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Winning Wordle Wisely—or How 
to Ruin a Fun Little Internet Game 
with Math Martin B. Short

In this missive, the author goes about ruining an online 
word guessing game called Wordle by generally try-
ing to mathify the whole thing. On the other hand, 
one might consider that the author is trying to spice 
up mathematics by applying it to an online word 
guessing game. Also, a spoiler alert: don’t read past 

the phrase “The solution is ...” if you want to retain that 
Wordle magic.

How to Play Wordle
It is now January 2022 and Wordle has taken the internet 
by storm. Six weeks later, in mid-February, the Google 
Trends timeline showed Wordle at the top value 100 after 
an apparently exponential rise in interest.1 No doubt there 
will be a similarly rapid drop in interest soon, given the 
general nature of internet fads.2 So I think it is likely that 
Wordle is here to stay in one form or another for the fore-
seeable future, even if it drops out of the trending internet 
conversation rather quickly.3 But for now, the game is of 
great popular interest.

What is Wordle, you may ask? It is a fun little internet-
based word guessing game. The premise and gameplay 
of Wordle are simple. A game of Wordle is based on the 
player’s attempt to find a secret solution word through a se-
quence of guesses. The solution word is always a five-letter 
word from the English language (at least according to one 
dictionary; more on this in a bit). The player has a maxi-
mum of six guesses to try to find the secret solution word. 
Each of the player’s guesses must also be a five-letter word 
from the English language, again with the caveat about dic-
tionaries from above. I should also note that one aspect that 
makes Wordle especially fun is that every day there is a 
unique Wordle word for all players worldwide, which gives 
a certain social aspect to this rather simple game.

The way that the Wordle game provides information to 
the player so that “better” subsequent guesses can be made 
is by marking each letter in the most recent guess by one of 
three possible colors, each with a specific meaning: 

1.	 Green (G): a Green letter indicates that the secret solu-
tion word has that particular letter in that precise loca-
tion. This is a direct hit, if you will. All letters should 

be checked first to see whether they are Green, in which 
case those instances needn’t be checked for the other two 
colors.

2.	 Yellow (Y): a Yellow letter generally indicates that 
the secret solution word has that letter somewhere, 
but not at that particular location. This color is a 
little more complicated than Green, which is totally 
unambiguous, since there are edge cases to consider 
here. The full algorithm for yellow letters seems to 
be as follows. First, remove any letters correspond-
ing to Green letters from the secret solution, thus 
leaving a substring (this is so that letters already 
marked as Green won’t also give Yellows). Then 
going from left to right one (non-green) guess letter 
at a time, check whether that letter is located within 
the substring. If so, then that guess letter will be 
marked Yellow, and the letter within the substring 
that matched it is removed from the substring 
before the next letter in the guess word is checked 
(this is to prevent multiple Yellows coming off of a 
single letter within the solution). In the end, the 
total number of Green and Yellow occurrences of a 
given letter in the guess word will be the minimum 
of the number of occurrences in the guess word and 
the number of occurrences in the solution word.

3.	 Black (B): Gray would perhaps be a better reflection of 
the color that Wordle uses here than Black, but I will 
use Black throughout this document. Any letter not 
Green or Yellow is Black. So, Black letters will gen-
erally indicate letters that are not contained anywhere 
within the secret solution. The exception to this are 
letters that may appear in the solution but for which 
there is already a corresponding guess letter labeled 
as Green or Yellow.

Here are a few examples of solutions and guesses, and the 
corresponding letter color codes that Wordle would indi-
cate, in case there is any confusion:

•	 Solution: WEARY, Guess: TRAWL. A straightforward exam-
ple with result BYGYB, that is,                  .

1See google.com/trends/ and search on the term “Wordle.”
2When I wrote this, I truly believed it. However, it was recently announced that Wordle was purchased by the New York Times for 
an undisclosed (but seven-figure) sum. See “The New York Times buys Wordle,” available at https://​www.​nytim​es.​com/​2022/​01/​31/​
busin​ess/​media/​new-​york-​times​wordle.​html. Accessed February 4, 2022.
3Editor’s note: This paper is being edited in mid-June 2022, and the interest level is currently at 50.

http://crossmark.crossref.org/dialog/?doi=10.1007/s00283-022-10202-0&domain=pdf
https://www.nytimes.com/2022/01/31/business/media/new-york-timeswordle.html
https://www.nytimes.com/2022/01/31/business/media/new-york-timeswordle.html
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•	 Solution: DRAFT, Guess:          . The resulting colors 
are BBBBG. Here, though the solution contains the let-
ter T, the first instance of T in the guess is given color B, 
since the T in the solution already corresponds to a letter 
colored G.

•	 Solution: GLEAN, Guess:                . Resulting colors 
are YYBBB. Only the first instance of the letter N in the 
guess, read left to right, is colored Y.

In order to make the forthcoming discussion more meaning-
ful, I should describe here a few decisions and assumptions 
that will underlie everything I write going forward.

First, let us call the list of all words that Wordle allows a 
player to guess the true Wordle dictionary. This dictionary 
can be found online, and indeed, one can simply download 
the Wordle source code, which contains the dictionary. 
However, in much of my work on this paper, with excep-
tions specifically noted when they arise, I will not be using 
the true Wordle dictionary. This is for a number of rea-
sons. First, the true dictionary can (and already did, after 
purchase by the New York Times) change at any time, so 
the exact results one might obtain for a specific dictionary 
are not really that interesting; it is the methods and ideas 
that matter. Second, the true Wordle dictionary is quite 
large, and it contains many groupings of five letters that I 
simply refuse to acknowledge as English words and that 
I would wager that 99.99% of all native English speakers 
have never used, seen used in any context, or could even 
hazard a guess at their definition. So I don’t feel bad about 
excluding them, and for computational purposes I’d rather 
work with a smaller dictionary anyway. And third, I would 
like to retain some mystery and challenge for myself while 
playing Wordle, and spending too much time analyzing the 
true dictionary might ruin that for me.

Consequently, most results I present here will be based 
on a specific dictionary of five-letter English words that 
I obtained using Mathematica 13.0.0.0. After removing 
proper nouns from this dictionary as well as the small 
number of words that contain an apostrophe or letters with 
diacritical marks, the dictionary contains N = 5170 words 
(the “true” Wordle dictionary that I obtained on February 
4, 2022, contains 12,972 “words”). The variable N shall be 
used henceforth to represent the size of the Wordle diction-
ary in use, whichever that may be. In any case, whatever 
dictionary is being used for a game of Wordle will be called 
the full dictionary.

Second, I will assume going forward that the secret 
word in any given game of Wordle is drawn from the full 
dictionary referred to above. Further, I will assume that 
every word in the dictionary is equally likely to be the 
secret word for any given game. This is not true. The secret 
words to all Wordle games for the foreseeable future can be 
viewed through Wordle’s code (but I would never dare to 
look at them myself), so they are clearly not being drawn 
randomly on each given day, and even if the sequence was 
originally randomly determined, it is doubtful that it con-
tains any word more than once, so there is perhaps some 
memory to the random process. Also, this list of foreseeable 
future solutions is much smaller than the full dictionary, 
at only 2315 words (for the list I obtained on February 4, 

2022, which I have never looked at, I swear), so it does not 
contain all dictionary words. All this is ignored here. It 
would be very easy to adapt any of the methods and algo-
rithms I present here to use only this known set of possible 
solutions, but if you are going to do that, why not just look 
at the source code for that day’s solution and be done with 
it?

Let us call the current list of words (as taken from the 
full dictionary or whatever subdictionary you cheaters 
might want to use) that are still potentially the secret word 
for that game given the set of guesses made thus far and 
corresponding color codes received in response to them the 
“viable set.” Then each time a player makes a guess and re-
ceives in return a color code, the viable set can be updated, 
by either the game or the player. If we denote the viable 
set at round m (before the mth guess is made) by the vector 
vm (so each entry in this vector is a word from the diction-
ary), where at level m = 1 the viable solution list is the full 
dictionary (by assumption), then the guess made and color 
code received at round m will dictate what vm+1 is.

Now, I have thought a fair bit about different ways of 
representing a game of Wordle, and how to most efficiently 
deduce the new viable set vm+1 from the prior viable set, 
the last guess, and color code received. What I have settled 
on is, no surprise, a matrix. Let us call this very helpful 
matrix the color code matrix, denoted by Cm , where the m 
superscript again refers to the round of the game we are at 
before making guess m. Each column of Cm corresponds to 
a different possible solution word from the current viable 
set vm , while each row corresponds to an unguessed word 
that can still be guessed from the full dictionary; the 
number of rows is N + 1 −m , one row for each unguessed 
word. The matrix entry Cm

ij
 is a representation of the color 

code that one would receive on guessing word i should the 
true solution be word j. One could represent these color 
codes in a variety of ways, but for my purposes I will just 
use an integer from 1 to M = 35 − 5 = 238 , which encom-
passes all possible color codes (the five possible codes that 
are subtracted here represent codes consisting of four G’s 
and 1 Y, which are logically impossible). The ordering of 
the color codes among these integers generally does not 
matter, though I will make the decision that color code M 
corresponds to GGGGG, for reasons that will be clear later.

It is then quite simple to update the viable set after a 
guess has been made. If the guess made was word i and the 
color code received was c, then the updated viable set is 
just the set of all words in vm with index j such that Cm

ij
= c.

Of course, to use this method, one must precompute C1 
for a given dictionary; this need be done only once, and 
the result can then be stored for all subsequent uses. On 
my (rather beefy) personal computer running all 12 cores 
in parallel with Matlab, it takes only 16 seconds to compute 
C1 using a dictionary of size N = 5170 , and for the true 
Wordle dictionary of size N = 12972 , it takes a mere 100 
seconds. So, eminently doable.

It is worth mentioning here that Wordle also has an 
optional “hard mode,” in which each guess must conform 
to all currently known information about the secret solu-
tion gleaned from prior guesses thus far. That is, any guess 
made at level m in hard mode must be a member of the 
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current vector vm . In order to adapt our method to this 
mode, the only necessary change in going from Cm to Cm+1 
is to retain only those rows from Cm that correspond to the 
words in vm+1 ; in this way, C will always be a square ma-
trix. We will discuss more about hard mode later.

So, having described the game and how one might 
conceptualize it or implement it on a computer, we now 
come to the heart of the matter. What is the “best” way 
to play Wordle? In the subsequent sections I will provide 
some possible solutions to this question and raise several 
follow-up questions that might be interesting to tackle. I 
should also note here that there are already many, many 
online sources (roughly 34.5 million, according to Goog-
le4) that discuss this question. Given that the number of 
websites discussing this matter vastly outnumbers the size 
of the Wordle dictionary, what I write below is probably 
not unique. However, in contrast to traditional academic 
research (which this article most certainly is not), I believe 
it is imperative that I not read any of these articles before 
sending my own result into the world via this note. This 
feeling I think can be attributed to a desire not to overly 
“cheat” at Wordle, which is a game that I quite enjoy after 
all.

What Is the Point of Wordle?
In general, the only goal of a given game of Wordle is to 
find the secret solution word within your six allotted 
guesses. If you do that, you “win.” Maybe, then, we should 
search for a method that guarantees that we will always win 
any game of Wordle, regardless of the secret solution word 
for that game. This is a valid goal, but one I will not focus 
on too much, the main reason being that it doesn’t seem 
so hard to win at Wordle; not to toot my own horn, but 
I’ve never failed a game of Wordle myself (humble brag). 
Of course, since Wordle is using only a subset of the full 
dictionary for its secret solutions and that subset is likely 
chosen to be words that are most familiar to people, this 
is not really a fair assessment of what I might experience 
if the full dictionary were used for possible solutions. But 
since the remainder of this work will be based on how an 
algorithm might best solve Wordle, familiarity with certain 
words or the lack thereof is not really relevant, so probably 
a computer can pretty easily win at Wordle even if the full 
dictionary were used for possible solutions. In any case, 
this is something that I can and will assess for any algo-
rithms described here.

I will take the position that the true goal of Wordle is 
not only to win, but to do so in the fewest guesses. This is 
backed up by the game itself, which gives more impressive-
sounding commendations in response to wins when those 
wins take fewer attempts—from the lowly “Phew” on the 
sixth attempt to “Great,” then “Splendid,” “Impressive,” 
“Magnificent,” to the ultra-elusive “Genius” if the game is 
won on the opening guess (which is just 100% pure luck, 

not Genius). So this is the goal I will focus on here. If we 
achieve this goal and find an algorithm that when it wins, 
takes very few guesses to do so, then there is a good chance 
that the algorithm will (almost) always win (but this is not 
strictly guaranteed without further investigation).

Of course, the game of Wordle is also one of chance. 
Unless you have managed to construct your guesses, along 
with the corresponding color codes, in such a way that 
only one viable word remains (much more on this in a bit), 
your probability of selecting the correct word on your next 
guess is less than 1. So at best, we may state that the goal of 
Wordle is to find the solution to the game in the fewest ex-
pected number of rounds, with “expected” here signifying 
expectation relative to some probability distribution. This 
probability will of course take into account the fact that 
in any given game, we don’t know what the secret solu-
tion is, so we must average over all the possible (remaining) 
solutions.

Now that we have a goal in mind, we can elaborate 
on how one might achieve it in principle. A complete 
strategy for Wordle would involve specifying, for any 
potential (achievable) color code matrix Cm , the next 
word one will choose gm+1 . We will signify a given 
strategy by Sk , such that gm+1

k
= Sk(C

m,m) . Of course, 
the full space of all possible Cm is enormous, and the 
full space of all possible strategies is bigger still. For 
now, though, given the theoretical ability to deline-
ate all possible strategies Sk , we could find the optimal 
such strategy in the following way. For each such Sk , 
use that strategy against each possible jth hidden solu-
tion word for j = 1, 2,… ,N , in each case noting on 
which guess the solution is obtained. Call this number 
Rkj . In many cases, the result will be Rkj > 6 , indicat-
ing that that particular strategy would fail against the 
jth secret solution, but that is okay, since strategies 
that display this property on any significant number of 
solution words will likely not be optimal by our meas-
ure anyway. Then for strategy Sk , the average number 
of guesses required across all possible solution words, 
again recalling that we assume that all solution words 
are equally probable, is just

An optimal strategy is then a strategy Sk′ whereby Ek′ ≤ Ek 
for all k; that is, a strategy with the smallest corresponding 
Ek.

Of course, while the above may be conceptually help-
ful in deciding what an optimal strategy must satisfy, I 
cannot imagine that it is computable in this way, given 
the extremely large state spaces involved. So to try to find 
such an optimal strategy, we will need to construct some 
approximate algorithms and see whether we can find opti-
mal strategies using them instead.

Ek =
1

N

N
∑

j=1

Rkj .

4See https://​www.​google.​com/​search?​q=​wordle+​best+​first+​word.

https://www.google.com/search?q=wordle+best+first+word
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Approximate Optimal Strategies
Here I outline a few methods of approximating the true 
optimality problem described above.

Basic Approaches
Consider again that our goal is to solve Wordle in the least 
number of guesses, averaged over all possible secret solu-
tions. Note also that for every guess word that one makes 
in Wordle, the resulting color code obtained will result in 
a decrease in the current viable set of possible solutions, 
beginning from the full dictionary, as words get ruled out 
(columns get removed) by the information gained (some 
guesses/color codes may result in no reduction, but there is 
never an increase in the size of the viable set from a guess).

Most Rapid Decrease (MRD) Algorithm
Then perhaps one approximate method of attaining our 
goal is to attempt the following: at every guess m, given the 
current color code matrix Cm , guess that word/row (or one 
of many if there are ties) that will result in the smallest size 
(in terms of the number of members) of the updated viable 
set vm+1 in expectation over all the current viable words 
from vm.

In this method, we are not really worrying about getting 
the solution correct with any of our guesses until we reach 
the point where the viable solution list has been pared 
down to one (or perhaps two, at which point we simply 
guess one of them) remaining solutions, and we are aiming 
to achieve that result as quickly as possible. However, we 
could build into this method a simple sanity check: if at 
any guess m, the current optimal set of guesses has some 
words overlapping with the viable set vm , then we will 
surely choose one of these overlapping words. This is be-
cause not only do these overlapping words accomplish the 
same viable set size decrease as the nonoverlapping words, 
but they also have some (perhaps small) probability of be-
ing the correct solution themselves, thus possibly ending 
the game immediately on their selection.

One thing to keep in mind with the MRD method is that 
it is a greedy algorithm. This means that it does not look 
ahead beyond the next step; it just tries to make the viable 
set as small as possible on the next step. This can clearly lead 
to suboptimality overall, since it is possible that a word that 
does not achieve MRD optimality when only the next step is 
considered could achieve a smaller expected viable set size 
by considering both the next step and the step following it.

Having described the MRD method, we now describe 
how it can be implemented computationally. Luckily, it is 
extremely easy to do so, given our representation of the 
game by color matrix Cm . First, note that for a given row 
i of Cm , the probability that we will receive a given color 
code c on guessing word i is found by simply counting the 
number of times c appears in that row, then normalizing 
by the total number of columns. This is because we assume 
that each word in the viable set is equally probable as the 
secret solution. Let us denote the number of times that 
color code c appears in row i of Cm by L(c, i,Cm) , and let 
us denote the number of columns of Cm , which is the size 
of the current viable set, by Nv . But also note that the size 

of the updated viable set vm+1 , on a guess of word i and 
receipt of color code c, is also L(c, i,Cm) . Then if we guess 
word i, the expected length of the updated viable set vm+1 , 
which we will denote by Li , is simply

where 1M∈Cm
i
 is an indicator function that tells us whether 

row i contains color code M, which is GGGGG, which can 
by definition appear only at most once in a row and only 
for those words that are in the viable set. We also therefore 
excluded the color code GGGGG in the sum. The reason 
why I have chosen to remove GGGGG in this case is that if 
the color code we receive is GGGGG, then the game has 
ended, and we have already won, so computing L is 
nonsensical. Plus, our sanity check that will prefer optimal 
words that are members of the viable set over those that are 
not will cover this case explicitly in order to break ties.

After computation of the Li for all rows of Cm , the MRD 
optimal next guess is then taken from the list of words gi′ 
such that Li′ ≤ Li for all i. If there is any overlap between 
this MRD optimal list and vm , then that overlapping subset 
is the MRD optimal list.

Because all that is required to find the MRD optimal 
guess is to count how many times each color code ap-
pears within each row of the matrix Cm and then square 
each count and sum them all up, it can be done extremely 
quickly on a computer. I have found that this algorithm can 
be applied in real time on my personal computer to deter-
mine the MRD optimal next guess at any point in a game of 
Wordle almost instantly.

It is at this point that the spoiler alert kicks in: read no 
further if you want to retain your Wordle innocence. Given 
the MRD algorithm, one might naturally wonder, what is 
the best opening guess for Wordle? This is the only guess 
that does not vary from one game to the next, since the 
viable list v1 is always the full dictionary. Given the full 
dictionary I am using as described above, the MRD optimal 
opening guess word is ... drumroll please ...

TARES
Yes, TARES. As in, “Every morning he TARES his scale 

when making his espresso.”
Now, if you instead use the true Wordle dictionary 

to answer this same question, you will obtain the word 
LARES. Yes, LARES. As in, “I have no idea what LARES 
means, but it differs from TARES by only one letter.” Note 
that LARES is not present in the smaller dictionary. Also, 
TARES is the third best word by this measure in the true 
Wordle dictionary (number two is RALES).

Greatest Expected Probability (GEP) Algorithm
One drawback of the MRD method is that it generally 
forgoes the possibility of randomly selecting the solution 
word in each round by drawing its optimum from the full 
dictionary (previously guessed words excluded). While 
this may not give up much if the viable solution list still 
contains tens of words at a given point, it can make a big-
ger difference later on, when the viable word lists become 
much smaller. It is also not directly applicable when one is 

Li =
1

Nv − 1M∈Cm
i

M−1
∑

c=1

L2(c, i,Cm) ,
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playing in hard mode. One could adapt MRD to hard mode 
by simply adjusting Cm for hard mode as described above. 
However, given that each guessed word in hard mode has 
the potential to be the correct solution, one might consider 
whether another approximate optimality algorithm might 
be more appropriate than MRD in this case.

Here we consider such an alternative, which I will call 
the Greatest Expected Probability (GEP) algorithm. In this 
approximate algorithm, the goal is not to make a guess that 
will lead to the shortest expected updated viable set, but 
instead to pick the word that leads to the greatest expected 
probability that you could randomly choose the correct 
solution on the next round of play. There is of course a 
connection between these probabilities and the lengths of 
the potential updated viable sets L(c, i,Cm) discussed above. 
Specifically, let us now define P(c, i,Cm) ∶= 1∕L(c, i,Cm) , 
where the interpretation of this quantity is that if we 
choose for our guess word i and receive color code c (we 
assume that it is not GGGGG), then the probability that our 
next guess will be the correct solution (assuming that we 
will make our guess only from the updated viable solution 
list) is P(c, i,Cm) . Of course, this definition is valid only for 
color codes c that actually appear within row i of Cm . Then 
we can simply find for each guess word i the expected such 
probability via

or equivalently,

where Mi(C
m) is the number of unique color codes (not 

counting GGGGG) that appear in row i of matrix Cm . The 
GEP optimal guess is then a member of the set of guesses gi′ 
such that Pi′ ≥ Pi for all i. As with MRD above, if there are 
any GEP optimal words that are also members of the cur-
rent viable set, we will certainly choose one of those.

We can ask now what the GEP optimal opening guess is 
for Wordle. The solution is

TARES
Yes, TARES. As in, “The GEP optimal opening word for 

Wordle is TARES, just as in MRD!” Here I will not qualify 
this solution by noting which dictionary this pertains to, 
since it is the GEP optimal in both!

Of course, it is not generally the case that Pi = 1∕Li , so 
the minimum L did not have to correspond to the maximum 
P , and indeed it does not in the true Wordle dictionary. 
To get a feel for the overlap between the best words for the 
two algorithms, I list in Table 1 the top ten best words for 
both MRD and GEP (for the smaller dictionary), and there 
is no overlap outside of the top spot, with the exception 
that TEARS appears in both lists.

Pi =
1

Nv − 1M∈Cm
i

M−1
∑

c=1,c∈Cm
i

L(c, i,Cm)P(c, i,Cm) ,

Pi = Mi(C
m)∕(Nv − 1M∈Cm

i
),

Generalizing from There
While the MRD and GEP algorithms were motivated by 
specific interpretable considerations about what we might 
want in a Wordle guess, such limitations have never 
stopped a mathematician before. Hence, we will now con-
sider a more general optimal algorithm that encompasses 
both MRD and GEP, and which I will refer to as p-optimal-
ity, defined by the quantity

Here, the eponymous parameter p could in general be any 
real number we like.5 Since in general we would probably 
prefer guesses that lead to new viable sets that are small in 
size, if p > 0 we will choose the p-optimal guess to be the 
word i′ that minimizes f (p)i over all i, while if p < 0 we will 
choose the word that maximizes f (p)i . As always, we will 
always check whether any of the words in this optimal set 
are members of the current viable set, and prefer those if 
such is the case. Then it is clear that if we choose p = 1 , we 
recover MRD, and if we choose p = −1 , we recover GEP.

Given the general nature of the p-optimality method, the 
sky’s the limit, and we can try out many different p values 
and see which is best. Of course, for each p there may be a 
different optimal opening Wordle guess. But there are some 
limits we can examine that will tell us what to expect here. 
First, consider the case p → −∞ . Here the only terms that 
will materially contribute to the sum in (1) are those for 
which L(c, i,Cm) = 1 . Since we are trying to maximize f  in 
this case, this particular p-optimality is just trying to find 

(1)
f (p)i =

1

Nv − 1M∈Cm
i

M−1
∑

c = 1

c ∈ Cm
i

L(c, i,Cm)Lp(c, i,Cm) .

Table 1.   The top 10 best Wordle opening words, according to 
MRD and GEP optimality. For fun, I have also included the two 
worst opening words in each case. No, I wasn’t aware that PZAZZ 
was a word either.

Rank MRD Li
GEP Pi

1 TARES 117.54 TARES 0.0354
2 RATES 120.07 TEARS 0.0350
3 TALES 122.34 TIRES 0.0344
4 ALOES 122.37 TRIES 0.0340
5 SANER 125.87 PARES 0.0340
6 ROLES 128.50 TALES 0.0337
7 LANES 131.13 CARES 0.0337
8 RILES 133.90 PEARS 0.0337
9 TEARS 135.12 PORES 0.0337
10 ROTES 136.32 SLATE 0.0335
⋯ ⋯ ⋯ ⋯ ⋯

5169 FUZZY 2148.3 JAZZY 0.0074
5170 YUKKY 2161.1 PZAZZ 0.0056

5As an interesting mathematical aside, for p ≥ 0 , these f (p)i are directly related to the vector (p + 1)-norms of the potential viable 
set length vectors.
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the word that has the greatest number of potential viable 
sets of size 1 that arise from it. In the smaller dictionary, 
this word is PLATS. Yes, PLATS. As in, “I think I know 
how to use PLATS in a sentence, but now that I’m on the 
spot, I find I can’t confidently do so.”6 On the other end of 
the spectrum is p → ∞ , in which case by far the most im-
portant term in each sum is the entry with the largest value 
of L(c, i,Cm) . In this case, we are trying to minimize f  , so 
this particular p-optimality is just trying to find the word 
whose biggest possible resulting viable set is the smallest, 
basically minimizing the worst-case-scenario damage. In 
the smaller dictionary, this word is ALOES. Yes, ALOES. As 
in, “the plural of aloe is ALOES.”

Now, what would be really spiffy would be to test out 
different values of p and see which one leads to the best 
overall outcomes in actual games of Wordle.

Testing the Algorithm(s)
In order to give a full assessment of these algorithm(s) as 
potential optimal algorithms for Wordle, I have tested each 
method for every possible game of Wordle that could occur, 
in each case using the appropriate optimal opening word. 
That is, for some specific values of p, including of course −1 
and 1 to include GEP and MRD, I have first determined the 
optimal opening word and then simulated games of Wordle 
(both in normal and hard modes) for all possible secret solu-
tions, using p-optimality to select the “best” guess at each 
round in each game. I then measured how many rounds Rpj 
are needed to win for each secret word j. This might sound 
as though it would take a long time to accomplish, but it 
takes only around 30 seconds for each p value (and less for 
hard mode).

Before divulging the results, I should offer a few finer 
points of clarification. First, I should describe how I handle 
situations in which there are multiple optimal guesses in a 
round. For example, suppose I am using p = 0.25 and there 
are two words that have the same minimal f (0.25) , and I 
must choose one of them for my next guess. As a first step, 
since it is quite easy to compute the various f (p)i for many 
different p values simultaneously, I will always compute us-
ing at least p = −1 , 1, −10 , and 10, and I will break any tie 
for the actual p value in question using the results for these 
other p values in the order I have presented them here. So 
in this specific example of a tie for f (0.25) , I would choose 
among the tied words those that have the optimal f (−1) , 
then break any remaining tie among those words using the 
optimal f (1) , then f (−10) , then f (10) . Admittedly, these 
specific four p values (and their ordering here) are some-
what arbitrary, but they were all chosen to represent easily 
interpretable optimal properties, as discussed above (since 
these options include MRD and GEP, and ±10 ≈ ±∞ as far 
as I’m concerned). In the case that all of this still does not 
settle the tie, I then deviate from p-optimality and instead 
just choose the word that has the highest expected quan-
tity of G and Y colors in the resulting viable set. This choice 
is partly because I had to choose something, and partly 

because these are the types of solutions I like to see when 
playing Wordle (more on that later). If that still doesn’t 
work, then I try just for the highest expected number of G 
colors, for similar reasons. Finally, if all that fails to break 
the tie, I simply choose the first word alphabetically; this 
does happen, and it is rather frequent in hard mode (much 
less so in normal mode), since all the possible choices are by 
definition similar.

Second, I have chosen to iterate guessing for each of 
these simulated games until one of three things happens. 
The first is that I happen to guess the correct word, in 
which case I of course stop and note the round on which I 
just won. The second is that I narrow the viable set down 
to only a single possible word, in which case the optimal 
solution is obvious and I can stop iterating, but I still note 
that it will take me one more round to win. The final case 
is that I have narrowed the viable set down to two words. 
Here it is clear that the best way to proceed is to select one 
of the two words at random (since neither can be better 
than the other), in which case I either win immediately or 
I narrow the viable set down to one word and win in one 
additional round. The upshot is that the expectation after 
a viable set of size two has been achieved is that I will win 
in 1.5 more rounds. Along these lines, I did not restrict my 
simulations to a maximum of six rounds, since I wanted to 
track how many rounds each would take even if one had 
unlimited tries. Of course, any number of rounds Rj > 6.5 
is a definite loss for the algorithm, while a value of Rj = 6.5 
indicates that after the fifth guess it had the options nar-
rowed down to a set of two, so at least it was still possible 
to win.

I present results comparing performance across several 
different p values in Table 2, which presents the different p 
values in two lights: one is the average number of rounds 
it takes to win, and the other is a measure of how often the 
algorithm fails (or potentially fails) to win at all. One particu-
lar p value that stands out as quite terrible in both regards 
is p = −1.25 , which has some of the most (and worst) losses, 
and also has a strangely high number of expected rounds, 
at least in comparison to its neighboring p values. Of note 
here is that this value is also the only one that uses an 
opening word that seems to come out of nowhere: TEARS. 
Yes, TEARS. As in, “the performance of the algorithm at 
p = −1.25 brings TEARS to my eyes.” All other values use 
the magical TARES or else PLATS (for p → −∞ as discussed 
above) or ALOES (for p → ∞ as discussed above). So I’m 
blaming the strange and terrible performance here on the 
opening word.

Let us now focus our discussion on normal mode. An 
interesting finding here is that for intermediate p values, 
there seems to be a tradeoff between losses and average 
number of rounds. For example, the lowest average number 
of rounds was for p = −0.75 , but the algorithm also defi-
nitely lost twice and possibly lost six times. On the other 
hand, p = 0.75 never lost for sure, and only possibly lost 
twice, but it had a somewhat higher average number of 
rounds. A comparison between GEP and MRD also reveals 

6This despite the fact that Webster’s Collegiate Dictionary gives ten different meanings for the word.
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this tradeoff, with MRD taking more rounds to win but los-
ing less frequently. The value p = −0.5 seems to offer a nice 
middle ground here, with a nearly minimal average number 
of rounds and losing at most only four times. To provide 
a little more detail, I have singled out the specific value 
p = −0.5 as a strong performer and plotted a histogram of 
Rpj in this case in Figure 1(a).

In case you’re interested, and why wouldn’t you be, 
there is a clear trend in terms of the words that lead to fail 
states for the algorithm. There are 40 words that end in fail-
ure, with the most common failed word across all p values 
being FAZES, followed by FAXES and HAZES. Generally 
speaking, many (14/40) of these fail words follow the pat-
tern _ A _ E S, including those words that were the only 
two losers in the cases with the fewest losses (BABES and 
HAZES).

Hard mode presents a somewhat different picture. Here, 
p = −0.75 is almost an unambiguous winner, since it ties 
for fewest losses (with GEP) and has nearly the smallest 
expected number of rounds, beaten ever so slightly by 
p = −0.25 . A histogram of results for p = −0.75 is shown 
in Figure 1(b). Unsurprisingly perhaps, GEP beats MRD 
convincingly in hard mode; GEP was designed specifically 
with hard mode in mind, after all. Other than that, there 
isn’t too much to say about hard mode other than it is, in 
fact, hard, relative to normal mode at least.

To give a nod to the true Wordle dictionary, I have 
calculated the normal mode results equivalent to those in 
Table 2 for this larger dictionary. Results are shown in Ta-
ble 3. One item of note is that TARES is the optimal opener 
in fewer cases now, with the mysterious LARES taking its 
place for most all of the positive p values used. However, 
TARES still takes the prize for fewest expected rounds to 
win at p = −0.5 , which is also one of the best perform-
ing p values in terms of fewest losses. It is interesting that 

despite the dictionary in this case being much bigger and 
giving clearly different optimal openers for many p values, 
it is still p = −0.5 that is the overall winner here. Finally, 
apparently we have ±2 ≠ ±∞ for this dictionary, since 
the asymptotic optimal openers are VENAL and SERAI as 
p → ±∞ , respectively.

A More Elaborate Method
While the p-optimality method above is computationally very 
fast and works seemingly well for wise choices of p, there is 
at least one aspect of the method that is a bit lacking. Namely, 
the method is concerned only with the possible lengths of 
the next viable set and pays no mind to any other qualities 
that the next viable set might have. While it is clear that this 
is a weakness, it is worth exploring what kinds of qualities 
of potential viable sets might be of interest in order to help 
guide the development of a more elaborate technique.

To begin this discussion, I would like to define what I 
have come to call a Fully Discernible Set (FDS). A fully dis-
cernible set is any viable set such that there exists at least 
one “key word” such that with the key word as the guess 
word, all of the words in the viable set will return distinct 
color codes. Equivalently, there is a row in the matrix Cm 
such that all the entries in that row corresponding to viable 
words are distinct. I call this a fully discernible set because 
if your guess word were the key word, the resulting color 
code would immediately allow you to discern what the cor-
rect answer is, fully (the word corresponding to the unique 
column in that row that contains that color code). Using 
some of the terminology above, the current viable set is an 
FDS if and only if there is a row i′ of the matrix Cm such 
that Mi� (C

m) = Nv , and in this case, the word correspond-
ing to row i′ is a key word to the FDS. Given this definition, 

Table 2.   The performance of the p-optimality algorithm for various p values, in both normal mode (denoted by superscript n ) and hard 
mode (denoted by superscript h ). The columns labeled Rpj = X give the frequency of observing that particular Rpj . Note the asterisk for 
p = −1.25 in the Rn

pj
= 7 column. This indicates that there were actually six instances of Rn

pj
= 7 and two instances of Rn

pj
= 7.5 (all 

other rows had a maximum of Rn
pj
= 7).

p   Opener Mean Rn
pj

Rn
pj
= 6.5 Rn

pj
= 7 Mean Rh

pj
Rh
pj
≥ 6.5

−2.00 PLATS 3.8097 6 3 3.9162 207
−1.75 PLATS 3.8070 4 3 3.9137 208
−1.50 PLATS 3.8039 4 3 3.9083 203
−1.25 TEARS 3.8236 16 8* 3.9431 249
−1.00 TARES 3.7752 6 2 3.8781 183
−0.75 TARES 3.7712 6 2 3.8737 183
−0.50 TARES 3.7739 2 2 3.8760 189
−0.25 TARES 3.7733 4 2 3.8731 190

0.25 TARES 3.7843 4 0 3.8903 200
0.50 TARES 3.7901 4 0 3.8959 196
0.75 TARES 3.7983 2 0 3.9056 200
1.00 TARES 3.8008 2 0 3.9124 208
1.25 TARES 3.8056 2 0 3.9186 208
1.50 ALOES 3.8851 2 3 4.0451 286
1.75 ALOES 3.8905 2 3 4.0576 306
2.00 ALOES 3.8940 2 3 4.0578 305
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note that the maximum possible size for an FDS is M, since 
that is the largest possible value for Mi(C

m).
Among all FDS, there are two general varieties: Internal-

FDS (I-FDS) and External-FDS (E-FDS). For a viable set to be 
an I-FDS simply means that there exists a key word to that 
FDS that is a member of the FDS. The prototypical case: all 
viable sets of size two are I-FDS, with both members of the 
set as key words, since choosing either member results in 
immediate victory or perfect knowledge of the correct solu-
tion. Conversely, an E-FDS is an FDS such that none of the 
key words are members of the FDS.

When playing a game of Wordle, suppose you find that 
the current viable set is an I-FDS. Again under the as-
sumption that all words are equally likely to be the secret 

solution, it is quite clear that the best possible thing you 
can do at that point is choose the (internal) key word. 
This will cause you to win immediately with probability 
1∕Nv , and if not, you will win in the next round for sure. 
But what about an E-FDS? Then you generally have two 
plausible choices: pick the key word (which cannot cause 
you to win immediately, since it is external to the viable 
set) and then win in the next round for sure; or pick a 
member of the set instead and take your chance of winning 
right now, and even if you don’t, you will be guaranteed to 
be still in an FDS on the next round, since every subset of 
an FDS is also clearly an FDS. This is perhaps most tempt-
ing if the size of the E-FDS is as small as possible, namely 
3, thus maximizing your chance of an immediate win. But 
even in this case, in expectation this chancy choice is not 
better than simply choosing the external key word. By 
choosing the external key word, you will certainly win in 
two rounds. By choosing an internal set member you win 
in one round with probability one-third; otherwise you are 
left with an I-FDS (a set of size 2), meaning you win in two 
rounds with probability one-third and in three rounds with 
probability one-third, leading to an expected two rounds 
to win. No E-FDS with Nv > 3 can be better than this, so 
you couldn’t do better in expectation than choosing the 
external key in those cases either. Hence, we will just make 
the choice that when an E-FDS is encountered, we take 
the sure bet and just choose the key word, in which case, 
regardless of its size, it is roughly on a par with a viable set 
of length three.

One can of course extrapolate from the concept of an 
FDS to higher orders. For example, suppose my current 
viable set is not an FDS, but there exists a row i of Cm such 
that all of the possible vm+1 sets that might arise should 
I choose i are themselves FDS. One might then call the 
current viable set an order-1 Discernible Set (1DS), which 
could be internal or external. Similarly, one could conceive 
of an order-k discernible set (kDS) such that it is not an 
FDS, but there exists a word such that all of the possible 
viable sets vm+1 arising from that word are themselves 
discernible sets of order (k − 1) or less. This is then starting 
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Figure 1.   The number of rounds required to win every possible game of Wordle using the smaller dictionary in (a) normal mode 
using p = −0.5 optimality and (b) hard mode using p = −0.75 optimality, in each case beginning from the optimal opening word 
TARES.

Table 3.   The performance of the p-optimality algorithm for 
various p values in normal mode (denoted by superscript n ) 
when used on the true Wordle dictionary. The last two col-
umns give the frequency of observing the indicated values of 
Rpj.

p   Opener Mean Rn
pj

Rn
pj
= 6.5 Rn

pj
≥ 7

−2.00 PLEAT 4.1856 62 58
−1.75 PLEAT 4.1691 62 39
−1.50 PEATS 4.1600 50 39
−1.25 PELAS 4.1464 48 61
−1.00 TARES 4.0889 36 16
−0.75 TARES 4.0859 36 15
−0.50 TARES 4.0807 26 10
−0.25 TARES 4.0827 30 13

0.25 TARES 4.0910 42 6
0.50 LARES 4.1156 22 13
0.75 LARES 4.1240 24 13
1.00 LARES 4.1263 26 10
1.25 LARES 4.1327 24 10
1.50 LARES 4.1378 26 12
1.75 LARES 4.1452 28 12
2.00 LARES 4.1479 28 12
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to move away from a greedy algorithm, since we are inher-
ently looking multiple steps ahead when discussing order-k 
discernible sets. For this reason, computing whether a set 
is a kDS quickly becomes infeasible as k increases. There is 
one freebie, though: a viable set of length Nv = 3 is, if not 
itself an FDS, automatically an I-1DS. This is because by 
picking any member of that set, you either get the solu-
tion immediately or you are left with a length-2 viable set, 
which is an I-FDS.

I will note that there is a nice relationship between the 
idea of an FDS and the p-optimal strategy. Specifically, if 
a set is an FDS, then it is automatically the case that the 
key word i will yield the p optimal solution for every 
p ≠ 0 , since every L(c, i,Cm) for that word will be equal 
to 1, which will cause f (p)i to be the smallest (or largest, 
depending on the sign of p) that it can possibly be. Further, 
if the set is an I-FDS, then the internal key word will be the 
optimal choice, since we always check whether there is a 
minimizer within the current viable set and pick that if so.

Having defined a bunch of things, let me now describe 
how one might use them to try to obtain a modified optimal 
Wordle strategy. Given the discussion above, in which we 
have noted that an E-FDS is essentially equivalent to a set 
of size three, and an I-FDS is akin to a set of size two (but 
maybe not quite as good, depending on its size), we could 
modify our p-optimal algorithm to take these facts into 
consideration. Specifically, we first, as always, compute 
for each row i of Cm the lengths of all potential viable sets 
by color code returned, L(c, i,Cm) . Then for each such 
color code that appears in row i, let us define a new value 
L̃(c, i,Cm) with the following definition. If L < 3 or L > M , 
then L̃ = L . If 3 ≤ L(c, i,Cm) ≤ M , then the set is checked 
to determine whether it is an FDS of some sort. If the set 
is not an FDS, then L̃ = L . If the set is an E-FDS, then let 
L̃ = 3 to capture the fact that it is essentially the same as a 
length-three set in terms of rounds to win. Finally, if the set 
is an I-FDS, then let

to capture the fact that the expected number of rounds to 
win for this I-FDS is equal to this particular weighted aver-
age of the number of rounds needed to win for sets of size 
two and three. Then we can simply modify our p-optimal 
algorithm to use L̃p rather than Lp to obtain our p-FDS 
algorithm:

where we again will minimize or maximize FDS(p)i over i 
depending on whether p is positive or negative.

L̃ =
2

L
2 +

(

1 −
2

L

)

3 ,

(2)FDS(p)i =
1

Nv − 1M∈Cm
i

M−1
∑

c=1,c∈Cm
i

L(c, i,Cm)L̃p(c, i,Cm) ,

All this is easy enough to state on paper, but it starts 
to get a little bit slow computationally. Luckily, for the 
smaller dictionary at least, calculations using the p-FDS 
algorithm are just this side of bearable,7 so I can provide 
some results. For the value p = −0.5 , chosen for its good 
performance noted above, the p-FDS optimal opening word 
is, you guessed it, TARES. What a great word. Further, I 
have simulated all possible Wordle games in normal mode 
for this specific p value. The mean number of rounds to 
win in this scenario is 3.7696, which is marginally better 
than the 3.7739 obtained from standard p-optimality for 
p = −0.5 . The p-FDS method does not have any losses at 
the seven-round level, unlike the p-optimal method, which 
had two. But p-FDS does fail for six words at the 6.5-round 
level, as opposed to the p-optimal value of two words; but 
again note that failure at the 6.5-round level is only a pos-
sible failure, not a guaranteed one. For those curious, the 
six possible fail words are BAKES, BASES, FAKES, HAKES, 
WAKES, and WASES, all following the _ A _ E S pattern 
noted above. If we compare words directly, p-FDS wins 
in strictly fewer rounds than p-optimality for 742 words, 
while p-optimality wins in strictly fewer rounds than p-FDS 
for 702 words; the rest are ties. So to my mind it is clear 
that p-FDS takes the crown here, with the small caveat 
that there is a potential failure for four more words than 
p-optimality (but no guaranteed failures).

So, We Should Always Use TARES First, 
Right?
Maybe. I think the answer to this question depends on 
how similar your brain is to a computer. Probably it is not 
so similar, so it will not be able to use all kinds of informa-
tion equally well. For instance, in my own play of Wordle, 
I find that the most helpful guesses are those that return 
color codes with G and Y. This is because it is easier for me 
to list words that I know contain certain letters than it is to 
list words that don’t contain certain letters. The algorithms 
above do not, of course, make any distinction here (aside 
from my tie breaking, which was chosen with this prefer-
ence in mind), so they may suggest words that are not as 
useful to a human being actually playing the game (assum-
ing that the human being will not continue using a solver 
throughout).

Given this, it would not be unreasonable to choose an 
opening word that will contain, on average, the largest num-
ber of G and Y colors within the color code returned. It is easy, 
given the precomputed C1 , to determine which word does this. 
The solution is AROSE, with an average of 1.924 G plus Y. The 
magical TARES is tied for fourth place with five other words 
by this accounting, with an average of 1.894 G plus Y. This 
is pretty close to that of AROSE, so maybe TARES8 is still the 
best, considering all the results above as well.

7In an early, quite slow, version of my code, it was expected to take around nine days to compute all possible games of Wordle 
using p-FDS. I set it to run in the background on my computer at work and moved on with my life. Unfortunately, one week into 
the calculation, my office building suffered a very rare power outage and all results were lost. I interpreted this tragedy as a sign, 
and proceeded to optimize my code, which can now do the same calculation in roughly three hours.
8Hey, I just noticed you can type TARES with only one hand.
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For the sake of some completeness, I will also mention 
here the words that have the highest average number of G 
colors, as well as highest average number of Y colors; these 
are SANES (with 0.9255 G on average) and RESAT (with 
1.5712 Y on average). On these lists, TARES appears at loca-
tions 19 and 849, respectively. Wow, 849, huh?

Another thing to consider is some of our assumptions 
made at the beginning of this article. As already noted, 
Wordle most certainly does not choose a random secret 
solution from the full dictionary every day. I am also quite 
certain that the subdictionary that Wordle selects possible 
solution words from contains generally “common” words, 
so as to not upset players too much. In my time playing 
Wordle thus far, probably the most “obscure” (but certain-
ly not as obscure as PZAZZ) words I have seen as solutions 
were ABBEY and KNOLL. Of course, I would hope most all 
English speakers who are playing Wordle are familiar with 
these two words, even if they aren’t the first to leap to mind 
when one is considering five-letter words. But there would 
maybe be a revolt if the solution for Wordle one day was 
YUKKY. Yes, YUKKY. As in “Fozzie Bear’s comedy is very 
YUKKY.”9

Of course, if at some point it becomes known that 
Wordle actually generated or generates its subdictionary of 
solutions via some probability distribution qj , where qj is 
the probability that dictionary word j is chosen as the 
solution for a given game, the algorithms above can be 
adapted. All one need do at each guess level m is compute 
the current (or speculative, if you are doing this for a 
potential next viable set) probability qm

j
 for each word in 

the relevant viable set simply by taking the known qj for 
each word and then normalizing each so that they sum to 1. 
Hence

Then our formulas above would use, in place of current 
probabilities L(c, i,Cm)∕Nv , values

Of course, other modifications might also make a lot of 
sense in this scenario. For instance, two sets of the same 
size may no longer be nearly equivalent if they have very 
different distributions of probabilities for the words they 
contain. As an example, suppose one potential viable set 
of four words had a probability distribution that was very 
heavily weighted toward just a single word in the set, while 
another potential viable set of four words had equal prob-
ability for all four words. In that case, you would certainly 
prefer the set with the unequal probability distribution, 

qmj =
qj

∑

j∈vm qj
.

(3)
W(c, i,Cm) =

∑

j,Cm
ij
=c

qmj .

since that would make it more like a set of just one word 
than four. So, in adapting the algorithms to these more 
general probabilities per word, likely a better choice than 
Lp would make sense. Unfortunately, such an exploration 
will have to wait until another day, or I will never complete 
this note. This discussion naturally leads to our concluding 
section.

Possible Extensions and Future Work
All academic papers end with a section like this, so this one 
will too, despite the fact that it’s not a normal academic paper.

One natural potential extension that follows directly 
from this work is to construct a time-varying strategy that 
is not constant in each round of the game. That is, one can 
clearly (and efficiently) compute the p-optimal word at each 
guess level for many different values of p simultaneously 
and then try to use some kind of heuristics to determine 
which of these to use for that guess. I have not explored 
this possibility in enough detail at this time to say anything 
particulary intelligent about it, but it is something I think 
is an obvious next step.

Of greater difficulty, but also potentially greater pay-
off, would be to look into methods that are more “global” 
in nature than those above in that they consider multiple 
steps as a time rather than just one. The p-FDS algorithm 
is a first small step in this direction, since it effectively 
looks ahead for a certain class of viable sets for which the 
outcome is easily predicted in advance, but much more 
remains to be done here. Again, though I have not thought 
about this in too much depth as yet, it may not be so horri-
ble to look two steps ahead. Given that, as the results above 
indicate, p-optimality seems typically to solve Wordle 
(technically my own Wordle implementation that definitely 
complies with the assumptions we have made in this paper) 
in three or four steps, looking two steps ahead gets you a 
good way toward the solution and might be quite useful.

Another extension would be to apply the methods 
here to alternative Wordles that use words of length other 
than five. Of course, given the length chosen, the methods 
above may be completely infeasible from a computational 
point of view, since the number of possible words could be 
much greater. For example, given my source for dictionary 
words, there are 8,459 six-letter words, 11,934 seven-letter 
words, 13,057 eight-letter words, 12,009 nine-letter words, 
and the trend appears to be downward from there. On 
the other end of the spectrum, there are 2,593 four-letter 
words, 667 three-letter words, and 77 two-letter words. 
(That last number seems high to me.) These lower-letter-
count words could prove an interesting test bed to see 
how well certain algorithms find the true optimum, since 
it would be more plausible (but still maybe not so easy) to 
find the true global optimum by brute force on these much 
shorter lists (of words of fewer letters).

9At least that’s how I would use it. Online dictionaries generally list this as an alternative spelling for YUCKY, which I think is miss-
ing a golden linguistic opportunity.
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Finally, consider again the possibility discussed 
above that the solutions for any given Wordle are to 
be drawn from a given probability distribution. If the 
designers/maintainers of Wordle were so inclined, they 
could attempt to design this probability distribution 
in such a way as to optimally thwart my algorithmic 

solvers (or whatever other solvers might be out there). 
This would pit the Wordle designers/maintainers 
against people like me in a full-on game-theoretic 
battle, which could be very interesting to attempt to 
solve, on both ends.
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