
Beginner's Python
Cheat Sheet -

Matplotlib
What is Matplotlib?
Data visualization involves exploring data through
visual representations. The Matplotlib library helps you
make visually appealing representations of the data
you’re working with. Matplotlib is extremely flexible;
these examples will help you get started with a few
simple visualizations.
 Many newer plotting libraries are wrappers around
Matplotlib, and understanding Matplotlib will help you
use those libraries more effectively as well.

Installing Matplotlib
Installing Matplotlib with pip
$ python -m pip install --user matplotlib

Line graphs and scatter plots
Making a line graph
The fig object represents the entire figure, or collection of plots; ax
represents a single plot in the figure. This convention is used even
when there's only one plot in the figure.

import matplotlib.pyplot as plt

x_values = [0, 1, 2, 3, 4, 5]
squares = [0, 1, 4, 9, 16, 25]

fig, ax = plt.subplots()
ax.plot(x_values, squares)

plt.show()

Making a scatter plot
scatter() takes a list of x and y values; the s=10 argument
controls the size of each point.

import matplotlib.pyplot as plt

x_values = list(range(1000))
squares = [x**2 for x in x_values]

fig, ax = plt.subplots()
ax.scatter(x_values, squares, s=10)
plt.show()

Customizing plots
Plots can be customized in a wide variety of ways. Just
about any element of a plot can be modified.

Using built-in styles
Matplotlib comes with a number of built-in styles, which you can use
with one additional line of code. The style must be specified before
you create the figure.

import matplotlib.pyplot as plt

x_values = list(range(1000))
squares = [x**2 for x in x_values]

plt.style.use('seaborn-v0_8')
fig, ax = plt.subplots()
ax.scatter(x_values, squares, s=10)

plt.show()

Seeing available styles
You can see all available styles on your system. This can be done in
a terminal session.

>>> import matplotlib.pyplot as plt
>>> plt.style.available
['Solarize_Light2', '_classic_test_patch', ...

Adding titles and labels, and scaling axes
import matplotlib.pyplot as plt

x_values = list(range(1000))
squares = [x**2 for x in x_values]

Set overall style to use, and plot data.
plt.style.use('seaborn-v0_8')
fig, ax = plt.subplots()
ax.scatter(x_values, squares, s=10)

Set chart title and label axes.
ax.set_title('Square Numbers', fontsize=24)
ax.set_xlabel('Value', fontsize=14)
ax.set_ylabel('Square of Value', fontsize=14)

Set scale of axes, and size of tick labels.
ax.axis([0, 1100, 0, 1_100_000])
ax.tick_params(axis='both', labelsize=14)

plt.show()

Using a colormap
A colormap varies the point colors from one shade to another, based
on a certain value for each point. The value used to determine
the color of each point is passed to the c argument, and the cmap
argument specifies which colormap to use.

ax.scatter(x_values, squares, c=squares,
 cmap=plt.cm.Blues, s=10)

Customizing plots (cont.)
Emphasizing points
You can plot as much data as you want on one plot. Here we replot
the first and last points larger to emphasize them.

import matplotlib.pyplot as plt

x_values = list(range(1000))
squares = [x**2 for x in x_values]

fig, ax = plt.subplots()
ax.scatter(x_values, squares, c=squares,
 cmap=plt.cm.Blues, s=10)

ax.scatter(x_values[0], squares[0], c='green',
 s=100)
ax.scatter(x_values[-1], squares[-1], c='red',
 s=100)

ax.set_title('Square Numbers', fontsize=24)
--snip--

Removing axes
You can customize or remove axes entirely. Here’s how to access
each axis, and hide it.

ax.get_xaxis().set_visible(False)
ax.get_yaxis().set_visible(False)

Setting a custom figure size
You can make your plot as big or small as you want by using the
figsize argument. The dpi argument is optional; if you don’t know
your system’s resolution you can omit the argument and adjust the
figsize argument accordingly.

fig, ax = plt.subplots(figsize=(10, 6),
 dpi=128)

Saving a plot
The Matplotlib viewer has a save button, but you can also save
your visualizations programmatically by replacing plt.show() with
plt.savefig(). The bbox_inches argument reduces the amount of
whitespace around the figure.

plt.savefig('squares.png', bbox_inches='tight')

Online resources
The matplotlib gallery and documentation are at
matplotlib.org/. Be sure to visit the Examples, Tutorials, and
User guide sections.

Python Crash Course
A Hands-on, Project-Based
Introduction to Programming
ehmatthes.github.io/pcc_3e

https://matplotlib.org

Multiple plots
You can make as many plots as you want on one figure.
When you make multiple plots, you can emphasize
relationships in the data. For example you can fill the space
between two sets of data.

Plotting two sets of data
Here we use ax.scatter() twice to plot square numbers and
cubes on the same figure.

import matplotlib.pyplot as plt

x_values = list(range(11))
squares = [x**2 for x in x_values]
cubes = [x**3 for x in x_values]

plt.style.use('seaborn-v0_8')
fig, ax = plt.subplots()

ax.scatter(x_values, squares, c='blue', s=10)
ax.scatter(x_values, cubes, c='red', s=10)

plt.show()

Filling the space between data sets
The fill_between() method fills the space between two data sets.
It takes a series of x-values and two series of y-values. It also takes
a facecolor to use for the fill, and an optional alpha argument that
controls the color’s transparency.

ax.fill_between(x_values, cubes, squares,
 facecolor='blue', alpha=0.25)

Working with dates and times
Many interesting data sets have a date or time as the x
value. Python’s datetime module helps you work with this
kind of data.

Generating the current date
The datetime.now() function returns a datetime object
representing the current date and time.

from datetime import datetime as dt

today = dt.now()
date_string = today.strftime('%m/%d/%Y')
print(date_string)

Generating a specific date
You can also generate a datetime object for any date and time you
want. The positional order of arguments is year, month, and day.
The hour, minute, second, and microsecond arguments are optional.

from datetime import datetime as dt

new_years = dt(2023, 1, 1)
fall_equinox = dt(year=2023, month=9, day=22)

Working with dates and times (cont.)
Datetime formatting arguments
The strptime() function generates a datetime object from a
string, and the strftime() method generates a formatted string
from a datetime object. The following codes let you work with dates
exactly as you need to.

%A Weekday name, such as Monday
%B Month name, such as January
%m Month, as a number (01 to 12)
%d Day of the month, as a number (01 to 31)
%Y Four-digit year, such as 2021
%y Two-digit year, such as 21
%H Hour, in 24-hour format (00 to 23)
%I Hour, in 12-hour format (01 to 12)
%p AM or PM
%M Minutes (00 to 59)
%S Seconds (00 to 61)

Converting a string to a datetime object
new_years = dt.strptime('1/1/2023', '%m/%d/%Y')

Converting a datetime object to a string
ny_string = new_years.strftime('%B %d, %Y')
print(ny_string)

Plotting high temperatures
The following code creates a list of dates and a corresponding list of
high temperatures. It then plots the high temperatures, with the date
labels displayed in a specific format.

from datetime import datetime as dt

import matplotlib.pyplot as plt
from matplotlib import dates as mdates

dates = [
 dt(2023, 6, 21), dt(2023, 6, 22),
 dt(2023, 6, 23), dt(2023, 6, 24),
]

highs = [56, 57, 57, 64]

plt.style.use('seaborn-v0_8')
fig, ax = plt.subplots()
ax.plot(dates, highs, c='red')

ax.set_title("Daily High Temps", fontsize=24)
ax.set_ylabel("Temp (F)", fontsize=16)
x_axis = ax.get_xaxis()
x_axis.set_major_formatter(
 mdates.DateFormatter('%B %d %Y')
)
fig.autofmt_xdate()

plt.show()

Multiple plots in one figure
You can include as many individual graphs in one figure as
you want.

Sharing an x-axis
The following code plots a set of squares and a set of cubes on
two separate graphs that share a common x-axis. The plt.
subplots() function returns a figure object and a tuple of axes.
Each set of axes corresponds to a separate plot in the figure.
The first two arguments control the number of rows and columns
generated in the figure.

import matplotlib.pyplot as plt

x_values = list(range(11))
squares = [x**2 for x in x_values]
cubes = [x**3 for x in x_values]

fig, axs = plt.subplots(2, 1, sharex=True)

axs[0].scatter(x_values, squares)
axs[0].set_title('Squares')

axs[1].scatter(x_values, cubes, c='red')
axs[1].set_title('Cubes')

plt.show()

Sharing a y-axis
To share a y-axis, use the sharey=True argument.

import matplotlib.pyplot as plt

x_values = list(range(11))
squares = [x**2 for x in x_values]
cubes = [x**3 for x in x_values]

plt.style.use('seaborn-v0_8')
fig, axs = plt.subplots(1, 2, sharey=True)

axs[0].scatter(x_values, squares)
axs[0].set_title('Squares')

axs[1].scatter(x_values, cubes, c='red')
axs[1].set_title('Cubes')

plt.show()

Weekly posts about all things Python
mostlypython.substack.com

