LENESNS Application Note

RX Family

Simple 1°C Module Using Firmware Integration Technology

Introduction

This application note describes the simple 1°C module using firmware integration technology (FIT) for
communications between devices using the serial communications interface (SCI).

Target Device

This API supports the following device.
. RX110, RX111, RX113 Groups

e RX130, RX13T Groups

. RX230, RX231, RX23E-A, RX23T, RX23W Groups
e RX24T, RX24U Groups

e RX64M Group

e RX65N, RX651 Groups

e RX66T Group

e RX66N Group

* RX71M Group

e RX72T Group

* RX72M Group

e RX72N Group

When using this application note with other Renesas MCUSs, careful evaluation is recommended after making
modifications to comply with the alternate MCU.

Target Compilers

e Renesas Electronics C/C++ Compiler Package for RX Family
e GCC for Renesas RX
e |AR C/C++ Compiler for Renesas RX

For details of the confirmed operation contents of each compiler, refer to “6.3 Operating Test Environment".

RO1AN1691EJ0246 Rev.2.46 Page 1 of 92
Mar.10.20 RENESAS

RX Family Simple I°C Module Using Firmware Integration Technology

Contents
N O 1YY oY T TSR T PO 4
1.1 SCI Simple IP2C MOAE FIT MOUUIE........ccueeceeeeeeeceee et eee et ete et te e te e ete e ete e st e eneeeeeeeeeeeeas 4
A @ U1 111 L= 1 L= Y o PSRRI 4
1.3 Overview of SCI Simple 12C Mode FIT MOUIE.........ccceoiieiieiieciie ettt 5
1.3.1 Specifications of SCI Simple I12C Mode FIT MOAUIEcoveieeiieeeeeeeeceeeee e 5
G T Y - T (=T gl I = T 1] 4 11 o o RSP 6
1.3.3 MASLEI RECEPLION. ..ceiiii ittt e e e e et e e e e e e e s bbb bt e e e e e e e e snnbabeeeaaaeeaaans 10
R J Y - (I I =10 1o o 1RSSR 13
1.3.5 Flags when Transitioning StAteSueeiiiiiiiiiiiiiiiie e s e e e e ssnrrre e e e e e e e aans 14
A N o I 1 (o]1 1 0= L1 To] o DO U URPPTP 15
2.1 Hardware REQUITEMENTScciiiivieiiiee e e e eeceiie et e e e e e s s et e e e e e e s s st e e e e e e e s sssananereaeeeesnnsnnaneeeeeeesanns 15
2.2 SOftware REQUITEIMENESccciiiiiiiiieee et s s e e e e e e s s e e e e e e e s s tabte e e e e e e e s sssnraeeeeeeesaanns 15
ARG IS 101 o] oJo] g (=To I IoTo] [od g =11 F- ST PPT T ROTRPPPRPPR 15
A S WIS Vo TN | i) (=T 0] A =Tt o SRR 16
P o (Y= Lo L= g 1= PRSP 22
A I 11T o 1T Y/ 01T TP 22
2.7 CONfIQUrAtION OVEIVIEW......cceiiiceieiiiiee e e e e s ettt e e e e e e s st e e e e e e s s s e e e e e e e s s saetneeeaeeessnsnnnneeeeeesaanns 23
P S B O o (= IS 1 .= T PRSPPI 27
2.9 P AFAIMIELEIS. .. ittt f sttt n b e e nnnnes 28
2.10 REUM VAIUES ...ttt ettt ettt e sttt e e e et bt e e sabt e e e e amb b e e e e snbb e e e e anbbeeeennneeeas 28
2.11 Adding the FIT Module t0 YOUI PrOJECL........uuiiiii et e e e 29
2.12 “for”, “while” and “do While” STAtEMENTScoiiiiiiiii e 30
T N I 0 o 1T L RSP 31
I A = S (O I [O @ o 1= o PRSPPI 31
3.2 R_SCI_IIC _MASEISENA() .. evvveeeiuriereeiiiieeesiieeessttetessteeeesstreeesstseeesasseeesssseeaessseeesssseeessnsseees 33
3.3 R_SCI_IC_MASIEIRECEIVE() ..ueurrriireieeeiiiiiieeieeee e s issstteeeeeeeesssssssaeereeeeesssssssteeeeeeeesannsssaeeeeeeessans 38
I o S (O I [(O @ (o 1= I PRSPPI 42
3.5 R_SCI_IIC_GEISTAUS() +rreerrrrrreeirrereeiitiireesiietessttttesstseeesssseeesssseeesssseeessssseessssssesessssseeessnsseees 44
I T = (@ I 1 (@ o T [PSSR 46
3.7 R_SCI_C_GEIVEISION() .eeeeeeiiiiiiiieieeeeeiiittete e e e e e st asttte e e e e e e s ssssataeeeeaeesssstasraeeeaeeessassnreeeeesessans 48
T LIRS 1= 1] o LS TP T TPPPPPPTRP 49
TN = 0 o TN o oo £ R 51
5.1 SCilic_SeNnd_demO_ISKIXBAM.........cuuiiiiiiiiiiiieie e e e e s e e e e e e e s s st e e e e e e s s s ta b e e e e e e e e s ssnnnreeeeeeeesanns 51
I ol o (Yot T\ VR o (=T T T 6] G o 51
5.3 SCiliC_SeNd_demO_ISKIX23L........uuiiiiiieeiiiiiiiieiee e e e s sese et e e e e e s st r e e e e s s srnnnteeeeeeeessnnnnaneeeeeeeeanns 51
5.4 SCiliC_receive_demO_ISKIX23L.......cuiiieiiiiiiiieiee e e e s e et e e e e e e e s sttt e e e e e e s s etabbeeeeeaeesssnnnnneeeeeaeesanns 52
5.5 Adding a DemO t0 @ WOIKSPACEcceiiiiiiiiiiiiiieae ettt e ettt e e e e e e e s bbe e eeaaaeeeanas 52
5.6 Downloading DEmO PrOJECES.......uuuiiiiie it e s r e e e e e s s e e e e e s e e e e e e e naan 52
LT Y o] o 1= o o= 2= PSR 53
6.1 CommuNICAtION MENOMcci it e e ettt e e e e e e s bbraeeeeaaeeeanns 53
6.1.1 States fOor APl OPeratioN..........ceiiiieiiiiiiieiie e e s ettt ee e e e s s see e e e e e s s st aeee e e e e e s ssnnrreeeeeeeeaanns 53
6.1.2 Events DUriNg APl OPEIALIONcccceiiiiiiiiiiee e e e ettt ee e e e e e e settae e e e e e e s e satba e e e e e e e s s aannreaeeeeeeeaans 53
RO1AN1691EJ0246 Rev.2.46 Page 2 of 92

Mar.10.20 RENESAS

RX Family Simple I°C Module Using Firmware Integration Technology

6.1.3 ProtoCOl State TraNSItIONS.ciieeeiiiii e e e e et e e s e e s e st e e s s et s s e ssaa e s ssbaeeseransns 54
6.1.4 Protocol State TranSition TaBIEccuuueiiiiiiie e eeeeeees 58
6.1.5 Functions Used on Protocol State TranSitioNScoooeveiiiiiiiiiiiieeeeeeeeeee e e e e eeens 58
6.1.6 Flag States 0N State TranSItIONSoc.ueiiiiiiiie et e e e e e aebre e e e e e e e aaas 59

6.2 Interrupt Request Generation TIMINGccc.uveeiireeeiiiiieeee e e e s s ssrere e e e e e e s s e e e e e e e s srsnrreeeeeeessanns 61
T = 1S3 (=T O = T] 4151 (o] o TR 61
6.2.2 MASEEI RECEPUON.eeiiiiieiiitte ettt e e e e e et e e e e e e e e s e aabbbeeeaaaeeaaans 62
6.2.3 MaAStEr TraNSMIt/RECEIVEcuuuueiieieiiieeee et e e e e et e e e e e e e ee b e s e essseeaaab s eeeesseenes 63

6.3 Operating TeSt ENVIFONMENT..........oiiiiiiiiiiiiiie e e s ccse e e e e e s s s e e e e e e s s etaebeereeeeessnnnnreeeeeeeesanns 64
L I (0101 o] [=1] o To)] o [P TP PP RUTRPPPRPPR 70

S = 11 1]] [T O o o - PR 71
7.1 Example when Accessing One Slave Device Continuously with One Channel....................... 71
7.2 Example when Accessing Two Slave Devices with One Channelccccccoeiiiiiiiiieins 75
7.3 Example when Accessing Two Slave Devices with Two Channels............ccccceeeevviiiiiieneeeennns 80

8. RETEIENCE DOCUMEBNESttt e e e ettt e e e e e e e eea b s eeeseeesa b b s eessseesabbanseeesssssbabannseeas 86
Related TeChNICAl UPAALES.......coi ettt ettt e e e e e e st e e e e e e e e e sannreaeeeaaas 87
R0O1AN1691EJ0246 Rev.2.46 Page 3 of 92

Mar.10.20 RENESAS

RX Family Simple I°C Module Using Firmware Integration Technology

1. Overview

The simple I°C module using firmware integration technology (SCI simple I2C mode FIT module @) provides
a method to transmit and receive data between the master and slave devices using the SCI. The SCI simple

I2C mode is in compliance with single master mode of the NXP 1°C-bus (Inter-IC-Bus) interface.

Note:

1. When the description says “module” in this document, it indicates the SCI simple 12C mode FIT

module.

Features supported by this module are as follows:

- Single master mode (slave transmission or slave reception is not supported).

- Bus condition waveform generation

- Communication mode can be standard or fast mode and the maximum communication rate is 384 kbps.

Limitations

- This module cannot be used with the DMAC and the DTC.

- This module does not support transmission with 10-bit address.

- Multiple interrupts are not supported.

- API function calls except for the R_SCI_IIC_GetStatus function are disabled in the callback function.

- The | flag must be set to 1 to use interrupts.

- When using SCI (Simple I1>)C Mode) FIT Module and SCI Module Firmware Integration Technology
(RO1AN1815) in combination, the same channel cannot be used at the same time.

1.1 SCI Simple I°C Mode FIT Module

This module is implemented in a project and used as the API. Refer to 2.11 Adding the FIT Module to Your
Project for details on implementing the module to the project.

1.2 Outline of the API
Table 1.1 lists the API Functions.

Table 1.1 API Functions

Item

Contents

R_SCI_IIC_Open()

The function initializes the SCI simple 12C mode FIT module. This function
must be called before calling any other API functions.

R_SCI_IIC_MasterSend()

Starts master transmission. Changes the transmit pattern according to the
parameters. Operates batched processing until stop condition generation.

R_SCI_IIC_MasterReceive()

Starts master reception. Changes the receive pattern according to the
parameters. Operates batched processing until stop condition generation.

R_SCI_IIC_Close()

This function completes the simple 12C communication and releases the
SCl used.

R_SCI_IIC_GetStatus()

Returns the state of this module.

R_SCI_IIC_Control()

This function outputs conditions, Hi-Z from the SSDA pin, and one-shot of
the SSCL clock. Also it resets the settings of this module. This function is
mainly used when a communication error occurs.

R_SCI_IIC_GetVersion()

Returns the current version of this module.

RO1AN1691EJ0246 Rev.2.46
Mar.10.20

Page 4 of 92
RENESAS

RX Family Simple I°C Module Using Firmware Integration Technology

1.3 Overview of SCI Simple 1°2C Mode FIT Module

1.3.1 Specifications of SCI Simple I°C Mode FIT Module
1. This module supports master transmission and reception.

- There are four transmit patterns that can be used for master transmission. Refer to 1.3.2 for details on
master transmission.

- Master reception and master transmit/receive can be selected for master reception. Refer to 1.3.3 for
details on master reception.

2. Aninterrupt occurs when any of the following operations completes: start condition generation, slave
address transmission, data reception, or stop condition generation. In the SCI (simple 12C mode)
interrupt handling, the communication control function is called and the operation is continued.

3. The module supports multiple channels. When the device used has multiple channels, simultaneous
communication is available using multiple channels.

4. Multiple slave devices on the same channel bus can be controlled. However, while communication is in
progress (the period from start condition generation to stop condition generation), communication with
other devices is not available. Figure 1.1 shows an Example of Controlling Multiple Slave Devices.

When slave devices A and B are connected to channel 0. -)
Multiple devices cannot

ST: Start condition, SP: Stop condition communicate on the same
channel bus at the same time.

Device A Device A Device A
ST generated SP generated ST not generated
A
\ '/

Slave device A Slave device B

Channel 0 bus o o —
communicating communicating

T ‘ $
Device B Device B Device B
ST not generated ST generated SP generated
Time [>

Figure 1.1 Example of Controlling Multiple Slave Devices

RO1AN1691EJ0246 Rev.2.46 Page 5 of 92
Mar.10.20 RENESAS

RX Family Simple I°C Module Using Firmware Integration Technology

1.3.2 Master Transmission
Data is transmitted from the master device (master (RX MCU)) to the slave device (slave).

With this module, four patterns of waveforms can be generated for master transmission. A pattern is selected
according to the arguments set in the parameters which are members of the I12C communication information
structure. Refer to 2.9 Parameters for details on the I12C communication information structure. Figure 1.2 to
Figure 1.5 show the transmit patterns.

(1) Pattern 1
Data is transmitted from the master (RX MCU) to the slave.

A start condition is generated and then the slave address is transmitted. The eighth bit specifies the
transfer direction. This bit is set to 0 (write) when transmitting. Then the first data is transmitted. The first
data is used when there is data to be transmitted in advance before performing the data transmission.
For example, if the slave is an EEPROM, the EEPROM internal address can be transmitted. Next the
second data is transmitted. The second data is the data to be written to the slave. When a data
transmission has started and all data transmissions have completed, a stop condition is generated, and
the bus is released.

ST123456789123456789 12 78912345678912 789 SP

SSCLn

SSDAnN

S ~— ~ly- ~— “N—tN- A ~— ~ty! T~ L\
Start Slave address ~ ACK 1st data ACK 1stdata (i) ACK 2nd data ACK 2nddata (i) ACK Stop
(8th bit: 0)

n: Channel number

ST: Start condition generation

SP: Stop condition generation

ACK: Acknowledge: 0

* A signal with an underline indicates data transmission from the slave to the master.

Figure 1.2 Signals for Pattern 1 of Master Transmission

RO1AN1691EJ0246 Rev.2.46 Page 6 of 92
Mar.10.20 RENESAS

RX Family Simple I°C Module Using Firmware Integration Technology

(2) Pattern 2

Data is transmitted from the master (RX MCU) to the slave. However, when the first data is not set,
transmission for the first data is not performed.

Operations from start condition generation through to slave address transmission are the same as the
operations for pattern 1. Then the second data is transmitted without transmitting the first data. When all
data transmissions have completed, a stop condition is generated and the bus is released.

ST123456789 SP

n: Channel number
SSCLn ST: Start condition generation
SP: Stop condition generation
ACK: Acknowledge: 0
* A signal with an underline indicates data

transmission from the slave to the master.
SSDAnN ‘\ f \ |7

N
Start Slave address ACK Stop
(8th bit: 0)

Figure 1.3 Signals for Pattern 2 of Master Transmission

(3) Pattern 3

Operations from start condition generation through to slave address transmission are the same as the
operations for pattern 1. When neither the first data nor the second data are set, data transmission is not
performed, then a stop condition is generated, and the bus is released.

This pattern is useful for detecting connected devices or when performing acknowledge polling to verify
the EEPROM rewriting state.

ST SP n: Channel number
ST: Start condition generation
SSCLn SP: Stop condition generation
SSDAnN |_\
Y
Start Stop

Figure 1.4 Signals for Pattern 3 of Master Transmission

RO1AN1691EJ0246 Rev.2.46 Page 7 of 92
Mar.10.20 RENESAS

RX Family Simple I°C Module Using Firmware Integration Technology

(4) Pattern 4

After a start condition is generated, when the slave address, first data, and second data are not set,
slave address transmission and data transmission are not performed. Then a stop condition is generated
and the bus is released.

This pattern is useful for just releasing the bus.

< Master transmission >

|

Specify the parameter depending on [1] Sets the channel used.
the channel used

l

SCl initialization
R_SCI_IIC_Open()

.

Specify the communication
information structure

|

Master transmission [4] Starts transmission with the specified pattern.
R_SCI_IIC_MasterSend()

[2] Initializes the SCI channel set in [1].

[3] The arguments vary depending on the transmit pattern.

fffffffffffffffffff Sttt Callback function
[5] The callback function is called

when a stop condition is generated. T

,,,

Has the communication
completed?

[6] Determines if all communications completed.

Release the channel [7] After the communication has completed, the bus
R_SCI_IIC_Close() used for the selected channel is released.

[

C e

Figure 1.5 Signals for Pattern 4 of Master Transmission

Figure 1.6 shows the procedure of master transmission. The callback function is called after generating a
stop condition. Specify the function name in the CallBackFunc of the I2C communication information
structure member.

RO1AN1691EJ0246 Rev.2.46 Page 8 of 92
Mar.10.20 RENESAS

RX Family Simple I°C Module Using Firmware Integration Technology

ST123456789123456789 12 789 SP

SSCLn

SSDAN

L ~ Ap ~ At ——
Start Slave address ACK 2nd data ACK 2nd data (i) NACK Stop
(8th bit: 1)

n: Channel number

ST: Start condition generation NACK: Acknowledge: 1

SP: Stop condition generation ACK: Acknowledge: 0

* A signal with an underline indicates data transmission from the slave to the master.

Figure 1.6 Example of Master Transmission

RO1AN1691EJ0246 Rev.2.46 Page 9 of 92
Mar.10.20 RENESAS

RX Family Simple I°C Module Using Firmware Integration Technology

1.3.3 Master Reception

The master (RX MCU) receives data from the slave. This module supports master reception and master
transmit/receive. The receive pattern is selected according to the arguments set in the parameters which are
members of the I°C communication information structure. Refer to 2.9 Parameters for details on the I°C
communication information structure. Figure 1.7 and Figure 1.8 show receive patterns.

(1) Master Reception
The master (RX MCU) receives data from the slave.

A start condition is generated and then the slave address is transmitted. The eighth bit specifies the
transfer direction. This bit is set to 1 (read) when receiving. Then data reception starts. An ACK is
transmitted each time 1-byte data is received except the last data. A NACK is transmitted when the last
data is received to notify the slave that all data receptions have completed. Then a stop condition is
generated and the bus is released.

ST12345678912 789RST12345678912345678912]|789 SP

SSCLn

(il

Ui i
Y Py
Start Slave address ~ ACK 1st data (i) ACK Restart Slave address ~ ACK 2nd data ACK 2nd data (i) NACK Stop
(8th bit: 0) (8th bit: 1)

n: Channel number

ST: Start condition generation NACK: Acknowledge: 1

SP: Stop condition generation ACK: Acknowledge: 0

RST: Restart condition generation

* A signal with an underline indicates data transmission from the slave to the master.

Figure 1.7 Signals for Master Reception

RO1AN1691EJ0246 Rev.2.46 Page 10 of 92
Mar.10.20 RENESAS

RX Family Simple I°C Module Using Firmware Integration Technology

(2) Master Transmit/Receive

The master (RX MCU) transmits data to the slave (master transmission). After the transmission
completes, a restart condition is generated, the transfer direction is changed to 1 (read), and the master
receives data from the slave (master reception).

A start condition is generated and then the slave address is transmitted. The eighth bit is the bit specifies
the transfer direction. This bit is set to 0 (write) when transmitting. Then the first data is transmitted.
When the data transmission completes, a restart condition is generated and the slave address is
transmitted. Then the eighth bit is set to 1 (read) and a data reception starts. An ACK is transmitted each
time 1-byte data is received except the last data. A NACK is transmitted when the last data is received to
notify the slave that all data receptions have completed. Then a stop condition is generated and the bus
is released.

ST12345678912|| 789RST12345678912345678912|/[789 SP

SSCLn

-

e~ N —— e e L

Start Slave address ~ ACK 1stdata (i) ACK Restart Slave address ~ ACK 2nd data ACK 2nd data (i) NACK Stop
(8th bit: 0) (8th bit: 1)

n: Channel number

ST: Start condition generation NACK: Acknowledge: 1

SP: Stop condition generation ACK: Acknowledge: 0

RST: Restart condition generation

* A signal with an underline indicates data transmission from the slave to the master.

Figure 1.8 Signals for Master Transmit/Receive

RO1AN1691EJ0246 Rev.2.46 Page 11 of 92
Mar.10.20 RENESAS

RX Family Simple I°C Module Using Firmware Integration Technology

Figure 1.9 shows the procedure of master reception. The callback function is called after generating a stop
condition. Specify the function name in the CallBackFunc of the 12C communication information structure
member.

(Master reception >

|

Specify the parameter depending on
the channel used

l

SCl initialization
R_SCI_IIC_Open()

.

Specify the communication
information structure

|

Master reception [4] Starts reception for the specified receive pattern.
R_SCI_IIC_MasterRecive()

[1] Sets the channel used.

[2] Initializes the SCI channel set in [1].

[3] The arguments differ between master reception and master composite.

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4> -
[5] The callback function is called Callback function

when a stop condition is generated. ‘

Has the communication

leted? [6] Determines whether all communications completed.
completed?

Release the channel [7] After the communication has completed, the bus
R_SCI_IIC_Close() used for the selected channel is released.

[

SR

Figure 1.9 Example of Master Reception

RO1AN1691EJ0246 Rev.2.46 Page 12 of 92
Mar.10.20 RENESAS

RX Family Simple I°C Module Using Firmware Integration Technology

1.3.4 State Transition
States entered in this module are uninitialized state, idle state, and communicating state.

Figure 1.10 shows the State Transition Diagram.

Reset released

Uninitialized state
[SCI_IIC_NO_INIT]

R_SCI_IIC_Open() called
[Bus released]/Initialization

Idle state
[SCI_IIC_IDLE]
[SCI_IIC_FINISH]

Notation conventions

Event[condition]/Action on the event

R_SCI_IIC_Close() called/
I°C driver reset processing

[Communicating]/
- Monitors the communication state

R_SCI_lIC_MasterSend)() called - Processing for 12C communication

[Bus released]/Starts master transmission
R_SCI_IIC_MasterRecieve() called
[Bus released]/Starts master reception

Communicating
[SCI_IIC_COMMUNICATION]

[SCI_IIC_NACK]

[Normal end or NACK detected]
/Completes the communication

R_SCI_IIC_Open() called

[Error occurred]/Set the error state when returning
R_SCI_IIC_MasterSend() called

[Error occurred]/Set the error state when returning
R_SCI_IIC_MasterRecieve() called

[Error occurred]/Set the error state when returning
R_SCI_IIC_GetStatus() called

[Error occurred]/Set the error state when returning
R_SCI_IIC_Control() called

[Error occurred]/Set the error state when returning

Figure 1.10 State Transition Diagram

RO1AN1691EJ0246 Rev.2.46
Mar.10.20

Page 13 of 92
RENESAS

RX Family Simple I°C Module Using Firmware Integration Technology

1.3.5 Flags when Transitioning States

dev_sts is the device state flag and is one of the I12C communication information structure members. The flag
stores the communication state of the device. Using this flag enables controlling multiple slaves on the same
channel.

Table 1.2 lists the Device State Flags when Transitioning States.

Table 1.2 Device State Flags when Transitioning States

State Device State Flag (dev_sts)
Uninitialized state SCI_IIC_NO_INIT
SCI_IIC_IDLE
Idle states SCI_IIC_FINISH
SCI_IIC_NACK
Communicating (master transmission) SCI_IIC_COMMUNICATION
Communicating (master reception) SCI_IIC_COMMUNICATION
Communicating (master transmit/receive) SCI_IIC_COMMUNICATION
Error SCI_IIC_ERROR
RO1AN1691EJ0246 Rev.2.46 Page 14 of 92

Mar.10.20 RENESAS

RX Family Simple I°C Module Using Firmware Integration Technology

2. API Information

This driver APl adheres to the Renesas APIl naming standards.

2.1 Hardware Requirements

This driver requires your MCU supports the following feature:
- SCI

2.2 Software Requirements

This driver is dependent upon the following packages:

- Board Support Package Module (r_bsp) Rev.5.20 or higher

2.3 Supported Toolchains

This driver is tested and works with the following toolchain:
- Renesas RX Toolchain v.2.02.00
- Renesas RX Toolchain v.2.03.00
- Renesas RX Toolchain v.2.05.00
- Renesas RX Toolchain v.2.06.00
- Renesas RX Toolchain v.2.07.00
- Renesas RX Toolchain v.3.00.00
- Renesas RX Toolchain v.3.01.00
- Renesas RX Toolchain v.3.02.00

Refer to 6.3 Operating Test Environment for details.

RO1AN1691EJ0246 Rev.2.46
Mar.10.20 RENESAS

Page 15 of 92

RX Family Simple I°C Module Using Firmware Integration Technology

2.4 Usage of Interrupt Vector

The TXI interrupt and TEI interrupt are enabled by execution of R_SCI_IIC_MasterSend function or
R_SCI_IIC_MasterReceive function (with specified condition)(while the macro definition
SCI_IIC_CFG_CHi_INCLUDE (i=0to 12) is 1).

Table 2.1 to Table 2.5 shows the interrupt vectors used by the Simple I1>°C FIT module.

RO1AN1691EJ0246 Rev.2.46 Page 16 of 92
Mar.10.20 RENESAS

RX Family

Simple I°C Module Using Firmware Integration Technology

Table 2.1 List of Usage of |

nterrupt Vectors - 1 -

Device

Contents

RX110
RX111
RX13T

TXI1 interrupt [channel 1] (vector no.:
TEI1 interrupt [channel 1] (vector no.:
TXI5 interrupt [channel 5] (vector no.:
TEI5 interrupt [channel 5] (vector no.:

220)
221)
224)
225)

TXI112 interrupt [channel 12] (vector no.: 240)
TEI12 interrupt [channel 12] (vector no.: 241)

RX113
RX130
RX230
RX231

TXIO interrupt [channel 0] (vector no.:
TEIOQ interrupt [channel 0] (vector no.:
TXI1 interrupt [channel 1] (vector no.:
TEI1 interrupt [channel 1] (vector no.:
TXI5 interrupt [channel 5] (vector no.:
TEI5 interrupt [channel 5] (vector no.:
TXI6 interrupt [channel 6] (vector no.:
TEI6 interrupt [channel 6] (vector no.:
TXI8 interrupt [channel 8] (vector no.:
TEI8 interrupt [channel 8] (vector no.:
TXI9 interrupt [channel 9] (vector no.:
TEI9 interrupt [channel 9] (vector no.:

216)
217)
220)
221)
224)
225)
228)
229)
232)
233)
236)
237)

TXI12 interrupt [channel 12] (vector no.: 240)
TEI12 interrupt [channel 12] (vector no.: 241)

RX23E-A

TXI1 interrupt [channel 1] (vector no.:
TEI1 interrupt [channel 1] (vector no.:
TXI5 interrupt [channel 5] (vector no.:
TEIS5 interrupt [channel 5] (vector no.:
TXI6 interrupt [channel 6] (vector no.:
TEI6 interrupt [channel 6] (vector no.:

220)
221)
224)
225)
228)
229)

TXI12 interrupt [channel 12] (vector no.: 240)
TEI12 interrupt [channel 12] (vector no.: 241)

RX23T

TXI1 interrupt [channel 1] (vector no.:
TEI1 interrupt [channel 1] (vector no.:
TXI5 interrupt [channel 5] (vector no.:
TEI5 interrupt [channel 5] (vector no.:

220)
221)
224)
225)

RX23W

TXI1 interrupt [channel 1] (vector no.:
TEI1 interrupt [channel 1] (vector no.:
TXI5 interrupt [channel 5] (vector no.:
TEI5 interrupt [channel 5] (vector no.:
TXI8 interrupt [channel 8] (vector no.:
TEI8 interrupt [channel 8] (vector no.:

220)
221)
224)
225)
232)
233)

TXI12 interrupt [channel 12] (vector no.: 240)
TEI12 interrupt [channel 12] (vector no.: 241)

RX24T

TXI1 interrupt [channel 1] (vector no.:
TEI1 interrupt [channel 1] (vector no.:
TXI5 interrupt [channel 5] (vector no.:
TEI5 interrupt [channel 5] (vector no.:
TXI6 interrupt [channel 6] (vector no.:
TEI6 interrupt [channel 6] (vector no.:

220)
221)
224)
225)
228)
229)

RO1AN1691EJ0246 Rev.2.46
Mar.10.20

RENESAS

Page 17 of 92

RX Family

Simple I°C Module Using Firmware Integration Technology

Table 2.2 List of Usage of |

nterrupt Vectors - 2 -

Device

Contents

RX24U

TXI1 interrupt [channel 1] (vector no.: 220)
TEI1 interrupt [channel 1] (vector no.: 221)
TXI5 interrupt [channel 5] (vector no.: 224)
TEI5 interrupt [channel 5] (vector no.: 225)
TXI6 interrupt [channel 6] (vector no.: 228)
TEI6 interrupt [channel 6] (vector no.: 229)
TXI8 interrupt [channel 8] (vector no.: 232)
TEI8 interrupt [channel 8] (vector no.: 233)
TXI9 interrupt [channel 9] (vector no.: 236)
TEI9 interrupt [channel 9] (vector no.: 237)
TXI11 interrupt [channel 11] (vector no.: 252)
TEI11 interrupt [channel 11] (vector no.: 253)

RX64M
RX71M

TXIO interrupt [channel 0] (vector no.: 59)
TXI1 interrupt [channel 1] (vector no.: 61)
TXI2 interrupt [channel 2] (vector no.: 63)
TXI3 interrupt [channel 3] (vector no.: 81)
TXI4 interrupt [channel 4] (vector no.: 83)
TXI5 interrupt [channel 5] (vector no.: 85)
TXI6 interrupt [channel 6] (vector no.: 87)
TXI7 interrupt [channel 7] (vector no.: 99)
TXI12 interrupt [channel 12] (vector no.: 117)

GROUPBLO interrupt (vector no.: 110)

e TEIO interrupt [channel 0] (group interrupt source no.:
TEI1 interrupt [channel 1] (group interrupt source no.
TEI2 interrupt [channel 2] (group interrupt source no.
TEI3 interrupt [channel 3] (group interrupt source no.
TEI4 interrupt [channel 4] (group interrupt source no.
TEI5 interrupt [channel 5] (group interrupt source no.:
e TEI6 interrupt [channel 6] (group interrupt source no.:
e TEI7 interrupt [channel 7] (group interrupt source no.:

0)

:2)
4)
. 6)
: 8)

10)
12)
14)

e TEI12 interrupt [channel 12] (group interrupt source no.: 16)

RO1AN1691EJ0246 Rev.2.46
Mar.10.20

RENESAS

Page 18 of 92

RX Family

Simple I°C Module Using Firmware Integration Technology

Table 2.3 List of Usage of Interrupt Vectors - 3 -

Device

Contents

RX65N
RX651

TXIO interrupt [channel 0] (vector no.: 59)
TXI1 interrupt [channel 1] (vector no.: 61)
TXI2 interrupt [channel 2] (vector no.: 63)
TXI3 interrupt [channel 3] (vector no.: 81)
TXI4 interrupt [channel 4] (vector no.: 83)
TXI5 interrupt [channel 5] (vector no.: 85)
TXI6 interrupt [channel 6] (vector no.: 87)
TXI7 interrupt [channel 7] (vector no.: 99)
TXI8 interrupt [channel 8] (vector no.: 101)
TXI9 interrupt [channel 9] (vector no.: 103)
TXI10 interrupt [channel 10] (vector no.: 105)
TXI11 interrupt [channel 11] (vector no.: 115)
TXI12 interrupt [channel 12] (vector no.: 117)

GROUPBLO interrupt (vector no.: 110)

e TEIO interrupt [channel O] (group interrupt source no.: 0)

e TEIl interrupt [channel 1] (group interrupt source no.: 2)
TEI2 interrupt [channel 2] (group interrupt source no.: 4)
TEI3 interrupt [channel 3] (group interrupt source no.: 6)
TEI4 interrupt [channel 4] (group interrupt source no.: 8)
TEI5 interrupt [channel 5] (group interrupt source no.: 10)
TEIG6 interrupt [channel 6] (group interrupt source no.: 12)
TEI7 interrupt [channel 7] (group interrupt source no.: 14)
TEI12 interrupt [channel 12] (group interrupt source no.: 16)

GROUPBL1 interrupt (vector no.: 111)
e TEI8 interrupt [channel 8] (group interrupt source no.: 24)
e TEI9 interrupt [channel 9] (group interrupt source no.: 26)

GROUPALDO interrupt (vector no.: 112)
e TEI10 interrupt [channel 10] (group interrupt source no.: 8)
e TEI11 interrupt [channel 11] (group interrupt source no.: 12)

RO1AN1691EJ0246 Rev.2.46

Mar.10.20

RENESAS

Page 19 of 92

RX Family Simple I°C Module Using Firmware Integration Technology

Table 2.4 List of Usage of Interrupt Vectors - 4 -

Device Contents
RX66T TXI1 interrupt [channel 1] (vector no.: 61)
RX72T TXI5 interrupt [channel 5] (vector no.: 85)

TXI6 interrupt [channel 6] (vector no.: 87)
TXI8 interrupt [channel 8] (vector no.: 101)
TXI9 interrupt [channel 9] (vector no.: 103)
TXI11 interrupt [channel 11] (vector no.: 115)
TXI12 interrupt [channel 12] (vector no.: 117)

GROUPBLO interrupt (vector no.: 110)

e TEIl interrupt [channel 1] (group interrupt source no.: 2)

e TEI5 interrupt [channel 5] (group interrupt source no.: 10)

e TEI6 interrupt [channel 6] (group interrupt source no.: 12)

e TEI12 interrupt [channel 12] (group interrupt source no.: 16)

GROUPBL1 interrupt (vector no.: 111)
e TEI8 interrupt [channel 8] (group interrupt source no.: 24)
e TEI9 interrupt [channel 9] (group interrupt source no.: 26)

GROUPALO interrupt (vector no.: 112)
e TEI11 interrupt [channel 11] (group interrupt source no.: 12)

RO1AN1691EJ0246 Rev.2.46 Page 20 of 92
Mar.10.20 RENESAS

Simple I°C Module Using Firmware Integration Technology

Table 2.5 List of Usage of Interrupt Vectors -5 -

Contents

RX Family
Device

RX66N

RX72M

RX72N

TXIO interrupt [channel 0] (vector no.: 59)
TXI1 interrupt [channel 1] (vector no.: 61)
TXI2 interrupt [channel 2] (vector no.: 63)
TXI3 interrupt [channel 3] (vector no.: 81)
TXI4 interrupt [channel 4] (vector no.: 83)
TXI5 interrupt [channel 5] (vector no.: 85)
TXI6 interrupt [channel 6] (vector no.: 87)
TXI7 interrupt [channel 7] (vector no.: 99)
TXI8 interrupt [channel 8] (vector no.: 101)
TXI9 interrupt [channel 9] (vector no.: 103)
TXI10 interrupt [channel 10] (vector no.: 105)
TXI11 interrupt [channel 11] (vector no.: 115)
TXI12 interrupt [channel 12] (vector no.: 117)

GROUPBLO interrupt (vector no.: 110)

TEIO interrupt [channel 0] (group interrupt source no.:
TEI1 interrupt [channel 1] (group interrupt source no.:
TEI2 interrupt [channel 2] (group interrupt source no.:
TEI3 interrupt [channel 3] (group interrupt source no.
TEI4 interrupt [channel 4] (group interrupt source no.
TEI5 interrupt [channel 5] (group interrupt source no.
TEIG6 interrupt [channel 6] (group interrupt source no.

0)
2)
4)

. 6)
. 8)
:10)
112)

TEI12 interrupt [channel 12] (group interrupt source no.: 16)

GROUPALO interrupt (vector no.: 112)

TEI7 interrupt [channel 7] (group interrupt source no.:
TEI8 interrupt [channel 8] (group interrupt source no.:
TEI9 interrupt [channel 9] (group interrupt source no.:

14)
24)
26)

TEI10 interrupt [channel 10] (group interrupt source no.: 8)
TEI11 interrupt [channel 11] (group interrupt source no.: 12)

RO1AN1691EJ0246 Rev.2.46
Mar.10.20

RENESAS

Page 21 of 92

RX Family Simple I°C Module Using Firmware Integration Technology

2.5 Header Files

All API calls and their supporting interface definitions are located in r_sci_iic_rx_if.h.

2.6 Integer Types

This project uses ANSI C99. These types are defined in stdint.h.

RO1AN1691EJ0246 Rev.2.46 Page 22 of 92
Mar.10.20 RENESAS

RX Family Simple I°C Module Using Firmware Integration Technology

2.7 Configuration Overview

The configuration options in this module are specified in r_sci_iic_rx_config.h and r_sci_iic_rx_pin_config.h.
The option hames and setting values are listed in the table below.

Configuration options in r_sci_iic_rx_config.h (1/2)

Selectable whether to include parameter checking in the code.

- When this is set to 0, parameter checking is omitted.

- When this is set to 1, parameter checking is included.

Selectable whether to use available channels.

- When this is set to 0, relevant processes for the channel are
omitted from the code.

SCI_11C_CFG_PARAM_CHECKING_ENABLE
- Default value = 1

SCI_11C_CFG_CHi_ INCLUDED

i =0 to 12 .
_ When i = 0 to 12, the default —When th|§ is set to 1, relevant processes for the channel are
value = 0 included in the code. o
To use a channel, please change the definition value of the
channel to be used to 1.
Specifies the bit rate. Specify a value less than or equal to
384000 (384 kbit/sec.).
SCI_11C_CFG_CHi_BITRATE_BPS The bit rate setting should be based on this definition value
i =0 to 12 and the clock setting definition value specified by RX Family
- Default value = 384000 for all Board Support Package Module (BSP FIT module).

Depending on the target device to be used and the BSP FIT
module clock setting, the actual bit rate may differ from the
expected bit rate.

Specifies interrupt priority levels for condition generation,
receive-data-full, transmit-data-empty, and transmit-end
interrupts.

Specify the level between 1 and 15.

Selectable whether to use the noise cancellation function for
the SSCL and SSDA input signals.
- When this is set to 0, the noise cancellation function is

SCI_11C_CFG_CHii_INT_PRIORITY
i =0 to 12
- Default value = 2 for all

SCI_11C_CFG_CHi_DIGITAL FILTER
i =0 to 12

disabled.
- Default value = 1 for all - When this is set to 1, the noise cancellation function is
enabled.
Select the sampling clock used for digital noise filter.
SCI_11IC_CFG_CHi_FILTER_CLOCK - When this is set to 1, the clock divided by 1 is used.
i =0 to 12 - When this is set to 2, the clock divided by 2 is used.
- Default value = 1 for all - When this is set to 3, the clock divided by 4 is used.

- When this is set to 4, the clock divided by 8 is used.

Select the delay time for output on the SSDA pin relative to the
falling edge of the output on the SSCL pin.
Specify the delay between 1 and 31.

The default value is a value based on PCLK which operates in
60 MHz and is the clock source of the on-chip baud rate
generator.

The SSDA delay time is increased or decreased according to
the clock source of the on-chip baud rate generator.

When the bit rate or the PCLK frequency is set to low speed,
the SSDA falling timing may occur after the SSCL falling timing
in the start condition.

Confirm and set an appropriate value depending on the user
system.

SCI_11C_CFG_CHi_SSDA DELAY_SELECT
i =0 to 12
- Default value = 18 for all

RO1AN1691EJ0246 Rev.2.46 Page 23 of 92
Mar.10.20 RENESAS

RX Family Simple I°C Module Using Firmware Integration Technology

Configuration options in r_sci_iic_rx_config.h (2/2)

SCI_11C_CFG_BUS_CHECK_COUNTER
i =0 to 12
- Default value = 1000

Specifies the timeout counter (hnumber of times to perform bus
checking) when the simple 1°C API function performs bus
checking.

Specify a value less than or equal to OXFFFFFFFF.

The bus checking is performed after generating each condition
using the simple I1°C control function (R_SCI_IIC_Control
function).

With the bus checking, the timeout counter is decremented
after generating each condition. When the counter reaches 0,
the API determines that a timeout has occurred and returns an
error (Busy) as the return value.

* The timeout counter is used for the bus not to be locked by
the bus lock or others. Therefore specify the value greater
than or equal to the time for that the other device holds the
SCL pin low.

L . 1
Setting time for the timeout (ns) ~ (m (Hz)) x counter value
x 10

SCI_11C_CFG_PORT_SETTING_PROCESSING
- Default value = 1

Specifies whether to include processing for port setting) in the
code.

* Processing for port setting is the setting to use ports selected
by R_SCI_IIC_CFG_SCIi_SSCLi_PORT,
R_SCI_IIC_CFG_SCIi_SSCLi_BIT,
R_SCI_IIC_CFG_SCIi_SSDAi_PORT, and
R_SCI_IIC_CFG_SCIi_SSDAI_BIT as pins SSCL and SSDA.

- When this is set to 0, processing for port setting is omitted
from the code.

- When this is set to 1, processing for port setting is included in
the code.

- When you assume this setting 0, please set four definitions
mentioned above.

RO1AN1691EJ0246 Rev.2.46
Mar.10.20

Page 24 of 92
RENESAS

RX Family

Simple I°C Module Using Firmware Integration Technology

Configuration options in r_sci_iic_rx_pin_config.h (1/2)

R_SCI_IIC_CFG_SCIi_SSCLi_PORT
i

=0 to 12
- When i = 0, the default value = “2~
- When i = 1, the default value = “1”
- When i = 2, the default value = “5~
- When i = 3, the default value = “2~
- When i = 4, the default value = “B~ Selects port groups used as the SSCL pins.
- When i = 5, the default value = “B~ Specify the value as an ASCII code in the range
- When i = 6, the default value = “B” ‘0’ to ‘K.
- When i = 7, the default value = “9~
- When i = 8, the default value = “C~
- When i = 9, the default value = “B”
- When i = 10, the default value = “8~
- When 1 = 11, the default value = “7”
- When i = 12, the default value = “E~
R_SCI_I11C _CFG_SCli_SSCLi_BIT
i =0 to 12
- When i = 0, the default value = “1~
- When i = 1, the default value = “5~
- When i = 2, the default value = “2~
- When i = 3, the default value = “5~
- When i = 4, the default value = “0~ Selects pins used as the SSCL pins.
- When i = 5, the default value = “1~ Specify the value as an ASCII code in the range
- When i = 6, the default value = “1” ‘0"to ‘7.
- When 1 = 7, the default value = “2~
- When i = 8, the default value = “6~
- When i = 9, the default value = “6~
- When i = 10, the default value = “1~
- When i = 11, the default value = “6~
- When i = 12, the default value = “2~
R_SCI_11C_CFG_SCli_SSDAi_PORT
i =0 to 12
- When i = 0, the default value = “2~
- When i = 1, the default value = “1”
- When i = 2, the default value = “5~
- When i = 3, the default value = “2~
- When i = 4, the default value = “B~ Selects port groups used as the SSDA pin.
- When i = 5, the default value = “B~ Specify the value as an ASCII code in the range
- When i = 6, the default value = “B” ‘0’ to ‘K.
- When i = 7, the default value = “9~
- When i = 8, the default value = “C~
- When i = 9, the default value = “B”
- When i = 10, the default value = “8~
- When 1 = 11, the default value = “7”
- When i = 12, the default value = “E~
RO1AN1691EJ0246 Rev.2.46 Page 25 of 92
Mar.10.20 RENESAS

RX Family Simple I°C Module Using Firmware Integration Technology

Configuration options in r_sci_iic_rx_pin_config.h (2/2)

- When i = 0, the default value = “0~

- When i = 1, the default value = “6~

- When i = 2, the default value = “0~

- When i = 3, the default value = “3~

- When i = 4, the default value = “1~ Selects port groups used as the SSDA pin.

- When i = 5, the default value = “2~ Specify the value as an ASCII code in the range
- When i = 6, the default value = “2” ‘0"to ‘7.

- When i = 7, the default value = “0~

- When i = 8, the default value = “7~

- When i = 9, the default value = “7”

- When i = 10, the default value = “2~

- When 1 = 11, the default value = “7”

- When i = 12, the default value = “1~

RO1AN1691EJ0246 Rev.2.46 Page 26 of 92

Mar.10.20 RENESAS

RX Family Simple I°C Module Using Firmware Integration Technology

2.8 Code Size

Typical code sizes associated with this module are listed below. Information is listed for a single
representative device of the RX100 Series, RX200 Series, and RX600 Series, respectively.

The ROM (code and constants) and RAM (global data) sizes are determined by the build-time configuration
options described in 2.7 Configuration Overview. The table lists reference values when the C compiler’'s
compile options are set to their default values, as described in 2.3, Supported Toolchains. The compile
option default values are optimization level: 2, optimization type: for size, and data endianness: little-endian.
The code size varies depending on the C compiler version and compile options.

The values in the table below are confirmed under the following conditions.
Module Revision: r_sci_iic_rx rev2.46
Compiler Version: Renesas Electronics C/C++ Compiler Package for RX Family V3.02.00

(The option of “-lang = ¢99” is added to the default settings of the integrated
development environment.)

GCC for Renesas RX 8.3.0.201904

(The option of “-std=gnu99” is added to the default settings of the integrated
development environment.)

IAR C/C++ Compiler for Renesas RX version 4.13.01
(The default settings of the integrated development environment.)

Configuration Options: Default settings

ROM, RAM and Stack Memory Usage

Device Category Memory Used
Renesas Compiler GCC IAR Compiler
With Without With Without With Without
Parameter Parameter Parameter Parameter Parameter Parameter
Checking Checking Checking Checking Checking Checking
RX130 1 channel used 4353 bytes 4236 bytes 10224 bytes 10088 bytes 7480 bytes 7212 bytes
ROM
2 channels used | 4501 bytes 4384 bytes 10372 bytes 10244 bytes 7613 bytes 7345 bytes
1 channel used 41 bytes 44 bytes 33 bytes
RAM
2 channels used | 69 bytes 72 bytes 49 bytes
STACK *1 292 bytes - 364 bytes
RX231 o 1 channel used 4323 bytes 4206 bytes 8624 bytes 8488 bytes 7482 bytes 7214 bytes
ROM
2 channels used | 4471 bytes 4354 bytes 8772 bytes 8644 bytes 7615 bytes 7347 bytes
1 channel used 41 bytes 47 bytes 33 bytes
RAM
2 channels used | 69 bytes 72 bytes 49 bytes
STACK *1 292 bytes - 364 bytes
RX64M o 1 channel used 4379 bytes 4262 bytes 8696 bytes 8560 bytes 7517 bytes 7289 bytes
ROM
2 channels used | 4525 bytes 4408 bytes 8852 bytes 8716 bytes 7645 bytes 7417 bytes
1 channel used 41 bytes 44 bytes 34 bytes
RAM
2 channels used | 69 bytes 72 bytes 50 bytes
STACK *1 324 bytes - 376 bytes

Note 1. The sizes of maximum usage stack of Interrupts functions is included.

RO1AN1691EJ0246 Rev.2.46 Page 27 of 92
Mar.10.20 RENESAS

RX Family Simple I°C Module Using Firmware Integration Technology

2.9 Parameters

This section describes the structure whose members are API parameters. This structure is located in
r_sci_iic_rx_if.h as are the prototype declarations of API functions.

The contents of the structure are referred and updated during communication. Do not rewrite the structure
during communication (SCI_IIC_COMMUNICATION).

typedef struct
{
uint8_t rsv2; /* Reserved area */
uint8_t rsvl; /* Reserved area */
sci_iic_ch_dev_status_t dev_sts; /* Device state flag */
uint8_t ch_no; /* Channel number for the device used */
sci_iic_callback callbackfunc; /* Callback function */
uint32_t cnt2nd;/* Second data counter (number of bytes) */
uint32_t cntlst;/* First data counter (number of bytes) */
uint8_t * p_data2nd; /* Pointer to the buffer to store the second data */
uint8_t * p_datalst; /* Pointer to the buffer to store the first data */
uint8_t * p_slv_adr; /* Pointer to the buffer to store the slave address */
} sci_iic_info_t;

2.10 Return Values

This section describes return values of API functions. This enumeration is located in r_sci_iic_rx_if.h as are
the prototype declarations of API functions.

typedef enum /* Simple 12C-bus APl state codes */
{
SCI_I1I1C_SUCCESS, /* Processing completed successfully */
SCI_IIC_ERR_LOCK_FUNC, /* Multiple calls occurred on the same channel. */
SCI_IIC_ERR_INVALID_CHAN, /* Nonexistent channel */
SCI_IIC_ERR_INVALID_ARG, /* Invalid parameter */
SCI_IIC_ERR_NO_INIT, /* Uninitialized state */
SCI_II1C_ERR_BUS_BUSY, /* Bus is busy. This state occurs with the following cases: */
/* The initialization function or a start function is */
/* called during communication. */
/* A start function or advance function is called while */
/* another device on the same channel is communicating. */
SCI_11C_ERR_OTHER /* Other error */
} sci_iic_return_t;

RO1AN1691EJ0246 Rev.2.46 Page 28 of 92
Mar.10.20 RENESAS

RX Family Simple I°C Module Using Firmware Integration Technology

2.11 Adding the FIT Module to Your Project

This module must be added to each project in which it is used. Renesas recommends the method using the
Smart Configurator described in (1) or (3) below. However, the Smart Configurator only supports some RX
devices. Please use the methods of (2) or (4) for RX devices that are not supported by the Smart
Configurator.

(1) Adding the FIT module to your project using the Smart Configurator in €2 studio
By using the Smart Configurator in e? studio, the FIT module is automatically added to your project.
Refer to “RX Smart Configurator User’s Guide: e? studio (R20AN0451)” for details.

(2) Adding the FIT module to your project using the FIT Configurator in e? studio
By using the FIT Configurator in e? studio, the FIT module is automatically added to your project.
Refer to “RX Family Adding Firmware Integration Technology Modules to Projects (RO1AN1723)”
for details.

(3) Adding the FIT module to your project using the Smart Configurator in CS+
By using the Smart Configurator Standalone version in CS+, the FIT module is automatically added
to your project. Refer to “RX Smart Configurator User's Guide: CS+ (R20AN0470)” for details.

(4) Adding the FIT module to your project in CS+
In CS+, please manually add the FIT module to your project. Refer to “RX Family Adding Firmware
Integration Technology Modules to CS+ Projects (RO1AN1826)” for details.

(5) Adding the FIT module to your project using the Smart Configurator in IAREW
By using the Smart Configurator Standalone version, the FIT module is automatically added to your
project. Refer to “RX Smart Configurator User’s Guide: IAREW (R20AN0535)” for details.

RO1AN1691EJ0246 Rev.2.46 Page 29 of 92
Mar.10.20 RENESAS

RX Family Simple I°C Module Using Firmware Integration Technology

2.12 “for”, “while” and “do while” statements

In this module, “for”, “while” and “do while” statements (loop processing) are used in processing to wait for
register to be reflected and so on. For these loop processing, comments with “WAIT_LOOP” as a keyword
are described. Therefore, if user incorporates fail-safe processing into loop processing, user can search the
corresponding processing with “WAIT_LOOP”.

The following shows example of description.

while statement example :
/* WAIT_LOOP */
while(0 == SYSTEM.OSCOVFSR.BIT.PLOVF)

{
/* The delay period needed is to make sure that the PLL has stabilized. */

}

for statement example :
/* Initialize reference counters to 0. */
/* WAIT_LOOP */
for (i = 0; i < BSP_REG_PROTECT_TOTAL_ ITEMS; i++)
{
g_protect_counters[i] = 0;

}

do while statement example :
/* Reset completion waiting */
do
{
reg = phy_read(ether_channel, PHY_REG_CONTROL);
count++;
} while ((reg & PHY_CONTROL RESET) && (count < ETHER_CFG_PHY_DELAY_RESET)); /* WAIT_LOOP */

RO1AN1691EJ0246 Rev.2.46 Page 30 of 92
Mar.10.20 RENESAS

RX Family Simple I°C Module Using Firmware Integration Technology

3. API Functions

3.1 R_SCI_IIC_Open()

The function initializes the simple 1°C FIT module. This function must be called before calling any other API
functions.

Format
sci_iic_return_t R_SCI_IIC_Open(
sci_iic_info_t * p_sci_iic_info /* Structure data */

Parameters
* p_sci_lic_info
This is the pointer to the 1°C communication information structure.

Only the member of the structure used in this function is described here. Refer to 2.9 Parameters for
details on the structure.

The contents of the structure are referred and updated during communication. Do not rewrite the structure
during communication (SCI_IIC_COMMUNICATION).

For the parameter which has ‘(to be updated)’ in the comment below, the argument for the parameter will
be updated during the API execution.

sci_lic_ch_dev_status_t dev_sts; /* Device state flag (to be updated) */
uint8_t ch_no; /* Channel number */

Return Values

SCI_IIC_SUCCESS /* Processing completed successfully */
SCI_IIC_ERR_LOCK_FUNC /* The API is locked by the other task. */
SCI_IIC_ERR_INVALID_CHAN /* Nonexistent channel */
SCI_IIC_ERR_INVALID_ARG /* Invalid parameter */

SCI_IIC_ERR_OTHER /* The event occurred is invalid in the current state. */

Properties
Prototyped in r_sci_iic_rx_if.h.

Description

Performs the initialization to start the simple 1°C-bus communication. Sets the SCI channel specified by the
parameter. If the state of the channel is ‘uninitialized (SCI_IIC_NO_INIT)’, the following processes are
performed.

- Setting the state flag

- Setting 1/O ports

- Allocating I12C output ports

- Cancelling SCI module-stop state

- Initializing variables used by the API

- Initializing the SCI registers used for the simple 12C-bus communication
- Disabling the SCI interrupt

The bit rate set in initial setting to start simple 12C-bus communication.

The bit rate is set based on the setting value of "2.7 Configuration Overview" and the clock setting definition
value specified by BSP FIT module.

RO1AN1691EJ0246 Rev.2.46 Page 31 of 92
Mar.10.20 RENESAS

RX Family Simple I°C Module Using Firmware Integration Technology

Example

volatile sci_lic_return_t ret;

sci_1lic_info_t siic_info;
siic_info.dev_sts = SCI_I1C_NO_INIT;
siic_info.ch_no = 1;

ret = R_SCI_1IC Open(&siic_info);

Special Notes
None

RO1AN1691EJ0246 Rev.2.46

Mar.10.20 RENESAS

Page 32 of 92

RX Family Simple I°C Module Using Firmware Integration Technology

3.2 R_SCI_IIC_MasterSend()

Starts master transmission. Changes the transmit pattern according to the parameters. Operates batched
processing until stop condition generation.

Format

sci_iic_return_t R_SCI_IIC_MasterSend(

sci_iic_info_t* p_sci_iic_info /* Structure data */

Parameters
* p_sci_lic_info

This is the pointer to the I1°C communication information structure. The transmit patterns can be selected
from four patterns by the parameter. Refer to the Special Notes in this section for available settings and
the setting values for each transmit pattern. Also refer to 1.3.2 Master Transmission for details of each
pattern.

Only members of the structure used in this function are described here. Refer to 2.9 Parameters for
details on the structure.

The contents of the structure are referred and updated during communication. Do not rewrite the structure
during communication (SCI_IIC_COMMUNICATION).

When setting the slave address, store it without shifting 1 bit to left.

For the parameter which has ‘(to be updated)’ in the comment below, the argument for the parameter will
be updated during the API execution.

uint8_t * p_slv_adr; /* Pointer to the buffer to store the slave address */
uint8_t * p_datalst; /* Pointer to the buffer to store the first data
(to be updated) */
uint8_t * p_data2nd; /* Pointer to the buffer to store the second data
(to be updated) */
sci_iic_ch_dev_status_t dev_sts; /* Device state flag (to be updated) */
uint32_t cntlst;/* First data counter (number of bytes)
(to be updated for only pattern 1) */
uint32_t cnt2nd;/* Second data counter (number of bytes)
(to be updated for only pattern 1 and 2) */
sci_1iic_callback callbackfunc; /* Callback function */
uint8_t ch_no; /* Channel number */

Return Values

SCI_IIC_SUCCESS /* Processing completed successfully */
SCI_IIC_ERR_INVALID_CHAN /* The channel is nonexistent. */
SCI_IIC_ERR_INVALID_ARG /* The parameter is invalid. */
SCI_IIC_ERR_NO_INIT /* Uninitialized state */

SCI_IIC_ERR_BUS_BUSY /* The bus state is busy. */
SCI_IIC_ERR_OTHER /* The event occurred is invalid in the current state. */

Properties
Prototyped in r_sci_iic_rx_if.h.

RO1AN1691EJ0246 Rev.2.46 Page 33 of 92
Mar.10.20 RENESAS

RX Family Simple I°C Module Using Firmware Integration Technology

Description

Starts the simple 12C-bus master transmission. The transmission is performed with the SCI channel and
transmit pattern specified by parameters. If the state of the channel is ‘idle (SCI_IIC_IDEL)’, the following
processes are performed.

- Setting the state flag

- Initializing variables used by the API
- Enabling the SCI interrupts

- Releasing the I?C reset

- Allocating I12C output ports

- Generating a start condition

This function returns SCI_IIC_SUCCESS as a return value when the processing up to the start condition
generation ends normally. This function returns SCI_IIC_ERR_BUS BUSY as a return value when the
following conditions are met to the start condition generation ends normally. @

- Either SCL or SDA line is in low state.

The transmission processing is performed sequentially in subsequent interrupt processing after this function
return SCI_IIC_SUCCESS. Section "2.4Usage of Interrupt Vector" should be refered for the interrupt to be
used. For master transmission, the interrupt generation timing should be refered from "6.2.1Master
transmission".

After issuing a stop condition at the end of transmission, the callback function specified by the argument is
called.

The transmission completion is performed normally or not, can be confirmed by checking the device status
flag specified by the argument or the channel status flag g_sci_iic_ChStatus [], that is to be
"SCI_IIC_FINISH" for normal completion.

Notes:

1. When SCL and SDA pin is not external pull-up, this function may return SCI_IIC_ERR_BUS BUSY
by detecting either SCL or SDA line is as in low state.

Example
- Casel: Transmit pattern 1

#include <stddef.h> // NULL definition
#include "platform.h"
#include "r_sci_iic_rx_if.h"

void main(void);
void Callback chl(void);

void main(void)

{
volatile sci_lic _return_t ret;
sci_iic_info t siic_info;
uint8_t slave_addr_eeprom[1] = {0x50}; /* Slave address for EEPROM */
uint8_t access addril[1] = {0x00}; /* 1st data field */
uint8_t send_data[5] = {0x81,0x82,0x83,0x84,0x85};
/* Sets IIC Information (Send pattern 1) */
siic_info.p_slv_adr = slave_addr_eeprom;
siic_info.p_datalst = access_addrl;
RO1AN1691EJ0246 Rev.2.46 Page 34 of 92

Mar.10.20 RENESAS

RX Family Simple I°C Module Using Firmware Integration Technology

siic_info.p_data2nd = send_data;
siic_info.dev_sts = SCI_IIC_NO_INIT;
siic_info.cntlst = 1;
siic_info.cnt2nd = 3;
siic_info.callbackfunc = &Callback_chl;
siic_info.ch_no = 1;

/* SCI open */

ret = R_SCI_I1IC Open(&siic_info);

/* Start Master Send */

ret = R_SCI_I1IC MasterSend(&siic_info);

if (SCI_11C_SUCCESS == ret)

while(SCI_IIC_FINISH != siic_info.dev_sts);

}
else
{
/* error */
}
/* Master send complete */
while(1);
}
void Callback chl(void)
{
volatile sci_lic _return_t ret;
sci_iic_mcu_status_t iic_status;
sci_iic_info t iic_info_ch;
iic_info ch.ch no = 1;
ret = R_SCI_I1C_GetStatus(&iic_info_ch, &iic_status);
iT (SCI_I1C_SUCCESS !I= ret)
{
/* Call error processing for the R_SCI_I11C_GetStatus()function*/
}
else
{
if (1 == iic_status.BIT.NACK)
{
/* Processing when a NACK iIs detected
by verifying the iic_status flag. */
be
}
}

RO1AN1691EJ0246 Rev.2.46
Mar.10.20 RENESAS

Page 35 of 92

RX Family Simple I°C Module Using Firmware Integration Technology

- Case2: Transmitting data to two slave devices (Slave 1 and slave 2)
continuously.

#include <stddef.h> // NULL definition

#include "platform.h"

#include "r_sci_iic_rx_if.h"

void main(void);
void Callback chl(void);

void main(void)

{

volatile sci_lic_return_t ret;
sci_iic_info_ t siic_info_slavel;
sci_iic_info_ t siic_info_slave2;
uint8_t slave_addr_eeprom[1l] = {0x50}; /* Slave address for EEPROM */
uint8_t slave_addr_mléc[1] = {0x01}; /* Slave address for M16C */
uint8_t write_addr_slavel[l] = {O0x01}; /* 1lst data field */
uint8_t write_addr_slave2[1l] = {0x02}; /* 1lst data field */
uint8_t data_area slavel[5] = {0x81,0x82,0x83,0x84,0x85};
uint8_t data_area slave2[5] = {0x18,0x28,0x38,0x48,0x58%};
/* Sets “Slave 1’ Information (Send pattern 1) */
siic_info_slavel.p_slv_adr = slave addr_eeprom;
siic_info_slavel.p datalst = write_addr_slavel;
siic_info_slavel.p _data2nd = data_area_slavel;
siic_info_slavel.dev_sts = SCI_IIC_NO_INIT;
siic_info_slavel.cntlst = 1;
siic_info_slavel.cnt2nd = 3;
siic_info_slavel.callbackfunc = &Callback chil;
siic_info_slavel.ch no = 1;
/* SCI1 open */ To access multiple slave
ret = R_SCI_I1C Open(&siic_info_slavel); devices, rewrite the information
/* Start Master Send */ structure for each slave device to
ret = R_SCI_I1C_MasterSend(&siic_info_slavel); be accessed
while((SCI_IIC_FINISH != siic_info_slavel.dev_sts) &&

(SCI_IIC_NACK !I= siic_info_slavel.dev_sts));
/* Sets “Slave 2’ Information (Send pattern 1) */
siic_info_slave2.p_slv_adr = slave _addr_ml6c;
siic_info_slave2.p datalst = write_addr_slave?;
siic_info_slave2.p_data2nd = data_area_slave?2;
siic_info_slave2.dev_sts = SCI_I1IC _NO_INIT;
siic_info_slave2.cntlst = 1;
siic_info_slave2.cnt2nd = 3;
siic_info_slave2.callbackfunc = &Callback _chil;
siic_info_slave2.ch _no = 1;
/* Start Master Send */
ret = R_SCI_1IC _MasterSend(&siic_info_slave2);
while((SCI_IIC_FINISH != siic_info_slave2.dev_sts) &&

(SCI_I1I1C_NACK != siic_info_slave2.dev_sts));
while(1);

}

RO1AN1691EJ0246 Rev.2.46
Mar.10.20

RENESAS

Page 36 of 92

RX Family Simple I°C Module Using Firmware Integration Technology

void Callback _chl(void)
{

volatile sci_lic _return_t ret;
sci_iic_mcu_status t iic_status;
sci_iic_info t iic_info_ch;

iic_info_ch.ch_no = 1;
ret = R_SCI_I1IC _GetStatus(&iic_info_ch, &iic_status);

if (SCI_I1C_SUCCESS != ret)
{

}

else

{

/* Call error processing for the R_SCI_I1C_GetStatus()function*/

if (1 == iic_status.BIT.NACK)
{

/* Processing when a NACK is detected
by verifying the iic_status flag. */
}

}

Special Notes
The table below lists available settings for each pattern.

Structure Available Settings for Each Pattern of the Master Transmission
Member Pattern 1 | Pattern 2 | Pattern 3 Pattern 4
*p_slv_adr Buffer pointer to the slave address storage FIT_ NO PTR®
*p_datalst Buffer pointerto the | o\ o prR @ FIT_NO PTR® FIT_NO_PTR ®
first data storage
*n_dataznd Buffer pointer to the second data (transmit FIT_NO_PTR® FIT_NO_PTR®
data) storage
dev_sts Device state flag
0000 0001h to
entlst FFFF FFFFh © 0 0 0
cnt2nd 0000 0001h to FFFF FFFFh @ 0 0
callbackfunc Specify the function name used
ch_no 00h to FFh
rsvi, rsv2 Reserved (value set here has no effect)
Notes:

1. When using pattern 2, 3, or 4, set ‘FIT_NO_PTR’ as the argument of the parameter.
2. DonotsettoO.

RO1AN1691EJ0246 Rev.2.46 Page 37 of 92
Mar.10.20 RENESAS

RX Family Simple I°C Module Using Firmware Integration Technology

3.3 R_SCI_IIC_MasterReceive()

Starts master reception. Changes the receive pattern according to the parameters. Operates batched
processing until stop condition generation.

Format
sci_iic_return_t R_SCI_IIC_MasterRecive(

sci_iic_info_t* p_sci_iic_info /* Structure data */

Parameters
* p_sci_iic_info

This is the pointer to the 12C communication information structure. The receive pattern can be selected
from master reception and master transmit/receive. Refer to the Special Notes in this section for available
settings and the setting values for each receive pattern. Also refer to 1.3.3 Master Reception for details of
each receive pattern.

Only members of the structure used in this function are described here. Refer to 2.9 Parameters for
details on the structure.

The contents of the structure are referred and updated during communication. Do not rewrite the structure
during communication (SCI_IIC_COMMUNICATION).

When setting the slave address, store it without shifting 1 bit to left.

For the parameter which has ‘(to be updated)’ in the comment below, the argument for the parameter will
be updated during the API execution.

uint8_t * p_slv_adr; /* Pointer to the buffer to store the slave address */
uint8_t * p_datalst; /* Pointer to the buffer to store the first data

(to be updated) */
uint8_t * p_data2nd; /* Pointer to the buffer to store the second data

(to be updated) */
sci_iic_ch_dev_status_t dev_sts; /* Device state flag (to be updated) */
uint32_t cntlst;/* First data counter (number of bytes) */

(to be updated only for master transmit/receive)

- 0

*/
uint32_t cnt2nd;/* Second data counter (number of bytes) (to be updated) */
sci_iic_callback callbackfunc; /* Callback function */
uint8_t ch_no; /* Channel number */

Return Values

SCI_IIC_SUCCESS /* Processing completed successfully */
SCI_IIC_ERR_INVALID_CHAN /* The channel is nonexistent. */
SCI_IIC_ERR_INVALID_ARG /* The parameter is invalid. */
SCI_IIC_ERR_NO_INIT /* Uninitialized state */

SCI_IIC_ERR_BUS_BUSY /* The bus state is busy. */
SCI_IIC_ERR_OTHER /* The event occurred is invalid in the current state. */

Properties
Prototyped in r_sci_iic_rx_if.h.

RO1AN1691EJ0246 Rev.2.46 Page 38 of 92
Mar.10.20 RENESAS

RX Family Simple I°C Module Using Firmware Integration Technology

Description

Starts the simple 12C-bus master reception. The reception is performed with the SCI channel and receive
pattern specified by parameters. If the state of the channel is ‘idle (SCI_IIC_IDELY)’, the following processes
are performed.

- Setting the state flag

- Initializing variables used by the API
- Enabling the SCI interrupts

- Releasing the I?C reset

- Allocating I12C output ports

- Generating a start condition

This function returns SCI_IIC_SUCCESS as a return value when the processing up to the start condition
generation ends normally. This function returns SCI_IIC_ERR_BUS_BUSY as a return value when the
following conditions are met to the start condition generation ends normally.

- Either SCL or SDA line is in low state.

The reception processing is performed sequentially in subsequent interrupt processing after this function
return SCI_IIC_SUCCESS. Section "2.4 Usage of Interrupt Vector" should be refered for the interrupt to be
used. For master transmission, the interrupt generation timing should be refered from "6.2.2 Master
Reception".

After issuing a stop condition at the end of reception, the callback function specified by the argument is
called.

The reception completion is performed normally or not, can be confirmed by checking the device status flag
specified by the argument or the channel status flag g_sci_iic_ChStatus [], that is to be "SCI_IIC_FINISH" for
normal completion.

Notes:
1. When SCL and SDA pin is not external pull-up, this function may return SCI_IIC_ERR_BUS_BUSY
by detecting either SCL or SDA line is as in low state.

Example

#include <stddef.h> // NULL definition
#include "platform._h"
#include "r_sci_iic_rx_if.h"

void main(void);
void Callback _chl(void);

void main(void)

{
volatile sci_lic_return_t ret;
sci_iic_info_t siic_info;

{0x50%}; /* Slave address for EEPROM */
{0x00%}; /* 1st data field */
{OxFF, OxFF, OxFF, OXFF,OxFF};

uint8_t slave_addr_eeprom[1]
uint8_t access_addrl[1]
uint8_t store_area[5]

/* Sets 11C Information (Chl) */
siic_info.p_slv_adr = slave_addr_eeprom;
siic_info.p _datalst = access_addrl;
siic_info.p_data2nd = store_area;

RO1AN1691EJ0246 Rev.2.46 Page 39 of 92
Mar.10.20 RENESAS

RX Family

Simple I°C Module Using Firmware Integration Technology

}

_info.dev_sts = SCI_I11C_NO_INIT;
nfo.cntlst = 1;

_info.cnt2nd = 3;
_info.callbackfunc = &Callback chil;
_info.ch_no = 1;

nonononon
OO0 000

/* SCI open */
ret = R_SCI_I1C_Open(&siic_info);
/* Start Master Receive */

ret = R_SCI_1IC_MasterReceive(é&siic_info);
if (SCI_IIC_SUCCESS == ret)
{ while(SCI_IIC_FINISH != siic_info.dev_sts);
}
else
{
/* error */
}
/* Master receive complete */
while(1);

void Callback chl(void)

{

volatile sci_lic _return_t ret;
sci_iic_mcu_status_ t iic_status;
sci_iic_info t iic_info_ch;

iic_info ch.ch no = 1;
ret = R_SCI_I1IC GetStatus(&iic_info _ch, &iic_status);

if (SCI_IIC_SUCCESS != ret)

{ /* Call error processing for the R_SCI_I11C_GetStatus()function*/
}
else
{

if (1 == iic_status.BIT.NACK)

i* Processing when a NACK is detected

by verifying the iic_status flag. */

}

}

RO1AN1691EJ0246 Rev.2.46
Mar.10.20 RENESAS

Page 40 of 92

RX Family

Simple I°C Module Using Firmware Integration Technology

Special Notes

The table below lists available settings for each receive pattern.

Structure Available Settings for Each Pattern of the Master Reception
Member Master Reception Master Transmit/Receive
*p_slv_adr Buffer pointer to the slave address storage
*p_datalst (Value set here has no effect) | Buffer pointer to the first data storage
*p_data2nd Buffer pointer to the second data (receive data) storage
dev_sts Device state flag
cntlst @ 0000 0001h to FFFF FFFFh
cnt2nd @ 0000 0001h to FFFF FFFFh 0000 0001h to FFFF FFFFh
callbackfunc Specify the function name used
ch_no
rsvi, rsv2 Reserved (value set here has no effect)
Notes:

1. The receive pattern is determined by whether cntlst is O or not.
2. DonotsettoO.

RO1AN1691EJ0246 Rev.2.46

Mar.10.20

RENESAS

Page 41 of 92

RX Family Simple I°C Module Using Firmware Integration Technology

3.4 R_SCI_IIC_Close()

This function completes the simple 12C communication and releases the SCI used.

Format
sci_iic_return_t R_SCI_IIC_Close(

sci_iic_info_t* p_sci_iic_info /* Structure data */

Parameters
* p_sci_lic_info
This is the pointer to the I°C communication information structure.

Only the member of the structure used in this function is described here. Refer to 2.9 Parameters for
details on the structure.

The contents of the structure are referred and updated during communication. Do not rewrite the structure
during communication (SCI_IIC_COMMUNICATION).

For the parameter which has ‘(to be updated)’ in the comment below, the argument for the parameter will
be updated during the API execution.

sci_iic_ch_dev_status_t dev_sts; /* Device state flag (to be updated) */
uint8_t ch_no; /* Channel number */

Return Values

SCI_IIC_SUCCESS /* Processing completed successfully */
SCI_IIC_ERR_INVALID_CHAN /* The channel is nonexistent. */
SCI_IIC_ERR_INVALID_ARG /* The parameter is invalid. */

Properties
Prototyped in r_sci_iic_rx_if.h.

Description
Configures the settings to complete the simple 1>°C-bus communication. Disables the SCI channel specified
by the parameter. The following processes are performed in this function.

- Entering the SCI module-stop state
- Releasing I°C output ports
- Disabling the SCI interrupt

To restart the communication, call the R_SCI_IIC_Open() function (initialization function). If the
communication is forcibly terminated, that communication is not guaranteed.

RO1AN1691EJ0246 Rev.2.46 Page 42 of 92
Mar.10.20 RENESAS

RX Family Simple I°C Module Using Firmware Integration Technology

Example

volatile sci_lic _return_t ret;
sci_1lic_info_t siic_info;

siic_info.ch_no = 1;

ret = R_SCI_1IC Close(é&siic_info);

Special Notes
None

RO1AN1691EJ0246 Rev.2.46 Page 43 of 92
Mar.10.20 RENESAS

RX Family Simple I°C Module Using Firmware Integration Technology

3.5 R_SCI_IIC_GetStatus()

Returns the state of this module.

Format
sci_iic_return_t R_SCI_IIC_GetStatus(

sci_iic_info_t* p_sci_iic_info /* Structure data */
sci_iic_mcu_status_t *p_sci_iic_status /* State of this module */

)

Parameters
* p_sci_iic_info
This is the pointer to the 1°C communication information structure.

Only the member of the structure used in this function is described here. Refer to 2.9 Parameters for
details on the structure.

The contents of the structure are referred and updated during communication. Do not rewrite the structure
during communication (SCI_IIC_COMMUNICATION).

uint8_t ch_no; /* Channel number */

*p_sci_iic_status
This contains the address to store the I12C state flag. If the argument is ‘FIT_NO_PTR’, the state is not

returned.
Use the structure members listed below to specify parameters.

typedef union

{
uint32_t LONG;
struct st_sci_iic_status_flag

uint32_t rsv :27 /* Reserve bit */

uint32_t SCLI:1; /* SSCL pin level */

uint32_t SDAI:1; /* SSDA pin level */

uint32_t NACK:1; /* NACK detection flag */
uint32_t TRS :1; /* Transmit/receive mode level */
uint32_t BSY :1; /* Bus state flag */

}BIT;

} sci_iic_mcu_status_t;
Return Values

SCI_IIC_SUCCESS /* Processing completed successfully */
SCI_IIC_ERR_INVALID_CHAN /* The channel is nonexistent. */
SCI_IIC_ERR_INVALID_ARG /* The parameter is invalid. */
SCI_IIC_ERR_OTHER /* The event occurred is invalid in the current state. */

Properties
Prototyped in r_sci_iic_rx_if.h.

Description

Returns the state of this module.

By reading the register, pin level, variable, or others, obtains the state of the SCI channel which specified by
the parameter, and returns the obtained state as 32-bit structure.

RO1AN1691EJ0246 Rev.2.46 Page 44 of 92
Mar.10.20 RENESAS

RX Family Simple I°C Module Using Firmware Integration Technology

Example

volatile sci_lic _return_t ret;

sci_1lic_info_t siic_info;
sci_1lic_mcu_status_t iic_status;
siic_info.ch_no = 1

ret = R_SCI_I1IC_GetStatus(&siic_info, &iic_status);

Special Notes
The following shows the state flag allocation.

b31to b16

Reserved

Reserved

rsv

Always 0

b15 to b8

Reserved

Reserved

rsv

Always 0
b7 to b5 b4 b3 b2 b1l b0
Reserved Pin level dEven_t Mode Bus state

etection
SSCL pin SSDA pin NACK Send/ Bus
Reserved . receive
level level detection busy/ready
mode
rsv SCLI SDAI NACK TRS BSY
. 0: Not . . .
Do e deterea | Recene | D e
-Hig 1: Detected)) Y
RO1AN1691EJ0246 Rev.2.46 Page 45 of 92
Mar.10.20 RENESAS

RX Family Simple I°C Module Using Firmware Integration Technology

3.6 R_SCI_IIC_Control()

This function outputs conditions, Hi-Z from the SSDA pin, and one-shot of the SSCL clock. Also it resets the
settings of this module. This function is mainly used when a communication error occurs.

Format

sci_iic_return_t R_SCI_IIC_Control(
r_sci_iic_info_t* p_sci_iic_info /* Structure data */
sci_iic_ctrl_ptn_t ctrl_ptn /* Output pattern */

Parameters
* p_sci_lic_info
This is the pointer to the 1°C communication information structure.

Only the member of the structure used in this function is described here. Refer to 2.9 Parameters for
details on the structure.

The contents of the structure are referred and updated during communication. Do not rewrite the structure
during communication (SCI_IIC_COMMUNICATION).

For the parameter which has ‘(to be updated)’ in the comment below, the argument for the parameter will
be updated during the API execution.

sci_iic_ch_dev_status_t dev_sts; /* Device state flag (to be updated) */
uint8_t ch_no; /* Channel number */

ctrl_ptn
Specifies the output pattern. When selecting multiple options, specify them with |".

The following options can be selected simultaneously:

- The following three options can be specified simultaneously. Then they will be processed in the order
listed.

- SCI_IIC_GEN_START_CON
- SCI_IIC_GEN_RESTART_CON
- SCI_IIC_GEN_STOP_CON

- The following two options can be specified simultaneously.

- SCI_IIC_GEN_SDA_HI_Z
- SCI_IIC_GEN_SSCL_ONESHOT

typedef uint8_t sci_iic_ctrl_ptn_t;
#define SCI_IIC_GEN_START_CON (sci_iic_ctrl_ptn_t)(0x01)

/* Start condition generation */
#define SCI_IIC_GEN_STOP_CON (sci_iic_ctrl_ptn_t)(0x02)

/* Stop condition generation */
#define SCI_IIC_GEN_RESTART_CON (sci_iic_ctrl_ptn_t)(0x04)

/* Restart condition generation */
#define SCI_IIC_GEN_SSDA HI_Z (sci_iic_ctrl_ptn_t)(0x08)

/* Hi-Z output from the SSDA pin */
#define SCI_I1IC_GEN_SSCL_ONESHOT (sci_iic_ctrl_ptn_t)(0x10)

/* SSCL clock one-shot output */
#define SCI_IIC_GEN_RESET (sci_iic_ctrl_ptn_t)(0x20)

/* Simple 12C mode reset */

RO1AN1691EJ0246 Rev.2.46 Page 46 of 92
Mar.10.20 RENESAS

RX Family Simple I°C Module Using Firmware Integration Technology

Return Values

SCI_IIC_SUCCESS /* Processing completed successfully */
SCI_IIC_ERR_INVALID_CHAN /* The channel is nonexistent. */
SCI_IIC_ERR_INVALID_ARG /* The parameter is invalid. */
SCI_IIC_ERR_BUS_BUSY /* The bus state is busy. */
SCI_IIC_ERR_OTHER /* The event occurred is invalid in the current state. */

Properties
Prototyped in r_sci_iic_rx_if.h.

Description
Outputs control signals of the simple 1°C mode. Outputs conditions specified by the argument, Hi-Z from the
SSDA pin, and one-shot of the SSCL clock. Also resets the simple I°C mode settings.

Example

volatile sci_iic_return_t ret;
sci_iic_info t siic_info;

siic_info.ch_no = 1;

/* Output an extra SSCL clock cycle after changes the SSDA pin in a high-
impedance state */

ret = R_SCI_1IC_Control(&siic_info, SCI_1IC_GEN_SSDA HI_Z |
SCI_I1C_SSCL_ONESHOT) ;

Special Notes
None

RO1AN1691EJ0246 Rev.2.46 Page 47 of 92
Mar.10.20 RENESAS

RX Family Simple I°C Module Using Firmware Integration Technology

3.7 R_SCI_IIC_GetVersion()

Returns the current version of this module.

Format
uint32_t R_SCI_IIC_GetVersion(void)

Parameters
None

Return Values
Version number

Properties
Prototyped in r_sci_iic_rx_if.h.

Description

This function will return the version of the currently installed SCI (simple 1°C mode) FIT module. The version
number is encoded where the top 2 bytes are the major version number and the bottom 2 bytes are the
minor version number. For example, Version 4.25 would be returned as 0x00040019.

Example
uint32_t version;

version = R_SCI_I1C_GetVersion();

Special Notes
None.

RO1AN1691EJ0246 Rev.2.46 Page 48 of 92
Mar.10.20 RENESAS

RX Family

Simple I°C Module Using Firmware Integration Technology

4. Pin Settings

To use the SCI (Simple I°C Mode) FIT module, assign input/output signals of the peripheral function to pins
with the multi-function pin controller (MPC). The pin assignment is referred to as the “Pin Setting” in this

document.

The SCI (Simple 12C Mode) FIT module can choose whether or not to perform the pin setting in the
R_SCI_IIC_Open/R_SCI_IIC_MasterSend / R_SCI_IIC_MasterReceive / R_SCI_IIC_Close /
R_SCI_IIC_Control function depending on the setting of the configuration option

SCL_IIC_CFG_PORT_SET_PROCESSING.

For details of the configuration options, refer to "2.7 Configuration Overview".

When performing the Pin Setting in the e? studio, the Pin Setting feature of the FIT Configurator or the Smart
Configurator can be used. When using the pin setting feature, pins selected in the Pin Setting pane can be
used in the FIT Configurator or Smart Configurator. The information of selected pins is reflected in the
r_sci_iic_pin_config.h file. Values of the macro definitions listed in Table 4.1 and Table 4.2 are overwritten
with values corresponding to the pins selected. When using the pin setting feature of the FIT Configurator,
the source file which has the function to enable the pin setting feature (and the "r_pincfg" folder) is not

generated in the SCI (Simple I°C Mode) FIT module.

Table 4.1 Macro Definitions for the Pin Setting Feature — 1 —

Channel Selected Pin Selected Macro Definition
Channel 0 SSCLO Pin R_SCI_IIC_CFG_SCI0O_SSCLO_PORT
R_SCI_IIC_CFG_SCI0O_SSCL0 BIT
SSDAO Pin R_SCI_IIC_CFG_SCI0_SSDAO_PORT
R_SCI_lIC_CFG_SCI0_SSDAO_BIT
Channel 1 SSCL1 Pin R_SCI_IIC_CFG_SCI1_SSCL1 _PORT
R_SCI_IIC_CFG_SCI1_SSCL1_BIT
SSDA1 Pin R_SCI_IIC_CFG_SCI1_SSDA1_PORT
R_SCI_IIC_CFG_SCI1_SSDA1_BIT
Channel 2 SSCL2 Pin R_SCI_IIC_CFG_SCI2_SSCL2_PORT
R_SCI_IIC_CFG_SCI2_SSCL2_BIT
SSDA2 Pin R_SCI_lIC_CFG_SCI2_SSDA2_PORT
R_SCI_IIC_CFG_SCI2_SSDA2 BIT
Channel 3 SSCL3 Pin R_SCI_IIC_CFG_SCI3_SSCL3_PORT
R_SCI_IIC_CFG_SCI3_SSCL3_BIT
SSDA3 Pin R_SCI_IIC_CFG_SCI3_SSDA3_PORT
R_SCI_IIC_CFG_SCI3_SSDA3 BIT
Channel 4 SSCL4 Pin R_SCI_IIC_CFG_SCl4_SSCL4_PORT
R_SCI_IIC_CFG_SCl4_SSCL4_BIT
SSDA4 Pin R_SCI_IIC_CFG_SCl4_SSDA4_PORT
R_SCI_IIC_CFG_SCl4_SSDA4 BIT
Channel 5 SSCL5 Pin R_SCI_IIC_CFG_SCI5_SSCL5 _PORT
R_SCI_IIC_CFG_SCI5_SSCL5_BIT
SSDA5 Pin R_SCI_IIC_CFG_SCI5_SSDA5_PORT
R_SCI_IIC_CFG_SCI5_SSDA5 BIT
Channel 6 SSCL6 Pin R_SCI_IIC_CFG_SCI6_SSCL6 PORT
R_SCI_IIC_CFG_SCI6_SSCL6 BIT
SSDAG6 Pin R_SCI_IIC_CFG_SCI6_SSDA6_PORT
R_SCI_IIC_CFG_SCI6_SSDA6_BIT
RO1AN1691EJ0246 Rev.2.46 Page 49 of 92
Mar.10.20 RENESAS

RX Family

Simple I°C Module Using Firmware Integration Technology

Table 4.2 Macro Definitions for the Pin Setting Feature — 2 —

Channel Selected Pin Selected Macro Definition
Channel 7 SSCL7 Pin R_SCI_IIC_CFG_SCI7_SSCL7_PORT
R _SCI_lIIC_CFG_SCI7_SSCL7 BIT
SSDA7Y Pin R_SCI_IIC_CFG_SCI7_SSDA7_PORT
R_SCI_IIC_CFG_SCI7_SSDA7 _BIT
Channel 8 SSCL8 Pin R_SCI_IIC_CFG_SCI8 _SSCL8 PORT
R_SCI_lIIC_CFG_SCI8 _SSCL8 BIT
SSDAS8 Pin R_SCI_lIIC_CFG_SCI8 SSDA8 PORT
R_SCI_IIC_CFG_SCI8 SSDA8 BIT
Channel 9 SSCL9 Pin R_SCI_IIC_CFG_SCI9_SSCL9 PORT
R_SCI_IIC_CFG_SCI9 _SSCL9 BIT
SSDA9 Pin R_SCI_IIC_CFG_SCI9 _SSDA9 PORT
R_SCI_lIIC_CFG_SCI9 SSDA9 BIT
Channel 10 SSCL10 Pin R_SCI_lIIC_CFG_SCI10_SSCL10_PORT
R_SCI_IIC_CFG_SCI10_SSCL10 BIT
SSDA10 Pin R_SCI_lIIC_CFG_SCI10_SSDA10_PORT
R_SCI_IIC_CFG_SCI10_SSDA10 BIT
Channel 11 SSCL11 Pin R_SCI_lIIC_CFG_SCI11_SSCL11_PORT
R_SCI_IIC_CFG_SCI11_SSCL11 BIT
SSDA11 Pin R_SCI_IIC_CFG_SCI11_SSDA11_PORT
R_SCI_IIC_CFG_SCI11_SSDA11 BIT
Channel 12 SSCL12 Pin R_SCI_lIIC_CFG_SCI12_SSCL12 PORT
R_SCI_lIIC_CFG_SCl12_SSCL12 BIT
SSDA12 Pin R_SCI_IIC_CFG_SCI12 SSDA12_PORT
R_SCI_IIC_CFG_SCI12_SSDA12 BIT

Pins selected in the r_sci_iic_pin_config.h file are configured as peripheral function pins SSCL and SSDA
after calling the R_SCI_IIC_MasterSend / R_SCI_IIC_MasterReceive / R_SCI_IIC_Control function.

The pins assigned to the peripheral function are released when the communication operation executed by
the R_SCI_IIC_MasterSend / R_SCI_IIC_MasterReceive / R_SCI_IIC_Control function is completed or upon
calling the R_SCI_IIC_Close function and then become general I/O pins (as input pins).

Pins SSCL and SSDA must be pulled up with an external resistor.

When the pin setting feature in this FIT module is not used according to the
SCI_IIC_CFG_PORT_SET_PROCESSING setting, pins used in user processing must be configured after
calling the R_SCI_IIC_Open function before calling the other APIs.

RO1AN1691EJ0246 Rev.2.46 Page 50 of 92
Mar.10.20 RENESAS

RX Family Simple I°C Module Using Firmware Integration Technology

5. Demo Projects

Demo projects are complete stand-alone programs. They include function main() that utilizes the module
and its dependent modules (e.g.. r_bsp).

In this section, it explains about GUI operation when you use e? studio.

5.1 sciiic_send_demo_rskrx64m

Description

A simple demo of the RX64M SCI Simple I°C Mode Master Transmission for the RSKRX64M starter kit (FIT
module "r_sci_iic_rx"). The demo uses the Simple I12C API from r_sci_iic_rx_if.h to start master transmission.
The master device (RX MCU) transmits data to the slave device. When the master transmission is finished,
print the finished message to the debug console by main().

Setup and Execution

1. Compile and download the sample code.

2. Click ‘Reset Go’ to start the software. If PC stops at Main, press F8 to resume.
3. Set breakpoints and watch global variables

Boards Supported

RSKRX64M

5.2 sciiic_receive_demo_rskrx64m

Description

A simple demo of the RX64M SCI Simple 1°C Mode Master Reception for the RSKRX64M starter kit (FIT
module "r_sci_iic_rx"). The demo uses the Simple I2C API from r_sci_iic_rx_if.h to start master reception.
The master (RX MCU) receives data from the slave device .When the master reception is finished, print the
received data to the debug console by main().

Boards Supported
RSKRX64M

5.3 sciiic_send_demo_rskrx231

Description

A simple demo of the RX231 SCI Simple I1°C Mode Master Transmission for the RSKRX231 starter kit (FIT
module "r_sci_iic_rx"). This demo is identical to the RX64M for demo above.

Boards Supported
RSKRX231

RO1AN1691EJ0246 Rev.2.46 Page 51 of 92
Mar.10.20 RENESAS

RX Family Simple I°C Module Using Firmware Integration Technology

5.4 sciiic_receive_demo_rskrx231

Description

A simple demo of the RX231 SCI Simple 12C Mode Master Reception for the RSKRX231 starter kit (FIT
module "r_sci_iic_rx"). This demo is identical to the RX64M for demo above.

Boards Supported
RSKRX231

5.5 Adding a Demo to a Workspace

Demo projects are found in the FITDemos subdirectory of the distribution file for this application note. To
add a demo project to a workspace, select File>Import>General>Existing Projects into Workspace, then click
“Next”. From the Import Projects dialog, choose the “Select archive file” radio button. “Browse” to the
FITDemos subdirectory, select the desired demo zip file, then click “Finish”.

5.6 Downloading Demo Projects

Demo projects are not included in the RX Driver Package. When using the demo project, the FIT module
needs to be downloaded. To download the FIT module, right click on the required application note and select
“Sample Code (download)” from the context menu in the Smart Brower >> Application Notes tab.

RO1AN1691EJ0246 Rev.2.46 Page 52 of 92
Mar.10.20 RENESAS

RX Family Simple I°C Module Using Firmware Integration Technology

6. Appendices

6.1 Communication Method

This API controls each processing such as start condition generation, slave address transmission, and
others as a single protocol, and performs communication by combining these protocols.

6.1.1 States for API Operation
Table 6.1 lists the States Used for Protocol Control.

Table 6.1 States Used for Protocol Control (enum sci_iic_api_status_t)

No. Constant Name Description

STSO | SCLIIC_STS _NO_INIT Uninitialized state

STS1 | SCIL_IIC_STS IDLE Idle state

STS2 | SCI_IIC_STS _ST_COND_WAIT Wait state for a start condition to be generated

sTs3 | scl 1Ic STS SEND SLVADR W WAIT Wait state for the slave address [write] transmission to
- = - - - = complete

STS4 | SCI_IIC_STS_SEND_SLVADR_R_WAIT \C/\Cl)erlrl]tpTé?;e for the slave address [read] transmission to

STS5 | SCI_IIC_STS _SEND_DATA_WAIT Wait state for the data transmission to complete

STS6 | SCI_IIC_STS RECEIVE_DATA WAIT Wait state for the data reception to complete

STS7 | SCI_IIC_STS _SP_COND_WAIT Wait state for a stop condition to be generated

6.1.2 Events During API Operation

Table 6.2 lists the Events Used for Protocol Control. When the interface functions accompanying this module
are called, they are defined as events as well as interrupts.

Table 6.2 Events Used for Protocol Control (enum sci_iic_api_event_t)

No. Event Event Definition
EVO | SCI_IIC_EV_INIT sci_iic_init_driver() called
EV1l | SCI_IIC_EV_GEN_START_COND sci_iic_generate_start_cond() called
EV2 | SCI_IIC_EV_INT_START STl interrupt occurred (interrupt flag: START)
EV3 | SCI_IIC_EV_INT_ADD TXI interrupt occurred
EV4 | SCI_IIC_EV_INT_SEND TXI interrupt occurred
EV5 | SCI_IIC_EV_INT_STOP STl interrupt occurred (interrupt flag: STOP)
EV6 | SCI_IIC_EV_INT_NACK STl interrupt occurred (interrupt flag: NACK)
RO1AN1691EJ0246 Rev.2.46 Page 53 of 92

Mar.10.20 RENESAS

RX Family Simple I°C Module Using Firmware Integration Technology

6.1.3 Protocol State Transitions

In this module, a state transition occurs when an interface function provided is called or when an SCI (simple
I2C mode) interrupt request is generated. Figure 6.1 to Figure 6.4 show protocol state transitions.

Notation conventions
Event[condition]/ [SCI_IIC_STS_NO_INIT]
@ Action on the event Uninitialized state

(STS0)

(1) EVO('sci_iic_init_driver()' called)/
Initialization processing

[SCI_IIC_STS_IDLE]
Idle state
(STS1)

Figure 6.1 State Transition on Initialization

RO1AN1691EJ0246 Rev.2.46 Page 54 of 92
Mar.10.20 RENESAS

RX Family Simple I°C Module Using Firmware Integration Technology

Notation conventions

Event[condition]/
Action on the event

[SCI_IIC_STS_IDLE]
Idle state (STS1)

(1) EV1('sci_iic_drv_generate_start_cond()' called)/
Starts generating a start condition

SCI_IIC_STS_ST_COND_WAIT
Wait state for a start condition
to be generated (STS2)

(2) EV2(STI interrupt occurred)
[Pointer to the slave address storage buffer != NULL]/

. Starts transmitting the slave address (transfer direction: write)
Operation for Pattern 4

(3) EV2 (STl interrupt occurred)
[Pointer to the slave address storage buffer == NULL]/
Starts generating a stop condition

[SCI_IIC_STS_SEND_SLVADR_W_WAIT]
Wait state for the slave address [write]
transmission to complete (STS3)

Operation for pattern 2
(5) EV3 (TXI interrupt occurred)
[Pointer to the first data storage buffer == NULL &&
pointer to the second data storage buffer != NULL])/
Starts transmitting the first byte of the second data

Operation for pattern 1

(4) EV3 (TXI interrupt occurred)
[Pointer to the first data storage
buffer I= NULL)/
Starts transmitting the first byte of
the first data

[SCI_IIC_STS_SEND_
DATA_WAIT]
Wait state for the data
transmission to complete
(STS5)

(7) EV4 (TXI interrupt occurred)
[Writing the first data continuously]/
Starts transmitting the second byte of the first data
or the subsequent byte

Operation for pattern 3
(6) EV3 (TXI interrupt occurred)
(8) EV4 (TXI interrupt occurred) [Pointer to the first data storage buffer == NULL &&
[When the first data has been written]/ pointer to the second data storage buffer == NULL})/
Starts transmitting the first byte of the second data Starts generating a stop condition

(9) EV4 (TXI interrupt occurred)
[Writing the second data continuously]/
Starts transmitting the second byte of the second
data or the subsequent byte

(10) EV4 (TXI interrupt occurred)
[When the second data has been written]/
Starts generating a stop condition

[SCI_IIC_STS_SP_COND_WAIT]
Wait state for a stop condition
to be generated (STS7)

(11) EV5 (STl interrupt occurred)/
End processing

Figure 6.2 State Transition on Master Transmission

RO1AN1691EJ0246 Rev.2.46 Page 55 of 92
Mar.10.20 RENESAS

RX Family Simple I°C Module Using Firmware Integration Technology

Notation conventions

Event[condition]/
@ Action on the event

[SCI_IIC_STS_IDLE]
Idle state (STS1)

(1) EV1 (‘'sci_iic_drv_generate_start_cond()' called)/
Starts generating a start condition

[SCI_IIC_STS_ST_COND_WAIT]
Wait state for a start condition
to be generated (STS2)

(2) EV2 (STl interrupt occurred)/
Starts transmitting the slave address (transfer direction: read)

[SCI_IIC_STS_SEND_
SLVADR_R_WAIT]
Wait state for the slave address
[read] transmission to complete
(STS4)

(3) EV3 (TXl interrupt occurred)/Starts receiving the first byte of the data

(4) EV3 (TXI interrupt occurred)
[Reading continuously]/
Starts receiving the second byte of
the data or the subsequent byte

[SCI_IIC_STS_RECEIVE
_DATA_WAIT]

Wait state for the data reception

to complete (STS6)

(5) EV3 (TXl interrupt occurred)
[When the read operation has completed]/
Starts generating a stop condition

End processing

[SCI_IIC_STS_SP_COND_WAIT]
Wait state for a stop condition
to be generated (STS7)

Figure 6.3 State Transition on Master Reception

(6) EV5 (STl interrupt occurred)

RO1AN1691EJ0246 Rev.2.46 Page 56 of 92

Mar.10.20 RENESAS

RX Family Simple I°C Module Using Firmware Integration Technology

Notation conventions

Event[condition]/
» Action on the event

[SCI_IIC_STS_IDLE]
Idle state (STS1)

(1) EV1 ('sci_iic_drv_generate_start_cond()' called)/
Starts generating a start condition

[SCI_IIC_STS_ST_COND_WAIT]
Wait state for a start condition
to be generated (STS2)

(2) EV2 (STl interrupt occurred)
[The previous state is the idle state]/
Starts transmitting the slave address
(transfer direction: write)

(6) EV2 (STl interrupt occurred)
[The previous state is the wait state for
the data transmission to complete]/
Restarts transmitting the slave address
(transfer direction: read)

[SCI_IIC_STS_SEND_
SLVADR_W_WAIT]
Wait state for the slave address
[write] transmission to complete
(STS3)

(3) EV3 (TXI interrupt occurred)/)
Starts transmitting the first byte (5) EV4 (TXI interrupt occurred)
of data [When the write operation has completed]

/Starts generating a restart condition

[SCI_IIC_STS_SEND
_SLVADR_R_WAIT]
Wait state for the slave address
[read] transmission to complete
(STS4)

(4) EV4 (TXI interrupt occurred)
[Writing continuously]/
Starts transmitting the second byte of
the data or the subsequent byte

[SCI_IIC_STS_SEND
_DATA_WAIT]
Wait state for the data
transmission to complete
(STS5)

(7) EV3 (TXI interrupt occurred)/
Starts receiving the first byte of data

[SCI_IIC_STS_RECEIVE

(8) EV3 (TXI interrupt occurred)

[Reading continuously)/) _DATA_WAIT] _
Start receiving the second byte of Wait state for the data reception
data or the subsequent byte to complete

(STS6)

(9) EV3 (TXI interrupt occurred)
[When the read operation has completed]/

Starts generating a stop condition (10) EV5 (STl interrupt occurred)/
End processing

[SCI_IIC_STS_SP_COND
_WAIT]

Wait state for the stop condition

0 be generated (STS7

Figure 6.4 State Transition on Master Transmit/Receive

RO1AN1691EJ0246 Rev.2.46 Page 57 of 92
Mar.10.20 RENESAS

RX Family Simple I°C Module Using Firmware Integration Technology

6.1.4 Protocol State Transition Table

The processing when the events in Table 6.2 occur in the states in Table 6.1 is shown in the Table 6.3
Protocol State Transition. Refer to Table 6.4 for details of each function.

Table 6.3 Protocol State Transition Table (gc_sci_iic_mtx_tbI[][]) @

Event

State

Uninitialized state

STSO l1sci jic_STS_NO_INIT]

Idle state
[SCI_IIC_STS_IDLE]

Wait state for a start condition to be

STS2 |generated
SCI_IIC_STS_ST_COND_WAIT

Wait state for the slave address [write]
STS3 [transmission to complete
[SCI_IIC_STS_SEND_SLVADR_W_WAIT]

Wait state for the slave address [read]

STS4 [transmission to complete
[SCI_IIC_STS_SEND_SLVADR_R_WAIT]
Wait state for the data transmission to
STS5 |complete Func?7
[SCI_IIC_STS_SEND_DATA_WAIT]

Wait state for the data reception to complete
[SCI_IIC_STS_RECEIVE_DATA_WAIT]

Wait state for the stop condition to be
STS7 |generated Func?7
[SCI_IIC_STS_SP_COND_WAIT]

STS1

Func7

STS6

Note:
1. ERRindicates SCI_IIC_ERR_OTHER. When an unexpected event is notified in a state, error
processing will be performed.

6.1.5 Functions Used on Protocol State Transitions
Table 6.4 lists the Functions Used on Protocol State Transition.

Table 6.4 Functions Used on Protocol State Transition

Processing Function Overview
FuncO sci_iic_init_driver() Initialization
Funcl sci_iic_generate_start_cond() Start condition generation
Func2 sci_iic_after_gen_start cond() Processing after generating a start condition
Func3 sci_iic_after_send_slvadr() Processing after transmitting the slave address
Func4 sci_iic_write_data_sending() Data transmission
Funcb sci_iic_read_data_receiving() Data reception
Func6 sci_iic_release() Communication end processing
Func7 sci_iic_nack() NACK error processing
RO1AN1691EJ0246 Rev.2.46 Page 58 of 92

Mar.10.20 RENESAS

RX Family Simple I°C Module Using Firmware Integration Technology

6.1.6 Flag States on State Transitions

1

2)

Controlling states of channels

Multiple slaves on the same bus can be exclusively controlled using the channel state flag
‘g_sci_iic_ChsStatus[]'. Each channel has the channel state flag and the flag is controlled by the global
variable. When the initialization for this module has completed and the target bus is not being used for a
communication, the flag becomes ‘SCI_IIC_IDLE/SCI_IIC_FINISH/SCI_IIC_NACK’ (idle state) and
communication is available. When the bus is being used for communication, the flag becomes
‘SCI_IIC_COMMUNICATION’ (communicating). When communication is started, the flag is always
verified. Thus, if a device is communicating on a bus, then no other device can start communicating on
the same bus. Simultaneous communication can be achieved by controlling the channel state flag for
each channel.

Controlling states of devices

Multiple slaves on the same channel can be controlled using the device state flag ‘dev_sts’ in the I12C
communication information structure. The device state flag stores the state of communication for the
device.

Table 6.5 lists States of Flags on State Transitions.

RO1AN1691EJ0246 Rev.2.46 Page 59 of 92
Mar.10.20 RENESAS

RX Family

Simple I°C Module Using Firmware Integration Technology

Table 6.5 States of Flags on State Transitions

State

Channel State Flag

Device State Flag
(Communication Device)

I2C Protocol Operating
Mode

Current State of the Protocol Control

g_sci_iic_ChStatus]]

12C Communication
Information Structure
*p_dev_sts

Internal Communication
Information Structure
api_Mode

Internal Communication Information
Structure
api_N_status

Uninitialized state

SCI_IIC_NO_INIT

SCI_IIC_NO_INIT

SCI_IIC_MODE_NONE

SCI_IIC_STS_NO_INIT

SCI_IIC_IDLE SCI_IIC_IDLE
Idle state SCI_IIC_FINISH SCI_IIC_FINISH SCI_IIC_MODE_NONE SCI_IIC_STS_IDLE
SCI_IIC_NACK SCI_IIC_NACK
o SCI_IIC_STS_ST_COND_WAIT
Communicating SCI_liC_ ScCLIIC_ SCI_IIC_STS_SEND_SLVADR_W_WAIT

(master
transmission)

COMMUNICATION

COMMUNICATION

SCI_IIC_MODE_WRITE

SCI_IIC_STS_SEND_DATA_WAIT

SCI_IIC_STS_SP_COND_WAIT

Communicating
(master reception)

SCl_lIC_
COMMUNICATION

Scl_liC_
COMMUNICATION

SCI_IIC_MODE_READ

SCI_IIC_STS_ST_COND_WAIT

SCI_IIC_STS_SEND_SLVADR_R_WAIT

SCI_IIC_STS_RECEIVE_DATA_WAIT

SCI_IIC_STS_SP_COND_WAIT

Communicating

SCI_IIC_STS_ST_COND_WAIT

SCI_IIC_STS_SEND_SLVADR_W_WAIT

SCI_lIC_ SCI_lIC_ SCI_IIC_MODE_ SCI_IIC_STS_SEND_SLVADR_R_WAIT
(master
. . COMMUNICATION COMMUNICATION COMBINED SCI_IIC_STS_SEND_DATA_WAIT

transmit/receive) - = = - —
SCI_IIC_STS_RECEIVE_DATA WAIT
SCI_IIC_STS_SP_COND_WAIT

Error state SCI_IIC_ERROR SCI_IIC_ERROR — —

RO1AN1691EJ0246 Rev.2.46 Page 60 of 92

Mar.10.20 RENESAS

RX Family Simple I°C Module Using Firmware Integration Technology

6.2 Interrupt Request Generation Timing
This section describes the interrupt request generation timings in this module.

Legend:
ST: Start condition

ADG6 to ADO: Slave address

/W: Transfer direction bit: O (Write)
R: Transfer direction bit: 1 (Read)
/ACK: Acknowledge: O

NACK: Acknowledge: 1

D7 to DO: Data

RST: Restart condition

SP: Stop condition

6.2.1 Master Transmission

(1) Pattern1

ST AADgoto W JACK | D7toD0| /ACK |D7toD0O| IACK Sp

A1 A2 A3 A4 A5

A 1: STI (START) interrupt: Start condition detected

A 2: TXI interrupt: Address transmission completed (transfer direction bit: write)
A 3: TXI interrupt: Data transmission completed (first data) @

A 4: TXI interrupt: Data transmission completed (second data)

A5: STI (STOP) interrupt: Stop condition detected

(2) Pattern 2

ST AES (;O W /ACK D7 to DO /ACK SP

A1 A2 A3 A4

A 1: STI (START) interrupt: Start condition detected

A 2: TXI interrupt: Address transmission completed (transfer direction bit: write) @
A 3: TXI interrupt: Data transmission completed (second data)

A 4: STI (STOP) interrupt: Stop condition detected

Note:
1. An interrupt request is generated on the rising edge of the ninth clock.

RO1AN1691EJ0246 Rev.2.46 Page 61 of 92
Mar.10.20 RENESAS

RX Family Simple I°C Module Using Firmware Integration Technology

(3) Pattern 3

ADG to
ST ADO W /ACK SP

A1 A2 A3

A 1: STI (START) interrupt: Start condition detected
A 2: TXI interrupt: Address transmission completed (transfer direction bit: write) @
A 3: STI (STOP) interrupt: Stop condition detected

(4) Pattern 4
| st | sp |
A1 A2

A 1: STI (START) interrupt: Start condition detected
A 2: STI (STOP) interrupt: Stop condition detected

Note:
1. Aninterrupt request is generated on the rising edge of the ninth clock.

6.2.2 Master Reception

ST AADgoto R /ACK | D7toD0| /ACK |D7t0D0| NACK Sp

A1 A2 A3 A4 A5

A 1: STI (START) interrupt: Start condition detected

A 2: TXI interrupt: Address transmission completed (transfer direction bit: read) @
A 3: TXI interrupt: Reception for the last data - 1 completed (second data)

A 4: TXI interrupt: Reception for the last data completed (second data) @

A 5: STI (STOP) interrupt: Stop condition detected

Notes:
1. Aninterrupt request is generated on the rising edge of the ninth clock.
2. Aninterrupt request is generated on the rising edge of the eighth clock.

RO1AN1691EJ0246 Rev.2.46 Page 62 of 92
Mar.10.20 RENESAS

RX Family Simple I°C Module Using Firmware Integration Technology
6.2.3 Master Transmit/Receive
ADG to AD6 to
ST ADO W IACK | D7toDO | /ACK RST ADO R
A1 A2 A3 A4
IACK |D7toDO| /ACK [D7toDO| NACK | SP |
A5 AG A7 A8

A 1: STI (START) interrupt: Start condition detected

A 2: TXI interrupt: Address transmission completed (transfer direction bit: write) @

A 3: TXI interrupt: Data transmission completed (first data) @
A 4: STI (START) interrupt: Restart condition detected

A 5: TXI interrupt: Address transmission completed (transfer direction bit: read) @

A 6: TXI interrupt: Reception for the last data - 1 completed (second data) @

A 7: TXI interrupt: Reception for the last data completed (second data) @
A 8: STI (STOP) interrupt: Stop condition detected

Notes:

1. An interrupt request is generated on the rising edge of the ninth clock.
2. Aninterrupt request is generated on the rising edge of the eighth clock.

RO1AN1691EJ0246 Rev.2.46

Mar.10.20

RENESAS

Page 63 of 92

RX Family

Simple I°C Module Using Firmware Integration Technology

6.3

Operating Test Environment

This section describes for detailed the operating test environments of this module.

Table 6-6 Operation Test Environment for Rev.1.60 and Rev.1.70.

Item

Contents

Integrated development
environment

Renesas Electronics
e? studio V3.1.2.09

C compiler

Renesas Electronics
C/C++ compiler for RX Family V.2.02.00

Compiler options: The integrated development environment default settings
are used, with the following option added.
-lang = c99

Endian order

Big-endian/Little-endian

Module version

Rev.1.60 and Rev.1.70

Board used

Renesas Starter Kit for RX111 (product number. ROK505111SxxxBE)
Renesas Starter Kit for RX113 (product number. ROK505113SxxxBE)
Renesas Starter Kit for RX231 (product number. ROK505231SxxxBE)
Renesas Starter Kit+ for RX63N (product number. ROK50563NSxxxBE)
Renesas Starter Kit+ for RX64M (product number. ROK50564MSxxxBE)
Renesas Starter Kit+ for RX71M (product number. ROK50571MSxxxBE)

Table 6-7 Operation Test Environment for Rev.1.80.

Item

Contents

Integrated development
environment

Renesas Electronics
e? studio V4.0.2.008

C compiler

Renesas Electronics
C/C++ compiler for RX Family V.2.03.00

Compiler options: The integrated development environment default settings
are used, with the following option added.

-lang = c99
Endian order Big-endian/Little-endian
Module version Rev.1.80

Board used

Renesas Starter Kit for RX130 (product number. ROK505113SxxxBE)
Renesas Starter Kit for RX23T (product number. RTK500523TSxxxxxBE)

RO1AN1691EJ0246 Rev.2.46
Mar.10.20

Page 64 of 92

RENESAS

RX Family

Simple I°C Module Using Firmware Integration Technology

Table 6-8 Operation Confirmation Environment for Rev.1.90.

Item

Contents

Integrated development
environment

Renesas Electronics
e? studio vV4.1.0.018

C compiler

Renesas Electronics
C/C++ compiler for RX Family V.2.03.00

Compiler options: The integrated development environment default settings
are used, with the following option added.

-lang = c99
Endian order Big-endian/Little-endian
Module version Rev.1.90

Board used

Renesas Starter Kit for RX111 (product number. ROK505111SxxxBE)
Renesas Starter Kit for RX113 (product number. ROK505113SxxxBE)
Renesas Starter Kit for RX130 (product number. RTK5005130SxxxxXBE)
Renesas Starter Kit for RX231 (product number. ROK505231SxxxBE)
Renesas Starter Kit for RX23T (product number. RTK500523TSxxxxXBE)
Renesas Starter Kit for RX24T (product number. RTK500524TSxxxxxBE)
Renesas Starter Kit for RX63N (product number. ROK50563NSxxxBE)
Renesas Starter Kit for RX64M (product number. ROK50564MSxxxBE)
Renesas Starter Kit for RX71M (product number. ROK50571MSxxxBE)

Table 6-9 Operation Confirmation Environment for Rev.2.00.

Item

Contents

Integrated deveropment
environment

Renesas Electronics
e? studio V5.0.1.005

C compiler

Renesas Electronics
C/C++ compiler for RX Family V.2.05.00

Compiler options: The integrated development environment default settings
are used, with the following option added.

-lang = c99
Endian order Big-endian/Little-endian
Module version Rev.2.00

Board used

Renesas Starter Kit for RX231 (product number. ROK505231SxxxBE)
Renesas Starter Kit+ for RX65N (product number. RTK500565NSxxxxXBE)
Renesas Starter Kit for RX111 (product number. ROK505111SxxxBE)
Renesas Starter Kit for RX130 (product number. RTK5005130SxxxxXBE)
Renesas Starter Kit for RX231 (product number. ROK505231SxxxBE)
Renesas Starter Kit for RX23T (product number. RTK500523TSxxxxXBE)
Renesas Starter Kit for RX24T (product number. RTK500524TSxxxxXBE)
Renesas Starter Kit+ for RX63N (product number. ROK50563NSxxxBE)
Renesas Starter Kit+ for RX64M (product number. ROK50564MSxxxBE)
Renesas Starter Kit+ for RX65N (product number. RTK500565N SxxxxxBE)
Renesas Starter Kit+ for RX71M (product number. ROK50571MSxxxBE)

RO1AN1691EJ0246 Rev.2.46

Mar.10.20

Page 65 of 92
RENESAS

RX Family

Simple I°C Module Using Firmware Integration Technology

Table 6-10 Operation Confirmation Environment for Rev.2.20.

Item

Contents

Integrated deveropment
environment

Renesas Electronics
e? studio v6.0.0.001

C compiler

Renesas Electronics
C/C++ compiler for RX Family V.2.06.00
C/C++ compiler for RX Family V.2.07.00

Compiler options: The integrated development environment default settings
are used, with the following option added.

-lang = c99
Endian order Big-endian/Little-endian
Module version Rev.2.20

Board used

Renesas Starter Kit for RX24U (product number. RTK50524USxxxxxBE)
Renesas Starter Kit for RX130-512KB

(product number. RTK5051308SxxxxxBE)

Renesas Starter Kit+ for RX65N-2MB

(product number. RTK50565N2SxxxxxBE)

Table 6-11 Operation Confirmation Environment for Rev.2.30.

Item

Contents

Integrated deveropment
environment

Renesas Electronics
e? studio V7.0.0

C compiler

Renesas Electronics
C/C++ compiler for RX Family V.3.00.00

Compiler options: The integrated development environment default settings
are used, with the following option added.

-lang = c99
Endian order Big-endian/Little-endian
Module version Rev.2.30

Board used

Renesas Starter Kit for RX66T (product number. RTK50566 TOSXxxxXxBE)

Table 6-12 Operation Confirmation Environment for Rev.2.31.

Item

Contents

Integrated deveropment
environment

Renesas Electronics
e? studio V7.1.0

C compiler

Renesas Electronics
C/C++ compiler for RX Family V.3.00.00

Compiler options: The integrated development environment default settings
are used, with the following option added.

-lang = c99
Endian order Big-endian/Little-endian
Module version Rev.2.31

RO1AN1691EJ0246 Rev.2.46
Mar.10.20

Page 66 of 92

RENESAS

RX Family

Simple I°C Module Using Firmware Integration Technology

Table 6-13 Operation Confirmation Environment for Rev.2.40.

Item

Contents

Integrated deveropment
environment

Renesas Electronics
e? studio V7.3.0

C compiler

Renesas Electronics
C/C++ compiler for RX Family V.3.01.00

Compiler options: The integrated development environment default settings
are used, with the following option added.

-lang = c99
Endian order Big-endian/Little-endian
Module version Rev.2.40

Board used

Renesas Starter Kit for RX72T (product number. RTK557 2TXXXXXXXXXX)

Table 6-14 Operation Confirmation Environment for Rev.2.41.

Item

Contents

Integrated deveropment
environment

Renesas Electronics e? studio V7.3.0
IAR Embedded Workbench for Renesas RX 4.10.01

C compiler

Renesas Electronics C/C++ Compiler Package for RX Family V.3.01.00

Compiler option: The following option is added to the default settings of the
integrated development environment.

-lang = c99

GCC for Renesas RX 4.08.04.201803

Compiler option: The following option is added to the default settings of the
integrated development environment.

-std=gnu99

IAR C/C++ Compiler for Renesas RX version 4.10.01
Compiler option: The default settings of the integrated development
environment.

Endian order

Big-endian/Little-endian

Module version

Rev.2.41

Board used

Renesas Starter Kit+ for RX65N (product number. RTK500565NXXXXXX)

Table 6-15 Operation Confirmation Environment for Rev.2.42.

Item

Contents

Integrated deveropment
environment

Renesas Electronics
e? studio V7.2.0

C compiler

Renesas Electronics
C/C++ compiler for RX Family V.3.01.00

Compiler options: The integrated development environment default settings
are used, with the following option added.

-lang = c99
Endian order Big-endian/Little-endian
Module version Rev.2.42

Board used Renesas Solution Starter Kit for RX23W (product No.: RTK5523WXXXXXXXXXX)

RO1AN1691EJ0246 Rev.2.46
Mar.10.20

Page 67 of 92
RENESAS

RX Family

Simple I°C Module Using Firmware Integration Technology

Table 6-16 Operation Confirmation Environment for Rev.2.43.

Item

Contents

Integrated deveropment
environment

Renesas Electronics e? studio V7.4.0
IAR Embedded Workbench for Renesas 4.12.01

C compiler

Renesas Electronics C/C++ Compiler Package for RX Family V.3.01.00
Compiler option: The following option is added to the default settings of the
integrated development environment.

-lang = c99

GCC for Renesas RX 4.08.04.201902

Compiler option: The following option is added to the default settings of the
integrated development environment.

-std=gnu99

IAR C/C++ Compiler for Renesas RX version 4.12.01
Compiler option: The default settings of the integrated development
environment.

Endian order

Big-endian/Little-endian

Module version

Rev.2.43

Board used

Renesas Starter Kit+ for RX72M
(product number. RTK5572MXXXXXXXXXX)

Table 6-17 Operation Confirmation Environment for Rev.2.44.

Item

Contents

Integrated deveropment
environment

Renesas Electronics e? studio V7.3.0
IAR Embedded Workbench for Renesas 4.12.01

C compiler

Renesas Electronics C/C++ Compiler Package for RX Family V.3.01.00
Compiler option: The following option is added to the default settings of the
integrated development environment.

-lang = c99

GCC for Renesas RX 4.08.04.201902

Compiler option: The following option is added to the default settings of the
integrated development environment.

-std=gnu99

IAR C/C++ Compiler for Renesas RX version 4.12.01
Compiler option: The default settings of the integrated development
environment.

Endian order

Big-endian/Little-endian

Module version

Rev.2.44

Board used

RX13T CPU Card (product number.RTKOEMXA10C00000BJ)

RO1AN1691EJ0246 Rev.2.46

Mar.10.20

Page 68 of 92
RENESAS

RX Family

Simple I°C Module Using Firmware Integration Technology

Table 6-18 Operation Confirmation Environment for Rev.2.45.

Item

Contents

Integrated deveropment
environment

Renesas Electronics e? studio 7.4.0
IAR Embedded Workbench for Renesas 4.12.01

C compiler

Renesas Electronics C/C++ Compiler Package for RX Family V.3.01.00
Compiler option: The following option is added to the default settings of the
integrated development environment.

-lang = c99

GCC for Renesas RX 4.08.04.201902

Compiler option: The following option is added to the default settings of the
integrated development environment.

-std=gnu99

IAR C/C++ Compiler for Renesas RX version 4.12.01
Compiler option: The default settings of the integrated development
environment.

Endian order

Big-endian/Little-endian

Module version

Rev.2.45

Board used

Renesas Starter Kit+ for RX72N
(product number. RTK5572NXXXXXXXXXX)
Renesas Starter Kit+ for RX72M
(product number. RTK5572MXXXXXXXXXX)

Table 6-19 Operation Confirmation Environment for Rev.2.46.

Item

Contents

Integrated deveropment
environment

Renesas Electronics e? studio 7.7.0
IAR Embedded Workbench for Renesas 4.13.01

C compiler

Renesas Electronics C/C++ Compiler Package for RX Family V.3.02.00
Compiler option: The following option is added to the default settings of the
integrated development environment.

-lang = c99

GCC for Renesas RX 8.03.00.201904

Compiler option: The following option is added to the default settings of the
integrated development environment.

-std=gnu99

IAR C/C++ Compiler for Renesas RX version 4.13.01
Compiler option: The default settings of the integrated development
environment.

Endian order

Big-endian/Little-endian

Module version

Rev.2.46

Board used

Renesas Solution Starter Kit for RX23E-A (RTKOESXB10C00001BJ)

RO1AN1691EJ0246 Rev.2.46
Mar.10.20

Page 69 of 92

RENESAS

RX Family Simple I°C Module Using Firmware Integration Technology

6.4 Troubleshooting
(1) Q: I have added the FIT module to the project and built it. Then | got the error: Could not open source file
“platform.h”.

A: The FIT module may not be added to the project properly. Check if the method for adding FIT modules
is correct with the following documents:
® When using CS+:
Application note “Adding Firmware Integration Technology Modules to CS+ Projects (RO1AN1826)"

® When using e? studio:
Application note “Adding Firmware Integration Technology Modules to Projects (RO1AN1723)”
When using a FIT module, the board support package FIT module (BSP module) must also be added to

the project. For this, refer to the application note “Board Support Package Module Using Firmware
Integration Technology (RO1AN1685)".

(2) Q: I have added the FIT module to the project and built it. Then | got the error: This MCU is not supported
by the current r_sci_iic_rx module.

A: The FIT module you added may not support the target device chosen in the user project. Check if the
FIT module supports the target device for the project used.

(3) Q: I have added the FIT module to the project and built it. Then | got an error for when the configuration
setting is wrong.

A: The setting in the file “r_sci_iic_rx_config.h” may be wrong. Check the file “r_sci_iic_rx_config.h”. If
there is a wrong setting, set the correct value for that. Refer to 2.7 Configuration Overview for details.

RO1AN1691EJ0246 Rev.2.46 Page 70 of 92
Mar.10.20 RENESAS

RX Family Simple I°C Module Using Firmware Integration Technology

7. Sample Code

7.1

Example when Accessing One Slave Device Continuously with One Channel

This section describes an example of using one SCI channel in simple 12C mode to continuously write to one
slave device.

The procedure is as follows:

1.

a M W DN

Execute the R_SCI_IIC_Open function to use SCI channel 1 in the SCI simple I°C mode FIT module.
Execute the R_SCI_IIC_MasterSend function to write 3-byte data to device A.

Update the transmit data.

Execute the R_SCI_IIC_MasterSend function to write 3-byte data to device A.

Execute the R_SCI_IIC_Close function to release SCI channel 1 from the SCI simple 1°C mode FIT
module.

#include <stddef.h> // NULL definition

#include "platform_h" The following abbreviations are used in
#include "r_sci_iic_rx_if.h" the program example:
- ST: Start condition
/* Defines the number of retries when a NACK is detected. */ - SP: Stop condition
#define RETRY_TMO 10

/* Defines the number of software loops to wait until next communication starts when retrying*/
#define RETRY_WAIT_TIME 1000

/* Transmit size */
#define SEND_SIZE 3

/* Mode definitions in the sample code. */
typedef enum

IDLE = 0U, /* Being in idle state */

BUSY, /* 12C communication being performed */
INITIALIZE, /* Simple 12C mode FIT module initialization */
DEVICE_A_WRITE, /* Writing device A */

FINISH, /* Communication completed */

RETRY_WAIT_DEV_A WR, /* Waiting for retry writing device A */

ERROR /* Error occurred */

} sample_mode_t;

/* Variable for modes in the sample code */
volatile uint8_t sample_mode;

/* Variable for the number of retries */
uint32_t retry_cnt;

/* Variable for the number of transmissions */
uint8_t send_num = 0;

void main(void);
void Callback_deviceA(void);

void main(void)

{
sci_iic_return_t ret; /* For verifying the return value of the APl function */
volatile uint32_t retry wait_cnt = O; /* Counter for adjusting the retry interval */
sci_iic_info_t 1iic_info_deviceA; /* Information structure for device A */
uint8_t slave_addr_deviceA[1] = {0x50}%}; /* Slave address of device A */

uint8_t access_addr_deviceA[1]
uint8_t send_data[6]

{0x00%}; /* Address to be accessed in device A */
{0x81,0x82,0x83,0x84,0x85,0x86}; /* Transmit data */

Figure 6.1 Example when Accessing One Slave Device Continuously with One Channel (1/4)

RO1AN1691EJ0246 Rev.2.46 Page 71 of 92
Mar.10.20 RENESAS

RX Family Simple I°C Module Using Firmware Integration Technology

sample_mode = INITIALIZE; /* Proceed to initialization processing */
while(l)

switch(sample_mode)

/* Being in idle state */
case IDLE:

/* No operation is performed. */
break;

A loop is performed with empty processing
/ during idle or I2C communication.

/* 12C communication being performed */

case BUSY: - .
/* No operation is performed. */ The channel state can be verified with the
break: global variable “g_sci_iic_ChStatus[]".

/* Initializes the simple 12C mode FIT module. */
case INITIALIZE:
/* Verifies if it is the first time to comm
ifT (0 == send_num)
{

icate with device A. */

/* Verifies if channel 1 is currentlypcommunicating. */
it (SCI_IIC_COMMUNICATION == g_SC|_||c_ChStatus[1]P
{

}

else

sample_mode = ERROR; /* Proceed to error processing */

/* Configures the device A information structure (transmit pattern 1). */
iic_info_deviceA.p_slv_adr = slave_addr_deviceA;
iic_info_deviceA.p_datalst access_addr_deviceA;
iic_info_deviceA.p_data2nd send_data;
iic_info_deviceA.dev_sts = SCI_I1C_NO_INIT;
iic_info_deviceA.cntlst = sizeof(access_addr_deviceA);
info_deviceA.cnt2nd = SEND_SIZE;
_info_deviceA.callbackfunc = &Callback_deviceA;
iic_info_deviceA.ch_no = 1;

(¢)

(¢}

3
retry _cnt = O;

/* SCI open processing */
ret = R_SCI_IIC_Open(&iic_info_deviceA);

if (SCI_IIC_SUCCESS == ret)

{

sample_mode = DEVICE_A WRITE; /* Proceed to write processing for
device A */

3

else
/* Error processing at the R_SCI_I1IC _Open() function call */
sample_mode = ERROR; /* Proceed to error processing */

3

/* Verifies if it is the second or the subsequent continuous communication
with device A. */
else if (1 <= send_num)
{
/* Verifies if channel 1 is currently communicating. */
iT (SCI_11C_COMMUNICATION == g_sci_iic_ChStatus[1])

{
sample_mode = ERROR; /* Proceed to error processing */
glse Initializes the transmit counters and pointers for

the second transmission.

/* Information structure for device A (master transmission pattern 1) */
access_addr_deviceA[0] = (access_addr_deviceA[0] + SEND_SIZE);
iic_info_deviceA.p_datalst = access_addr_deviceA;
iic_info_deviceA.p_data2nd = (send_data + (SEND_SIZE * send_num));
iic_info_deviceA.cntlst = sizeof(access_addr_deviceA);

iic_info_deviceA.cnt2nd = SEND_SIZE;

Figure 6.2 Example when Accessing One Slave Device Continuously with One Channel (2/4)

RO1AN1691EJ0246 Rev.2.46 Page 72 of 92
Mar.10.20 RENESAS

RX Family Simple I°C Module Using Firmware Integration Technology

sample_mode = DEVICE_A_WRITE; /* Proceed to write processing for
device A */

b
}_ Processing from ST generation to SP generation is performed
break; by executing the R_SCI_IIC_MasterSend function in the FIT
- _ _ - module. After SP is output, the specified callback function
/* Writes data to device A */ (Callback_deviceA() is called.

case DEVICE_A WRITE:
retry_cnt = retry_cnt + 1;

/* Starts master transmission. */
ret = R_SCI_I1C_MasterSend(&iic_info_deviceA);

if (SCI_IIC_SUCCESS == ret)
{

sample_mode = BUSY; /* Then the state becomes “12C communication
being performed”. */

3
else if (SCI_IIC_ERR_BUS BUSY == ret)

{
sample_mode = RETRY_WAIT_DEV_A WR; /* Proceed to a wait for retry */

3

else
/* Error processing at the R_SCI_II1C_MasterSend() function call */
sample_mode = ERROR; /* Proceed to error processing */

}

break;

/* Waits for retry writing device A. */
case RETRY_WAIT_DEV_A WR:

retry_wait_cnt = retry_wait_cnt + 1;
if (RETRY_TMO < retry_cnt)
{
retry_wait_cnt = 0;
sample_mode = ERROR; /* Proceed to error processing */
3
if (RETRY_WAIT_TIME < retry_wait_cnt)
{
retry_wait_cnt = 0;
switch (sample_mode)
{
case RETRY_WAIT_DEV_A WR:
sample_mode = DEVICE_A_WRITE; /* Proceed to write processing for
device A */
break;
default:
/* No operation is performed. */
break;
¥
¥
break;

When the communication target is the EEPROM, if write operation is performed by sending the write command,
a NACK is returned until the write operation is completed.
In the sample code, retry to start communication is performed until an ACK is returned.

Figure 6.3 Example when Accessing One Slave Device Continuously with One Channel (3/4)

RO1AN1691EJ0246 Rev.2.46 Page 73 of 92
Mar.10.20 RENESAS

RX Family Simple I°C Module Using Firmware Integration Technology

/* Communication end processing */
case FINISH:
/* SCI close processing */
ret = R_SCI_IIC_Close(&iic_info_deviceA);

if (SCI_I11C_SUCCESS == ret)

{
sample_mode = IDLE; /* Then the state becomes “idle”. */
}
else
/* Error processing at the SCI_I11C_Close() function call */
sample_mode = ERROR; /* Proceed to error processing */
breai; When the communication has been completed, the SCI
channel used can be released by calling the
/* Error occurred */ R_SCI_IIC_Close function.
case ERROR: Call the R_SCI_IIC_Close function in the following cases:
/* No operation is performed. */ -When entering low power consumption mode.
break; - When communication error occurred.
- When the SCI channel used needs to be released.
default:
/* No operation is performed. */
break;
¥
3
}
void Callback_deviceA(void)
{
volatile sci_iic_return_t ret;
sci_iic_mcu_status_t iic_status;
sci_iic_info_t iic_info_ch;
iic_info_ch.ch_no = 1;
/* Obtains the simple 12C status. */
ret = R_SCI_IIC_GetStatus(&iic_info_ch, &iic_status);
iT (SCI_II1C_SUCCESS != ret)
/* Error processing at the R_SCI_IIC_GetStatus() function call */
sample_mode = ERROR; /* Proceed to error processing */
}
else
if (1 == iic_status.BIT.NACK)
/* Processing when NACK is detected with the iic_status flag verification. */
sample_mode = RETRY_WAIT_DEV_A_WR;
ke
else
{
retry_cnt = O;
send_num++;
iT (1 >= send_num)
{
sample_mode = INITIALIZE; /* Proceed to initialization processing */
¥
else
{
sample_mode = FINISH; /* Proceed to communication end processing */
¥
}
¥
}

Figure 6.4 Example when Accessing One Slave Device Continuously with One Channel (4/4)

RO1AN1691EJ0246 Rev.2.46 Page 74 of 92
Mar.10.20 RENESAS

RX Family Simple I°C Module Using Firmware Integration Technology

7.2 Example when Accessing Two Slave Devices with One Channel

This section describes an example of using one SCI channel in simple 12C mode to write to and read from
two slave devices. In the sample code, 1°C communication information structure is configured for each
accessing device.

The procedure is as follows:

1. Execute the R_SCI_IIC_Open function to use SCI channel 1 in the SCI simple I2C mode FIT module.
2. Execute the R_SCI_IIC_MasterSend function to write 3-byte data to device A.

3. Execute the R_SCI_IIC_MasterReceive function to read 3-byte data from device B.

4

Execute the R_SCI_IIC_Close function to release SCI channel 1 from the SCI simple 1°C mode FIT

module.
#include <stddef.h> // NULL definition
#include “platform.h™ The following abbreviations are used in
#include "r_sci_iic_rx_if.h" the program example:
B B B - ST: Start condition
/* Defines the number of retries when a NACK is detected. */ - SP: Stop condition
#define RETRY_TMO 10

/* Defines the number of software loops to wait until next communication starts when retrying*/
#define RETRY_WAIT_TIME 1000

/* Transmit size */
#define SEND_SIZE 3

/* Receive size */
#define RECEIVE_SIZE 3

/* Definitions for mode management in the sample code */
typedef enum

IDLE = 0OU, /* Being in idle state */

BUSY, /* 12C communication being performed */
INITIALIZE, /* Simple 12C mode FIT module initialization */
DEVICE_A_WRITE, /* Writing device A */

DEVICE_B_READ, /* Reading device B */

FINISH, /* Communication completed */

RETRY_WAIT_DEV_A WR, /* Waiting for retry writing device A */
RETRY_WAIT_DEV_B_RD, /* Waiting for retry reading device B */

ERROR /* Error occurred */

} sample_mode_t;

/* Variable for modes in the sample code */
volatile uint8_t sample_mode;

/* Variable for the number of retries */
volatile uint32_t retry_cnt;

void main(void);
void Callback_deviceA(void);

void Callback_deviceB(void); Declares information structures as many

as devices to communicate.
void main(void)

volatile sci_iic_return_t ret; /* For verifying £he return value of the APl function */

volatile uint32_t retry_wait_cnt = 0; /*/Counter for adjusting the retry interval */
sci_iic_info_t 1iic_info_deviceA; /* Information structure for device A */
sci_iic_info_t 1iic_info_deviceB; /* Information structure for device B */

Figure 6.5 Example when Accessing Two Slave Devices with One Channel (1/5)

RO1AN1691EJ0246 Rev.2.46 Page 75 of 92
Mar.10.20 RENESAS

RX Family Simple I°C Module Using Firmware Integration Technology

uint8_t slave_addr_deviceA[1] {0x51}; /* Slave address of device A */
uint8_t slave_addr_deviceB[1] {0x52}%; /* Slave address of device B */
uint8_t access_addr_deviceA[1] {0x00%}; /* Address to be accessed in device A */

uint8_t access_addr_deviceB[2]
uint8_t send_data[5]
nt8_t store_areal[5]

{0x00,0x00}; /* Address to be accessed in device B */
{0x81,0x82,0x83,0x84,0x85}; /* Transmit data */
{OxFF,OxFF,0OxFF,0xFF,0xFF}; /* For receive data storage*/

sample_mode = INITIALIZE; /* Proceed to initialization processing */
while(1)

switch(sample_mode)

/* Being in idle state */ A loop is performed with empty processing
case IDLE: / during idle or 12C communication.

/* No operation is performed. */
break;

/* 12C communication being performed */

case BUSY:
/* No operation is performed. */ The channel state can be verified with the
break: global variable “g_sci_iic_ChStatus[]".

/* Initializes the simple 12C mode FIT module. */

case INITIALIZE:
/* Verifies if channel 1 is currently communicating. >7
iT (SCI_IIC_COMMUNICATION =fF g_sci_iic_ChStatus[1]
{

}

else

sample_mode = ERROR; /* Proceed to error processing */

/* Configures the device A information structure (master transmit pattern 1). */
iic_info_deviceA.p_slv_adr = slave_addr_deviceA;
iic_info_deviceA.p_datalst access_addr_deviceA;
ic_info_deviceA.p_data2nd send_data;
iic_info_deviceA.dev_sts = SCI_II1C_NO_INIT;
iic_info_deviceA._cntlst = sizeof(access_addr_deviceA);
iic_info_deviceA.cnt2nd = SEND_SIZE;
iic_info_deviceA.callbackfunc = &Callback deviceA;
iic_info_deviceA.ch_no = 1;

/* Configures the device B information structure (master transmit/receive).
*/

iic_info_deviceB.p_slv_adr
c_info_deviceB.p_datalst access_addr_deviceB;
_info_deviceB.p_data2nd store_area;
_info_deviceB.dev_sts = SCI_I1IC_NO_INIT;
_info_deviceB.cntlst = sizeof(access_addr_deviceB);
_info_deviceB.cnt2nd = RECEIVE_SIZE;
_info_deviceB.cal lbackfunc = &Callback_deviceB;

iic_info_deviceB.ch_no = 1;) o

1 The SClI resource is maintained for each channel. Thus the
/ R_SCI_IIC_Open function is executed only once.

slave_addr_deviceB;

- -
- -
O0O0000

retry_cnt = 0; /* Resets the number of retries. */

/* SCI open processing */
ret = R_SCI_IIC_Open(&iic_info_deviceA);

if (SCI_I1C_SUCCESS == ret)

{
sample_mode = DEVICE_A WRITE; /* Proceed to write processing for device A */
¥
else
/* Error processing at the R_SCI_I11C _Open() function call. */
sample_mode = ERROR; /* Proceed to error processing */
}
break;

Figure 6.6 Example when Accessing Two Slave Devices with One Channel (2/5)

RO1AN1691EJ0246 Rev.2.46 Page 76 of 92
Mar.10.20 RENESAS

RX Family Simple I°C Module Using Firmware Integration Technology

Processing from ST generation to SP generation is performed
/* Writes data to device A. */ by executing the R_SCI_IIC_MasterSend function in the FIT
case DEVICE A WRITE: module. After SP is output, the specified callback function
retry ent = retry cnt + 1; (Callback_deviceA()) is called.

/* Starts master transmission. */
ret = R_SCI_IIC_MasterSend(&iic_info_deviceA);

if (SCI_I1C_SUCCESS == ret)
{

sample_mode = BUSY; /* Then the state becomes “12C communication
being performed”. */

b
else if (SCI_IIC_ERR _BUS_BUSY == ret)

{
sample_mode = RETRY_WAIT_DEV_A WR; /* Proceed to a wait for retry */

¥

else
/* Error processing at the R_SCI_I1C_MasterSend() function call. */
sample_mode = ERROR; /* Proceed to error processing */

¥

break;

Processing from ST generation to SP generation is performed
- _ B by executing the R_SCI_IIC_MasterReceive function in the
/* Reads data from device B. */ FIT module. After SP is output, the specified callback function

case DEVICE_B_READ: (Callback_deviceB()) is called.
retry cnt = retry cnt + 1;

/* Starts master transmit/receive. */
ret = R_SCI_IIC_MasterReceive(&iic_info_deviceB);

iT (SCI_IIC_SUCCESS == ret)
{

sample_mode = BUSY; /* Then the state becomes “12C communication
being performed”. */

3
else if (SCI_IIC_ERR _BUS BUSY == ret)

¢ sample_mode = RETRY_WAIT_DEV_B RD; /* Proceed to a wait for retry */
3
else
{
/* Error processing at the R_SCI_I1C_MasterReceive() function call. */
sample_mode = ERROR; /* Proceed to error processing */
}
break; L . .
When the communication target is the EEPROM, if
/* Waits for retry writing device A. */ write operation is performed by sending the write
/* Waits for retry reading device B. */ command, a NACK is returned until the write
case RETRY_WAIT_DEV_A WR: operation is completed.
case RETRY_WAIT_DEV_B RD: In the sample code, retry to start communication is
retry_wait_cnt = retry_wait_cnt + 1; performed until an ACK is returned.
ifT (RETRY_TMO < retry_cnt)
t retry_wait_cnt = 0;
sample_mode = ERROR; /* Proceed to error processing */
3
if (RETRY_WAIT_TIME < retry_wait_cnt)
{

retry_wait_cnt = O;

switch (sample_mode)

{
case RETRY_WAIT_DEV_A WR:
sample_mode = DEVICE_A_WRITE; /* Proceed to write processing for device A */
break;

case RETRY_WAIT_DEV_B RD:
sample_mode = DEVICE_B_READ; /* Proceed to read processing for device B */
break;

Figure 6.7 Example when Accessing Two Slave Devices with One Channel (3/5)

RO1AN1691EJ0246 Rev.2.46 Page 77 of 92
Mar.10.20 RENESAS

RX Family Simple I°C Module Using Firmware Integration Technology

default:
/* No operation is performed. */
break;

}

break;

/* Communication end processing */

case FINISH:

/* SCI close processing */

ret = R_SCI_IIC_Close(&iic_info_deviceA);

if (SCI_I1C_SUCCESS == ret)

{
sample_mode = IDLE; /* Then the state becomes “idle”. */
}
else
/* Error processing at the R_SQI_I1C_Close() function call */
sample_mode = ERROR; /* Proceed to error processing */
}
break; When the communication has been completed, the SCI
channel used can be released by calling the
/* Error occurred */ R_SCI_IIC_Close function.
case ERROR: Call the R_SCI_IIC_Close function in the following cases:
/* No operation is performed. */ - When entering low power consumption mode.
break; - When communication error occurred.
- When the SCI channel used needs to be released.
default:
/* No operation is performed. */
break;
¥
3
3
void Callback_deviceA(void)
{
volatile sci_iic_return_t ret;
sci_iic_mcu_status_t iic_status;
sci_iic_info_t iic_info_ch;
iic_info_ch.ch_no = 1;
/* Obtains the simple 12C status. */
ret = R_SCI_IIC_GetStatus(&iic_info_ch, &iic_status);
if (SCI_IIC_SUCCESS != ret)
{
/* Error processing at the R_SCI_I1IC_GetStatus() function call */
sample_mode = ERROR; /* Proceed to error processing */
3
else
if (1 == iic_status.BIT.NACK)
{
/* Processing when NACK is detected with the iic_status flag verification */
sample_mode = RETRY_WAIT_DEV_A WR; /* Proceed to a wait for retry */
3
else
{
retry_cnt = 0O;
sample_mode = DEVICE_B_READ; /* Proceed to read processing for device B */
3
¥
}
void Callback_deviceB(void)
{

volatile sci_iic_return_t ret;
sci_iic_mcu_status_t iic_status;
sci_iic_info_t iic_info_ch;
iic_info_ch.ch_no = 1;

Figure 6.8 Example when Accessing Two Slave Devices with One Channel (4/5)

RO1AN1691EJ0246 Rev.2.46 Page 78 of 92
Mar.10.20 RENESAS

RX Family Simple I°C Module Using Firmware Integration Technology

/* Obtains the simple 12C status. */
ret = R_SCI_IIC_GetStatus(&iic_info_ch, &iic_status);

iT (SCI_IIC_SUCCESS != ret)

/* Error processing at the R_SCI_I1IC_GetStatus() function call */

sample_mode = ERROR; /* Proceed to error processing */
3
else
t -
iT (1 == iic_status.BIT.NACK)
/* Processing when NACK is detected with the iic_status flag verification */
sample_mode = RETRY_WAIT_DEV_B_RD; /* Proceed to a wait for retry */
}
else
{
retry_cnt = 0O;
sample_mode = FINISH; /* Proceed to communication end processing */
3
¥

}

Figure 6.9 Example when Accessing Two Slave Devices with One Channel (5/5)

RO1AN1691EJ0246 Rev.2.46 Page 79 of 92
Mar.10.20 RENESAS

RX Family Simple I°C Module Using Firmware Integration Technology

7.3 Example when Accessing Two Slave Devices with Two Channels

This section describes an example of using two SCI channels in simple 1°C mode to write and read two slave
devices. Each channel writes to and reads from different slave device.

In the sample code, I°C communication information structure is configured for each accessing device.
The procedure is as follows:

1. Execute the R_SCI_IIC_Open function to use SCI channel 1 in the SCI simple 1°C mode FIT module.
Also execute the R_SCI_IIC_Open function to use SCI channel 5 in the SCI simple I°C mode FIT module.

2. Execute the R_SCI_IIC_MasterSend function to write 3-byte data to device A using SCI channel 1.
Execute the R_SCI_IIC_MasterReceive function to read 3-byte data from device B using SCI channel 5.

3. Execute the R_SCI_IIC_Close function to release SCI channel 1 from the SCI simple I1°C mode FIT

module.
Also execute the R_SCI_IIC_Close function to release SCI channel 5 from the SCI simple I°C mode FIT
module.

#include <stddef.h> /* NULL definition */

#include "platform.h" The following abbreviations are used in

#include "r_sci_iic_rx_if_h" the program example:

- ST: Start condition
/* Defines the number of retries when a NACK is detected. */ - SP: Stop condition
#define RETRY_TMO 10

/* Defines the number of software loops to wait until next communication starts when retrying*/
#define RETRY_WAIT_TIME 1000

/* Transmit size */
#define SEND_SIZE 3

/* Receive size */
#define RECEIVE_SIZE 3

/* Definitions for mode management in the sample code */
typedef enum

IDLE = 0OU, /* Being in idle state */

BUSY, /* 12C communication being performed */
INITIALIZE, /* Simple 12C mode FIT module initialization */
DEVICE_A_WRITE, /* Writing device A */

DEVICE_B_READ, /* Reading device B */

FINISH, /* Communication completed */

RETRY_WAIT_DEV_A WR, /* Waiting for retry writing device A */
RETRY_WAIT_DEV_B RD, /* Waiting for retry reading device B */

ERROR /* Error occurred */

} sample_mode_t;

/* Variable for modes in the sample code */
volatile uint8_t sample_mode_ch1l;
volatile uint8_t sample_mode_ch5;

/* Variable for the number of retries */
volatile uint32_t retry_cnt_chil;
volatile uint32_t retry_cnt_ch5;

void main(void);
void Callback_deviceA(void);
void Callback_deviceB(void);

void main(void)

{

Figure 6.10 Example when Accessing Two Slave Devices with Two Channels (1/6)

RO1AN1691EJ0246 Rev.2.46 Page 80 of 92
Mar.10.20 RENESAS

RX Family Simple I°C Module Using Firmware Integration Technology

volatile sci_iic_return_t ret; /* For verifying the return value of the APl function */
volatile uint32_t retry wait_cnt_chl = 0; /* Counter for adjusting the retry interval */
volatile uint32_t retry_wait_cnt_ch5 = 0; /* Counter for adjusting the retry interval */
sci_iic_info_t 1ic_info_deviceA; /* Information structure for device A */
sci_iic_info_t 1iic_info_deviceB; /* Information structure for device B */
uint8_t sTave_addr_deviceA[I] = {0x507}; 7% STave address of device A *7

uint8_t slave_addr_deviceB[1] = {0x50}%}; Slave address of device B */

uint8_t access_addr_deviceA[1] = {0x00}; * Address to be accessed in device A */
uint8_t access_addr_deviceB[2] = {0x00,0x00}; /N Address to be accessed in device B */
uint8_t send_data[5] = {0x81,0x82,0x83,0x84,0x85}; /* Transmit data */

uint8_t store_area[5]

{OxFF,OxFF,0xFF,0xXF,0xFF}; /* For receive data storage */

sample_mode_chl = INITIALIZE; /* Chl: PNpceed to initialization processing */
sample_mode_ch5 = INITIALIZE; /* Ch5: Proceed to initialization processing */
while(1) \ Declares information structures for each

device to be accessed.

switch(sample_mode_chl)
Processing for different channels can be operated

/* Being in idle state */ simultaneously. Therefore mode is controlled for each
case IDLE: channel.

/* No operation is performed. */
break; \ A loop is performed with empty processing

; ;) during idle or I2C communication.
/* 12C Communication being performed */

case BUSY:
/* No operation is performed. */ The channel state can be verified with the
break; global variable “g_sci_iic_ChStatus[]".

/* Initializes the simple 12C mode FIT module. */
case INITIALIZE:
/* Verifies if channel 1 is currently communicatingy */
it (SCI_I1C_COMMUNICATION == g_sci_iic_ChStatus[l])|
{

}

else

{

/* Configures the device A information structure (master transmit pattern 1). */

iic_info_deviceA.p_slv_adr slave_addr_deviceA;

iic_info_deviceA.p_datalst = access_addr_deviceA;

c_info_deviceA.p_data2nd send_data;
c_info_deviceA.dev_sts = SCI_IIC_NO_INIT;
c_info_deviceA.cntlst = sizeof(access_addr_deviceA);

iic_info_deviceA.cnt2nd = SEND_SIZE;
c
c

sample_mode_chl = ERROR; /* Chl: Proceed to error processing */

_info_deviceA.cal lbackfunc = &Callback_deviceA;
_info_deviceA.ch_no = 1;

}

retry_cnt_chl = 0O; /* Resets the number of retries. */

/* SCI open processing */
ret = R_SCI_I1IC_Open(&iic_info_deviceA);

if (SCI_I1C_SUCCESS == ret)

{

sample_mode_chl = DEVICE_A WRITE; /* Chl: Proceed to write processing for
device A */

}

else
/* Error processing at the R_SCI_I1C Open() function call */
sample_mode_chl = ERROR; /* Chl: Proceed to error processing */

¥

break;

/* Writes data to device A. */
case DEVICE_A WRITE:
retry_cnt_chl = retry_cnt_chl + 1;

Figure 6.11 Example when Accessing Two Slave Devices with Two Channels (2/6)

RO1AN1691EJ0246 Rev.2.46 Page 81 of 92

Mar.10.20

RENESAS

RX Family Simple I°C Module Using Firmware Integration Technology

/* Starts master transmission. */
ret = R_SCI_IIC_MasterSend(&iic_info_deviceA);

if (SCI_I1C_SUCCESS == ret)
{

Then the channel 1 state becomes
“12C communication being performed”. */

sample_mode_chl = BUSY;

3
else if (SCI_IIC_ERR_BUS BUSY == rkt)

{

sample_mode_chl = RETRY_WAIT_DEW A WR; /* Chl: Proceed to a wait for retry */
¥
else

/* Error processing at the R_SCI
sample_mode_chl = ERROR;

b i Processing from ST generation to SP generation is performed by executing this function.
reak; After SP is output, the specified callback function (Callback_deviceA()) is called

11C_MasterSend() function call */
{* Chl: Proceed to error processing */

/* Waits for retry writing device A. */

case RETRY WAIT DEV_A WR:
retry_wait_cnt_chl = retry_wait _cnt_chl + 1;
if (RETRY_TMO < retry_cnt_chl)
{
retry_wait_cnt_chl = 0;
sample_mode_chl = ERROR; /* Chl: Proceed to error processing */
3
if (RETRY_WAIT_TIME < retry_wait_cnt_chl)
{
retry_wait_cnt_chl = O;
switch (sample_mode_chl)
{
case RETRY_WAIT_DEV_A WR:
sample_mode_chl = DEVICE_A WRITE; /* Chl: Proceed to write processing
for device A*/
break;
default:
/* No operation is performed. */
break;
N |
B
}
break; When the communication target is the

EEPROM, if write operation is performed by
sending the write command, a NACK is returned
until the write operation is completed.

/* Communication end processing */
case FINISH:
/* SCI close processing */

ret = R_SCI_IIC_Close(&iic_info_deviceA): !nthesanuﬂecoge,renytgsuntconnnunmaﬂon
is performed until an ACK is returned.

if (SCI_I1C_SUCCESS == ret)

{
sample_mode_chl = IDLE; /* Then the channel 1 state becomes “idle”. */
by
else
/* Error processing at the R_SRI_I1C_Close() function call */
sample_mode_chl = ERROR; /* Chl: Proceed to error processing */
}
break;

When the communication has been completed, the SCI
/* Error occurred */ channel used can be released by calling the

case ERROR: R_SCI_IIC_Close function.

- Call the R_SCI_IIC_Close function in the following cases:

/* No operation is performed. */ - .
- When entering low power consumption mode.

break; S
- When communication error occurred.
default: - When the SCI channel used needs to be released.
/* No operation is performed. */
break;

¥

Figure 6.12 Example when Accessing Two Slave Devices with Two Channels (3/6)

RO1AN1691EJ0246 Rev.2.46 Page 82 of 92
Mar.10.20 RENESAS

RX Family Simple I°C Module Using Firmware Integration Technology

switch(sample_mode_ch5)

{ . , .
/* Being in idle state */ A loop is performed with empty processing
case IDLE: / during idle or I)C communication.

/* No operation is performed. */
break;

/* 12C communication being performed */
case BUSY:
/* No operation is performed. */

break; The channel state can be verified with the

global variable “g_sci_iic_ChStatus[]".

/* Initializes the simple 12C mode FIT module. */

case INITIALIZE:
/* Verifies if channel 5 is currently communicating/ */
iT (SCI_11C_COMMUNICATION =% g_sci_iic_ChStatus[5

{
sample_mode_ch5 = ERROR; /* Ch5: Proceed to error processing */
}
else
{
/* Configures the device B information structure (master transmit/receive).
*
/
iic_info_deviceB.p_slv_adr = slave_addr_deviceB;
iic_info_deviceB.p_datalst = access_addr_deviceB;
iic_info_deviceB.p_data2nd = store_area;
iic_info_deviceB.dev_sts = SCI_I1IC_NO_INIT;
iic_info_deviceB.cntlst = sizeof(access_addr_deviceB);
iic_info_deviceB.cnt2nd = RECEIVE_SIZE;
iic_info_deviceB.callbackfunc = &Callback_deviceB;
iic_info_deviceB.ch_no = 5;
¥
retry_cnt_ch5 = 0; /* Resets the number of retries. */

/* SCI open processing */
ret = R_SCI_IIC_Open(&iic_info_deviceB);

ifT (SCI_IIC_SUCCESS == ret)

{

sample_mode_ch5 = DEVICE_B_READ; /* Ch5: Proceed to read processing for
device B */

}

else
/* Error processing at the R_SCI_IIC Open() function call */
sample_mode_ch5 = ERROR; /* Ch5: Proceed to error processing */

}

break;

case DEVICE_B_READ:
retry_cnt_ch5 = retry_cnt_ch5 + 1;

/* Starts master transmit/receive processing. */
ret = R_SCI_IIC_MasterReceive(&iic_info_deviceB);

if (SCI_IIC_SUCCESS == ret)
{

* Then the channel 5 state becomes “12C
communication being performed”. */

13)

sample_mode_ch5 = BUSY;

h
else if (SCI_IIC_ERR _BUS_BUSY ==

{
sample_mode_ch5 = RETRY_WAIT_DRV_B RD; /* Ch5: Proceed to a wait for retry */

¥

else
/* Error processing at the R_SCI\1IC_MasterReceive() function call */
sample_mode_ch5 = ERROR; * Ch5: Proceed to error processing */

}

break; Processing from ST generation to SP generation is performed by executing this function in the

FIT module. After SP is output, the specified callback function (Callback_deviceB()) is called.

Figure 6.13 Example when Accessing Two Slave Devices with Two Channels (4/6)

RO1AN1691EJ0246 Rev.2.46 Page 83 of 92
Mar.10.20 RENESAS

RX Family Simple I°C Module Using Firmware Integration Technology

/* Waits for retry reading device B. */
case RETRY WAIT DEV B RD:
retry_wait_cnt_ch5 = retry_wait _cnt_ch5 + 1;

iT (RETRY_TMO < retry_cnt_ch5)
{

retry_wait_cnt_ch5 = 0;

sample_mode_ch5 = ERROR; /* Ch5: Proceed to error processing */
iT (RETRY_WAIT_TIME < retry_wait_cnt_ch5)

retry_wait_cnt_ch5 = 0;

switch (sample_mode_ch5)

{
case RETRY_WAIT_DEV_B_RD:
sample_mode_ch5 = DEVICE_B_READ; /* Ch5: Proceed to read processing for
device B */
break;
default:
/* No operation is performed. */
break;
3} ¥ When the communication target is the
break: EEPROM, if write operation is performed by
sending the write command, a NACK is returned
/* Communication end processing */ until the write operation is completed.
case FINISH: In the sample code, retry to start communication
/* SCI close processing */ is performed until an ACK is returned.
ret = R_SCI_IIC_Close(&iic_info_deviceB);
iT (SCI_IIC_SUCCESS == ret)
{
sample_mode_ch5 = IDLE; /* Then the channel 5 state becomes “idle”. */
3
else
{
/* Error processing at the R_SCI\I1IC Close() function call */
sample_mode_ch5 = ERROR; * Ch5: Proceed to error processing */
}
break; When the communication has been completed, the SCI
channel used can be released by calling the
/* Error occurred. */ R_SCI_IIC_Close function.
case ERROR: Call the R_SCI_IIC_Close function in the following cases:
/* No operation is performed. */ -When entering low power consumption mode
break; - When communication error occurred.
- When the SCI channel used needs to be released.
default:
/* No operation is performed. */
break;

void Callback_deviceA(void)

{
volatile sci_iic_return_t ret;
sci_iic_mcu_status_t iic_status;
sci_iic_info_t iic_info_ch;
iic_info_ch.ch_no = 1;

/* Obtains the simple 12C status. */
ret = R_SCI_IIC_GetStatus(&iic_info_ch, &iic_status);

if (SCI_IIC_SUCCESS != ret)
/* Error processing at the R_SCI_I1IC_GetStatus() function call */

sample_mode_chl = ERROR; /* Chl: Proceed to error processing */

}

Figure 6.14 Example when Accessing Two Slave Devices with Two Channels (5/6)

RO1AN1691EJ0246 Rev.2.46 Page 84 of 92
Mar.10.20 RENESAS

RX Family Simple I°C Module Using Firmware Integration Technology

else
ifT (1 == iic_status.BIT.NACK)
/* Processing when NACK is detected with the iic_status flag verification. */
sample_mode_chl = RETRY_WAIT_DEV_A WR; /* Chl: Proceed to a wait for retry */
}
else
{
retry_cnt_chl = 0;
sample_mode_chl = FINISH; /* Chl: Proceed to communication end processing */
3
3
3
void Callback_deviceB(void)
{
volatile sci_iic_return_t ret;
sci_iic_mcu_status_t iic_status;
sci_iic_info_t iic_info_ch;
iic_info_ch.ch_no = 5;
/* Obtains the simple 12C status. */
ret = R_SCI_I1IC_GetStatus(&iic_info_ch, &iic_status);
if (SCI_IIC_SUCCESS != ret)
/* Error processing at the R_SCI_I1IC_GetStatus() function call. */
sample_mode_ch5 = ERROR; /* Ch5: Proceed to error processing */
3
else
if (1 == iic_status.BIT.NACK)
/* Processing when NACK is detected with the iic_status flag verification */
sample_mode_ch5 = RETRY_WAIT_DEV_B RD; /* Ch5: Proceed to a wait for retry */
¥
else
{
retry_cnt_ch5 = 0;
sample_mode_ch5 = FINISH; /* Ch5: Proceed to communication end processing */
3
¥
}

Figure 6.15 Example when Accessing Two Slave Devices with Two Channels (6/6)

RO1AN1691EJ0246 Rev.2.46 Page 85 of 92
Mar.10.20 RENESAS

RX Family Simple I°C Module Using Firmware Integration Technology

8. Reference Documents
User’s Manual: Hardware

The latest version can be downloaded from the Renesas Electronics website.

Technical Update/Technical News

The latest information can be downloaded from the Renesas Electronics website.

User’'s Manual: Development Tools
RX Family C/C++ Compiler CC-RX User’'s Manual (R20UT3248)

The latest version can be downloaded from the Renesas Electronics website.

RO1AN1691EJ0246 Rev.2.46
Mar.10.20 RENESAS

Page 86 of 92

RX Family Simple I°C Module Using Firmware Integration Technology

Related Technical Updates

This module reflects the content of the following technical updates.

None

RO1AN1691EJ0246 Rev.2.46 Page 87 of 92
Mar.10.20 RENESAS

RX Family

Simple I°C Module Using Firmware Integration Technology

REVISION HISTORY

RX Family Application Note

Simple 1°C Module Using Firmware Integration Technology

Description
Rev. Date
Page Summary
1.60 Feb. 27, 2015 Program | Modified the SCI simple 1°C mode FIT module due to the software
issue
[Description]
There are errors in the processing to set the clock source (CKS
bit in the SMR register) and the bit rate (BRR register) for the on-
chip baud rate generator, so the set values may differ from the
expected values.
[Conditions]
When rev.1.50 or an earlier version of the SCI simple I12C mode
FIT module is used with RX64M or RX71M, either of the following
conditions is met:
- Divided-by-3 is selected as the PLL input frequency division
ratio (PLIDIV bit in the PLLCR register).
- The tenth place of the PLL frequency multiplication factor is 5
(STC bit in the PLLCR register).
[Workaround]
Use rev.1.60 or a later version of the SCI simple 1°2C mode FIT
module.
Modified the SCI simple I1°C mode FIT module due to the software
issue
[Description]
When the bit rate is set to low, the program may go into an infinite
loop.
[Conditions]
The following two conditions are met:
- Rev.1.50 or an earlier version of the SCI simple 12C mode FIT
module is used.
- The BRR register value calculated by the sci_iic_set_frequency
function is greater than 255.
(The bit rate is extremely low compared to PCLKB.)
Example:
When PCLKB is 60 MHz, the bit rate is set to 200 bps or
less.
When PCLKB is 300 kHz, the bit rate is set to 1 bps.
[Workaround]
Use rev.1.60 or a later version of the SCI simple 12C mode FIT
module
1.70 May. 29, 2015 Added support for the RX231 Group.
1.80 Oct. 31, 2015 - Added support for the RX130 Group, RX230 Group, RX23T
Group.
33 Format of 3.5 R_SCI_IIC_GetStatus(), modified

RO1AN1691EJ0246 Rev.2.46

Mar.10.20

Page 88 of 92
RENESAS

RX Family

Simple I°C Module Using Firmware Integration Technology

REVISION HISTORY

RX Family Application Note

Simple 1°C Module Using Firmware Integration Technology

Rev. Date

Description

Page

Summary

1.90 Mar. 4, 2016

Added support for the RX24T Group.

5

Table 1.2 Required Memory Size, changed.

17,18

Added description of r_sci_iic_rx_pin_config.h to section 2.6,
Configuration Overview.

Changed “master composite” to “master transmit/receive”.

45

Modified the macro definition of the internal communication
information structure api_Mode, which is the 1>C protocol
operating mode in the communication in progress (master
transmit/receive) state, in Table 4.5, States of Flags on State
Transitions.

2.00 Oct. 1, 2016

Added support for the RX65N Group.

15

2.6 Configuration Overview:

Changed default value of
SCI_IIC_CFG_CHi_SSDA DELAY_SELECT.

19

Changed code size description from “Table 1.2 Required Memory
Size” to “2.7 Code Size.”

2.20 Aug. 31, 2017

Added support for the RX24U Group.

Added support for the RX65N-2MB edition.

Added support for the RX130-512KB edition.

Added support for the RX24T-512KB edition.

Related Documents: Added the following document:
“Renesas e? studio Smart Configurator User Guide (R20AN0451)”

16to 18

2.4 Usage of Interrupt Vector: added.

20

In "2.7 Configuration Overview ", SCI_IIC_CFG_CHi_INCLUDED
describes the important points to be noted for using the compile
time setting

SCI_IIC_CFG_CHi_BITRATE_BPS describes the important
points to be noted for bit rate setting.

21

A notice of bit setting about
SCI_IIC_CFG_PORT_SETTING_PROCESSING is added.

25

2.11 Adding the FIT Module to Your Project: Revised.

45, 46

4. Pin Settings: added.

59 to 61

5.3 Operating Test Environment: Added.

62

5.4 Troubleshooting: Added.

Program

Changed default value of SCI_IIC_CFG_CH1_INCLUDED.

Corrected the drive capacity control setting process by
r_sci_iic_io_open() function of RX63N, RX64M, RX65N and
RX71M.

RO1AN1691EJ0246 Rev.2.46

Mar.10.20

Page 89 of 92
RENESAS

RX Family Simple I°C Module Using Firmware Integration Technology

RX Family Application Note

REVISION HISTORY Simple 1°C Module Using Firmware Integration Technology

Description

Rev. Date
Page Summary

2.30 Sep. 20, 2018 - Added support for the RX66T Group.

15 2.3 Supported Toolchains
Added for Toolchain v.3.00.00

19 2.4 Usage of Interrupt Vector: added.
Table 2.4 List of Usage of Interrupt Vectors - 4 -

23 In "2.7 Configuration Overview ", Specify the value as an ASCII
code ‘J' is changed to ‘K'.

25 2.8 Code Size: Changed code size for Rev2.30

28 2.12 “for”, “while” and “do while” statements: added

49 to 50 | 5.Demo Projects: added

- Change 5.Appendices to 6.Appendices
All file: Chapter 5 related number is changed to 6

64 Operating Test Environment : added

Table 6-11 Operation Confirmation Environment for Rev.2.30 is
added

2.31 Dec. 03, 2018 64 6.3 Operation Confirmation Environment:

Corrected board used in Table 6.11 Confirmed Operation
Environment (Rev. 2.30). Added Table 6.12 Confirmed Operation
Environment (Rev. 2.31).

Program | Added document number of the application note accompanying
the sample program of the FIT module to xml file.

2.40 Feb. 20, 2019 - Added support for the RX72T Group.

1 Related Documents: Changed the following documents’ names
RX Family Board Support Package Module Using Firmware
Integration Technology (RO1AN1685)

RX Family Adding Firmware Integration Technology Modules to
Projects (RO1AN1723)

RX Family Adding Firmware Integration Technology Modules to
CS+ Projects (RO1AN1826)

15 2.3 Supported Toolchains
Added for Toolchain v.3.01.00

19 2.4 Usage of Interrupt Vector: RX72T added.
Table 2.4 List of Usage of Interrupt Vectors - 4 -

65 Operating Test Environment : added

Table 6-13 Operation Confirmation Environment for Rev.2.40 is
added

241 May. 20, 2019 - Update the following compilers
GCC for Renesas RX
IAR C/C++ Compiler for Renesas RX.

1 Deleted Related Documents.

1 Added Target Compilers.

15 Added revision of dependent r_bsp module in 2.2 Software
Requirements.

RO1AN1691EJ0246 Rev.2.46 Page 90 of 92
Mar.10.20 RENESAS

RX Family

Simple I°C Module Using Firmware Integration Technology

REVISION HISTORY

RX Family Application Note

Simple 1°C Module Using Firmware Integration Technology

Description
Rev. Date
Page Summary
241 May. 20, 2019 25 2.8 Code Size, amended
47 3.7 R_SCI_lIC_GetVersion function, deleted special notes.
66 Operating Test Environment : added
Table 6-14 Operation Confirmation Environment for Rev.2.41 is
added
Program | RX63N is not supported in the following versions. Delete RX63N-
processes’ related note:
Deleted RX63N from Target Devices.
2.42 Jun. 20, 2019 - Added support for the RX23W Group.
16 2.4 Usage of Interrupt Vector: RX23W added.
Table 2.1 List of Usage of Interrupt Vectors - 1 -
25 2.8 Code Size, amended
65 Operating Test Environment : added
Table 6-15 Operation Confirmation Environment for Rev.2.42 is
added
2.43 Jul. 30, 2019 - Added support for the RX72M Group.
20 2.4 Usage of Interrupt Vector: RX72M added.
Table 2.5 List of Usage of Interrupt Vectors - 5 -
26 2.8 Code Size, amended
30to 47 | Delete “Reentrant” item on the API description page.
67 Operating Test Environment : added
Table 6-16 Operation Confirmation Environment for Rev.2.43 is
added
2.44 Oct. 30, 2019 - Added support for the RX13T Group.
16 2.4 Usage of Interrupt Vector: RX13T added.
Table 2.1 List of Usage of Interrupt Vectors - 1 -
26 2.8 Code Size, amended
67 Operating Test Environment : added
Table 6-17 Operation Confirmation Environment for Rev.2.44 is
added
2.45 Nov. 22, 2019 - Added support for the RX66N and RX72N Groups.
16 2.4 Usage of Interrupt Vector: RX66N and RX72N added.
Table 2.5 List of Usage of Interrupt Vectors - 5 -
26 2.8 Code Size, amended
68 Operating Test Environment : added

Table 6-18 Operation Confirmation Environment for Rev.2.45 is
added

RO1AN1691EJ0246 Rev.2.46
Mar.10.20

Page 91 of 92
RENESAS

RX Family

Simple I°C Module Using Firmware Integration Technology

REVISION HISTORY

RX Family Application Note

Simple 1°C Module Using Firmware Integration Technology

Description
Rev. Date
Page Summary
2.45 Nov. 22, 2019 Program | Modified the SCI simple 12C mode FIT module due to the software
issue
[Description]
There are errors in the processing to set the clock source (CKS
bit in the SMR register) and the bit rate (BRR register) for the
onchip baud rate generator, so the set values may differ from the
expected values.
[Conditions]
When rev.2.43 of the SCI simple I1°C mode FIT module is used
with RX72M, and the following two conditions are met:
- SCI7, SCI8, or SCI9 of channel is used.
- The operating frequency of PCLKA and PCLKB is different.
[Workaround]
Use rev.2.45 or a later version of the SCI simple 1°C mode FIT
module.
2.46 Mar. 10, 2020 - Added support for the RX23E-A Group.
17 2.4 Usage of Interrupt Vector: RX23E-A added.
Table 2.1 List of Usage of Interrupt Vectors - 1 -
27 2.8 Code Size, amended
29 Changed Section 2.11 Adding the FIT Module to Your Project.
69 Operating Test Environment : added
Table 6-19 Operation Confirmation Environment for Rev.2.46 is
added

RO1AN1691EJ0246 Rev.2.46

Mar.10.20

Page 92 of 92
RENESAS

General Precautions in the Handling of Microprocessing Unit and Microcontroller
Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the
products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.
1. Precaution against Electrostatic Discharge (ESD)
A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps
must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be
adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity.
Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and
measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor

devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.
2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of
register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset
pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins
in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the

level at which resetting is specified.
3. Input of signal during power-off state

Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O
pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal

elements. Follow the guideline for input signal during power-off state as described in your product documentation.
4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are
generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of
the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal

become possible.
5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program
execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator
during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal

produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.
6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between V.
(Max.) and Vix (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the

input level is fixed, and also in the transition period when the input level passes through the area between V. (Max.) and Vix (Min.).
7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these

addresses as the correct operation of the LSl is not guaranteed.
8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems.
The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms
of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values,
operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-
evaluation test for the given product.

Notice

1.

10.

11.
12.

Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products
and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your
product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use
of these circuits, software, or information.
Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights,
or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this
document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics
or others.
You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any
and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.
Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for
each Renesas Electronics product depends on the product’s quality grade, as indicated below.

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home

electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key
financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas
Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to
human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space
system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics
disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product
that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.
When using Renesas Electronics products, refer to the latest product information (data sheets, user’'s manuals, application notes, “General Notes for
Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by
Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas
Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such
specified ranges.
Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific
characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability
product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics
products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily
injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as
safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for
aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are
responsible for evaluating the safety of the final products or systems manufactured by you.
Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas
Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of
controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these
applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance
with applicable laws and regulations.
Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is
prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations
promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.
It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or
transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.
This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas
Electronics products.

(Notel) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled

subsidiaries.

(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

Corporate Headquarters
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics
Corporation. All trademarks and registered trademarks are the property
of their respective owners.

(Rev.4.0-1 November 2017)

Contact information

For further information on a product, technology, the most up-to-date
version of a document, or your nearest sales office, please visit:
www.renesas.com/contact/.

© 2020 Renesas Electronics Corporation. All rights reserved.

https://www.renesas.com/
https://www.renesas.com/contact/

	1. Overview
	1.1 SCI Simple I2C Mode FIT Module
	1.2 Outline of the API
	1.3 Overview of SCI Simple I2C Mode FIT Module
	1.3.1 Specifications of SCI Simple I2C Mode FIT Module
	1.3.2 Master Transmission
	1.3.3 Master Reception
	1.3.4 State Transition
	1.3.5 Flags when Transitioning States

	2. API Information
	2.1 Hardware Requirements
	2.2 Software Requirements
	2.3 Supported Toolchains
	2.4 Usage of Interrupt Vector
	2.5 Header Files
	2.6 Integer Types
	2.7 Configuration Overview
	2.8 Code Size
	2.9 Parameters
	2.10 Return Values
	2.11 Adding the FIT Module to Your Project
	2.12 “for”, “while” and “do while” statements

	3. API Functions
	3.1 R_SCI_IIC_Open()
	3.2 R_SCI_IIC_MasterSend()
	3.3 R_SCI_IIC_MasterReceive()
	3.4 R_SCI_IIC_Close()
	3.5 R_SCI_IIC_GetStatus()
	3.6 R_SCI_IIC_Control()
	3.7 R_SCI_IIC_GetVersion()

	4. Pin Settings
	5. Demo Projects
	5.1 sciiic_send_demo_rskrx64m
	5.2 sciiic_receive_demo_rskrx64m
	5.3 sciiic_send_demo_rskrx231
	5.4 sciiic_receive_demo_rskrx231
	5.5 Adding a Demo to a Workspace
	5.6 Downloading Demo Projects

	6. Appendices
	6.1 Communication Method
	6.1.1 States for API Operation
	6.1.2 Events During API Operation
	6.1.3 Protocol State Transitions
	6.1.4 Protocol State Transition Table
	6.1.5 Functions Used on Protocol State Transitions
	6.1.6 Flag States on State Transitions

	6.2 Interrupt Request Generation Timing
	6.2.1 Master Transmission
	6.2.2 Master Reception
	6.2.3 Master Transmit/Receive

	6.3 Operating Test Environment
	6.4 Troubleshooting

	7. Sample Code
	7.1 Example when Accessing One Slave Device Continuously with One Channel
	7.2 Example when Accessing Two Slave Devices with One Channel
	7.3 Example when Accessing Two Slave Devices with Two Channels

	8. Reference Documents
	Related Technical Updates
	REVISION HISTORY
	General Precautions in the Handling of Microprocessing Unit and MicrocontrollerUnit Products
	Notice

