
Beginner's Python
Cheat Sheet - Django
What is Django?
Django is a web framework that helps you build
interactive websites using Python. With Django you
define the kind of data your site will work with, and the
ways your users can work with that data.
 Django works well for tiny projects, and just as well
for sites with millions of users.

Installing Django
It’s best to install Django to a virtual environment, where
your project can be isolated from your other Python projects.
Most commands assume you’re working in an active virtual
environment.

Create a virtual environment
$ python –m venv ll_env

Activate the environment (macOS and Linux)
$ source ll_env/bin/activate

Activate the environment (Windows)
> ll_env\Scripts\activate

Install Django to the active environment
(ll_env)$ pip install Django

Creating a project
To start we’ll create a new project, create a database, and
start a development server.

Create a new project
Make sure to include the dot at the end of this command.

$ django-admin startproject ll_project .

Create a database
$ python manage.py migrate

View the project
After issuing this command, you can view the project at http://
localhost:8000/.

$ python manage.py runserver

Create a new app
A Django project is made up of one or more apps.

$ python manage.py startapp learning_logs

Working with models
The data in a Django project is structured as a set of models.
Each model is represented by a class.

Defining a model
To define the models for your app, modify the models.py file that
was created in your app’s folder. The __str__() method tells
Django how to represent data objects based on this model.

from django.db import models

class Topic(models.Model):
 """A topic the user is learning about."""

 text = models.CharField(max_length=200)
 date_added = models.DateTimeField(
 auto_now_add=True)

 def __str__(self):
 return self.text

Activating a model
To use a model the app must be added to the list INSTALLED_APPS,
which is stored in the project’s settings.py file.

INSTALLED_APPS = [
 # My apps.
 'learning_logs',

 # Default Django apps.
 'django.contrib.admin',
]

Migrating the database
The database needs to be modified to store the kind of data that the
model represents. You'll need to run these commands every time
you create a new model, or modify an existing model.

$ python manage.py makemigrations learning_logs
$ python manage.py migrate

Creating a superuser
A superuser is a user account that has access to all aspects of the
project.

$ python manage.py createsuperuser

Registering a model
You can register your models with Django’s admin site, which makes
it easier to work with the data in your project. To do this, modify the
app’s admin.py file. View the admin site at http://localhost:8000/
admin/. You'll need to log in using a superuser account.

from django.contrib import admin

from .models import Topic

admin.site.register(Topic)

Building a simple home page
Users interact with a project through web pages, and a
project’s home page can start out as a simple page with no
data. A page usually needs a URL, a view, and a template.

Mapping a project's URLs
The project’s main urls.py file tells Django where to find the urls.py
files associated with each app in the project.

from django.contrib import admin
from django.urls import path, include

urlpatterns = [
 path('admin/', admin.site.urls),
 path('', include('learning_logs.urls')),
]

Mapping an app's URLs
An app’s urls.py file tells Django which view to use for each URL
in the app. You’ll need to make this file yourself, and save it in the
app’s folder.

from django.urls import path

from . import views

app_name = 'learning_logs'
urlpatterns = [
 # Home page.
 path('', views.index, name='index'),
]

Writing a simple view
A view takes information from a request and sends data to the
browser, often through a template. View functions are stored in an
app’s views.py file. This simple view function doesn’t pull in any
data, but it uses the template index.html to render the home page.

from django.shortcuts import render

def index(request):
 """The home page for Learning Log."""
 return render(request,
 'learning_logs/index.html')

Online resources
The documentation for Django is available at
docs.djangoproject.com/. The Django documentation is
thorough and user-friendly, so check it out!

Python Crash Course
A Hands-on, Project-Based
Introduction to Programming
ehmatthes.github.io/pcc_3e

https://docs.djangoproject.com/

Building a simple home page (cont.)
Writing a simple template
A template sets up the structure for a page. It’s a mix of html and
template code, which is like Python but not as powerful. Most of the
logic for your project should be written in .py files, but some logic is
appropriate for templates.
 Make a folder called templates/ inside the project folder. Inside
the templates/ folder make another folder with the same name as
the app. This is where the template files should be saved. The home
page template will be saved as learning_logs/templates/learning_
logs/index.html.

<p>Learning Log</p>

<p>Learning Log helps you keep track of your
learning, for any topic you're learning
about.</p>

Template Inheritance
Many elements of a web page are repeated on every page
in the site, or every page in a section of the site. By writing
one parent template for the site, and one for each section,
you can easily modify the look and feel of your entire site.

The parent template
The parent template defines the elements common to a set of
pages, and defines blocks that will be filled by individual pages.

<p>

 Learning Log

</p>

{% block content %}{% endblock content %}

The child template
The child template uses the {% extends %} template tag to pull in
the structure of the parent template. It then defines the content for
any blocks defined in the parent template.

{% extends 'learning_logs/base.html' %}

{% block content %}

 <p>
 Learning Log helps you keep track
 of your learning, for any topic you're
 learning about.
 </p>

{% endblock content %}

Template indentation
Python code is usually indented by four spaces. In templates
you’ll often see two spaces used for indentation, because
elements tend to be nested more deeply in templates.

Another model
A new model can use an existing model. The ForeignKey
attribute establishes a connection between instances of the
two related models. Make sure to migrate the database after
adding a new model to your app.

Defining a model with a foreign key
class Entry(models.Model):
 """Learning log entries for a topic."""
 topic = models.ForeignKey(Topic,
 on_delete=models.CASCADE)
 text = models.TextField()
 date_added = models.DateTimeField(
 auto_now_add=True)

 def __str__(self):
 return f"{self.text[:50]}..."

Building a page with data
Most pages in a project need to present data that’s specific
to the current user.

URL parameters
A URL often needs to accept a parameter telling it what data to
access from the database. The URL pattern shown here looks for
the ID of a specific topic and assigns it to the parameter topic_id.

urlpatterns = [
 --snip--
 # Detail page for a single topic.
 path('topics/<int:topic_id>/', views.topic,
 name='topic'),
]

Using data in a view
The view uses a parameter from the URL to pull the correct data
from the database. In this example the view is sending a context
dictionary to the template, containing data that should be displayed
on the page. You'll need to import any model you're using.

def topic(request, topic_id):
 """Show a topic and all its entries."""
 topic = Topic.objects.get(id=topic_id)
 entries = topic.entry_set.order_by(
 '-date_added')
 context = {
 'topic': topic,
 'entries': entries,
 }
 return render(request,
 'learning_logs/topic.html', context)

Restarting the development server
If you make a change to your project and the change doesn’t
seem to have any effect, try restarting the server:
$ python manage.py runserver

Building a page with data (cont.)
Using data in a template
The data in the view function’s context dictionary is available within
the template. This data is accessed using template variables, which
are indicated by doubled curly braces.
 The vertical line after a template variable indicates a filter. In
this case a filter called date formats date objects, and the filter
linebreaks renders paragraphs properly on a web page.

{% extends 'learning_logs/base.html' %}

{% block content %}

 <p>Topic: {{ topic }}</p>

 <p>Entries:</p>

 {% for entry in entries %}

 <p>
 {{ entry.date_added|date:'M d, Y H:i' }}
 </p>

 <p>
 {{ entry.text|linebreaks }}
 </p>

 {% empty %}
 There are no entries yet.
 {% endfor %}

{% endblock content %}

The Django shell
You can explore the data in your project from the command
line. This is helpful for developing queries and testing code
snippets.

Start a shell session
$ python manage.py shell

Access data from the project
>>> from learning_logs.models import Topic
>>> Topic.objects.all()
[<Topic: Chess>, <Topic: Rock Climbing>]
>>> topic = Topic.objects.get(id=1)
>>> topic.text
'Chess'
>>> topic.entry_set.all()
<QuerySet [<Entry: In the opening phase...>]>

Weekly posts about all things Python
mostlypython.substack.com

Beginner's Python
Cheat Sheet -
Django, Part 2

Users and forms
Most web applications need to let users make
accounts, so they can create and work with their own
data. Some of this data may be private, and some may
be public. Django’s forms allow users to enter and
modify their data.

User accounts
User accounts are handled by a dedicated app which we'll
call accounts. Users need to be able to register, log in, and
log out. Django automates much of this work for you.

Making an accounts app
After making the app, be sure to add 'accounts' to INSTALLED_
APPS in the project’s settings.py file.

$ python manage.py startapp accounts

Including URLs for the accounts app
Add a line to the project’s urls.py file so the accounts app’s URLs
are included in the project.

from django.contrib import admin
from django.urls import path, include

urlpatterns = [
 path('admin/', admin.site.urls),
 path('accounts/', include('accounts.urls')),
 path('', include('learning_logs.urls')),
]

Using forms in Django
There are a number of ways to create forms and work
with them. You can use Django’s defaults, or completely
customize your forms. For a simple way to let users enter
data based on your models, use a ModelForm. This creates
a form that allows users to enter data that will populate the
fields on a model.
 The register view on the back of this sheet shows a
simple approach to form processing. If the view doesn’t
receive data from a form, it responds with a blank form. If
it receives POST data from a form, it validates the data and
then saves it to the database.

User accounts (cont.)
Defining the URLs
Users will need to be able to log in, log out, and register. Make a
new urls.py file in the users app folder.

from django.urls import path, include

from . import views

app_name = 'accounts'
urlpatterns = [
 # Include default auth urls.
 path('', include(
 'django.contrib.auth.urls')),

 # Registration page.
 path('register/', views.register,
 name='register'),
]

The login template
The login view is provided by default, but you need to provide your
own login template. The template shown here displays a simple
login form, and provides basic error messages. Make a templates/
folder in the accounts/ folder, and then make a registration/ folder in
the templates/ folder. Save this file as login.html. The path should be
accounts/templates/registration/login.html.
 The tag {% csrf_token %} helps prevent a common type of
attack with forms. The {{ form.as_div }} element displays the
default login form in an appropriate format.

{% extends "learning_logs/base.html" %}

{% block content %}

 {% if form.errors %}
 <p>
 Your username and password didn't match.
 Please try again.
 </p>
 {% endif %}

 <form action="{% url 'users:login'
 method="post" %}">

 {% csrf token %}
 {{ form.as_div }}
 <button name="submit">Log in</button>

 </form>

{% endblock content %}

The logout redirect setting in settings.py
This setting tells Django where to send users after they log out.

LOGOUT_REDIRECT_URL = 'learning_logs:index'

User accounts (cont.)
Showing the current login status
You can modify the base.html template to show whether the user
is currently logged in, and to provide a link to the login and logout
pages. Django makes a user object available to every template,
and this template takes advantage of this object.
 Testing for user.is_authenticated in a template allows you
to serve specific content to users depending on whether they have
logged in or not. The {{ user.username }} property allows you to
greet users who have logged in. Users who haven’t logged in see
links to register or log in.

<p>

 Learning Log

 {% if user.is_authenticated %}
 Hello, {{ user.username }}.

 Log out

 {% else %}

 Register
 -

 Log in

 {% endif %}

</p>

{% block content %}{% endblock content %}

The logout form
Django handles logout functionality, but you need to give users
a simple form to submit that logs them out. Make sure to add the
LOGOUT_REDIRECT_URL to settings.py.

{% if user.is_authenticated %}
 <form action="{% url 'accounts:logout' %}"
 method='post'>

 {% csrf_token %}
 <button name='submit'>Log out</button>

 </form>
{% endif %}

Python Crash Course
A Hands-on, Project-Based
Introduction to Programming
ehmatthes.github.io/pcc_3e

User accounts (cont.)
The register view
The register view needs to display a blank registration form when
the page is first requested, and then process completed registration
forms.
 A successful registration logs the user in and redirects to the
home page. An invalid form displays the registration page again,
with an appropriate error message.

from django.shortcuts import render, redirect
from django.contrib.auth import login
from django.contrib.auth.forms import \
 UserCreationForm

def register(request):
 """Register a new user."""

 if request.method != 'POST':
 # Display blank registration form.
 form = UserCreationForm()

 else:
 # Process completed form.
 form = UserCreationForm(
 data=request.POST)

 if form.is_valid():
 new_user = form.save()

 # Log in, redirect to home page.
 login(request, new_user)
 return redirect(
 'learning_logs:index')

 # Display a blank or invalid form.
 context = {'form': form}

 return render(request,
 'registration/register.html', context)

Styling your project
The django-bootstrap5 app allows you to use the
Bootstrap library to make your project look visually
appealing. The app provides tags that you can use in your
templates to style individual elements on a page. Learn
more at django-bootstrap5.readthedocs.io/.

Deploying your project
Platform.sh lets you push your project to a live server,
making it available to anyone with an internet connection.
Platform.sh offers a free service level, which lets you learn
the deployment process without any commitment.
 You’ll need to install a set of Platform.sh command line
tools, and use Git to track the state of your project. See
https://platform.sh/marketplace/django for more information.

User accounts (cont.)
The register template
The register.html template shown here displays the registration form
in a simple format.

{% extends 'learning_logs/base.html' %}

{% block content %}

 <form action="{% url 'accounts:register'
 method='post' %}">

 {% csrf_token %}
 {{ form.as_div }}

 <button name='submit'>Register</button>

 </form>

{% endblock content %}

Connecting data to users
Users will create some data that belongs to them. Any model
that should be connected directly to a user needs a field
connecting instances of the model to a specific user.

Making a topic belong to a user
Only the highest-level data in a hierarchy needs to be directly
connected to a user. To do this import the User model, and add it as
a foreign key on the data model.
 After modifying the model you’ll need to migrate the database.
You’ll need to choose a user ID to connect each existing instance to.

from django.db import models
from django.contrib.auth.models import User

class Topic(models.Model):
 """A topic the user is learning about."""

 text = models.CharField(max_length=200)
 date_added = models.DateTimeField(
 auto_now_add=True)

 owner = models.ForeignKey(User,
 on_delete=models.CASCADE)

 def __str__(self):
 return self.text

Querying data for the current user
In a view, the request object has a user attribute. You can use this
attribute to query for the user’s data. The filter() method shown
here pulls the data that belongs to the current user.

topics = Topic.objects.filter(
 owner=request.user)

Connecting data to users (cont.)
Restricting access to logged-in users
Some pages are only relevant to registered users. The views for
these pages can be protected by the @login_required decorator.
Any view with this decorator will automatically redirect non-logged in
users to an appropriate page. Here’s an example views.py file.

from django.contrib.auth.decorators import \
 login_required
--snip--

@login_required
def topic(request, topic_id):
 """Show a topic and all its entries."""

Setting the redirect URL
The @login_required decorator sends unauthorized users to the
login page. Add the following line to your project’s settings.py file so
Django will know how to find your login page.

LOGIN_URL = 'accounts:login'

Preventing inadvertent access
Some pages serve data based on a parameter in the URL. You can
check that the current user owns the requested data, and return a
404 error if they don’t. Here’s an example view.

from django.http import Http404
--snip--

@login_required
def topic(request, topic_id):
 """Show a topic and all its entries."""
 topic = Topics.objects.get(id=topic_id)
 if topic.owner != request.user:
 raise Http404
 --snip--

Using a form to edit data
If you provide some initial data, Django generates a form
with the user’s existing data. Users can then modify and
save their data.

Creating a form with initial data
The instance parameter allows you to specify initial data for a form.

form = EntryForm(instance=entry)

Modifying data before saving
The argument commit=False allows you to make changes before
writing data to the database.

new_topic = form.save(commit=False)
new_topic.owner = request.user
new_topic.save()

Weekly posts about all things Python
mostlypython.substack.com

https://django-bootstrap4.readthedocs.io/
https://devcenter.heroku.com

