratio of the specific heats of air.

The effect of the explosion is to force most of the air within the shock front into a
thin shell just inside that front. As the front expands, the maximum pressure de-
creases till, at about 10atm., the analysis ceases to be accurate. At 20atm. 45 % of
the energy has been degraded into heat which is not available for doing work and used
up in expanding against atmospheric pressure. This leads to the prediction that an
atomic bomb would be only half as efficient, as a blast-producer, as a high explosive
releasing the same amount of energy.

In the ideal problem the maximum pressureis proportional to R~3,and comparison
with the measured pressures near high explosives, in the range of radii where the two
might be expected to be comparable, shows that these conclusions are borne out by
experiment.
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Similarity assumption

The propagation and decay of a blast wave in air has been studied for the case
when the maximum excess over atmospheric pressure does not exceed 2atm. At
great distances Bfrom the explosion centre the pressure excess decays ac
wave proportionally to R -\ At points nearer to the centre it decays more rapidly
than jR-1 When the excess pressure is 0*5atm., for instance, a logarithmic plot shows
that it varies as B~10. When the excess pressure is 1*5atm. the decay is proportional
to B~28ltisdifficultto analyze blast waves in air at points near the explosion centre
because the initial shock wave raises the entropy ofthe air it traverses by an amount
which depenas on the intensity of the shock wave. The passage of a spherical shock
wave, therefore, leaves the air in a state in which the entropy decreases radially so
that after its passage, when the air has returned to atmospheric pressure, the air
temperature decreases with increasing distance from the site of the explosion. For
this reason the density is not a single-valued function of the pressure in a blast wave.
After the passage ofthe blastwave, the relationship between pressure and density for
any given particle of air is simply the adiabatic one corresponding with the entropy
with which that particle was endowed by the shock wave during its passage past it.
For this reason it is in general necessary to use a form ofanalysis in which the initial
position of each particle is retained as one of the variables. This introduces great
complexity and, in general, solutions can only be derived by using step-by-step
numerical integration. Onthe other hand, the great simplicity which has been intro-
duced into two analogous problems, namely, the spherical detonation wave (Taylor
1950) and the air wave surrounding a uniformly expanding sphere (Taylor 1946), by
assuming that the disturbance is similar at all times, merely increasing its linear
dimensions with increasing time from initiation, gives encouragement to an attempt
to apply similar principles to the blast wave produced by a very intense explosion in
a very small volume.

It is clear that the type of similarity which proved to be possible in the two above-
mentioned problems cannot apply to a blast wave because in the latter case the
intensity must decrease with increasing distance while the total energy remains
constant. In the former the energy associated with the motion increased proportion-
ally tp the cube of the radius while the pressure and velocity at corresponding points
was independent of time.

The appropriate similarity assumptions for an expanding blast wave of constant
total energy are

pressure, p/pQ=y = D
density, pfp0= Xr, )
radial velocity, u = 3)

where B is the radius of the shock wave forming the outer edge of the disturbance,
Pgand Pgare the pressure and density ofthe undisturbed atmosphere. Ifristhe radial
co-ordinate, ij = r/E and fv $x and \¥ are functions of 7. It is found that these

assumptions are consistent with the equations of motion and continuity and with the
equation of state of a perfect gas.
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The equation of motion is pQdy
dt NV dr

d d
Substituting from (1), (2) and (3) in (4) and writing/”~, ${for ~ /i,

-(iNMI+#)IH A+ if-(Ni+ M) =o. (5)
This can be satisfied if Adt = AB,
Ais a constant, and
-A{fa+nM +M i+f/j-0O. (7
The equation of continuity is
dp dp Idu 2a\ Qv
Tt+uf +f[~+T) =0- 8)

Substituting from (1), (2), (3) and (6), (8) becomes

-AVr+r<ib + 4 «+ |sd) = o 9)

The equation of state for a perfect gas is

(i+*1) twrl)* 0- <10
wherey is the ratio of specific heats.
Substituting from (1), (2), (3) and (6), (10) becomes

AZfi+ VIl +~j;'Ir{-A¥ 0.
The equations (7), (9) and (11) may be reduced to a non-dimensional form by
substituting f-Aa'lA’, (12)

4>~4>JA, (I1S)

where a is the velocity of sound in air so that a* = yp0//\VV The resulting equations
which contain only one parameter, namely, y, are

=N -]0> (7a)
tL - &+ (90)
v-t *
3f+yf+ A -f(-vI>)< =o. (11®)

Eliminating \) from (11a) by means of (7a) and (9a) the equation for calculating/*
when/, € and 4 are given is

iV - 0)2-FIf) - /{- 32/+0(3+ly)- A<B2rj}. (14)
112

(11)
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When/' has beenfound from (14), can be calculated from (7a) and hence f from
(9a). Thus if for any value of y,f, $and ~ are known their
step-by-step for other values of y.

Shock-wave conditions

The conditions at the shock wave y= 1 are
relations which may be reduced to the form
pxy -1 +(y+l)y+ (15)
Po y+ 1+ (ydyi*
N o= ALr-i+(r+i)yi}. <i«)
% % i-i) (17)

Uu r-i+t(r+i)»r

where px, % and yxrepresent the values ofp, u and y immediately behind the shock
wave and U = dRjdT is the radial velocity of the shock wave.

These conditions cannot be satisfied consistently with the similarity assumptions
represented by (1), (2) and (3). Onthe other hand, whenyxis large so that the pressure
is high compared with atmospheric pressure, (15), (16) and (17) assume the approxi-
mate asymptotic forms

Po 7-1
L 2 y
W o=y + IV (16a)
ux 2
U~y+1* (17a)
These approximate boundary conditions are consistent with (1), (2), (3) and (6); in
fact (15a) yields, for the conditions at y= 1,
AL (166)
16a) yields = 166
(16a) y = o741 27 (166)
and (17a) yields 0= 2 . (176)
Energy
The total energy Ebthe disturbance may be regarded as consisting
the kinetic energy R

K.E. —4&j \pu22dr,

and the heat energy H.E. = i7j[ 7"1 dr.
0 -
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In terms of the variables/, 0, frand y
E = 4nA2*pO™ f(j>32 dy+  JON <)Y
or sincep0= adjy, E = BpOA2 where is a function of y only whose value is
(18)

Since the two integrals in (18) are both functions ofy only it seems that for a given

@ value of y, AZ2is simply proportional to E/pO.

&

%‘ Numerical solution for y —1-4

% When y = 1-4 the boundary values off, $&d at 1 are from (15a), (16a).

L (17a), f, f and 6. Values off, pand i}y were calculated fromy = 1-0to yx—0*5, using

q intervals of 0-02 in y.Starting each step with values off*, /, and xrfound
5 previous steps, values o ff, <f and fifat the end of the in

S, assuming that the previous two values form a geometrical progression with the pre-

S dicted one; thus the 5+ I)th term, f8in a series of

218+ = {f8)Afs-v With this assumed value the mean value off" in the 5th interval was
& taken as K/s+i+/«) an(l increment in / was taken as (0-02) (|) The
= Vvalues of f's+1, gB+xand i"8+xwere then calculated from formulae (14), (7a) and (9a).
If they differed appreciably from the predicted values a second approximation was
worked out, replacing the estimated values of '8t by this new calculated value. In

but in the later stages the estimated value was so close to the calculated one that the
value o ff calculated in this first approximation was used directly in the next stage.

The results are given in table 1 and are shown in the curves of figure 1. These
curves and also table 1 show three striking features: (a) the <f curve rapidly settles
down to a curve which is very nearly a straight line through the origin, (6) the density

of the density of the undisturbed atmosphere, (c) the pressure becomes practically
constant and equal to 0*436/1*167 = 0*37 of the maximum pressure. These facts
suggest that the solution tends to a limiting form as y decreases in which
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<4 —c =constant,/ = 0*436,/', ¥rand dr' become small. Substituting for 1f from
(7a), (14) becomes !
= VIV + o+ (3+ (19)
Dividing by y —€19) becomes
(20)

Ifthe left-hand side which contains/7/be neglected the approximate solution of (20)
for which $vanishes at y —0is

curve yrrapidly approaches the axis X¥r—0, in fact at

the early stages of the calculation near = 1ltwo or three

(
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1166+

Figube 1 - curves/ and ¥r (step-by-step calculation); — + — , curve/ (approximate
formulae). In the other curves the small dots represent the steps of the calculations, the
larger symbols represent approximate formulae for: A, curve O, curve
s, CUrVeijr.

Table 1. Step-by-step calculation fob y —1*4

\Y% / 0 $
1-00 1*167 0*833 6*000
0*98 0*949 0*798 4*000
0*96 0*808 0*767 2*808
0*94 0*711 0*737 2*052
0-92 0*643 0*711 1*534
0-90 0*593 0*687 1*177
0-88 0*556 0*665 0*919
0-86 0*528 0*644 0*727
0*84 0*507 0*625 0*578
0*82 0*491 0*607 0*462
0-80 0*478 0*590 0*370
0*78 0*468 0*573 0*297
0-76 0*461 0*557 4 0*239
0-74 0*455 0*542 0*191
0-72 0*450 0*527 0*152
0-70 0*447 0*613 0*120
068 0*444 0*498 0*096
0-66 0*442 0*484 0*074
064 0*440 0*470 0*058
0*62 0*439 0*456 0*044
0-60 0*438 0*443 0*034
0-68 0*438 0*428 0*026
0*56 0*437 0*416 0019
0-64 0*437 0*402 0*014
0*62 0*437 0*389 0*010

0*60 0*436 0*375 0*007
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The line $= rjjy is shown in figure 1. It will be seen that the points calculated by the
step-by-step method nearly runinto this line. The difference appears to be due to the
accumulation of errors in calculation.

Approximate formulae

The fact that the $>curve seems to leave the straight line $= rather rapidly
after remaining close to it over the range ¥ = 0 to 7 = 0-5 suggests that an approxi-
mate set of formulae might be found assuming

T}
§ 0= yly+ay1(22)
%awhere rsi a positive number which maj”™ be expected to be more than, say, 3or 4. If
S this formula applies at y =1,
3
e 1 2 y-1.
Tva = _ or ; 23
ﬁ y y+1 7(7+1) (23)
5 inserting 0 = rily+a”™n, $—1 jy + naftin~in (20)
§’f'\f —ocy(n+ 2)(y+1)I(y—). From (14) and (156), (166), (176) the true value of
% \ . 2y2+ 7y—3 .
2/*/lat 7= 1is v i Equating these two forms,
B 7y —
2 = =t
5 n= yo—i (29)
a

%’The values of ccand n have now been determined to give the correct values of f'If;
'S Pand £aty = 1, \¥is determined by (9a) so that all the six correct values of/, 33 \jry

/', 0', \I are consistent with (22) at fj=1. Substituting for |
" ( n+ 2) ~2
oy B
The integral of (25) which gives the correct value of/at lis
_ 2y  2y2+7y-3.
log/ = Iog.yJrl 7—y (26)

At 7= 0-5 this gives/ = 0*457 when y = 1*4. The value calculated by the step-by-
step integration is 0*436, a difference of 5 %o.

The approximate form for ~ might be found by inserting the approximate forms
for ¢-and < in (9a). Thus
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3+](n+ 2) ooyrjlt 1

lo —o 27
g 7%y (y-i)v—~yp @

Integrating this and substituting for a from (23),
logwr=1logZ+j+JL logv- 2 log j (28)

When i} is small this formula gives
tir —Dg3*~1 (29)
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where logD - log2+|-2iiz5bg (™). (30)

Wheny = 1*4 (30) gives D —1*76 so that
tr = 1*76"\78. (29a)

At N —0*5 this gives \F—0*0097; the step-by-step calculation gives \ —0*0073.
At 4= 0*8 formula (28) gives \k —0*387, while table 1 gives ijr= 0*370. At = 0*9
formula (28) gives \jr —1*24, while the step-by-step solution gives 1*18. Some points
calculated by the approximate formulae are shown in figure 1.

In the central region of the disturbance the density decreases proportionally to
f3Ay-D; the fact that the pressure is nearly constant there means that the temperature
increases proportionally to /*-3Ar-D. At first sight it might be supposed that these
veiy high temperatures involve a high concentration of energy near the centre. This
is not the case, however, for the energy per unit volume of a gas is simply p/(y —1) so
that the distribution of energy is uniform.

Values of/, 0 and xrfor y —F calculated by the approximate form
table 2.

Table 2. Approximate calculation y= 1*666

\ / + rfr
1*00 1*250 0-750 4-00
0-95 0*892 0-680 2-30
0*90 0-694 0-620 1*14
0-80 0-519 0-519 0-63
0-70 0-425 0-445 0-29
0*50 0-379 0-300 0-05
0*00 0-344 0-000 0-00

B last wave expressed in terms of the energy of the explosion

It has been seen in (18) that E/pOA 2s a function ofy or
tegrals in (18) for the case fory = 1*4, and using the step-by-step calculations, it is
found that

J rjz42fd7i = 0¥185 and J* = 0*187.

The kinetic energy of the disturbance is therefore

K.E. = 27T(0*185)p0Aa= 1*16450A2 (31)
while the heat energy is
ar
H E -= (1-4) (0-4) <°-187>A>" = 4'190ft"2; (32)

the’total energy is therefore
E = 5*36p0A2 (33)
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Pressure
The pressure p at any point is

b= p0 R-3~ = R~3~ ~ = 0-13

The maximum pressure at any distance corresponds with/ = 1-166 at = R. This is
therefore Pm&x= 0-15(35)

Velocity of air and shock wave

The velocity u of the gas at any point is

u =R~*A(> = R-* E*(BpOy-i<f> (3
The velocity of radial expansion of the disturbance is, from (6),
JP
£ = AH-< = R-*Ei(Bp0)-t, (37)
so that, if t6 the time since the beginning of the explosion,
t = %R*{BpOtE-1=0-926 *, (38)

when y —1-4.
The formulae (34) to (38) show some interesting features. Though the pressure
wave is conveyed outwards entirely by the air the magnitude of the pressure depends
only on ER3and not on the atmospheric density p0. The time scale, however, |
proportional to p\. It is of interest to calculate the pressure-time relationship for
a fixed point, i.e. the pressure to which a fixed object would be subjected as the blast
wave passed over it. If tOis the time since initiation taken for the wave to reach
radius ROthe pressure at time t at radius ROis given by

where p xis the pressure in the shock wave as it passed over radius ROat the time tQ
R is the radius of the shock wave at time t and 4 —RJR. [f]Jv*xis the maximum
value of/, namely, 1-166 when y —3-4. y is related to t/tOtt

y=(tjt)* and (7= (40)

Values of p/pxcalculated by (40) for y =1-4 are shown in figure 2.

Figure: 2. Pressure-time curve at a fixed point.
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Temperature
The temperature Tat any point is related to the pressure and der
lationshi T -33ER~ .
relationship ) ) §_§_§__ R~3 wheny — 1+, (4,1\5
TBop Pot
Since/tends to a uniform value 0*436in the central region (r < %R) and ~ tends to the
value ijr= 1-7 Ttends to the value
~R)* %
T ER~®*133) (0*436) —Z%QI%ZT*ER-*ﬁ-?*. (42)
t,~ n |-™ v Po

Thus the temperature near the centre is very high; for instance, when the wave has
expanded to such a distance that the pressure in the central region is reduced to
atmospheric pressure, p0= (0*133) (0*436) ER~3, then (42) gives T/T0= ?p7y1*76
and at y= (%6, y-™= 181 so that T/TO= 103. If TO= 273°, T =
temperature left behind by the blast wave is therefore very high, but the energy
density is not high because the density of the gas is correspondingly low.

Heat energy left in the air after it has returned to atmospheric pressure

The energy available for doing mechanical work is less than the total heat energy of
the air. The heated air left behind by the shock wave can in fact only do mechanical
work by expanding down to atmospheric pressure, whereas to convert the whole of
the heatenergyinto mechanical work by adiabatic expansion the air would have to be
expanded to an infinite extent till the pressure was zero. After the blast wave has
been propagated away and the air has returned to atmospheric pressure it is left at
atemperature Txwhich is greater than TO, the atmospheric temperature. The ¢
required to raise the temperature ofairfrom to Tjis therefore leftin the atmosphere
in a form in which it is not available for doing mechanical work directly on the
surrounding atmosphere. This energy, the total amount of which will be denoted by
Ex is wasted as a blast-wave producer.

The energy so wasted at any stage of the disturbance can be calculated by finding
the temperature Txto which each element of the blast wave would be redt
were expanded adiabatically to atmospheric pressure. If T is the temperature of an
element of the blast wave

Also
To Pop t 3
hence Tx fUy (A*R-*\Vv .
The total heat energy per unit mass of air at temperature Txis
_TA X (gas constant)' = ;-_-.TOVA

y-i s (7-DA>Zo
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Theincrease in heat energy per unit mass over that which the air contained before the

passage of the disturbance is therefore & ) The increase per unit
iy-i)(Pog)fi"™ ) -

volume ofgas within the disturbed sphere is therefore —I) - Hence from (43)

the total energy wasted when the sphere has expanded to radius is

Et=4 3{I (N r-)Lr- %) (44)

This expression may conveniently be reduced to non-dimensional form by dividing
by the total energy E of the explosion which is related to A by the formula (18).
After inserting a2y for pQjp0, this gives

4
E B{y-Dy (2" ) i (45)
%npOR 3is the total mass of air in the sphere of radius R. This isalso drj,
so that .
j~Mrndy= £
The quantity A 2R~3as related to the maximum pressure  at the shock v
the equation d2p-3 bi "

Vi— — U I»-i»

where yxis the pressure in the shock wave expressed in atmospheres. (46) therefore
reduces to N 4,

1 ~By(y-yd 7'M kg reel <A7)
Fory 1-4 numerical integration gives
B= 6-36 (see (18)), = 1-166, 7= 0-219.

(47) reduces therefore to
§ =i-[0-958<»‘-1-63]. (48)

Some values of EJE are given in the second line of table 3.

It is clear that EXE must continually increase as R increases, and yx decreases
because the contribution to E"ue to the air enclosed in the shock-\
its radius is R2 say, remains unchanged when this air subsequently expands. A
further positive contribution to Exis made by each subsequent layer of air included

Table 3
yx (atm. at shock wave) 10,000 1,000 100 50 20 10* 5*
EJE (proportion of 0-069 0-132 0-240 0-281 0-325 0-333*  0-28*
energy wasted)
(Ex+Et)/E 0-096 0-189 0-337 0-393 0-455 — -

* Formulae inaccurate when yx< 10.
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within the disturbance. The fact that formula (48) gives a value of which in-
creases till yxis reduced to 10 and then subsequently decreases is due to the in-
accuracy of the approximate boundary conditions (15a), (16a) and (17a), which are
used to replace the true boundary conditions (15), (16) and (17).

Wheny —1*4and yx= 10the true value of is 3*Binstead of 6*0as is assumed,

the true value of U2a28*7instead of 8*6and the true value  is 0*74inste
0*83.
When y»= 5the errors are much larger, namely, is 2*8instead of 6*0, U2z

4*4 instead of 4*3, and uxU is 0*64 instead of 0*83. The proportion of the energy
wasted, namely, EXE, is shown as a function of in figure 3, yxbeing plotted on
a logarithmic scale.

Figure 3. Heavy line, (EN"EJ/E; thin line EJE. (Ex+Et)/E is the proportion of the
initial energy which is no longer available for doing work in propagation. EJE is the

work done by heated air expanding against atmospheric pressure (see note added October
1949 (p. 172)).

It will be seen that the limiting value of EJE is certainly greater than 0*32, its
value for yx—20. It is not possible to find out how much greater without tracing the

development of the blast wave using laborious step-by-step methods for values of
less than, say, 10 or 20.

Comparison with high explosives

The range within which any comparison between the foregoing theory and the
blast waves close to actual high explosives can be made is severely limited. In the
first place the condition that the initial disturbance is so concentrated that the mass
ofthe material in which the energy is originally concentrated is small compared with
the mass of the air involved in the disturbance at any time limits the comparable
condition during a real explosion to one in which the whole mass of air involved is
several times that of the explosive. In the second place the modified form of the
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shock-wave condition used in the analysis is only nearly correct when the rise in
pressure at the shock-wave front is several—say at least 5 or 10—atmospheres. Ina
real explosive this limits the range of radii of shock wave over which comparison could
be made to narrow limits. Thus with 101b. of C.E.* the radius R at which the weight
of explosive isequal to that of the air in the blastwave is 3ft., while at 3*8ft. the airis
only double the weight of the explosive. The pressure in the blast wave at a radius of
6 ft. was found to be 9atm., while at 8ft. it was about 5atm. It seems, therefore, that
in this case the range in which approximate agreement with the present theory could
be expected only extends from 3-8 to 6ft. from the 101b. charge.

Taking the energy released on exploding C.E. to be 0-95kcal./g. the energy
released when 101b. is exploded is 1-8 x 1014ergs. If this energy had been released
instantaneously at a point as in the foregoing calculations the maximum pressure at
distance R given by (35) is

pm&®= (0-155) (1-80 x 1014) = 2-79 x 1013ergs. (49)
Expressed in terms of atmospheres pmex is identical with If R isexpressed in
feet, (49) becomes 9.7 108

<5 0 >

The line representing this relationship on a logarithmic scale is shown in figure 4.

iJ=17ft.
range for
comparison
i?7= 3-8 ft.

14
I°gio Vi (atm.)
Figure 4. Blast pressures near 10 Ib. charge of C.E. compared with calculated blast pressures

due to instantaneous release of energy of 10 Ib. C.E. at a point. The numbers against the
points on the curve give distances in feet.

Though no suitable pressure measurements have been made, the maximum
pressure in the blast from 101b. of C.E. has been found indirectly by observing the
velocity of expansion of the luminous zone and, at greater radii, the blast-wave front.
These values taken from a curve given in a report on some experiments made by the
Road Research Laboratory are given in table 4. The observed values of U in ft./sec.
given in column 2 of this table and the values of  (in atmospheres) found from the

* C.E. is the name by which a certain high explosive used in many experiments by the
Ministry of Home Security was known.
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shock-wave formulae are given in column 3, where they are described as observed
values though they were not observed directly. The ‘observed’ values are shown in
figure 4. The values ofyxcalculated from (50) are given in column 4.

Table 4
yX (atm.) calculated for
observed with concentrated explosion
R (ft.) U (ft./sec.) C.E. by (50)
8 2350 6-2 _
6 3100 9-3
5 3800 14-0 ~ 9 lrange of
4 4820 22%6 15*5J comPar’son
3 6200 37*5 _
2 8540 71*8 -

Though the observed values are higher than those calculated, it will be noticed that
in the range ofradii 3*8to 6 ft., in which comparison can be made, the observed curve
is nearly parallel to the theoretical line yx 990.
intensity ofthe shock wave varies nearly as the inverse cube.ofthe distance from the
explosion. The fact that the observed values are about twice as great as those calcu-
lated on the assumption that the energy is emitted instantaneously at a point may
perhaps be due to the fact that the measurements used in table 4 correspond with
conditions on the central plane perpendicular to the axis of symmetry of the
cylindrical charge used. The velocity of propagation of the luminous zone is greater
on this plane and on the axis of symmetry than in other radial directions so that the
pressures deduced in column 3 of table 4 are greater than the mean pressures at the
corresponding radii.

On the other hand, it has been seen that by the time the maximum pressure has
fallen to 20 atm:, 32% ofthe energy has been left behind in the neighbourhood of the
concentrated explosive source, raising the air temperature there to very high values.
The burnt gases of a real high explosive are at a very much lower temperature even
while they are at the high pressure ofthe detonation wave. Their temperature is still
lower when they have expanded adiabatically to atmospheric pressure, so that little
heat energy is left in them. To this extent, therefore, a real high explosive may be
expected to be more efficient as a blast producer than the theoretical infinitely con-
centrated source here considered.

Note dOctober 1949. The data on which the comparison was based between
the pressures deduced by theory and those observed near detonating explosives were
obtained in 1940. More recent data obtained at the Road Research Laboratory
using a mixture of the two explosives R.D.X. and T.N.T. have been given by Dr
Marley. These are given in table 5, which shows the values of U observed for various

Table 5. Pressure yjj>0a distance R from explosion of v
T.N.T.-R.D.X. mixture
R/W=* (ft./Ib.1) 0*5 1*0 1*5 2*0/ 2*5 3*0 3*5
U (thousands ft./sec.) 14*3 110 8*4 6*6 5%1 4*0 3*3
yX(atm.) 198 117 68*3  42*0 5% 15%4  10%5

R/Ei x 10*(cm./erg8*) 5*39 10*8 16*2 21*5 270 32%4 37*8
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values of RIW*. It the distance from the explosive is expressed in feet and W its
weight in pounds. The third line in table 5 shows the result of deducing from U
rising y —1-4 in (16) and a —IlOOft./sec. in (16).

For comparison with the concentrated point-source explosion, the value of *
expressed in cm. (erg.)-*is found by multiplying the figures in line 1, table 6, by

-—— — = 1-078 x 10-3. The first factor converts ft. (Ib.)~* to
(464)** (1200 x 4*2 x 107)*

cm. (g.)~*, and the second replaces 1g. by the equivalent energy released by this
explosive, namely, 1200cal. The values of RE~* are given in line 4, table 6. In
figure 6 values of log10yxare plotted against log10 and the theoretical values
for a point source of the same energy as the chemical explosive are plotted in the
same diagram. Comparing figures 4 and 5 it seems that the more recent shock-wave
velocity results are qualitatively similar to the older ones in their relation to the
point-source theory. The range of values of  for which comparison between theory
and observation might be significant, is marked in figure 5.

range for
comparison

Figure 5. Blast pressures near a chemical explosive (R.D.X.+ T.N.T.) compared with
theoretical pressure for concentrated explosion with same release of energy. Heavy line
(upper part) is taken from shock-wave velocity measurements. Heavy line (lower part) is
from piezo-electric crystals. Thin line, y, = Q-155E/(p(Rz). The figures against the points
represent the ratio of the mass of the air within the shock wave to the mass of the explosive.

It will be seen that the chemical explosive is a more efficient blast producer than
a point source of the same energy. The ratio of the pressures in the range of com-
parison is about 3to 1. This is more than might be expected in view ofthe calculation
of EJE as a function of yxwhich is given in table 3. Exis the heat energy which
is unavailable for doing mechanical work after expanding to pressure p0. Of the

remaining energy, E —E& part E2is used in doing work against at

pressure during the expansion of the heated air. The remaining energy, namely,
E —Ex—E2, is available for propagating the blast wave. ,
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To find B4 the work done by unit volume of the gas at radius i}R in expanding to

atmospheric pressure is (ip~~~ 1jl2V ~rom (4?)
* va-y)f SARS |
Tx 1A* Ay P, ARS
20 «2
hence i\ - i} vdy, (61)
but A2 so that

() !
AnRD{
<52)

The first integral has already been calculated and found to be 0*219 when y —1*4
(see (47) and (48)). Substituting for pnaxfrom (35),

0*219M:-r~ 1M

= 48(0"155) [ (ys5r0y

M (53)

Values of (E2+ EX)/E have been added as a third line in table 3 and a corresponding
curve to figure 3.
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