
 Application Note

R01AN1685EJ0620 Rev.6.20 Page 1 of 179
Jun.30.21

RX Family
Board Support Package Module Using
Firmware Integration Technology
Introduction
The foundation of any project that uses FIT modules is the Renesas Board Support Package (r_bsp). The r_bsp is easily
configurable and provides all the code needed to get the MCU from reset to main(). The document covers conventions
of the r_bsp so that users will know how to use it, configure it, and create a BSP for their own board.

Target Device
The following is a list of devices that are currently supported:

• RX110 Group
• RX111 Group
• RX113 Group
• RX130 Group
• RX13T Group
• RX140 Group
• RX231, RX230 Groups
• RX23T Group
• RX23W Group
• RX23E-A Group
• RX24T Group
• RX24U Group
• RX64M Group
• RX65N, RX651 Groups
• RX66N Group
• RX66T Group
• RX671 Group
• RX71M Group
• RX72M Group
• RX72N Group
• RX72T Group

When using this application note with other Renesas MCUs, careful evaluation is recommended after making
modifications to comply with the alternate MCU.

Target Compiler
• Renesas Electronics C/C++ Compiler Package for RX Family (V2.05.00 or higher)

• GCC for Renesas RX

• IAR C/C++ Compiler for Renesas RX

For details of the confirmed operation contents of each compiler, refer to “10.1 Confirmed Operation Environment".

Some functions are limited. Refer to “4.4 Limitations”.

Related Documents
• Firmware Integration Technology User’s Manual (R01AN1833)

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0620 Rev.6.20 Page 2 of 179
Jun.30.21

Contents

1. Overview ... 3

2. Features .. 6

3. Configuration ... 19

4. API Information .. 41

5. API Functions .. 53

6. Intrinsic Functions ... 97

7. Project Setup ... 104

8. Adding r_bsp manually .. 107

9. Adding FIT Modules to the User Project ... 119

10. Appendices .. 124

Technical Update Information ... 141

Revision Record .. 142

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0620 Rev.6.20 Page 3 of 179
Jun.30.21

1. Overview
Before running the user application there are a series of operations that must be performed to get the MCU set up
properly. These operations, and the number of operations, will vary depending on the MCU being used. Common
examples include: setting up stack(s), initializing memory, configuring system clocks, and setting up port pins. No
matter the application, these steps need to be followed. To make this process easier the Renesas Board Support Package,
abbreviated as r_bsp, is provided.

At the lowest level the r_bsp provides everything needed to get the user’s MCU from reset to the start of their
application’s main() function. The r_bsp also provides common functionality that is needed by many applications.
Examples of this include callbacks for exceptions and functions to enable or disable interrupts.

While every application will need to address the same steps after reset, this does not mean that the settings will be the
same. Depending on the application, stack sizes will vary and which clock is used will change. The r_bsp configuration
options are contained in the config header file for easy access.

Many customers start development on a Renesas development board and then transition to their own custom boards.
When users move to their own custom hardware it is highly recommended they create a new BSP inside of the r_bsp.
By following the same standards and rules that are used for the provided BSPs the user can get an early start on
development knowing that their application code will move to their target board very easily. Details on how users can
create their own BSPs are provided in this document.

1.1 Terminology
Term Meaning
Platform The user’s development board. Used interchangeably with ‘board’.

BSP Short for Board Support Package. BSP’s usually have source files related to a
specific board.

Callback Function This term refers to a function that is called when an event occurs. For
example, the bus error interrupt handler is implemented in the r_bsp. The
user will likely want to know when a bus error occurs. To alert the user, a
callback function can be supplied to the r_bsp. When a bus error occurs the
r_bsp will jump to the provided callback function and the user can handle the
error. Interrupt callback functions should be kept short and be handled
carefully because when they are called the MCU will still be inside of an
interrupt and therefore will be delaying any pending interrupts.

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0620 Rev.6.20 Page 4 of 179
Jun.30.21

1.2 File Structure

The r_bsp file structure is shown below in Figure 1.1. Underneath the root r_bsp folder there are 3 folders and 2 files.
The first folder is named doc and contains r_bsp documentation.

The board folder contains the generic folder and the user folder. The generic folder contains source files whose settings
are independent of the board and is provided for each MCU. The structures of the generic folder are shown in “Figure
1.2 Structures of generic Folder”. The user folder is merely a placeholder and, for example, can be used for the user
boards.

The mcu folder has one folder per supported MCU *1. There is also a folder named all in this directory containing
source that is common to all MCUs in the r_bsp.

The file platform.h is provided for the user to choose their current development platform. platform.h, in turn, selects all
the proper header files from the board and mcu folders to be included in the user’s project. This is discussed in more
detail in later sections. The readme.txt file is a standard text file that is provided with all FIT Modules that provides
brief information about the r_bsp.

Note 1. RX651 is the same source code as RX65N. If you use RX651, you can use the source code of
RX65N.

Figure 1.1 r_bsp File Structure

r_bsp

doc board mcu

Board Name

e.g. generic_rx65n

user

MCU Group

e.g. rx65n

all

en

ja

readme.txtplatform.h

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0620 Rev.6.20 Page 5 of 179
Jun.30.21

Figure 1.2 Structures of generic Folder

board

e.g. generic_rx65n

hwsetup.c dbsct.c

hwsetup.h

lowlvl.c

lowsrc.c

lowsrc.h

r_bsp.h

r_bsp_config_reference.h

r_bsp_interrupt_config_reference.h

vecttbl.c

vecttbl.h

mcu

e.g. rx65n

r_bsp_cpu.c

r_bsp_cpu.h

r_bsp_locking.c r_bsp_locking.h

mcu_clocks.c

mcu_init.c

mcu_info.h

mcu_interrupts.c

mcu_interrupts.hmcu_locks.c

mcu_locks.h

mcu_mapped_interrupts.c

mcu_mapped_interrupts.h

mcu_mapped_interrupts_private.h

r_bsp_mcu_startup.c

r_bsp_mcu_startup.h

all

r_bsp_interrupts.c

r_bsp_interrupts.h

linker_script_rvectors.inc mcu_clocks.h

mcu_init.h

r_bsp_common.c

r_bsp_common.h

r_rx_compiler.h

r_typedefs.h

register_access

iodefine.h

ccrx

gnuc

iccrx

iodefine.h

iodefine.h

r_bsp_rx_generic_rx65n_extend.mdf

r_rtos.h

r_rx_intrinsic_functions.h

r_rx_intrinsic_functions.c

sbrk.c

reset_program.s

resetprg.c

lowlvl.h

sbrk.h

r_bsp_software_interrupt.h

r_bsp_software_interrupt.c

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0620 Rev.6.20 Page 6 of 179
Jun.30.21

2. Features
This section will go into more detail on the features provided by the r_bsp.

2.1 MCU Information
One of the main benefits of the r_bsp is that the user defines their global system settings only once, in a single place in
the project. This information is defined in the r_bsp and then used by FIT Modules and user code. FIT Modules can use
this information to automatically configure their code for the user’s system configuration. If the r_bsp did not provide
this information then the user would have to specify system information to each FIT Module separately.

Configuring the r_bsp is discussed in Section 3. The r_bsp uses this configuration information to set macro definitions
in mcu_info.h. Each MCU may have different macros in mcu_info.h, but below are some common examples.

Define Meaning

BSP_MCU_SERIES_<MCU_SERIES>
Which MCU Series this MCU belongs to. Example:
BSP_MCU_SERIES_RX600 would be defined if the MCU was an
RX64M.

BSP_MCU_<MCU_GROUP> Which MCU Group this MCU belongs to. Example:
BSP_MCU_RX111 would be defined if the MCU was an RX111.

BSP_PACKAGE_<PACKAGE_TYPE> The package of the MCU. Example: BSP_PACKAGE_LQFP100
would be defined for a 100-pin LQFP package MCU.

BSP_PACKAGE_PINS How many pins this MCU has.

BSP_ROM_SIZE_BYTES The size of the user application ROM space in bytes.

BSP_RAM_SIZE_BYTES The size of the RAM available to the user in bytes. In some MCUs
the RAM area is not contiguous.

BSP_DATA_FLASH_SIZE_BYTES The size of the data flash area in bytes.

BSP_<CLOCK>_HZ

There will be one of these macros for each clock on the MCU.
Each macro will define that clock’s frequency in hertz. Examples:
BSP_LOCO_HZ defines the LOCO frequency in Hz.
BSP_ICLK_HZ defines the CPU clock in Hz.
BSP_PCLKB_HZ defines the Peripheral Clock B in Hz.

BSP_MCU_IPL_MAX The maximum interrupt priority level for the MCU.

BSP_MCU_IPL_MIN The minimum interrupt priority level for the MCU.

FIT_NO_FUNC

and

FIT_NO_PTR

These macros can be used as arguments in function calls to
specify that nothing is being supplied for an argument. For
example, if a function takes an optional argument for a callback
function then FIT_NO_FUNC could be used if the user did not wish
to supply a callback function. These macros are defined to point to
reserved address space. This is done so that if the argument is
used improperly it is easier to catch. The reason for this is that if
the MCU attempts to access reserved space then a bus error will
occur and the user will know immediately. If NULL was used
instead then a bus error would not occur because NULL is typically
defined as 0 which is a valid RAM location on the RX.

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0620 Rev.6.20 Page 7 of 179
Jun.30.21

2.2 Initialization
When using the Renesas compiler and GCC, the PowerON_Reset_PC function is set as the reset vector for the MCU.
When using the IAR compiler, the __iar_program_start function is set as the reset vector for the MCU.The
PowerON_Reset_PC() function and the __iar_program_start function (startup function) performs a number of chip
initialization actions to get the MCU ready to jump to the user’s application. The flowchart below details operations of
the startup function and the system clock setting.

Figure 2.1 Flowchart of startup function

Startup Function

Set stack addresses

Initialize the FPU *1

Setting the system clock
mcu_clock_setup()

• Sets the clock division ration and multiplication factor.
• Stops clocks that are not used as the clock source.
• Waits for stabilization of the clock that is used as the
 clock source.
• Transitions to the selected clock.

Initializing C runtime environment
_INITSCT()

• Sets 0 to the uninitialized data area.
• Copies the data to the data area to be initialized.

Initialize the STDIO library *2

Initializing interrupt callback
bsp_interrupt_open()

Initializing hardware and pins
hardware_setup()

• Enables pins used for the peripheral function.
• Initializes non-existent port

Initialize PSW
• Enables/disables user stack usage. *2
• Enables the CPU to accept an interrupt. *3

Enter user mode *2

Jump to the main function

Enable the bus error interrupt

Note 1: The MCU skips this procedure.
Note 2: The operation varies depending on the setting in the r_bsp_config.h.
Note 3: Only acceptance of CPU interrupts is enabled. Acceptance of each peripheral interrupt must be enabled separately.

Initializing register protection
bsp_register_protect_open()

Set the start address of the interrupt
vector table

Set the start address of the exception
vector table *1

Warm start (PRE) *2
User_Warm_start_func_pre()

Warm start (POST) *2
User_Warm_start_func_post()

Close the STDIO library *2

• Initializes the interrupt callback.
• Assigns the interrupt source of the software configurable
 interrupt. *1
• Initializes the software interrupt.

Initializing variables of BSP
bsp_ram_initialize()

Initialize the Double-precision floating
point coprocessor *1

Initialize the arithmetic unit for
trigonometric functions *1

VBATT voltage stability wait *1

vbatt_voltage_stability_wait()

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0620 Rev.6.20 Page 8 of 179
Jun.30.21

Figure 2.2 Flowchart of System Clock Setting

Disable main clock oscillator forced
oscillation

Specify HOCO oscillation *2

Note 1: The procedure may vary depending on the MCU used.
Note 2: The operation varies according to settings in r_bsp_config.h.

Disable register write protection

Clock source oscillation setting
clock_source_select()

Clock source oscillation setting *1
clock_source_select()

Operating frequency setting *1
operating_frequency_set()

Set division ratio of the clock source *2

Switch the system clock

Enable register write protection

Stop LOCO oscillation *2

Specify ROM cache

return

Set the main clock source *2

Specify main clock oscillation *2

Specify sub-clock oscillation *2

Specify PLL oscillation *2

Specify LOCO oscillation *2

Specify ROM wait

return

Cold start or warm start?

Set RTC related registers *2

Specify sub-clock oscillation *2

Cold start

Warm start

Operating frequency setting
operating_frequency_set()

System clock setting *1
mcu_clock_setup()

return

LPT Clock source oscillation setting
lpt_clock_source_select()

USB LPC Clock source oscillation
setting

usb_lpc_clock_source_select()

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0620 Rev.6.20 Page 9 of 179
Jun.30.21

2.3 Global Interrupts
Interrupts on RX MCUs are disabled out of reset. The startup function will enable interrupts before the user’s
application is called (see Section 2.2).

RXv1 devices have two vector tables: a relocatable vector table and a fixed vector table. As the names suggest, the
relocatable vector table can be anywhere in memory and the fixed vector table is at a static location at the top of the
memory map. RXv2 and RXv3 devices have two vector tables: an interrupt vector table and an exception vector table.
The interrupt vector table and the exception vector table can be anywhere in memory.

The relocatable vector table and the interrupt vector table hold peripheral interrupt vectors and are pointed to by the
INTB register. This register is initialized after reset in the startup function. The vectors in the relocatable vector table
and the interrupt vector table are inserted by the RX toolchain. The RX toolchain knows about the user’s interrupt
vectors by the use of the ‘#pragma interrupt’ directives in the user’s code.

The fixed vector table holds exception vectors, the reset vector, as well as some flash-based option registers. The
exception vector table holds exception vectors.

The fixed vector table and the exception vector table are defined in vecttbl.c along with default interrupt handlers for all
exceptions, the NMI interrupt, bus errors, and undefined interrupts. The user has the option of dynamically setting
callbacks (see Section 2.4) for all of these vectors using the functionality found in mcu_interrupts.c. The vecttbl.c file
also takes care of setting up the User Boot reset vector when applicable.

All vectors in the fixed vector table and the exception vector table are handled in vecttbl.c. All vectors in the relocatable
vector table and the interrupt vector table are not handled because the user will define these vectors and each application
will be different. This means that in every application there will be unfilled vectors that should be taken care of in case
that interrupt is triggered by accident. Many linkers support the filling of unused vectors with a static function. The
undefined_interrupt_source_isr() function in vecttbl.c is provided for this purpose and the user is encouraged to set up
the linker to fill in unused vectors with this function’s address.

2.4 Interrupt Callbacks
The r_bsp provides several API functions (see Sections 5.13 and 5.14) which allow the user to be alerted when certain
interrupts are triggered. This works by the user selecting the interrupt and then providing a callback function. When the
interrupt is triggered the r_bsp will call the supplied callback function.

Currently, the user can choose to register callbacks for all exception interrupts in the fixed vector table and the
exception vector table, the bus error interrupt, and the undefined interrupt. After the user callback function has been
executed, the r_bsp interrupt handler will clear any interrupt flags as needed.

2.5 Non-Existent Port Pins
Within a MCU Group there can be many different packages with varying number of pins. For packages that have less
pins than the maximum (e.g. 64 pin package in a MCU group that goes up to 144 pins), the non-bonded out pins can be
initialized to lower power consumption. Based on the settings in r_bsp_config.h, the r_bsp will automatically initialize
these non-bonded out pins during the MCU initialization procedure. This feature is implemented in the mcu_init.c
function and is called by the hardware_setup() function.

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0620 Rev.6.20 Page 10 of 179
Jun.30.21

2.6 Clock Setup
All system clocks are setup during r_bsp initialization. The clocks are configured based upon the user’s settings in the
r_bsp_config.h file (see Section 3.2.6). Clock configuration is performed prior to initializing the C runtime
environment. This is done to quicken this process since some RX MCUs startup on a relatively slow clock. When
selecting a clock the code in the r_bsp will implement the required delays to allow the selected clock to stabilize.

Some RX MCUs require a wait cycle to access the flash memory or the RAM. The wait cycle can be set by the
MEMWAIT register or the ROMWT register. The setting values for these registers depend on the system clock or
operating power control mode used. Make sure to confirm the limitations in the user's manual for setting the
MEMWAIT register and the ROMWT register.

2.7 STDIO & Debug Console
When enabled (see Section 3.2.3), the STDIO library is initialized as part of the MCU initialization procedure. The
r_bsp code is setup to send STDIO output to the debug console that can be viewed in e2 studio. The source file lowlvl.c
is responsible for sending and receiving bytes for STDIO functions and as previously stated is set up by default to use
the debug console. If desired the user may redirect the STDIO charget() and/or charput() functions to their own
respective functions by modifying r_bsp_config.h and enabling BSP_CFG_USER_CHARGET_ENABLED and/or
BSP_CFG_USER_CHARPUT_ENABLED, and providing and replacing the my_sw_charget_function and/or
my_sw_charput_function function names with the names of their own functions.
When using the Renesas compiler, it is possible to select whether STDIO is initialized or not. When using GCC and the
IAR compilers, STDIO is always initialized.

2.8 Stacks Area and Heap Area
RX MCUs have two stacks that can be used: the User stack and the Interrupt stack. When both stacks are used the User
stack will be used during normal execution flow and the Interrupt stack will be used during interrupt handling. Having
two stacks can make it easier to figure out how much stack space to allocate since the user does not have to worry about
always having enough room on the User stack for if-and-when an interrupt occurs. Some users will not want two stacks
though because it is not needed in all applications and can lead to wasted RAM (i.e. space in between stacks that is not
used). If only one stack is used then it will always be the Interrupt stack.
The User and Interrupt stacks and the heap are all set up and initialized after reset inside of the startup function. The
sizes of the stacks and heap, and whether one or two stacks are used, is configured in r_bsp_config.h (see Section
3.2.2). The user also has the option of disabling the heap if desired.
When using the IAR compiler, set the stack and heap size not only with r_bsp_config.h but also with the GUI.

2.9 CPU Mode
Out of reset, RX MCUs operate in Supervisor CPU Mode. In Supervisor Mode all CPU resources and instructions are
available. The user has the option (see Section 3.2.4) of transitioning to User Mode before the r_bsp code jumps to
main(). In User Mode there are restrictions to any instruction capable of writing to:

• Some bits (bits IPL[3:0], PM, U, and I) in the processor status word (PSW)
• Interrupt stack pointer (ISP)
• Interrupt table register (INTB)
• Backup PSW (BPSW)
• Backup PC (BPC)
• Fast interrupt vector register (FINTV)

If the MCU executes one of these instructions while in User Mode, an exception will trigger. If the user has a callback
setup (see Section 2.4) then they will be alerted by a callback function of the exception.

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0620 Rev.6.20 Page 11 of 179
Jun.30.21

2.10 ID Code
RX MCUs have a 16-byte ID Code in ROM that protects the MCU’s memory from being read through a debugger, or in
serial boot mode, in an attempt to extract the firmware from the device. The ID Code resides in the fixed vector table or
option-setting memory and can easily be set in r_bsp_config.h (see Section 3.2.7). For more information on available ID
Code options please reference the ID Code subsection in the ‘Flash Memory’ or ‘ROM’ section of your MCU’s
hardware manual.

2.11 Parallel Programmer Protection
Similar to the ID Code, RX MCUs also have a 4-byte code in ROM that can protect access to the MCU’s memory from
parallel programmers. The user has the option of allowing reads and write, only allowing writes, and prohibiting all
access. See Section 3.2.7 for information on how to enable this feature.

2.12 Endian
RX MCUs have the option of operating in big or little endian mode. The r_bsp detects the endian selected in the
toolchain and will use that to appropriately set the register. The r_bsp currently detects endian from the following
toolchains:

• Renesas CCRX Toolchain
• IAR Toolchain for RX
• GCC for Renesas RX

2.13 Option Function Select Registers
RX MCUs have registers stored in ROM called Option Function Select registers. These registers are used to enable
certain MCU features at reset instead of having to enable them in the user’s code. Examples include the ability to enable
low voltage monitoring, start the HOCO oscillating, and to configure and start the IWDT.
The user can input the values to be used for these registers in r_bsp_config.h (see Section 3.2.7).

2.14 Trusted Memory
The trusted memory (TM) function prevents illegal reading of the area set as TM. This function is disabled by default.
To enable the trusted memory function, specify with the BSP_CFG_TRUSTED_MODE_FUNCTION definition in
r_bsp_config.h.
For a dual-bank device, available TM area varies according to bank mode. To switch bank mode, specify with the
BSP_CFG_CODE_FLASH_BANK_MODE definition in r_bsp_config.h.

2.15 Bank Mode
The user area can be used in linear mode, which uses the user area as one area, or in dual mode, which uses the user
area as dual area. These modes can be selected with the bank mode switch function. The memory mapping differs
between linear mode and dual mode, and is switched depending on the mode selected. When dual mode is selected, the
bank area to launch the program can be selected.
To switch bank mode, specify with the BSP_CFG_CODE_FLASH_BANK_MODE definition in r_bsp_config.h.
To select a bank to launch the program, specify with the BSP_CFG_CODE_FLASH_START_BANK definition in
r_bsp_config.h.

2.16 System Wide Parameter Checking
By default FIT modules will check input parameters to be valid. This is helpful during development but some users
will want to disable this for production code. The reason for this would be to save execution time and code space. In
r_bsp_config.h there is an option to globally enable or disable parameter checking. Local modules will use this value by
default but can select to override the value locally if desired. To configure this option see Section 3.2.9.

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0620 Rev.6.20 Page 12 of 179
Jun.30.21

2.17 Atomic Locking
The r_bsp provides API functions to implement atomic locking. These locks can be used to protect critical areas of code
as a RTOS semaphore or mutex normally would. Care should be taken when using these locks though since they do not
offer the advanced features one would expect from a modern RTOS. If used incorrectly then the locks could cause a
deadlock in the user’s system.

In each mcu folder the user will find a file named mcu_locks.h. This contains an enum named mcu_lock_t which has
one lock per peripheral, and peripheral channel, on the MCU. These locks can be used to mark that a peripheral has
been reserved. This could be used if the user wanted to use a FIT module to control three channels of a peripheral and
their own custom code for one channel. By reserving the lock for the channel they need they have removed that channel
from being used by the FIT Module. These locks can also be used if the user has more than one FIT module for the
same peripheral. For example, if the user had one FIT module for using the SCI in asynchronous mode and another for
using the SCI in I2C mode then these locks will prevent these two modules from trying to use the same SCI channel.
There are four locking API functions provided that are detailed in Section 3.2.8. The only difference between the
hardware and software locking functions is that the hardware locking functions only use locks that are defined in
mcu_locks.h. The software locking function takes locks allocated anywhere so the user could create their own as
needed. FIT Modules that need locking and do not use a MCU peripheral will also create their own locks and use the
software locking routines.

The user has the option of substituting the default r_bsp locking mechanisms for their own. See Section 3.2.8 for more
information.

2.18 Register Protection
RX MCUs have protect registers that protect various MCU registers from being written. Examples of registers that are
protected include clock registers, low power consumption registers, the software reset register, and low voltage
detection registers. The r_bsp provides API functions for easily manipulating these registers to enable or disable write
access. Refer to Sections 5.7 and 5.8 for more information.

2.19 CPU Functions
API functions are provided for CPU functions such as enabling and disabling interrupts and setting the CPU’s interrupt
priority level. Refer to Section 5 for more information.

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0620 Rev.6.20 Page 13 of 179
Jun.30.21

2.20 Group Interrupts
Multiple peripheral interrupt requests (up to 32 requests) are grouped together as one interrupt request. Interrupts are
grouped depending on the peripheral operating clock (PCLKB or PCLKA) and method to detect interrupt requests
(edge detection or level detection).
When the group interrupt request is generated, checking the corresponding group interrupt request register (A or B,
edge or level) identifies the interrupt source.

Figure 2.3 shows the Overview of FIT Group Interrupts.
With the BSP group interrupt function, when an interrupt occurs, the preregistered function is called. The registration is
done by each peripheral FIT module using the R_BSP_InterruptWrite function.

1. Each peripheral FIT module registers the interrupt callback function by calling the R_BSP_InterruptWrite function.
2. When an interrupt occurs, the FIT module calls the callback function registered in 1 above.

Figure 2.3 Overview of FIT Group Interrupts

2.21 Software Configurable Interrupts
Peripheral interrupt sources can be dynamically assigned to a vector number from 128 to 255. Based on the peripheral
operating clock, they are divided into software configurable interrupt A and software configurable interrupt B. Software
configurable interrupt B may be used for peripherals that operate in synchronization with PCLKB and can be assigned
to interrupt numbers 128 to 207. Software configurable interrupt A may be used for peripherals that operate in
synchronization with PCLKA and can be assigned to interrupt numbers 208 to 255.

Peripheral FIT ModuleBSP

sci0_tei0_callback()

group_bl0_handler_isr ()

GRPBL0.IS0 == 1 ?

return

peripheral_init ()

Group interrupt callback
registration

R_BSP_InterruptWrite()

return

return

Interrupt handling

No

Yes (interrupt requested) Initialization of the peripheral
module

(1) Arguments:
vector: BSP_INT_SRC_BL0_SCI0_TEI0
callback: sci0_tei0_callback

Calling the callback function
sci0_tei0_callback()

(2)

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0620 Rev.6.20 Page 14 of 179
Jun.30.21

2.22 Startup Disable
The startup disable function is the function for the user who wants to add the peripheral FIT module to the existing user
project without creating a new project.
When the startup disable function is enabled, all startup processing performed by the BSP (processing in the startup
function) become disabled. This prevents conflict with the user created startup processing.
This function is available only when using Renesas compiler.
Figure 2.4 shows the Overview of the Startup Disable Function, Figure 2.5 shows the Processing Disabled with the
Startup Disable Function, and Figure 2.6 shows the Files Influenced by the Startup Disable Function.

Figure 2.4 Overview of the Startup Disable Function

User Project

User API

User
Peripheral module

User start-up processing BSP

BSP start-up disable

FIT
Peripheral module

FIT peripheral
module

BSP
Add

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0620 Rev.6.20 Page 15 of 179
Jun.30.21

Figure 2.5 Processing Disabled with the Startup Disable Function

Note 1: The MCU skips this procedure.
Note 2: The operation varies depending on the setting in the r_bsp_config.h.

* All processing in the PowerOn_Reset_PC function are
disabled with the startup disable function enabled.

Startup Function

Set stack addresses

Initialize the FPU *1

Setting the system clock
mcu_clock_setup()

Initializing C runtime environment
_INITSCT()

Initialize the STDIO library *2

Initializing interrupt callback
bsp_interrupt_open()

Initializing hardware and pins
hardware_setup()

Initialize PSW

Enter user mode *2

Jump to the main function

Enable the bus error interrupt

Initializing register protection
bsp_register_protect_open()

Set the start address of the interrupt
vector table

Set the start address of the exception
vector table *1

Warm start (PRE) *2
User_Warm_start_func_pre()

Warm start (POST) *2
User_Warm_start_func_post()

Close the STDIO library *2

Initializing variables of BSP
bsp_ram_initialize()

Initialize the Double-precision floating
point coprocessor *1

Initialize the arithmetic unit for
trigonometric functions *1

VBATT voltage stability wait *1

vbatt_voltage_stability_wait()

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0620 Rev.6.20 Page 16 of 179
Jun.30.21

Figure 2.6 Files Influenced by the Startup Disable Function

* Files whose code is completely disabled with the startup disable function.

* File whose code is partially disabled with the startup disable function.

board mcu

e.g. generic_rx65n

hwsetup.c dbsct.c

hwsetup.h

lowlvl.c

lowsrc.c

lowsrc.h

r_bsp.h

r_bsp_config_reference.h

r_bsp_interrupt_config_reference.h

vecttbl.c

vecttbl.h

e.g. rx65n

r_bsp_cpu.c

r_bsp_cpu.h

r_bsp_locking.c r_bsp_locking.h

mcu_clocks.c

mcu_init.c

mcu_info.h

mcu_interrupts.c

mcu_interrupts.hmcu_locks.c

mcu_locks.h

mcu_mapped_interrupts.c

mcu_mapped_interrupts.h

mcu_mapped_interrupts_private.h

r_bsp_mcu_startup.c

r_bsp_mcu_startup.h

all

r_bsp_interrupts.c

r_bsp_interrupts.h

linker_script_rvectors.inc mcu_clocks.h

mcu_init.h

r_bsp_common.c

r_bsp_common.h

r_rx_compiler.h

r_typedefs.h

register_access

iodefine.h

ccrx

gnuc

iccrx

iodefine.h

iodefine.h

r_bsp_rx_generic_rx65n_extend.mdf

r_rtos.h

r_rx_intrinsic_functions.h

r_rx_intrinsic_functions.c

sbrk.c

reset_program.s

resetprg.c

lowlvl.h

sbrk.h

r_bsp_software_interrupt.c

r_bsp_software_interrupt.h

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0620 Rev.6.20 Page 17 of 179
Jun.30.21

2.22.1 Setting the Startup Disable Function
To disable the BSP startup processing, specify the setting described below. For how to implement the FIT module, refer
to “9 Adding FIT Modules to the User Project”.
(1) Setting the configuration file

Disable the BSP startup processing by setting BSP_CFG_STARTUP_DISABLE to 1 in the r_bsp_config.h of the BSP.

Set the user created startup processing in the r_bsp_config.h. BSP API functions and peripheral FIT modules refer to
the contents in the r_bsp_config.h. If the contents of the user startup processing and the BSP startup processing are
different, the FIT module does not operate correctly.

Here is an example when mcu_info.h of the BSP has the definition of the peripheral module clock B frequency
(BSP_PCLKB_HZ). The frequency of peripheral module clock B is calculated with the information (frequency of the
resonator, division ratio, multiplication factor, and so on) set in r_bsp_config.h. The calculated frequency of peripheral
module clock B is referred by peripheral FIT modules.

The BSP information to which FIT modules refer is generated from r_bsp_config.h. Therefore, the settings in the user
startup processing and settings in r_bsp_config.h must be the same.

Figure 2.7 shows Configuration File Settings.

Figure 2.7 Configuration File Settings

(2) Setting for the conflicted group interrupt function

The BSP uses the group interrupt function. The function cannot be disabled since the peripheral FIT module uses it. To
avoid confliction, use the group interrupt function of the BSP instead of the user's group interrupt function.

For group interrupts of the FIT module, refer to 2.20 Group Interrupts.

(3) Calling the R_BSP_StartupOpen function

The R_BSP_StartupOpen function performs initialization for the ram variable, the interrupt callback, register
protection, and the hardware and pins. These processing are for using the BSP and peripheral FIT modules. Thus, the
R_BSP_StartupOpen function must be called in the beginning of the user main function.

Refer to “5.18 R_BSP_StartupOpen()” for the R_BSP_StartupOpen function.

(4) Calling the R_BSP_VbattInitialSetting function

The R_BSP_VbattInitialSetting function performs initialization for the battery backup function.
This processing is needed for using the BSP and peripheral FIT modules. Call this function only if all the following
conditions are satisfied.
- Do not use the battery backup function. (See Section 3.2.19.)
- Access to the RTC related registers.
Call this function before accessing RTC related registers.
Refer to “5.24 R_BSP_VbattInitialSetting()” for the R_BSP_VbattInitialSetting function.

Peripheral module
SCI

Peripheral module
Flash API

BSP

r_bsp_config.h

User startup processing

Clock settings and
the other settings

Clock settings and
the other settings Must be the same.

mcu_info.h

Reference

Reference

 R
efe

ren
ce

Reference

Clock settings and
the other settings

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0620 Rev.6.20 Page 18 of 179
Jun.30.21

2.23 Software Interrupts
The BSP has task buffers for software interrupts, allowing multiple software interrupt requests to be executed as tasks.

Tasks are set by the R_BSP_SoftwareInterruptSetTask function. Each task buffer is configured as a ring buffer. If the
task buffer is full, no task is set and an error is returned.

Exclusive control is used to enable the task buffer to be accessed by multiple functions. If the access control right
cannot be obtained, the commands of the R_BSP_SoftwareInterruptControl function or set tasks cannot be executed.

The tasks are executed in order within software interrupt functions, starting from the one at the start of the task buffer.
Nested-interrupts are allowed in software interrupt functions. It is possible to disable nested-interrupts by using the
R_BSP_SoftwareInterruptControl function.

A configuration macro (BSP_CFG_SWINT_UNITn_ENABLE) can be used to specify whether or not software
interrupts are used with specific units. If software interrupts are to be used, the R_BSP_SoftwareInterruptOpen function
is called automatically at startup to perform initialization.

The interrupt priority level (IPR) of software interrupts is initialized according to a configuration macro value
(BSP_CFG_SWINT_IPR_INITIAL_VALUE). This can be changed dynamically by the
R_BSP_SoftwareInterruptControl function.

The number of software interrupt task buffers is set by a configuration macro
(BSP_CFG_SWINT_TASK_BUFFER_NUMBER).

For information on software interrupt configuration macros, refer to 3.2.20 Software Interrupts, and for API functions,
refer to 5.25 R_BSP_SoftwareInterruptOpen() to 5.28 R_BSP_SoftwareInterruptControl().

Figure 2.8 Software Interrupt Sequence

Peripheral module interrupt
(highest priority interrupt)

Software interrupt
(lowest priority interrupt)

Application
(main)

T1 T2Software interrupt request
setting timing T3 T4

T1 : Setting of software interrupt request by peripheral module interrupt
T2, T3 : Setting of software interrupt request by application
T4 : Setting of software interrupt request among nested-interrupts

*1 *2

Note 1. Since nested-interrupts are allowed, the peripheral module interrupt with the
highest priority level among the software interrupts is accepted first.

Note 2. A task buffer is provided, so new tasks are accepted while software interrupt
processing is taking place.

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0620 Rev.6.20 Page 19 of 179
Jun.30.21

3. Configuration
The r_bsp provides two header files that are used for configuration. One header file is used for choosing which platform
will be used. The other header file is used to configure the chosen platform.

3.1 Choosing a Platform
The r_bsp provides board support packages for many boards. Choosing which one is currently being used is done by
modifying the platform.h header file found in the root of the r_bsp folder.

To choose a platform uncomment the #include for the board you are using. For example, to develop with a
GENERIC_RX65N board, uncomment the #include for ‘./board/ generic_rx65n/r_bsp.h’ macro and make sure all other
board #includes are commented out.

3.2 Platform Configuration
Once a platform has been chosen, it will need to be configured. The user configures their platform using a file named
r_bsp_config.h. Each platform has its own specific configuration file. This file is located in the platform’s board folder
and is named r_bsp_config_reference.h. To create an r_bsp_config.h file the user simply needs to copy the
r_bsp_config_reference.h file from their board folder, rename it to r_bsp_config.h, and put it somewhere in their
project where it can be included. The reference configuration file is provided so that users always have a known-good
configuration file if needed. It is recommended that the r_bsp_config.h file be stored in a folder named r_config in the
user’s project. This is not a requirement but all FIT Modules have configuration files and having one designated
location for these files makes them easy to find and easy to back up.

While each r_bsp_config.h file is different, there are many of the same options in each. The following sections will
provide details on these configuration options. Note that each macro starts with the common prefix ‘BSP_CFG_’ which
makes them easy to search for and easy for the user to identify.

When using Smart Configurator, the configuration option can be set on the software component configuration screen.
The setting value is automatically reflected in r_bsp_config.h when adding modules to a user project.

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0620 Rev.6.20 Page 20 of 179
Jun.30.21

3.2.1 MCU Product Part Number Information
The product part number for a MCU can provide the r_bsp with a lot of information about an MCU. For this reason, the
beginning of the configuration file has definitions that are set based on the MCU’s product part number. All of these
macros have a prefix of ‘BSP_CFG_MCU_PART_’. Some MCUs have more information in their product part numbers
than others but the table below shows the standard set that most have.

Table 3.1 Product Part Number Defines

Define Value Meaning

BSP_CFG_MCU_PART_PACKAGE See comments above
#define in r_bsp_config.h.

Defines which package is
being used. Depending on
package sizes MCUs will
have different numbers of
pins and may have more or
less peripherals.

BSP_CFG_MCU_PART_MEMORY_SIZE See comments above
#define in r_bsp_config.h.

Defines the sizes of ROM,
RAM, and Data Flash.

BSP_CFG_MCU_PART_GROUP See comments above
#define in r_bsp_config.h.

Defines the MCU Group (e.g.
RX64M, RX65N) in a MCU
series.

BSP_CFG_MCU_PART_SERIES See comments above
#define in r_bsp_config.h.

Defines the MCU Series (e.g.
RX600, RX200, RX100).

3.2.2 Stack & Heap Sizes
Table 3.2 Stack & Heap Defines (1/2)

Define Value Meaning

BSP_CFG_USER_STACK_ENABLE
0 = Use only Interrupt stack.

1 = Use Interrupt & User
stacks.

Whether to use 1 stack
(Interrupt stack) or 2
(Interrupt & User stack). For
further explanation please
see Section 2.8. If the RTOS
(RI600V4 or RI600PX) is
used then this definition is
disabled.

BSP_CFG_USTACK_BYTES Size of User Stack in bytes.

Defines the size of the User
stack. When using the IAR
compiler, the stack size is
determined by the GUI
setting. Set the same value
as the value set with the GUI.
If the RTOS (RI600V4 or
RI600PX) is used then this
definition is disabled.

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0620 Rev.6.20 Page 21 of 179
Jun.30.21

Table 3.2 Stack & Heap Defines (2/2)

Define Value Meaning

BSP_CFG_ISTACK_BYTES Size of Interrupt Stack in
bytes.

Defines the size of the
Interrupt stack. When using
the IAR compiler, the stack
size is determined by the GUI
setting. Set the same value
as the value set with the GUI.
If the RTOS (RI600V4 or
RI600PX) is used then this
definition is disabled.

BSP_CFG_HEAP_BYTES Size of heap in bytes.

Defines the size of the heap.
To prohibit the heap, refer to
the comment above on
'#define" in this definition.
When using the IAR compiler,
the heap size is determined
by the GUI setting. Set the
same value as the value set
with the GUI.

3.2.3 STDIO & Debug Console
The use of the STDIO library requires extra code space, RAM space, and use of the heap. If the user does not require
the use of STDIO then it is recommended to disable it and save the extra memory.

Table 3.3 STDIO & Debug Console Defines (1/2)

Define Value Meaning

BSP_CFG_IO_LIB_ENABLE
0 = Disable use of STDIO

1 = Enable use of STDIO

Determines whether STDIO
initialization functions are
called at startup to set up the
STDIO libraries.

BSP_CFG_USER_CHARGET_ENABLED 0 = User function is not
called by charget function

1 = Specified user function
is called by charget function.

Defines whether or not to
redirect the charget function.

BSP_CFG_USER_CHARGET_FUNCTION Function redirected to by
charget function.

Defines the function to be
called when the charget
function is redirected.

BSP_CFG_USER_CHARPUT_ENABLED 0 = User function is not
called by charget function

1 = Specified user function
is called by charget function.

Defines whether or not to
redirect the charget function.

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0620 Rev.6.20 Page 22 of 179
Jun.30.21

Table 3.3 STDIO & Debug Console Defines (2/2)

Define Value Meaning

BSP_CFG_USER_CHARPUT_FUNCTION Function redirected to by
charget function.

Defines the function to be
called when the charget
function is redirected.

3.2.4 CPU Modes & Boot Modes
RX MCUs have multiple boot modes including Serial Boot Mode, User Boot Mode, and Single-Chip Mode. The
method for selecting boot mode varies depending on the MCU used. Some MCU select boot mode according to the
level of a target pin at startup, and some others select boot mode by setting a pin and also setting a value (UB code) to
the ROM.

Table 3.4 CPU Modes & Boot Modes Defines

Define Value Meaning

BSP_CFG_RUN_IN_USER_MODE *1

0 = Stay in Supervisor
Mode

1 = Transition to User
Mode

Out of reset RX MCUs
operate in Supervisor Mode.
The user has the option of
transitioning to User Mode
(which has limited write
access to certain registers).

Unless needed it is
recommended to keep the
MCU in Supervisor mode.

If the RTOS (RI600V4 or
RI600PX) is used then this
definition is disabled.

BSP_CFG_USER_BOOT_ENABLE

0 = Disable User Boot
Mode

1 = Enable User Boot
Mode

To enter User Boot Mode, a
value in ROM must be set. If
this macro defines User Boot
Mode to be enabled then the
r_bsp will set the appropriate
ROM value.

Note 1. This function cannot be used when using RX72M in IAR Compiler.

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0620 Rev.6.20 Page 23 of 179
Jun.30.21

3.2.5 RTOS
Table 3.5 RTOS Defines

Define Value Meaning

BSP_CFG_RTOS_USED

0 = RTOS is not used.

1 = FreeRTOS is used.

2 = embOS is used.

3 = MicroC_OS is used.

4 = RI600V4 or RI600PX
is used.

5 = Azure RTOS is used.

Defines if a RTOS is being used in
the current application. Some FIT
modules may use this information for
their own configuration.

BSP_CFG_RTOS_SYSTEM_TIMER

0 = CMT channel 0

1 = CMT channel 1

2 = CMT channel 2

3 = CMT channel 3

Defines the channel of CMT used for
the RTOS system timer. If the RTOS
is not used then this definition is
disabled. If the RTOS (RI600V4 or
RI600PX) is used, this definition is
invalid. It is because the designation
of the CMT used for system timer is
done by RTOS (RI600V4 or
RI600PX).

BSP_CFG_RENESAS_RTOS_USED
0 = RI600V4 is used.

1 = RI600PX is used.

Defines if a RI600V4 or RI600PX is
being used in the current application.
This definition is only valid when the
RTOS (RI600V4 or RI600PX) is
used.

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0620 Rev.6.20 Page 24 of 179
Jun.30.21

3.2.6 Clock Setup
Available clocks vary amongst RX MCUs but the same basic concepts apply to all. After reset the r_bsp will initialize
the MCU clocks using the clock configuration macros found in r_bsp_config.h.

Table 3.6 Clock Setup Defines (1/4)

Define Value Meaning

BSP_CFG_MAIN_CLOCK_OSCILLATE_ENABLE

0 = Stop Oscillating the
Main Clock.

1 = Enable oscillating
the Main Clock.

Defines whether to
enable or stop oscillation
of the Main Clock
Oscillator.

BSP_CFG_SUB_CLOCK_OSCILLATE_ENABLE

0 = Stop Oscillating the
Sub Clock.

1 = Enable oscillating
the Sub Clock.

Defines whether to
enable or stop oscillation
of the Sub Clock
Oscillator.

BSP_CFG_HOCO_OSCILLATE_ENABLE

0 = Stop Oscillating the
HOCO.

1 = Enable Oscillating
the HOCO.

Defines whether to
enable or stop oscillation
of the High Speed On-
Chip Oscillator (HOCO).

BSP_CFG_LOCO_OSCILLATE_ENABLE

0 = Stop Oscillating the
LOCO.

1 = Enable Oscillating
the LOCO.

Defines whether to
enable or stop oscillation
of the Low Speed On-
Chip Oscillator (LOCO).

BSP_CFG_IWDT_CLOCK_OSCILLATE_ENABLE

0 = Stop Oscillating the
IWDT Clock.

1 = Enable Oscillating
the IWDT Clock.

Defines whether to
enable or stop oscillation
of the IWDT-Dedicated
On-Chip Oscillator.

BSP_CFG_CLOCK_SOURCE

0 = Low Speed On-
Chip Oscillator
(LOCO)

1 = High Speed On-
Chip Oscillator
(HOCO)

2 = Main Clock
Oscillator

3 = Sub-Clock
Oscillator

4 = PLL Circuit

Defines which clock
source will be in use
when the r_bsp code
jumps to main().

BSP_CFG_MAIN_CLOCK_SOURCE
0 = Resonator
1 = External clock input

Defines which clock
source will be used for
the main clock oscillator.

BSP_CFG_RTC_ENABLE
0 = RTC is not used
1 = RTC is used

Defines whether to use
the RTC or not.

BSP_CFG_SOSC_DRV_CAP
See the comment
above #define in
r_bsp_config.h.

Defines the driving ability
of the sub-clock
oscillator.

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0620 Rev.6.20 Page 25 of 179
Jun.30.21

Table 3.6 Clock Setup Defines (2/4)

Define Value Meaning

BSP_CFG_PLL_SCR
0 = Main clock
1 = HOCO

Defines which clock source will be
used for the PLL Circuit.

BSP_CFG_USB_CLOCK_SOURCE

0 = System Clock (PLL
Circuit/No division)

1 = USB PLL Circuit
2 = PLL Circuit (UDIVCLK)
3 = PPLL Circuit
(PPLLDIVCLK)

Defines which clock source will be
used when the USB peripheral is
enabled.

BSP_CFG_LCD_CLOCK_SOURCE

0 = Low Speed On-Chip
Oscillator (LOCO)

1 = High Speed On-Chip
Oscillator (HOCO)

2 = Main Clock Oscillator
3 = Sub-Clock Oscillator
4 = IWDT dedicated clock
(IWDTCLK)

Defines which clock source will be
used when LCD is enabled.

BSP_CFG_LCD_CLOCK_ENABLE

0 = LCD Source clock is
disabled

1 = LCD Source clock is
enabled

Defines if clock source to the LCD
is enabled.

BSP_CFG_HOCO_FREQUENCY See the comment above
#define in r_bsp_config.h. Defines the HOCO frequency.

BSP_CFG_LPT_CLOCK_SOURCE
0 = Sub-Clock
1 = IWDT dedicated clock
2 = LPT not used

Defines which clock source will be
used when the Low-Power Timer
is enabled. The default value is 2
(LPT not used).

BSP_CFG_XTAL_HZ Input clock frequency in
Hz.

Defines the input clock frequency
(Resonator or External oscillator).
This is used for calculating final
clock speeds.

BSP_CFG_PLL_DIV PLL Input Frequency
Divider

Defines the PLL divider to be
used. If the PLL is not used then
this can be ignored.

BSP_CFG_PLL_MUL PLL Frequency
Multiplication Factor

Defines the PLL multiplier to be
used. If the PLL is not used then
this can be ignored.

BSP_CFG_UPLL_DIV USB PLL Input Frequency
Divider

Defines the USB PLL divider to be
used. If the PLL is not used then
this can be ignored.

BSP_CFG_UPLL_MUL USB PLL Frequency
Multiplication Factor

Defines the USB PLL multiplier to
be used. If the PLL is not used
then this can be ignored.

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0620 Rev.6.20 Page 26 of 179
Jun.30.21

Table 3.6 Clock Setup Defines (3/4)

Define Value Meaning

BSP_CFG_<ClockAcronym>_DIV
Examples:

BSP_CFG_ICK_DIV
BSP_CFG_PCKA_DIV
BSP_CFG_PCKB_DIV
BSP_CFG_PCKD_DIV
BSP_CFG_FCK_DIV

The divisor to use for this
clock.

RX MCUs have a number of clock
domains on-chip. Dividers can be
set for each of these
independently to maximize
performance while minimizing
power consumption.
<ClockAcronym> is a placeholder
for the name of the clock to be set.
For example, to set the divider for
the CPU clock (ICLK) then the
user would set the
BSP_CFG_ICK_DIV macro.

BSP_CFG_HOCO_WAIT_TIME HOSCWTCR register
setting value

Defines the high-speed on-chip
oscillator wait time.

BSP_CFG_MOSC_WAIT_TIME MOSCWTCR register
setting value

Defines the main clock oscillator
wait time.

BSP_CFG_SOSC_WAIT_TIME SOSCWTCR register
setting value

Defines the sub-clock oscillator
wait time.

BSP_CFG_BCLK_OUTPUT

0 = BCLK is not output
1 = BCK frequency is
output
2 = BCK/2 frequency is
output

Defines if BCLK is output and if so
what frequency is output.

BSP_CFG_SDCLK_OUTPUT
0 = SDCLK is not output
1 = BCK frequency is
output

Defines if SDCLK is output.

BSP_CFG_PPLL_DIV PPLL Input Frequency
Divider

Defines the PPLL divider to be
used. If the PPLL is not used then
this can be ignored.

BSP_CFG_PPLL_MUL PPLL Frequency
Multiplication Factor

Defines the PPLL multiplier to be
used. If the PPLL is not used then
this can be ignored.

BSP_CFG_PHY_CLOCK_SOURCE
0 = PLL Circuit
1 = PPLL Circuit
2 = Ethernet-PHY not use

Defines which clock source will be
used for the External clock for
Ethernet-PHY.

BSP_CFG_ESC_CLOCK_SOURCE
0 = PCLKA
1 = PPLLDIVCLK

Defines which clock source will be
used for the ESC clock.

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0620 Rev.6.20 Page 27 of 179
Jun.30.21

Table 3.6 Clock Setup Defines (4/4)

Define Value Meaning

BSP_CFG_CLKOUT_SOURCE

0 = LOCO
1 = HOCO
2 = Main Clock
Oscillator
3 = Sub Clock Oscillator
4 = PLL
6 = PPLL

Defines which clock source
will be used when the
CLKOUT pin output is
enabled. If the clock is not
output from the CLKOUT pin
then this can be ignored.

BSP_CFG_CLKOUT_DIV

0 = x1/1
1 = x1/2
2 = x1/4
3 = x1/8
4 = x1/16

Defines the division ratio of
the clock output from the
CLKOUT pin. If the clock is
not output from the CLKOUT
pin then this can be ignored.

BSP_CFG_CLKOUT_OUTPUT

0 = CLKOUT pin output
stopped. (Fixed to the
low level)
1 = CLKOUT pin output
enabled.

Defines whether to output the
CLKOUT pin or not.

BSP_CFG_CLKOUT_RF_MAIN
0 = Resonator or
External oscillator.
1 = CLKOUT_RF

Defines the clock to be input
to the EXTAL terminal. Set 1
to input the output from
Bluetooth-dedicated clock pin
to the EXTAL pin.

BSP_CFG_HOCO_FLL_ENABLE

0 = Disable FLL of the
HOCO.
1 = Enable FLL of the
HOCO.

Defines whether the FLL
function for the HOCO is
enabled or disabled. When
FLL function is enabled,
oscillate Sub-clock.

BSP_CFG_HOCO_TRIMMING_ENABLE

0 = Disable reset the
HOCO trimming register
in the initial setting
process.
1 = Enable reset the
HOCO trimming register
in the initial setting
process.

Defines whether reset of the
HOCO trimming register is
enabled or disabled.

BSP_CFG_HOCO_TRIMMING_REG_VALUE Set value to the HOCO
trimming register.

Defines set value to the
HOCO trimming register. The
value that can be specified is
0 to 511. When the reset of
the HOCO trimming register is
enabled, set the value
specified to the HOCO
trimming register in the initial
settings.

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0620 Rev.6.20 Page 28 of 179
Jun.30.21

3.2.7 Registers in ROM & External Memory Access Protection
Some registers are located in ROM and therefore must be set at compile-time. These include some option-setting
memory registers as well as certain memory protection registers.

RX MCUs have two different mechanisms for protecting MCU memory from being read after production. The first is
the use of ID codes. The RX ID code is a 16 byte value that can be used to protect the MCU from being connected to a
debugger or from connecting in Serial Boot Mode. There are different settings that can be set for the ID code; please
refer to the hardware manual for your device for available options. The second mechanism is a 4 byte value called ROM
Code Protection. This value determines what read and write access parallel programmers have to the MCU.

Option-Setting Memory registers (i.e. OFS0, OFS1) can be set so that certain operations occur at reset. For example, the
IWDT can be configured and enabled, voltage detection can be enabled, and HOCO oscillation can be enabled. When
these registers are set the operations are completed before the MCU’s reset vector is fetched and execution begins.

Table 3.7 ROM Register Defines (1/2)

Define Value Meaning

BSP_CFG_ID_CODE_LONG_1

BSP_CFG_ID_CODE_LONG_2

BSP_CFG_ID_CODE_LONG_3

BSP_CFG_ID_CODE_LONG_4

ID code setting in 4
byte units.

Defines the ID code of the MCU.
The default value all 0xFF’s
means that protection is disabled.
Note: If the ID code is set then it
should be remembered because
the code will be required if the
MCU is going to be connected for
debugging or in Serial Boot Mode
again.

BSP_CFG_ID_CODE_ENABLE

0 = ID code is
disabled

1 = ID code is
enabled

Defines if the ID code is enabled
or disabled on some MCUs
(RX64M, RX66T, RX71M and
RX72T). When enable the ID
code, enable this definition after
setting the ID code.

BSP_CFG_ROM_CODE_PROTECT_VALUE

0 = Read/Write
access is
disabled

1 = Read access
is disabled

Else = Read/Write
access is
enabled

Defines the read and write access
allowed by parallel programmers.

BSP_CFG_OFS0_REG_VALUE *1 Value to be written
to OFS0 register.

Defines the 4-byte value to be
programmed into the OFS0 ROM
location.

Note 1. There are precautions when using the IWDT auto-start mode. (See 10.3.)

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0620 Rev.6.20 Page 29 of 179
Jun.30.21

Table 3.7 ROM Register Defines (2/2)

Define Value Meaning

BSP_CFG_OFS1_REG_VALUE Value to be written to
OFS1 register.

Defines the 4-byte value to be
programmed into the OFS1 ROM
location.

When HOCO oscillation is
enabled, set the default value to
BSP_CFG_HOCO_FREQUENCY.

Also set 0 to
BSP_CFG_HOCO_FLL_ENABLE.

BSP_CFG_TRUSTED_MODE_FUNCTION Value to be written to
TMEF register.

Defines if Trusted Mode is
enabled or disabled.

BSP_CFG_FAW_REG_VALUE Value to be written to
FAW register.

Defines the 4-byte value to be
programmed into the FAW ROM
location.

BSP_CFG_ROMCODE_REG_VALUE Value to be written to
ROMCODE register.

Defines the 4-byte value to be
programmed into the ROMCODE
ROM location.

BSP_CFG_CODE_FLASH_BANK_MODE
0 = Dual mode

1 = Linear mode
Defines bank mode for a dual-
bank device.

BSP_CFG_CODE_FLASH_START_BANK

0 = Launch from
bank 0

1 = Launch from
bank 1

Defines a bank to launch the
program in dual mode for a dual-
bank device.

This definition is disabled for
linear mode.

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0620 Rev.6.20 Page 30 of 179
Jun.30.21

3.2.8 Atomic Locking
For an introduction into the r_bsp’s atomic locking see 2.17. These macros allow the user to override the default locking
mechanisms and implement their own. A user might wish to do this in order to replace the simple default mechanisms
provided in the r_bsp with more feature rich objects such as semaphores or mutexes from their RTOS. If the user
wished to do this they would first configure the r_bsp to use user defined locking mechanisms (see
BSP_CFG_USER_LOCKING_ENABLED below). After that they would define BSP_CFG_USER_LOCKING_TYPE
to be the type they wished to use for their locks. If using an RTOS semaphore then its type would be used here. Finally
the user would need to define the four locking functions that would be used (see last 4 entries in table below). The
arguments to these user defined functions have to match the arguments sent to the default locking functions. After these
changes are made all locks in the user’s project would be converted to the user defined locks. Whenever the r_bsp lock
functions are called by user code, or FIT Module code, the user’s functions would be called. At this point the user is
responsible for implementing the locking features. Inside these functions the user would be free to use the more
advanced locking features of their RTOS.

Table 3.8 Atomic Locking Defines (1/2)

Define Value Meaning

BSP_CFG_USER_LOCKING_ENABLED

0 = Use default
locking mechanisms

1 = Use user defined
locking mechanisms

The default locking mechanisms
provided with the r_bsp do not
use an RTOS and therefore do
not offer some of the advanced
features that a user might expect
from an RTOS when using a
semaphore or mutex.

BSP_CFG_USER_LOCKING_TYPE
Data type to be used
for locks (default is
bsp_lock_t)

If the user decides to use their
own locking mechanism then the
data type for their locks should
be defined here. For example, if
the user replaces the default
locks with an RTOS semaphore
or mutex then that data type
would be specified here.

BSP_CFG_USER_LOCKING_HW
_LOCK_FUNCTION

User defined
functions to be called
when r_bsp lock
functions are
overridden by user.

If the user is using their own
locking mechanisms then the
function defined by this macro
will be called when
R_BSP_HardwareLock() is
called.

BSP_CFG_USER_LOCKING_HW
_UNLOCK_FUNCTION

User defined
functions to be called
when r_bsp lock
functions are
overridden by user.

If the user is using their own
locking mechanisms then the
function defined by this macro
will be called when
R_BSP_HardwareUnlock() is
called.

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0620 Rev.6.20 Page 31 of 179
Jun.30.21

Table 3.8 Atomic Locking Defines (2/2)

Define Value Meaning

BSP_CFG_USER_LOCKING_SW
_LOCK_FUNCTION

User defined
functions to be called
when r_bsp lock
functions are
overridden by user.

If the user is using their own
locking mechanisms then the
function defined by this macro
will be called when
R_BSP_SoftwareLock() is called.

BSP_CFG_USER_LOCKING_SW
_UNLOCK_FUNCTION

User defined
functions to be called
when r_bsp lock
functions are
overridden by user.

If the user is using their own
locking mechanisms then the
function defined by this macro
will be called when
R_BSP_SoftwareUnlock() is
called.

3.2.9 Parameter Checking
This macro is a global setting for enabling or disabling parameter checking. Each FIT module will also have its own
local macro for this same purpose. By default the local macros will take the global value from here though they can be
overridden. Therefore, the local setting has priority over this global setting. Disabling parameter checking should only
be performed when inputs are known to be good and an increase in speed or decrease in code space is needed.

Table 3.9 Parameter Checking Defines

Define Value Meaning

BSP_CFG_PARAM_CHECKING_ENABLE

0 = Parameter checking
disabled

1 = Parameter checking
enabled

Defines whether the global
setting for parameter
checking is enabled or
disabled. Local modules will
take this value by default but
can be locally overridden.

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0620 Rev.6.20 Page 32 of 179
Jun.30.21

3.2.10 Extended Bus Master Priority Setting
Table 3.10 Extended Bus Master Priority Setting Defines

Define Value Meaning

BSP_CFG_EBMAPCR_1ST_PRIORITY 0 = GLCDC graphics 1 data read
1 = DRW2D texture data read
2 = DRW2D frame buffer data

read write and display list data
read

3 = GLCDC graphics 2 data read

4 = EDMAC

Settings other than above
are prohibited. Also, it is not
possible to set the same
value for multiple priorities.

Extended Bus Master 1st
Priority Selection.

BSP_CFG_EBMAPCR_2ND_PRIORITY Extended Bus Master 2nd
Priority Selection.

BSP_CFG_EBMAPCR_3RD_PRIORITY Extended Bus Master 3rd
Priority Selection.

BSP_CFG_EBMAPCR_4TH_PRIORITY Extended Bus Master 4th
Priority Selection.

BSP_CFG_EBMAPCR_5TH_PRIORITY Extended Bus Master 5th
Priority Selection.

3.2.11 MCU Voltage
These macros set the voltage (Vcc) and the analog voltage (AVcc) supplied to the MCU by the system. Each FIT
module obtains the voltage and analog voltage supplied to the MCU by referencing these macros. Specify values
appropriate for the user system.

Table 3.11 MCU Voltage Defines

Define Value Meaning

BSP_CFG_MCU_VCC_MV Voltage supplied to MCU
(Vcc) in millivolts.

Some FIT Modules (e.g. LVD) need
to know the voltage supplied to the
MCU. The voltage information can
be obtained from this definition.

BSP_CFG_MCU_AVCC_MV Analog voltage supplied to
MCU (AVcc) in millivolts.

Some FIT Modules (e.g. AD) need to
know the analog voltage supplied to
the MCU. The analog voltage
information can be obtained from this
definition.

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0620 Rev.6.20 Page 33 of 179
Jun.30.21

3.2.12 Startup Disable
Table 3-12 Startup Disable Defines

Define Value Meaning

BSP_CFG_STARTUP_DISABLE 0 = BSP startup enable
1 = BSP startup disable

Defines the BSP startup processing
to be enabled or disabled. When
setting to be disabled, all startup
processing performed by the BSP is
disabled.

This function is available only when
using Renesas compiler.

3.2.13 Using Smart Configurator
Table 3.13 Using Smart Configurator Defines

Define Value Meaning

BSP_CFG_CONFIGURATOR_SELECT

0 = Do not use
Smart Configurator

1 = Use Smart
Configurator

Define whether Smart Configurator will
be used in the current project. When
BSP_CFG_CONFIGURATOR_SELECT
= 1, The Smart Configurator
initialization function is called.

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0620 Rev.6.20 Page 34 of 179
Jun.30.21

3.2.14 Negative Voltage Input Settings for AD Pins
These macros specify whether negative voltage is input to pins AN000, AN001, AN002, AN100, AN101, AN102,
PGAVSS0, and PGAVSS1 of the AD. Some FIT modules (such as the AD module) need to know whether to apply
negative voltage to the input pins of the PGA when using PGA pseudo-differential input. Each FIT module obtains the
negative voltage input settings of the AD pins by referencing these macros. Set values appropriate for the user system.
These macros have no effect if the package of the product has no PGA differential inputs.

Table 3.14 Definitions of Negative Voltage Input Settings for AD Pins (1/2)

Definition Value Description

BSP_CFG_AD_NEGATIVE_VOLTAGE

_INPUT_AN000

0 = Negative
voltage is not
to be input to
the pin.

1 = Negative
voltage is to
be input to the
pin.

Defines whether negative
voltage is input to the AN000
pin of AD.

BSP_CFG_AD_NEGATIVE_VOLTAGE

_INPUT_AN001

0 = Negative
voltage is not
to be input to
the pin.

1 = Negative
voltage is to
be input to the
pin.

Defines whether negative
voltage is input to the AN001
pin of AD.

BSP_CFG_AD_NEGATIVE_VOLTAGE

_INPUT_AN002

0 = Negative
voltage is not
to be input to
the pin.

1 = Negative
voltage is to
be input to the
pin.

Defines whether negative
voltage is input to the AN002
pin of AD.

BSP_CFG_AD_NEGATIVE_VOLTAGE

_INPUT_PGAVSS0

0 = Negative
voltage is not
to be input to
the pin.

1 = Negative
voltage is to
be input to the
pin.

Defines whether negative
voltage is input to the
PGAVSS0 pin of AD.

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0620 Rev.6.20 Page 35 of 179
Jun.30.21

Table 3.14 Definitions of Negative Voltage Input Settings for AD Pins (2/2)

Definition Value Description

BSP_CFG_AD_NEGATIVE_VOLTAGE

_INPUT_AN100

0 = Negative
voltage is not
to be input to
the pin.

1 = Negative
voltage is to
be input to the
pin.

Defines whether negative
voltage is input to the AN100
pin of AD.

BSP_CFG_AD_NEGATIVE_VOLTAGE

_INPUT_AN101

0 = Negative
voltage is not
to be input to
the pin.

1 = Negative
voltage is to
be input to the
pin.

Defines whether negative
voltage is input to the AN101
pin of AD.

BSP_CFG_AD_NEGATIVE_VOLTAGE

_INPUT_AN102

0 = Negative
voltage is not
to be input to
the pin.

1 = Negative
voltage is to
be input to the
pin.

Defines whether negative
voltage is input to the AN102
pin of AD.

BSP_CFG_AD_NEGATIVE_VOLTAGE

_INPUT_PGAVSS1

0 = Negative
voltage is not
to be input to
the pin.

1 = Negative
voltage is to
be input to the
pin.

Defines whether negative
voltage is input to the
PGAVSS1 pin of AD.

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0620 Rev.6.20 Page 36 of 179
Jun.30.21

3.2.15 ROM Cache Function
Some RX MCUs have a ROM cache function. After a reset r_bsp initializes the ROM cache settings of the MCU using
the ROM cache configuration macros found in r_bsp_config.h.

Table 3.15 ROM Cache Setting Definitions (1/2)

Definition Value Description

BSP_CFG_ROM_CACHE_ENABLE

0 = ROM cache
operation disabled.

1 = ROM cache
operation enabled.

Defines whether ROM
cache operation is
enabled or disabled.

BSP_CFG_NONCACHEABLE_AREA0_ENABLE

0 = Non-cacheable
area 0 settings
disabled.

1 = Non-cacheable
area 0 settings
enabled.

Defines whether non-
cacheable area 0 is
enabled or disabled when
ROM cache operation is
enabled.

BSP_CFG_NONCACHEABLE_AREA0_ADDR Setting value of
NCRG0 register

Defines the start address
of non-cacheable area 0.

BSP_CFG_NONCACHEABLE_AREA0_SIZE
See comments above
#define in
r_bsp_config.h.

Defines the size of non-
cacheable area 0.

BSP_CFG_NONCACHEABLE_AREA0

_IF_ENABLE

0 = Non-cacheable
area 0 setting of IF
cache disabled.

1 = Non-cacheable
area 0 setting of IF
cache enabled.

Defines whether the non-
cacheable area for the IF
cache is enabled or
disabled when ROM
cache operation is
enabled and non-
cacheable area 0 is
enabled.

BSP_CFG_NONCACHEABLE_AREA0

_OA_ENABLE

0 = Non-cacheable
area 0 setting of
OA cache
disabled.

1 = Non-cacheable
area 0 setting of
OA cache enabled.

Defines whether the non-
cacheable area for the
OA cache is enabled or
disabled when ROM
cache operation is
enabled and non-
cacheable area 0 is
enabled.

BSP_CFG_NONCACHEABLE_AREA0

_DM_ENABLE

0 = Non-cacheable
area 0 setting of
DM cache
disabled.

1 = Non-cacheable
area 0 setting of
DM cache
enabled.

Defines whether the non-
cacheable area for the
DM cache is enabled or
disabled when ROM
cache operation is
enabled and non-
cacheable area 0 is
enabled.

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0620 Rev.6.20 Page 37 of 179
Jun.30.21

Table 3.15 ROM Cache Setting Definitions (2/2)

Definition Value Description

BSP_CFG_NONCACHEABLE_AREA1_ENABLE

0 = Non-cacheable
area 1 settings
disabled.

1 = Non-cacheable
area 1 settings
enabled.

Defines whether non-
cacheable area 1 is
enabled or disabled when
ROM cache operation is
enabled.

BSP_CFG_NONCACHEABLE_AREA1_ADDR Setting value of
NCRG1 register

Defines the start address
of non-cacheable area 1.

BSP_CFG_NONCACHEABLE_AREA1_SIZE
See comments above
#define in
r_bsp_config.h.

Defines the size of non-
cacheable area 1.

BSP_CFG_NONCACHEABLE_AREA1

_IF_ENABLE

0 = Non-cacheable
area 1 setting of IF
cache disabled.

1 = Non-cacheable
area 1 setting of IF
cache enabled.

Defines whether the non-
cacheable area for the IF
cache is enabled or
disabled when ROM
cache operation is
enabled and non-
cacheable area 1 is
enabled.

BSP_CFG_NONCACHEABLE_AREA1

_OA_ENABLE

0 = Non-cacheable
area 1 setting of
OA cache
disabled.

1 = Non-cacheable
area 1 setting of
OA cache enabled.

Defines whether the non-
cacheable area for the
OA cache is enabled or
disabled when ROM
cache operation is
enabled and non-
cacheable area 1 is
enabled.

BSP_CFG_NONCACHEABLE_AREA1

_DM_ENABLE

0 = Non-cacheable
area 1 setting of
DM cache
disabled.

1 = Non-cacheable
area 1 setting of
DM cache
enabled.

Defines whether the non-
cacheable area for the
DM cache is enabled or
disabled when ROM
cache operation is
enabled and non-
cacheable area 1 is
enabled.

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0620 Rev.6.20 Page 38 of 179
Jun.30.21

3.2.16 Callback function at warm start
Table 3.16 Definition of callback function at warm start

Define Value Meaning

BSP_CFG_USER_WARM_START_CALLBACK

_PRE_INITC_ENABLED

0 = User function is not
called before C runtime
environment has been
initialized.

1 = User function is
called before C runtime
environment has been
initialized.

Defines whether or not to
call a user function before
C runtime environment
has been initialized.

BSP_CFG_USER_WARM_START

_PRE_C_FUNCTION Function to call before C
runtime environment has
been initialized.

Defines the function to be
called when a user
function is called before
the C runtime
environment has been
initialized.

BSP_CFG_USER_WARM_START_CALLBACK

_POST_INITC_ENABLED

0 = User function is not
called after C runtime
environment has been
initialized.

1 = User function is
called after C runtime
environment has been
initialized.

Defines whether or not to
call a user function after C
runtime environment has
been initialized.

BSP_CFG_USER_WARM_START

_POST_C_FUNCTION Function to call after C
runtime environment has
been initialized.

Defines the function to be
called when a user
function is called after the
C runtime environment
has been initialized.

3.2.17 Board Revision
Table 3.17 Board Revision Defines

Define Value Meaning

BSP_CFG_BOARD_REVISION See comments above
#define in r_bsp_config.h.

There are multiple board
revisions, and the
specifications may differ from
revision to revision. A
specific board revision can
be obtained based on this
definition.

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0620 Rev.6.20 Page 39 of 179
Jun.30.21

3.2.18 Interrupt Priority Level When FIT Module Interrupts Are Disabled
For some BSP functions, it is necessary to ensure that, while these functions are executing, interrupts from other FIT
modules do not occur. By controlling the IPL, these functions disable interrupts that are at or below the specified
interrupt priority level.

Table 3.18 Definition of Interrupt Priority Level When FIT Module Interrupts Are Disabled

Define Value Meaning

BSP_CFG_FIT_IPL_MAX See comments above
#define in r_bsp_config.h.

Defines interrupt priority level
when FIT module interrupts are
disabled.

3.2.19 Battery Backup Function
Table 3.19 Definition of Battery Backup Function

Define Value Meaning

BSP_CFG_VBATT_ENABLE

0 = battery backup function
is disabled.

1 = battery backup function
is enabled.

Defines if the battery backup
function is enabled in the
current application. When
user do not use the battery
backup function, set the
value to “0”.

3.2.20 Software Interrupts
Table 3.20 Software Interrupt Definitions

Define Value Meaning

BSP_CFG_SWINT_UNITn_ENABLE
(n: unit number)

0 = Software
interrupts are not
used.

1 = Software
interrupts are
used.

Defines whether or not
software interrupts are used.
If they are, the
R_BSP_SoftwareInterruptOpen
function is called at startup to
initialize the software
interrupts.

BSP_CFG_SWINT_TASK_BUFFER_NUMBER Number of software
interrupt task buffers

Defines the number of software
interrupt task buffers. The
maximum value is 254.
This definition is common
across all units.

BSP_CFG_SWINT_IPR_INITIAL_VALUE
Software interrupt
priority level (IPR)
initial value

Defines the initial software
interrupt priority level (IPR).
This definition is common
across all units.

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0620 Rev.6.20 Page 40 of 179
Jun.30.21

3.2.21 Definitions of board setting
This section specifies the definitions for selected board by Smart Configurator.

Table 3.21 Serial Terminal Definitions of board setting

Define Value Meaning

BSP_CFG_SCI_UART_TERMINAL_ENABLE

0 = Serial
Termin
al
functio
n are
not
used.

1 = Serial
Termin
al
functio
n are
used.

Defines whether or not serial terminal
function are used.

BSP_CFG_SCI_UART_TERMINAL_CHANNE
L

SCI
Channel
Number
used for
serial
terminal
function

Defines the channel number of SCI used
for serial terminal. When
BSP_CFG_SCI_UART_TERMINAL_ENA
BLE = 1, the definition is disabled.

BSP_CFG_SCI_UART_TERMINAL_BITRATE

Bitrate for
serial
terminal.
(bps)

Defines the bitrate of SCI used for serial
terminal. When
BSP_CFG_SCI_UART_TERMINAL_ENA
BLE = 1, the definition is disabled.

BSP_CFG_SCI_UART_TERMINAL_INTERRU
PT_

PRIORITY

SCI
interrupt
priority
level (IPR)
used for
serial
terminal.

Defines the interrupt priority level (IPR) of
SCI used for serial terminal. When
BSP_CFG_SCI_UART_TERMINAL_ENA
BLE = 1, the definition is disabled.

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0620 Rev.6.20 Page 41 of 179
Jun.30.21

4. API Information
This Driver API follows the Renesas API naming standards.

4.1 Hardware Requirements
Not Applicable.

4.2 Hardware Resource Requirements
Not Applicable.

4.3 Software Requirements
None.

4.4 Limitations
4.4.1 IAR Compiler Limitations
The IAR Compiler does not support the following features:
- Double-precision floating-point (R_BSP_SET_DPSW ()、R_BSP_GET_DPSW()、R_BSP_SET_DECNT()、

R_BSP_GET_DECNT()、R_BSP_GET_DEPC())

4.4.2 RAM Location Limitations
In FIT, if a value equivalent to NULL is set as the pointer argument of an API function, error might be
returned due to parameter check. Therefore, do not pass a NULL equivalent value as pointer argument to an
API function.
The NULL value is defined as 0 because of the library function specifications. Therefore, the above
phenomenon would occur when the variable or function passed to the API function pointer argument is
located at the start address of RAM (address 0x0). In this case, change the section settings or prepare a
dummy variable at the top of the RAM so that the variable or function passed to the API function pointer
argument is not located at address 0x0.
In the case of CCRX project (e2 studio V7.5.0), the RAM start address is set as 0x4 to prevent the variable
from being located at address 0x0. In the case of GCC project (e2 studio V7.5.0) and IAR project (EWRX
V4.12.1), the start address of RAM is 0x0, so the above measures are necessary.
The default settings of the section may be changed due to IDE version upgrade. Please check the section
settings when using the latest IDE.

4.4.3 CCRX Compiler Limitations
Some macros for GCC Compiler and IAR Compiler cannot be used with CCRX Compiler V2.04.01 or lower. If the
version of your BSP is Rev.5.00 or higher, please update to V2.05.00 or higher.

4.5 Supported Toolchains
This driver is tested and working with the toolchains listed in 10.1 Confirmed Operation Environment.

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0620 Rev.6.20 Page 42 of 179
Jun.30.21

4.6 Interrupt Vectors Used
Table 4.1 lists the interrupt vectors used by the FIT module.

Table 4.1 Interrupt Vectors Used

Interrupt Vector Device
BUSERR interrupt (vector number: 16)
SWINT interrupt (vector number: 27)*1

All devices

SWINT2 interrupt (vector number: 26)*1 RX64M, RX65N, RX66N, RX66T, RX671, RX71M,
RX72M, RX72N, RX72T

GROUPIE0 interrupt (vector number: 17) RX66N, RX671, RX72M, RX72N
GROUPBE0 interrupt (vector number: 106) RX64M, RX65N, RX66N, RX66T, RX671, RX71M,

RX72M, RX72N, RX72T
GROUPBL0 interrupt (vector number: 110) RX64M, RX65N, RX66N, RX66T, RX671, RX71M,

RX72M, RX72N, RX72T
GROUPBL1 interrupt (vector number: 111) RX64M, RX65N, RX66N, RX66T, RX671, RX71M,

RX72M, RX72N, RX72T
GROUPBL2 interrupt (vector number: 107) RX65N, RX66N, RX72M, RX72N
GROUPAL0 interrupt (vector number: 112) RX64M, RX65N, RX66N, RX66T, RX671, RX71M,

RX72M, RX72N, RX72T
GROUPAL1 interrupt (vector number: 113) RX64M, RX65N, RX66N, RX71M, RX72M, RX72N

Note 1. Whether or not this is used as selectable by using a configuration macro. (Refer to 3.2.20 Software
Interrupts.)

4.7 Header Files
All API calls are accessed by including a single file platform.h which is supplied with this driver’s project code.

4.8 Integer Types
This project uses ANSI C99 “Exact width integer types” in order to make the code clearer and more portable. These
types are defined in stdint.h.

4.9 API Data Structures
4.9.1 Software Lock
This data structure is used for implementing atomic locking on RX MCUs. The lock member must be 4-bytes in order to
use the atomic XCHG instruction. This structure is the default type defined by the
BSP_CFG_USER_LOCKING_TYPE macro.
typedef struct
{
 /* The actual lock. int32_t is used because this is what the xchg()
 instruction takes as parameters. */
 int32_t lock;
} bsp_lock_t;

4.9.2 Interrupt Callback Parameter
This data structure is used when calling an interrupt callback function. The interrupt handler will fill in this structure,
cast it as ‘(void *)’, and then send it as the argument to the callback function.
typedef struct
{
 bsp_int_src_t vector; //Which vector caused this interrupt
} bsp_int_cb_args_t;

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0620 Rev.6.20 Page 43 of 179
Jun.30.21

4.9.3 Interrupt Control Parameter
This data structure is used when calling the R_BSP_InterruptControl function. Specify the parameter value according to
the interrupt control command.
/* Type to be used for pdata argument in Control function. */
typedef union
{

uint32_t ipl; /* Used when enabling an interrupt to set that
 interrupt's priority level */

} bsp_int_ctrl_t;

4.10 API Typedefs
4.10.1 Register Protection
This typedef defines the different register protection options that can be toggled. Notice that some registers are grouped
together. For example, LPC, CGC, and software reset registers are all protected by the same bit. Which items, and how
many, are in this typedef will vary depending on the MCU being used. Please reference r_bsp_cpu.h for your MCU to
see the valid options for your MCU. The typedef below belongs to the RX111.
/* The different types of registers that can be protected. */
typedef enum
{
 /* Enables writing to the registers related to the clock generation circuit:
 SCKCR, SCKCR3, PLLCR, PLLCR2, MOSCCR, SOSCCR,LOCOCR, ILOCOCR, HOCOCR,
 OSTDCR, OSTDSR, CKOCR. */
 BSP_REG_PROTECT_CGC = 0,
 /* Enables writing to the registers related to operating modes, low power
 consumption, the clock generation circuit, and software reset: SYSCR1,
 SBYCR, MSTPCRA, MSTPCRB, MSTPCRC, OPCCR, RSTCKCR, SOPCCR, MOFCR,
MOSCWTCR,
 SWRR. */
 BSP_REG_PROTECT_LPC_CGC_SWR,
 /* Enables writing to the HOCOWTCR register. */
 BSP_REG_PROTECT_HOCOWTCR,
 /* Enables writing to the registers related to the LVD: LVCMPCR, LVDLVLR,
 LVD1CR0, LVD1CR1, LVD1SR, LVD2CR0, LVD2CR1, LVD2SR. */
 BSP_REG_PROTECT_LVD,
 /* Enables writing to MPC's PFS registers. */
 BSP_REG_PROTECT_MPC,
 /* This entry is used for getting the number of enum items. This must be the
 last entry. DO NOT REMOVE THIS ENTRY!*/
 BSP_REG_PROTECT_TOTAL_ITEMS
} bsp_reg_protect_t;

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0620 Rev.6.20 Page 44 of 179
Jun.30.21

4.10.2 Hardware Resource Locks
This typedef defines the available hardware resource locks. For each entry in this enum one software lock will be
allocated in the hardware lock array. Which items are in this list, and how many, will vary depending on the MCU
chosen. The typedef below is for the RX111.
typedef enum
{
 BSP_LOCK_BSC = 0,
 BSP_LOCK_CAC,
 BSP_LOCK_CMT,
 BSP_LOCK_CMT0,
 BSP_LOCK_CMT1,
 BSP_LOCK_CRC,
 BSP_LOCK_DA,
 BSP_LOCK_DOC,
 BSP_LOCK_DTC,
 BSP_LOCK_ELC,
 BSP_LOCK_FLASH,
 BSP_LOCK_ICU,
 BSP_LOCK_IRQ0,
 BSP_LOCK_IRQ1,
 BSP_LOCK_IRQ2,
 BSP_LOCK_IRQ3,
 BSP_LOCK_IRQ4,
 BSP_LOCK_IRQ5,
 BSP_LOCK_IRQ6,
 BSP_LOCK_IRQ7,
 BSP_LOCK_IWDT,
 BSP_LOCK_MPC,
 BSP_LOCK_MTU,
 BSP_LOCK_MTU0,
 BSP_LOCK_MTU1,
 BSP_LOCK_MTU2,
 BSP_LOCK_MTU3,
 BSP_LOCK_MTU4,
 BSP_LOCK_MTU5,
 BSP_LOCK_POE,
 BSP_LOCK_RIIC0,
 BSP_LOCK_RSPI0,
 BSP_LOCK_RTC,
 BSP_LOCK_RTCB,
 BSP_LOCK_S12AD,
 BSP_LOCK_SCI1,
 BSP_LOCK_SCI5,
 BSP_LOCK_SCI12,
 BSP_LOCK_SYSTEM,
 BSP_LOCK_USB0,
 BSP_NUM_LOCKS /* This entry is not a valid lock. It is used for sizing
 g_bsp_Locks[] array below. Do not touch! */
} mcu_lock_t;

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0620 Rev.6.20 Page 45 of 179
Jun.30.21

4.10.3 Interrupt Control Commands
This typedef defines the available commands that can be used with the R_BSP_InterruptControl() function.

The typedef below is for RX65N.

The definitions BSP_INT_CMD_GROUP_INTERRUPT_ENABLE and
BSP_INT_CMD_GROUP_INTERRUPT_DISABLE are not included in MCUs that do not support group interrupts.

Some RX MCUs may support additional interrupt control commands.
typedef enum
{
 BSP_INT_CMD_CALL_CALLBACK = 0, /* Calls registered callback function
 if one exists */
 BSP_INT_CMD_INTERRUPT_ENABLE, /* Enables a give interrupt (Available

for NMI pin, FPU, and Bus Error) */
 BSP_INT_CMD_INTERRUPT_DISABLE /* Disables a given interrupt (Available for
 FPU, and Bus Error) */

BSP_INT_CMD_GROUP_INTERRUPT_ENABLE, /* Enables a group interrupt when
a group interrupt source is given.
The pdata argument should give the
IPL to be used using the
bsp_int_ctrl_t type. If a group
interrupt is enabled multiple times
with different IPL levels it will
use the highest given IPL. */

BSP_INT_CMD_GROUP_INTERRUPT_DISABLE, /* Disables a group interrupt when
a group interrupt source is given.
This will only disable a group
Interrupt when all interrupt sources
for that group are already disabled.

*/
BSP_INT_CMD_FIT_INTERRUPT_ENABLE, /* Enables interrupt by control of IPL.

*/
BSP_INT_CMD_FIT_INTERRUPT_DISABLE /* Disables interrupt by control of IPL.

*/
} bsp_int_cmd_t;

4.10.4 Interrupt Callback Function
This typedef defines the callback function type. Callback functions should have a ‘void’ return type and should take an
argument of type ‘void *’.
typedef void (*bsp_int_cb_t)(void *);

4.10.5 Interrupt Sources
This typedef defines the interrupt vectors that can have callbacks registered to them. Note that the options in this
typedef will vary depending on which MCU is being used. The typedef below is for the RX111. Other RX MCU’s may
support additional interrupt sources.
typedef enum
{
 BSP_INT_SRC_EXC_SUPERVISOR_INSTR = 0, /* Occurs when privileged instruction
 is executed in User Mode */
 BSP_INT_SRC_EXC_UNDEFINED_INSTR, /* Occurs when MCU encounters an
 unknown instruction */
 BSP_INT_SRC_EXC_NMI_PIN, /* NMI Pin interrupt */
 BSP_INT_SRC_EXC_FPU, /* FPU exception */
 BSP_INT_SRC_OSC_STOP_DETECT, /* Oscillation stop is detected */
 BSP_INT_SRC_WDT_ERROR, /* WDT underflow/refresh error has
 occurred */

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0620 Rev.6.20 Page 46 of 179
Jun.30.21

 BSP_INT_SRC_IWDT_ERROR, /* IWDT underflow/refresh error has
 occurred */
 BSP_INT_SRC_LVD1, /* Voltage monitoring 1 interrupt */
 BSP_INT_SRC_LVD2, /* Voltage monitoring 2 interrupt */
 BSP_INT_SRC_UNDEFINED_INTERRUPT, /* Interrupt has triggered for a

 vector that user did not write a
 handler for */

 BSP_INT_SRC_BUS_ERROR, /* Bus error: illegal address
 access or timeout */

 BSP_INT_SRC_EMPTY,
 BSP_INT_SRC_TOTAL_ITEMS /* DO NOT MODIFY! This is used for
 sizing the interrupt callback

 array. */
} bsp_int_src_t;

4.10.6 Unit for Software Delay
This typedef defines units which can be used with the R_BSP_SoftwareDelay function.
/* Available delay units. */
typedef enum
{

BSP_DELAY_MICROSECS = 1000000, // Requested delay amount is in microseconds
BSP_DELAY_MILLISECS = 1000, // Requested delay amount is in milliseconds
BSP_DELAY_SECS = 1 // Requested delay amount is in seconds

} bsp_delay_units_t;

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0620 Rev.6.20 Page 47 of 179
Jun.30.21

4.10.7 Software Interrupt Units
This typedef defines the units that can be used by the R_BSP_SoftwareInterruptOpen, R_BSP_SoftwareInterruptClose,
R_BSP_SoftwareInterruptSetTask, and R_BSP_SoftwareInterruptControl functions.

typedef enum e_bsp_swint_unit
{
 /* Refer to table below for members. */
} e_bsp_swint_unit_t;
Member Description
BSP_SWINT_UNITn (n: unit number) Software interrupt unit number
BSP_SWINT_UNIT_MAX Total number of software interrupt units

4.10.8 Software Interrupt Control Commands
This typedef defines the commands used by the R_BSP_SoftwareInterruptControl function.

typedef enum e_bsp_swint_cmd
{
 /* Refer to table below for members. */
} e_bsp_swint_cmd_t;
Member Description
BSP_SWINT_CMD_GET_INTERRUPT_INFORMATION Get interrupt priority level (IPR), interrupt

enable (IEN), interrupt request (IR), and
multiple-interrupt status.

BSP_SWINT_CMD_ENABLE_INTERRUPT Enables interrupts (IEN).
BSP_SWINT_CMD_DISABLE_INTERRUPT Disables interrupts (IEN).
BSP_SWINT_CMD_SET_INTERRUPT_PRIORITY Sets the specified interrupt priority level

(IPR).
BSP_SWINT_CMD_SET_INTERRUPT_REQUEST Sets an interrupt request (IR).
BSP_SWINT_CMD_CLEAR_INTERRUPT_REQUEST Clears an interrupt request (IR).
BSP_SWINT_CMD_ENABLE_NESTED_INTERRUPT Enables nested-interrupt status.
BSP_SWINT_CMD_DISABLE_ NESTED_INTERRUPT Disables nested-interrupt status.
BSP_SWINT_CMD_CLEAR_TASK Clears the specified task buffer. However, the

number of task buffers in use does not
decrease until a software interrupt is
generated. A software interrupt is generated
when a task is cleared, and the task is not
executed.
Clearing does not occur while a task is
running.

BSP_SWINT_CMD_CLEAR_ALL_TASK Clears all task buffers. Clearing does not
occur while a task is running.

BSP_SWINT_CMD_GET_ALL_TASK_STATUS Gets the status of all task buffers.
BSP_SWINT_CMD_GET_USED_BUFFER Gets the number of task buffers in use.
BSP_SWINT_CMD_GET_UNUSED_BUFFER Gets the number of task buffers not in use.

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0620 Rev.6.20 Page 48 of 179
Jun.30.21

4.10.9 Software Interrupt Information
This typedef is used as an argument of the R_BSP_SoftwareInterruptControl function when the
BSP_SWINT_CMD_GET_INTERRUPT_INFORMATION command is selected.

typedef struct st_bsp_swint_int_info
{
 /* Refer to table below for members. */
} st_bsp_swint_int_info_t;
Member Description
uint8_t ipr Stores the interrupt priority level (IPR).
uint8_t ien Stores the interrupt status (IEN).
uint8_t ir Stores the interrupt request (IR).
uint8_t nested_int Stores the nested-interrupt status.

4.10.10 Software Interrupt Task Status
This typedef defines the software interrupt task status.

typedef enum e_bsp_swint_task_status
{
 /* Refer to table below for members. */
} e_bsp_swint_task_status_t;
Member Description
BSP_SWINT_TASK_STATUS_NO_REQUEST No task set in buffer.
BSP_SWINT_TASK_STATUS_REQUESTED Task set in buffer.
BSP_SWINT_TASK_STATUS_EXECUTING Task running.
BSP_SWINT_TASK_STATUS_COMPLETED Task completed.

4.10.11 Software Interrupt Task
This typedef is used as an argument of the R_BSP_SoftwareInterruptControl function selected by the
R_BSP_SoftwareInterruptSetTask function and BSP_SWINT_CMD_GET_ALL_TASK_STATUS command.

typedef struct st_bsp_swint_task
{
 /* Refer to table below for members. */
} st_bsp_swint_task_t;
Member Description
e_bsp_swint_task_status_t status Stores the software interrupt task status.
void (*p_taskAddr)(void *p_task_args) Stores a pointer to the software interrupt task.
void *p_context Stores a pointer to the software interrupt task arguments.

4.10.12 Software Interrupt Task Buffer Number
This typedef is used as an argument of the R_BSP_SoftwareInterruptControl function when the
BSP_SWINT_CMD_CLEAR_TASK command is selected.

typedef struct st_bsp_swint_task_buffer
{
 /* Refer to table below for members. */
} st_bsp_swint_task_buffer_t;
Member Description
uint8_t number Stores the task buffer number of the software interrupt.

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0620 Rev.6.20 Page 49 of 179
Jun.30.21

4.10.13 Software Interrupt Access Control Status
This typedef is used for software interrupt access control.

typedef struct st_bsp_swint_access_control
{
 int32_t status;
} st_bsp_swint_access_control_t;
Member Description
int32_t status Stores the access control status of the software interrupt.

4.11 Return Values
4.11.1 Interrupt Error Codes
This typedef defines the error codes that can be returned by the R_BSP_InterruptWrite(), R_BSP_InterruptRead(), and
R_BSP_InterruptControl() functions.

The typedef below is for RX65N

The definition BSP_INT_ERR_GROUP_STILL_ENABLED is not included in MCUs which do not support group
interrupts.

Some RX MCUs may support additional interrupt control commands.
typedef enum
{
 /* Refer to table below for members. */
} bsp_int_err_t;
Member Description
BSP_INT_SUCCESS Success.
BSP_INT_ERR_NO_REGISTERED_CALLBACK There is not a registered callback for this interrupt

source.
BSP_IINT_ERR_INVALID_ARG Illegal argument input.
BSP_INT_ERR_UNSUPPORTED Operation is not supported by this API.
BSP_INT_ERR_GROUP_STILL_ENABLED Not all group interrupts were disabled so group

interrupt was not disabled.
BSP_INT_ERR_INVALID_IPL Illegal IPL value input.

4.11.2 Software Interrupt Error Code
This typedef defines the error codes returned by the R_BSP_SoftwareInterruptOpen, R_BSP_SoftwareInterruptClose,
and R_BSP_SoftwareInterruptControl functions.

typedef enum e_bsp_swint_err
{
 /* Refer to table below for members. */
} e_bsp_swint_err_t;

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0620 Rev.6.20 Page 50 of 179
Jun.30.21

Member Description
BSP_SWINT_SUCCESS Success.
BSP_SWINT_ERR_ALREADY_OPEN Failed to lock hardware.
BSP_SWINT_ERR_NOT_CLOSED Failed to unlock hardware.
BSP_SWINT_ERR_INVALID_UNIT Invalid unit specified.
BSP_SWINT_ERR_INVALID_IPR Invalid interrupt priority level specified.
BSP_SWINT_ERR_INVALID_CMD Invalid command specified.
BSP_SWINT_ERR_INVALID_TASK Invalid task pointer specified.
BSP_SWINT_ERR_INVALID_BUFFER_NUMBER Invalid task buffer number specified.
BSP_SWINT_ERR_TASK_EXECUTING Attempt to manipulate a task that is running.
BSP_SWINT_ERR_FULL_BUFFER Task buffer full.
BSP_SWINT_ERR_ACCESS_REJECTION Failed to obtain access control right.

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0620 Rev.6.20 Page 51 of 179
Jun.30.21

4.12 Code size
The sizes of ROM, RAM and maximum stack usage associated with this module are listed below. Information is listed
for a single representative device of the RX100 Series, RX200 Series, and RX600 Series, respectively.

The ROM (code and constants) and RAM (global data) sizes are determined by the build-time configuration options
described in 3 Configuration.

The values in the table below are confirmed under the following conditions.

Module Revision: r_bsp rev5.50

Compiler Version: Renesas Electronics C/C++ Compiler Package for RX Family V3.01.00

(The option of “lang = c99” is added to the default settings of the integrated development
environment.)

GCC for Renesas RX 4.8.4.201902

(The option of “-std=gnu99” is added to the default settings of the integrated development
environment.)

IAR C/C++ Compiler for Renesas RX version 4.12.1

(The default settings of the integrated development environment.)

Configuration Options: Default settings

ROM, RAM and Stack Code Sizes

Device Category Memory Used
CCRX GCC IAR

With Parameter
Checking

Without
Parameter
Checking

With
Parameter
Checking

Without
Parameter
Checking

With
Parameter
Checking

Without
Parameter
Checking

RX130 ROM 6,786 bytes 6,786 bytes 10,596 bytes 10,596 bytes 6,908 bytes 6,908 bytes

RAM
*1

3,154 bytes 2,972 bytes 4,494 bytes

STACK
*2

196 bytes - 144 bytes

RX231 ROM 7,074 bytes 7,074 bytes 11,204 bytes 11,204 bytes 7,301 bytes 7,301 bytes

RAM
*1

7,094 bytes 6,912 bytes 4,594 bytes

STACK
*2

200 bytes - 144 bytes

RX65N ROM 9,691 bytes 9,678 bytes 16,776 bytes 16,752 bytes 11,736 bytes 11,713 bytes

RAM
*1

7,684 bytes 7,500 bytes 5,184 bytes

STACK
*2

212 bytes - 152 bytes

Note 1. It is because the RAM sizes different for each compiler that the default values of stack and heap
sizes different.

Note 2. The sizes of maximum usage stack of Interrupts functions is included.

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0620 Rev.6.20 Page 52 of 179
Jun.30.21

4.13 “for”, “while” and “do while” statements
In this module, “for”, “while” and “do while” statements (loop processing) are used in processing to wait for the register
to be reflected and so on. For this loop processing, comments with “WAIT_LOOP” as a keyword are described.
Therefore, if the user incorporates fail-safe processing into loop processing, user can search the corresponding
processing using “WAIT_LOOP”.

The following shows an example of description.

while statement example :
/* WAIT_LOOP */
while(0 == SYSTEM.OSCOVFSR.BIT.PLOVF)
{
 /* The delay period needed is to make sure that the PLL has stabilized. */
}

for statement example :
/* Initialize reference counters to 0. */
/* WAIT_LOOP */
for (i = 0; i < BSP_REG_PROTECT_TOTAL_ITEMS; i++)
{
 g_protect_counters[i] = 0;
}

do while statement example :
/* Reset completion waiting */
do
{
 reg = phy_read(ether_channel, PHY_REG_CONTROL);
 count++;
} while ((reg & PHY_CONTROL_RESET) && (count < ETHER_CFG_PHY_DELAY_RESET)); /* WAIT_LOOP */

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0620 Rev.6.20 Page 53 of 179
Jun.30.21

5. API Functions
5.1 Summary
The following functions are included in this design:

Function Description
R_BSP_GetVersion Returns the version of r_bsp.

R_BSP_InterruptsDisable Globally disables interrupts.

R_BSP_InterruptsEnable Globally enables interrupts.

R_BSP_CpuInterruptLevelRead Reads the CPU’s Interrupt Priority Level.

R_BSP_CpuInterruptLevelWrite Writes the CPU’s Interrupt Priority Level.

R_BSP_RegisterProtectEnable Enables write protection for selected registers.

R_BSP_RegisterProtectDisable Disables write protection for selected registers.

R_BSP_SoftwareLock Attempts to reserve a lock.

R_BSP_SoftwareUnlock Releases a lock.

R_BSP_HardwareLock Attempts to reserve a hardware peripheral lock.

R_BSP_HardwareUnlock Releases a hardware peripheral lock.

R_BSP_InterruptWrite Registers a callback function for an interrupt.

R_BSP_InterruptRead Gets the callback for an interrupt if one is registered.

R_BSP_InterruptControl Controls various interrupt operations.

R_BSP_SoftwareDelay Delays the specified duration.

R_BSP_GetIClkFreqHz Returns the system clock frequency specified by the r_bsp.

R_BSP_StartupOpen *1 Performs the startup processing for using the BSP.

R_BSP_VoltageLevelSetting *2 Makes settings to the voltage level setting register (VOLSR) that are
necessary in order to use the USB, AD, and RIIC peripheral modules.

R_BSP_InterruptRequestEnable Enables the specified interrupt request.

R_BSP_InterruptRequestDisable Disables the specified interrupt request.

R_BSP_ConfigClockSetting *3 Used by Bluetooth® Low Energy Protocol Stack Basic Package
(R01UW0205).

R_BSP_SoftwareReset Reset the MCU by Software Reset.

R_BSP_VbattInitialSetting *4 Initialize the battery backup function (VBATT).

R_BSP_SoftwareInterruptOpen *5 Initializes software interrupts.

R_BSP_SoftwareInterruptClose *5 Terminates software interrupts.

R_BSP_SoftwareInterruptSetTask
*5

Sets a task in the software interrupt task buffer.

R_BSP_SoftwareInterruptControl
*5

Controls software interrupts.

Note 1. This function is only used when the BSP startup processing is disabled.

Note 2. This function is available only on the RX66T and RX72T.

Note 3. This function is available only on the RX23W.

Note 4. This function is available only on the RX230, RX231, and RX23W.

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0620 Rev.6.20 Page 54 of 179
Jun.30.21

Note 5. This function is available only when using software interrupts. (Refer to 3.2.20 Software Interrupts.)

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0620 Rev.6.20 Page 55 of 179
Jun.30.21

5.2 R_BSP_GetVersion()
Returns the current version of the r_bsp.

Format
uint32_t R_BSP_GetVersion(void);

Parameters
None.

Return Values
Version of the r_bsp.

Properties
Prototyped in file “r_bsp_common.h”.
Implemented in file “r_bsp_common.c”.

Description
This function will return the version of the currently installed r_bsp. The version number is encoded where the top 2
bytes are the major version number and the bottom 2 bytes are the minor version number. For example, Version 4.25
would be returned as 0x00040019.

Example
uint32_t cur_version;

/* Get version of installed r_bsp. */
cur_version = R_BSP_GetVersion();

/* Check to make sure version is new enough for this application’s use. */
if (MIN_VERSION > cur_version)
{
 /* This r_bsp version is not new enough and does not have XXX feature
 that is needed by this application. Alert user. */

}

Special Notes:
None.

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0620 Rev.6.20 Page 56 of 179
Jun.30.21

5.3 R_BSP_InterruptsDisable()
Globally disables interrupts.

Format
void R_BSP_InterruptsDisable(void);

Parameters
None.

Return Values
None.

Properties
Prototyped in file “r_bsp_cpu.h”.
Implemented in file “r_bsp_cpu.c.”

Description
This function globally disables interrupts. This is performed by clearing the ‘I’ bit in the CPU’s Processor Status Word
(PSW) register.

Example
/* Disable interrupts so that accessing this critical area will be guaranteed
 to be atomic. */
R_BSP_InterruptsDisable();

/* Access critical resource while interrupts are disabled */
....

/* End of critical area. Enable interrupts. */
R_BSP_InterruptsEnable();

Special Notes:
The ‘I’ bit of the PSW can only be modified when in Supervisor Mode. If the CPU is in User Mode and this function is
called, this function does nothing.

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0620 Rev.6.20 Page 57 of 179
Jun.30.21

5.4 R_BSP_InterruptsEnable()
Globally enables interrupts.

Format
void R_BSP_InterruptsEnable(void);

Parameters
None.

Return Values
None.

Properties
Prototyped in file “r_bsp_cpu.h”.
Implemented in file “r_bsp_cpu.c”.

Description
This function globally enables interrupts. This is performed by setting the ‘I’ bit in the CPU’s Processor Status Word
(PSW) register.

Example
/* Disable interrupts so that accessing this critical area will be guaranteed
 to be atomic. */
R_BSP_InterruptsDisable();

/* Access critical resource while interrupts are disabled */
....

/* End of critical area. Enable interrupts. */
R_BSP_InterruptsEnable();

Special Notes:
The ‘I’ bit of the PSW can only be modified when in Supervisor Mode. If the CPU is in User Mode and this function is
called, this function does nothing.

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0620 Rev.6.20 Page 58 of 179
Jun.30.21

5.5 R_BSP_CpuInterruptLevelRead()
Reads the CPU’s Interrupt Priority Level.

Format
uint32_t R_BSP_CpuInterruptLevelRead(void);

Parameters
None.

Return Values
The CPU’s Interrupt Priority Level.

Properties
Prototyped in file “r_bsp_cpu.h”.
Implemented in file “r_bsp_cpu.c”.

Description
This function reads the CPU’s Interrupt Priority Level. This level is stored in the IPL bits of the Processor Status Word
(PSW) register.

Example
uint32_t cpu_ipl;

/* Read the CPU’s Interrupt Priority Level. */
cpu_ipl = R_BSP_CpuInterruptLevelRead();

Special Notes:
None.

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0620 Rev.6.20 Page 59 of 179
Jun.30.21

5.6 R_BSP_CpuInterruptLevelWrite()
Writes the CPU’s Interrupt Priority Level.

Format
bool R_BSP_CpuInterruptLevelWrite(uint32_t level);

Parameters
level

The level to write to the CPU’s IPL.

Return Values
true: Successful, CPU’s IPL has been written

false: Failure, provided ‘level’ has invalid IPL value or called when the CPU is in User Mode

Properties
Prototyped in file “r_bsp_cpu.h”.
Implemented in file “r_bsp_cpu.c”.

Description
This function writes the CPU’s Interrupt Priority Level. This level is stored in the IPL bits of the Processor Status Word
(PSW) register. This function does check to make sure that the IPL being written is valid. The maximum and minimum
valid settings for the CPU IPL are defined in mcu_info.h using the BSP_MCU_IPL_MAX and BSP_MCU_IPL_MIN
macros.

Example
/* Response time is critical during this portion of the application. Set the
 CPU’s Interrupt Priority Level so that interrupts below the set
 threshold are disabled. Interrupt vectors with IPLs higher than this
 threshold will still be accepted and will not have to contend with the
 lower priority interrupts. */
if (false == R_BSP_CpuInterruptLevelWrite(HIGH_PRIORITY_THRESHOLD))
{
 /* Error in setting CPU’s IPL. Invalid IPL was provided. */

}

/* Only high priority interrupts (as defined by user) will be accepted during
 this period. */
....

/* Time sensitive period is over. Set CPU’s IPL back to lower value so that
 lower priority interrupts can now be serviced again. */
if (false == R_BSP_CpuInterruptLevelWrite(LOW_PRIORITY_THRESHOLD))
{
 /* Error in setting CPU’s IPL. Invalid IPL was provided. */

}

Special Notes:
The CPU’s IPL can only be modified by the user when in Supervisor Mode. If the CPU is in User Mode and this
function is called, this function does not control IPL and return false.

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0620 Rev.6.20 Page 60 of 179
Jun.30.21

5.7 R_BSP_RegisterProtectEnable()
Enables write protection for selected registers.

Format
void R_BSP_RegisterProtectEnable(bsp_reg_protect_t regs_to_protect);

Parameters
regs_to_protect

Which registers to enable write protection for. See Section 4.10.1.

Return Values
None.

Properties
Prototyped in file “r_bsp_cpu.h”.
Implemented in file “r_bsp_cpu.c”.

Description
This function enables write protection for the input registers. Only certain MCU registers have the ability to be write
protected. To see which registers are available to be protected by this function look at the bsp_reg_protect_t enum in
r_bsp_cpu.h for your MCU.

This function, and R_BSP_RegisterProtectDisable(), use counters for each entry in the bsp_reg_protect_t enum so that
users can call these functions multiple times without problem. This function uses the interrupt disable / enable function
by controlling the Processor Interrupt Priority Level (IPL) of the R_BSP_InterruptControl function, because counter
control is the critical section. If the function is executed while the processor mode is supervisor mode, interrupts that are
at or below the specified interrupt priority level will be disabled by controlling the IPL. If the function is executed while
the processor mode is user mode, the IPL controlling does not execute. An example of why this is needed is shown
below in the Special Notes section below.

Example
/* Write access must be enabled before writing to MPC registers. */
R_BSP_RegisterProtectDisable(BSP_REG_PROTECT_MPC);

/* MPC registers are now writable. */
/* Setup Port 2 Pin 6 as TXD1 for SCI1. */
MPC.P26PFS.BYTE = 0x0A;

/* Setup Port 4 Pin 2 as AD input for potentiometer. */
MPC.P42PFS.BYTE = 0x80;

/* More pin setup. */
....

/* Enable write protection for MPC registers to protect against accidental
 writes. */
R_BSP_RegisterProtectEnable(BSP_REG_PROTECT_MPC);

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0620 Rev.6.20 Page 61 of 179
Jun.30.21

Special Notes:
(1) About why counters are needed.

This is an example showing why counters are needed for register protection.

1. The user’s application calls the open function for r_module1.

2. r_module1 disables write protection for some registers that are required to be written during initialization of this
module by calling R_BSP_RegisterProtectDisable(). At this point the counter for this protected registers is
incremented by 1.

3. r_module1 writes to unprotected registers that were made writable in the previous step.

4. r_module1 also depends upon r_module2 and needs to call its open function, R_MODULE2_Open().

5. In the r_module2 function it also needs to write to the same protected registers as r_module1. r_module2 calls
R_BSP_RegisterProtectDisable() again since it does not know that r_module1 already enabled write access to these
registers. The counter for the protected register is incremented by 1 and is now 2.

6. r_module2 writes to unprotected registers that were made writable in the previous step.

7. r_module2 is done writing to the protected registers so it calls R_BSP_RegisterProtectEnable() to re-enable write
protection for the registers. The counter for the protected register is decremented by 1 and is now 1. Since the counter
is not 0 the code knows that it should not actually re-enable protection yet.

8. Execution goes back to R_MODULE1_Open() where it continues to write to registers. Here is where a problem can
occur. If counters are not used then the call to R_BSP_RegisterProtectEnable() by r_module2 (Step #7) can prevent
the registers in r_module1 from being written.

9. r_module1 is done writing to the protected registers so it calls R_BSP_RegisterProtectEnable() to re-enable write
protection for the registers. The counter for the protected register is decremented by 1 and is now 0. Since the counter
is 0 the API code knows that it is safe to re-enable write protection for the registers.

Figure 5.1 Register Protection Example

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0620 Rev.6.20 Page 62 of 179
Jun.30.21

(2) Notes on user mode
If this function is called when the CPU is in user mode, the privileged instruction exception.(Only Rev.5.20 and
Rev.5.21)
The R_BSP_InterruptControl function used to secure atomicity in the critical section of the counter control with this
function is valid only in supervisor mode. When this function is executed in user mode, the R_BSP_InterruptControl
function is executed but atomicity is not to secure.

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0620 Rev.6.20 Page 63 of 179
Jun.30.21

5.8 R_BSP_RegisterProtectDisable()
Disables write protection for selected registers.

Format
void R_BSP_RegisterProtectDisable(bsp_reg_protect_t regs_to_unprotect);

Parameters
regs_to_unprotect

Which registers to disable write protection for. See Section 4.10.1.

Return Values
None.

Properties
Prototyped in file “r_bsp_cpu.h”.
Implemented in file “r_bsp_cpu.c”

Description
This function disables write protection for the input registers. Only certain MCU registers have the ability to be write
protected. To see which registers are available to be protected by this function look at the bsp_reg_protect_t enum in
r_bsp_cpu.h for your MCU.

This function, and R_BSP_RegisterProtectEnable(), use counters for each entry in the bsp_reg_protect_t enum so that
users can call these functions multiple times without problem. This function uses the interrupt disable / enable function
by controlling the Processor Interrupt Priority Level (IPL) of the R_BSP_InterruptControl function, because counter
control is the critical section. If the function is executed while the processor mode is supervisor mode, interrupts that are
at or below the specified interrupt priority level will be disabled by controlling the IPL. If the function is executed while
the processor mode is user mode, the IPL controlling does not execute. An example of why this is needed is shown in
the Special Notes section of Section 5.7.

Example
/* Write access must be enabled before writing to CGC registers. */
R_BSP_RegisterProtectDisable(BSP_REG_PROTECT_CGC);
/* CGC registers are spread amongst two protection bits. */
R_BSP_RegisterProtectDisable(BSP_REG_PROTECT_LPC_CGC_SWR);

/* CGC registers are now writable. */
/* Select PLL as clock source. */
SYSTEM.SCKCR3.WORD = 0x0400;

/* More clock setup. */
....

/* Enable write protection for CGC registers to protect against accidental
 writes. */
R_BSP_RegisterProtectEnable(BSP_REG_PROTECT_CGC);
R_BSP_RegisterProtectEnable(BSP_REG_PROTECT_LPC_CGC_SWR);

Special Notes:
If this function is called when the CPU is in user mode, the privileged instruction exception.(Only Rev.5.20 and
Rev.5.21)
The R_BSP_InterruptControl function used to guarantee atomicity in the critical section of the counter control with this
function is valid only in supervisor mode. When this function is executed in user mode, the R_BSP_InterruptControl
function is executed but atomicity is not to secure.

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0620 Rev.6.20 Page 64 of 179
Jun.30.21

5.9 R_BSP_SoftwareLock()
Attempts to reserve a lock.

Format
bool R_BSP_SoftwareLock(BSP_CFG_USER_LOCKING_TYPE * const plock);

Parameters
plock

Pointer to lock structure with lock to try and acquire.

Return Values
true: Successful, lock was available and acquired

false: Failure, lock was already acquired and is not available

Properties
Prototyped in file “r_bsp_locking.h”.
Implemented in file “r_bsp_locking.c”

Description
This function implements an atomic locking mechanism. Locks can be used in numerous ways. Two common uses of
locks are to protect critical sections of code and to protect against duplicate resource allocation. For protecting critical
sections of code the user would require that the code first obtain the critical section’s lock before executing. An
example of protecting against duplicate resource allocation would be if the user had two FIT modules that used the
same peripheral. For example, the user may have one FIT module that uses the SCI peripheral in UART mode and
another FIT module that uses the SCI peripheral in I2C mode. To make sure that both modules cannot use the same SCI
channel, locks can be used.

Care should be taken when using locks as they do not provide advanced features one might expect from an RTOS
semaphore or mutex. If used improperly locks can lead to deadlock in the user’s system.

Users can override the default locking mechanisms. See Section 3.2.8 for more information.

Example
This shows an example of using locks with the Virtual EEPROM code. This FIT module does not access any
peripherals directly, but still needs protection against reentrancy.
/* Used for locking state of VEE */
static BSP_CFG_USER_LOCKING_TYPE g_vee_lock;

/***
* Function Name: vee_lock_state
* Description : Tries to lock the VEE state
* Arguments : state -
* Which state to try to transfer to
* Return value : VEE_SUCCESS -
* Successful, state taken
* VEE_BUSY -
* Data flash is busy, state not taken
***/
static uint8_t vee_lock_state (vee_states_t state)
{
 /* Local return variable */
 uint8_t ret = VEE_SUCCESS;

 /* Try to lock VEE to change state. */
 /* Check to see if lock was successfully taken. */
 if(false == R_BSP_SoftwareLock(&g_vee_lock))
 {
 /* Another operation is on-going */
 return VEE_BUSY;
 }

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0620 Rev.6.20 Page 65 of 179
Jun.30.21

 /* Check VEE status to make sure we are not interfering with another
 thread */
 if(state == VEE_READING)
 {
 /* If another read comes in while the state is reading then we are OK */
 if((g_vee_state != VEE_READY) && (g_vee_state != VEE_READING))
 {
 /* VEE is busy */
 ret = VEE_BUSY;
 }
 }
 else
 {
 /* If we are doing something other than reading then we must be in the
 VEE_READY state */
 if(g_vee_state != VEE_READY)
 {
 /* VEE is busy */
 ret = VEE_BUSY;
 }
 }

 if(ret == VEE_SUCCESS)
 {
 /* Lock state */
 g_vee_state = state;
 }

 /* Release lock. */
 R_BSP_SoftwareUnlock(&g_vee_lock);

 return ret;
}

Special Notes:
None.

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0620 Rev.6.20 Page 66 of 179
Jun.30.21

5.10 R_BSP_SoftwareUnlock()
Releases a lock.

Format
bool R_BSP_SoftwareUnlock(BSP_CFG_USER_LOCKING_TYPE * const plock);

Parameters
plock

Pointer to lock structure with lock to release.

Return Values
true: Successful, lock was released. Or the lock has been already released.

false: Failure, lock could not be released

Properties
Prototyped in file “r_bsp_locking.h”.
Implemented in file “r_bsp_locking.c”

Description
This function releases a lock that was previously acquired using the R_BSP_SoftwareLock() function. Please see
Section 5.9 for more information on locks.

Example
This shows an example of using locks for a critical section of code.
/* Used for locking critical section of code. */
static BSP_CFG_USER_LOCKING_TYPE g_critical_lock;

static bool critical_area_example (void)
{
 /* Try to acquire lock for executing critical section below. */
 if(false == R_BSP_SoftwareLock(&g_critical_lock))
 {
 /* Lock has already been acquired. */
 return false;
 }

 /* BEGIN CRITICAL SECTION. */

 /* Execute critical section. */

 /* END CRITICAL SECTION. */

 /* Release lock. */
 R_BSP_SoftwareUnlock(&g_critical_lock);

 return true;
}

Special Notes:
None.

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0620 Rev.6.20 Page 67 of 179
Jun.30.21

5.11 R_BSP_HardwareLock()
Attempts to reserve a hardware peripheral lock.

Format
bool R_BSP_HardwareLock(mcu_lock_t const hw_index);

Parameters
hw_index

Index of lock to acquire from the hardware lock array.

Return Values
true: Successful, lock was available and acquired

false: Failure, lock was already acquired and is not available

Properties
Prototyped in file “r_bsp_locking.h”.
Implemented in file “r_bsp_locking.c”

Description
This function attempts to acquire the lock for a hardware resource of the MCU. Instead of sending in a pointer to a lock
as with the R_BSP_SoftwareLock() function, the user sends in an index to an array that holds 1 lock per MCU hardware
resource. This array is shared amongst all FIT modules and user code therefore allowing multiple FIT modules (and
user code) to use the same locks. The user can see the available hardware resources by looking at the mcu_lock_t enum
in mcu_locks.h. These enum values are also the index into the hardware lock array. The same atomic locking
mechanisms from the R_BSP_SoftwareLock() function are used with this function as well.

Example
This example shows hardware locks being used to control access to a RSPI channel.
/**
* Function Name: R_RSPI_Send
* Description : Send data over RSPI channel.
* Arguments : channel -
* Which channel to use.
* pdata -
* Pointer to data to transmit
* bytes -
* Number of bytes to transmit
* Return Value : true -
* Data sent successfully.
* false -
* Could not obtain lock.
**/
bool R_RSPI_Send(uint8_t channel, uint8_t * pdata, uint32_t bytes)
{
 mcu_lock_t rspi_channel_lock;

 /* Check and make sure channel is valid. */
 ...

 /* Use appropriate RSPI channel lock. */
 if (0 == channel)
 {
 rspi_channel_lock = BSP_LOCK_RSPI0;
 }
 else
 {
 rspi_channel_lock = BSP_LOCK_RSPI1;
 }

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0620 Rev.6.20 Page 68 of 179
Jun.30.21

 /* Attempt to obtain lock so we know we have exclusive access to RSPI
 channel. */
 if (false == R_BSP_HardwareLock(rspi_channel_lock))
 {
 /* Lock has already been acquired by another task. Need to try again
 later. */
 return false;
 }

 /* Else, lock was acquired. Continue on with send operation. */
 ...

 /* Now that send operation is completed, release hold on lock so that other
 tasks may use this RSPI channel. */
 R_BSP_HardwareUnlock(rspi_channel_lock);

 return true;
}

Special Notes:
Each entry in the mcu_lock_t enum in mcu_locks.h will be allocated a lock. On RX MCUs, each lock is required to be
4-bytes. If RAM space is an issue then the user can remove the entries from the mcu_lock_t enum they are not using.
For example, if the user is not using the CRC peripheral then they could delete the BSP_LOCK_CRC entry. The user
will save 4-bytes per deleted entry.

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0620 Rev.6.20 Page 69 of 179
Jun.30.21

5.12 R_BSP_HardwareUnlock()
Releases a hardware peripheral lock.

Format
bool R_BSP_HardwareUnlock(mcu_lock_t const hw_index);

Parameters
hw_index

Index of lock to release from the hardware lock array.

Return Values
true: Successful, lock was released

false: Failure, lock could not be released

Properties
Prototyped in file “r_bsp_locking.h”.
Implemented in file “r_bsp_locking.c”

Description
This function attempts to release the lock for a hardware resource of the MCU that was previously acquired using the
R_BSP_HardwareLock() function. For more information on hardware locks please see Section 5.11.

Example
This example shows hardware locks being used to prevent duplicate hardware resource allocation. The R_SCI_Open()
function takes the lock so all modules know that the SCI channel is being used. R_SCI_Close() releases the lock
thereby making it available for any module to use.
bool R_SCI_Open(uint8_t channel, ...)
{
 mcu_lock_t sci_channel_lock;

 /* Check and make sure channel is valid. */
 ...

 /* Use appropriate RSPI channel lock. */
 if (0 == channel)
 {
 sci_channel_lock = BSP_LOCK_SCI0;
 }
 else if (1 == channel)
 {
 sci_channel_lock = BSP_LOCK_SCI1;
 }
 ... continue for other channels ...

 /* Attempt to obtain lock so we know we have exclusive access to SCI
 channel. */
 if (false == R_BSP_HardwareLock(sci_channel_lock))
 {
 /* Lock has already been acquired by another task or another FIT module.
 Need to try again later. */
 return false;
 }

 /* Else, lock was acquired. Continue on initialization. */
 ...
}

bool R_SCI_Close(uint8_t channel, ...)

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0620 Rev.6.20 Page 70 of 179
Jun.30.21

{
 mcu_lock_t sci_channel_lock;

 /* Check and make sure channel is valid. */
 ...

 /* Use appropriate RSPI channel lock. */
 if (0 == channel)
 {
 sci_channel_lock = BSP_LOCK_SCI0;
 }
 else if (1 == channel)
 {
 sci_channel_lock = BSP_LOCK_SCI1;
 }
 ... continue for other channels ...

 /* Clean up and turn off this SCI channel. */

 /* Release hardware lock for this channel. */
 R_BSP_HardwareUnlock(sci_channel_lock);
}

Special Notes:
Each entry in the mcu_lock_t enum in mcu_locks.h will be allocated a lock. On RX MCUs, each lock is required to be
4-bytes. If RAM space is an issue then the user can remove the entries from the mcu_lock_t enum that they are not
using. For example, if the user is not using the CRC peripheral then they could delete the BSP_LOCK_CRC entry. The
user will save 4-bytes per deleted entry.

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0620 Rev.6.20 Page 71 of 179
Jun.30.21

5.13 R_BSP_InterruptWrite()
Registers a callback function for an interrupt.

Format
bsp_int_err_t R_BSP_InterruptWrite(bsp_int_src_t vector,

 bsp_int_cb_t callback);

Parameters
vector

Which interrupt to register a callback for. See Section 4.10.6.

callback

Pointer to function to call when interrupt occurs. See Section 4.10.5.

Return Values
BSP_INT_SUCCESS: Successful, callback has been registered

BSP_INT_ERR_INVALID_ARG: Invalid function address input, any previous function has been unregistered

Properties
Prototyped in file “mcu_interrupts.h”.
Implemented in file “mcu_interrupts.c”.

Description
This function registers a callback function for an interrupt. If FIT_NO_FUNC, NULL, or any other invalid function
address is passed for the callback argument then any previously registered callbacks are unregistered.

If one of the interrupts that is handled by this code is triggered then the interrupt handler will query this code to see if a
valid callback function is registered. If one is found then the callback function will be called. If one is not found then
the interrupt handler will clear the appropriate flag(s) and exit.

If the user has a callback function registered and wishes to no longer handle the interrupt then the user should call this
function again with FIT_NO_FUNC as the vector parameter.

Example
/* Prototype for callback function. */
void bus_error_callback(void * pdata);

void main (void)
{
 bsp_int_err_t err;

 /* Register bus_error_callback() to be called whenever a bus error occurs */
 err = R_BSP_InterruptWrite(BSP_INT_SRC_BUS_ERROR, bus_error_callback);

 if (BSP_INT_SUCCESS != err)
 {
 /* Error in registering callback. Alert user. */
 ...
 }
}

void bus_error_callback (void * pdata)
{
 /* Bus error has occurred. Handle accordingly. */
 ...
}

Special Notes:
Use of FIT_NO_FUNC is preferred over NULL since access to the address defined by FIT_NO_FUNC will cause a bus
error which is easy for the user to catch. NULL typically resolves to 0 which is a valid address on RX MCUs.

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0620 Rev.6.20 Page 72 of 179
Jun.30.21

5.14 R_BSP_InterruptRead()
Gets the callback for an interrupt if one is registered.

Format
bsp_int_err_t R_BSP_InterruptRead(bsp_int_src_t vector,

 bsp_int_cb_t * callback);

Parameters
vector

Which interrupt to read the callback for. See Section 4.10.6.

callback

Pointer to where to store callback address. See Section 4.10.5.

Return Values
BSP_INT_SUCCESS: Successful, callback address has been returned

BSP_INT_ERR_NO_REGISTERED_CALLBACK: No valid callback has been registered for this interrupt source.

Properties
Prototyped in file “mcu_interrupts.h”.
Implemented in file “mcu_interrupts.c”.

Description
This function returns the callback function address for an interrupt if one has been registered. If a callback function has
not been registered then an error is returned and nothing is stored to the callback address.

Example
/* This function handles bus error interrupts. The address for this function
 is located in the bus error interrupt vector. */
void bus_error_isr (void)
{
 bsp_int_err_t err;
 bsp_int_cb_t * user_callback;

 /* Bus error has occurred, see if a callback function has been registered */
 err = R_BSP_InterruptRead(BSP_INT_SRC_BUS_ERROR, user_callback);

 if (BSP_INT_SUCCESS == err)
 {
 /* Valid callback function found. Call it. */
 user_callback ();
 }

 /* Clear bus error flags. */
 ...
}

Special Notes:
None.

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0620 Rev.6.20 Page 73 of 179
Jun.30.21

5.15 R_BSP_InterruptControl()
Controls various interrupt operations.

Format
bsp_int_err_t R_BSP_InterruptControl(bsp_int_src_t vector,

bsp_int_cmd_t cmd,
void *pdata)

Parameters
vector

Which interrupt to control for. See Section 4.10.6.
If the interrupt control commands is the BSP_INT_CMD_FIT_INTERRUPT_ENABLE or the
BSP_INT_CMD_FIT_INTERRUPT_DISABLE commands,
set BSP_INT_SRC_EMPTY to “vector” because no arguments are used.

cmd
Interrupt control command. See Section 4.10.4.

pdata
Pointer to the argument for each interrupt control command. Typecasted to void*. See Section 4.9.3.
Most of the interrupt control commands do not need the argument and take FIT_NO_PTR for this parameter.
If the interrupt control command is the BSP_INT_CMD_GROUP_INTERRUPT_ENABLE command, set the
interrupt priority level for group interrupts as the argument.
If the interrupt control command is the BSP_INT_CMD_FIT_INTERRUPT_DISABLE command, set the
address of a variable for saving the current processor interrupt priority level in the argument.
If the interrupt control command is the BSP_INT_CMD_FIT_INTERRUPT_ENABLE command, set the
address of a variable used in the BSP_INT_CMD_FIT_INTERRUPT_DISABLE command.

Return Values
BSP_INT_SUCCESS: Successful
BSP_INT_ERR_NO_REGISTERED_CALLBACK: No valid callback has been registered for this interrupt source.
BSP_INT_ ERR_INVALID_ARG: The command passed is invalid.
BSP_INT_ERR_UNSUPPORTED: This processing is not supported.
BSP_INT_ERR_GROUP_STILL_ENABLED: Group interrupt request remains enabled.

BSP_INT_ERR_INVALID_IPL: Illegal IPL value input.

Properties
Prototyped in file “mcu_interrupts.h”

Description
This function controls the interrupt callback function call and enabling/disabling interrupts such as bus error interrupt,
floating-point exception, NMI pin interrupt, and group interrupts, and enabling/disabling interrupts by controlling the
Processor Interrupt Priority Level.

When BSP_INT_CMD_GROUP_INTERRUPT_ENABLE is set as the interrupt control command, the interrupt request
(IER) for group interrupts is enabled and also the interrupt priority level is set. The interrupt priority level set must be
higher than the current level.

When BSP_INT_CMD_GROUP_INTERRUPT_DISABLE is set as the interrupt control command, the interrupt
request (IER) for group interrupts is disabled. Note that the interrupt request (IER) for group interrupts cannot be
disabled as long as all interrupt requests (GEN) caused by grouped interrupt sources are disabled.

When BSP_INT_CMD_FIT_INTERRUPT_DISABLE is set as the interrupt control command, the current processor
interrupt priority level (IPL) is saved to the address specified by pdata as an argument, and disables interrupts by
controlling the IPL. The value of IPL to be set is the value of BSP_CFG_FIT_IPL_MAX.
When BSP_INT_CMD_FIT_INTERRUPT_ENABLE is set as the interrupt control command, the interrupt is enabled
by setting the value stored in the address specified by pdata to IPL.

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0620 Rev.6.20 Page 74 of 179
Jun.30.21

These two commands are valid only in supervisor mode. When BSP_INT_CMD_FIT_INTERRUPT_DISABLE and
BSP_INT_CMD_FIT_INTERRUPT_ENABLE commands are executed in user mode, Controlling IPL is not executed
and an error code BSP_INT_ERR_UNSUPPORTED is returned.

Example
Case 1: Enable the interrupt request for group interrupts

bsp_int_err_t err;
bsp_int_ctrl_t int_ctrl;

err = BSP_INT_SUCCESS;
int_ctrl.ipl = 0x0A;

err = R_BSP_InterruptControl(BSP_INT_SRC_BL0_SCI0_TEI0,

BSP_INT_CMD_GROUP_INTERRUPT_ENABLE,
&int_ctrl);

if (BSP_INT_SUCCESS != err)
{

/* NG processing */
}

Case 2: Disable the interrupt request for group interrupts
bsp_int_err_t err;
bsp_int_ctrl_t int_ctrl;

err = BSP_INT_SUCCESS;

err = R_BSP_InterruptControl(BSP_INT_SRC_BL0_SCI0_TEI0,

BSP_INT_CMD_GROUP_INTERRUPT_DISABLE,
FIT_NO_PTR);

if (BSP_INT_SUCCESS != err)
{

/* NG processing */
}

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0620 Rev.6.20 Page 75 of 179
Jun.30.21

Case 3: Disable/Enable the interrupt by controlling the Processor Interrupt Priority Level (IPL)
bsp_int_err_t err;
bsp_int_ctrl_t int_ctrl;

err = BSP_INT_SUCCESS;

err = R_BSP_InterruptControl(BSP_INT_SRC_EMPTY,

BSP_INT_CMD_FIT_INTERRUPT_DISABLE,
&int_ctrl);

if (BSP_INT_SUCCESS != err)
{

/* NG processing */
}

 /* BEGIN CRITICAL SECTION. */

 /* Execute critical section. */

 /* END CRITICAL SECTION. */

err = R_BSP_InterruptControl(BSP_INT_SRC_EMPTY,
BSP_INT_CMD_FIT_INTERRUPT_ENABLE,
&int_ctrl);

if (BSP_INT_SUCCESS != err)
{

/* NG processing */
}

Special Notes:
BSP_INT_CMD_FIT_INTERRUPT_DISABLE and BSP_INT_CMD_FIT_INTERRUPT_ENABLE commands can be
used to secure atomicity of critical sections. However, these commands are valid only in supervisor mode. When these
commands are executed in user mode, atomicity is not to secure.

Introduce the usage example.
Case 1: Transition to the module stop state or canceling to the module stop state, by access to the Module Stop Control
Register X (X equal A to D).

The Module Stop Control register may be accessed simultaneously by multiple peripheral FIT modules because it is
register in which setting bits for multiple peripheral functions are aggregated into on register. If the interrupt processing
of another peripheral function is executed and the same register is manipulated while accessing this register, the
contents changed by the interrupt processing are erased. Because when the access processing before the interrupt is
resumed after returning from the interrupt, the register value is rewritten based on it before the interrupt.

Case 2: Interrupt request enable/disable by access to the Group XXX Interrupt Request Register (XXX equal BE0, BL0,
BL1, AL0, etc.)

This register may be accessed simultaneously by multiple peripheral FIT modules because it is register in which setting
bits for multiple peripheral functions are aggregated into on register.

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0620 Rev.6.20 Page 76 of 179
Jun.30.21

Case 3: Shared resource access processing (Processing to read and rewrite, counter etc.)

Shared resource may be accessed simultaneously by multiple processes or multiple peripheral FIT modules.
If other processes are interrupted during access, shared resource information at the time of the interrupt is saved to the
stack, and interrupt processing is executed. If the same shared resource is manipulated during interrupt processing, the
shared resource information is updated and interrupt processing ends. When access processing resumes, shared
resources are rewritten based on the information returned from the stack. Therefore, the contents changed by interrupt
processing disappear.

All these cases are critical sections, and the process needs to secure atomicity.

If a value equivalent to NULL is set as the pointer argument with BSP_INT_CMD_FIT_INTERRUPT_DISABLE
and BSP_INT_CMD_FIT_INTERRUPT_ENABLE commands, error might be returned due to parameter check.
See Section 4.4.3 RAM Location Limitations.

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0620 Rev.6.20 Page 77 of 179
Jun.30.21

5.16 R_BSP_SoftwareDelay()
Delay the specified duration in units and return.

Format
bool R_BSP_SoftwareDelay(uint32_t delay, bsp_delay_units_t units)

Parameters
delay

The number of 'units' to delay.
units

The 'base' for the units specified. See Section 4.10.7.

Return Values
true: True if delay executed
false: False if delay/units combination resulted in overflow/underflow

Properties
Prototyped in file “r_bsp_common.h”.
Implemented in file “r_bsp_common.c”

Description
This is function that may be called for all MCU targets to implement a specific wait time.
The actual delay time is plus the overhead at a specified duration. The overhead changes under the influence of the
compiler, operating frequency and ROM cache. When the operating frequency is low, or the specified duration in units
of microsecond level, please note that the error becomes large.

Example
bool ret;

/* Delay 5 seconds before returning */
ret = R_BSP_SoftwareDelay(5, BSP_DELAY_SECS);

if (true != ret)
{

/* NG processing */
}

/* Delay 5 milliseconds before returning */
ret = R_BSP_SoftwareDelay(5, BSP_DELAY_MILLISECS);

if (true != ret)
{
/* NG processing */
}

/* Delay 50 microseconds before returning */
ret = R_BSP_SoftwareDelay(50, BSP_DELAY_MICROSECS);

if (true != ret)
{
/* NG processing */
}

Special Notes:
None.

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0620 Rev.6.20 Page 78 of 179
Jun.30.21

5.17 R_BSP_GetIClkFreqHz()
Returns the system clock frequency.

Format
uint32_t R_BSP_GetIClkFreqHz(void)

Parameters
None.

Return Values
System clock frequency specified by the r_bsp.

Properties
Prototyped in file “r_bsp_common.h”

Description
This function returns the system clock frequency. For example, when the system clock is set to 120 MHz in
r_bsp_config_h and the r_bsp has completed to specify the clock setting, then even if the user changed the system clock
frequency to 60 MHz, the return value is '60000000'.

Example
uint32_t iclk;

iclk = R_BSP_GetIClkFreqHz();

Special Notes:
None.

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0620 Rev.6.20 Page 79 of 179
Jun.30.21

5.18 R_BSP_StartupOpen()
Specifies settings to use the BSP and peripheral FIT modules. Call this function only when the BSP startup is disabled.

Format
void R_BSP_StartupOpen(void)

Parameters
None.

Return Values
None.

Properties
Prototyped in file “r_bsp_mcu_startup.h”

Description
This function performs initialization for the ram variables, the interrupt callback, register protection, and the hardware
and pins. These processing are needed for using the BSP and peripheral FIT modules. Thus, this function must be called
in the beginning of the main function.

Call this function only when the BSP startup is disabled.

Example
void main (void)
{

R_BSP_StartupOpen();

...

}

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0620 Rev.6.20 Page 80 of 179
Jun.30.21

Special Notes:
The R_BSP_StartupOpen function performs a part of processing in the startup function. The following shows the
processing.

Figure 5.2 Processing of the R_BSP_StartupOpen Function

R_BSP_StartupOpen

Initializing interrupt callback
bsp_interrupt_open()

Initializing hardware and pins
hardware_setup()

Initializing register protection
bsp_register_protect_open()

return

Note 1: The MCU skips this procedure.
Note 2: The operation varies depending on the setting in the r_bsp_config.h.

Startup Function

Set stack addresses

Initialize the FPU *1

Setting the system clock
mcu_clock_setup()

Initializing C runtime environment
_INITSCT()

Initialize the STDIO library *2

Initializing interrupt callback
bsp_interrupt_open()

Initializing hardware and pins
hardware_setup()

Initialize PSW

Enter user mode *2

Jump to the main function

Enable the bus error interrupt

Initializing register protection
bsp_register_protect_open()

Set the start address of the interrupt
vector table

Set the start address of the exception
vector table *1

Warm start (PRE) *2
User_Warm_start_func_pre()

Warm start (POST) *2
User_Warm_start_func_post()

Close the STDIO library *2

Initializing variables of BSP
bsp_ram_initialize()

Initialize the Double-precision floating
point coprocessor *1

Initialize the arithmetic unit for
trigonometric functions *1

VBATT voltage stability wait *1

vbatt_voltage_stability_wait()

Initialize the FPU *1

Initializing variables of BSP
bsp_ram_initialize()

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0620 Rev.6.20 Page 81 of 179
Jun.30.21

5.19 R_BSP_VoltageLevelSetting()
This API function is used excessively with the RX66T and RX72T. It makes settings to the voltage level setting register
(VOLSR) that are necessary in order to use the USB, AD, and RIIC peripheral modules. Call this function only when it
is necessary to change the register settings.

Format
bool R_BSP_VoltageLevelSetting(uint8_t ctrl_ptn)

Parameters
ctrl_ptn

Register Setting Patterns

The following setting patterns cannot be selected at the same time.

When specifying more than one pattern at the same time, use the “|” (OR) operator.

- BSP_VOL_USB_POWEROFF and BSP_VOL_USB_POWERON
- BSP_VOL_AD_NEGATIVE_VOLTAGE_INPUT and BSP_VOL_AD_NEGATIVE_VOLTAGE_NOINPUT
- BSP_VOL_RIIC_4_5V_OROVER and BSP_VOL_RIIC_UNDER_4_5V

#define BSP_VOL_USB_POWEROFF (0x01) /* Updates the USBVON bit to 0. */

#define BSP_VOL_USB_POWERON (0x02) /* Updates the USBVON bit to 1. */

#define BSP_VOL_AD_NEGATIVE_VOLTAGE_INPUT (0x04) /* Updates the PGAVLS bit to 0. */

#define BSP_VOL_AD_NEGATIVE_VOLTAGE_NOINPUT (0x08) /* Updates the PGAVLS bit to 1. */

#define BSP_VOL_RIIC_4_5V_OROVER (0x10) /* Updates the RICVLS bit to 0. */

#define BSP_VOL_RIIC_UNDER_4_5V (0x20) /* Updates the RICVLS bit to 1. */

Return Values
true: /* Processing completed, register successfully updated. */

false: /* The function was called under the following conditions, so the register setting was not updated. */

- Setting patterns that cannot be selected at the same time were selected.
- A setting pattern related to the USB was selected when the USB was not in the module stop state.
- A setting pattern related to the AD was selected when the AD was not in the module stop state.
- A setting pattern related to the RIIC was selected when the RIIC was not in the module stop state.

Properties
Prototyped in file “r_bsp_cpu.h”

Description
This function initializes the voltage level setting register (VOLSR), which is necessary in order to use the USB, AD and
RIIC peripheral modules. When specifying a setting pattern related to the USB, call this function before the USB is
released from the module stop state. When specifying a setting pattern related to the AD, call this function before the
AD (unit 0 and unit 1) is released from the module stop state. When specifying a setting pattern related to the RIIC, call
this function before the RIIC is released from the module stop state. If the function is called with a setting pattern
related to the USB specified after the USB is released from the module stop state, the function returns “false” as the
return value and does not update the register settings. If the function is called with a setting pattern related to the AD
specified after the AD (unit 0 and unit 1) is released from the module stop state, the function returns “false” as the
return value and does not update the register settings. Finally, if the function is called with a setting pattern related to
the RIIC specified after the RIIC is released from the module stop state, the function returns “false” as the return value
and does not update the register settings. In the BSP the initial settings are specified in accordance with the macro
settings listed in 3.2.11, MCU Voltage, and 3.2.14, Negative Voltage Input Settings for AD Pins.

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0620 Rev.6.20 Page 82 of 179
Jun.30.21

Example
void main (void)
{

bool ret;

/* USBVON bit set to 1. */
ret = R_BSP_VoltageLevelSetting(BSP_VOL_USB_POWERON);
if (true != ret)
{

/* NG processing */
}

...

/* PGAVLS and USBVON bit set to 0. */
ret = R_BSP_VoltageLevelSetting(BSP_VOL_AD_NEGATIVE_VOLTAGE_NOINPUT |

BSP_VOL_USB_POWEROFF);
if (true != ret)
{

/* NG processing */
}

...

}

Special Notes:
None.

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0620 Rev.6.20 Page 83 of 179
Jun.30.21

5.20 R_BSP_InterruptRequestEnable()
Enable the specified interrupt request.

Format
void R_BSP_InterruptRequestEnable (uint32_t vector)

Parameters
vector

Interrupt vector number.

Return Values
None.

Properties
Prototyped in file “r_bsp_interrupts.h”.

Description
Enable the specified interrupt request. Calculate the corresponding IER [m].IEN [j] from the vector number of the
argument, and set “1” to that bit.

The macro defined in iodefine.h can be used to the setting of the argument "vector". A description example is shown in
Example.

Example
void main(void)
{

/* Enable interrupt of CMT0. */
R_BSP_InterruptRequestEnable(VECT(CMT0, CMI0));

}

Special Notes:
When setting an immediate value for an argument “vector”, the argument must be 0 to 255.

Don't set the vector number of the reserved interrupt source to the argument.

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0620 Rev.6.20 Page 84 of 179
Jun.30.21

5.21 R_BSP_InterruptRequestDisable()
Disable the specified interrupt request.

Format
void R_BSP_InterruptRequestDisable (uint32_t vector)

Parameters
vector

Interrupt vector number.

Return Values
None.

Properties
Prototyped in file “r_bsp_interrupts.h”.

Description
Disable the specified interrupt request. Calculate the corresponding IER [m].IEN [j] from the vector number of the
argument, and clear “0” to that bit.

The macro defined in iodefine.h can be used to the setting of the argument "vector". A description example is shown in
Example.

Example
void main(void)
{

/* Disable interrupt of CMT0. */
R_BSP_InterruptRequestDisable(VECT(CMT0, CMI0));

}

Special Notes:
When setting an immediate value for an argument “vector”, the argument must be 0 to 255.

Don't set the vector number of the reserved interrupt source to the argument.

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0620 Rev.6.20 Page 85 of 179
Jun.30.21

5.22 R_BSP_ConfigClockSetting()
This function is available only on the RX23W. This function is used by Bluetooth® Low Energy Protocol Stack Basic
Package.

Format
void R_BSP_ConfigClockSetting (void)

Parameters
None.

Return Values
None.

Properties
Prototyped in file “r_bsp_clock.h”.

Description
Under certain conditions, Bluetooth® Low Energy Protocol Stack Basic Package uses this function to set the clock.

For details, refer to Bluetooth® Low Energy Protocol Stack Basic Package User’s Manual (R01UW0205)

Special Notes:
None.

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0620 Rev.6.20 Page 86 of 179
Jun.30.21

5.23 R_BSP_SoftwareReset()
This function reset the MCU by Software Reset.

Format
void R_BSP_SoftwareReset (void)

Parameters
None.

Return Values
None.

Properties
Prototyped in file “r_bsp_cpu.h”.

Description
This function reset the MCU by Software Reset.

Example
void main (void)
{

...

R_BSP_SoftwareReset();

...

}

Special Notes:
None.

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0620 Rev.6.20 Page 87 of 179
Jun.30.21

5.24 R_BSP_VbattInitialSetting()
This API function is used excessively with the RX230, RX231 and RX23W. Initialize the battery backup function
(VBATT).

Format
void R_BSP_VbattInitialSetting (void)

Parameters
None.

Return Values
None.

Properties
Prototyped in file “r_bsp_vbatt.h”.

Description
Initialize the battery backup function (VBATT). This processing is needed for using the BSP and peripheral FIT
modules. Call this function only if all the following conditions are satisfied.

- The BSP startup is disabled.

- Do not use the battery backup function.

- Access to the RTC related registers.

Call this function before accessing RTC related registers.

Example
...

R_BSP_VbattInitialSetting();

/* Access to RTC registers. */
...

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0620 Rev.6.20 Page 88 of 179
Jun.30.21

Special Notes:
The R_BSP_VbattInitialSetting function performs a part of processing in the startup function. This function is enabled
if BSP startup is disabled and the battery backup function is not used. The following shows the processing.

Figure 5.3 Processing of the R_BSP_VbattInitialSetting Function

R_BSP_VbattInitialSetting

return

Note 1: The MCU skips this procedure.
Note 2: The operation varies depending on the setting in the r_bsp_config.h.

Startup Function

Set stack addresses

Initialize the FPU *1

Setting the system clock
mcu_clock_setup()

Initializing C runtime environment
_INITSCT()

Initialize the STDIO library *2

Initializing interrupt callback
bsp_interrupt_open()

Initializing hardware and pins
hardware_setup()

Initialize PSW

Enter user mode *2

Jump to the main function

Enable the bus error interrupt

Initializing register protection
bsp_register_protect_open()

Set the start address of the interrupt
vector table

Set the start address of the exception
vector table *1

Warm start (PRE) *2
User_Warm_start_func_pre()

Warm start (POST) *2
User_Warm_start_func_post()

Close the STDIO library *2

Initializing variables of BSP
bsp_ram_initialize()

Initialize the Double-precision floating
point coprocessor *1

Initialize the arithmetic unit for
trigonometric functions *1

VBATT voltage stability wait *1

vbatt_voltage_stability_wait()
VBATT voltage stability wait *1

vbatt_voltage_stability_wait()

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0620 Rev.6.20 Page 89 of 179
Jun.30.21

5.25 R_BSP_SoftwareInterruptOpen()
This function initializes software interrupts.

Format
e_bsp_swint_err_t R_BSP_SoftwareInterruptOpen(e_bsp_swint_unit_t unit)

Parameters
unit

Software interrupt unit (Refer to 4.10.7.)

Return Values
BSP_SWINT_SUCCESS Success.
BSP_SWINT_ERR_INVALID_UNIT Invalid unit specified.
BSP_SWINT_ERR_ALREADY_OPEN Failed to lock hardware.

Properties
Prototyped in file “r_bsp_software_interrupt.h”.

Description
This function locks the hardware, resets the access control status, clears the interrupt request (IR), initializes the
interrupt priority level (IPR), enables nested-interrupt status during the software interrupts, initializes the task buffer,
and enables interrupts (IEN).

Example
e_bsp_swint_err_t err;

err = R_BSP_SoftwareInterruptOpen(BSP_SWINT_UNIT1);

if (BSP_SWINT_SUCCESS != err)
{
 /* NG processing */
}

Special Notes:
This function is available only when use of software interrupts is enabled in a configuration macro.

This function is called automatically at BSP startup when the value of BSP_CFG_SWINT_UNITn_ENABLE in
r_bsp_config.h is 1.

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0620 Rev.6.20 Page 90 of 179
Jun.30.21

5.26 R_BSP_SoftwareInterruptClose()
This function terminates software interrupts.

Format
e_bsp_swint_err_t R_BSP_SoftwareInterruptClose(e_bsp_swint_unit_t unit)

Parameters
unit

Software interrupt unit (Refer to 4.10.7.)

Return Values
BSP_SWINT_SUCCESS Success.
BSP_SWINT_ERR_INVALID_UNIT Invalid unit specified.
BSP_SWINT_ERR_NOT_CLOSED Failed to lock hardware.

Properties
Prototyped in file “r_bsp_software_interrupt.h”.

Description
This function unlocks the hardware, disables interrupts (IEN), clears the interrupt request (IR), initializes the task
buffer, and disables nested-interrupt status.

Example
e_bsp_swint_err_t err;

err = R_BSP_SoftwareInterruptClose(BSP_SWINT_UNIT1);

if (BSP_SWINT_SUCCESS != err)
{
 /* NG processing */
}

Special Notes:
This function is available only when use of software interrupts is enabled in a configuration macro. Use this function
after the R_BSP_SoftwareInterruptOpen function has run.

If the R_BSP_SoftwareInterruptSetTask function or software interrupt function (bsp_swint_execute_task) is acquiring
acces control rights and an interrupt is generated and this function is called within the interrupt, the task buffer may not
be controlled correctly. If this function is used in an interrupt, clear the all task by the R_BSP_SoftwareInterruptControl
function with the BSP_SWINT_CMD_CLEAR_ALL_TASK command before call this function.

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0620 Rev.6.20 Page 91 of 179
Jun.30.21

5.27 R_BSP_SoftwareInterruptSetTask()
This function sets a task in the software interrupt task buffer.

Format
e_bsp_swint_err_t R_BSP_SoftwareInterruptSetTask(e_bsp_swint_unit_t unit,

st_bsp_swint_task_t set_task)

Parameters
unit

Software interrupt unit (Refer to 4.10.7.)

set_task

Software interrupt task (Refer to 4.10.11.)

Return Values
BSP_SWINT_SUCCES Success.
BSP_SWINT_ERR_INVALID_UNIT Invalid unit specified.
BSP_SWINT_ERR_INVALID_TASK Invalid task pointer specified.
BSP_SWINT_ERR_FULL_BUFFER Task buffer full.
BSP_SWINT_ERR_ACCESS_REJECTION Failed to obtain access control right.

Properties
Prototyped in file “r_bsp_software_interrupt.h”.

Description
This function sets the task specified by an argument in the software interrupt task buffer. After setting the task, the
software interrupt occurs. If the task buffer is full, the task is not set.

Example
typedef struct st_check_swint
{
 uint8_t cnt;
} st_check_swint_t;

void main (void)
{

e_bsp_swint_err_t err;
st_bsp_swint_task_t swint_task;
st_check_swint_t check_swint;

/* Initialize arguments. */
swint_task.status = BSP_SWINT_TASK_STATUS_NO_REQUEST;
swint_task.p_taskAddr = task_func;
swint_task.p_context = &check_swint;

check_swint.cnt = 0;

/* Set the software interrupt task. */
err = R_BSP_SoftwareInterruptSetTask(BSP_SWINT_UNIT1, swint_task);

if (BSP_SWINT_SUCCESS != err)
{
 /* NG processing */
}

while (0 == check_swint.cnt)
{
 /* Wait software interrupt */

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0620 Rev.6.20 Page 92 of 179
Jun.30.21

}

while (1);

}

static void task_func (void * p_args)
{

st_check_swint_t *p_check_swint;

p_check_swint = (st_check_swint_t *)p_args;
p_check_swint->cnt++;

}

Special Notes:
This function is available only when use of software interrupts is enabled in a configuration macro. Use this function
after the R_BSP_SoftwareInterruptOpen function has run.

If the access control right cannot be obtained, provide a wait period and then call this function again. It is not possible to
obtain the access control right during interrupt processing if the interrupt is generated in a state where other processing
has the access control right. For this reason a deadlock will occur if polling is used in the interrupt processing to obtain
the access control right.

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0620 Rev.6.20 Page 93 of 179
Jun.30.21

5.28 R_BSP_SoftwareInterruptControl()
This function controls software interrupts.

Format
e_bsp_swint_err_t R_BSP_SoftwareInterruptControl(e_bsp_swint_unit_t unit,

e_bsp_swint_cmd_t const cmd,
void * const p_args)

Parameters
unit

Software interrupt unit (Refer to 4.10.7.)

cmd

Software interrupt control command (Refer to 4.10.8.)

p_args

Pointer to arguments for software interrupt control commands (Refer to 4.10.9.)

Set the argument type to match each software interrupt control command. For commands that do not require
arguments, use the setting FIT_NO_PTR.

Return Values
Software interrupt error code (Refer to 4.11.2.)

Properties
Prototyped in file “r_bsp_software_interrupt.h”.

Description
This function performs software interrupt control in response to commands. Refer to the table below for the operation of
each command.

Command Operation Argument (p_args) Type
BSP_SWINT_CMD_GET_INTE
RRUPT_INFORMATION

Gets the interrupt priority level (IPR),
interrupt status (IEN), interrupt request
(IR), and nested-interrupt status.

st_bsp_swint_int_info_t

BSP_SWINT_CMD_ENABLE_I
NTERRUPT

Enables interrupts (IEN). FIT_NO_PTR

BSP_SWINT_CMD_DISABLE_I
NTERRUPT

Disables interrupts (IEN). FIT_NO_PTR

BSP_SWINT_CMD_SET_INTE
RRUPT_PRIORITY

Sets the specified interrupt priority level
(IPR).

uint8_t

BSP_SWINT_CMD_SET_INTE
RRUPT_REQUEST

Sets an interrupt request (IR). FIT_NO_PTR

BSP_SWINT_CMD_CLEAR_IN
TERRUPT_REQUEST

Clears an interrupt request (IR). FIT_NO_PTR

BSP_SWINT_CMD_ENABLE_N
ESTED_INTERRUPT

Enables nested-interrupt status. FIT_NO_PTR

BSP_SWINT_CMD_DISABLE_
NESTED_INTERRUPT

Disables nested-interrupt status. FIT_NO_PTR

BSP_SWINT_CMD_CLEAR_TA
SK*1 *2

Clears the specified task buffer.
However, the number of task buffers in
use does not decrease. A software
interrupt is generated when a task is
cleared, and the task is not executed.

st_bsp_swint_task_buffer_t

BSP_SWINT_CMD_CLEAR_AL
L_TASK*1

Clears all task buffers. Clearing does not
occur while a task is running. Also, the
software interrupt occurs in this case.

FIT_NO_PTR

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0620 Rev.6.20 Page 94 of 179
Jun.30.21

Command Operation Argument (p_args) Type
BSP_SWINT_CMD_GET_ALL_
TASK_STATUS

Gets the status of all task buffers. st_bsp_swint_task_t

BSP_SWINT_CMD_GET_USE
D_BUFFER

Gets the number of task buffers in use. uint8_t

BSP_SWINT_CMD_GET_UNU
SED_BUFFER

Gets the number of task buffers not in
use.

uint8_t

Note 1. This command control the task buffer. Running this command without first obtaining the access
control right causes an error to be returned.

Note 2. Immediately after clearing the task buffer, the information of task buffers in use is not updated. The
information of task buffers in use is updated after the task buffer is cleared and the software
interrupt occurs.

Example
Case 1: BSP_SWINT_CMD_GET_INTERRUPT_INFORMATION

e_bsp_swint_err_t err;
st_bsp_swint_int_info_t swint_info;

/* Initialize arguments. */
swint_info.ipr = 0;
swint_info.ien = 0;
swint_info.ir = 0;
swint_info.nested_int = 0;

/* Get the software interrupt information. */
err = R_BSP_SoftwareInterruptControl(BSP_SWINT_UNIT1,

BSP_SWINT_CMD_GET_INTERRUPT_INFORMATION,
&swint_info);

if (BSP_SWINT_SUCCESS != err)
{
 /* NG processing */
}

Case 2: BSP_SWINT_CMD_SET_INTERRUPT_PRIORITY

e_bsp_swint_err_t err;
uint8_t swint_ipr;

/* Initialize arguments. */
swint_ipr = 9;

/* Set the software interrupt priority. */
err = R_BSP_SoftwareInterruptControl(BSP_SWINT_UNIT1,

BSP_SWINT_CMD_SET_INTERRUPT_PRIORITY,
&swint_ipr);

if (BSP_SWINT_SUCCESS != err)
{
 /* NG processing */
}

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0620 Rev.6.20 Page 95 of 179
Jun.30.21

Case 3: BSP_SWINT_CMD_CLEAR_TASK

e_bsp_swint_err_t err;
st_bsp_swint_task_buffer_t task_buf;

/* Initialize arguments. */
task_buf.number = 2;

/* Clear the software interrupt task. */
err = R_BSP_SoftwareInterruptControl(BSP_SWINT_UNIT1,

BSP_SWINT_CMD_CLEAR_TASK,
&task_buf);

if (BSP_SWINT_SUCCESS != err)
{
 /* NG processing */
}

Case 4: BSP_SWINT_CMD_GET_ALL_TASK_STATUS

uint32_t i;
e_bsp_swint_err_t err;
st_bsp_swint_task_t check_swint_task[(BSP_CFG_SWINT_TASK_BUFFER_NUMBER+1)];

/* Initialize arguments. */
for (i=0; i<(BSP_CFG_SWINT_TASK_BUFFER_NUMBER+1); i++)
{
 check_swint_task[i].status = BSP_SWINT_TASK_STATUS_NO_REQUEST;
 check_swint_task[i].p_taskAddr = FIT_NO_FUNC;
 check_swint_task[i].p_context = FIT_NO_PTR;
}

/* Clear the software interrupt task. */
err = R_BSP_SoftwareInterruptControl(BSP_SWINT_UNIT1,

BSP_SWINT_CMD_GET_ALL_TASK_STATUS,
check_swint_task);

if (BSP_SWINT_SUCCESS != err)
{
 /* NG processing */
}

Case 5: BSP_SWINT_CMD_GET_USED_BUFFER

e_bsp_swint_err_t err;
uint8_t used_buf;

/* Initialize arguments. */
used_buf = 0;

/* Set the software interrupt priority. */
err = R_BSP_SoftwareInterruptControl(BSP_SWINT_UNIT1,

BSP_SWINT_CMD_GET_USED_BUFFER,
&used_buf);

if (BSP_SWINT_SUCCESS != err)
{
 /* NG processing */
}

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0620 Rev.6.20 Page 96 of 179
Jun.30.21

Case 6: BSP_SWINT_CMD_GET_UNUSED_BUFFER

e_bsp_swint_err_t err;
uint8_t unused_buf;

/* Initialize arguments. */
unused_buf = 0;

/* Set the software interrupt priority. */
err = R_BSP_SoftwareInterruptControl(BSP_SWINT_UNIT1,

BSP_SWINT_CMD_GET_UNUSED_BUFFER,
&unused_buf);

if (BSP_SWINT_SUCCESS != err)
{
 /* NG processing */
}

Special Notes:
This function is available only when use of software interrupts is enabled in a configuration macro. Use this function
after the R_BSP_SoftwareInterruptOpen function has run.

Do not change the interrupt priority level (IPR) while a software interrupt is being processed.

When the BSP_SWINT_CMD_SET_INTERRUPT_PRIORITY command is run, interrupts are disabled temporarily in
order to set the interrupt priority level (IPR).

If the access control right cannot be obtained, provide a wait period and then call this function again. It is not possible to
obtain the access control right during interrupt processing if the interrupt is generated in a state where other processing
has the access control right. For this reason a deadlock will occur if polling is used in the interrupt processing to obtain
the access control right.

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0620 Rev.6.20 Page 97 of 179
Jun.30.21

6. Intrinsic Functions
In this module, common macros are defined so that intrinsic functions can be used without relying on the compiler. The
common macros determine the compiler to be used and replace it with the intrinsic function of each compiler. The
common macros are defined in r_rx_intrinsic_functions.h. The common macros available in this module are shown in
Table 6.1 to Table 6.7.

The argument and return value type of intrinsic functions may differ depending on the compiler, and the common
macros cast the argument and return type according to the CCRX.

Example
#include “platform.h” /* r_rx_intrinsic_functions.h is included */

void main (void)
{
 /* The argument and return value type are declared according to the CCRX
intrinsic function*/
 unsigned long args = 0x12345678;
 unsigned long ret;

 ret = R_BSP_REVW(args);
}

Intrinsic functions may not be supported by some compilers. Those functions are substituted by the API function of
BSP. If the Category in the table is “○”, the common macro is replaced with an intrinsic function. If the Category in
the table is “BSP API”, the common macro is replaced with the API function of BSP.

For specifications and usage of intrinsic functions, refer to the manual of their respective compilers.

Table 6.1 Common Macros of Intrinsic Functions (1/7)

Common Macros Compiler Functions Category

R_BSP_MAX(x, y) ccrx signed long max(signed long data1, signed long data2) ○

 gnuc signed long R_BSP_Max(signed long data1, signed long
data2)

BSP API

 iccrx signed long __MAX(signed long, signed long) ○

R_BSP_MIN(x, y) ccrx signed long min(signed long data1, signed long data2) ○

 gnuc signed long R_BSP_Min(signed long data1, signed long
data2)

BSP API

 iccrx signed long __MIN(signed long, signed long) ○

R_BSP_REVL(x) ccrx unsigned long revl(unsigned long data) ○

 gnuc uint32_t __builtin_bswap32(uint32_t x) ○

 iccrx unsigned long __REVL(unsigned long) ○

R_BSP_REVW(x) ccrx unsigned long revw(unsigned long data) ○

 gnuc int __builtin_rx_revw(int) ○

 iccrx unsigned long __REVW(unsigned long) ○

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0620 Rev.6.20 Page 98 of 179
Jun.30.21

Table 6.2 Common Macros of Intrinsic Functions (2/7)

Common Macros Compiler Functions Category

R_BSP_EXCHANGE(x,
y)

ccrx void xchg(signed long *data1, signed long *data2) ○

 gnuc void __builtin_rx_xchg (int *, int *) ○

 iccrx void _builtin_xchg(signed long *, signed long *) ○

R_BSP_RMPAB(w, x,
y, z)

ccrx long rmpab(long long init, unsigned long count, signed
char *addr1, signed char *addr2)

○

 gnuc long R_BSP_MulAndAccOperation_B(long long init,
unsigned long count, signed char *addr1, signed char
*addr2)

BSP API

 iccrx long rmpab(long long init, unsigned long count, signed
char *addr1, signed char *addr2)

○

R_BSP_RMPAW(w, x,
y, z)

ccrx long rmpaw(long long init, unsigned long count, short
*addr1, short *addr2)

○

 gnuc long R_BSP_MulAndAccOperation_W(long long init,
unsigned long count, short *addr1, short *addr2)

BSP API

 iccrx long rmpaw(long long init, unsigned long count, short
*addr1, short *addr2)

○

R_BSP_RMPAL(w, x,
y, z)

ccrx long rmpal(long long init, unsigned long count, long
*addr1, long *addr2)

○

 gnuc long R_BSP_MulAndAccOperation_L(long long init,
unsigned long count, long *addr1, long *addr2)

BSP API

 iccrx long rmpal(long long init, unsigned long count, long
*addr1, long *addr2)

○

R_BSP_ROLC(x) ccrx unsigned long rolc(unsigned long data) ○

 gnuc unsigned long R_BSP_RotateLeftWithCarry(unsigned
long data)

BSP API

 iccrx unsigned long __ROLC(unsigned long) ○

R_BSP_RORC(x) ccrx unsigned long rorc(unsigned long data) ○

 gnuc unsigned long R_BSP_RotateRightWithCarry(unsigned
long data)

BSP API

 iccrx unsigned long __RORC(unsigned long) ○

R_BSP_ROTL(x, y) ccrx unsigned long rotl(unsigned long data, unsigned long
num)

○

 gnuc unsigned long R_BSP_RotateLeft(unsigned long data,
unsigned long num)

BSP API

 iccrx unsigned long __ROTL(unsigned long, unsigned long) ○

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0620 Rev.6.20 Page 99 of 179
Jun.30.21

Table 6.3 Common Macros of Intrinsic Functions (3/7)

Common Macros Compiler Functions Category
R_BSP_ROTR(x, y) ccrx unsigned long rotr (unsigned long data, unsigned long

num)
○

 gnuc unsigned long R_BSP_RotateRight(unsigned long data,
unsigned long num)

BSP API

 iccrx unsigned long __ROTR(unsigned long, unsigned long) ○
R_BSP_BRK() ccrx void brk(void) ○
 gnuc void __builtin_rx_brk (void) ○
 iccrx void __break(void) ○
R_BSP_INT(x) ccrx void int_exception(signed long num) ○
 gnuc void __builtin_rx_int (int) ○
 iccrx void __software_interrupt(unsigned char) ○
R_BSP_WAIT() ccrx void wait(void) ○
 gnuc void __builtin_rx_wait (void) ○
 iccrx void __wait_for_interrupt(void) ○
R_BSP_NOP() ccrx void nop(void) ○
 gnuc __asm("nop") ○
 iccrx void __no_operation(void) ○
R_BSP_SET_IPL(x) ccrx void set_ipl(signed long level) ○
 gnuc void __builtin_rx_mvtipl (int) ○
 iccrx void __set_interrupt_level(__ilevel_t) ○
R_BSP_GET_IPL() ccrx unsigned char get_ipl(void) ○
 gnuc uint32_t R_BSP_CpuInterruptLevelRead (void) BSP API
 iccrx __ilevel_t __get_interrupt_level(void) ○
R_BSP_SET_PSW(x) ccrx void set_psw(unsigned long data) ○
 gnuc void __builtin_rx_mvtc (int reg, int val) ○
 iccrx void __set_PSW_register(unsigned long) ○
R_BSP_GET_PSW() ccrx unsigned long get_psw(void) ○
 gnuc int __builtin_rx_mvfc (int) ○
 iccrx unsigned long __get_PSW_register(void) ○
R_BSP_SET_FPSW(x) ccrx void set_fpsw(unsigned long data) ○
 gnuc void __builtin_rx_mvtc (int reg, int val) ○
 iccrx void __set_FPSW_register(unsigned long) ○
R_BSP_GET_FPSW() ccrx unsigned long get_fpsw(void) ○
 gnuc int __builtin_rx_mvfc (int) ○
 iccrx unsigned long __get_FPSW_register(void) ○

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0620 Rev.6.20 Page 100 of 179
Jun.30.21

Table 6.4 Common Macros of Intrinsic Functions (4/7)

Common Macros Compiler Functions Category

R_BSP_SET_USP(x) ccrx void set_usp(void *data) ○

 gnuc void __builtin_rx_mvtc (int reg, int val) ○

 iccrx void __set_USP_register(unsigned long) ○

R_BSP_GET_USP() ccrx void *get_usp(void) ○

 gnuc int __builtin_rx_mvfc (int) ○

 iccrx unsigned long __get_USP_register(void) ○

R_BSP_SET_ISP(x) ccrx void set_isp(void *data) ○

 gnuc void __builtin_rx_mvtc (int reg, int val) ○

 iccrx void __set_ISP_register(unsigned long) ○

R_BSP_GET_ISP() ccrx void *get_isp(void) ○

 gnuc int __builtin_rx_mvfc (int) ○

 iccrx unsigned long __get_ISP_register(void) ○

R_BSP_SET_INTB(x) ccrx void set_intb (void *data) ○

 gnuc void __builtin_rx_mvtc (int reg, int val) ○

 iccrx void __set_interrupt_table(unsigned long address) ○

R_BSP_GET_INTB() ccrx void *get_intb(void) ○

 gnuc int __builtin_rx_mvfc (int) ○

 iccrx unsigned long __get_interrupt_table(void) ○

R_BSP_SET_BPSW(x) ccrx void set_bpsw(unsigned long data) ○

 gnuc void __builtin_rx_mvtc (int reg, int val) ○

 iccrx void R_BSP_SetBPSW(uint32_t data) BSP API

R_BSP_GET_BPSW() ccrx unsigned long get_bpsw(void) ○

 gnuc int __builtin_rx_mvfc (int) ○

 iccrx uint32_t R_BSP_GetBPSW(void) BSP API

R_BSP_SET_BPC(x) ccrx void set_bpc(void *data) ○

 gnuc void __builtin_rx_mvtc (int reg, int val) ○

 iccrx void R_BSP_SetBPC(void *data) BSP API

R_BSP_GET_BPC() ccrx void *get_bpc(void) ○

 gnuc int __builtin_rx_mvfc (int) ○

 iccrx void *R_BSP_GetBPC(void) BSP API

R_BSP_SET_FINTV(x) ccrx void set_fintv(void *data) ○

 gnuc void __builtin_rx_mvtc (int reg, int val) ○

 iccrx void __set_FINTV_register(__fast_int_f) ○

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0620 Rev.6.20 Page 101 of 179
Jun.30.21

Table 6.5 Common Macros of Intrinsic Functions (5/7)

Common Macros Compiler Functions Category

R_BSP_GET_FINTV() ccrx void *get_fintv(void) ○

 gnuc int __builtin_rx_mvfc (int) ○

 iccrx __fast_int_f __get_FINTV_register(void) ○

R_BSP_EMUL(x, y) ccrx signed long long emul(signed long data1, signed long
data2)

○

 gnuc signed long long R_BSP_SignedMultiplication(signed
long data1, signed long data2)

BSP API

 iccrx signed long long R_BSP_SignedMultiplication(signed
long data1, signed long data2)

BSP API

R_BSP_EMULU(x, y) ccrx unsigned long long emulu(unsigned long data1,
unsigned long data2)

○

 gnuc unsigned long long
R_BSP_UnsignedMultiplication(unsigned long data1,
unsigned long data2)

BSP API

 iccrx unsigned long long
R_BSP_UnsignedMultiplication(unsigned long data1,
unsigned long data2)

BSP API

R_BSP_CHG_PMUSR() ccrx void chg_pmusr(void) ○

 gnuc void R_BSP_ChangeToUserMode(void) BSP API

 iccrx void R_BSP_ChangeToUserMode(void) *1 BSP API

R_BSP_SET_ACC(x) ccrx void set_acc(signed long long data) ○

 gnuc void R_BSP_SetACC(signed long long data) BSP API

 iccrx void R_BSP_SetACC(signed long long data) BSP API

R_BSP_GET_ACC() ccrx signed long long get_acc(void) ○

 gnuc signed long longR_BSP_GetACC(void) BSP API

 iccrx signed long longR_BSP_GetACC(void) BSP API

R_BSP_SETPSW_I() ccrx void setpsw_i(void) ○

 gnuc void __builtin_rx_setpsw (int) ○

 iccrx void __enable_interrupt(void) ○

R_BSP_CLRPSW_I() ccrx void clrpsw_i(void) ○

 gnuc void __builtin_rx_clrpsw (int) ○

 iccrx void __disable_interrupt(void) ○

Note 1. RX72M is not supported. Please do not use in RX72M.

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0620 Rev.6.20 Page 102 of 179
Jun.30.21

Table 6.6 Common Macros of Intrinsic Functions (6/7)

Common Macros Compiler Functions Category

R_BSP_MACL(x, y, z) ccrx long macl(short *data1, short *data2, unsigned long
count)

○

 gnuc long R_BSP_MulAndAccOperation_2byte(short
*data1, short *data2, unsigned long count)

BSP API

 iccrx long __macl(short * data1, short * data2, unsigned
long count)

○

R_BSP_MACW1(x, y, z) ccrx short macw1(short *data1, short *data2, unsigned long
count)

○

 gnuc short R_BSP_MulAndAccOperation_FixedPoint1(short
*data1, short *data2, unsigned long count)

BSP API

 iccrx short __macw1(short * data1, short * data2, unsigned
long count)

○

R_BSP_MACW2(x, y, z) ccrx short macw2(short *data1, short *data2, unsigned long
count)

○

 gnuc short R_BSP_MulAndAccOperation_FixedPoint2(short
*data1, short *data2, unsigned long count)

BSP API

 iccrx short __macw2(short * data1, short * data2, unsigned
long count)

○

R_BSP_SET_EXTB(x) ccrx void set_extb(void *data) ○

 gnuc void __builtin_rx_mvtc (int reg, int val) ○

 iccrx void R_BSP_SetEXTB(void *value) BSP API

R_BSP_GET_EXTB() ccrx void * get_extb(void) ○

 gnuc int __builtin_rx_mvfc (int) `0xD extb' ○

 iccrx void *R_BSP_GetEXTB(void) BSP API

R_BSP_BIT_CLEAR(x,y
)

ccrx void __bclr(unsigned char *data, unsigned long bit) ○

 gnuc void R_BSP_BitClear(uint8_t *data, uint32_t bit) BSP API

 iccrx void R_BSP_BitClear(uint8_t *data, uint32_t bit) BSP API

R_BSP_BIT_SET(x,y) ccrx void __bset(unsigned char *data, unsigned long bit) ○

 gnuc void R_BSP_BitSet(uint8_t *data, uint32_t bit) BSP API

 iccrx void R_BSP_BitSet(uint8_t *data, uint32_t bit) BSP API

R_BSP_BIT_REVERSE
(x,y)

ccrx void __bnot(unsigned char *data, unsigned long bit) ○

 gnuc void R_BSP_BitReverse(uint8_t *data, uint32_t bit) BSP API

 iccrx void R_BSP_BitReverse(uint8_t *data, uint32_t bit) BSP API

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0620 Rev.6.20 Page 103 of 179
Jun.30.21

Table 6.7 Common Macros of Intrinsic Functions (7/7)

Common Macros Compiler Functions Category

R_BSP_SET_DPSW(x) ccrx void __set_dpsw(unsigned long data) ○

 gnuc void R_BSP_SET_DPSW(uint32_t data) BSP API

 iccrx void R_BSP_SET_DPSW(uint32_t data) BSP API

R_BSP_GET_DPSW() ccrx unsigned long __get_dpsw(void) ○

 gnuc uint32_t R_BSP_GET_DPSW(void) BSP API

 iccrx uint32_t R_BSP_GET_DPSW(void) BSP API

R_BSP_SET_DECNT(x) ccrx void __set_decnt(unsigned long data) ○

 gnuc void R_BSP_SET_DECNT(uint32_t data) BSP API

 iccrx void R_BSP_SET_DECNT(uint32_t data) BSP API

R_BSP_GET_DECNT() ccrx unsigned long __get_decnt(void) ○

 gnuc uint32_t R_BSP_GET_DECNT(void) BSP API

 iccrx uint32_t R_BSP_GET_DECNT(void) BSP API

R_BSP_GET_DEPC() ccrx void *__get_depc(void) ○

 gnuc void *R_BSP_GET_DEPC(void) BSP API

 iccrx void *R_BSP_GET_DEPC(void) BSP API

R_BSP_INIT_TFU() *1 ccrx void __init_tfu(void) ○

 gnuc void R_BSP_InitTFU(void) BSP API

 iccrx - -

R_BSP_SINCOSF(x, y, z) ccrx __sincosf(float f, float *sin, float *cos) ○

 gnuc void R_BSP_CalcSine_Cosine(float f, float *sin,
float *cos)

BSP API

 iccrx __sincosf((float)(x), (float *)(y), (float *)(z)) BSP API

R_BSP_ATAN2HYPOTF(w,
x, y, z)

ccrx __atan2hypotf((float y, float x, float *atan2, float
*hypot)

○

 gnuc void R_BSP_CalcAtan_SquareRoot(float y, float x,
float *atan2, float *hypot)

BSP API

 iccrx __atan2hypotf((float)(w), (float)(x), (float *)(y), (float
*)(z))

BSP API

Note 1. It is not necessary to use in IAR. In IAR Compiler, the built-in function of IAR Compiler which is the
same as R_BSP_INIT_TFU, is automatically executed immediately before calling
R_BSP_SINCOSF or R_BSP_ATAN2HYPOTF.

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0620 Rev.6.20 Page 104 of 179
Jun.30.21

7. Project Setup
This section details adding the r_bsp to your project.

7.1 Adding the FIT Module to Your Project
This module must be added to each project in which it is used. Renesas recommends the method using the Smart
Configurator described in (1) or (3) or (5) below. However, the Smart Configurator only supports some RX devices.
Please use the methods of (2) or (4) for RX devices that are not supported by the Smart Configurator.

(1) Adding the FIT module to your project using the Smart Configurator in e2 studio
By using the Smart Configurator in e2 studio, the FIT module is automatically added to your project. Refer to
“RX Smart Configurator User Guide: e2 studio (R20AN0451)” for details.

(2) Adding the FIT module to your project using the FIT Configurator in e2 studio
By using the FIT Configurator in e2 studio, the FIT module is automatically added to your project. Refer to
“Adding Firmware Integration Technology Modules to Projects (R01AN1723)” for details.

(3) Adding the FIT module to your project using the Smart Configurator in CS+
By using the Smart Configurator Standalone version in CS+, the FIT module is automatically added to your
project. Refer to “RX Smart Configurator User Guide: CS+ (R20AN0470)” for details.

(4) Adding the FIT module to your project in CS+
In CS+, please manually add the FIT module to your project. Refer to “Adding Firmware Integration
Technology Modules to CS+ Projects (R01AN1826)” for details.

(5) Adding the FIT module to your project using the Smart Configurator in IAREW
By using the Smart Configurator Standalone version, the FIT module is automatically added to your project.
Refer to “RX Smart Configurator User Guide: IAREW (R20AN0535)” for details.

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0620 Rev.6.20 Page 105 of 179
Jun.30.21

7.2 Adding FIT Modules to the IAR Project
This section describes how to add FIT modules to IAR projects.

7.2.1 Adding FIT Modules by using the Smart Configurator standalone version
In this explanation, IAR Embedded Workbench for Renesas RX 4.12.1 is used.

(1) Create a new project in IAREW.

(2) Adding FIT Modules to the IAR project by following the procedure in “7.1 Adding the FIT Module to Your
Project”.

(3) Right-click on the project and click “Options…”.

(4) Select “Target” on the General Options tab.

(5) For “Device”, select a device to use.

(6) Select “Preprocessor” on the C/C++ Compiler tab.

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0620 Rev.6.20 Page 106 of 179
Jun.30.21

(7) Include path of the FIT modules for generated by the smart configurator standalone version is set.

(8) Select “Config” on the Linker tab.

(9) For the linker configuration file, tick the “Override default” check box. Then, select “the target device.icf
file”.

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0620 Rev.6.20 Page 107 of 179
Jun.30.21

(10) Select “Setup” on the Debugger tab.

(11) For the driver, select “Emulator”.

(12) For the device description file, tick the “Override default” check box, and then select “the target device.dff
file”.

(13) Click “Project >> Rebuild All”.

(14) Click “E1/E20 Emulator >> Hardware Setup…”.

(15) On the hardware setup window, set “Debug Configurations” and press OK.

(16) Click “Project >> Download and Debug”.

8. Adding r_bsp manually
This section gives instruction on how to add an r_bsp to an e2 studio project manually (without use of the FIT Plug-in).

1. Copy the r_bsp folder to your e2 studio project’s root. Once clicking Copy in Windows you can right-click on
your project in e2 studio and click Paste.

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0620 Rev.6.20 Page 108 of 179
Jun.30.21

2. Expand the r_bsp >> board folder and delete all folders except the one for the board you are using. You can
leave the ‘user’ directory if you wish to have a directory to start off with when you create your own BSP.

3. Expand the r_bsp >> mcu folder and delete all folders except the one for your MCU group and the one named
all.

4. It is recommended to create a directory to store all FIT configuration files. Having one place for configuration

files make them easy to find and easy to backup. The default name for this folder is r_config. If an r_config
folder was not included in your r_bsp zip file then we will create one here. Create an r_config folder for your
project by right-clicking on your project and choosing New >> Folder. In the window that pops up enter
‘r_config’ for the folder name and click Finish.

5. We will now setup include paths for the r_bsp and r_config folders. Right-click on your project and click
Properties.

6. Under ‘Tool Settings’ select Compiler >> Source.

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0620 Rev.6.20 Page 109 of 179
Jun.30.21

7. In the ‘Include file directories’ box click the ‘Add’ button.

8. The ‘Add directory path’ window will pop up; click the Workspace button.

9. In the ‘Folder selection’ window choose the r_bsp folder and click OK.

10. Verify that your window looks like the one above and click OK.
11. Back in the main Properties window verify that you now have an include path for the r_bsp.
12. Follow the same steps to add an include path for the r_config folder.
13. Back in the main Properties window verify that you now have an include path for the r_bsp and r_config

folders and click Apply. Click OK to return to your project.
14. Which board is being used needs to be selected in the platform.h header file. Open up platform.h and

uncomment the #include for the board you are using. In this example the RSKRX111 is being used so the
#include for “./board/rskrx111/r_bsp.h” is uncommented.

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0620 Rev.6.20 Page 110 of 179
Jun.30.21

15. In order to configure the r_bsp the user needs to create an r_bsp_config.h file. Copy the
r_bsp_config_reference.h file from your board folder and paste it into the r_config folder. Right-click on the
file in the r_config folder and click Rename. Rename the file to r_bsp_config.h. If the MCU has an
r_bsp_interrupt_config_reference.h file, copy that file as well and rename it to r_bsp_interrupt_config.h.

16. Configure the r_bsp for your board by going through and modifying the r_bsp_config.h file as needed.

17. For RX600 Series, and RX700 Series MCU’s configuring the bsp requires that the user also create an
r_bsp_interrupt_config.h file. Copy the r_bsp_interrupt_config_reference.h file from your board folder and
paste it into the r_config folder. Right-click on the file in the r_config folder and click Rename. Rename the
file to r_bsp_interrupt_config.h.

18. Configure the software configurable interrupts for your RX600/RX700 Series board by going through and

modifying the r_bsp_interrupt_config.h file as needed.

19. Build the project.

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0620 Rev.6.20 Page 111 of 179
Jun.30.21

8.1 Creating a BSP Module for a Custom Board
This section describes how to create a custom BSP.

When there is a generic folder for the MCU used, create a project selecting the Generic board (refer to the procedure in
7. Project Setup).

When there is no generic folder for the MCU used, create a project following the procedure below. This section
describes an example procedure using the RX111 MCU.

The figure below shows the procedure for creating a bsp for a custom board.

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0620 Rev.6.20 Page 112 of 179
Jun.30.21

Step 1. Create a New Project (Mandatory)
To create a new project, refer to "Creating Empty Project" in the "Board Support Package Module Using Firmware
Integration Technology" application note (R01AN1685).

Step 2. Add the BSP Module (Mandatory)
To add the BSP module to the new project (user project) created in step 1, refer to "Adding r_bsp with e2 studio FIT
Plug-in" in the "Board Support Package Module Using Firmware Integration Technology" application note
(R01AN1685).
Choose the following options when adding the BSP module on the FIT plug-in.

 Family, Series, Group: MCU used.

 Target Board: MCU board used.

For example, when using the RX111 to create the user board, choose "RSKRX111" or "RSKRX64M". By choosing the
appropriate options here, the board folder for the custom board can be created easily.

 Choose the
MCU used.

Choose the MCU board used.

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0620 Rev.6.20 Page 113 of 179
Jun.30.21

Step 3. Create a Folder for the Custom Board
The r_bsp folder should now be present in the user project. Below, the board folder under the r_bsp folder is modified
to create the custom BSP. The code in the mcu folder does not require modification.

1) Confirm that the board folder (rskrx111 here) specified in step 2 and the user folder are generated in the board
folder under the r_bsp folder.

2) Use the user folder as the folder for the custom board (optional).

Rename the folder name (optional). The folder name does not have to be changed.

Folder structure after the
BSP module is added.

Example when the folder name is
changed for the custom board

Folder for setting of the
board specified

Folder for the
custom board

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0620 Rev.6.20 Page 114 of 179
Jun.30.21

Step 4. Store Necessary Files (Mandatory)
Store necessary files in the folder created in step 3.

1) Copy all files in the rskrx111 folder and paste them in the folder for the custom board. Then overwrite the r_bsp.h
file.

2) Exclude the rskrx111 folder from build.

(The folder can be deleted if it is not necessary after the folder for the custom board is created.)

 Right click the folder.

Select “Exclude from build…”
from the menu.

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0620 Rev.6.20 Page 115 of 179
Jun.30.21

Step 5. Modify Files Suited to the Custom Board (Mandatory)
Modify the following four files suited to the custom board.

1. hwsetup.c

This file executes the following four functions.

 Function: output_ports_configure

This function initializes ports used for LEDs, switches, SCI, and ADC.

Ports need to be configured with either of procedures below according to the board used.

If not configuring pins in this function:

1) Comment out or delete the function declaration of the output_ports_configure function.

2) Delete the output_ports_configure function which is called in the hardware_setup function.

3) Comment out or delete the output_ports_configure function.

Then configure settings described in "2. *board_specific_defines*.h" as well.

If configuring pins in this function:

1) Comment out or delete the source code in the output_ports_configure function.

2) Configure pins according to the board used.

 Function: bsp_non_existent_port_init

This function initializes nonexistent ports. No additional processing is required for this function.

 Function: interrupts_configure

This function configures interrupt settings which are performed prior to the main function.

When such settings are required, add the settings in this function.

 Function: peripheral_modules_enable

This function configures settings for peripheral functions which are performed prior to the main function.

When such settings are required, add the settings in this function.

Examples of processing are shown below when not configuring pins in the output_ports_configure function.

Comment out or delete this part.

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0620 Rev.6.20 Page 116 of 179
Jun.30.21

Comment out or delete this line.

Comment out or delete this
part.

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0620 Rev.6.20 Page 117 of 179
Jun.30.21

2. *board_specific_defines*.h

The board used becomes the name of this file (e.g. rskrx111.h). This file has definitions of pins used for switches,
LEDs, and so on, and their settings vary depending on the board used.

However this file is not necessary when using a custom board. Perform the following steps.

1) Delete the *board_specific_defines*.h file from the folder for the custom board.

2) Delete the following line in the r_bsp.h file.

#include "board/rskrx111/rskrx111.h"

3. r_bsp.h

This header file is included in platform.h and has all #includes required for the board and the MCU. The include
paths associated with the board need to be modified.

1) Modify the include paths which start with "board/" as follows:

Change the path to "board/name of the folder for the custom board/file name".

Example:

Before modification: #include "board/rskrx111/rskrx111.h"

After modification: #include "board/test_board/rskrx111.h"

Change this part to the folder name for the custom board.

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0620 Rev.6.20 Page 118 of 179
Jun.30.21

4. r_bsp_config_reference.h

This header file has settings to provide default options of the board. Macro definitions that are included in this file
and need to be modified according to the custom board are listed in the table below. Change the settings as
required.

For example, when the setting in the copied board folder uses the PLL as the system clock while the user system
uses the HOCO, change the clock setting for BSP_CFG_CLOCK_SOURCE from PLL to HOCO.

Also confirm usage conditions for macros not in the table below and modify them as required.

Table 8.1 Macros to be modified to reflect the Custom Board

Macro Description
BSP_CFG_CLOCK_SOURCE Selects a crystal on the board and a clock source.

BSP_CFG_XTAL_HZ Specifies a value according to the crystal on the board (default value: RSK
setting).

BSP_CFG_PLL_DIV When using the PLL:
Specifies an available setting value using the crystal on the board.

BSP_CFG_PLL_MUL When using the PLL:
Specifies an available setting value using the crystal on the board.

BSP_CFG_ICK_DIV Specifies an available setting value using the crystal on the board.
BSP_CFG_PCKB_DIV Specifies an available setting value using the crystal on the board.
BSP_CFG_PCKD_DIV Specifies an available setting value using the crystal on the board.
BSP_CFG_FCK_DIV Specifies an available setting value using the crystal on the board.

Step 6. Copy and Rename the r_bsp_config_reference.h File (Mandatory)
After step 5, copy the r_bsp_config_reference.h file, paste it in the r_config folder, and rename the copied file to
"r_bsp_config.h".

Step 7. Modify the platform.h File (Mandatory)
This header file needs to be modified to specify the r_bsp.h file in the newly created folder for the custom board. Follow
the steps below for the modification.

1) Uncomment the line under the comment "/* User Board - Define your own board here. */ ".

2) Change the folder name after "board/" to the folder name for the custom board.

Before modification:

After modification:

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0620 Rev.6.20 Page 119 of 179
Jun.30.21

9. Adding FIT Modules to the User Project
This section describes how to add a FIT module to the user project. The procedure to add the peripheral FIT module to
the existing user project without creating a new project is described. The FIT configurator in the e2 studio is used to add
the FIT module.

Step 1. Adding the FIT module using the FIT configurator
1. Click Renesas Views >> e2 solution toolkit >> FIT Configurator to open the FIT configurator.

2. Select the user created project from the list in the ‘Name of the project to add FIT modules’ field.

3. Select a GENERIC board from the list in the ‘Target Board’ field.

4. Select the r_bsp and the peripheral FIT module from the ‘Available Modules’ pane and click the Add Module button.

5. Confirm that the r_bsp and the peripheral FIT module selected are displayed in the ‘Selected Modules’ pane, and
click the Generate Code button.

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0620 Rev.6.20 Page 120 of 179
Jun.30.21

6. Check the contents for code generation in the ‘FIT Generation – Summary’ window and click OK.

7. When the ‘FIT project toolchain settings’ window appears, click Cancel.

This window appears when the necessary settings to use the BSP and FIT modules have not been done. Settings for
the compiler option and the Standard library option are described in “Step 2. Setting the Project Environment”.

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0620 Rev.6.20 Page 121 of 179
Jun.30.21

Step 2. Setting the Project Environment
1. Select Renesas Tool Setting (click the e2 icon on the menu bar) to open the ‘Properties for <project name>’ window

and select
C/C++ Build >> Settings >> Tool Settings (tab) >> Compiler >> Source >> Source file, and then specify ‘C99’ in the
‘C:’ field. The FIT module assumes ‘C99’ to be specified for the C language setting.

2. Select Renesas Tool Setting (click the e2 icon on the menu bar) to open the ‘Properties for <project name>’ window
and select
C/C++ Build >> Settings >> Tool Settings >> Standard Library >> Contents, and then specify ‘C99’ in the ‘Library
configuration’ field. The FIT module assumes ‘C99’ to be specified for the library setting for C language.

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0620 Rev.6.20 Page 122 of 179
Jun.30.21

3. Specify sections for the FIT module.

When the FIT module project is generated in the e2 studio, sections for the FIT module will be specified. FIT module
assumes these sections are used for the project.

Table 9.1 lists the Sections for the FIT module.

Table 9.1 Sections for the FIT module

Address Section Name

0x00000004 SU

SI

B_1

R_1

B_2

R_2

B

R

0xFFxxxxxx *1 C_1

C_2

C

C$*

D*

W*

L

P*

0xFFFFFF80 EXCEPTVECT / FIXEDVECT *2

0xFFFFFFFC *3 RESETVECT *3

Note 1. The address varies depending on the device selected when generating the project.
Note 2. Section names are different for each CPU. The section names are EXCEPTVECT for RXv2 and

RXv3, and FIXEDVECT for RXv1.
Note 3. This is only specified when RXv2 core and RXv3 are selected.

For the device CPU, refer to the Features section in the User’s Manual: Hardware.

Step 3. Startup disable
1. Disable the BSP startup. See Section 2.22.1 Setting the Startup Disable Function for details.

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0620 Rev.6.20 Page 123 of 179
Jun.30.21

Notes
1. When the code is generated with the FIT configurator, include paths necessary for using the FIT module are
automatically added.

To check include paths added, select Renesas Tool Setting (click the e2 icon on the menu bar) to open the ‘Properties
for <project name>’ window and select C/C++ General >> Path and Symbols, and then check the paths in the
‘Includes’ and the ‘Source and Location’ tabs.

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0620 Rev.6.20 Page 124 of 179
Jun.30.21

10. Appendices
10.1 Confirmed Operation Environment
This section describes confirmed operation environment for this module. Some macros for GCC Compiler and IAR
Compiler cannot be used with CCRX Compiler V2.04.01 or lower. If the version of your BSP is Rev.5.00 or higher,
please update to V2.05.00 or higher. The version used for confirmed operation environment is also described for the
GCC Compiler and IAR Compiler, but it is recommended to use the latest version.

Table 10.1 Confirmed Operation Environment (Rev.3.10)

Item Details
Integrated development
environment Renesas Electronics e2 studio Version 4.1.0.018

C compiler

Renesas Electronics C/C++ Compiler Package for RX Family V2.03.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99

Endian Big endian/little endian
Revision of the module Rev.3.10
Board used Renesas Starter Kit for RX130 (Part Number: RTK5005130SxxxxxBE)

Table 10.2 Confirmed Operation Environment (Rev.3.20)

Item Details
Integrated development
environment Renesas Electronics e2 studio Version 4.1.0.018

C compiler

Renesas Electronics C/C++ Compiler Package for RX Family V2.03.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99

Endian Big endian/little endian
Revision of the module Rev.3.20
Board used Renesas Starter Kit for RX24T (Part Number: RTK500524TSxxxxxBE)

Table 10.3 Confirmed Operation Environment (Rev.3.30)

Item Details
Integrated development
environment Renesas Electronics e2 studio Version 4.2.0.012

C compiler

Renesas Electronics C/C++ Compiler Package for RX Family V2.03.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99

Endian Big endian/little endian
Revision of the module Rev.3.30
Board used Renesas Starter Kit for RX231 (Part Number: R0K505231SxxxBE)

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0620 Rev.6.20 Page 125 of 179
Jun.30.21

Table 10.4 Confirmed Operation Environment (Rev.3.31)

Item Details
Integrated development
environment Renesas Electronics e2 studio Version 4.3.0.007

C compiler

Renesas Electronics C/C++ Compiler Package for RX Family V2.03.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99

Endian Big endian/little endian
Revision of the module Rev.3.31
Board used Renesas Starter Kit for RX23T (Part Number: RTK500523TSxxxxxBE)

Table 10.5 Confirmed Operation Environment (Rev.3.40)

Item Details
Integrated development
environment Renesas Electronics e2 studio Version 5.0.1.005

C compiler

Renesas Electronics C/C++ Compiler Package for RX Family V2.05.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99

Endian Big endian/little endian
Revision of the module Rev.3.40
Board used Renesas Starter Kit+ for RX65N (Part Number: RTK500565NSxxxxxBE)

Table 10.6 Confirmed Operation Environment (Rev.3.50)

Item Details
Integrated development
environment Renesas Electronics e2 studio Version 5.2.0.020

C compiler

Renesas Electronics C/C++ Compiler Package for RX Family V2.06.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99

Endian Big endian/little endian
Revision of the module Rev.3.50

Board used Renesas Starter Kit for RX24T (Part Number: RTK500524TSxxxxxBE)
Renesas Starter Kit for RX24U (Part Number: RTK500524USxxxxxBE)

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0620 Rev.6.20 Page 126 of 179
Jun.30.21

Table 10.7 Confirmed Operation Environment (Rev.3.60)

Item Details
Integrated development
environment

Renesas Electronics e2 studio Version 5.4.0.015 (RX130)
Renesas Electronics e2 studio Version 6.0.0.001 (RX65N)

C compiler

Renesas Electronics C/C++ Compiler Package for RX Family V2.07.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99

Endian Big endian/little endian
Revision of the module Rev3.60

Board used

Renesas Starter Kit for RX130 (Part Number: RTK5005130SxxxxxBE)
Renesas Starter Kit for RX130-512KB (Part Number:
RTK5051308SxxxxxBE) Renesas Starter Kit+ for RX65N (Part Number:
RTK500565NSxxxxxBE)
Renesas Starter Kit+ for RX65N-2MB (Part Number:
RTK50565N2SxxxxxBE)

Table 10.8 Confirmed Operation Environment (Rev.3.70)

Item Details
Integrated development
environment Renesas Electronics e2 studio Version 6.1.0

C compiler

Renesas Electronics C/C++ Compiler Package for RX Family V2.07.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99

Endian Big endian/little endian
Revision of the module Rev3.70

Board used

Renesas Starter Kit for RX111 (Part Number: R0K505111SxxxBE)
Renesas Starter Kit for RX113 (Part Number: R0K505113SxxxBE)
Renesas Starter Kit for RX130 (Part Number: RTK5005130SxxxxxBE)
Renesas Starter Kit for RX130-512KB (Part Number:
RTK5051308SxxxxxBE)
Renesas Starter Kit for RX231 (Part Number: R0K505231SxxxBE)
Renesas Starter Kit for RX23T (Part Number: RTK500523TSxxxxxBE)
Renesas Starter Kit for RX24T (Part Number: RTK500524TSxxxxxBE)
Renesas Starter Kit for RX24U (Part Number: RTK500524USxxxxxBE)
Renesas Starter Kit+ for RX64M (Part Number: R0K50564MSxxxBE)
Renesas Starter Kit+ for RX71M (Part Number: R0K50571MSxxxBE)
RX65N Envision Kit (Part Number: RTK5RX65N2CxxxxxBR)

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0620 Rev.6.20 Page 127 of 179
Jun.30.21

Table 10.9 Confirmed Operation Environment (Rev.3.71)

Item Details
Integrated development
environment Renesas Electronics e2 studio Version 6.1.0

C compiler

Renesas Electronics C/C++ Compiler Package for RX Family V2.07.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99

Endian Big endian/little endian
Revision of the module Rev3.71

Board used
Renesas Starter Kit+ for RX65N-2MB (Part Number:
RTK50565N2SxxxxxBE)
RX65N Envision Kit (product No.: RTK5RX65N2CxxxxxBR)

Table 10.10 Confirmed Operation Environment (Rev.3.80)

Item Details
Integrated development
environment Renesas Electronics e2 studio Version 7.0.0

C compiler

Renesas Electronics C/C++ Compiler Package for RX Family V2.08.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99

Endian Big endian/little endian
Revision of the module Rev3.80

Board used

Renesas Starter Kit for RX111 (Part Number: R0K505111SxxxBE)
Renesas Starter Kit for RX113 (Part Number: R0K505113SxxxBE)
Renesas Starter Kit for RX130 (Part Number: RTK5005130SxxxxxBE)
Renesas Starter Kit for RX130-512KB (Part Number:
RTK5051308SxxxxxBE)
Renesas Starter Kit for RX210 (B Mask) (Part Number: R0K505210SxxxBE)
Renesas Starter Kit for RX231 (Part Number: R0K505231SxxxBE)
Renesas Starter Kit for RX23T (Part Number: RTK500523TSxxxxxBE)
Renesas Starter Kit for RX63T (64-pin) (Part Number: R0K50563TSxxxBE)
Renesas Starter Kit for RX63T (144-pin) (Part Number: R0K5563THSxxxBE)
Renesas Starter Kit+ for RX64M (Part Number: R0K50564MSxxxBE)
Renesas Starter Kit+ for RX65N (Part Number: RTK500565NSxxxxxBE)
Renesas Starter Kit+ for RX65N-2MB (Part Number:
RTK50565N2SxxxxxBE)
Renesas Starter Kit+ for RX71M (Part Number: R0K50571MSxxxBE)
Target Board for RX130 (Part Number: RTK5RX1300CxxxxxBR)
Target Board for RX231 (Part Number: RTK5RX2310CxxxxxBR)
Target Board for RX65N (Part Number: RTK5RX65N0CxxxxxBR)
RX65N Envision Kit (Part Number: RTK5RX65N2CxxxxxBR)

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0620 Rev.6.20 Page 128 of 179
Jun.30.21

Table 10.11 Confirmed Operation Environment (Rev.3.90)

Item Details
Integrated development
environment Renesas Electronics e2 studio Version 7.0.0

C compiler

Renesas Electronics C/C++ Compiler Package for RX Family V3.00.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99

Endian Big endian/little endian
Revision of the module Rev3.90
Board used Renesas Starter Kit for RX66T (Part Number: RTK50566T0SxxxxxBE)

Table 10.12 Confirmed Operation Environment (Rev.3.91)

Item Details
Integrated development
environment Renesas Electronics e2 studio Version 7.0.0

C compiler

Renesas Electronics C/C++ Compiler Package for RX Family V3.00.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99

Endian Big endian/little endian
Revision of the module Rev3.91
Board used Renesas Starter Kit for RX66T (Part Number: RTK50566T0SxxxxxBE)

Table 10.13 Confirmed Operation Environment (Rev.4.00)

Item Details
Integrated development
environment Renesas Electronics e2 studio Version 7.1.0

C compiler

Renesas Electronics C/C++ Compiler Package for RX Family V3.00.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99

Endian Big endian/little endian
Revision of the module Rev4.00

Table 10.14 Confirmed Operation Environment (Rev.4.01)

Item Details
Integrated development
environment Renesas Electronics e2 studio Version 7.2.0

C compiler

Renesas Electronics C/C++ Compiler Package for RX Family V3.00.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99

Endian Big endian/little endian
Revision of the module Rev4.01
Board used Renesas Starter Kit for RX72T (Part Number: RTK5572Txxxxxxxxxx)

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0620 Rev.6.20 Page 129 of 179
Jun.30.21

Table 10.15 Confirmed Operation Environment (Rev.5.00)

Item Details

Integrated development
environment

Renesas Electronics e2 studio Version 7.3.0
IAR Embedded Workbench for Renesas RX 4.11.1
IAR Embedded Workbench for Renesas RX 4.12.1 (RX66T and RX72T only)

C compiler

Renesas Electronics C/C++ Compiler Package for RX Family V3.01.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99
GCC for Renesas RX 4.8.4.201902 Compiler option: The following option is
aded to the default settings of the integrated development environment.
-std=gnu99
IAR C/C++ Compiler for Renesas RX version 4.11.1
IAR C/C++ Compiler for Renesas RX version 4.12.1 (RX66t and RX72T
only)

Compiler option: The default settings of the integrated development
environment.

(RX110 is excluded)
Endian Big endian/little endian
Revision of the module Rev.5.00

Board used

Renesas Starter Kit for RX110 (Part Number: R0K505110xxxxxx)
Renesas Starter Kit for RX111 (Part Number: R0K505111xxxxxx)
Renesas Starter Kit for RX113 (Part Number: R0K505113xxxxxx)
Renesas Starter Kit for RX130-512KB (Part Number: RTK505130xxxxxxxxx)
Renesas Starter Kit for RX231 (Part Number: R0K505231xxxxxx)
Renesas Starter Kit for RX23T (Part Number: RTK500523Txxxxxxxx)
Renesas Starter Kit for RX24T (Part Number: RTK500524Txxxxxxxx)
Renesas Starter Kit for RX24U (Part Number: RTK500524Uxxxxxxxx)
Renesas Starter Kit+ for RX63N (Part Number: R0K50563Nxxxxxx)
Renesas Starter Kit+ for RX64M (Part Number: R0K50564Mxxxxxx)
Renesas Starter Kit+ for RX65N-2MB (Part Number: RTK50565Nxxxxxxxxx)
Renesas Starter Kit+ for RX71M (Part Number: R0K50571Mxxxxxx)
Renesas Starter Kit for RX66T (Part Number: RTK50566Txxxxxxxxx)
Renesas Starter Kit for RX72T (Part Number: RTK5572Txxxxxxxxxx)

Table 10.16 Confirmed Operation Environment (Rev.5.10)

Item Details
Integrated development
environment Renesas Electronics e2 studio Version 7.1.0

C compiler

Renesas Electronics C/C++ Compiler Package for RX Family V3.01.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99

Endian Big endian/little endian
Revision of the module Rev5.10
Board used Renesas Solution Starter Kit for RX23W (Part Number: RTK5523Wxxxxxxxxxx)

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0620 Rev.6.20 Page 130 of 179
Jun.30.21

Table 10.17 Confirmed Operation Environment (Rev.5.20)

Item Details
Integrated development
environment

Renesas Electronics e2 studio Version 7.4.0
IAR Embedded Workbench for Renesas RX 4.12.1

C compiler

Renesas Electronics C/C++ Compiler Package for RX Family V3.01.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99
GCC for Renesas RX 4.8.4.201902 Compiler option: The following option is
added to the default settings of the integrated development environment.
-std=gnu99
IAR C/C++ Compiler for Renesas RX version 4.12.1
Compiler option: The default settings of the integrated development
environment.
(R_BSP_CHG_PMUSR function and R_BSP_ChangeToUserMode function
are excluded.)

Endian Big endian/little endian
Revision of the module Rev.5.20
Board used Renesas Starter Kit+ for RX72M (Part Number: RTK5572Mxxxxxxxxxx)

Table 10.18 Confirmed Operation Environment (Rev.5.21)

Item Details
Integrated development
environment

Renesas Electronics e2 studio Version 7.5.0
IAR Embedded Workbench for Renesas RX 4.12.1

C compiler

Renesas Electronics C/C++ Compiler Package for RX Family V3.01.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99
GCC for Renesas RX 4.8.4.201902 Compiler option: The following option is
added to the default settings of the integrated development environment.
-std=gnu99
IAR C/C++ Compiler for Renesas RX version 4.12.1
Compiler option: The default settings of the integrated development
environment.
(R_BSP_CHG_PMUSR function and R_BSP_ChangeToUserMode function
are excluded.)

Endian Big endian/little endian
Revision of the module Rev.5.21

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0620 Rev.6.20 Page 131 of 179
Jun.30.21

Table 10.19 Confirmed Operation Environment (Rev.5.30)

Item Details

Integrated development
environment

Renesas Electronics e2 studio Version 7.4.0
Renesas Electronics e2 studio Version 7.5.0 (RX231 and RX72M only)
IAR Embedded Workbench for Renesas RX 4.12.1

C compiler

Renesas Electronics C/C++ Compiler Package for RX Family V3.01.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99
GCC for Renesas RX 4.8.4.201902 Compiler option: The following option is
added to the default settings of the integrated development environment.
-std=gnu99
IAR C/C++ Compiler for Renesas RX version 4.12.1
Compiler option: The default settings of the integrated development
environment.
(R_BSP_CHG_PMUSR function and R_BSP_ChangeToUserMode function
are excluded.)

Endian Big endian/little endian
Revision of the module Rev.5.30

Board used
RX13T CPU Card (Part Number: RTK0EMXA10C00000BJ)
Renesas Starter Kit for RX231 (Part Number: R0K505231xxxxxx)
Renesas Starter Kit+ for RX72M (Part Number: RTK5572Mxxxxxxxxxx)

Table 10.20 Confirmed Operation Environment (Rev.5.40)

Item Details
Integrated development
environment

Renesas Electronics e2 studio Version 7.5.0
IAR Embedded Workbench for Renesas RX 4.12.1

C compiler

Renesas Electronics C/C++ Compiler Package for RX Family V3.01.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99
GCC for Renesas RX 4.8.4.201902 Compiler option: The following option is
added to the default settings of the integrated development environment.
-std=gnu99
IAR C/C++ Compiler for Renesas RX version 4.12.1
Compiler option: The default settings of the integrated development
environment.

Endian Big endian/little endian
Revision of the module Rev.5.40

Board used

Renesas Solution Starter Kit for RX23E-A (product No.:
RTK0ESXB10C00001BJ)
Renesas Solution Starter Kit for RX23W (product No.:
RTK5523Wxxxxxxxxxx)
Renesas Starter Kit+ for RX64M (Part Number: R0K50564Mxxxxxx)
Renesas Starter Kit+ for RX65N-2MB (Part Number: RTK50565Nxxxxxxxxx)
Renesas Starter Kit+ for RX71M (Part Number: R0K50571Mxxxxxx)
Renesas Starter Kit for RX66T (Part Number: RTK50566Txxxxxxxxx)
Renesas Starter Kit for RX72T (Part Number: RTK5572Txxxxxxxxxx)
Renesas Starter Kit+ for RX72M (Part Number: RTK5572Mxxxxxxxxxx)

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0620 Rev.6.20 Page 132 of 179
Jun.30.21

Table 10.21 Confirmed Operation Environment (Rev.5.50)

Item Details
Integrated development
environment

Renesas Electronics e2 studio Version 7.5.0
IAR Embedded Workbench for Renesas RX 4.12.1

C compiler

Renesas Electronics C/C++ Compiler Package for RX Family V3.01.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99
GCC for Renesas RX 4.8.4.201902
Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99
IAR C/C++ Compiler for Renesas RX version 4.12.1
Compiler option: The default settings of the integrated development
environment.

Endian Big endian/little endian
Revision of the module Rev.5.50

Board used
Renesas Starter Kit+ for RX72M (Part Number: RTK5572Mxxxxxxxxxx)
Renesas Starter Kit+ for RX72N (Part Number: RTK5572Nxxxxxxxxxx)
Renesas Starter Kit for RX72T (Part Number: RTK5572Txxxxxxxxxx)

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0620 Rev.6.20 Page 133 of 179
Jun.30.21

Table 10.22 Confirmed Operation Environment (Rev.5.51)

Item Details
Integrated development
environment

Renesas Electronics e2 studio Version 7.6.0
IAR Embedded Workbench for Renesas RX 4.13.1

C compiler

Renesas Electronics C/C++ Compiler Package for RX Family V3.01.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99
GCC for Renesas RX 8.3.0.201904
Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99
IAR C/C++ Compiler for Renesas RX version 4.13.1
Compiler option: The default settings of the integrated development
environment.
(RX110 is excluded)

Endian Big endian/little endian
Revision of the module Rev.5.51

Board used

Renesas Starter Kit for RX110 (Part Number: R0K505110xxxxxx)
Renesas Starter Kit for RX111 (Part Number: R0K505111xxxxxx)
Renesas Starter Kit for RX113 (Part Number: R0K505113xxxxxx)
Renesas Starter Kit for RX130-512KB (Part Number: RTK505130xxxxxxxxx)
RX13T CPU Card (Part Number: RTK0EMXA10C00000BJ)
Renesas Starter Kit for RX231 (Part Number: R0K505231xxxxxx)
Renesas Starter Kit for RX23T (Part Number: RTK500523Txxxxxxxx)
Renesas Solution Starter Kit for RX23E-A (product No.:
RTK0ESXB10C00001BJ)
Renesas Solution Starter Kit for RX23W (product No.:
RTK5523Wxxxxxxxxxx)
Renesas Starter Kit for RX24T (Part Number: RTK500524Txxxxxxxx)
Renesas Starter Kit for RX24U (Part Number: RTK500524Uxxxxxxxx)
Renesas Starter Kit+ for RX63N (Part Number: R0K50563Nxxxxxx)
Renesas Starter Kit+ for RX64M (Part Number: R0K50564Mxxxxxx)
Renesas Starter Kit+ for RX65N-2MB (Part Number: RTK50565Nxxxxxxxxx)
Renesas Starter Kit for RX66T (Part Number: RTK50566Txxxxxxxxx)
Renesas Starter Kit+ for RX71M (Part Number: R0K50571Mxxxxxx)
Renesas Starter Kit for RX72T (Part Number: RTK5572Txxxxxxxxxx)
Renesas Starter Kit+ for RX72M (Part Number: RTK5572Mxxxxxxxxxx)
Renesas Starter Kit+ for RX72N (Part Number: RTK5572Nxxxxxxxxxx)

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0620 Rev.6.20 Page 134 of 179
Jun.30.21

Table 10.23 Confirmed Operation Environment (Rev.5.52)

Item Details
Integrated development
environment

Renesas Electronics e2 studio Version 7.7.0
IAR Embedded Workbench for Renesas RX 4.14.1

C compiler

Renesas Electronics C/C++ Compiler Package for RX Family V3.02.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99
GCC for Renesas RX 8.3.0.201904
Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99
IAR C/C++ Compiler for Renesas RX version 4.14.1
Compiler option: The default settings of the integrated development
environment.

Endian Big endian/little endian
Revision of the module Rev.5.52
Board used Renesas Starter Kit+ for RX72N (Part Number: RTK5572Nxxxxxxxxxx)

Table 10.24 Confirmed Operation Environment (Rev.5.60)

Item Details
Integrated development
environment

Renesas Electronics e2 studio Version 7.7.0
IAR Embedded Workbench for Renesas RX 4.14.1

C compiler

Renesas Electronics C/C++ Compiler Package for RX Family V3.02.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99
GCC for Renesas RX 8.3.0.201904
Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99
IAR C/C++ Compiler for Renesas RX version 4.14.1
Compiler option: The default settings of the integrated development
environment.

Endian Big endian/little endian
Revision of the module Rev.5.60

Board used Renesas Solution Starter Kit for RX23W (product No.:
RTK5523Wxxxxxxxxxx)

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0620 Rev.6.20 Page 135 of 179
Jun.30.21

Table 10.25 Confirmed Operation Environment (Rev.5.61)

Item Details
Integrated development
environment

Renesas Electronics e2 studio Version 2020-07
IAR Embedded Workbench for Renesas RX 4.14.1

C compiler

Renesas Electronics C/C++ Compiler Package for RX Family V3.02.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99
GCC for Renesas RX 8.3.0.202002
Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99
IAR C/C++ Compiler for Renesas RX version 4.14.1
Compiler option: The default settings of the integrated development
environment.

Endian Big endian/little endian
Revision of the module Rev.5.61

Table 10.26 Confirmed Operation Environment (Rev.5.62)

Item Details
Integrated development
environment

Renesas Electronics e2 studio Version 2020-10
IAR Embedded Workbench for Renesas RX 4.14.1

C compiler

Renesas Electronics C/C++ Compiler Package for RX Family V3.02.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99
GCC for Renesas RX 8.3.0.202002
Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99
IAR C/C++ Compiler for Renesas RX version 4.14.1
Compiler option: The default settings of the integrated development
environment.

Endian Big endian/little endian
Revision of the module Rev.5.62

Board used

Renesas Starter Kit+ for RX65N (Part Number: RTK500565Nxxxxxxxx)
Renesas Starter Kit+ for RX72M (Part Number: RTK5572Mxxxxxxxxxx)
Renesas Starter Kit+ for RX72N (Part Number: RTK5572Nxxxxxxxxxx)
Renesas Starter Kit for RX231 (Part Number: R0K505231xxxxxx)

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0620 Rev.6.20 Page 136 of 179
Jun.30.21

Table 10.27 Confirmed Operation Environment (Rev.5.63)

Item Details
Integrated development
environment

Renesas Electronics e2 studio Version 2021-01
IAR Embedded Workbench for Renesas RX 4.20.1

C compiler

Renesas Electronics C/C++ Compiler Package for RX Family V3.02.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99
GCC for Renesas RX 8.3.0.202004
Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99
IAR C/C++ Compiler for Renesas RX version 4.20.1
Compiler option: The default settings of the integrated development
environment.

Endian Big endian/little endian
Revision of the module Rev.5.63
Board used Renesas Starter Kit+ for RX65N (Part Number: RTK500565Nxxxxxxxx)

Table 10.28 Confirmed Operation Environment (Rev.5.64)

Item Details
Integrated development
environment

Renesas Electronics e2 studio Version 2021-01
IAR Embedded Workbench for Renesas RX 4.20.1

C compiler

Renesas Electronics C/C++ Compiler Package for RX Family V3.03.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99
GCC for Renesas RX 8.3.0.202004
Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99
IAR C/C++ Compiler for Renesas RX version 4.20.1
Compiler option: The default settings of the integrated development
environment.

Endian Big endian/little endian
Revision of the module Rev.5.64
Board used Renesas Starter Kit+ for RX65N (Part Number: RTK500565Nxxxxxxxx)

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0620 Rev.6.20 Page 137 of 179
Jun.30.21

Table 10.29 Confirmed Operation Environment (Rev.5.65)

Item Details
Integrated development
environment

Renesas Electronics e2 studio Version 2021-01
IAR Embedded Workbench for Renesas RX 4.20.1

C compiler

Renesas Electronics C/C++ Compiler Package for RX Family V3.02.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99
GCC for Renesas RX 8.3.0.202004
Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99
IAR C/C++ Compiler for Renesas RX version 4.20.1
Compiler option: The default settings of the integrated development
environment.

Endian Big endian/little endian
Revision of the module Rev.5.65

Board used Renesas Starter Kit+ for RX65N (Part Number: RTK500565Nxxxxxxxx)
Target Board for RX23W (product No.: RTK5RX23Wxxxxxxxxx)

Table 10.30 Confirmed Operation Environment (Rev.5.66)

Item Details
Integrated development
environment

Renesas Electronics e2 studio Version 2021-01
IAR Embedded Workbench for Renesas RX 4.20.1

C compiler

Renesas Electronics C/C++ Compiler Package for RX Family V3.02.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99
GCC for Renesas RX 8.3.0.202004
Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99
IAR C/C++ Compiler for Renesas RX version 4.20.1
Compiler option: The default settings of the integrated development
environment.

Endian Big endian/little endian
Revision of the module Rev.5.66

Board used Renesas Starter Kit+ for RX65N (Part Number: RTK500565Nxxxxxxxx)
Target Board for RX23W (product No.: RTK5RX23Wxxxxxxxxx)

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0620 Rev.6.20 Page 138 of 179
Jun.30.21

Table 10.31 Confirmed Operation Environment (Rev.6.11)

Item Details
Integrated development
environment

Renesas Electronics e2 studio Version 2021-07
IAR Embedded Workbench for Renesas RX 4.20.1

C compiler

Renesas Electronics C/C++ Compiler Package for RX Family V3.03.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99
GCC for Renesas RX 8.3.0.202004
Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99
IAR C/C++ Compiler for Renesas RX version 4.20.1
Compiler option: The default settings of the integrated development
environment.

Endian Big endian/little endian
Revision of the module Rev.6.11
Board used Renesas Starter Kit+ for RX671 (Part Number: RTK55671xxxxxxxxxx)

Table 10.32 Confirmed Operation Environment (Rev.6.20)

Item Details
Integrated development
environment

Renesas Electronics e2 studio Version 2021-07
IAR Embedded Workbench for Renesas RX 4.20.1

C compiler

Renesas Electronics C/C++ Compiler Package for RX Family V3.03.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99
GCC for Renesas RX 8.3.0.202004
Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99
IAR C/C++ Compiler for Renesas RX version 4.20.1
Compiler option: The default settings of the integrated development
environment.

Endian Big endian/little endian
Revision of the module Rev.6.20
Board used Target board for RX140 (Part Number: RTK5RX140xxxxxxxxx)

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0620 Rev.6.20 Page 139 of 179
Jun.30.21

10.2 Troubleshooting
(1) Q: I have added the FIT module to the project and built it. Then I got the following error: Could not open source file

“platform.h”.

A: The FIT module may not be added to the project properly. Using the following documents, check if the method
for adding FIT modules is correct with the following documents:

 When using CS+:

Application note “Adding Firmware Integration Technology Modules to CS+ Projects (R01AN1826)”
 When using e2 studio:

Application note “Adding Firmware Integration Technology Modules to Projects (R01AN1723)”

When using a FIT module, the board support package FIT module (BSP module) must also be added to the project.
For this, refer to the application note “Board Support Package Module Using Firmware Integration Technology
(R01AN1685)”.

(2) Q: I have added the FIT module to the project and built it. Then I got the following error: ERROR - Valid clock
source must be chosen in r_bsp_config.h using BSP_CFG_CLOCK_SOURCE macro.

A: The setting in the file “r_bsp_config.h” may be wrong. Check the file “r_bsp_config.h”. If there is a wrong
setting, set the correct value for that. Refer to 3 Configuration.

(3) Q: I have added the FIT module to the project in CS+ and built it. Then I got the following error: “E0520101:

“enum_ir” has already been declared in the current scope.” and many other similar errors in iodefine.h.

A: Multiple iodefine.h may be included. By including platform.h, iodefine.h for the compiler that you are using is
included. If the FIT modules is used, please do not include iodefine.h directly. If you include iodefine.h, include
platform.h.

(4) Q: I am using the software interrupt functionality, but I cannot gain the access control right no matter how many

times I call the function.

A: Call the R_BSP_SoftwareInterruptClose function to reset the software interrupt.

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0620 Rev.6.20 Page 140 of 179
Jun.30.21

10.3 Note when using the IWDT auto-start mode
There is note when the IWDT auto-start mode of the Option Function Select Register 0 (OFS0) is enabled by the
BSP_CFG_OFS0_REG_VALUE in 3.2.7 Registers in ROM & External Memory Access Protection.

When the IWDT auto-start mode is enabled, there is a possibility that time out of the IWDT occurs while running start-
up function in 2.2 Initialization. If time out of the IWDT occurs, refresh the IWDT in start-up function.

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0620 Rev.6.20 Page 141 of 179
Jun.30.21

Technical Update Information
The following technical update applies to this module.

 TN-RX*-A021A
 TN-RX*-A138A
 TN-RX*-A153A
 TN-RX*-A164A
 TN-RX*-A169A
 TN-RX*-A0214A
 TN-RX*-A0236B
 TN-RX*-A0237B
 TN-RX*-A0238B
 TN-RX*-A0241B

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0620 Rev.6.20 Page 142 of 179
Jun.30.21

Revision Record

Rev.

Date

Description
Page Summary

2.30 Nov.15.13 — First Release.
2.40 Feb.18.14 — Added support for RX21A, RX220, RX110. Expanded the

‘MCU Information’ subsection.
2.50 Mar.13.14 — Added support for RX64M.
2.60 Jul.15.14 — Added section for Creating a BSP Module for a Custom Board.
2.70 Aug.05.14 — Added support for RX113.
2.80 Jan.21.15 — Added support for RX71M.
2.81 Mar.31.15 — Supported 240 MHz of the operating frequency (default) for

RX71M.
2.90 Jun.30.15 — Added support for RX231.
3.00 Sep.30.15 — Added support for RX23T.
3.01 Sep.30.15 Program Modified BSP FIT module due to the software issues.

Modification Regarding Clocks
[Description]
For processing to switch a clock immediately after a reset,
there is an error in determination of the condition in processing
for switching to high-speed operating mode when exceeding
the allowable frequency range of middle-speed operating
mode. This may cause middle-speed operating mode to be set
with a frequency out of the allowable frequency range.

[Conditions]
When the following three conditions are all met:
- RX231 or RX23T is used with the BSP FIT module rev. 3.00
or earlier.

- The initial definition of the highest clock frequency is as
follows: 12 MHz < the highest clock frequency ≤ 32 MHz
(RX231).

- The initial definition of the ICLK is as follows:
12 MHz < ICLK ≤ 32 MHz (RX23T).

[Workaround]
Use rev. 3.01 or a later version of the BSP FIT module.

 Modification Regarding Stacks

[Description]
The large stack size defined by the BSP FIT module may
cause a lack of the RAM area used for other than stack or
heap.

[Conditions]
When the following two conditions are met:
- RX23T is used with the BSP FIT module rev. 3.00.
- BSP_CFG_USER_STACK_ENABLE = 1

[Workaround]
Use rev. 3.01 or a later version of the BSP FIT module.

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0620 Rev.6.20 Page 143 of 179
Jun.30.21

Rev.

Date

Description
Page Summary

3.01 Sep.30.15 Program Modified the BSP FIT module due to software issues.

Modification Regarding Locks
[Description]
For the lock function, predefined indexes according to
hardware functions do not exactly correspond to actual
hardware functions supported. Thus the lock function may not
be used for some hardware functions.

[Conditions]
When the following three conditions are all met:
- RX231 or RX23T is used with the BSP FIT module rev. 3.00
or earlier.

- The function R_BSP_HardwareLock or
R_BSP_HardwareUnlock is used.

- BSP_CFG_USER_LOCKING_ENABLED = 0

[Workaround]
Use rev. 3.01 or a later version of the BSP FIT module.

This modification includes the following changes in definitions.
- Definitions added (RX23T)
 BSP_LOCK_CMPC0, CMPC1, CMPC2,
BSP_LOCK_SMCI1, SMCI5

- Definitions added (RX231)
 BSP_LOCK_CMPB0, CMPB1, CMPB2, CMPB3,
BSP_LOCK_LPT

- Definitions deleted (RX231)
 BSP_LOCK_CMPB,
BSP_LOCK_SMCI2, SMCI3, SMCI4, SMCI7, SMCI10,

SMCI11
3.10 Dec.01.15 — Added support for RX130.
 1, 6, 8 Modified descriptions in the following sections:

Target Device, 2.6 Clock Setup, 2.14 Trusted Memory
 62 Added the following section:

Technical Update Information
3.20 Feb.01.16 — Added support for RX24T.
 13, 14 Added the following macro definitions in section 3.2.6 Clock

Setup:
- BSP_CFG_MAIN_CLOCK_SOURCE
- BSP_CFG_MOSC_WAIT_TIME
- BSP_CFG_ROM_CACHE_ENABLE

 Program Modified the PCLKA to satisfy the clock restriction
(ICLK=PCLKA) of Ethernet Controller (ETHERC). (RX63N)

3.30 Feb.29.16 — Added support for RX230.
 — Update RX113 iodefine.h to V1.0A.
 43 5.15 R_BSP_SoftwareDelay, Description changed

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0620 Rev.6.20 Page 144 of 179
Jun.30.21

Rev.

Date

Description
Page Summary

3.30 Feb.29.16 Program Modified the BSP FIT module.

Modification Regarding API Functions
[Description]
Since subtraction of overhead in the R_BSP_SoftwareDelay
function is more than necessary, it may not be possible to
secure the specified duration.

[Workaround]
Change the following definition (the overhead cycles).
- OVERHEAD_CYCLES
- OVERHEAD_CYCLES_64

[Note]
This modification is compared with the BSP FIT module
Rev.3.20 or earlier, the processing time of
R_BSP_SoftwareDelay function is longer.

3.31 May.19.16 — Updated RX230 and RX231 iodefine.h to V1.0F.
 — Changed RX23T iodefine.h to V1.1.
 — Changed RX24T iodefine.h to V1.0A.
 — Changed RX64M iodefine.h to V1.0.
 14 3.2.6 Clock Setup

Amended the following macro definition:
- BSP_CFG_MOSC_WAIT_TIME
Added the following macro definitions:
- BSP_CFG_HOCO_WAIT_TIME
- BSP_CFG_SOSC_WAIT_TIME

 Program Modification Regarding Memory
Changed the setting values in the following macro definition to
match the increased RAM capacity (RX23T):
- BSP_RAM_SIZE_BYTES

 Modification Regarding Clocks
The following items are now supported. Made partial changes
to the program code (RX23T, RX64M, and RX71M).

[Description]
• Added HOCO as a selectable clock source for the system

clock (RX23T only).
• The oscillation source of the main clock oscillator is

selectable.
• The wait time of the main clock oscillator is selectable.
The oscillation source of the sub-clock oscillator is selectable
(RX64M and RX71M only).

[Note]
With these changes, the wait time default values for the main
clock oscillator and sub-clock oscillator of the RX64M and
RX71M are set to the values after a reset listed in the user’s
manual. Note that the new default values differ from the BSP
FIT module default values listed in rev. 3.30 and earlier.

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0620 Rev.6.20 Page 145 of 179
Jun.30.21

Rev.

Date

Description
Page Summary

3.31 May.19.16 Program

Modification Regarding Clocks
Amended the HOCO oscillation setting because the setting
value was not appropriate when HOCO oscillation is enabled in
option function select register 1 (OFS1.HOCOEN = 1) (RX64M
and RX71M).

[Description]
• Made changes so that when HOCO oscillation is enabled in

option function select register 1 (OFS1.HOCOEN = 1) and
HOCO is selected as the clock source of the system clock,
HOCO oscillation does not stop.

• Set the HOCO power supply to OFF when HOCO
oscillation is disabled in option function select register 1
(OFS1.HOCOEN = 0) and HOCO is not selected as the
clock source of the system clock.

 Modification Regarding interrupts
Made changes to the bsp_interrupt_group_enable_disable
function in the program code to conform to the IPR setting
procedure in the user’s manual (RX64M and RX71M).

[Description]
Changed the program code so that writing to the IPRr register
occurs when the value of the corresponding IERm.IENj bit is 0.

 Modification Regarding STDIO & Debug console
Improved the following (RX23T, RX64M, and RX71M).

[Description]
The module did not operate properly when
BSP_CFG_USER_CHARGET_ENABLED or
BSP_CFG_USER_CHARPUT_ENABLED was set to “enabled”
(1), so the program code was modified to ensure proper operation.

 Modification Regarding API Functions
Deleted unnecessary enumerated constants from the
R_BSP_RegisterProtectEnable and
R_BSP_RegisterProtectDisable functions, and added HOCO
enumerated constant (RX23T).

[Description]
Deleted the BSP_REG_PROTECT_VRCR constant of the
bsp_reg_protect_t enumerated argument of the
R_BSP_RegisterProtectEnable and
R_BSP_RegisterProtectDisable functions.
Added BSP_REG_PROTECT_HOCOWTCR.

3.40 Oct.01.16 — Added support for RX65N.
 17 3.2.7 Registers in ROM & External Memory Access Protection

Added the following macro definitions:
• BSP_CFG_FAW_REG_VALUE
• BSP_CFG_ROMCODE_REG_VALUE

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0620 Rev.6.20 Page 146 of 179
Jun.30.21

Rev.

Date

Description
Page Summary

3.40 Oct.01.16 Program Modification Regarding Clocks
(1) Changed the default value of the following definition in
r_bsp_config_reference.h, because it becomes the cause of
compile errors in the LPT module (RX130).

• BSP_CFG_LPT_CLOCK_SOURCE
Changed the default value from 2 to 0.

(2) Fixed the error of the following definitions in mcu_info.h
(RX230, RX231).

Case of the “BSP_CFG_LPT_CLOCK_SOURCE = 1”.
• BSP_LPTSRCCLK_HZ
Changed the default value from "15360" to "15000".

Case of the “BSP_CFG_LPT_CLOCK_SOURCE = 2”.
• Deleted the definition.

(3) Added the following macro definition in mcu_info.h
(RX130).

• BSP_LPTSRCCLK_HZ
3.50 Mar.15.17 — Added support for RX24U
 — Changed RX24T iodefine.h to V1.0H.
 15 3.2.6 Clock Setup

Amended the following macro definition contests:
- BSP_CFG_USE_CGC_MODULE

 16 3.2.7 Registers in ROM & External Memory Access Protection
Amended the following macro definition contests:
- BSP_CFG_OFS1_REG_VALUE

 19 4.5 Supported Toolchains
Amended the contents

 62 Added 8, Appendix
 Program Modification Regarding Memory

Changed the setting values in the following macro definition to
match the increased ROM and RAM capacity (RX24T):

• BSP_ROM_SIZE_BYTES
• BSP_RAM_SIZE_BYTES

 Modification Regarding Package
Added the following macro definition to match the increased 64
Pin Packages (RX24T):

• BSP_PACKAGE_LFQFP64
• BSP_PACKAGE_PINS

 Modification Regarding Clocks
The following items are now supported. Made partial changes
to the program code (RX24T).

[Description]
- Added HOCO as a selectable clock source for the system

clock.
- Added HOCO as a selectable input clock source for the PLL

circuit.

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0620 Rev.6.20 Page 147 of 179
Jun.30.21

Rev.

Date

Description
Page Summary

3.50 Mar.15.17 Program Modification Regarding STDIO & Debug console
Improved the following (RX24T).

[Description]
The module did not operate properly when
BSP_CFG_USER_CHARGET_ENABLED or
BSP_CFG_USER_CHARPUT_ENABLED was set to “enabled”
(1), so the program code was modified to ensure proper
operation.

 Modification Regarding API Functions
Deleted unnecessary enumerated constants from the
R_BSP_RegisterProtectEnable and
R_BSP_RegisterProtectDisable functions, and added HOCO
enumerated constant (RX24T).

[Description]
Deleted the BSP_REG_PROTECT_VRCR constant of the
bsp_reg_protect_t enumerated argument of the
R_BSP_RegisterProtectEnable and
R_BSP_RegisterProtectDisable functions.
Added BSP_REG_PROTECT_HOCOWTCR.

3.60 May.15.17 — Added support for RX130-512KB.
Added support for RX65N-2MB.
Added support for GENERIC-RX65N.

 — Updated RX110 iodefine.h to V1.0B.
Updated RX111 iodefine.h to V1.1A.
Updated RX113 iodefine.h to V1.0C.
Updated RX130 iodefine.h to V2.0.
Updated RX210 iodefine.h to V1.5.
Updated RX21A iodefine.h to V1.1C.
Updated RX220 iodefine.h to V1.1A.
Updated RX230 iodefine.h to V1.0I.
Updated RX231 iodefine.h to V1.0I.
Updated RX23T iodefine.h to V1.1C.
Updated RX62N iodefine.h to V1.4.
Updated RX62T iodefine.h to V2.0.
Updated RX62G iodefine.h to V2.0.
Updated RX630 iodefine.h to V1.6A.
Updated RX63N/RX631 iodefine.h to V1.8A.
Updated RX63T iodefine.h to V2.1C.
Updated RX64M iodefine.h to V1.0A.
Updated RX65N iodefine.h to V2.0.
Updated RX71M iodefine.h to V1.0A.

 — Applied the following technical update:
- TN-RX*-A138A
- TN-RX*-A164A
- TN-RX*-A169A

 4 Modified the description in 1.2 File Structure.
 Revised Figure 1-1: r_bsp File Structure.

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0620 Rev.6.20 Page 148 of 179
Jun.30.21

Rev.

Date

Description
Page Summary

3.60 May.15.17 5 Added Figure 1-2: Structures of Evaluation Board Folder and
generic Folder.

 7 Modified the description in 2.2 Initialization.
Revised Figure 2-1: PowerON_Reset_PC() Flowchart.

 8 Added Figure 2-2: Flowchart of System Clock Setting
 11 Modified the descriptions in 2.14 Trusted Memory.

Added 2.15 Bank Mode.
Moved the section “Group Interrupts” from 4.10.7 to 2.20 and
modified the description.
Moved the section “Software Configurable Interrupts” from
4.10.8 to 2.21.

 13 Added 2.23 Startup Disable.
 19 Modified the descriptions in 3.2.4 CPU Modes & Boot Modes

including Table 3-4.
 20 Corrected and added the following definitions in 3.2.6 Clock

Setup:
- Addition: BSP_CFG_RTC_ENABLE
- Addition: BSP_CFG_SOSC_DRV_CAP
- Correction: BSP_CFG_PLL_SOURCE ->
 BSP_CFG_PLL_SCR

 22-23 Modified and added the following definitions in 3.2.7 Registers
in ROM & External Memory Access Protection:
- Modification: BSP_CFG_OFS1_REG_VALUE
- Addition: BSP_CFG_CODE_FLASH_BANK_MODE
- Addition: BSP_CFG_CODE_FLASH_START_BANK

 24 Added 3.2.11 Startup Disable.
 26 Added 4.9.3 Interrupt Control Parameter.
 28 Modified 4.10.3 Interrupt Error Codes.

Modified 4.10.4 Interrupt Control Commands.
 29 Added 4.10.7 Unit for Software Delay.

Changed 4.12 Adding Driver to Your Project.
 30 Added 4.13 Code size.
 31 Modified 5. API Functions.
 50 Added 5.15 R_BSP_InterruptControl().
 52 Added 5.17 R_BSP_GetIClkFreqHz().
 53 Added 5.18 R_BSP_StartupOpen().
 55 Added 6.1 Creating a FIT Project.
 59 Added 6.2 Adding FIT Module with e2 studio FIT Configurator.
 72 Added 8. Adding FIT Modules to the User Project.
 79 Added Table 9.7 Operation Confirmation Environment

(Rev.3.60).
Added 9.2 Creating a Project with FIT Plug-in.
Moved the section “Creating an Empty Project” from 6.1 to
9.2.1 and modified some descriptions.

 85 Moved the section “Adding r_bsp with e2 studio FIT Plug-in”
from 6.2 to 9.2.2.

 88 Added 9.3 Troubleshooting.

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0620 Rev.6.20 Page 149 of 179
Jun.30.21

Rev.

Date

Description
Page Summary

3.60 May.15.17 Program Changes associated with functions

Deleted unnecessary transition to User Mode. (RX130)
- Description: Deleted the following function.
PSW_PM_to_UserMode function.

Added the startup disable function. (RX65N)
- Description: Added the macro definition,
BSP_CFG_STARTUP_DISABLE.

Added the bank function. (RX65N)
- Description: Added processing for setting the bank function in
vecttbl.c. If a package with the ROM of 1 Mbytes or less is
selected, this processing will be disabled.

Modified the procedure for initializing the ADSAM register.
(RX65N)
- Description: Modified the procedure to hold the setting of
module-stop state before the ADSAM register is initialized so
that the setting can be restored after the initialization.

 Changes associated with packages

Added new package specifications. (RX130)
[Description]
(1) Added the following macro definitions for new packages.

- BSP_MCU_RX130_512KB
- BSP_PACKAGE_LFQFP100

(2) Added setting values of the following macro definitions

regarding new packages.
- BSP_CFG_MCU_PART_PACKAGE:
 Values: FP = 0x5 = LFQFP/100/0.50
- BSP_CFG_MCU_PART_MEMORY_SIZE:
 Values: 6 = 0x6 = 128KB/32KB/8KB

7 = 0x7 = 384KB/48KB/8KB
8 = 0x8 = 512KB/48KB/8KB

Added new package specifications. (RX65N)
[Description]
(1) Added the following macro definitions for new packages.

- BSP_CFG_CODE_FLASH_BANK_MODE
- BSP_CFG_CODE_FLASH_START_BANK
- BSP_MCU_RX65N_2MB
- BSP_PACKAGE_LFQFP176
- BSP_PACKAGE_LFBGA176
- BSP_PACKAGE_TFLGA177
- BSP_PRV_PORTG_NE_PIN_MASK

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0620 Rev.6.20 Page 150 of 179
Jun.30.21

Rev.

Date

Description
Page Summary

3.60 May.15.17 Program (2) Added setting values of the following macro definitions
regarding new packages.
- BSP_CFG_MCU_PART_PACKAGE:
 Values: FC = 0x0 = LFQFP/176/0.50

BG = 0x1 = LFBGA/176/0.80
LC = 0x2 = TFLGA/177/0.50

- BSP_CFG_MCU_PART_ENCRYPTION_INCLUDED:
 Values: D = false =Encryption module not included,
 SDHI/SDSI module included, dual-bank
 structure

H = true = Encryption module included,
SDHI/SDSI
 module included, dual-bank structure.

- BSP_CFG_MCU_PART_MEMORY_SIZE:
 Values: C = 0xC = 1.5MB/640KB/32KB

E = 0xE = 2MB/640KB/32KB

Changed the macro definitions for the RX231 package.
(1) Added the following macro definition.

- BSP_PACKAGE_WFLGA64

(2) Deleted the following macro definition.
- BSP_PACKAGE_LQFP64

(3) Added setting values of the following macro definitions:

- BSP_CFG_MCU_PART_PACKAGE:
 Values: LF = 0x1 = WFLGA/64/0.50
- BSP_CFG_MCU_PART_VERSION:
 Values: C = 0xC = Chip version C = Security function not

included, SDHI module not included,
CAN module not included.

(4) Deleted the setting values for the following macro definition:

- BSP_CFG_MCU_PART_PACKAGE:
 Values: FK = 0x3 = LQFP/64/0.80

LJ = 0xA = TFLGA//100/0.65
- BSP_CFG_MCU_PART_MEMORY_SIZE:
 Values: 3 = 0x3 = 64KB/12KB/8KB

(5) Changed the setting values for the following macro

definitions:
- BSP_CFG_MCU_PART_MEMORY_SIZE:
 Value: 5 = 0x5 = 128KB/20KB/8KB
 -> 5 = 0x5 = 128KB/32KB/8KB

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0620 Rev.6.20 Page 151 of 179
Jun.30.21

Rev.

Date

Description
Page Summary

3.60 May.15.17 Program Changed the macro definition for the RX63N/RX631 package.
[Description]
(1) Changed the default value of the following macro definition:

- BSP_CFG_MCU_PART_MEMORY_SIZE: (RSK only)
 Value: (0xB) -> (0xF)
- BSP_CFG_MCU_PART_GROUP: (RX631 only)
 Value: (0x2) -> (0x1)

(2) Added the following macro definition.

- BSP_PACKAGE_TFLGA64

(3) Deleted the following macro definition.
- BSP_PACKAGE_LQFP80

(4) Added setting values of the following macro definitions:

- BSP_CFG_MCU_PART_PACKAGE:
 Values: LJ = 0xA = TFLGA/100/0.65

LH = 0xB = TFLGA/64/0.65
- BSP_CFG_MCU_PART_ENCRYPTION_INCLUDED:
 Values: H = true = CAN included/DEU included/PDC not

included.
G = false = CAN not included/DEU included/PDC

not included.
S = true = CAN included/DEU not included/PDC

included.
F (only 64-pin TFLGA) = true = CAN included/DEU

not included/PDC not included.
- BSP_CFG_MCU_PART_MEMORY_SIZE:
 Values: F = 0xF = 2MB/256KB/32KB

G = 0x10 = 1.5MB/192KB/32KB
J = 0x13 = 1.5MB/256KB/32KB
K = 0x14 = 2MB/192KB/32KB
M = 0x16 = 256KB/64KB/32KB
N = 0x17 = 384KB/64KB/32KB
P = 0x19 = 512KB/64KB/32KB
W = 0x20 = 1MB/192KB/32KB
Y = 0x22 = 1MB/256KB/32KB

(5) Deleted the setting values for the following macro definition:

- BSP_CFG_MCU_PART_PACKAGE:
 Values: LA = 0x6 = TFLGA/100/0.65

FN = 0x7 = LQFP/80/0.50
- BSP_CFG_MCU_PART_CAN_INCLUDED:
 Values: E = = 3V included (RX63T). Ignore.
- BSP_CFG_MCU_PART_MEMORY_SIZE:
 Values: 4 = 0x4 = 32KB/8KB/8KB

5 = 0x5 = 48KB/8KB/8KB

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0620 Rev.6.20 Page 152 of 179
Jun.30.21

Rev.

Date

Description
Page Summary

3.60 May.15.17 Program (6) Changed the setting values for the following macro
definitions:
- BSP_CFG_MCU_PART_MEMORY_SIZE:
 Value: 6 = 0x6 = 64KB/8KB/8KB
 -> 6 = 0x6 = 256KB/128KB/32KB
 Value: 7 = 0x7 = 384KB/64KB/32KB
 -> 7 = 0x7 = 384KB/128KB/32KB
 Value: 8 = 0x8 = 512KB/64KB/32KB
 -> 8 = 0x8 = 512KB/128KB/32KB

Changed the macro definitions for the RX64M package.
[Description]
(1) Corrected typo for the following macro definitions:

- BSP_PACKAGE_LQFP176 ->
BSP_PACKAGE_LFQFP176
- BSP_PACKAGE_LQFP144 ->
BSP_PACKAGE_LFQFP144
- BSP_PACKAGE_LQFP100 ->
BSP_PACKAGE_LFQFP100

(2) Added the setting value for the following macro definition:

- BSP_CFG_MCU_PART_PACKAGE:
 Value: LJ = 0xA = TFLGA/100/0.65

(3) Deleted the setting values for the following macro definition:

- BSP_CFG_MCU_PART_PACKAGE:
 Values: LA = 0x6 = TFLGA/100/0.50

JA = 0x7 = TFLGA/100/0.65

Changed the macro definition for the RX65N package.
[Description]
(1) Corrected typo for the following macro definitions:

- BSP_PACKAGE_LQFP144 ->
BSP_PACKAGE_LFQFP144
- BSP_PACKAGE_LQFP100 ->
BSP_PACKAGE_LFQFP100

(2) Changed the setting values for the following macro

definitions:
- BSP_CFG_MCU_PART_PACKAGE:
 Value: LJ = 0x6 = TFLGA/100/0.65
 -> LJ = 0xA = TFLGA/100/0.65
- BSP_CFG_MCU_PART_GROUP:
 Value: 5N = 0x0 = RX65N Group
 -> 5N/51 = 0x0 = RX65N Group/RX651 Group

(3) Deleted the setting value for the following macro definition:

- BSP_CFG_MCU_PART_GROUP:
 Value: 51 = 0x1 = RX65N Group

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0620 Rev.6.20 Page 153 of 179
Jun.30.21

Rev.

Date

Description
Page Summary

3.60 May.15.17 Program Changed the macro definition for the RX71M package.
[Description]
(1) Corrected typo for the following macro definitions:

- BSP_PACKAGE_LQFP176 ->
BSP_PACKAGE_LFQFP176
- BSP_PACKAGE_LQFP144 ->
BSP_PACKAGE_LFQFP144
- BSP_PACKAGE_LQFP100 ->
BSP_PACKAGE_LFQFP100

(2) Changed the setting value for the following macro
definition:

- BSP_CFG_MCU_PART_PACKAGE:
 Value: LJ = 0x6 = TFLGA/100/0.65
 -> LJ = 0xA = TFLGA/100/0.65

 Changes associated with clocks

The following items are now supported. Made partial changes
to the program code. (RX130)
[Description]
(1) Added definition of the following clock setting:

- The oscillation source of the main clock oscillator is
selectable.
- The wait time of the main clock oscillator is selectable.

(2) Added the following macro definition in mcu_info.h.

- BSP_ILOCO_HZ

Made add to the lpt_clock_source_select function in the
program code to conform to the notes on LPT in the user’s
manual. (RX130)
[Description]
When the IWDT-dedicated on-chip oscillator is used as the
clock source for the low-power timer, changed the program
code to write the IWDTCSTPR.SLCSTP bit to 0.

Improved the following. (RX130)
[Description]
(1) When restarting the sub-clock oscillator after it has been
stopped, allow at least five cycles of the sub-clock as an
interval over which it is still stopped.

Deleted the following unnecessary branch condition in the
lpt_clock_source_select function.
 - BSP_CFG_LPT_CLOCK_SOURCE == 2

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0620 Rev.6.20 Page 154 of 179
Jun.30.21

Rev.

Date

Description
Page Summary

3.60 May.15.17 Program Modified the sub-clock oscillation settings. (RX64M, RX65N,
RX71M)
 [Description]
(1) Modified for the sub-clock oscillation settings to be

specified according to the settings in r_bsp_config.h.

(2) Added processing at warm start.

(3) Added the following macro definitions regarding changes in

the sub-clock oscillation settings.
 - BSP_CFG_RTC_ENABLE
 - BSP_CFG_SOSC_DRV_CAP

 Changes associated with interrupts

Made add to the bsp_interrupt_enable_disable function in the
program code. (RX130)

[Description]
Added timeout detection enable bit (BSC.BEREN.BIT.TOEN)
settings.

Modified the following items for software configurable
interrupts.
[Description]
(1) Corrected the macro definitions due to typos in names of

the software configurable interrupt sources. (RX64M,
RX65N, RX71M)
The corrected interrupt sources are as follows:
- TPU0_TGI0V -> TPU0_TCI0V
- TPU1_TGI1V -> TPU1_TCI1V
- TPU1_TGI1U -> TPU1_TCI1U
- TPU2_TGI2V -> TPU2_TCI2V
- TPU2_TGI2U -> TPU2_TCI2U
- TPU3_TGI3V -> TPU3_TCI3V
- TPU4_TGI4V -> TPU4_TCI4V
- TPU4_TGI4U -> TPU4_TCI4U
- TPU5_TGI5V -> TPU5_TCI5V
- TPU5_TGI5U -> TPU5_TCI5U
- MTU0_TGIV0 -> MTU0_TCIV0
- MTU1_TGIV1 -> MTU1_TCIV1
- MTU1_TGIU1 -> MTU1_TCIU1
- MTU2_TGIV2 -> MTU2_TCIV2
- MTU2_TGIU2 -> MTU2_TCIU2
- MTU3_TGIV3 -> MTU3_TCIV3
- MTU4_TGIV4 -> MTU4_TCIV4
- MTU6_TGIV6 -> MTU6_TCIV6
- MTU7_TGIV7 -> MTU7_TCIV7
- MTU8_TGIV8 -> MTU8_TCIV8

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0620 Rev.6.20 Page 155 of 179
Jun.30.21

Rev.

Date

Description
Page Summary

3.60 May.15.17 Program (2) Deleted the macro definition, MTU8_TGI8U since the
corresponding interrupt source does not exist. (RX64M,
RX71M)

(3) Added interrupt sources for software configurable interrupts

regarding new packages. (RX65N)
 - BSP_MAPPED_INT_CFG_B_VECT_TSIP_PROC_BUSY
 - BSP_MAPPED_INT_CFG_B_VECT_TSIP_ROMOK
 - BSP_MAPPED_INT_CFG_B_VECT_TSIP_LONG_PLG
 - BSP_MAPPED_INT_CFG_B_VECT_TSIP_TEST_BUSY
 - BSP_MAPPED_INT_CFG_B_VECT_TSIP_WRRDY0
 - BSP_MAPPED_INT_CFG_B_VECT_TSIP_WRRDY1
 - BSP_MAPPED_INT_CFG_B_VECT_TSIP_WRRDY4
 - BSP_MAPPED_INT_CFG_B_VECT_TSIP_RDRDY0
 - BSP_MAPPED_INT_CFG_B_VECT_TSIP_RDRDY1
 - BSP_MAPPED_INT_CFG_B_VECT_TSIP_INTEGRATE

_WRRDY
 - BSP_MAPPED_INT_CFG_B_VECT_TSIP_INTEGRATE

_RDRDY

Modified the following items for group interrupts.
[Description]
(1) Modified the sequence to call callback functions for group

interrupts. (RX64M, RX65N, RX71M)
Peripherals influenced by the sequence change are as
follows:
- SCI0 to SCI7, SCI12
- SCI8 to SCI11 (RX65N only)
- PDC
- SCIFA8 to SCIFA11 (RX64M and RX71M only)
- RSPI0
- RSPI1 (RX71M and RX65N only)
- RSPI2 (RX65N only)

(2) Added the following enum definitions regarding new

packages. (RX65N)
bsp_int_src_t
- BSP_INT_SRC_BL1_RIIC1_TEI1
- BSP_INT_SRC_BL1_RIIC1_EEI1
- BSP_INT_SRC_AL1_GLCDC_VPOS
- BSP_INT_SRC_AL1_GLCDC_GR1UF
- BSP_INT_SRC_AL1_GLCDC_GR2UF
- BSP_INT_SRC_AL1_DRW2D_DRW_IRQ

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0620 Rev.6.20 Page 156 of 179
Jun.30.21

Rev.

Date

Description
Page Summary

3.60 May.15.17 Program (3) Corrected the macro definitions due to typos in names of
the group interrupt sources. (RX64M, RX71M)

The corrected interrupt sources are as follows:
- BSP_INT_SRC_BL0_CAC_FERRF ->
BSP_INT_SRC_BL0_CAC_FERRI
- BSP_INT_SRC_BL0_CAC_ MENDF ->
BSP_INT_SRC_BL0_CAC_ MENDI
- BSP_INT_SRC_BL0_CAC_OVFF ->
BSP_INT_SRC_BL0_CAC_OVFI
- BSP_INT_SRC_BL0_DOC_DOPCF ->
BSP_INT_SRC_BL0_DOC_DOPCI

Changed the following items regarding non-maskable
interrupts.
[Description]
(1) Added the enum definition, BSP_INT_SRC_EXRAM to

bsp_int_src_t regarding new packages. (RX65N)

(2) Added interrupt processing for EXRAM in vecttbl.c

regarding new packages. (RX65N)
If a package with ROM of 1 Mbytes or less is selected, this
processing will be disabled.

 Change associated with API functions

Modified the branch condition for the number of loop cycles of
the R_BSP_SoftwareDelay function.
[Description]
Before:
#if defined(BSP_MCU_RX231) || defined(BSP_MCU_RX64M)

|| defined(BSP_MCU_RX71M) || ...
#define CPU_CYCLES_PER_LOOP 4

#else
#define CPU_CYCLES_PER_LOOP 5

#endif

After:
#ifdef __RXV1

#define CPU_CYCLES_PER_LOOP (5)
#else

#define CPU_CYCLES_PER_LOOP (4)
#endif

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0620 Rev.6.20 Page 157 of 179
Jun.30.21

Rev.

Date

Description
Page Summary

3.60 May.15.17 Program Change associated with the lock function

Modified the lock function. (RX130)
[Description]
Added the following enums regarding new packages:

mcu_lock_t
- BSP_LOCK_REMC0
- BSP_LOCK_REMC1
- BSP_LOCK_REMCOM
- BSP_LOCK_SCI0
- BSP_LOCK_SCI8
- BSP_LOCK_SCI9
- BSP_LOCK_SMCI0
- BSP_LOCK_SMCI8
- BSP_LOCK_SMCI9
- BSP_LOCK_TEMPS

Modified the lock function. (RX65N)
[Description]
Added the following enums regarding new packages:

mcu_lock_t
- BSP_LOCK_RIIC1
- BSP_LOCK_GLCDC
- BSP_LOCK_DRW2D

 Modification Regarding STDIO & Debug console

Improved the following. (RX130)
[Description]
The module did not operate properly when
BSP_CFG_USER_CHARGET_ENABLED or
BSP_CFG_USER_CHARPUT_ENABLED was set to “enabled”
(1), so the program code was modified to ensure proper
operation.

 Modification Regarding Pin Function

Made changes to the output_ports_configure function in the
program code to conform to the notes on MPC in the user’s
manual. (RX130)
[Description]
When setting the given bits of the PMR register to 0, the PDR
register to 0, and the PCR register to 0, changed the program
code to write the PmnPFS.ASEL bit to 1.

Improved the following. (RX111)
[Description]
(1) PORTH does not exist. Therefore, deleted the port setting.

(2) Deleted the following macro definition.

- BSP_PRV_PORTH_NE_PIN_MASK

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0620 Rev.6.20 Page 158 of 179
Jun.30.21

Rev.

Date

Description
Page Summary

3.70 Nov.01.17 — Added support for GENERIC-RX110.
Added support for GENERIC-RX111.
Added support for GENERIC-RX113.
Added support for GENERIC-RX130.
Added support for GENERIC-RX230.
Added support for GENERIC-RX231.
Added support for GENERIC-RX23T.
Added support for GENERIC-RX24T.
Added support for GENERIC-RX24U.
Added support for GENERIC-RX64M.
Added support for GENERIC-RX71M.
Added support for Envision Kit for RX65N-2MB

 20 3.2.6 Clock Setup
For BSP_CFG_LPT_CLOCK_SOURCE, “2 = LPT not used”
has been added as the setting value in the Value and “The
default value is 2 (LPT not used)” has been added to the
description in the Meaning.

 Program Changes associated with functions

Added the startup disable function for RX110, RX111, RX113,
RX130, RX230, RX231, RX23T, RX24T, RX24U, RX64M, and
RX71M.

[Description]
Added the macro definition, BSP_CFG_STARTUP_DISABLE.

 Changes associated with the low power timer

Modified the following items for RX230 and RX231:

[Description]
(1) To follow the description for the ILCSTP bit in the User’s

Manual, processing to wait for the ILOCO oscillation
stabilization time has been added in the
usb_lpc_clock_source_select function.

(2) To follow the note on the LPT in the User's Manual, the

code has been modified to write 0 to the
IWDTCSTPR.SLCSTP bit when the IWDT-dedicated on-chip
oscillator is used as the clock source of the low power timer.

(3) The usb_lpc_clock_source_select function included

processing to stop the ILOCO. This processing has been
removed since the ILOCO cannot be stopped by the
program once it starts oscillation.

(4) Added the definition of the IWDT-dedicated on-chip

oscillator “BSP_ILOCO_HZ” for RX230 and RX231.

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0620 Rev.6.20 Page 159 of 179
Jun.30.21

Rev.

Date

Description
Page Summary

3.70 Nov.01.17 Program Modified the following items for RX130, RX230, and RX231:

[Description]
(1) Added the following definition for when the LPT module is

not used: “BSP_CFG_LPT_CLOCK_SOURCE = 2”

(2) Changed the default value of the following definition:

BSP_CFG_LPT_CLOCK_SOURCE (0) → (2)

(3) Added a branch to processing not to oscillate the sub-clock

and the ILOCO when the LPT is not used.
3.71 Dec.20.17 24 3.2.10 Extended Bus Master Priority Setting
 80 Corrected typo for the ‘Board used’ in the Table 9.8 Operation

Confirmation Environment.
 108 Corrected typo in Revision Record. (Rev3.70)
 Program Changes associated with functions

Added the Extended Bus Master Priority Setting function for
RX65N-2MB.

[Description]
Added the following macro definition:
- BSP_CFG_EBMAPCR_1ST_PRIORITY
- BSP_CFG_EBMAPCR_2ND_PRIORITY
- BSP_CFG_EBMAPCR_3RD_PRIORITY
- BSP_CFG_EBMAPCR_4TH_PRIORITY
- BSP_CFG_EBMAPCR_5TH_PRIORITY

3.80 Jul.01.18 — Added support for Target Board for RX130
Added support for Target Board for RX231
Added support for Target Board for RX65N
Added support for the 384 KB and 256 KB ROM size for
RX111.

 — Changed the name of Section 9.
 — Updated RX113 iodefine.h to V1.1.

Updated RX65N iodefine.h to V2.0A.
 24, 25 Corrected some table names.
 25 Added 3.2.13 Using Smart Configurator.
 32 Corrected a typo for Function name for the "5.1 Summary"

table.
 81 R_BSP_StartupOpen -> R_BSP_StartupOpen

Added Table 9.10 Confirmed Operation Environment
(Rev.3.80).

 Program Changes associated with functions
Added support setting function of configuration option Using
GUI on Smart Configurator for only Generic of RX110,
RX111,RX113, RX230, RX231, RX64M, RX65N, and RX71M.
[Description]
Added a setting file to support configuration option setting
function by GUI.

 Supports peripheral function initialization processing by smart
configurator.
[Description]
Added the following macro definition:
-BSP_CFG_CONFIGURATOR_SELECT

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0620 Rev.6.20 Page 160 of 179
Jun.30.21

Rev.

Date

Description
Page Summary

3.80 Jul.01.18 Program Processing was added after writing the ROMWT register of
RX65N.
Processing was added after writing the MEMWAIT register of
RX71M.
[Description]
Added processing to check that the value written to the
ROMWT or MEMWAIT register was reflected after the value
was written to the ROMWT or MEMWAIT register.

Supported tool news number R20TS0302. (RX113, RX210 and
RX63T)
[Description]
Corrected a problem that caused a build error when selecting
and building a specific package.
For more information on this problem please reference the tool
news (R20TS0302).

Deleted unnecessary processing. (RX230, RX231 and RX23T)
[Description]
Deleted the processing for user boot function from RX230,
RX231 and RX23T.

3.90 Jul.27.18 — Added support for RX66T.
 1 Related Documents: Added the following documents:

“RX Family Adding Firmware Integration Technology Modules
to Projects (R01AN1723)”
“RX Family Adding Firmware Integration Technology Modules
to CS+ Projects (R01AN1826)”
“Renesas e2 studio Smart Configurator User Guide
(R20AN0451)”

 19 3.2.3 STDIO & Debug Console
Changed the chapter headings. Added descriptions regarding
definitions.
- Addition: BSP_CFG_USER_CHARGET_ENABLED
- Addition: BSP_CFG_USER_CHARGET_FUNCTION
- Addition: BSP_CFG_USER_CHARPUT_ENABLED
- Addition: BSP_CFG_USER_CHARPUT_FUNCTION

 22 3.2.6. Clock Setup
Deleted BSP_CFG_ROM_CACHE_ENABLE because it was
moved to 3.2.15 ROM Cache Function.

 27 3.2.11. MCU Voltage
Added descriptions and definitions.
- Addition: BSP_CFG_MCU_AVCC_MV

 28, 29 Added 3.2.14 Negative Voltage Input Settings for AD Pins.
 30, 31 Added 3.2.15 ROM Cache Function.
 32 Added 3.2.16 Callback function at warm start
 Added 3.2.17 Board Revision.
 33 Added 3.2.18 Interrupt Priority Level When FIT Module

Interrupts Are Disabled.
 40 Added 4.14 “for”, “while” and “do while” statements.
 41 5.1 Summary

Added R_BSP_VoltageLevelSetting function.
 47 5.7 R_BSP_RegisterProtectEnable()

Changed the contents of the “Description” section.

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0620 Rev.6.20 Page 161 of 179
Jun.30.21

Rev.

Date

Description
Page Summary

3.90 Jul.27.18 49 5.8 R_BSP_RegisterProtectDisable()
Changed the contents of the “Description” section.

 64, 65 Added 5.19 R_BSP_VoltageLevelSetting()
 66 6. Project Setup

6.1 Adding the FIT Module to Your Project
Changed the chapter title and description.

 — Deleted 6.2 Adding FIT Module with e2 studio FIT
Configurator

 87 9.1 Confirmed Operation Environment
Added Table 9.11 Confirmed Operation Environment (Rev.
3.90).

 — Deleted 9.2 Creating a Project with FIT Plug-in
 Program Changes associated with functions

Changed the board folder of devices supporting Smart
Configurator (RX110, RX111, RX113, RX130, RX230, RX231,
RX64M, RX65N, and RX71M).

[Description]
Deleted all folders other than the generic folder, since other
boards can all be substituted with GENERIC_RXxxx.

 Corresponds to cautionary note in Tool News (R20TS0302)
regarding port initialization processing in
“bsp_non_existent_port_init” function (RX113, RX210, RX231,
RX610, RX62G, RX62N, RX62T, RX631, and RX63N)
[Description]
Revised port initialization settings. For details, see Tool News
(R20TS0302).

 Added the macro definition of the ID code for RX64M, RX65N,
and RX71M.

[Description]
(1)Added the following macro definition:

- BSP_CFG_ID_CODE_LONG_1
- BSP_CFG_ID_CODE_LONG_2
- BSP_CFG_ID_CODE_LONG_3
- BSP_CFG_ID_CODE_LONG_4

(2)Added settings related to macro definitions to the settings
file for the GUI-based configuration option setting functionality.

 Changes associated with packages

Changed the macro definitions for the RX23T package.
[Description]
(1) Deleted the following macro definition.

- BSP_CFG_MCU_PART_VERSION

Changed the macro definitions for the RX220 package.
[Description]
(1) Added setting values of the following macro definitions
regarding packages.

- BSP_CFG_MCU_PART_PACKAGE:
 Values: FK = 0x3 = LQFP/64/0.80

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0620 Rev.6.20 Page 162 of 179
Jun.30.21

Rev.

Date

Description
Page Summary

3.90 Jul.27.18 Program Changed the macro definitions for the RX62T package.
 [Description]
(1) Added setting values of the following macro definitions
regarding packages.
- BSP_CFG_MCU_PART_PACKAGE:
 Values: FK = 0x4 = LQFP/64/0.80

 Changes associated with the lock function

Modified the lock function. (RX113)
[Description]
(1) Added the following enums.

mcu_lock_t
- BSP_LOCK_TEMPS

Modified the lock function. (RX65N)
[Description]
(1) Added the following enums.

mcu_lock_t
- BSP_LOCK_SMCI10
- BSP_LOCK_SMCI11

 Modification Regarding Pin Function
Changed the program in the output_ports_configure function,
since the timing of the pin settings differs depending on the
peripheral function FIT module specifications. (RX210, RX220,
RX23T, RX24T, RX24U, RX62G, RX62N, RX630, RX63N, and
RX631)

[Description]
Deleted pin setting processing related to peripheral functions
other than those for LEDs and switches.

3.91 Aug.31.18 Program Changes associated with functions
Modified the following item for RX66T.
(1) Corrected execution timing for bsp_volsr_initial_configure
function.
(2) Added the process for saving and restoring general-
purpose registers to the stack in the
R_BSP_VoltageLevelSetting function.

4.00 Oct.31.18 — Added support for RX651 with 64 pin package.
 — Updated RX65N iodefine.h to V2.2.
 20 3.2.5 RTOS

Added BSP_CFG_RTOS_SYSTEM_TIMER in Table 3-5
RTOS Defines.

 87,88 9.1 Confirmed Operation Environment
Corrected board used in Table 9.10 Confirmed Operation
Environment (Rev. 3.90) and Table 9.11 Confirmed Operation
Environment (Rev. 3.91).

 88 9.1 Confirmed Operation Environment
Added Table 9.13 Confirmed Operation Environment (Rev.
4.00).

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0620 Rev.6.20 Page 163 of 179
Jun.30.21

Rev.

Date

Description
Page Summary

4.00 Oct.31.18 Program Changes associated with functions
Added settings related to macro definitions to the settings file
for the GUI-based configuration option setting functionality for
only Generic of RX23T, RX24T, and RX24U.
[Description]
Added a setting file to support configuration option setting
function by GUI.

Changed the board folder of devices supporting Smart
Configurator (RX23T, RX24T, and RX24U).

[Description]
Deleted all folders other than the generic folder, since other
boards can all be substituted with GENERIC_RXxxx.

Added support for RTOS of RX64M, RX65N and RX71M.
[Description]
Added RTOS processing
Added the following macro definition:
- BSP_CFG_RTOS_SYSTEM_TIMER

 Changes associated with packages

Changed the macro definitions for the RX65N package.
[Description]
(1) Added setting values of the following macro definitions
regarding packages.

- BSP_CFG_MCU_PART_PACKAGE:
 Values: FM = 0x8 = LFQFP/64/0.50
 Values: BP = 0xC = TFBGA/64/0.50

(2) Added the following macro definitions:
- BSP_PACKAGE_LFQFP64
- BSP_PACKAGE_TFBGA64

4.01 Jan.11.19 — Added support for RX72T.
 41 5.1 Summary

Added notes about RX72T.
 64 5.19 R_BSP_VoltageLevelSetting

Added descriptions about RX72T.
 88 9.1 Confirmed Operation Environment

Added Table 9.14 Confirmed Operation Environment (Rev.
4.01).

5.00 Mar.15.19 — Supported the following compilers.
- GCC for Renesas RX
- IAR C/C++ Compiler for Renesas RX

 — Performed the following technical update.
- TN-RX*-A153A

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0620 Rev.6.20 Page 164 of 179
Jun.30.21

Rev.

Date

Description
Page Summary

5.00 Mar.15.19 — Excluded the following devices from operation confirmed
devices.
- RX210 group
- RX21A group
- RX220 group
- RX610 group
- RX62N group
- RX62T, RX62G group
- RX630 group
- RX63T group

 1 Updated operation confirmed devices.
Added target compilers.
Deleted related documents.

 3 Updated Overview.
 4, 5 Updated 1.2 File Structure.
 6 Updated 2.1 MCU Information.
 7, 8 Updated 2.2 Initialization.
 9 Updated 2.3 Global Interrupts.

Updated 2.4 Interrupt Callbacks.
 10 Updated 2.6 Clock Setup.

Updated 2.7 STDIO & Debug Console.
Updated 2.8 Stacks Area and Heap Area.

 11 Updated 2.10 ID Code.
Updated 2.12 Endian.
Updated 2.13 Option Function Select Registers.

 Deleted 2.16 Definition for Each Board.
 12 Updated 2.18 Register Protection.
 14-17 Updated 2.22 Startup Disable.
 18 Updated 3.1 Choosing a Platform.
 19-20 Updated 3.2.1 MCU Product Part Number Information.

Updated 3.2.2 Stack & Heap Sizes.
 21 Updated 3.2.5 RTOS.
 22 Updated 3.2.6 Clock Setup.
 24 Updated 3.2.7 Registers in ROM & External Memory Access

Protection.
 28 Updated 3.2.12 Startup Disable.
 37 Updated 4.10.2 Hardware Resource Locks.
 40 Updated 4.13 Code Size.
 42 Updated 5.1 Summary.
 43 Updated 5.2 R_BSP_GetVersion().
 63, 64 Updated 5.18 R_BSP_StartupOpen().
 67 Added 5.20 R_BSP_InterruptRequestEnable().
 68 Added 5.21 R_BSP_InterruptRequestDisable().
 69-75 Updated 6. Intrinsic Functions.
 76 Updated 7.1 Adding FIT Module to Your Project.
 77-83 Added 7.2 Adding FIT Modules to the IAR Project.
 95-98 Updated 9. Adding FIT Modules to the User Project.

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0620 Rev.6.20 Page 165 of 179
Jun.30.21

Rev.

Date

Description
Page Summary

5.00 Mar.15.19 105 10.1 Confirmed Operation Environment
Added Table 10.15 Confirmed Operation Environment
(Rev.5.00).

 107 Updated Technical Update Information.
Deleted web page and support contact.

 Program Folder Structure
Changed the folder structure.
[Description]
(1) Added the following files.

- r_bsp_interrupt.c
- r_bsp_interrupt.h
- linker_script_rvectors.inc
- r_rx_compiler.h
- r_rx_intrinsic_functions.c
- r_rx_intrinsic_functions.h
- r_rots.h
- reset_program.s
- mcu_clocks.h

 (2) Eliminated device dependence from the following files in
the board folder and moved them to the all folder.

- dbsct.c
- lowlvl.c
- lowsrc.c
- lowsrc.h
- resetprg.c
- sbrk.c

 (3) Eliminated device dependence from the following files in
the mcu folder and moved them to the all folder.

- cpu.c
- locking.c
- mcu_locks.c
- mcu_startup.c
- mcu_startup.h
- resetprg.c
- sbrk.c

 (4) Eliminated board dependence from the following files in
the board folder and moved them to the mcu folder.

- vecttbl.c
- vecttbl.h

 (5) Added the following folders to the register_access folder.
- ccrx
- gnuc
- iccrx

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0620 Rev.6.20 Page 166 of 179
Jun.30.21

Rev.

Date

Description
Page Summary

5.00 Mar.15.19 Program (6) Moved the following processing.
- Moved the ROM cache settings from resetprg.c to

hwsetup.c.
- Moved the clock settings from resetprg.c to mcu_clocks.c.
- Moved the include settings of RTOS from r_bsp.h to rots.h.
- Moved intrinsic related API functions from mcu_interrupt.c

to r_bsp_interrupts.c.
- Moved exception interrupt functions from vecttbl.c to

r_bsp_interrupts.c.
 (7) Changed the name of the following files.

- cpu.c -> r_bsp_cpu.c
- cpu.h -> r_bsp_cpu.h
- locking.c -> r_bsp_locking.c
- locking.h -> r_bsp_locking.h
- mcu_startup.c -> r_bsp_mcu_startup.c
- mcu_startup.h -> r_bsp_mcu_startup.h

 Clock related
Corrected the clock setting procedure. (RX110, RX111,
RX113, RX130, RX230, RX231)

[Description]
(1) Corrected the clock setting processing of HOCO, main
clock, sub clock, and PLL.
(2) Added the following macro definitions.

- BSP_CFG_MAIN_CLOCK_SOURCE
- BSP_CFG_MOSC_WAIT_TIME
- BSP_CFG_RTC_ENABLE
- BSP_CFG_SOSC_DRV_CAP
- BSP_CFG_SOSC_WAIT_TIME

(3) Deleted the following macro definitions. (RX110, RX111,
RX113)

- BSP_CFG_USE_CGC_MODULE
 Change Main Clock Oscillator Wait Time to initial value of

register.
[Description]
(1) Changed the default value of the following macro
definitions.

- BSP_CFG_MOSC_WAIT_TIME (0x06) ⇒ (0x04)
 Supported low power timers. (RX113)

[Description]
(1) Added processing that oscillates the clock source of the
low power timer when the low power timer is used.
(2) Added the following macro definition.

- BSP_CFG_LPT_CLOCK_SOURCE

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0620 Rev.6.20 Page 167 of 179
Jun.30.21

Rev.

Date

Description
Page Summary

5.00 Mar.15.19 Program Changed the default value of the clocks (ICLK, PCLKB,
PCLKD, FCLK) from 24 MHz to 32 MHz. (RX113)

[Description]
(1) Changed the default value of the following macro
definitions.

- BSP_CFG_PLL_DIV (2) ⇒ (4)
- BSP_CFG_PLL_MUL (6) ⇒ (8)
- BSP_CFG_ICK_DIV (2) ⇒ (1)
- BSP_CFG_PCKB_DIV (2) ⇒ (1)
- BSP_CFG_PCKD_DIV (2) ⇒ (1)
- BSP_CFG_FCK_DIV (2) ⇒ (1)

 Added settings in case the LCD module is not used. (RX113)
[Description]
(1) Added the following definition in case the LCD module is
not used.

- BSP_CFG_LCD_CLOCK_SOURCE = 5
(2) Changed the default value of the following definition.

- BSP_CFG_LCD_CLOCK_SOURCE (2) -> (5)
 Deleted processing related to the CGC FIT module. (RX110,

RX111, RX113)
[Description]
Deleted all processing related to the FIT module of CGC.

 Modified the following items for RX113 and RX231:
[Description]
Changed the default value of the following definition:
BSP_CFG_USB_CLOCK_SOURCE (0) -> (1)

 Lock related
Changed the content related to the lock function. (RX100,
RX200, RX600 (RX631, RX63N, RX64M are excluded),
Operation confirmed device supporting RX700 (RX71M is
excluded))

[Description]
(1) Deleted the following enum definition.

- BSP_LOCK_SMCIx (x is any value from 0 to 12)
 Changed the content of the lock function. (RX64M, RX71M)

[Description]
(1) Changed the following enum definitions.
- BSP_LOCK_EPTPC0
- BSP_LOCK_EPTPC1
- BSP_LOCK_PTPEDMAC

 STDIO/debug console related
Corrected the following content. (RX110, RX113, RX230,
RX231)

[Description]
Even though BSP_CFG_USER_CHARGET_ENABLED or
BSP_CFG_USER_CHARPUT_ENABLED was set to
enabled (“1”), correct operation was not performed,
therefore, it was corrected so that normal operation is
performed.

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0620 Rev.6.20 Page 168 of 179
Jun.30.21

Rev.

Date

Description
Page Summary

5.00 Mar.15.19 Program Function related
Supported the extended language specifications of CCRX by
multiple compilers.

[Description]
Added #pragma, key word, and the macro definition of
intrinsic functions and section address operators.

(For details, refer to r_rx_compiler.h, r_rx_intrinsic_functions.c,
r_rx_intrinsic_functions.h.)

 Added initialization processing of variables to resetprg.c.
[Description]
Added processing that initializes variables that have not
been initialized after reset release.

 Added initialization of double precision floating point function to
resetprg.c.

[Description]
Added processing that initializes DPSW after reset release.

 Added initialization of trigonometric function calculator to
resetprg.c.

[Description]
Added processing that initializes TFU after reset release.

 Added the macro definition of the MCU function to mcu_info.h.
[Description]
Added the macro definition for judging the function
implemented for each device.

 Added support Group BE0 intterrupts. (RX64M, RX65N,
RX66T, RX71M, and RX72T)
[Description]
(1) Added the group_be0_handler_isr function.
(2) Added the following enums.
bsp_int_src_t

- BSP_INT_SRC_BE0_CAN0_ERS0
- BSP_INT_SRC_BE0_CAN1_ERS1 (except RX66T, and
RX72T)

- BSP_INT_SRC_BE0_CAN2_ERS2 (except RX66T, and
RX72T)

5.10 Mar.29.19 — Added support for RX23W.
 24 Added the following macro definitions in section 3.2.6 Clock

Setup:
- BSP_CFG_CLKOUT_RF_MAIN

 42 5.1 Summary
Added R_BSP_ConfigClockSetting function.

 69 Added 5.22 R_BSP_ConfigClockSetting()
 106 10.1 Confirmed Operation Environment

Added Table 10.16 Confirmed Operation Environment
(Rev.5.10).

5.20 Apr.08.19 — Added support for RX72M.
 22 3.2.6 Clock Setup

Revised the value of BSP_CFG_USB_CLOCK_SOURCE.

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0620 Rev.6.20 Page 169 of 179
Jun.30.21

Rev.

Date

Description
Page Summary

5.20 Apr.08.19 24 3.2.6 Clock Setup
Added the following definition:
- BSP_CFG_PPLL_DIV
- BSP_CFG_PPLL_MUL
- BSP_CFG_PHY_CLOCK_SOURCE
- BSP_CFG_ESC_CLOCK_SOURCE
- BSP_CFG_CLKOUT_SOURCE
- BSP_CFG_CLKOUT_DIV
- BSP_CFG_CLKOUT_OUTPUT

 108 10.1 Confirmed Operation Environment
Added Table 10.17 Confirmed Operation Environment
(Rev.5.20).

5.21 Jul.23.19 108 10.1 Confirmed Operation Environment
Added Table 10.18 Confirmed Operation Environment
(Rev.5.21).

 Program Changes associated with functions
Added changes for RTOS support of RX110, RX111, RX113,
RX130, RX230, RX231, RX23T, RX23W, RX24T, RX24U,
RX63N RX66T, and RX72T.
[Description]
Added the following macro definition:
- BSP_CFG_RTOS_SYSTEM_TIMER

5.30 Jul.26.19 — Added support for RX13T.
 — Added support for RX24T with 64 pin package.
 — Added support for RX23W with GCC Compiler.
 — Added support for RX72M with IAR Compiler.
 — Performed the following technical update.

- TN-RX*-A0214A
 — Changed the comment of API functions to the doxygen style.
 — Updated RX72M iodefine.h for CCRX and GCC to V1.00C.
 — Updated RX65N iodefine.h for CCRX and GCC to V2.30.
 — Added RX23W iodefine.h for GCC to V1.0B.
 8 2.2 Initialization

Changed figure 2.1 Flowchart of startup function.
 16 2.22 Startup Disable

Changed figure 2.5 Processing Disabled with the Startup
Disable Function.

 18, 19 2.22.1 Setting the Startup Disable Function
(3) Calling the R_BSP_StartupOpen function: Changed the
description.
(4) Calling the R_BSP_VbattInitialSetting function: Added.

 23 3.2.4 CPU Modes & Boot Modes
Added notes.

 37 Added 3.2.19 Battery Backup Function.
 38 4.4 Limitations

Added limitations.
 41 4.10.3 Interrupt Error Codes

Added error code.
 4.10.4 Interrupt Control Commands

Added commands.

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0620 Rev.6.20 Page 170 of 179
Jun.30.21

Rev.

Date

Description
Page Summary

5.30 Jul.26.19 42 4.10.6 Interrupt Sources
Added the BSP_INT_SRC_EMPTY.

 45 5.1 Summary
Added the R_BSP_SoftwareReset() and
R_BSP_VbattInitialSetting().

 46-79 Delete “Reentrant” item on each API section.
 51 5.7 R_BSP_RegisterProtectEnable()

Modified the description.
 52-53 5.7 R_BSP_RegisterProtectEnable()

Added notes in Special Notes.
 54 5.8 R_BSP_RegisterProtectDisable()

Modified the description and added notes in Special Notes.
 64-67 5.15 R_BSP_InterruptControl()

Changed the description of Parametars, Retern Values, and
Description for Added functions. Added Example. Added notes
in Special Notes.

 77 Added 5.23 R_BSP_SoftwareReset().
 78-79 Added 5.24 R_BSP_VbattInitialSetting().
 84 Table 6.5 Common Macros of Intrinsic Functions (5/7)

R_BSP_CHG_PMUSR(): Added notes for RX72M.
 86 Table 6.7 Common Macros of Intrinsic Functions (7/7)

Added following intrinsic functions.
- R_BSP_SINCOSF
- R_BSP_ATAN2HYPOTF

 118 10.1 Confirmed Operation Environment
Added Table 10.18 Confirmed Operation Environment
(Rev.5.30).

 120 Updated Technical Update Information.
 Program Changes associated with packages

Changed the macro definitions for the RX24T package.
[Description]
(1) Added setting values of the following macro definitions
regarding packages.

- BSP_CFG_MCU_PART_PACKAGE:
 Values: FK = 0x1 = LQFP/64/0.80

(2) Added the following macro definitions:
- BSP_PACKAGE_LFQFP64

 Changes associated with functions
Added initialization settings when battery backup function is
not used. (RX23W)
[Description]
(1) Added the following macro definition.

- BSP_CFG_VBATT_ENABLE
(2) Added the initialization settings when battery backup
function is not used.

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0620 Rev.6.20 Page 171 of 179
Jun.30.21

Rev.

Date

Description
Page Summary

5.30 Jul.26.19 Program Corresponds to Technical Update Information (TN-RX*-
A0214A). (RX230 and RX231)
[Description]
(1) Added the following macro definition.

- BSP_CFG_VBATT_ENABLE
(2) Added the initialization settings when battery backup
function is not used. For details, see Technical Update
Information (TN-RX*-A0214A).

 Change associated with API functions
Changed the process of the R_BSP_RegisterProtectEnable
function and R_BSP_RegisterProtectDisable function.
[Description]
Changed to use R_BSP_InterruptControl function for control of
processor interrupt priority level.
(Changed so that privileged instruction exception does not
occur even when executed in user mode.)

 Added the function to R_BSP_InterruptControl function. (All
devices)
[Description]
(1) Added the following macro definitions of the command.

- BSP_INT_CMD_FIT_INTERRUPT_ENABLE
- BSP_INT_CMD_FIT_INTERRUPT_DISABLE

(2) Added the following macro definition of the error code.
 - BSP_INT_ERR_INVALID_IPL
(3) Added the following macro definition when interrupt vector
not used.
 - BSP_INT_SRC_EMPTY
(4) Added the interrupt enable / disable processing by
controlling the processor interrupt priority level.

 Added the API function for initialize the battery backup
function.
[Description]
(1) Added the following API function.
 - R_BSP_VbattInitialSetting()

 Change associated with intrinsic functions
Fixed the bugs about Compiler of GCC for Renesas RX.
[Description]
(1) Fixed the following intrinsic functions.
 - R_BSP_MulAndAccOperation_2byte()
 - R_BSP_MulAndAccOperation_FixedPoint1()
 - R_BSP_MulAndAccOperation_FixedPoint2()

 Added the intrinsic function for Arithmetic unit for trigonometric
functions (TFU).
[Description]
(1) Added the following intrinsic functions.
 - R_BSP_CalcSine_Cosine()
 - R_BSP_CalcAtan_SquareRoot()

5.40 Oct.04.19 — Added support for RX23E-A.

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0620 Rev.6.20 Page 172 of 179
Jun.30.21

Rev.

Date

Description
Page Summary

5.40 Oct.04.19 — Updated RX23W iodefine.h for CCRX and GCC to V1.00D.
Updated RX23W iodefine.h for IAR to V1.00C.
Updated RX72M iodefine.h for IAR to V1.00C.
Updated RX13T iodefine.h for CCRX and GCC to V1.00A.

 37 4.4 Limitations
Added limitations.

 118 10.1 Confirmed Operation Environment
Added Table 10.20 Confirmed Operation Environment
(Rev.5.40).

 Program Function related
Fixed option-setting memory initialization for GCC. (RX64M,
RX65N, RX66T, RX71M, RX72M, RX72T)
[Description]
Fixed the problem that option-setting memory register was not
initialized correctly when the optimization level of the compiler
was changed from the default.

 Changes associated with interrupts
Added the following items for software configurable interrupts.
[Description]
Added the following software configurable interrupt sources.
(RX71M)
- BSP_MAPPED_INT_CFG_B_VECT_SHA_SHARDY

 Modification Regarding Pin Function
Fixed the initial value of port setting. (RX23W)
[Description]
Fixed the initial value of port setting of Port 1, 2, and 3.

5.50 Oct.08.19 — Added support for RX72N.
 — Added support for RX66N.
 — Excluded the following devices from operation confirmed

devices.
- RX63N, RX631 group

 — Added support for RX23W with IAR Compiler.
 — Added support for RTOS (RI600V4 and RI600PX).
 — Changed iodefine.h for RX65N.
 5 1.2 File Structure: Added notes for RX651.
 6 Updated Figure 1.2 Structures of generic Folder.
 8 2.2 Initialization: Updated Figure 2.1 Flowchart of startup

function.
 17 2.22 Startup Disable: Updated Figure 2.6 Files Influenced by

the Startup Disable Function.
 19 Added 2.23 Software Interrupts.
 21-22 3.2.2 Stack & Heap Sizes

Added description when using RTOS to the description of the
definition below.
- BSP_CFG_USER_STACK_ENABLE
- BSP_CFG_USTACK_BYTES
- BSP_CFG_ISTACK_BYTES

 23 3.2.4 CPU Modes & Boot Modes: Added description when
using RTOS to the description of
BSP_CFG_RUN_IN_USER_MODE.

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0620 Rev.6.20 Page 173 of 179
Jun.30.21

Rev.

Date

Description
Page Summary

5.50 Oct.08.19 24 3.2.5 RTOS:
Added description when using RTOS to the description of
BSP_CFG_RTOS_SYSTEM_TIMER.
Added BSP_CFG_RENESAS_RTOS_USED.

 38 Added 3.2.20 Software Interrupts
 39 Changed 4.4 Limitations

Added limitation of RX72N and RX66N.
Added support of the intrinsic functions for Arithmetic Unit for
Trigonometric Functions with GCC and IAR Compiler.
Added support of the intrinsic functions for Double-Precision
Floating-Point Coprocessor with GCC Compiler.
Therefore, these limitations are deleted.

 40 Added 4.6 Interrupt Vectors Used.
 Deleted 4.8 Configuration Overview.
 43 Chapter 4.11.3 Interrupt Error Codes has been moved to

Chapter 4.11 Return Values.
 45 Added 4.10.7 Software Interrupt Units.

Added 4.10.8 Software Interrupt Control Commands.
 46 Added 4.10.9 Software Interrupt Information.

Added 4.10.10 Software Interrupt Task Status.
Added 4.10.11 Software Interrupt Task.
Added 4.10.12 Software Interrupt Task Buffer Number.

 47 Added 4.10.13 Software Interrupt Access Control Status.
 4.11 Return Values

4.11.1 Interrupt Error Codes: Moved from Chapter 4.11.3.
Added 4.11.2 Software Interrupt Error Code.

 51 5.1 Summary
Added the following functions.
- R_BSP_SoftwareInterruptOpen
- R_BSP_SoftwareInterruptClose
- R_BSP_SoftwareInterruptSetTask
- R_BSP_SoftwareInterruptControl

 54 5.3 R_BSP_InterruptsDisable(): Changed the description of
Special Notes.

 55 5.4 R_BSP_InterruptsEnable(): Changed the description of
Special Notes.

 57 5.6 R_BSP_CpuInterruptLevelWrite(): Changed the description
of Retern Values and Special Notes.

 60 5.7 R_BSP_RegisterProtectEnable():Changed the description
of Special Notes.

 61 5.8 R_BSP_RegisterProtectDisable():Changed the description
of Special Notes.

 87 Added 5.25 R_BSP_SoftwareInterruptOpen().
 88 Added 5.26 R_BSP_SoftwareInterruptClose().
 89-90 Added 5.27 R_BSP_SoftwareInterruptSetTask().
 91-94 Added 5.28 R_BSP_SoftwareInterruptControl().

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0620 Rev.6.20 Page 174 of 179
Jun.30.21

Rev.

Date

Description
Page Summary

5.50 Oct.08.19 101 Table 6.7 Common Macros of Intrinsic Functions (7/7)
R_BSP_INIT_TFU(): Changed function of iccrx. Added notes.
Changed the following functions of iccrx of common macros to
the built-in function of IAR C/C++ Compiler for Renesas RX.
- R_BSP_SINCOSF(x, y, z)
- R_BSP_ATAN2HYPOTF(w, x, y, z)

 102 Updated 7.1 Adding the FIT Module to Your Project.
 103 Changed the description of 7.2 Adding FIT Modules to the IAR

Project.
Added 7.2.1 Adding FIT Modules by using the Smart
Configurator standalone version.

 105 7.2.2 Adding FIT Modules by using the IAR Project Convertor:
Added Chapter title.

 137 10.1 Confirmed Operation Environment
Added Table 10.21 Confirmed Operation Environment
(Rev.5.50).

 138 10.2 Troubleshooting: Added the case.
 Program Function related

Added changes for RTOS support. (All devices)
[Description]
(1) Added the following macro definition.

- BSP_CFG_RENESAS_RTOS_USED
(2) Changed the specification of the following API functions in
user mode.

- R_BSP_InterruptsEnable
- R_BSP_InterruptsDisable
- R_BSP_CpuInterruptLevelWrite

 Added the software interrupt function. (All devices)

[Description]
(1) Added the following macro definition.

- BSP_CFG_SWINT_UNITn_ENABLE(n = 0, 1)
- BSP_CFG_SWINT_TASK_BUFFER_NUMBER
- BSP_CFG_SWINT_IPR_INITAL_VALUE

(2) Added the following API functions.
- R_BSP_SoftwareInterruptOpen
- R_BSP_SoftwareInterruptClose
- R_BSP_SoftwareInterruptSetTask
- R_BSP_SoftwareInterruptControl

(3) Added the initialize of the software reset in Startup function
of BSP.

 Lock related
Changed the content of the lock function. (All devices)

[Description]
(1) Added the following enum definitions.
- BSP_LOCK_SWINT
- BSP_LOCK_SWINT2 (Only RX64M, RX65N, RX66T,
RX71M, RX72M, and RX72T)

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0620 Rev.6.20 Page 175 of 179
Jun.30.21

Rev.

Date

Description
Page Summary

5.50 Oct.08.19 Program Intrinsic function related
Changed the common macros for Arithmetic unit for
trigonometric functions for IAR C/C++ Compiler for Renesas
RX.
[Description]
(1) Changed the following common macros of intrinsic
functions.
 - R_BSP_INIT_TFU
 - R_BSP_SINCOSF
 - R_BSP_ATAN2HYPOTF

5.51 Dec.10.19 — Updated RX23W iodefine.h for IAR to V1.00D.
Updated RX65N iodefine.h for IAR to V2.30.
Updated RX13T iodefine.h for IAR to V1.00A.

 38 Changed 4.4 Limitations
The limitation of User mode transition is deleted from 4.4.1 IAR
Compiler Limitations.
Deleted 4.4.2 GNU Compiler Limitations.

 73 5.15 R_BSP_InterruptControl()
Added notes in Special Notes.

 130 10.1 Confirmed Operation Environment
Added Table 10.22 Confirmed Operation Environment
(Rev.5.51).

 — 7.2.2 Adding FIT Modules by using the IAR Project Convertor:
Deleted the section for changed specification of e2 studio
version 7.6.0.

5.52 Feb.14.20 — Added support for RX110 with IAR Compiler.
 131 10.1 Confirmed Operation Environment

Added Table 10.23 Confirmed Operation Environment
(Rev.5.52).

 Program Fixed the issue that warnings of unused variable were output
when building with the CCRX and IAR compilers. (RX110,
RX111, RX113, RX130, RX230, RX231, RX23W, RX64M,
RX65N, RX66N, RX71M, RX72M, RX72N)

 Fixed the issue that external variables ware not initialized by
the _INITSCT function when the -pack option was specified in
the CCRX compiler.

5.60 Jul.31.20 — Added support for RX23W with 83 pin package.
 — Added support for RX13T with 32 pin and 48 pin packages.
 1 Described available version about CCRX Compiler in Target

Compiler.
 38 Added 4.4.3 CCRX Compiler Limitations.
 102 Updated 7.1 Adding the FIT Module to Your Project.
 121 10.1 Confirmed Operation Environment

 Added description about compiler version.
 131 Added Table 10.24 Confirmed Operation Environment

(Rev.5.60).

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0620 Rev.6.20 Page 176 of 179
Jun.30.21

Rev.

Date

Description
Page Summary

5.60 Jul.31.20 Program Changes associated with packages
Changed the macro definitions for the RX23W package.
[Description]
(1) Added setting values of the following macro definitions
regarding packages.

- BSP_CFG_MCU_PART_PACKAGE:
 Values: LN = 0xF = LGA/83/0.50

(2) Added the following macro definitions:
- BSP_PACKAGE_LGA83

 Changed the macro definitions for the RX13T package.

[Description]
(1) Added setting values of the following macro definitions
regarding packages.

- BSP_CFG_MCU_PART_PACKAGE:
 Values: NE = 0x10 = QFN/48/0.50
 Values: NH = 0x11 = QFN/32/0.50

(2) Added the following macro definitions:
- BSP_PACKAGE_QFN48
- BSP_PACKAGE_QFN32

 Function related
Fixed an issue that caused build errors when the
_REENTRANT option was specified in the CCRX compiler.

 Added the initialization for BSP_CFG_SDCLK_OUTPUT.
(RX66N, RX72M, RX72N)

5.61 Aug.04.20 — Added part number for RX23E-A.
 132 Added Table 10.25 Confirmed Operation Environment

(Rev.5.61).
 Program Changes associated with packages

Changed the macro definitions for the RX23E-A Chip version.
[Description]
(1) Added setting values of the following macro definitions.

- BSP_CFG_MCU_PART_VERSION:
 Values: S = 0x1C = S: Temperature (thermocouple or
resistive temperature detector), DSAD 1 Unit

5.62 Nov.20.20 — Added support for RX72M with 100 pin and 144 pin packages.
 27 3.2.7 Registers in ROM & External Memory Access Protection

Added the following macro definitions:
- BSP_CFG_ID_CODE_ENABLE

 39 4.6 Interrupt Vectors Used
Changed Table 4.1 Interrupt Vectors Used.

 107 8. Adding r_bsp manually
Changed the description.

 132 Added Table 10.26 Confirmed Operation Environment
(Rev.5.62).

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0620 Rev.6.20 Page 177 of 179
Jun.30.21

Rev.

Date

Description
Page Summary

5.62 Nov.20.20 Program Changes associated with packages
Changed the macro definitions for the RX72M package.
[Description]
(1) Added setting values of the following macro definitions
regarding packages.

- BSP_CFG_MCU_PART_PACKAGE:
 Values: FB = 0x03 = LFQFP/144/0.50
 Values: FP = 0x05 = LFQFP/100/0.50

(2) Added the following macro definitions:
- BSP_PACKAGE_LFQFP144
- BSP_PACKAGE_LFQFP100

 Function related
Added the macro definition to set enable/disable of id code
(RX64M, RX66T, RX71M, and RX72T).
[Description]
(1) Added the following macro definitions:

- BSP_CFG_ID_CODE_ENABLE
(2) If the id code is enabled (BSP_CFG_ID_CODE_ENABLE is
1), added the process to enable the id code protection function
of Serial Programmer Command Control Register (SPCC).

 Fixed the initialization settings of VBATT for updated Technical
Update Information (TN-RX*-A0214A). (RX230, RX231, and
RX23W)
[Description]
(1) Fixed the initialization settings of VBATT. For details, see
Technical Update Information (TN-RX*-A0214A).

5.63 Jan.29.21 — Added support for Technical Update Information.
 38 Added 3.2.21 Definitions of board setting.
 134 Added Table 10.27 Confirmed Operation Environment

(Rev.5.63).
 136 Updated Technical Update Information.
 Program Function related

Added a data input / ouput function in the IAR
environment(iccrx).
(1) Added the __write function and the __read function.

 Fixed the initialization settings of sub-clock for updated
Technical Update Information (TN-RX*-A0236B). (RX64M,
RX65N, RX66N, RX71M, RX72M and RX72N)
[Description]
(1) Fixed the initialization settings of sub-clock. For details, see
Technical Update Information (TN-RX*-A0236B).

 Fixed the initialization settings of sub-clock for updated
Technical Update Information (TN-RX*-A0237B). (RX230,
RX231 and RX23W)
[Description]
(1) Fixed the initialization settings of sub-clock. For details, see
Technical Update Information (TN-RX*-A0237B).

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0620 Rev.6.20 Page 178 of 179
Jun.30.21

Rev.

Date

Description
Page Summary

5.63 Jan.29.21 Program Function related
Fixed the initialization settings of sub-clock for updated
Technical Update Information (TN-RX*-A0238B). (RX113 and
RX130)
[Description]
(1) Fixed the initialization settings of sub-clock. For details, see
Technical Update Information (TN-RX*-A0238B).

 Fixed the initialization settings of sub-clock for updated
Technical Update Information (TN-RX*-A0241B). (RX110 and
RX111)
[Description]
(1) Fixed the initialization settings of sub-clock. For details, see
Technical Update Information (TN-RX*-A0241B).

 Added the macro definitions for serial terminal of board
function. (All devices)
[Description]
(1) Added the following macro definitions:

- BSP_CFG_SCI_UART_TERMINAL_ENABLE
- BSP_CFG_SCI_UART_TERMINAL_CHANNEL
- BSP_CFG_SCI_UART_TERMINAL_BITRATE
- BSP_CFG_SCI_UART_TERMINAL_INTERRUPT_
PRIORITY

 Improved the ID code protection fucntion. (RX64M, RX66T,
RX71M and RX72T)

5.64 Feb.26.21 — Added a specification to notify an error when the initial value of
the heap size of BSP is smaller than the minimum value of the
heap size when the heap size usage is specified for FIT
modules other than BSP in the component settings of Smart
Configurator.

 23 3.2.5 RTOS
Added the “5”(Azure RTOS is used.) to the value of
BSP_CFG_RTOS_USED.

 134 Added Table 10.28 Confirmed Operation Environment
(Rev.5.64).

 Program Function related
Added the compile switch for Azure RTOS to compile switch of
BSP_CFG_RTOS_USED.

5.65 Apr.23.21 — Added support for FSP.
 134 Added Table 10.29 Confirmed Operation Environment

(Rev.5.65).
 Program Function related

Added fsp_common_api.h and r_fsp_error.h to support FSP.
5.66 May.14.21 135 Added Table 10.30 Confirmed Operation Environment

(Rev.5.66).
 Program Function related

Updated fsp_common_api.h.
6.11 May.18.21 — Added support for RX671.

RX Family Board Support Package Module Using Firmware Integration Technology

R01AN1685EJ0620 Rev.6.20 Page 179 of 179
Jun.30.21

Rev.

Date

Description
Page Summary

6.11 May.18.21 24 3.2.6 Clock Setup
Added the following macro definitions.
- BSP_CFG_MAIN_CLOCK_OSCILLATE_ENABLE
- BSP_CFG_SUB_CLOCK_OSCILLATE_ENABLE
- BSP_CFG_HOCO_OSCILLATE_ENABLE
- BSP_CFG_LOCO_OSCILLATE_ENABLE
- BSP_CFG_IWDT_CLOCK_OSCILLATE_ENABLE

 27 3.2.6 Clock Setup
Added the following macro definitions.
- BSP_CFG_HOCO_FLL_ENABLE
- BSP_CFG_HOCO_TRIMMING_ENABLE
- BSP_CFG_HOCO_TRIMMING_REG_VALUE

 28 Added the Note in Table 3.7 ROM Register Defines (1/2).
 42 4.6 Interrupt Vectors Used

Changed Table 4.1 Interrupt Vectors Used.
 89 5.25 R_BSP_SoftwareInterruptOpen()

Changed the description.
 138 Added Table 10.31 Confirmed Operation Environment

(Rev.6.11).
 140 Added 10.3 Note when using the IWDT auto-start mode.
 Program Function related

Fixed MDF files that remove the configure clock out (CLKOUT)
pin from the software component section of BSP. (RX66N,
RX72M, RX72N)

6.20 Jun.30.21 — Added support for RX140.
 138 Added Table 10.32 Confirmed Operation Environment

(Rev.6.20).
 Program Function related

Added support of the exception address interrupts. (RX66N,
RX72M, RX72N)

General Precautions in the Handling of Microprocessing Unit and Microcontroller
Unit Products
The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the
products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Precaution against Electrostatic Discharge (ESD)

A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps

must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be

adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity.

Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and

measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor

devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.
2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of

register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset

pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins

in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the

level at which resetting is specified.
3. Input of signal during power-off state

Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O

pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal

elements. Follow the guideline for input signal during power-off state as described in your product documentation.
4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are

generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of

the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal

become possible.
5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program

execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator

during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal

produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.
6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL

(Max.) and VIH (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the

input level is fixed, and also in the transition period when the input level passes through the area between VIL (Max.) and VIH (Min.).
7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these

addresses as the correct operation of the LSI is not guaranteed.
8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems.

The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms

of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values,

operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-

evaluation test for the given product.

© 2021 Renesas Electronics Corporation. All rights reserved.

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products

and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your
product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use
of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights,
or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this
document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics
or others.

4. You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export,
manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.

5. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any
and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

6. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for
each Renesas Electronics product depends on the product’s quality grade, as indicated below.
 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home

electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key

financial terminal systems; safety control equipment; etc.
Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas
Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to
human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space
system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics
disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product
that is inconsistent with any Renesas Electronics data sheet, user’s manual or other Renesas Electronics document.

7. No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics
hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but
not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS
ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING
RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE,
HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (“Vulnerability Issues”). RENESAS ELECTRONICS DISCLAIMS ANY AND
ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT
PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH
RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO
THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.

8. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for
Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by
Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas
Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such
specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific
characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability
product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics
products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily
injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as
safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for
aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are
responsible for evaluating the safety of the final products or systems manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas
Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of
controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these
applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance
with applicable laws and regulations.

11. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is
prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations
promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

12. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or
transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

13. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
14. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas

Electronics products.

(Note1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled
subsidiaries.

(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.
(Rev.5.0-1 October 2020)

Corporate Headquarters Contact information
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

 For further information on a product, technology, the most up-to-date
version of a document, or your nearest sales office, please visit:
www.renesas.com/contact/.

Trademarks
Renesas and the Renesas logo are trademarks of Renesas Electronics
Corporation. All trademarks and registered trademarks are the property
of their respective owners.

https://www.renesas.com/
https://www.renesas.com/contact/

	1. Overview
	1.1 Terminology
	1.2 File Structure

	2. Features
	2.1 MCU Information
	2.2 Initialization
	2.3 Global Interrupts
	2.4 Interrupt Callbacks
	2.5 Non-Existent Port Pins
	2.6 Clock Setup
	2.7 STDIO & Debug Console
	2.8 Stacks Area and Heap Area
	2.9 CPU Mode
	2.10 ID Code
	2.11 Parallel Programmer Protection
	2.12 Endian
	2.13 Option Function Select Registers
	2.14 Trusted Memory
	2.15 Bank Mode
	2.16 System Wide Parameter Checking
	2.17 Atomic Locking
	2.18 Register Protection
	2.19 CPU Functions
	2.20 Group Interrupts
	2.21 Software Configurable Interrupts
	2.22 Startup Disable
	2.22.1 Setting the Startup Disable Function

	2.23 Software Interrupts

	3. Configuration
	3.1 Choosing a Platform
	3.2 Platform Configuration
	3.2.1 MCU Product Part Number Information
	3.2.2 Stack & Heap Sizes
	3.2.3 STDIO & Debug Console
	3.2.4 CPU Modes & Boot Modes
	3.2.5 RTOS
	3.2.6 Clock Setup
	3.2.7 Registers in ROM & External Memory Access Protection
	3.2.8 Atomic Locking
	3.2.9 Parameter Checking
	3.2.10 Extended Bus Master Priority Setting
	3.2.11 MCU Voltage
	3.2.12 Startup Disable
	3.2.13 Using Smart Configurator
	3.2.14 Negative Voltage Input Settings for AD Pins
	3.2.15 ROM Cache Function
	3.2.16 Callback function at warm start
	3.2.17 Board Revision
	3.2.18 Interrupt Priority Level When FIT Module Interrupts Are Disabled
	3.2.19 Battery Backup Function
	3.2.20 Software Interrupts
	3.2.21 Definitions of board setting

	4. API Information
	4.1 Hardware Requirements
	4.2 Hardware Resource Requirements
	4.3 Software Requirements
	4.4 Limitations
	4.4.1 IAR Compiler Limitations
	4.4.2 RAM Location Limitations
	4.4.3 CCRX Compiler Limitations

	4.5 Supported Toolchains
	4.6 Interrupt Vectors Used
	4.7 Header Files
	4.8 Integer Types
	4.9 API Data Structures
	4.9.1 Software Lock
	4.9.2 Interrupt Callback Parameter
	4.9.3 Interrupt Control Parameter

	4.10 API Typedefs
	4.10.1 Register Protection
	4.10.2 Hardware Resource Locks
	4.10.3 Interrupt Control Commands
	4.10.4 Interrupt Callback Function
	4.10.5 Interrupt Sources
	4.10.6 Unit for Software Delay
	4.10.7 Software Interrupt Units
	4.10.8 Software Interrupt Control Commands
	4.10.9 Software Interrupt Information
	4.10.10 Software Interrupt Task Status
	4.10.11 Software Interrupt Task
	4.10.12 Software Interrupt Task Buffer Number
	4.10.13 Software Interrupt Access Control Status

	4.11 Return Values
	4.11.1 Interrupt Error Codes
	4.11.2 Software Interrupt Error Code

	4.12 Code size
	4.13 “for”, “while” and “do while” statements

	5. API Functions
	5.1 Summary
	5.2 R_BSP_GetVersion()
	5.3 R_BSP_InterruptsDisable()
	5.4 R_BSP_InterruptsEnable()
	5.5 R_BSP_CpuInterruptLevelRead()
	5.6 R_BSP_CpuInterruptLevelWrite()
	5.7 R_BSP_RegisterProtectEnable()
	5.8 R_BSP_RegisterProtectDisable()
	5.9 R_BSP_SoftwareLock()
	5.10 R_BSP_SoftwareUnlock()
	5.11 R_BSP_HardwareLock()
	5.12 R_BSP_HardwareUnlock()
	5.13 R_BSP_InterruptWrite()
	5.14 R_BSP_InterruptRead()
	5.15 R_BSP_InterruptControl()
	5.16 R_BSP_SoftwareDelay()
	5.17 R_BSP_GetIClkFreqHz()
	5.18 R_BSP_StartupOpen()
	5.19 R_BSP_VoltageLevelSetting()
	5.20 R_BSP_InterruptRequestEnable()
	5.21 R_BSP_InterruptRequestDisable()
	5.22 R_BSP_ConfigClockSetting()
	5.23 R_BSP_SoftwareReset()
	5.24 R_BSP_VbattInitialSetting()
	5.25 R_BSP_SoftwareInterruptOpen()
	5.26 R_BSP_SoftwareInterruptClose()
	5.27 R_BSP_SoftwareInterruptSetTask()
	5.28 R_BSP_SoftwareInterruptControl()

	6. Intrinsic Functions
	7. Project Setup
	7.1 Adding the FIT Module to Your Project
	7.2 Adding FIT Modules to the IAR Project
	7.2.1 Adding FIT Modules by using the Smart Configurator standalone version

	8. Adding r_bsp manually
	8.1 Creating a BSP Module for a Custom Board
	Step 1. Create a New Project (Mandatory)
	Step 2. Add the BSP Module (Mandatory)
	Step 3. Create a Folder for the Custom Board
	Step 4. Store Necessary Files (Mandatory)
	Step 5. Modify Files Suited to the Custom Board (Mandatory)
	Step 6. Copy and Rename the r_bsp_config_reference.h File (Mandatory)
	Step 7. Modify the platform.h File (Mandatory)

	9. Adding FIT Modules to the User Project
	Step 1. Adding the FIT module using the FIT configurator
	Step 2. Setting the Project Environment
	Step 3. Startup disable
	Notes

	10. Appendices
	10.1 Confirmed Operation Environment
	10.2 Troubleshooting
	10.3 Note when using the IWDT auto-start mode

	Technical Update Information
	Revision Record
	General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products
	Notice

