
The formation of a blast wave by a very intense explosion 
I. Theoretical discussion

B y  Sib  Geoffrey Taylor, F.R.S.

( Received6 October 1949)

Summary and introduction

This paper was written early in 1941 and circulated to the Civil Defence Research 
Committee of the Ministry of Home Security in June of that year. The present writer 
had been told that it might be possible to produce a bomb in which a very large 
amount of energy would be released by nuclear fission—the name atomic bomb had 
not then been used—and the work here described represents his first attempt to form 
an idea of what mechanical effects might be expected if such an explosion could occur. 
In the then common explosive bomb mechanical effects were produced by the sudden 
generation of a large amount of gas at a high temperature in a confined space. The 
practical question which required an answer was: Would similar effects be produced 
if energy could be released in a highly concentrated form unaccompanied by the 
generation of gas? This paper has now been declassified, and though it has been 
superseded by more complete calculations, it seems appropriate to publish it as it was 
first written, without alteration, except for the omission of a few lines, the addition of 
this summary, and a comparison with some more recent experimental work, so that 
the writings of later workers in this field may be appreciated.

An ideal problem is here discussed. A finite amount of energy is suddenly released 
in an infinitely concentrated form. The motion and pressure of the surrounding air is 
calculated. It is found that a spherical shock wave is propagated outwards whose 
radius B  is related to the time t since the explosion started by the equation

R  =  S(y)t*Eip^,

where p0 is the atmospheric density, E  is the energy released and a calculated
function of y, the ratio of the specific heats of air.

The effect of the explosion is to force most of the air within the shock front into a 
thin shell just inside that front. As the front expands, the maximum pressure de­
creases till, at about 10atm., the analysis ceases to be accurate. At 20atm. 45 % of 
the energy has been degraded into heat which is not available for doing work and used 
up in expanding against atmospheric pressure. This leads to the prediction that an 
atomic bomb would be only half as efficient, as a blast-producer, as a high explosive 
releasing the same amount of energy.

In the ideal problem the maximum pressure is proportional to R~3, and comparison 
with the measured pressures near high explosives, in the range of radii where the two 
might be expected to be comparable, shows that these conclusions are borne out by 
experiment.
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160 Sir Geoffrey Taylor

Similarity assumption

The propagation and decay of a blast wave in air has been studied for the case 
when the maximum excess over atmospheric pressure does not exceed 2 atm. At 
great distances B  from the explosion centre the pressure excess decays as in a sound 
wave proportionally to R - \  At points nearer to the centre it decays more rapidly 
than jR-1. When the excess pressure is 0*5 atm., for instance, a logarithmic plot shows 
that it varies as B~10. When the excess pressure is 1*5 atm. the decay is proportional 
to B~2'8. It is difficult to analyze blast waves in air at points near the explosion centre
because the initial shock wave raises the entropy of the air it traverses by an amount 
which depenas on the intensity of the shock wave. The passage of a spherical shock 
wave, therefore, leaves the air in a state in which the entropy decreases radially so 
that after its passage, when the air has returned to atmospheric pressure, the air 
temperature decreases with increasing distance from the site of the explosion. For 
this reason the density is not a single-valued function of the pressure in a blast wave. 
After the passage of the blast wave, the relationship between pressure and density for 
any given particle of air is simply the adiabatic one corresponding with the entropy 
with which that particle was endowed by the shock wave during its passage past it. 
For this reason it is in general necessary to use a form of analysis in which the initial 
position of each particle is retained as one of the variables. This introduces great 
complexity and, in general, solutions can only be derived by using step-by-step 
numerical integration. On the other hand, the great simplicity which has been intro­
duced into two analogous problems, namely, the spherical detonation wave (Taylor 
1950) and the air wave surrounding a uniformly expanding sphere (Taylor 1946), by 
assuming that the disturbance is similar at all times, merely increasing its linear 
dimensions with increasing time from initiation, gives encouragement to an attempt 
to apply similar principles to the blast wave produced by a very intense explosion in 
a very small volume.

It is clear that the type of similarity which proved to be possible in the two above- 
mentioned problems cannot apply to a blast wave because in the latter case the 
intensity must decrease with increasing distance while the total energy remains 
constant. In the former the energy associated with the motion increased proportion- 
ally tp the cube of the radius while the pressure and velocity at corresponding points 
was independent of time.

The appropriate similarity assumptions for an expanding blast wave of constant 
total energy are

pressure, p/pQ =  y = (1)
density, pfp0 =  xjr, (2)
radial velocity, u = (3)

where B is the radius of the shock wave forming the outer edge of the disturbance, 
Pq and Pq are the pressure and density of the undisturbed atmosphere. If r is the radial 
co-ordinate, ij = r/E and f v  <f>x and \Jr are functions of 7. It is found that these 
assumptions are consistent with the equations of motion and continuity and with the 
equation of state of a perfect gas.
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The equation of motion is pQ dy .
dt ^ 'V' dr 
d d

Substituting from (1), (2) and (3) in (4) and writing/^, <j>[ for ^ / i ,

- ( i ^ I+ # ; ) i H ^ + i f - ‘( ^ i + ^ | )  =  o. (5)

This can be satisfied if ^  =* A (6,dt
where A  is a constant, and

-A { fa  + n M + M i + f / j - O .  (7)
The equation of continuity is

dp dp Idu  2a\ /Qv
T t+ u £ + f,[ ^ + T )  =  0- (8)

Substituting from (1), (2), (3) and (6), (8) becomes

- A Vr + r < i 5 , + 4 « + | s>i) =  o. (9)

The equation of state for a perfect gas is

( i + “ l ) twr1’) “ 0- <10)

where y  is the ratio of specific heats.
Substituting from (1), (2), (3) and (6), (10) becomes

A Zfi+ V fl) + ~j;'lr' { - A V+<f>i)-<l>Ji-  0. (11)

The equations (7), (9) and (11) may be reduced to a non-dimensional form by 
substituting f - A a ' I A ' ,  (12)

4>~4>JA, (IS)

where a is the velocity of sound in air so that a* =  yp0//V The resulting equations 
which contain only one parameter, namely, y, are

=  ^ - | 0 >  (7a)

Formation of a blast wavs by a very intense explosion. I  161

tL -  & + 
v - t  *

3 f + y f + ^ - f ( - v +<!>)-</>/' = o.

(9o)

(11®)

Eliminating \Jr' from (11a) by means of (7a) and (9a) the equation for calculating/' 
when/, <f>, :irand tj are given is

f'i(V - 0)2- f l f )  -  / {  -  3?/+0(3+ly) -  2y<f>2/rj}. (14)
11*2
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When / '  has been found from (14), can be calculated from (7a) and hence f  from 
(9a). Thus if for any value of y, f , <f> and ^  are known their values can be computed 
step-by-step for other values of y.

Shock-wave conditions

The conditions at the shock wave y = 1 are given by the Rankine-Hugoniot 
relations which may be reduced to the form

162 Sir Geoffrey Taylor

px y - l  + (y+ l)y±  
Po y + l  +  (y — l)yi*

(15)

^  =  ^ < r - i + ( r + i ) y i } . <i«)

% % i - i )
u  r - i + ( r + i ) » r

(17)

where px, % and yx represent the values of p, u and y  immediately behind the shock 
wave and U = dRjdT  is the radial velocity of the shock wave.

These conditions cannot be satisfied consistently with the similarity assumptions 
represented by (1), (2) and (3). On the other hand, when yx is large so that the pressure 
is high compared with atmospheric pressure, (15), (16) and (17) assume the approxi­
mate asymptotic forms

Pi 7+  1 
Po 7 -  1’

(15a)

U2 2 y
W  = y  + l Vl’ (16a)

ux 2
U ~  y+1* (17a)

These approximate boundary conditions are consistent with (1), (2), (3) and (6); in 
fact (15a) yields, for the conditions at y = 1,

+ - v + 1 , V r _ i> (166)

(16a) yields / =  27 J 7 + 1
(166)

and (17a) yields 0 =  2 . (176)

Energy

The total energy Eof the disturbance may be regarded as consisting of two parts, 
the kinetic energy ~R

K .E . — 4:7tj \pu2r2 dr,

and the heat energy H.E. = i7,[R ^  dr. 
Jo 7 - 1
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In terms of the variables / ,  0, i{r and y

Formation of a blast wave by a very intense . I  163

E  =  4nA2̂ p 0̂  f(j>2y2 dy +  J0 ̂  <*?)}’

or since p 0 =  a2p jy ,  E  =  Bp0A 2, where is a function of y  only whose value is

Since the two integrals in (18) are both functions of y  only it seems that for a given 
value of y, A 2 is simply proportional to E/p0.

When y  =  1-4 the boundary values o ff, <J> &nd at 1 are from (15a), (16a). 
(17a), f , f  and 6. Values off, <p and i}r were calculated from y =  1-0 to yx — 0*5, using 
intervals of 0-02 in y. Starting each step with values off', / ,  and xjr found in
previous steps, values o f f ,  <f and }]f' at the end of the interval were predicted by 
assuming that the previous two values form a geometrical progression with the pre­
dicted one; thus the (5 + l)th term, f 8+x in a series of values of f  was taken as 
f 8+1 = {f8)2lfs-v  With this assumed value the mean value o ff' in the 5th interval was 
taken as K/s+i+/«) an(l  increment in /  was taken as (0-02) ( |) The
values of f's+1, <p’8+x and î 8+x were then calculated from formulae (14), (7a) and (9a). 
If they differed appreciably from the predicted values a second approximation was 
worked out, replacing the estimated values of f'8+x by this new calculated value. In 
the early stages of the calculation near rj =  1 two or three approximations were made, 
but in the later stages the estimated value was so close to the calculated one that the 
value o f f  calculated in this first approximation was used directly in the next stage.

The results are given in table 1 and are shown in the curves of figure 1. These 
curves and also table 1 show three striking features: (a) the <f curve rapidly settles 
down to a curve which is very nearly a straight line through the origin, (6) the density 
curve xjr rapidly approaches the axis xjr — 0, in fact at 0-5 the density is only 0*007
of the density of the undisturbed atmosphere, (c) the pressure becomes practically 
constant and equal to 0*436/1*167 = 0*37 of the maximum pressure. These facts 
suggest that the solution tends to a limiting form as y  decreases in which

1 f'<b' — c =  constant,/  =  0*436,/', xfr and dr' become small. Substituting for from
7

(7a), (14) becomes

(18)

N umerical solution for y —1-4

= Vf1'(V + + (.3 + (19)

Dividing by y — ft(19) becomes

(20)

If the left-hand side which contains/7/be neglected the approximate solution of (20) 
for which <j> vanishes at y — 0 is
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164 Sir Geoffrey Taylor
1166+

Figube 1. -  curves /  and xjr (step-by-step calculation); —  + — , curve/ (approximate 
formulae). In the other curves the small dots represent the steps of the calculations, the 
larger symbols represent approximate formulae for: A, curve O, curve 
•, curve ijr.

Table 1. Step-by-step calculation fob y —1*4

V / 0 $
1-00 1*167 0*833 6*000
0*98 0*949 0*798 4*000
0*96 0*808 0*767 2*808
0*94 0*711 0*737 2*052
0-92 0*643 0*711 1*534
0-90 0*593 0*687 1*177
0-88 0*556 0*665 0*919
0-86 0*528 0*644 0*727
0*84 0*507 0*625 0*578
0*82 0*491 0*607 0*462
0-80 0*478 0*590 0*370
0*78 0*468 0*573 0*297
0-76 0*461 0*557 4 0*239
0-74 0*455 0*542 0*191
0-72 0*450 0*527 0*152
0-70 0*447 0*613 0*120
0*68 0*444 0*498 0*096
0-66 0*442 0*484 0*074
O’64 0*440 0*470 0*058
0*62 0*439 0*456 0*044
0-60 0*438 0*443 0*034
0-68 0*438 0*428 0*026
0*56 0*437 0*416 0*019
0-64 0*437 0*402 0*014
0*62 0*437 0*389 0*010
0*60 0*436 0*375 0*007
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The line <j> = rjjy is shown in figure 1. It will be seen that the points calculated by the 
step-by-step method nearly run into this line. The difference appears to be due to the 
accumulation of errors in calculation.

Formation of a blast wave by a very intense explosion. I 165

Approximate formulae

The fact that the <j> curve seems to leave the straight line <f> = rather rapidly 
after remaining close to it over the range 1/ =  0 to ?/ = 0-5 suggests that an approxi­
mate set of formulae might be found assuming

0 = yly+ ay11,(22)

where nis a positive number which maj  ̂be expected to be more than, say, 3 or 4. If  
this formula applies at y =  1,

1 2
-  +  a  =  — —  
y  y + 1

or a y - 1 .
7 (7 + 1 )’ (23)

inserting 0 = rj/y +a^n, <j>' — 1 jy  + na/t}n~xin (20), the value of / ' / /  at =  1 is
f ' \ f  — ocy(n + 2 ) ( y + l) l ( y —l). From (14) and (156), (166), (176) the true value of 

2y2 + 7y—3/ ' / / a t  7 =  1 is
y i

Equating these two forms,

7y — 1 n = — - .y2 — 1
(24)

The values of cc and n have now been determined to give the correct values of f'If; 
(f> and </>' at y = 1, \Jr' is determined by (9 a) so that all the six correct values o f/, <}>, \jry 
/ ' ,  0', \Jr' are consistent with (22) at rj = 1. Substituting for 0 from (22) in (20),

/ '  ( n + 2) ay27yn~2
/  y — 1—

The integral of (25) which gives the correct value o f /a t  1 is

2y 2y2 + 7 y - 3 .
log / = log ■

(25)

(26)'y+1  7 —y

At 7} = 0-5 this gives /  = 0*457 when y = 1*4. The value calculated by the step-by- 
step integration is 0*436, a difference of 5 %.

The approximate form for ^  might be found by inserting the approximate forms 
for (f> and <J>' in (9a). Thus

log — log f 
7 1

3 + (n + 2) ocyrj11- 1
— crvnr\n 'v ( y - i ) v - * y y r

Integrating this and substituting for a. from (23),

log v!r = log Z ± j  + J L  log v -  2 log j

When i} is small this formula gives

(27)

(28)

tjr — Dtj3̂ ~1\ (29)
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166

where logD -  l o g 2 ± | - 2 i i ± 5 1o g ( ^ ) .  (30)

When y  = 1*4 (30) gives D — 1*76 so that

t/r =  1*76^7*6. (29a)

At r\ — 0*5 this gives \Jr — 0*0097; the step-by-step calculation gives \Jr — 0*0073.
At 7j = 0*8 formula (28) gives \Jr — 0*387, while table 1 gives ijr = 0*370. At =  0*9 
formula (28) gives \jr — 1*24, while the step-by-step solution gives 1*18. Some points 
calculated by the approximate formulae are shown in figure 1.

In the central region of the disturbance the density decreases proportionally to 
f3Ay-D; the fact that the pressure is nearly constant there means that the temperature 
increases proportionally to /*-3Ar-D. At first sight it might be supposed that these 
veiy high temperatures involve a high concentration of energy near the centre. This 
is not the case, however, for the energy per unit volume of a gas is simply p /(y  — 1) so 
that the distribution of energy is uniform.

Values of / ,  0  and xjr for y  — f  calculated by the approximate formulae are given in 
table 2.

Sir Geoffrey Taylor

Table 2. Approximate calculation y =  1*666

V / </> rfr
1*00 1*250 0-750 4-00
0-95 0*892 0-680 2-30
0*90 0-694 0-620 1*14
0-80 0-519 0-519 0-63
0-70 0-425 0-445 0-29
0*50 0-379 0-300 0-05
0*00 0-344 0-000 0-00

B last wave expressed in  terms of the energy of the explosion

It has been seen in (18) that E/p0A 2 is a function of y  only. Evaluating the in­
tegrals in (18) for the case for y  = 1*4, and using the step-by-step calculations, it is 
found that

J rjz<j>2\jfd7i = 0*185 and J* =  0*187.

The kinetic energy of the disturbance is therefore

K .E . =  27T(0*185)p0Aa = 1*16 4/>0A2, (31)

while the heat energy is
47T

H E - =  (1-4) (0-4) <°-187>A>^ =  4'190ft^2; (32)

the’total energy is t herefore
E = 5*36p0A2. (33)
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P ressure
The pressure p  at any point is

p  = p 0 R~3f ~  = R~3f ^ ~  = 0-133 (34)

The maximum pressure at any distance corresponds with /  = 1-166 at = R. This is 
therefore Pm&x = 0-15 (35)

Velocity of air and shock wave 

The velocity u of the gas at any point is
u = R~*A(j> = R-* E*(Bp0)-i<f>. (36)

The velocity of radial expansion of the disturbance is, from (6),
J T>
£  = AH-< = R-*Ei(Bp0)-t, (37)

so that, if tis the time since the beginning of the explosion,
t = %R*{Bp0)t E -l =  0 - 9 2 6 * ,  (38)

when y  — 1-4.
The formulae (34) to (38) show some interesting features. Though the pressure 

wave is conveyed outwards entirely by the air the magnitude of the pressure depends 
only on E R ~3 and not on the atmospheric density p0. The time scale, however, is 
proportional to p\. It is of interest to calculate the pressure-time relationship for 
a fixed point, i.e. the pressure to which a fixed object would be subjected as the blast 
wave passed over it. If t0 is the time since initiation taken for the wave to reach 
radius R0 the pressure at time t at radius R0 is given by

Formation of a blast wave by a very intense explosion. I

where p x is the pressure in the shock wave as it passed over radius R0 at the time tQ, 
R is the radius of the shock wave at time t and tj — RJR. [f  ]v^x is the maximum 
value o f/, namely, 1-166 when y  — 1-4. y is related to t/t0 through (38) so that

y=( t j t )*  and ^  (7)* (40)

Values of p/px calculated by (40) for y  =1-4 are shown in figure 2.

F igure: 2. Pressure-time curve at a fixed point.
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168 Sir Geoffrey Taylor

Temperature

The temperature T  at any point is related to the pressure and density by the
relationship T \-33ER~3 , _ . , . ,v

_  _ ------- -—  when y  — 1*4. (41)
T0Pop P o t

Since/tends to a uniform value 0*436 in the central region (r < %R) and ̂  tends to the 
value ijr = 1-7 T  tends to the value

T  ER~S(0*133) (0*436) _7.5
t, ~  n  I-™ v

T0Q3Z-*ER-*ti- 7*.
Po

(42)

Thus the temperature near the centre is very high; for instance, when the wave has 
expanded to such a distance that the pressure in the central region is reduced to 
atmospheric pressure, p 0 = (0*133) (0*436) ER~3, then (42) gives T/T0 =  ?p7'5/l*76 
and at y  = 0*6, y-™ =  181 so that T/T0 =  103. If T0 =  273°, T  = 27,000°. The 
temperature left behind by the blast wave is therefore very high, but the energy 
density is not high because the density of the gas is correspondingly low.

H eat energy left in  the air after it has returned to atmospheric pressure

The energy available for doing mechanical work is less than the total heat energy of 
the air. The heated air left behind by the shock wave can in fact only do mechanical 
work by expanding down to atmospheric pressure, whereas to convert the whole of 
the heat energy into mechanical work by adiabatic expansion the air would have to be 
expanded to an infinite extent till the pressure was zero. After the blast wave has 
been propagated away and the air has returned to atmospheric pressure it is left at 
a temperature Tx, which is greater than T0, the atmospheric temperature. The energy 
required to raise the temperature of air from to Tj is therefore left in the atmosphere 
in a form in which it is not available for doing mechanical work directly on the 
surrounding atmosphere. This energy, the total amount of which will be denoted by 
Ex, is wasted as a blast-wave producer.

The energy so wasted at any stage of the disturbance can be calculated by finding 
the temperature Tx to which each element of the blast wave would be reduced if it 
were expanded adiabatically to atmospheric pressure. If T  is the temperature of an 
element of the blast wave

II

Also
To Pop t  a2

hence Tx fUy (A*R-*\Vv 
To f  [a* / (43)

The total heat energy per unit mass of air at temperature Tx is

T  T v— ^  x (gas constant) =  ;-----0 ^ .
y - i  vs ' (7-l)A>Zo
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Formation of a blast wave by a very intense explosion. I  169 

The increase in heat energy per unit mass over that which the air contained before the 

passage of the disturbance is therefore
iy - i) (P o )s f i " ) -

The increase per unit

volume of gas within the disturbed sphere is therefore — l )  - Hence from (43)

the total energy wasted when the sphere has expanded to radius is

Et =  4 J ’ { /'ft' ( ^ r - ) 1,r -  * ) (44)

This expression may conveniently be reduced to non-dimensional form by dividing 
by the total energy E  of the explosion which is related to A by the formula (18). 
After inserting a2/y  for p 0jp0, this gives

4
E B { y - l ) y (2 ^ )  i (45)

%np0 R3 is the total mass of air in the sphere of radius R. This is also drj,

j^ /r^ dy  =  £. (46)
so that

The quantity A 2R~3/a2 is related to the maximum pressure at the shock wave by
the equation d2p-3

_  Pi  _ uVi — — U J»-i»

where yx is the pressure in the shock wave expressed in atmospheres. (46) therefore

J7= i
M K J ’ * * - * ]- <47)

reduces to ^  4„

1  ~ B y ( y - l ) y J  

1-4 numerical integration gives

B  =  6-36 (see (18)), = 1-166, 7 = 0-219.

§  = i-[0-958<»‘ - l-6 3 ] .

For y

(47) reduces therefore to
(48)

Some values of EJE  are given in the second line of table 3.
It is clear that ExjE  must continually increase as R  increases, and yx decreases 

because the contribution to Exdue to the air enclosed in the shock-wave surface when 
its radius is R2, say, remains unchanged when this air subsequently expands. A 
further positive contribution to Ex is made by each subsequent layer of air included

Table 3

yx (atm. at shock wave) 10,000 1,000 100 50 20 10* 5*
EJE  (proportion of 

energy wasted)
0-069 0-132 0-240 0-281 0-325 0-333* 0-28*

(Ex+ E t)/E 0-096 0-189 0-337 0-393 0-455 — —

* Formulae inaccurate when yx<  10.
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within the disturbance. The fact that formula (48) gives a value of which in­
creases till yx is reduced to 10 and then subsequently decreases is due to the in­
accuracy of the approximate boundary conditions (15a), (16a) and (17a), which are 
used to replace the true boundary conditions (15), (16) and (17).

When y  — 1*4 and yx =  10 the true value of is 3*8 instead of 6*0 as is assumed,
the true value of U2/a2ia8*7 instead of 8*6 and the true value is 0*74 instead of
0*83.

When yx = 5 the errors are much larger, namely, is 2*8 instead of 6*0, U2/a2 is
4*4 instead of 4*3, and uxjU  is 0*64 instead of 0*83. The proportion of the energy 
wasted, namely, Ex/E, is shown as a function of in figure 3, y x being plotted on 
a logarithmic scale.

170 Sir Geoffrey Taylor

F igure 3. Heavy line, ( E ^ E J /E ;  thin line EJE. (Ex+ E t)/E is the proportion of the 
initial energy which is no longer available for doing work in propagation. E J E  is the 
work done by heated air expanding against atmospheric pressure (see note added October 
1949 (p. 172)).

It will be seen that the limiting value of E JE  is certainly greater than 0*32, its 
value for yx — 20. It is not possible to find out how much greater without tracing the 
development of the blast wave using laborious step-by-step methods for values of 
less than, say, 10 or 20.

Comparison with high explosives

The range within which any comparison between the foregoing theory and the 
blast waves close to actual high explosives can be made is severely limited. In the 
first place the condition that the initial disturbance is so concentrated that the mass 
of the material in which the energy is originally concentrated is small compared with 
the mass of the air involved in the disturbance at any time limits the comparable 
condition during a real explosion to one in which the whole mass of air involved is 
several times that of the explosive. In the second place the modified form of the
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shock-wave condition used in the analysis is only nearly correct when the rise in 
pressure at the shock-wave front is several—say at least 5 or 10—atmospheres. In a 
real explosive this limits the range of radii of shock wave over which comparison could 
be made to narrow limits. Thus with 101b. of C.E.* the radius R  at which the weight 
of explosive is equal to that of the air in the blast wave is 3 ft., while at 3*8 ft. the air is 
only double the weight of the explosive. The pressure in the blast wave at a radius of 
6 ft. was found to be 9 atm., while at 8 ft. it was about 5 atm. It seems, therefore, that 
in this case the range in which approximate agreement with the present theory could 
be expected only extends from 3-8 to 6ft. from the 101b. charge.

Taking the energy released on exploding C.E. to be 0-95kcal./g. the energy 
released when 101b. is exploded is 1-8 x 1014ergs. If this energy had been released 
instantaneously at a point as in the foregoing calculations the maximum pressure at 
distance R given by (35) is

Formation of a blast wave by a very intense explosion. I  171

pm&xR3 = (0-155) (1-80 x 1014) = 2-79 x 1013ergs. (49)
Expressed in terms of atmospheres pmax is identical with If R  is expressed in 

feet, (49) becomes 9.7q 10x3

< 5 0 >

The line representing this relationship on a logarithmic scale is shown in figure 4.

1-4
l°gio Vi (atm.)

iJ =  7 ft. 
range for 
comparison 
i?=  3-8 ft.

F igure 4. Blast pressures near 10 lb. charge of C.E. compared with calculated blast pressures 
due to instantaneous release of energy of 10 lb. C.E. at a point. The numbers against the 
points on the curve give distances in feet.

Though no suitable pressure measurements have been made, the maximum 
pressure in the blast from 101b. of C.E. has been found indirectly by observing the 
velocity of expansion of the luminous zone and, at greater radii, the blast-wave front. 
These values taken from a curve given in a report on some experiments made by the 
Road Research Laboratory are given in table 4. The observed values of U in ft./sec. 
given in column 2 of this table and the values of (in atmospheres) found from the

* C.E. is the name by which a certain high explosive used in many experiments by the 
Ministry of Home Security was known.
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shock-wave formulae are given in column 3, where they are described as observed 
values though they were not observed directly. The ‘observed’ values are shown in 
figure 4. The values of yx calculated from (50) are given in column 4.

Table 4
yx (atm.) calculated for

observed with concentrated explosion

172 Sir Geoffrey Taylor

R  (ft.) U  (ft./sec.) C.E. by (50)
8 2350 6-2 —

6
5

3100
3800

9-3
14-0 ^ 9 l range of

4 4820 22*6 15*5J comPar ŝon
3 6200 37*5 —

2 8540 71*8 —

Though the observed values are higher than those calculated, it will be noticed that 
in the range of radii 3*8 to 6 ft., in which comparison can be made, the observed curve 
is nearly parallel to the theoretical line yx =  990. In this range, therefore, the 
intensity of the shock wave varies nearly as the inverse cube.of the distance from the 
explosion. The fact that the observed values are about twice as great as those calcu­
lated on the assumption that the energy is emitted instantaneously at a point may 
perhaps be due to the fact that the measurements used in table 4 correspond with 
conditions on the central plane perpendicular to the axis of symmetry of the 
cylindrical charge used. The velocity of propagation of the luminous zone is greater 
on this plane and on the axis of symmetry than in other radial directions so that the 
pressures deduced in column 3 of table 4 are greater than the mean pressures at the 
corresponding radii.

On the other hand, it has been seen that by the time the maximum pressure has 
fallen to 20 atm:, 32% of the energy has been left behind in the neighbourhood of the 
concentrated explosive source, raising the air temperature there to very high values. 
The burnt gases of a real high explosive are at a very much lower temperature even 
while they are at the high pressure of the detonation wave. Their temperature is still 
lower when they have expanded adiabatically to atmospheric pressure, so that little 
heat energy is left in them. To this extent, therefore, a real high explosive may be 
expected to be more efficient as a blast producer than the theoretical infinitely con­
centrated source here considered.

Note added, October 1949. The data on which the comparison was based between 
the pressures deduced by theory and those observed near detonating explosives were 
obtained in 1940. More recent data obtained at the Road Research Laboratory 
using a mixture of the two explosives R.D.X. and T.N.T. have been given by Dr 
Marley. These are given in table 5, which shows the values of U observed for various

Table 5. Pressure yjj>0 at distance R  from explosion of weight W of

T.N.T.-R.D.X. mixture

R/W* (ft./lb.l) 0*5 1*0 1*5 2*0/ 2*5 3*0 3*5
U  (thousands ft./sec.) 14*3 110 8*4 6*6 5*1 4*0 3*3
yx (atm.) 198 117 68*3 42*0 25*1 15*4 10*5
R /E i  x 10*(cm./erg8*) 5*39 10*8 16*2 21*5 27*0 32*4 37*8
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values of RJW*. It the distance from the explosive is expressed in feet and W its 
weight in pounds. The third line in table 5 shows the result of deducing from U 
rising y  — 1-4 in (16) and a — llOOft./sec. in (16).

For comparison with the concentrated point-source explosion, the value of * 
expressed in cm. (erg.)- * is found by multiplying the figures in line 1, table 6, by

------------------- ---------— = 1-078 x 10-3. The first factor converts ft. (lb.)~* to
(464)*' (1200 x 4*2 x 107)*
cm. (g.)~*, and the second replaces 1 g. by the equivalent energy released by this 
explosive, namely, 1200 cal. The values of RE~* are given in line 4, table 6. In 
figure 6 values of log10 yx are plotted against log10 and the theoretical values
for a point source of the same energy as the chemical explosive are plotted in the 
same diagram. Comparing figures 4 and 5 it seems that the more recent shock-wave 
velocity results are qualitatively similar to the older ones in their relation to the 
point-source theory. The range of values of for which comparison between theory 
and observation might be significant, is marked in figure 5.

Formation of a blast wave by a very intense explosion. I

range for 
comparison

Figure 5. Blast pressures near a chemical explosive (R.D.X. + T.N.T.) compared with 
theoretical pressure for concentrated explosion with same release of energy. Heavy line 
(upper part) is taken from shock-wave velocity measurements. Heavy line (lower part) is 
from piezo-electric crystals. Thin line, y, =  Q-l55E/(p0Rz). The figures against the points 
represent the ratio of the mass of the air within the shock wave to the mass of the explosive.

It will be seen that the chemical explosive is a more efficient blast producer than 
a point source of the same energy. The ratio of the pressures in the range of com­
parison is about 3 to 1. This is more than might be expected in view of the calculation 
of EJE  as a function of yx which is given in table 3. Ex is the heat energy which 
is unavailable for doing mechanical work after expanding to pressure p 0. Of the 
remaining energy, E — Exa part E2 is used in doing work against atmospheric 
pressure during the expansion of the heated air. The remaining energy, namely, 
E — Ex — E2, is available for propagating the blast wave. ,
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174 Sir Geoffrey Taylor

To find E%, the work done by unit volume of the gas at radius i}R in expanding to 

atmospheric pressure is (ip~~ ~  1 jl 2V ^rom (4?)

a-y)/y p  „A2R S
and — =  / ---- 5— j

2>o «2

hence

A 2

Tx l  A* A'

i \  - i} v'dy, (61)

but
(/),« !

so that

4nR3p {
<52)

The first integral has already been calculated and found to be 0*219 when y  — 1*4 
(see (47) and (48)). Substituting for pmax> from (35),

= 4tt(0*155)
Mi

r0*219^1-r^  1 "IL (l*166)Vy (53)

Values of (E2 +  Ex)/E  have been added as a third line in table 3 and a corresponding 
curve to figure 3.
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