LENESAS Application Note

RX Family
BYTEQ Module Using Firmware Integration Technology

Introduction

This module provides functions for creating and maintaining byte-based circular buffers.

Target Device
The following is a list of devices that are currently supported by this API:
e AllRXMCUs

When using this application note with other Renesas MCUSs, careful evaluation is recommended after making
modifications to comply with the alternate MCU.

Target Compilers
e Renesas Electronics C/C++ Compiler Package for RX Family
e GCC for Renesas RX
e |AR C/C++ Compiler for Renesas RX

For details of the confirmed operation contents of each compiler, refer to “5.1 Confirmed Operation
Environment".

R0O1AN1683EJ0181 Rev.1.81 Page 1 of 25
Jun.10.20 RENESAS

RX Family BYTEQ Module Using Firmware Integration Technology

Contents

N O 1YY o= RPN 3
1.1 USINg the BYTEQ MOAUIEooiiiiiieeieee ettt ettt e et e e s st e e e s nbb e e e e nbbeeeeaas 3
N N e T [010 0= Lo o PP PTP P PPPPPUPPPRPPR 5
2.1 Hardware REQUIFEIMENTScoiiiiiiiiiiiiee ettt e ettt e sttt e e aa b et e e e s bb et e e s bb e e e e aabbe e e e anbbeeeesnnneeas 5
2.2 SOftWArE REOUITEIMENTSeiiiiiiiiie ettt e et e e e e st e e e e s bb e e e e aabb et e e aabbe e e e anbbeeeesnnneeas 5
AR T N 1011 7= 1 o] o ST S P PRRPTP 5
P22 S STW] o] o To T (Yo I o] (o3 s F- V1 o IS SRS 5
P T o 1= - To [T OO 5
22 ST 11 (=0 = g 1Y o = 5
2.7 CONFIQUIALION OVEIVIEWeiiiiiiiiie ettt ettt ettt e e et e et e e sa b et e e e aa bttt e e aabe et e e anbbe e e e sabbe e e e anbbeeeesnnneeas 6
P S T o o (=T . O RRP 7
2.9 Adding the Module t0 YOUF PIOJECLuuiiiiiiiiiiiiie ettt e e ettt e e e e e e e e s aasbb e e e e e e e e e e ennneees 8
2.10 “for”, “while” and “do While” STAatEMENTS.........coiiiiiiiiiiie e sneeeas 9
K T N o I] o 1o S 10
T R YT [0 011 4 F= 1Y PP PP PPPPPPPPPPP 10
3.2 REIUIM VAIUES......ciiiiiiiie ettt ettt e e sttt e e sttt e e e st et e e e st e e e e nbae e e enbaeeeeanbaeeeennsbeeeenees 10
3.3 R_BYTEQ _OPEN() tetettttiittteiitie it stieeatee e sttt e sste e e ssee e s beeaasseessbe e s abe e e smbeeaabe e e asbe e e bseessneesnbeeeabreesabeeennneennne 11
S = = 4 I =1 3 o 1T= T) S PSRR 12
ST = O = A I =L T = RO RRTR 13
ST = O = A I =L T 1= (TSRO 14
3.7 R_UBYTEQ _FIUSN() teteittiiitiie ittt ettt ettt b ettt e ekt e e eb b e e e b e e e sab e e eabe e e abbe e enbeeennneenane 15
3.8 R_BYTEQ _USEU() .eteiuteieitieiiie et stie ettt sttt ettt sa ek e e e st e et e e e sb b e e e b s e e smb e e snbe e e nnbeeanbeeennnee e 16
3.9 R_BYTEQ_UNUSEA() . .tteitrteiitieitieesiiee ettt e sttt ettt et ssb e bt essbe e et e e ss b e e s be e e smneesnbe e e nnbeesnbeeennneennns 17
T O T = = 4 I 1@ T 1= Y= £ (o]) PSSR 18
N I =T o [o TN (o = o3 £ 19
o R o)V, (Yo o [T g Lo T £ 22 USRS 19
2)Y, (o o (=T 0 ¢ Lo T £ 1 o SO PSSRR 19
4.3 Adding 8 DemO t0 8 WOIKSPACEcouuiiiiiiiiie ittt ettt et e e s bae e e e 19
4.4 Downloading DEMO PrOJECESeiiiiiiiiee ittt ettt e et e e s ebbe e e e ebbe e e s abreeeeaneee 19
LT Y o o T= Lo [o] =S 20
5.1 Confirmed Operation ENVIFONMENT.........oocuuiiiiiiiie ittt et e e st e e s enbee e e s enene 20
Y A I (018 o] [=2] o To] (1o T R P ST UP PP PRN 22
6. REfErENCE DOCUMENIS.....ciiiiiiiiiiiiie et e e e e e e st e e e e e e e s s eb b b e e eeaaeeeas 23
Related TeChniCal UPAAteS..........cooviiiiiiiiii e e et e e e e e e 23
REVISION RECOI... .o 24
RO1AN1683EJ0181 Rev.1.81 Page 2 of 25

Jun.10.20 RENESAS

RX Family BYTEQ Module Using Firmware Integration Technology

1. Overview

The Byte Queue (BYTEQ) module provides basic circular buffer services for buffers provided by the
application.

The module allocates a Queue Control Block (QCB) for each buffer passed to the Open() function. A QCB
maintains the buffer’s “in” and “out” indexes for adding and removing data from the queue. The Queue
Control Blocks can be allocated statically at compile time or dynamically at run time (using malloc). An
equate in config.h determines whether they are statically or dynamically created. If they are statically
allocated, an additional equate is utilized which specifies the maximum number of buffers to be supported.

There is one control block per buffer. When an R_BYTEQ_Open() is performed, a pointer to the application’s
buffer and its length are passed in, and a pointer to a QCB is provided. This pointer, which is called a Handle,
is then passed to all of the other API functions. The functions then operate on the queue referenced by this
Handle. Because there is no global or static data shared between the queues, the API functions are re-
entrant for different queues.

This module does not make use of any interrupts. If a queue can be modified at both the interrupt and
application level, it is up to the application to ensure that the appropriate related interrupt is disabled
whenever the queue is being accessed. Similarly, if the queue is accessed by tasks of different priorities, it is
up to the user to prevent task switching or to utilize a mutex or semaphore to reserve the queue.

1.1 Using the BYTEQ Module

The following illustrates a queue’s behavior with API calls:
#define BUFSIZE 14

uint8_t my_ buf[BUFSIZE];
byteg_hdl_t my_que;
byteq_err_t err;

uint8_t byte;

err = R_BYTEQ Open(my buf, BUFSIZE, &my que);

// add 12 bytes to queue
R_BYTEQ_Put(my_que, “h?);
R_BYTEQ Put(my que, ‘e’

R_BYTEQ Put(my_que,
R_BYTEQ_Put(my_que,
R_BYTEQ_Put(my_que,
R_BYTEQ_Put(my_que,
R_BYTEQ Put(my_que,
R_BYTEQ Put(my_que,
R_BYTEQ_Put(my_que,
R_BYTEQ_Put(my_que,
R_BYTEQ_Put(my_que,
R_BYTEQ Put(my_que,

LY T S N)
QO == =
N v N

O === 0 =
N

N
o\ o/ o/ N\
NI NI NI NI NI NI NI NN N

Used =12 Index for Put()
Unused =2 —J’
h <] | | 0 w| o r | d . .

’L Index for Get()

R0O1AN1683EJ0181 Rev.1.81 Page 3 of 25
Jun.10.20 RENESAS

RX Family BYTEQ Module Using Firmware Integration Technology

// remove 5 bytes from queue

R_BYTEQ_Get(my que, &byte); // byte
R_BYTEQ_Get(my_que, &byte); // byte
R_BYTEQ Get(my que, &byte); // byte
R_BYTEQ Get(my que, &byte); // byte
R_BYTEQ_Get(my_que, &byte); // byte

// add 5 bytes to que
R_BYTEQ Put(my que, *
R_BYTEQ Put(my que, *
R_BYTEQ Put(my que, ©
R_BYTEQ_Put(my_que, *
R_BYTEQ Put(my que, *

// Tlush queue
R_BYTEQ_Flush(my_que);

RO1AN1683EJ0181 Rev.1.81 Page 4 of 25
Jun.10.20

RX Family BYTEQ Module Using Firmware Integration Technology

2. API Information

This Driver API follows the Renesas APl naming standards.

2.1 Hardware Requirements

No hardware requirements.

2.2 Software Requirements

This driver is dependent upon the following FIT packages:

e Renesas Board Support Package (r_bsp) v3.10 or higher

2.3 Limitations

No software limitations.

2.4 Supported Toolchain

This driver has been confirmed to work with the toolchain listed in 5.1 Confirmed Operation Environment.

2.5 Header Files

Compile time configurable options are located in r_byteq\ref\r_byteq_config_reference.h. This file should be

copied into the r_config subdirectory of the project and renamed to r_byteq_config.h. It is this renamed file

that should be modified if needed and the original kept as a reference.

All API calls and their supporting interface definitions are located in r_byteq\r_byteq_if.h. Both this file and

r_byteq_config.h should be included by the User’s application.

2.6 Integer Types

If your toolchain supports C99 then stdint.h should be described as shown below. If not, then there should be

typedefs.h file that is included with your project as defined by the Renesas Coding Standards document.

This project uses ANSI C99 “Exact width integer types” in order to make the code clearer and more portable.

These types are defined in stdint.h.

R0O1AN1683EJ0181 Rev.1.81 Page 5 of 25
Jun.10.20 RENESAS

RX Family BYTEQ Module Using Firmware Integration Technology

2.7 Configuration Overview

All configurable options that can be set at build time are located in the file “r_byteq_config.h”. A summary of

these settings are provided in the following table:

Configuration options in r_byteq_config.h

#define
BYTEQ CFG_PARAM_CHECKING_ENABLE

=1: Include parameter checking in the build.

=0: Omit parameter checking from the build.

= BSP_CFG_PARAM_CHECKING_ENABLE (default):
Use the system default setting.

Note: Code size can be reduced by excluding

parameter checking from the build.

#define
BYTEQ_CFG_USE_HEAP_FOR_CTRL_BLKS 0O

A control block is needed for each queue to maintain
infout indexes. By default, these control blocks are
allocated at compile time. To dynamically allocate
memory at run time, set this equate to 1.

#define
BYTEQ CFG_MAX_ CTRL_ BLKS 32

Specifies how many control blocks to allocate at
compile time. This constant is ignored if
BYTEQ _CFG_USE_HEAP_FOR_CTRL_BLKS is 1.

RO1AN1683EJ0181 Rev.1.81

Page 6 of 25

Jun.10.20 RENESAS

RX Family BYTEQ Module Using Firmware Integration Technology

2.8 Code Size
The sizes of ROM and RAM of this module are listed below.

The ROM (code and constants) and RAM (global data) sizes are determined by the build-time configuration
options described in 2.7 Configuration Overview.

The values in the table below are confirmed under the following conditions.
Module Revision: r_byteq rev1.80
Compiler Version: Renesas Electronics C/C++ Compiler Package for RX Family V3.01.00

(The option of “lang = c99” is added to the default settings of the integrated
development environment.)

GCC for Renesas RX 4.8.4.201801

(The option of “lang = c99” is added to the default settings of the integrated
development environment.)

IAR C/C++ Compiler for Renesas RX version 4.10.1
(The default settings of the integrated development environment.)

Configuration Options: Default settings

ROM, RAM and Stack Code Sizes

Device Category | Memory Used

Renesas Compiler GCC IAR Compiler

. Without With Without With Without
With Parameter
Checking Param_eter Parameter Param_eter Parameter Param_eter
Checking Checking Checking Checking Checking
Using ROM 257 bytes 170 bytes 1056 bytes 928 bytes 592 bytes 508 bytes
Heap for
Control RAM 12 bytes for malloc() x Control 12 bytes for malloc() x Control 12 bytes for malloc() x Control
Blocks Blocks Blocks Blocks
Using ROM 300 bytes 210 bytes 624 bytes 448 bytes 272 bytes 196 bytes
Allocated
Control RAM 1 byte +12 bytes x 12 bytes x 12 bytes x
Blocks BYTEQ_CFG_MAX_CTRL_BLKS | BYTEQ_CFG_MAX_CTRL_BLKS | BYTEQ_CFG_MAX_CTRL_BLKS
RO1AN1683EJ0181 Rev.1.81 Page 7 of 25

Jun.10.20 RENESAS

RX Family BYTEQ Module Using Firmware Integration Technology

2.9 Adding the Module to Your Project

This module must be added to each project in which it is used. Renesas recommends the method using the
Smart Configurator described in (1) or (3) or (5) below. However, the Smart Configurator only supports some
RX devices. Please use the methods of (2) or (4) for RX devices that are not supported by the Smart
Configurator.

@)

)

®)

(4)

(®)

Adding the FIT module to your project using the Smart Configurator in e? studio
By using the Smart Configurator in e? studio, the FIT module is automatically added to your project.
Refer to “RX Smart Configurator User’s Guide: e? studio (R20AN0451)” for details.

Adding the FIT module to your project using the FIT Configurator in e? studio

By using the FIT Configurator in e? studio, the FIT module is automatically added to your project.
Refer to “RX Family Adding Firmware Integration Technology Modules to Projects (RO1AN1723)”
for details.

Adding the FIT module to your project using the Smart Configurator in CS+
By using the Smart Configurator Standalone version in CS+, the FIT module is automatically added
to your project. Refer to “RX Smart Configurator User’'s Guide: CS+ (R20AN0470)” for details.

Adding the FIT module to your project in CS+
In CS+, please manually add the FIT module to your project. Refer to “RX Family Adding Firmware
Integration Technology Modules to CS+ Projects (RO1AN1826)” for details.

Adding the FIT module to your project using the Smart Configurator in IAREW
By using the Smart Configurator Standalone version, the FIT module is automatically added to your
project. Refer to “RX Smart Configurator User’'s Guide: IAREW (R20AN0535)” for details.

R0O1AN1683EJ0181 Rev.1.81 Page 8 of 25
Jun.10.20 RENESAS

RX Family BYTEQ Module Using Firmware Integration Technology

2.10 “for”, “while” and “do while” statements

In this module, “for”, “while” and “do while” statements (loop processing) are used in processing to wait for
register to be reflected and so on. For these loop processing, comments with “WAIT_LOOP” as a keyword
are described. Therefore, if user incorporates fail-safe processing into loop processing, user can search the
corresponding processing with “WAIT_LOOP”.

The following shows example of description.

while statement example :
/* WAIT_LOOP */
while(0 == SYSTEM.OSCOVFSR.BIT.PLOVF)

{
/* The delay period needed is to make sure that the PLL has stabilized. */

}

for statement example :
/* Initialize reference counters to 0. */
/* WAIT_LOOP */
for (i = 0; i < BSP_REG_PROTECT_TOTAL_ ITEMS; i++)
{
g_protect_counters[i] = O;

}

do while statement example :
/* Reset completion waiting */
do
{
reg = phy_read(ether_channel, PHY_REG_CONTROL);
count++;
} while ((reg & PHY_CONTROL RESET) && (count < ETHER_CFG_PHY_DELAY_RESET)); /* WAIT_LOOP */

R0O1AN1683EJ0181 Rev.1.81 Page 9 of 25
Jun.10.20 RENESAS

RX Family BYTEQ Module Using Firmware Integration Technology

3. API Functions

3.1 Summary

The following functions are included in this design:

Function Description

R_BYTEQ_Open() Allocates and initializes a queue control block for a buffer provided by the user.
Provides a queue handle for use with other API functions.

R_BYTEQ_Close() Releases the queue control block associated with the handle.

R_BYTEQ_Put() Adds a byte of data to the queue.

R_BYTEQ_Get() Removes the oldest byte of data from the queue.

R_BYTEQ_Flush() Resets the queue to an empty state.

R_BYTEQ_Used() Provides the number of bytes used in the queue.

R_BYTEQ_Unused() Provides the number of bytes unused in the queue.

R_BYTEQ_GetVersion() | Returns at runtime the module version number.

3.2 Return Values

These are the different error codes API functions can return. The enum is found in r_byteq_if.h along with

the API function declarations.

typedef enum byteq_err // BYTEQ API error codes

{
BYTEQ_SUCCESS = 0,
BYTEQ ERR_NULL PTR, // received null ptr; missing required arg
BYTEQ ERR_INVALID_ARG, // argument is not valid for parameter
BYTEQ ERR_MALLOC_ FAIL, // cannot allocate mem for ctrl block;

// increase heap
BYTEQ_ERR_NO_MORE_CTRL_BLKS, // no more ctrl blocks;
// increase BYTEQ MAX_CTRL_BLKS
BYTEQ ERR _QUEUE_FULL, // queue full; cannot add another byte
BYTEQ ERR_QUEUE_EMPTY // queue empty; no byte to fetch
} byteq _err_t;

R0O1AN1683EJ0181 Rev.1.81 Page 10 of 25
Jun.10.20 RENESAS

RX Family BYTEQ Module Using Firmware Integration Technology

3.3 R_BYTEQ_Open()

This function allocates and initializes a queue control block for a buffer provided by the user. A queue handle
is provided for use with other API functions.

Format

byteq_err t R_BYTEQ_Open(uint8_t * const p_buf,
uintl6_t const size,
byteq_hdl_t * const p_hdl)

Parameters
p_buf
Pointer to byte buffer.
size
Buffer size in bytes.
p_hdl
Pointer to a handle for queue (value set here)

Return Values

BYTEQ_SUCCESS: Successful; queue initialized
BYTEQ_ERR_NULL_PTR: p_bufis NULL

BYTEQ_ERR_INVALID_ARG: Size is less than or equal to 1.
BYTEQ_ERR_MALLOC_FAIL: Cannot allocate control block. Increase heap size.

BYTEQ_ERR_NO_MORE_CTRL_BLKS: Cannot assign control block.
Increase BYTEQ_MAX_CTRL_BLKS in config.h.

Properties
Prototyped in file “r_byteq_if.h”

Description
This function allocates or assigns a queue control block for the buffer pointed to by p_buf. Initializes the

gueue to an empty state and provides a Handle to its control structure in p_hdl which is then used as a
gueue ID for the other API functions.
Example

#define BUFSIZE 80

uint8_t tx_buf[BUFSIZE];

byteqg _hdl_t tx_que;

byteqg err_t byteq_err;

byteq_err = R_BYTEQ Open(tx_buf, BUFSIZE, &tx _que);

Special Notes:
None.

R0O1AN1683EJ0181 Rev.1.81 Page 11 of 25
Jun.10.20 RENESAS

RX Family BYTEQ Module Using Firmware Integration Technology

3.4 R_BYTEQ_Close()

This function releases the queue control block associated with a handle.

Format
byteq_err t R_BYTEQ_Close(byteq_hdl_t const hdl)

Parameters
hdl

Handle for queue.
Return Values

BYTEQ_SUCCESS: Successful; control block released.
BYTEQ_ERR_NULL_PTR: hdl is NULL.

Properties
Prototyped in file “r_byteq_if.h”

Description
If the control block associated with this Handle was allocated dynamically at run time

(BYTEQ_USE_HEAP_FOR_CTRL_BLKS set to 1 in config.h), then that memory is freed by this function. If
the control block was statically allocated at compile time (BYTEQ _USE_HEAP_FOR_CTRL_BLKS setto 0
in config.h), then this function marks the control block as available for use by another buffer. Nothing is done
to the contents of the buffer referenced by this Handle.

Example

byteqg hdl_t tx_que;
byteg_err_t byteq_err;

byteq_err R_BYTEQ Open(tx_buf, BUFSIZE, &tx_que);
byteq_err = R_BYTEQ _Close(tx_que);

Special Notes:
None.

R0O1AN1683EJ0181 Rev.1.81 Page 12 of 25
Jun.10.20 RENESAS

RX Family BYTEQ Module Using Firmware Integration Technology

3.5 R_BYTEQ Put()

This function adds a byte of data to the queue.

Format
byteq_err t R_BYTEQ_Put(byteq_hdl_t const hdl,
uint8_t const byte)
Parameters
hdl
Handle for queue.
byte

Byte to add to queue.

Return Values

BYTEQ_SUCCESS: Successful; byte added to queue
BYTEQ _ERR_NULL PTR: hdl is NULL.
BYTEQ_ERR_QUEUE_FULL: Queue full; cannot add byte to queue.

Properties
Prototyped in file “r_byteq_if.h”

Description
This function adds the contents of byte to the queue associated with hdl.

Example
byteqg_hdl_t tx _que;
byteq _err_t byteq_err;
uint8_t byte = *A7;

byteq_err
byteq_err

R_BYTEQ Open(tx_buf, BUFSIZE, &tx_que);
R _BYTEQ Put(tx _que, byte);

Special Notes:

If the queue is accessed at both the interrupt and application level, it is up to the user to disable and enable
the associated interrupt before and after calling this function from the application level. If the queue is
accessed by tasks of different priorities, it is up to the user to prevent task switching or to utilize a mutex or
semaphore to reserve the queue.

R0O1AN1683EJ0181 Rev.1.81 Page 13 of 25
Jun.10.20 RENESAS

RX Family BYTEQ Module Using Firmware Integration Technology

3.6 R _BYTEQ Get()

This function removes a byte of data from the queue.

Format
byteq_err t R_BYTEQ_Get(byteq_hdl_t const hdl,
uint8_t * const p_byte)

Parameters
hdl

Handle for queue.
p_byte

Pointer to load byte to.

Return Values

BYTEQ_SUCCESS: Successful; byte removed from queue
BYTEQ ERR_NULL PTR: hdl is NULL.
BYTEQ_ERR_INVALID_ARG: p_byte is NULL.

BYTEQ _ERR_QUEUE_EMPTY: Queue empty; no data available to fetch
Properties

Prototyped in file “r_byteq_if.h”

Description
This function removes the oldest byte of data in the queue associated with hdl and loads it into the location

pointed to by p_byte.

Example
byteq_hdl_t rx_que;
byteq_err_t byteq_err;
uint8_t byte;

byteqg_err = R_BYTEQ Open(rx_buf, BUFSIZE, &rx_que);

/* queue filled with data by R BYTEQ Put()elsewhere */

byteq_err = R_BYTEQ Get(rx_que, &byte);
Special Notes:
If the queue is accessed at both the interrupt and application level, it is up to the user to disable and enable
the associated interrupt before and after calling this function from the application level. If the queue is

accessed by tasks of different priorities, it is up to the user to prevent task switching or to utilize a mutex or
semaphore to reserve the queue.

R0O1AN1683EJ0181 Rev.1.81 Page 14 of 25
Jun.10.20 RENESAS

RX Family BYTEQ Module Using Firmware Integration Technology

3.7 R_BYTEQ Flush()

This function resets a queue to an empty state.

Format
byteq_err_t R_BYTEQ_Flush(byteq_hdI_t const hdl)

Parameters
hdl
Handle for queue.

Return Values
BYTEQ_SUCCESS: Successful; queue reset
BYTEQ_ERR_NULL_PTR: hdl is NULL.

Properties
Prototyped in file “r_byteq_if.h”

Description
This function resets the queue identified by hdl to an empty state.

Example
byteq hdl_t rx_que;
byteq _err_t byteq_err;

byteq_err = R_BYTEQ Open(rx_buf, BUFSIZE, &rx_que);

/* queue Tilled with data by R_BYTEQ Put()elsewhere */

byteq_err = R_BYTEQ Flush(rx_que);
Special Notes:
If the queue is accessed at both the interrupt and application level, it is up to the user to disable and enable
the associated interrupt before and after calling this function from the application level. If the queue is

accessed by tasks of different priorities, it is up to the user to prevent task switching or to utilize a mutex or
semaphore to reserve the queue.

R0O1AN1683EJ0181 Rev.1.81 Page 15 of 25
Jun.10.20 RENESAS

RX Family BYTEQ Module Using Firmware Integration Technology

3.8 R_BYTEQ_Used()

This function provides the number of data bytes in the queue.

Format
byteq_err t R BYTEQ_Used(byteq_hdl_t const hdl,
uintl6_t*const p_cnt)

Parameter
hdl
Handle for queue.
p_cnt
Pointer to load queue data count to.

Return Values

BYTEQ_SUCCESS: Successful; *p_cnt loaded with the number of bytes in the queue
BYTEQ_ERR_NULL_PTR: hdl is NULL.

BYTEQ_ERR_INVALID_ARG: p_cntis NULL.

Properties
Prototyped in file “r_byteq_if.h”

Description
This function loads the number of bytes in the queue associated with hdl and into the location pointed to by

p_cnt.

Example
byteqg_hdl_t rx_que;
byteq_err_t byteq_err;
uintl6é t count;

byteqg_err = R_BYTEQ_Open(rx_buf, BUFSIZE, &rx_que);

/* queue filled with data by R BYTEQ Put()elsewhere */

byteq_err = R_BYTEQ Used(rx_que, &count);
Special Notes:
If the queue is accessed at both the interrupt and application level, it is up to the user to disable and enable
the associated interrupt before and after calling this function from the application level. If the queue is

accessed by tasks of different priorities, it is up to the user to prevent task switching or to utilize a mutex or
semaphore to reserve the queue.

R0O1AN1683EJ0181 Rev.1.81 Page 16 of 25
Jun.10.20 RENESAS

RX Family BYTEQ Module Using Firmware Integration Technology

3.9 R_BYTEQ_Unused()

This function provides the number of data bytes available for storage in the queue.

Format
byteq_err_ t R_BYTEQ_Unused(byteq_hdl_t const hdl,
uintl6_t*const p_cnt)

Parameters
hdl
Handle for queue.
p_cnt
Pointer to load queue unused byte count to.

Return Values

BYTEQ_SUCCESS: Successful; *p_cnt loaded with the number of bytes not used in the queue
BYTEQ _ERR_NULL PTR: hdl is NULL.

BYTEQ_ERR_INVALID_ARG: p_cntis NULL.

Properties
Prototyped in file “r_byteq_if.h”

Description
This function loads the number of unused bytes in the queue associated with hdl and into the location

pointed to by p_cnt.

Example
byteqg_hdl_t tx_que;
byteq_err_t byteq_err;
uintlé t count;

byteqg_err = R_BYTEQ_Open(tx_buf, BUFSIZE, &tx_que);
/* queue filled with data by R BYTEQ Put()elsewhere */

byteq_err = R_BYTEQ Unused(tx_que, &count);

Special Notes:

If the queue is accessed at both the interrupt and application level, it is up to the user to disable and enable
the associated interrupt before and after calling this function from the application level. If the queue is
accessed by tasks of different priorities, it is up to the user to prevent task switching or to utilize a mutex or
semaphore to reserve the queue.

R0O1AN1683EJ0181 Rev.1.81 Page 17 of 25
Jun.10.20 RENESAS

RX Family BYTEQ Module Using Firmware Integration Technology

3.10 R_BYTEQ_GetVersion()

This function returns the driver version number at runtime.

Format
uint32_t R_BYTEQ_GetVersion(void)

Parameters
None

Return Values
Version number.

Properties
Prototyped in file “r_byteq_if.h”

Description
Returns the version of this module. The version number is encoded such that the top 2 bytes are the major

version number and the bottom 2 bytes are the minor version number.

Example
uint32_t version;

version = R_BYTEQ GetVersion();

Special Notes:
None.

R0O1AN1683EJ0181 Rev.1.81 Page 18 of 25
Jun.10.20 RENESAS

RX Family BYTEQ Module Using Firmware Integration Technology

4. Demo Projects

Demo projects are complete stand-alone programs. They include function main() that utilizes the module
and its dependent modules (e.g. r_bsp). This FIT module has the following demo projects.

4.1 byteq_demo_rskrx231

The byteq_demo_rskrx71m project demonstrates how to use some of the BYTEQ API calls. The demo
project opens and initializes a queue, puts characters into the queue, queries the number of characters in the
gueue, gets the characters from the queue and prints them to the virtual console. The demo project also
prints out the version number of the BYTEQ module. Virtual console can be enabled by selecting Open
Console > Renesas Debug Virtual Console.

4.2 byteq_demo_rskrx71lm

The byteq_demo_rskrx71m project demonstrates how to use some of the BYTEQ API calls. The demo
project opens and initializes a queue, puts characters into the queue, queries the number of characters in the
gueue, gets the characters from the queue and prints them to the virtual console. The demo project also
prints out the version number of the BYTEQ module. Virtual console can be enabled by selecting Open
Console > Renesas Debug Virtual Console.

4.3 Adding a Demo to a Workspace

Demo projects are found in the FITDemos subdirectory of the distribution file for this application note. To
add a demo project to a workspace, select File > Import > General > Existing Projects into Workspace, then
click “Next”. From the Import Projects dialog, choose the “Select archive file” radio button. “Browse” to the
FITDemos subdirectory, select the desired demo zip file, then click “Finish”.

4.4 Downloading Demo Projects

Demo projects are not included in the RX Driver Package. When using the demo project, the FIT module
needs to be downloaded. To download the FIT module, right click on this application note and select
“Sample Code (download)” from the context menu in the Smart Brower >> Application Notes tab.

R0O1AN1683EJ0181 Rev.1.81 Page 19 of 25
Jun.10.20 RENESAS

RX Family

BYTEQ Module Using Firmware Integration Technology

5. Appendices

5.1 Confirmed Operati

on Environment

This section describes confirmed operation environment for the r_byteq FIT module.

Table 5.1 Confirmed Operation Environment (Rev. 1.60)

ltem

Contents

Integrated development
environment

Renesas Electronics e? studio Version 4.2.0

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V2.04.01
Compiler option: The following option is added to the default settings of the
integrated development environment.

-lang = c99
Endian Big endian/little endian
Revision of the module Rev.1.60

Board used

Renesas Starter Kit+ for RX65N (product No.: RTK500565NSxxxxxBE)

Table 5.2 Confirmed Operation Environment (Rev. 1.70)

Iltem

Contents

Integrated development
environment

Renesas Electronics e? studio Version 7.0.0

C compiler Renesas Electronics C/C++ Compiler Package for RX Family VV2.08.00
Compiler option: The following option is added to the default settings of the
integrated development environment.

-lang = c99
Endian Big endian/little endian
Revision of the module Rev.1.70

Board used

Renesas Starter Kit for RX231 (product No.: ROK505231SxxxBE)
Renesas Starter Kit+ for RX71M (product No.: ROK50571MSxxxBE)

Table 5.3 Confirmed Operation Environment (Rev. 1.71)

Item

Contents

Integrated development
environment

Renesas Electronics e? studio Version 7.1.0

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V3.00.00
Compiler option: The following option is added to the default settings of the
integrated development environment.

-lang = c99
Endian Big endian/little endian
Revision of the module Rev.1.71

RO1AN1683EJ0181 Rev.1.81
Jun.10.20

Page 20 of 25

RENESAS

RX Family BYTEQ Module Using Firmware Integration Technology

Table 5.4 Confirmed Operation Environment (Rev. 1.80)

Item Contents

Integrated development Renesas Electronics e? studio Version 7.3.0

environment IAR Embedded Workbench for Renesas RX 4.10.1

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V3.01.00

Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99

GCC for Renesas RX 4.8.4.201801
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99

IAR C/C++ Compiler for Renesas RX version 4.10.1
Compiler option: The default settings of the integrated development
environment.

Endian Big endian/little endian

Revision of the module Rev.1.80

Board used Renesas Starter Kit for RX231 (product No.: ROK505231XXXXXX)
RO1AN1683EJ0181 Rev.1.81 Page 21 of 25

Jun.10.20 RENESAS

RX Family BYTEQ Module Using Firmware Integration Technology

5.2 Troubleshooting

(1) Q: I have added the FIT module to the project and built it. Then | got the error: Could not open source file
“platform.h”.

A: The FIT module may not be added to the project properly. Check if the method for adding FIT modules
is correct with the following documents:

® Using CS+:

Application note “Adding Firmware Integration Technology Modules to CS+ Projects
(RO1AN1826)"
° Using e? studio:

Application note “Adding Firmware Integration Technology Modules to Projects (RO1AN1723)"

When using this FIT module, the board support package FIT module (BSP module) must also be added
to the project. Refer to the application note “Board Support Package Module Using Firmware Integration
Technology (RO1AN1685)".

R0O1AN1683EJ0181 Rev.1.81 Page 22 of 25
Jun.10.20 RENESAS

RX Family BYTEQ Module Using Firmware Integration Technology

6. Reference Documents

User’'s Manual: Hardware
The latest versions can be downloaded from the Renesas Electronics website.

Technical Update/Technical News

The latest information can be downloaded from the Renesas Electronics website.

User’s Manual: Development Tools
RX Family C/C++ Compiler CC-RX User's Manual (R20UT3248)
The latest version can be downloaded from the Renesas Electronics website.

Related Technical Updates

This module reflects the content of the following technical updates.
None

R0O1AN1683EJ0181 Rev.1.81
Jun.10.20 RENESAS

Page 23 of 25

RX Family

BYTEQ Module Using Firmware Integration Technology

Revision Record

Rev.

Date

Description

Page

Summary

1.00

Jul.24.13

First edition issued

1.10

Jul.21.14

Updated XML file for new supported MCUs.

1.20

Nov.21.14

Removed dependency to BSP.
Updated XML file for new supported MCUs.

1.30

Jan.22.15

Updated XML file for new supported MCUSs.

1.40

Jun.30.15

Added support for the RX231 Group.

1.50

Sep.30.15

Added support for the RX23T Group.

Added r_bsp in Section 2.2 Software Requirements.

Updated code sizes in 2.8 Code Size.

1.60

Jan.29.16

Updated code sizes in 2.8 Code Size.

Slo| o|ual|

Added the section of 4. Demo Projects.

program

Changed the XML in order not to depend on the series / group /
board of the RX Family.

Fixed the initial setting procedure in the R_BYTEQ_Open
function.

Fixed a program according to the Renesas coding rules.

1.70

Jun.01.18

Added support setting function of configuration option Using GUI
on Smart Configurator.

Updated Demo projects.

Changed toolchain in 2.4 Supported Toolchain.

Changed the default value of BYTEQ_CFG_MAX_ CTRL_BLKS
in 2.7 Configuration Overview.
Updated code sizes in 2.8 Code Size.

7

Added the section of 2.9 Adding the Module to Your Project.

8

Added the section of 2.10 “for”, “while” and “do while” statements.

18

Added the section of 4.4 Downloading Demo Projects.

19

Added the section of 5. Appendices.
Added the section of 5.1 Confirmed Operation Environment.

20

Added the section of 5.2 Troubleshooting.

21

Added the section of 6. Reference Documents.

program

Changed the default value of the following macro definition:
- BYTEQ_CFG_MAX_CTRL_BLKS:
Value: (4) -> (32)

1.71

Dec.03.18

19

5.1 Operation Confirmation Environment:
Added Table 5.3 Confirmed Operation Environment (Rev. 1.71).

program

Added document number of the application note accompanying
the sample program of the FIT module to xml file.

1.80

Feb.07.19

Supported the following compilers:
- GCC for Renesas RX
- IAR C/C++ Compiler for Renesas RX

Added the section of Target compiler.
Deleted related documents.

7

Updated the section of 2.8 Code Size.

18

Updated the section of 3.10 R_BYTEQ_GetVersion().

21

Updated the section of 5.1 Confirmed Operation Environment.

23

Deleted the section of Website and Support.

program

Deleted the inline expansion of the R_BYTEQ_GetVersion
function.

RO1AN1683EJ0181 Rev.1.81
Jun.10.20

Page 24 of 25
RENESAS

RX Family BYTEQ Module Using Firmware Integration Technology

Description
Rev. Date Page Summary
1.81 Jun.10.20 — Modified comment of API function to Doxygen style.

8 Changed Section 2.9 Adding the Module to Your Project.

11..18 | Deleted the Reentrant for each API in 3. API Functions.

R0O1AN1683EJ0181 Rev.1.81 Page 25 of 25
Jun.10.20 RENESAS

General Precautions in the Handling of Microprocessing Unit and Microcontroller
Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the
products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.
1. Precaution against Electrostatic Discharge (ESD)
A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps
must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be
adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity.
Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and
measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor

devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.
2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of
register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset
pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins
in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the

level at which resetting is specified.
3. Input of signal during power-off state

Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O
pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal

elements. Follow the guideline for input signal during power-off state as described in your product documentation.
4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are
generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of
the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal

become possible.
5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program
execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator
during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal

produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.
6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between V.
(Max.) and Vix (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the

input level is fixed, and also in the transition period when the input level passes through the area between V. (Max.) and Vix (Min.).
7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these

addresses as the correct operation of the LSl is not guaranteed.
8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems.
The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms
of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values,
operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-
evaluation test for the given product.

Notice

1.

10.

11.
12.

Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products
and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your
product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use
of these circuits, software, or information.
Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights,
or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this
document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics
or others.
You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any
and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.
Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for
each Renesas Electronics product depends on the product’s quality grade, as indicated below.

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home

electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key
financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas
Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to
human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space
system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics
disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product
that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.
When using Renesas Electronics products, refer to the latest product information (data sheets, user’'s manuals, application notes, “General Notes for
Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by
Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas
Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such
specified ranges.
Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific
characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability
product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics
products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily
injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as
safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for
aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are
responsible for evaluating the safety of the final products or systems manufactured by you.
Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas
Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of
controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these
applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance
with applicable laws and regulations.
Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is
prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations
promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.
It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or
transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.
This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas
Electronics products.

(Notel) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled

subsidiaries.

(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

Corporate Headquarters
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics
Corporation. All trademarks and registered trademarks are the property
of their respective owners.

(Rev.4.0-1 November 2017)

Contact information

For further information on a product, technology, the most up-to-date
version of a document, or your nearest sales office, please visit:
www.renesas.com/contact/.

© 2020 Renesas Electronics Corporation. All rights reserved.

https://www.renesas.com/
https://www.renesas.com/contact/

	1. Overview
	1.1 Using the BYTEQ Module

	2. API Information
	2.1 Hardware Requirements
	2.2 Software Requirements
	2.3 Limitations
	2.4 Supported Toolchain
	2.5 Header Files
	2.6 Integer Types
	2.7 Configuration Overview
	2.8 Code Size
	2.9 Adding the Module to Your Project
	2.10 “for”, “while” and “do while” statements

	3. API Functions
	3.1 Summary
	3.2 Return Values
	3.3 R_BYTEQ_Open()
	3.4 R_BYTEQ_Close()
	3.5 R_BYTEQ_Put()
	3.6 R_BYTEQ_Get()
	3.7 R_BYTEQ_Flush()
	3.8 R_BYTEQ_Used()
	3.9 R_BYTEQ_Unused()
	3.10 R_BYTEQ_GetVersion()

	4. Demo Projects
	4.1 byteq_demo_rskrx231
	4.2 byteq_demo_rskrx71m
	4.3 Adding a Demo to a Workspace
	4.4 Downloading Demo Projects

	5. Appendices
	5.1 Confirmed Operation Environment
	5.2 Troubleshooting

	6. Reference Documents
	Related Technical Updates
	Revision Record
	General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products
	Notice

