
5.1. Research Procedure

5.1.3 Piecewise Linear Regression for Life Cycle shape ex-

traction

This section introduces the two piecewise linear trend extraction approaches used

in the study to extract life cycle shapes of each game.

5.1.3.1 Method 1 - Piecewise linear regression when the number of

pieces is unknown

This section introduces a piecewise linear trend extraction algorithm to extract the

life cycle shape of a game without prior knowledge about the number of life cycle

stages.

The main objective of the proposed algorithm is to identify the life cycle shape

represented through the use of a minimum number of life stages while the overall

error of the linear fits of life stages is also minimized. Since a piecewise linear

regression approach is proposed for this purpose, each life stage will be represented

by a linear fit of a piece identified through the least-squares method. Moreover, it

is hypothesized that the best piecewise linear fit for a series is the one that has the

minimum number of pieces and minimum overall error. The error is measured by

Root Mean Squared Error (RMSE) depicted in Equation 5.2 where n is the length of

a data series, ŷi is the value of a data point identified by the piecewise linear fit and

yi is the actual value of the data point. However, achieving such an optimal solution

would not be possible as these two objectives could be contradictory. For instance,

minimum RMSE for the piecewise fits could be achieved by having as many pieces

as possible leading to a possible overfit. In the same way, the minimum number

of pieces for a series could be achieved by sacrificing RMSE leading to a possible

underfit. Since RMSE and the number of pieces of a piecewise linear fit involves

a trade-off, the proposed algorithm continually controls this trade-off to obtain the

best possible piecewise fit. Furthermore, heuristics are used in the algorithm to

make the convergence faster while sacrificing the optimality of the final solution.

Moreover, several thresholds are introduced to control the optimality of the final
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piecewise fits. Algorithm 5.1 presents the proposed approach.

RMSE =

√√√√ n∑
i=1

(ŷi − yi)2
n

(5.2)

Algorithm 5.1 iteratively identifies the pieces for the piecewise linear fit. The

process of identifying the first piece is described here in detail. The same process

is repeated from the end of the first piece to identify the rest of the pieces. An

incremental window based approach is conducted as the initial step in identifying

the first piece. The minimum length of the piece is chosen to be 30 days, as it is

assumed a life stage length should be at least 30 days. The algorithm finds the best

linear fit for the first 30 days of the series and records the RMSE. The best linear

fit is the one that minimizes the residual sum of squares. This is also known as

least-squares approach [138]. The window length is then incrementally increased by

1 and the best linear fit for the data within the window is identified. RMSE of the

fit is recorded. This process is continued until the window end reaches the end of

the series. The starting point of the window remains constant at the beginning of

the series to allow the window to incrementally increase. Figure 5.3 depicts how the

window length incrementally increases by 1 data point. Then the recorded RMSE

values are normalized as per Equation 5.6.

Figure 5.3: Incrementing Windows for series
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Algorithm 5.1 Piecewise Linear Trend Extraction : Method 1

Inputs: Xdata , Ydata ,minPieceSize, threshold
seriesLen = length(Ydata)
pieceStartI =1
pieceEndI = -1
remainingLen = seriesLen - pieceStartI+1
while (remainingLen > minPieceSize) do

itearations = remainingLen-minPieceSize+1
for i = 1 : iterations do

find the best linear fit for the data subset (pieceStartI : pieceStartI +
minPieceSize-1 +i-1)
append error (RMSE) of the fit to errorArr

end for
normalize RMSE errorArr to 0-1 range
for i = 1 : length(errorArr) - 1 do

if errorArr[i+1]−errorArr[i]
errorArr[i]

*100 ≤ errorThreshold then

Append errorArr[i+1] to localOptimalErrArr
Append i+1 to localOptimalIndexArr

end if
end for
if length(localOptimalErrArr) > 0 then

optimalErr = minimum value of localOptimalErrArr
optimalPieceEndI = index of the optimalErr value
if length(localOptimalErrArr) - optimalPieceEndI ≥ 1 then

for i = length(localOptimalErrArr) : -1 : optimalPieceEndI +1 do
tempOptimalErr = localOptimalErrArr(i)
errDiff = tempOptimalErr - optimalErr
lenGain = (localOptimalIndexArr(i)−1)

(length(errArr)−1)
− (localOptimalIndexArr(optimalP ieceEndI)−1)

(length(errArr)−1)

if errDiff + (1 - lenGain)< threshold then
optimalErr = tempOptimalErr
optimalPieceEndI = i
break

end if
end for

end if
end if
pieceEndI = pieceStartI+ minPieceSize-1 + localOptimalIn-
dexArr(optimalPieceEndI) -1
save pieceStartI and pieceEndI
pieceStartI = pieceEndI
remainingLen = seriesLen -pieceStartI +1 ;
pieceEndI =-1;

end while
if remainingLen ≤ minPieceSize then

merge the remainingLen to the last piece
end if
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The first piece of the series could be any of the recorded windows. However, the

first piece should be chosen so as to minimize the overall error of the piecewise fits and

to minimize the number of pieces. Minimizing the number of pieces could be achieved

by increasing the number of data points or the length of a piece. Considering the

trade off between error and the number of pieces, several local optimal solutions are

chosen as possible candidates for the first piece. In order to choose the local optimal

solutions, the algorithm goes through the recorded RMSE values of each window.

If the RMSE of windowi+1 is less than or equal to RMSE of windowi, windowi+1

could be regarded as a local optimal solution. The reason is that windowi+1 covers

more length of the series than windowi while having a low error value. Thus, by

choosing windowi+1 as a local optimal solution the overall error of the series and

the number of pieces of the series could be minimized.

However, there could be data series where the error for windows keeps on increas-

ing as the window length increases. Such series would not have any local optimal

solutions if the previous selection criterion is used. Hence, the criterion of local op-

timal solution selection is relaxed and it can be controlled by a threshold as given in

Equation 5.3. A window is chosen as a local optimal piece when the error percentage

in Equation 5.3 is less than or equal to the user-determined error threshold. This

relaxed equation also includes the previous criterion of the error of windowi+1 is

less than or equal to the error of windowi when the error threshold is chosen to be

zero. The local optimal solution space could grow as the error threshold is increased.

Especially, for series where the error keeps on increasing as windows increases, the

algorithm would be able to identify local optimal solutions where the rate of error

increase is minimal based on the threshold. The errorThreshold value for the study

is chosen to be 1% so as not to over increase the local optimal solution space which

could in turn increase time complexity, and to not increase the number of pieces.

errori+1 − errori
errori

∗ 100 ≤ errorThreshold (5.3)

Figure 5.4a depicts the RMSE values of the identified local optimal windows for
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the first piece of Monster Hunter :World game and Figure 5.5a depicts the same for

SCP: Secret Laboratory game. Once the local optimal solutions are identified, one

solution out of these needs to be chosen as the optimal first piece. Initially, giving

priority to minimizing RMSE, the window with the smallest error is chosen. This

is represented by the black dot in the Figures 5.4a and 5.5a. However, there could

be other local optimal solutions that could aid in minimizing the overall number

of pieces of the fit while sacrificing the RMSE. For instance, in Figure 5.5a all the

local optimal solutions positioned on the right hand side of the chosen solution

represented by the black point could minimize the overall number of pieces as their

window length is higher than the chosen solution. However, those solutions might

increase the overall RMSE of the final fit. Hence, measures are taken to compare the

local optimal solutions that provide length gain with the chosen solution in order to

identify the optimal piece. For this purpose, the error difference and the length gain

is calculated between the chosen solution and each local optimal window beginning

from the rightmost. Also, a threshold as in Equation 5.4 is used to determine if

there are any better optimal solutions than the chosen one based on the error and

length difference.

error difference+ (1− length gain) < threshold (0 < threshold < 2) (5.4)

where

error difference = normalizedRMSEcurrent − normalizedRMSEchosen

length gain = normalizedLengthcurrent − normalizedLengthchosen

The RMSE values of each window and the length of each window is normalized to

bring the values into the 0-1 range. This normalization step is vital for the threshold

determination as it provides equal importance to the RMSE and length. Moreover,

normalization helps in determining a threshold value that can be universally used

for any data series rather than being unique to a single series. The length of data
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(a) RMSE for Iteration 1 (b) RMSE for Iteration 2

(c) RMSE for Iteration 3 (d) RMSE for Iteration 4

(e) Piecewise Linear fits

Figure 5.4: RMSE of iterations and final piecewise linear fit for Monster
Hunter:World game
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(a) RMSE for Iteration 1 (b) RMSE for Iteration 2

(c) RMSE for Iteration 3 (d) Piecewise Linear fits

Figure 5.5: RMSE of iterations and final piecewise linear fit for SCP: Secret Labo-
ratory game
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points in each window is WindowNo+ (30− 1). Thus, the window number is used

in Equation 5.5 to normalize the length of windows. Also, since RMSE values are

scale-dependent normalization was performed earlier as in Equation 5.6. It can be

seen in Figure 5.5a that the locally optimal solutions positioned in the right hand

side of the chosen solution have higher RMSE and higher length than the chosen

solution. Ideally, if it is possible to identify a window that provides more length gain

than the chosen solution, while having only a small increase in RMSE, it should be

used as the optimal piece instead of the chosen solution. However, a numerical

value is needed to represent the tolerable combination of RMSE and length. For

this purpose, if there are any locally optimal solutions on the right hand side of

the chosen solution, the error difference and inverse of length gain are calculated as

per Equation 5.4 for those local optimal solutions starting from the rightmost one.

Calculating the inverse of length gain aids in controlling RMSE and length together

using a single threshold. If any locally optimal solution is encountered that agrees

with the threshold, it would be chosen as the optimal solution. Going through the

locally optimal solutions starting from the rightmost is important to quickly identify

if there are better solutions, as length gain is highest towards the right. If there are

better locally optimal solutions than the chosen one based on the threshold, one of

them will be chosen as the optimal piece. If no better solution exists, the initially

chosen optimal solution with the minimum RMSE will be kept as the optimal piece.

Once the optimal first piece is identified, the whole process is repeated to identify

the other pieces starting from the end of the first piece.

normalizedLengthi =
windowNoi − windowNomin

windowNomax − windowNomin

(5.5)

Here windowNoi represents the window number of the ith window of the series.

normalizedRMSEi =
RMSEi −RMSEmin

RMSEmax −RMSEmin

(5.6)

Here RMSEi represents the RMSE of the ith window of the series.
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