
Vol.:(0123456789)

The Mathematical Intelligencer  ⚫  
© The Author(s), under exclusive licence to Springer Science+Business
Media, LLC, part of Springer Nature 2022
https://doi.org/10.1007/s00283-022-10202-0

227

Winning Wordle Wisely—or How
to Ruin a Fun Little Internet Game
with Math Martin B. Short

In this missive, the author goes about ruining an online
word guessing game called Wordle by generally try-
ing to mathify the whole thing. On the other hand,
one might consider that the author is trying to spice
up mathematics by applying it to an online word
guessing game. Also, a spoiler alert: don’t read past

the phrase “The solution is ...” if you want to retain that
Wordle magic.

How to Play Wordle
It is now January 2022 and Wordle has taken the internet
by storm. Six weeks later, in mid-February, the Google
Trends timeline showed Wordle at the top value 100 after
an apparently exponential rise in interest.1 No doubt there
will be a similarly rapid drop in interest soon, given the
general nature of internet fads.2 So I think it is likely that
Wordle is here to stay in one form or another for the fore-
seeable future, even if it drops out of the trending internet
conversation rather quickly.3 But for now, the game is of
great popular interest.

What is Wordle, you may ask? It is a fun little internet-
based word guessing game. The premise and gameplay
of Wordle are simple. A game of Wordle is based on the
player’s attempt to find a secret solution word through a se-
quence of guesses. The solution word is always a five-letter
word from the English language (at least according to one
dictionary; more on this in a bit). The player has a maxi-
mum of six guesses to try to find the secret solution word.
Each of the player’s guesses must also be a five-letter word
from the English language, again with the caveat about dic-
tionaries from above. I should also note that one aspect that
makes Wordle especially fun is that every day there is a
unique Wordle word for all players worldwide, which gives
a certain social aspect to this rather simple game.

The way that the Wordle game provides information to
the player so that “better” subsequent guesses can be made
is by marking each letter in the most recent guess by one of
three possible colors, each with a specific meaning:

1.	 Green (G): a Green letter indicates that the secret solu-
tion word has that particular letter in that precise loca-
tion. This is a direct hit, if you will. All letters should

be checked first to see whether they are Green, in which
case those instances needn’t be checked for the other two
colors.

2.	 Yellow (Y): a Yellow letter generally indicates that
the secret solution word has that letter somewhere,
but not at that particular location. This color is a
little more complicated than Green, which is totally
unambiguous, since there are edge cases to consider
here. The full algorithm for yellow letters seems to
be as follows. First, remove any letters correspond-
ing to Green letters from the secret solution, thus
leaving a substring (this is so that letters already
marked as Green won’t also give Yellows). Then
going from left to right one (non-green) guess letter
at a time, check whether that letter is located within
the substring. If so, then that guess letter will be
marked Yellow, and the letter within the substring
that matched it is removed from the substring
before the next letter in the guess word is checked
(this is to prevent multiple Yellows coming off of a
single letter within the solution). In the end, the
total number of Green and Yellow occurrences of a
given letter in the guess word will be the minimum
of the number of occurrences in the guess word and
the number of occurrences in the solution word.

3.	 Black (B): Gray would perhaps be a better reflection of
the color that Wordle uses here than Black, but I will
use Black throughout this document. Any letter not
Green or Yellow is Black. So, Black letters will gen-
erally indicate letters that are not contained anywhere
within the secret solution. The exception to this are
letters that may appear in the solution but for which
there is already a corresponding guess letter labeled
as Green or Yellow.

Here are a few examples of solutions and guesses, and the
corresponding letter color codes that Wordle would indi-
cate, in case there is any confusion:

•	 Solution: WEARY, Guess: TRAWL. A straightforward exam-
ple with result BYGYB, that is, .

1See google.com/trends/ and search on the term “Wordle.”
2When I wrote this, I truly believed it. However, it was recently announced that Wordle was purchased by the New York Times for
an undisclosed (but seven-figure) sum. See “The New York Times buys Wordle,” available at https://​www.​nytim​es.​com/​2022/​01/​31/​
busin​ess/​media/​new-​york-​times​wordle.​html. Accessed February 4, 2022.
3Editor’s note: This paper is being edited in mid-June 2022, and the interest level is currently at 50.

http://crossmark.crossref.org/dialog/?doi=10.1007/s00283-022-10202-0&domain=pdf
https://www.nytimes.com/2022/01/31/business/media/new-york-timeswordle.html
https://www.nytimes.com/2022/01/31/business/media/new-york-timeswordle.html

  ⚫  The Mathematical Intelligencer228

•	 Solution: DRAFT, Guess: . The resulting colors
are BBBBG. Here, though the solution contains the let-
ter T, the first instance of T in the guess is given color B,
since the T in the solution already corresponds to a letter
colored G.

•	 Solution: GLEAN, Guess: . Resulting colors
are YYBBB. Only the first instance of the letter N in the
guess, read left to right, is colored Y.

In order to make the forthcoming discussion more meaning-
ful, I should describe here a few decisions and assumptions
that will underlie everything I write going forward.

First, let us call the list of all words that Wordle allows a
player to guess the true Wordle dictionary. This dictionary
can be found online, and indeed, one can simply download
the Wordle source code, which contains the dictionary.
However, in much of my work on this paper, with excep-
tions specifically noted when they arise, I will not be using
the true Wordle dictionary. This is for a number of rea-
sons. First, the true dictionary can (and already did, after
purchase by the New York Times) change at any time, so
the exact results one might obtain for a specific dictionary
are not really that interesting; it is the methods and ideas
that matter. Second, the true Wordle dictionary is quite
large, and it contains many groupings of five letters that I
simply refuse to acknowledge as English words and that
I would wager that 99.99% of all native English speakers
have never used, seen used in any context, or could even
hazard a guess at their definition. So I don’t feel bad about
excluding them, and for computational purposes I’d rather
work with a smaller dictionary anyway. And third, I would
like to retain some mystery and challenge for myself while
playing Wordle, and spending too much time analyzing the
true dictionary might ruin that for me.

Consequently, most results I present here will be based
on a specific dictionary of five-letter English words that
I obtained using Mathematica 13.0.0.0. After removing
proper nouns from this dictionary as well as the small
number of words that contain an apostrophe or letters with
diacritical marks, the dictionary contains N = 5170 words
(the “true” Wordle dictionary that I obtained on February
4, 2022, contains 12,972 “words”). The variable N shall be
used henceforth to represent the size of the Wordle diction-
ary in use, whichever that may be. In any case, whatever
dictionary is being used for a game of Wordle will be called
the full dictionary.

Second, I will assume going forward that the secret
word in any given game of Wordle is drawn from the full
dictionary referred to above. Further, I will assume that
every word in the dictionary is equally likely to be the
secret word for any given game. This is not true. The secret
words to all Wordle games for the foreseeable future can be
viewed through Wordle’s code (but I would never dare to
look at them myself), so they are clearly not being drawn
randomly on each given day, and even if the sequence was
originally randomly determined, it is doubtful that it con-
tains any word more than once, so there is perhaps some
memory to the random process. Also, this list of foreseeable
future solutions is much smaller than the full dictionary,
at only 2315 words (for the list I obtained on February 4,

2022, which I have never looked at, I swear), so it does not
contain all dictionary words. All this is ignored here. It
would be very easy to adapt any of the methods and algo-
rithms I present here to use only this known set of possible
solutions, but if you are going to do that, why not just look
at the source code for that day’s solution and be done with
it?

Let us call the current list of words (as taken from the
full dictionary or whatever subdictionary you cheaters
might want to use) that are still potentially the secret word
for that game given the set of guesses made thus far and
corresponding color codes received in response to them the
“viable set.” Then each time a player makes a guess and re-
ceives in return a color code, the viable set can be updated,
by either the game or the player. If we denote the viable
set at round m (before the mth guess is made) by the vector
vm (so each entry in this vector is a word from the diction-
ary), where at level m = 1 the viable solution list is the full
dictionary (by assumption), then the guess made and color
code received at round m will dictate what vm+1 is.

Now, I have thought a fair bit about different ways of
representing a game of Wordle, and how to most efficiently
deduce the new viable set vm+1 from the prior viable set,
the last guess, and color code received. What I have settled
on is, no surprise, a matrix. Let us call this very helpful
matrix the color code matrix, denoted by Cm , where the m
superscript again refers to the round of the game we are at
before making guess m. Each column of Cm corresponds to
a different possible solution word from the current viable
set vm , while each row corresponds to an unguessed word
that can still be guessed from the full dictionary; the
number of rows is N + 1 −m , one row for each unguessed
word. The matrix entry Cm

ij
 is a representation of the color

code that one would receive on guessing word i should the
true solution be word j. One could represent these color
codes in a variety of ways, but for my purposes I will just
use an integer from 1 to M = 35 − 5 = 238 , which encom-
passes all possible color codes (the five possible codes that
are subtracted here represent codes consisting of four G’s
and 1 Y, which are logically impossible). The ordering of
the color codes among these integers generally does not
matter, though I will make the decision that color code M
corresponds to GGGGG, for reasons that will be clear later.

It is then quite simple to update the viable set after a
guess has been made. If the guess made was word i and the
color code received was c, then the updated viable set is
just the set of all words in vm with index j such that Cm

ij
= c.

Of course, to use this method, one must precompute C1
for a given dictionary; this need be done only once, and
the result can then be stored for all subsequent uses. On
my (rather beefy) personal computer running all 12 cores
in parallel with Matlab, it takes only 16 seconds to compute
C1 using a dictionary of size N = 5170 , and for the true
Wordle dictionary of size N = 12972 , it takes a mere 100
seconds. So, eminently doable.

It is worth mentioning here that Wordle also has an
optional “hard mode,” in which each guess must conform
to all currently known information about the secret solu-
tion gleaned from prior guesses thus far. That is, any guess
made at level m in hard mode must be a member of the

The Mathematical Intelligencer  ⚫  229

current vector vm . In order to adapt our method to this
mode, the only necessary change in going from Cm to Cm+1
is to retain only those rows from Cm that correspond to the
words in vm+1 ; in this way, C will always be a square ma-
trix. We will discuss more about hard mode later.

So, having described the game and how one might
conceptualize it or implement it on a computer, we now
come to the heart of the matter. What is the “best” way
to play Wordle? In the subsequent sections I will provide
some possible solutions to this question and raise several
follow-up questions that might be interesting to tackle. I
should also note here that there are already many, many
online sources (roughly 34.5 million, according to Goog-
le4) that discuss this question. Given that the number of
websites discussing this matter vastly outnumbers the size
of the Wordle dictionary, what I write below is probably
not unique. However, in contrast to traditional academic
research (which this article most certainly is not), I believe
it is imperative that I not read any of these articles before
sending my own result into the world via this note. This
feeling I think can be attributed to a desire not to overly
“cheat” at Wordle, which is a game that I quite enjoy after
all.

What Is the Point of Wordle?
In general, the only goal of a given game of Wordle is to
find the secret solution word within your six allotted
guesses. If you do that, you “win.” Maybe, then, we should
search for a method that guarantees that we will always win
any game of Wordle, regardless of the secret solution word
for that game. This is a valid goal, but one I will not focus
on too much, the main reason being that it doesn’t seem
so hard to win at Wordle; not to toot my own horn, but
I’ve never failed a game of Wordle myself (humble brag).
Of course, since Wordle is using only a subset of the full
dictionary for its secret solutions and that subset is likely
chosen to be words that are most familiar to people, this
is not really a fair assessment of what I might experience
if the full dictionary were used for possible solutions. But
since the remainder of this work will be based on how an
algorithm might best solve Wordle, familiarity with certain
words or the lack thereof is not really relevant, so probably
a computer can pretty easily win at Wordle even if the full
dictionary were used for possible solutions. In any case,
this is something that I can and will assess for any algo-
rithms described here.

I will take the position that the true goal of Wordle is
not only to win, but to do so in the fewest guesses. This is
backed up by the game itself, which gives more impressive-
sounding commendations in response to wins when those
wins take fewer attempts—from the lowly “Phew” on the
sixth attempt to “Great,” then “Splendid,” “Impressive,”
“Magnificent,” to the ultra-elusive “Genius” if the game is
won on the opening guess (which is just 100% pure luck,

not Genius). So this is the goal I will focus on here. If we
achieve this goal and find an algorithm that when it wins,
takes very few guesses to do so, then there is a good chance
that the algorithm will (almost) always win (but this is not
strictly guaranteed without further investigation).

Of course, the game of Wordle is also one of chance.
Unless you have managed to construct your guesses, along
with the corresponding color codes, in such a way that
only one viable word remains (much more on this in a bit),
your probability of selecting the correct word on your next
guess is less than 1. So at best, we may state that the goal of
Wordle is to find the solution to the game in the fewest ex-
pected number of rounds, with “expected” here signifying
expectation relative to some probability distribution. This
probability will of course take into account the fact that
in any given game, we don’t know what the secret solu-
tion is, so we must average over all the possible (remaining)
solutions.

Now that we have a goal in mind, we can elaborate
on how one might achieve it in principle. A complete
strategy for Wordle would involve specifying, for any
potential (achievable) color code matrix Cm , the next
word one will choose gm+1 . We will signify a given
strategy by Sk , such that gm+1

k
= Sk(C

m,m) . Of course,
the full space of all possible Cm is enormous, and the
full space of all possible strategies is bigger still. For
now, though, given the theoretical ability to deline-
ate all possible strategies Sk , we could find the optimal
such strategy in the following way. For each such Sk ,
use that strategy against each possible jth hidden solu-
tion word for j = 1, 2,… ,N , in each case noting on
which guess the solution is obtained. Call this number
Rkj . In many cases, the result will be Rkj > 6 , indicat-
ing that that particular strategy would fail against the
jth secret solution, but that is okay, since strategies
that display this property on any significant number of
solution words will likely not be optimal by our meas-
ure anyway. Then for strategy Sk , the average number
of guesses required across all possible solution words,
again recalling that we assume that all solution words
are equally probable, is just

An optimal strategy is then a strategy Sk′ whereby Ek′ ≤ Ek
for all k; that is, a strategy with the smallest corresponding
Ek.

Of course, while the above may be conceptually help-
ful in deciding what an optimal strategy must satisfy, I
cannot imagine that it is computable in this way, given
the extremely large state spaces involved. So to try to find
such an optimal strategy, we will need to construct some
approximate algorithms and see whether we can find opti-
mal strategies using them instead.

Ek =
1

N

N
∑

j=1

Rkj .

4See https://​www.​google.​com/​search?​q=​wordle+​best+​first+​word.

https://www.google.com/search?q=wordle+best+first+word

  ⚫  The Mathematical Intelligencer230

Approximate Optimal Strategies
Here I outline a few methods of approximating the true
optimality problem described above.

Basic Approaches
Consider again that our goal is to solve Wordle in the least
number of guesses, averaged over all possible secret solu-
tions. Note also that for every guess word that one makes
in Wordle, the resulting color code obtained will result in
a decrease in the current viable set of possible solutions,
beginning from the full dictionary, as words get ruled out
(columns get removed) by the information gained (some
guesses/color codes may result in no reduction, but there is
never an increase in the size of the viable set from a guess).

Most Rapid Decrease (MRD) Algorithm
Then perhaps one approximate method of attaining our
goal is to attempt the following: at every guess m, given the
current color code matrix Cm , guess that word/row (or one
of many if there are ties) that will result in the smallest size
(in terms of the number of members) of the updated viable
set vm+1 in expectation over all the current viable words
from vm.

In this method, we are not really worrying about getting
the solution correct with any of our guesses until we reach
the point where the viable solution list has been pared
down to one (or perhaps two, at which point we simply
guess one of them) remaining solutions, and we are aiming
to achieve that result as quickly as possible. However, we
could build into this method a simple sanity check: if at
any guess m, the current optimal set of guesses has some
words overlapping with the viable set vm , then we will
surely choose one of these overlapping words. This is be-
cause not only do these overlapping words accomplish the
same viable set size decrease as the nonoverlapping words,
but they also have some (perhaps small) probability of be-
ing the correct solution themselves, thus possibly ending
the game immediately on their selection.

One thing to keep in mind with the MRD method is that
it is a greedy algorithm. This means that it does not look
ahead beyond the next step; it just tries to make the viable
set as small as possible on the next step. This can clearly lead
to suboptimality overall, since it is possible that a word that
does not achieve MRD optimality when only the next step is
considered could achieve a smaller expected viable set size
by considering both the next step and the step following it.

Having described the MRD method, we now describe
how it can be implemented computationally. Luckily, it is
extremely easy to do so, given our representation of the
game by color matrix Cm . First, note that for a given row
i of Cm , the probability that we will receive a given color
code c on guessing word i is found by simply counting the
number of times c appears in that row, then normalizing
by the total number of columns. This is because we assume
that each word in the viable set is equally probable as the
secret solution. Let us denote the number of times that
color code c appears in row i of Cm by L(c, i,Cm) , and let
us denote the number of columns of Cm , which is the size
of the current viable set, by Nv . But also note that the size

of the updated viable set vm+1 , on a guess of word i and
receipt of color code c, is also L(c, i,Cm) . Then if we guess
word i, the expected length of the updated viable set vm+1 ,
which we will denote by Li , is simply

where 1M∈Cm
i
 is an indicator function that tells us whether

row i contains color code M, which is GGGGG, which can
by definition appear only at most once in a row and only
for those words that are in the viable set. We also therefore
excluded the color code GGGGG in the sum. The reason
why I have chosen to remove GGGGG in this case is that if
the color code we receive is GGGGG, then the game has
ended, and we have already won, so computing L is
nonsensical. Plus, our sanity check that will prefer optimal
words that are members of the viable set over those that are
not will cover this case explicitly in order to break ties.

After computation of the Li for all rows of Cm , the MRD
optimal next guess is then taken from the list of words gi′
such that Li′ ≤ Li for all i. If there is any overlap between
this MRD optimal list and vm , then that overlapping subset
is the MRD optimal list.

Because all that is required to find the MRD optimal
guess is to count how many times each color code ap-
pears within each row of the matrix Cm and then square
each count and sum them all up, it can be done extremely
quickly on a computer. I have found that this algorithm can
be applied in real time on my personal computer to deter-
mine the MRD optimal next guess at any point in a game of
Wordle almost instantly.

It is at this point that the spoiler alert kicks in: read no
further if you want to retain your Wordle innocence. Given
the MRD algorithm, one might naturally wonder, what is
the best opening guess for Wordle? This is the only guess
that does not vary from one game to the next, since the
viable list v1 is always the full dictionary. Given the full
dictionary I am using as described above, the MRD optimal
opening guess word is ... drumroll please ...

TARES
Yes, TARES. As in, “Every morning he TARES his scale

when making his espresso.”
Now, if you instead use the true Wordle dictionary

to answer this same question, you will obtain the word
LARES. Yes, LARES. As in, “I have no idea what LARES
means, but it differs from TARES by only one letter.” Note
that LARES is not present in the smaller dictionary. Also,
TARES is the third best word by this measure in the true
Wordle dictionary (number two is RALES).

Greatest Expected Probability (GEP) Algorithm
One drawback of the MRD method is that it generally
forgoes the possibility of randomly selecting the solution
word in each round by drawing its optimum from the full
dictionary (previously guessed words excluded). While
this may not give up much if the viable solution list still
contains tens of words at a given point, it can make a big-
ger difference later on, when the viable word lists become
much smaller. It is also not directly applicable when one is

Li =
1

Nv − 1M∈Cm
i

M−1
∑

c=1

L2(c, i,Cm) ,

The Mathematical Intelligencer  ⚫  231

playing in hard mode. One could adapt MRD to hard mode
by simply adjusting Cm for hard mode as described above.
However, given that each guessed word in hard mode has
the potential to be the correct solution, one might consider
whether another approximate optimality algorithm might
be more appropriate than MRD in this case.

Here we consider such an alternative, which I will call
the Greatest Expected Probability (GEP) algorithm. In this
approximate algorithm, the goal is not to make a guess that
will lead to the shortest expected updated viable set, but
instead to pick the word that leads to the greatest expected
probability that you could randomly choose the correct
solution on the next round of play. There is of course a
connection between these probabilities and the lengths of
the potential updated viable sets L(c, i,Cm) discussed above.
Specifically, let us now define P(c, i,Cm) ∶= 1∕L(c, i,Cm) ,
where the interpretation of this quantity is that if we
choose for our guess word i and receive color code c (we
assume that it is not GGGGG), then the probability that our
next guess will be the correct solution (assuming that we
will make our guess only from the updated viable solution
list) is P(c, i,Cm) . Of course, this definition is valid only for
color codes c that actually appear within row i of Cm . Then
we can simply find for each guess word i the expected such
probability via

or equivalently,

where Mi(C
m) is the number of unique color codes (not

counting GGGGG) that appear in row i of matrix Cm . The
GEP optimal guess is then a member of the set of guesses gi′
such that Pi′ ≥ Pi for all i. As with MRD above, if there are
any GEP optimal words that are also members of the cur-
rent viable set, we will certainly choose one of those.

We can ask now what the GEP optimal opening guess is
for Wordle. The solution is

TARES
Yes, TARES. As in, “The GEP optimal opening word for

Wordle is TARES, just as in MRD!” Here I will not qualify
this solution by noting which dictionary this pertains to,
since it is the GEP optimal in both!

Of course, it is not generally the case that Pi = 1∕Li , so
the minimum L did not have to correspond to the maximum
P , and indeed it does not in the true Wordle dictionary.
To get a feel for the overlap between the best words for the
two algorithms, I list in Table 1 the top ten best words for
both MRD and GEP (for the smaller dictionary), and there
is no overlap outside of the top spot, with the exception
that TEARS appears in both lists.

Pi =
1

Nv − 1M∈Cm
i

M−1
∑

c=1,c∈Cm
i

L(c, i,Cm)P(c, i,Cm) ,

Pi = Mi(C
m)∕(Nv − 1M∈Cm

i
),

Generalizing from There
While the MRD and GEP algorithms were motivated by
specific interpretable considerations about what we might
want in a Wordle guess, such limitations have never
stopped a mathematician before. Hence, we will now con-
sider a more general optimal algorithm that encompasses
both MRD and GEP, and which I will refer to as p-optimal-
ity, defined by the quantity

Here, the eponymous parameter p could in general be any
real number we like.5 Since in general we would probably
prefer guesses that lead to new viable sets that are small in
size, if p > 0 we will choose the p-optimal guess to be the
word i′ that minimizes f (p)i over all i, while if p < 0 we will
choose the word that maximizes f (p)i . As always, we will
always check whether any of the words in this optimal set
are members of the current viable set, and prefer those if
such is the case. Then it is clear that if we choose p = 1 , we
recover MRD, and if we choose p = −1 , we recover GEP.

Given the general nature of the p-optimality method, the
sky’s the limit, and we can try out many different p values
and see which is best. Of course, for each p there may be a
different optimal opening Wordle guess. But there are some
limits we can examine that will tell us what to expect here.
First, consider the case p → −∞ . Here the only terms that
will materially contribute to the sum in (1) are those for
which L(c, i,Cm) = 1 . Since we are trying to maximize f in
this case, this particular p-optimality is just trying to find

(1)
f (p)i =

1

Nv − 1M∈Cm
i

M−1
∑

c = 1

c ∈ Cm
i

L(c, i,Cm)Lp(c, i,Cm) .

Table 1.   The top 10 best Wordle opening words, according to
MRD and GEP optimality. For fun, I have also included the two
worst opening words in each case. No, I wasn’t aware that PZAZZ
was a word either.

Rank MRD Li
GEP Pi

1 TARES 117.54 TARES 0.0354
2 RATES 120.07 TEARS 0.0350
3 TALES 122.34 TIRES 0.0344
4 ALOES 122.37 TRIES 0.0340
5 SANER 125.87 PARES 0.0340
6 ROLES 128.50 TALES 0.0337
7 LANES 131.13 CARES 0.0337
8 RILES 133.90 PEARS 0.0337
9 TEARS 135.12 PORES 0.0337
10 ROTES 136.32 SLATE 0.0335
⋯ ⋯ ⋯ ⋯ ⋯

5169 FUZZY 2148.3 JAZZY 0.0074
5170 YUKKY 2161.1 PZAZZ 0.0056

5As an interesting mathematical aside, for p ≥ 0 , these f (p)i are directly related to the vector (p + 1)-norms of the potential viable
set length vectors.

  ⚫  The Mathematical Intelligencer232

the word that has the greatest number of potential viable
sets of size 1 that arise from it. In the smaller dictionary,
this word is PLATS. Yes, PLATS. As in, “I think I know
how to use PLATS in a sentence, but now that I’m on the
spot, I find I can’t confidently do so.”6 On the other end of
the spectrum is p → ∞ , in which case by far the most im-
portant term in each sum is the entry with the largest value
of L(c, i,Cm) . In this case, we are trying to minimize f  , so
this particular p-optimality is just trying to find the word
whose biggest possible resulting viable set is the smallest,
basically minimizing the worst-case-scenario damage. In
the smaller dictionary, this word is ALOES. Yes, ALOES. As
in, “the plural of aloe is ALOES.”

Now, what would be really spiffy would be to test out
different values of p and see which one leads to the best
overall outcomes in actual games of Wordle.

Testing the Algorithm(s)
In order to give a full assessment of these algorithm(s) as
potential optimal algorithms for Wordle, I have tested each
method for every possible game of Wordle that could occur,
in each case using the appropriate optimal opening word.
That is, for some specific values of p, including of course −1
and 1 to include GEP and MRD, I have first determined the
optimal opening word and then simulated games of Wordle
(both in normal and hard modes) for all possible secret solu-
tions, using p-optimality to select the “best” guess at each
round in each game. I then measured how many rounds Rpj
are needed to win for each secret word j. This might sound
as though it would take a long time to accomplish, but it
takes only around 30 seconds for each p value (and less for
hard mode).

Before divulging the results, I should offer a few finer
points of clarification. First, I should describe how I handle
situations in which there are multiple optimal guesses in a
round. For example, suppose I am using p = 0.25 and there
are two words that have the same minimal f (0.25) , and I
must choose one of them for my next guess. As a first step,
since it is quite easy to compute the various f (p)i for many
different p values simultaneously, I will always compute us-
ing at least p = −1 , 1, −10 , and 10, and I will break any tie
for the actual p value in question using the results for these
other p values in the order I have presented them here. So
in this specific example of a tie for f (0.25) , I would choose
among the tied words those that have the optimal f (−1) ,
then break any remaining tie among those words using the
optimal f (1) , then f (−10) , then f (10) . Admittedly, these
specific four p values (and their ordering here) are some-
what arbitrary, but they were all chosen to represent easily
interpretable optimal properties, as discussed above (since
these options include MRD and GEP, and ±10 ≈ ±∞ as far
as I’m concerned). In the case that all of this still does not
settle the tie, I then deviate from p-optimality and instead
just choose the word that has the highest expected quan-
tity of G and Y colors in the resulting viable set. This choice
is partly because I had to choose something, and partly

because these are the types of solutions I like to see when
playing Wordle (more on that later). If that still doesn’t
work, then I try just for the highest expected number of G
colors, for similar reasons. Finally, if all that fails to break
the tie, I simply choose the first word alphabetically; this
does happen, and it is rather frequent in hard mode (much
less so in normal mode), since all the possible choices are by
definition similar.

Second, I have chosen to iterate guessing for each of
these simulated games until one of three things happens.
The first is that I happen to guess the correct word, in
which case I of course stop and note the round on which I
just won. The second is that I narrow the viable set down
to only a single possible word, in which case the optimal
solution is obvious and I can stop iterating, but I still note
that it will take me one more round to win. The final case
is that I have narrowed the viable set down to two words.
Here it is clear that the best way to proceed is to select one
of the two words at random (since neither can be better
than the other), in which case I either win immediately or
I narrow the viable set down to one word and win in one
additional round. The upshot is that the expectation after
a viable set of size two has been achieved is that I will win
in 1.5 more rounds. Along these lines, I did not restrict my
simulations to a maximum of six rounds, since I wanted to
track how many rounds each would take even if one had
unlimited tries. Of course, any number of rounds Rj > 6.5
is a definite loss for the algorithm, while a value of Rj = 6.5
indicates that after the fifth guess it had the options nar-
rowed down to a set of two, so at least it was still possible
to win.

I present results comparing performance across several
different p values in Table 2, which presents the different p
values in two lights: one is the average number of rounds
it takes to win, and the other is a measure of how often the
algorithm fails (or potentially fails) to win at all. One particu-
lar p value that stands out as quite terrible in both regards
is p = −1.25 , which has some of the most (and worst) losses,
and also has a strangely high number of expected rounds,
at least in comparison to its neighboring p values. Of note
here is that this value is also the only one that uses an
opening word that seems to come out of nowhere: TEARS.
Yes, TEARS. As in, “the performance of the algorithm at
p = −1.25 brings TEARS to my eyes.” All other values use
the magical TARES or else PLATS (for p → −∞ as discussed
above) or ALOES (for p → ∞ as discussed above). So I’m
blaming the strange and terrible performance here on the
opening word.

Let us now focus our discussion on normal mode. An
interesting finding here is that for intermediate p values,
there seems to be a tradeoff between losses and average
number of rounds. For example, the lowest average number
of rounds was for p = −0.75 , but the algorithm also defi-
nitely lost twice and possibly lost six times. On the other
hand, p = 0.75 never lost for sure, and only possibly lost
twice, but it had a somewhat higher average number of
rounds. A comparison between GEP and MRD also reveals

6This despite the fact that Webster’s Collegiate Dictionary gives ten different meanings for the word.

The Mathematical Intelligencer  ⚫  233

this tradeoff, with MRD taking more rounds to win but los-
ing less frequently. The value p = −0.5 seems to offer a nice
middle ground here, with a nearly minimal average number
of rounds and losing at most only four times. To provide
a little more detail, I have singled out the specific value
p = −0.5 as a strong performer and plotted a histogram of
Rpj in this case in Figure 1(a).

In case you’re interested, and why wouldn’t you be,
there is a clear trend in terms of the words that lead to fail
states for the algorithm. There are 40 words that end in fail-
ure, with the most common failed word across all p values
being FAZES, followed by FAXES and HAZES. Generally
speaking, many (14/40) of these fail words follow the pat-
tern _ A _ E S, including those words that were the only
two losers in the cases with the fewest losses (BABES and
HAZES).

Hard mode presents a somewhat different picture. Here,
p = −0.75 is almost an unambiguous winner, since it ties
for fewest losses (with GEP) and has nearly the smallest
expected number of rounds, beaten ever so slightly by
p = −0.25 . A histogram of results for p = −0.75 is shown
in Figure 1(b). Unsurprisingly perhaps, GEP beats MRD
convincingly in hard mode; GEP was designed specifically
with hard mode in mind, after all. Other than that, there
isn’t too much to say about hard mode other than it is, in
fact, hard, relative to normal mode at least.

To give a nod to the true Wordle dictionary, I have
calculated the normal mode results equivalent to those in
Table 2 for this larger dictionary. Results are shown in Ta-
ble 3. One item of note is that TARES is the optimal opener
in fewer cases now, with the mysterious LARES taking its
place for most all of the positive p values used. However,
TARES still takes the prize for fewest expected rounds to
win at p = −0.5 , which is also one of the best perform-
ing p values in terms of fewest losses. It is interesting that

despite the dictionary in this case being much bigger and
giving clearly different optimal openers for many p values,
it is still p = −0.5 that is the overall winner here. Finally,
apparently we have ±2 ≠ ±∞ for this dictionary, since
the asymptotic optimal openers are VENAL and SERAI as
p → ±∞ , respectively.

A More Elaborate Method
While the p-optimality method above is computationally very
fast and works seemingly well for wise choices of p, there is
at least one aspect of the method that is a bit lacking. Namely,
the method is concerned only with the possible lengths of
the next viable set and pays no mind to any other qualities
that the next viable set might have. While it is clear that this
is a weakness, it is worth exploring what kinds of qualities
of potential viable sets might be of interest in order to help
guide the development of a more elaborate technique.

To begin this discussion, I would like to define what I
have come to call a Fully Discernible Set (FDS). A fully dis-
cernible set is any viable set such that there exists at least
one “key word” such that with the key word as the guess
word, all of the words in the viable set will return distinct
color codes. Equivalently, there is a row in the matrix Cm
such that all the entries in that row corresponding to viable
words are distinct. I call this a fully discernible set because
if your guess word were the key word, the resulting color
code would immediately allow you to discern what the cor-
rect answer is, fully (the word corresponding to the unique
column in that row that contains that color code). Using
some of the terminology above, the current viable set is an
FDS if and only if there is a row i′ of the matrix Cm such
that Mi� (C

m) = Nv , and in this case, the word correspond-
ing to row i′ is a key word to the FDS. Given this definition,

Table 2.   The performance of the p-optimality algorithm for various p values, in both normal mode (denoted by superscript n ) and hard
mode (denoted by superscript h ). The columns labeled Rpj = X give the frequency of observing that particular Rpj . Note the asterisk for
p = −1.25 in the Rn

pj
= 7 column. This indicates that there were actually six instances of Rn

pj
= 7 and two instances of Rn

pj
= 7.5 (all

other rows had a maximum of Rn
pj
= 7).

p Opener Mean Rn
pj

Rn
pj
= 6.5 Rn

pj
= 7 Mean Rh

pj
Rh
pj
≥ 6.5

−2.00 PLATS 3.8097 6 3 3.9162 207
−1.75 PLATS 3.8070 4 3 3.9137 208
−1.50 PLATS 3.8039 4 3 3.9083 203
−1.25 TEARS 3.8236 16 8* 3.9431 249
−1.00 TARES 3.7752 6 2 3.8781 183
−0.75 TARES 3.7712 6 2 3.8737 183
−0.50 TARES 3.7739 2 2 3.8760 189
−0.25 TARES 3.7733 4 2 3.8731 190

0.25 TARES 3.7843 4 0 3.8903 200
0.50 TARES 3.7901 4 0 3.8959 196
0.75 TARES 3.7983 2 0 3.9056 200
1.00 TARES 3.8008 2 0 3.9124 208
1.25 TARES 3.8056 2 0 3.9186 208
1.50 ALOES 3.8851 2 3 4.0451 286
1.75 ALOES 3.8905 2 3 4.0576 306
2.00 ALOES 3.8940 2 3 4.0578 305

  ⚫  The Mathematical Intelligencer234

note that the maximum possible size for an FDS is M, since
that is the largest possible value for Mi(C

m).
Among all FDS, there are two general varieties: Internal-

FDS (I-FDS) and External-FDS (E-FDS). For a viable set to be
an I-FDS simply means that there exists a key word to that
FDS that is a member of the FDS. The prototypical case: all
viable sets of size two are I-FDS, with both members of the
set as key words, since choosing either member results in
immediate victory or perfect knowledge of the correct solu-
tion. Conversely, an E-FDS is an FDS such that none of the
key words are members of the FDS.

When playing a game of Wordle, suppose you find that
the current viable set is an I-FDS. Again under the as-
sumption that all words are equally likely to be the secret

solution, it is quite clear that the best possible thing you
can do at that point is choose the (internal) key word.
This will cause you to win immediately with probability
1∕Nv , and if not, you will win in the next round for sure.
But what about an E-FDS? Then you generally have two
plausible choices: pick the key word (which cannot cause
you to win immediately, since it is external to the viable
set) and then win in the next round for sure; or pick a
member of the set instead and take your chance of winning
right now, and even if you don’t, you will be guaranteed to
be still in an FDS on the next round, since every subset of
an FDS is also clearly an FDS. This is perhaps most tempt-
ing if the size of the E-FDS is as small as possible, namely
3, thus maximizing your chance of an immediate win. But
even in this case, in expectation this chancy choice is not
better than simply choosing the external key word. By
choosing the external key word, you will certainly win in
two rounds. By choosing an internal set member you win
in one round with probability one-third; otherwise you are
left with an I-FDS (a set of size 2), meaning you win in two
rounds with probability one-third and in three rounds with
probability one-third, leading to an expected two rounds
to win. No E-FDS with Nv > 3 can be better than this, so
you couldn’t do better in expectation than choosing the
external key in those cases either. Hence, we will just make
the choice that when an E-FDS is encountered, we take
the sure bet and just choose the key word, in which case,
regardless of its size, it is roughly on a par with a viable set
of length three.

One can of course extrapolate from the concept of an
FDS to higher orders. For example, suppose my current
viable set is not an FDS, but there exists a row i of Cm such
that all of the possible vm+1 sets that might arise should
I choose i are themselves FDS. One might then call the
current viable set an order-1 Discernible Set (1DS), which
could be internal or external. Similarly, one could conceive
of an order-k discernible set (kDS) such that it is not an
FDS, but there exists a word such that all of the possible
viable sets vm+1 arising from that word are themselves
discernible sets of order (k − 1) or less. This is then starting

1 2 3 4 5 6 7
Rounds to win

10
0

10
1

10
2

10
3

Fr
eq

ue
nc

y

2 4 6 8 10
Rounds to win

10
0

10
1

10
2

10
3

Fr
eq

ue
nc

y

(a) (b)

Figure 1.   The number of rounds required to win every possible game of Wordle using the smaller dictionary in (a) normal mode
using p = −0.5 optimality and (b) hard mode using p = −0.75 optimality, in each case beginning from the optimal opening word
TARES.

Table 3.   The performance of the p-optimality algorithm for
various p values in normal mode (denoted by superscript n )
when used on the true Wordle dictionary. The last two col-
umns give the frequency of observing the indicated values of
Rpj.

p Opener Mean Rn
pj

Rn
pj
= 6.5 Rn

pj
≥ 7

−2.00 PLEAT 4.1856 62 58
−1.75 PLEAT 4.1691 62 39
−1.50 PEATS 4.1600 50 39
−1.25 PELAS 4.1464 48 61
−1.00 TARES 4.0889 36 16
−0.75 TARES 4.0859 36 15
−0.50 TARES 4.0807 26 10
−0.25 TARES 4.0827 30 13

0.25 TARES 4.0910 42 6
0.50 LARES 4.1156 22 13
0.75 LARES 4.1240 24 13
1.00 LARES 4.1263 26 10
1.25 LARES 4.1327 24 10
1.50 LARES 4.1378 26 12
1.75 LARES 4.1452 28 12
2.00 LARES 4.1479 28 12

The Mathematical Intelligencer  ⚫  235

to move away from a greedy algorithm, since we are inher-
ently looking multiple steps ahead when discussing order-k
discernible sets. For this reason, computing whether a set
is a kDS quickly becomes infeasible as k increases. There is
one freebie, though: a viable set of length Nv = 3 is, if not
itself an FDS, automatically an I-1DS. This is because by
picking any member of that set, you either get the solu-
tion immediately or you are left with a length-2 viable set,
which is an I-FDS.

I will note that there is a nice relationship between the
idea of an FDS and the p-optimal strategy. Specifically, if
a set is an FDS, then it is automatically the case that the
key word i will yield the p optimal solution for every
p ≠ 0 , since every L(c, i,Cm) for that word will be equal
to 1, which will cause f (p)i to be the smallest (or largest,
depending on the sign of p) that it can possibly be. Further,
if the set is an I-FDS, then the internal key word will be the
optimal choice, since we always check whether there is a
minimizer within the current viable set and pick that if so.

Having defined a bunch of things, let me now describe
how one might use them to try to obtain a modified optimal
Wordle strategy. Given the discussion above, in which we
have noted that an E-FDS is essentially equivalent to a set
of size three, and an I-FDS is akin to a set of size two (but
maybe not quite as good, depending on its size), we could
modify our p-optimal algorithm to take these facts into
consideration. Specifically, we first, as always, compute
for each row i of Cm the lengths of all potential viable sets
by color code returned, L(c, i,Cm) . Then for each such
color code that appears in row i, let us define a new value
L̃(c, i,Cm) with the following definition. If L < 3 or L > M ,
then L̃ = L . If 3 ≤ L(c, i,Cm) ≤ M , then the set is checked
to determine whether it is an FDS of some sort. If the set
is not an FDS, then L̃ = L . If the set is an E-FDS, then let
L̃ = 3 to capture the fact that it is essentially the same as a
length-three set in terms of rounds to win. Finally, if the set
is an I-FDS, then let

to capture the fact that the expected number of rounds to
win for this I-FDS is equal to this particular weighted aver-
age of the number of rounds needed to win for sets of size
two and three. Then we can simply modify our p-optimal
algorithm to use L̃p rather than Lp to obtain our p-FDS
algorithm:

where we again will minimize or maximize FDS(p)i over i
depending on whether p is positive or negative.

L̃ =
2

L
2 +

(

1 −
2

L

)

3 ,

(2)FDS(p)i =
1

Nv − 1M∈Cm
i

M−1
∑

c=1,c∈Cm
i

L(c, i,Cm)L̃p(c, i,Cm) ,

All this is easy enough to state on paper, but it starts
to get a little bit slow computationally. Luckily, for the
smaller dictionary at least, calculations using the p-FDS
algorithm are just this side of bearable,7 so I can provide
some results. For the value p = −0.5 , chosen for its good
performance noted above, the p-FDS optimal opening word
is, you guessed it, TARES. What a great word. Further, I
have simulated all possible Wordle games in normal mode
for this specific p value. The mean number of rounds to
win in this scenario is 3.7696, which is marginally better
than the 3.7739 obtained from standard p-optimality for
p = −0.5 . The p-FDS method does not have any losses at
the seven-round level, unlike the p-optimal method, which
had two. But p-FDS does fail for six words at the 6.5-round
level, as opposed to the p-optimal value of two words; but
again note that failure at the 6.5-round level is only a pos-
sible failure, not a guaranteed one. For those curious, the
six possible fail words are BAKES, BASES, FAKES, HAKES,
WAKES, and WASES, all following the _ A _ E S pattern
noted above. If we compare words directly, p-FDS wins
in strictly fewer rounds than p-optimality for 742 words,
while p-optimality wins in strictly fewer rounds than p-FDS
for 702 words; the rest are ties. So to my mind it is clear
that p-FDS takes the crown here, with the small caveat
that there is a potential failure for four more words than
p-optimality (but no guaranteed failures).

So, We Should Always Use TARES First,
Right?
Maybe. I think the answer to this question depends on
how similar your brain is to a computer. Probably it is not
so similar, so it will not be able to use all kinds of informa-
tion equally well. For instance, in my own play of Wordle,
I find that the most helpful guesses are those that return
color codes with G and Y. This is because it is easier for me
to list words that I know contain certain letters than it is to
list words that don’t contain certain letters. The algorithms
above do not, of course, make any distinction here (aside
from my tie breaking, which was chosen with this prefer-
ence in mind), so they may suggest words that are not as
useful to a human being actually playing the game (assum-
ing that the human being will not continue using a solver
throughout).

Given this, it would not be unreasonable to choose an
opening word that will contain, on average, the largest num-
ber of G and Y colors within the color code returned. It is easy,
given the precomputed C1 , to determine which word does this.
The solution is AROSE, with an average of 1.924 G plus Y. The
magical TARES is tied for fourth place with five other words
by this accounting, with an average of 1.894 G plus Y. This
is pretty close to that of AROSE, so maybe TARES8 is still the
best, considering all the results above as well.

7In an early, quite slow, version of my code, it was expected to take around nine days to compute all possible games of Wordle
using p-FDS. I set it to run in the background on my computer at work and moved on with my life. Unfortunately, one week into
the calculation, my office building suffered a very rare power outage and all results were lost. I interpreted this tragedy as a sign,
and proceeded to optimize my code, which can now do the same calculation in roughly three hours.
8Hey, I just noticed you can type TARES with only one hand.

  ⚫  The Mathematical Intelligencer236

For the sake of some completeness, I will also mention
here the words that have the highest average number of G
colors, as well as highest average number of Y colors; these
are SANES (with 0.9255 G on average) and RESAT (with
1.5712 Y on average). On these lists, TARES appears at loca-
tions 19 and 849, respectively. Wow, 849, huh?

Another thing to consider is some of our assumptions
made at the beginning of this article. As already noted,
Wordle most certainly does not choose a random secret
solution from the full dictionary every day. I am also quite
certain that the subdictionary that Wordle selects possible
solution words from contains generally “common” words,
so as to not upset players too much. In my time playing
Wordle thus far, probably the most “obscure” (but certain-
ly not as obscure as PZAZZ) words I have seen as solutions
were ABBEY and KNOLL. Of course, I would hope most all
English speakers who are playing Wordle are familiar with
these two words, even if they aren’t the first to leap to mind
when one is considering five-letter words. But there would
maybe be a revolt if the solution for Wordle one day was
YUKKY. Yes, YUKKY. As in “Fozzie Bear’s comedy is very
YUKKY.”9

Of course, if at some point it becomes known that
Wordle actually generated or generates its subdictionary of
solutions via some probability distribution qj , where qj is
the probability that dictionary word j is chosen as the
solution for a given game, the algorithms above can be
adapted. All one need do at each guess level m is compute
the current (or speculative, if you are doing this for a
potential next viable set) probability qm

j
 for each word in

the relevant viable set simply by taking the known qj for
each word and then normalizing each so that they sum to 1.
Hence

Then our formulas above would use, in place of current
probabilities L(c, i,Cm)∕Nv , values

Of course, other modifications might also make a lot of
sense in this scenario. For instance, two sets of the same
size may no longer be nearly equivalent if they have very
different distributions of probabilities for the words they
contain. As an example, suppose one potential viable set
of four words had a probability distribution that was very
heavily weighted toward just a single word in the set, while
another potential viable set of four words had equal prob-
ability for all four words. In that case, you would certainly
prefer the set with the unequal probability distribution,

qmj =
qj

∑

j∈vm qj
.

(3)
W(c, i,Cm) =

∑

j,Cm
ij
=c

qmj .

since that would make it more like a set of just one word
than four. So, in adapting the algorithms to these more
general probabilities per word, likely a better choice than
Lp would make sense. Unfortunately, such an exploration
will have to wait until another day, or I will never complete
this note. This discussion naturally leads to our concluding
section.

Possible Extensions and Future Work
All academic papers end with a section like this, so this one
will too, despite the fact that it’s not a normal academic paper.

One natural potential extension that follows directly
from this work is to construct a time-varying strategy that
is not constant in each round of the game. That is, one can
clearly (and efficiently) compute the p-optimal word at each
guess level for many different values of p simultaneously
and then try to use some kind of heuristics to determine
which of these to use for that guess. I have not explored
this possibility in enough detail at this time to say anything
particulary intelligent about it, but it is something I think
is an obvious next step.

Of greater difficulty, but also potentially greater pay-
off, would be to look into methods that are more “global”
in nature than those above in that they consider multiple
steps as a time rather than just one. The p-FDS algorithm
is a first small step in this direction, since it effectively
looks ahead for a certain class of viable sets for which the
outcome is easily predicted in advance, but much more
remains to be done here. Again, though I have not thought
about this in too much depth as yet, it may not be so horri-
ble to look two steps ahead. Given that, as the results above
indicate, p-optimality seems typically to solve Wordle
(technically my own Wordle implementation that definitely
complies with the assumptions we have made in this paper)
in three or four steps, looking two steps ahead gets you a
good way toward the solution and might be quite useful.

Another extension would be to apply the methods
here to alternative Wordles that use words of length other
than five. Of course, given the length chosen, the methods
above may be completely infeasible from a computational
point of view, since the number of possible words could be
much greater. For example, given my source for dictionary
words, there are 8,459 six-letter words, 11,934 seven-letter
words, 13,057 eight-letter words, 12,009 nine-letter words,
and the trend appears to be downward from there. On
the other end of the spectrum, there are 2,593 four-letter
words, 667 three-letter words, and 77 two-letter words.
(That last number seems high to me.) These lower-letter-
count words could prove an interesting test bed to see
how well certain algorithms find the true optimum, since
it would be more plausible (but still maybe not so easy) to
find the true global optimum by brute force on these much
shorter lists (of words of fewer letters).

9At least that’s how I would use it. Online dictionaries generally list this as an alternative spelling for YUCKY, which I think is miss-
ing a golden linguistic opportunity.

The Mathematical Intelligencer  ⚫  237

Finally, consider again the possibility discussed
above that the solutions for any given Wordle are to
be drawn from a given probability distribution. If the
designers/maintainers of Wordle were so inclined, they
could attempt to design this probability distribution
in such a way as to optimally thwart my algorithmic

solvers (or whatever other solvers might be out there).
This would pit the Wordle designers/maintainers
against people like me in a full-on game-theoretic
battle, which could be very interesting to attempt to
solve, on both ends.

Martin B. Short, School of Mathematics, Georgia Institute
of Technology, 686 Cherry Street, Atlanta, GA 30332‑0160, USA.
E-mail: mbshort@math.gatech.edu

Publisher's Note  Springer Nature remains neutral with
regard to jurisdictional claims in published maps and
institutional affiliations.

	Winning Wordle Wisely—or How to Ruin a Fun Little Internet Game with Math
	Anchor 2
	Anchor 3
	Anchor 4
	Anchor 5
	Greatest Expected Probability (GEP) Algorithm
	Anchor 7

	Anchor 8

	Possible Extensions and Future Work
	Anchor 10

