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ISOs are introducing new bidding models

* to better integrate emerging distributed energy resources (DERs)
* new bidding models to represent DER feasible regions (FRs)
* incorporating FR into dispatch model, mstead of self-dlspatch
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New bidding models designed for energy storages*

*Fang et al., 2022.
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Bidding of VPP: feasible region aggregation

 small-capacity DERs needs aggregation by Virtual Power Plants (VPPs)
e VPP submitsits FR as a whole through the bidding model
e addition of multiple sets (Minkowski addition): NP-hard
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VPP interactions with the power market sets of two DERs. (Churkin et al., 2023)
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Analytical approximation of aggregate FR

* tied with the form of individual FRs, such as box, ellipse, zonotope
* rely on assumptions on the operation of individual DERs
 cannot be adaptively applied in VPP bidding
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Approximate the FR of VPPs in a data-driven manner

 abandon the bottom-up computation of analytical methods
* use data to determine the parameters of an approximate FR
* how to measure the degree of approximation of two FRs?

P={(p.,r ):3y P: The original FR, I is
mm i’ the number of resources
st.h(p, . r,Y.,m0,) <0}
a a P%. approximate FR
P*={(p,,.r,): Yy (dimensionI® « I)
v s.t.h'( Py T y[aIa],[T];H[alal) <0}
original FRs  optimal dispatch results  aggregate FR - FR distance measurement

min.J(P,P*(6))
Data-driven feasible region aggregation

Ruike Lyu, Hongye Guo, Qixin Chen. Approximating Energy-Regulation Feasible Region of Virtual Power Plants: A Data-driven Inverse Optimization
Approach. PESGM 2024.



Methodology “
Data-driven Inverse Optimization
 generate dispatch results using original constraints
* regard these data as optimal dispatch results within the
approximate FR and fit the parameters of the approximate FR
/_ Jmin. = 3" (Pripe + Privy = P18 (p) Af - |dea: if the optimal dispatch results
generating t=1 .
st (ppr) i) € P based on the approximate FR
—— under various scenarios are close
‘ min.J = %Z(If%‘) =2l + Uy’ = rinl®) <83)|| to the results based on the original
x=1__Loss function
s.t. strong duality :(7a) =g(p(k),)\(k)),‘t/k:. (8b) FR, then the FR iS COhSldered
prmal fesibilty i 5 07) < 0.V B0 sufficiently approximate.
dual feasibility :(11); stationarity :(12),Vk.  (8d)

Ruike Lyu, Hongye Guo, Qixin Chen. Approximating Energy-Regulation Feasible Region of Virtual Power Plants: A Data-driven Inverse Optimization
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Data-driven method comparable to analytical method

 Using prices from PJM to represent dispatching scenarios
 Employing FR form of virtual battery to approximate 4000 EVs.
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The aggregate FR parameters obtained from  The error in FR aggregation based on the data-
the proposed method close to those derived  driven methods is lower than that of analytical
from the analytical ap proach. methods in some scenarios.
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