
Word Difficulty Prediction Using Convolutional
Neural Networks

Arpan Basu∗, Avishek Garain†, Sudip Kumar Naskar§
Department of Computer Science and Engineering

Jadavpur University
Kolkata, India

∗ arpan0123@gmail.com † avishekgarain@gmail.com § sudip.naskar@gmail.com

Abstract—Most text-simplification systems require an indicator
of the complexity of the words. The prevalent approaches to word
difficulty prediction are based on manual feature engineering.
Using deep learning based models are largely left unexplored
due to their comparatively poor performance. In this paper we
explore the use of one of such in predicting the difficulty of
words. We treat the problem as a binary classification problem.
We train traditional machine learning models and evaluate their
performance on the task. Removing dependency on frequency
of previously acquired words for measuring difficulty was one
of our primary aims. Then we analyze a convolutional neural
network based prediction model which operates at the character
level and evaluate its efficiency compared to others.

Index Terms—word-difficulty, character-CNN, logistic regres-
sion, random forest classifier, support vector machine

I. INTRODUCTION

Words often serve as the basic unit of processing in most
Natural Language Processing (NLP) tasks. Researchers often
use features extracted from words as important components
of computation systems for solving many NLP tasks. With
particular emphasis on text-simplification, it is often the goal
to use simple words to substitute the difficult ones present in
the text. Such systems normally require some measure of the
difficulty of the words.

However, model based approaches are largely left unex-
plored with reference to word difficulty prediction. This is
partly because they yield poor results with the limited features
available for a particular word. This is expected when using a
model to predict a continuous valued difficulty measure for
a fixed set of words. The problem can also be modified,
with some loss of information, to a binary classification
problem. We are required to predict the probability of the word
belonging to one of two classes simple and difficult.

In this report, we build and evaluate models based on the
above classification problem. We also present a character level
convolution based word difficulty prediction model.

The remaining paper has been organized as follows. Section
II consists of a brief overview of related research which has
been done in this area of work. Section III describes the dataset
and the modifications that were done to prepare the input data.
Section IV consists of the experimental setup and some brief
discussion on the approaches that were used. Thereafter, the
results are shown and elaborated on in Section V. Finally, we
conclude this report in Section VI.

II. RELATED WORKS

There has been significant work in the field of readability of
English passages which has its own applications starting from
judging difficulty of Military manuals to readability of Harry
Potter books. Out of such measures one common measure
of readability is the Flesch-Kincaid score [6]. It works great
for passages and context based texts but this score cannot be
applied to individual words. Hence alternative approaches have
to be considered in this case.

At present, the age-of-acquisition ratings by Kuperman et al.
[9] provide a good indication of word difficulty. Various other
features of words have been used in this context. For example,
word frequency and word length have been used successfully
to provide approximate estimates for word difficulty. We
highlight the relevant work of Brysbaert and New [3] who
use word frequencies extracted from the SUBTLEXUS corpus.
Here it is specified specifically that models based on word
frequencies need to be based on a corpus containing at least
20 million words. Gathering a corpus of this size is itself a
challenging problem. So we need to find some alternatives.

Automatic text simplification by Keskisarkka and Robin
[5] makes use of synonym replacement. This synonym re-
placement would require to identify difficulty of the word.
Replacing easy as well as difficult words by their synonyms
indifferently may lead to decrease in efficiency. Our approach
may help in such use cases as above.

As there has has been limited work in this area of interest,
we had some difficulty in gathering data and finding solutions
to problems we faced while applying this approach.

III. DATASETS

For training the various models we required a list of
words with a corresponding measure of their difficulty. For
this purpose we used the data available as a part of the
English Lexicon Project [1]. It measures the time taken for
lexical decisions on a particular word. In particular, we use
the I Zscore and the Freq HAL features from the entire
dataset. I Zscore is the mean lexical decision latency for
each word. Freq HAL refers to the Hyperspace Analogue to
Language frequency norms [10] based on the HAL corpus of
131 million words. We directly relate the difficulty of a word
with the I Zscore. A higher score represents a higher lexical



decision time and hence a word of higher difficulty, and vice-
versa. We also use the Freq HAL values for constructing
models which use the frequency of a particular word as a
feature.

We considered the problem as a binary classification prob-
lem, and decomposed the words based on their lexical decision
time into two classes – 0 for “simple” and 1 for “difficult”. We
select an arbitrary threshold of 0 which produces two classes
of words. Formally, the class is 0 if I Zscore ≤ 0 and the
class is 1 if I Zscore > 0. The division of the words in this
manner results in roughly equal distribution of the words –
22621 words in class 0 and 17828 words in class 1.

IV. EXPERIMENTAL SETUP

We construct four models to test our reformulation of the
problem.

A. Logistic Regression (LogReg)
B. Support Vector Machine (SVM) [4]
C. Random Forest Classifier (RFC) [2]
D. Character CNN (CharCNN) [13]

The first three machine learning based models are based on
the current approach of using frequency and word length as
features. They share the same inputs features, input labels and
outputs, differing only in the underlying algorithm. The input
consists of a 40449× 2 matrix where each row represents the
word. Each column entry consists of two elements – the first
being the HAL frequency and the second being the length
of the word. The corresponding input labels are provided as a
40449×1 vector where each element is either 0 or 1 depending
on the class of the corresponding word. The models output a
40449×1 vector where each entry is either 0 or 1 depending on
the predicted class. We compare the results using the accuracy
metric.

A. Logistic Regression

Logistic regression is a commonly used machine-learning
model. Unlike linear regression, logistic regression uses a
logistic sigmoid function to return a probability value which
can then be used to map two (or more) classes.

B. Support Vector Machines

The support vector machine is a supervised machine-
learning model. It is a discriminative classifier based on gen-
erating an optimal hyperplane which is then used to classify
inputs. For the binary classification problem, the hyperplane
is a line dividing the plane into two parts.

C. Random Forest Classifier

The random forest classifier is an ensemble of decision
trees. It creates a number of decision trees based on various
random sub-samples of the training data. It then produces
output predictions by aggregating the outputs of the individual
decision trees. This reduces the variance and noise which a
single tree is susceptible to.

D. The CharCNN Model

This model is based on a character-level convolution model
similar to the one by Zhang et al. [13]. We use a greatly
simplified architecture with only one convolution applied.
The workflow diagram is shown in Figure 1. The word is
taken and one-hot encoded to a sequence of 21 vectors of
size 26 each. The value 26 represents the alphabet size (we
use all lowercase characters) and 21 represents the maximum
length of a word. For a shorter word, the above sequence
is padded with zero vectors. For longer words, characters
after the twenty-first position are ignored. We note that, in
the dataset being used, the longest word is of 21 characters.
Ultimately, the input so produced is a 40449×21×26 matrix.

Each input word is a one-hot encoded 21 × 26 matrix.

Fig. 1. Workflow Diagram

On each input word we use a one-dimensional convolution
with 32 filters of kernel size 3 with ReLU activation. This
is connected to a dense layer of 256 neurons with ReLU
activation and having dropout [12] with 0.5 probability. The
dense layer is connected to 2 neurons with softmax activation.
These 2 neurons form the output for a word which is a 1× 2
vector of probabilities.

The first value is the probability of the word belonging to
class 0 and the second value is the probability of the word
belonging to class 1. Taking into account all the words, the
entire output is a 40449×2 matrix. It attempts to classify each
word based on the relative positions of groups of characters.
This model was trained with a batch size of 250 for 25
epochs using the Adam [7] optimizing algorithm. We note
that this model does not receive any input which corresponds
to either the frequency or the length of a word.

We find that the CharCNN model performs at par with the
traditional models based on frequency and word length. This is
the case even though the model had not received the frequency
as an input feature and operated directly at the character level.
The intuitive reasoning behind the use of the model is that the



difficulty of a word is based (to a reasonable degree) on certain
groups of characters occurring successively. This localising
property is effectively captured by a convolutional network
which enables it to provide accurate predictions.

The exact sequence of the words, experimentally, does not
seem to matter provided the words are not arbitrary like
"abcdefghijkl". Adding a time-distributed bidirectional
LSTM layer after the convolution layer degrades the perfor-
mance by around 1 percent. We do not report the results for
that model. Furthermore, inclusion of frequency or length in
this model may increase its accuracy.

E. Using pre-trained embeddings instead of one-hot encodings

For comparison purposes, we also evaluate the character
CNN model by using the pre-trained GloVe [11] word embed-
dings as input features instead of the one-hot encodings. The
basic architecture of the model remains the same. Each single
input is now treated as a 300× 1 matrix instead of a 21× 26
matrix with the one-dimensional convolution being applied on
it. This variant of the model is referred to as GloVe in the
tables. Despite giving better accuracies and more promising
results, the obvious drawbacks of these embeddings are the
requirement of a large corpus and the inability to infer on
words not present in the corpus.

F. Pearson Correlation

The extent of linear relationship between two variables is
given by the pearson correlation. It is a value generally ranging
from −1 to +1.

A value of 0 indicates that there is no association between
the two variables.

A value greater than 0 indicates a positive association; that
is, as the value of one variable increases, so does the value of
the other variable.

In our approach for calculating this value we used the
following formula:

ρ =
Cov(X,Y )

σXσY

where
Cov is the covariance
σX is the standard deviation in X
σY is the standard deviation in Y
X = 40449× 1 vector,

xi = P (wi ∈ class 1)− P (wi ∈ class 0)
Y = 40449× 1 vector containing each I ZScore

V. RESULTS

TABLE I
TABLE SHOWING ACCURACIES (%) ON FULL DATASET

LogReg SVM RFC CharCNN GloVe
73.98 74.30 86.40 80.10 95.93

TABLE II
TABLE SHOWING 10-FOLD CROSS VALIDATION ACCURACIES (%)

M = Mean, SD = Standard Deviation

Fold No. LogReg SVM RFC CharCNN
one-hot GloVe

1 73.21 74.20 71.95 73.68 75.75
2 73.92 75.48 71.57 72.81 77.55
3 75.38 74.36 72.34 72.26 75.70
4 74.68 74.96 72.78 71.40 75.60
5 73.05 74.68 72.24 72.63 76.64
6 74.71 74.16 71.64 73.25 76.59
7 72.93 73.79 72.90 72.76 76.61
8 73.62 73.87 72.68 73.79 76.69
9 74.11 73.37 72.87 73.24 75.57
10 74.16 73.96 72.30 73.19 75.89
M 73.98 74.28 72.33 72.90 76.26
SD 0.63 0.47 0.39 0.53 0.65

TABLE III
TABLE SHOWING PEARSON COEFFICIENTS PER CROSS VALIDATION FOLD

Fold No. LogReg SVM RFC CharCNN
one-hot GloVe

1 0.55 0.54 0.50 0.61 0.67
2 0.54 0.57 0.53 0.62 0.67
3 0.53 0.54 0.51 0.61 0.65
4 0.54 0.54 0.52 0.61 0.66
5 0.54 0.55 0.50 0.60 0.67
6 0.53 0.55 0.51 0.61 0.67
7 0.56 0.57 0.54 0.64 0.65
8 0.53 0.53 0.51 0.61 0.65
9 0.53 0.56 0.51 0.61 0.68

10 0.54 0.55 0.52 0.59 0.66
Mean 0.54 0.55 0.52 0.61 0.66

TABLE IV
WORDS AND THEIR PROBABILITIES OF LYING IN CLASS 0 AND CLASS 1

RESPECTIVELY

Note: * not present in the ELP dataset
Word (w) P (w ∈ class 0) P (w ∈ class 1)

fast 0.96 0.04
swift 0.80 0.20
rapid 0.79 0.21

speedy 0.88 0.12
expeditious 0.30 0.70
alacritous* 0.15 0.85

Discussion
We fit the models to the mentioned inputs and then evaluate
their performance based on their stratified 10-fold cross
validation accuracies [8]. All the models were retrained
during each iteration of cross validation. The obtained results
are shown in Table II. We find that all the approaches
produce nearly the same accuracy scores. The scores are also
consistently near the mean score of the respective model
being considered, and individual scores are always above
seventy percent.

Also to measure the degree of similarity with the original
I Zscore feature which is present in the dataset, we find
the value of the pearson correlation coefficient between the



model outputs and the I Zscore values. More specifically,
the two probability values for each word are converted to a
single value equal to P (w ∈ class 1)−P (w ∈ class 0). The
correlation is measured using this value which lies between
−1 and 1. The values thus obtained are present in Table III.

We also report the accuracy scores of the models when
allowed to run on the entire dataset. The score can be found
in Table I. In this scenario, the random forest classifier and
the GloVe based character CNN model greatly overfit to
the data. The same is observed for the one-hot encoding
based character based CNN model, although to a lesser but
significant extent.

The main utility of the CharCNN model lies in its ability
to select a simple word from a set of suitable replacement
words. Let us consider the above problem where we
already have a set of replacement words R = {"fast",
"swift", "rapid", "speedy", "expeditious",
"alacritous"}. We now predict the probabilities of the
word belonging to either class 0 or class 1 for all words in
the replacement set.

The output probability vectors from the character CNN
model are mentioned in Table IV. The probability vectors
enable us to select "fast" as the simplest word in
the set. We can also easily find the most difficult word
"alacritous" from the same, even though this word is
absent in the original list of training words. This is one of
the advantages of character based models over conventional
frequency and word-length based models. This finds utility
in text-simplification applications utilising word replacement
by simpler synonyms. Often, one or more words in the
replacement set are absent in the training corpus.

VI. CONCLUSION

From the experimental results we claim that model based
word difficulty estimators perform satisfactorily when applied
to real-world cases such as text-simplification. Traditional
machine learning models do perform well in the task; so does
the proposed convolution based model. However, these models
using word frequency, word length, and word characters do
not take advantage of the phonetic mismatch present in the
pronunciation of various words. Such features may aid in the
construction of more accurate difficulty prediction models.

REFERENCES

[1] D. A. Balota, M. J. Yap, K. A. Hutchison, M. J. Cortese,
B. Kessler, B. Loftis, J. H. Neely, D. L. Nelson, G. B. Simpson,
and R. Treiman, “The english lexicon project,” Behavior Research
Methods, vol. 39, no. 3, pp. 445–459, Aug 2007. [Online]. Available:
https://doi.org/10.3758/BF03193014

[2] L. Breiman, “Random forests,” Machine Learning, vol. 45,
no. 1, pp. 5–32, Oct 2001. [Online]. Available:
https://doi.org/10.1023/A:1010933404324

[3] M. Brysbaert and B. New, “Moving beyond kučera and francis: A
critical evaluation of current word frequency norms and the introduction
of a new and improved word frequency measure for american english,”
Behavior Research Methods, vol. 41, no. 4, pp. 977–990, Nov 2009.
[Online]. Available: https://doi.org/10.3758/BRM.41.4.977

[4] C. Cortes and V. Vapnik, “Support-vector networks,” Machine
Learning, vol. 20, no. 3, pp. 273–297, Sep 1995. [Online]. Available:
https://doi.org/10.1007/BF00994018

[5] R. Keskisärkkä, “Automatic text simplification via synonym replace-
ment,” Master’s thesis, Linkping UniversityLinkping University, Depart-
ment of Computer and Information Science, The Institute of Technology,
2012.

[6] J. P. Kincaid, R. P. J. Fishburne, R. L. Rogers, and B. S. Chissom,
“Derivation of new readability formulas (automated readability index,
fog count and flesch reading ease formula) for navy enlisted personnel,”
01 1975.

[7] D. P. Kingma and J. Ba, “Adam: A method for stochastic
optimization,” CoRR, vol. abs/1412.6980, 2014. [Online]. Available:
http://arxiv.org/abs/1412.6980

[8] R. Kohavi, “A study of cross-validation and bootstrap for
accuracy estimation and model selection,” in Proceedings of the
14th International Joint Conference on Artificial Intelligence -
Volume 2, ser. IJCAI’95. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc., 1995, pp. 1137–1143. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1643031.1643047

[9] V. Kuperman, H. Stadthagen-Gonzalez, and M. Brysbaert, “Age-of-
acquisition ratings for 30,000 english words,” Behavior Research
Methods, vol. 44, no. 4, pp. 978–990, Dec 2012. [Online]. Available:
https://doi.org/10.3758/s13428-012-0210-4

[10] K. Lund and C. Burgess, “Producing high-dimensional semantic spaces
from lexical co-occurrence,” Behavior Research Methods, Instruments,
& Computers, vol. 28, no. 2, pp. 203–208, Jun 1996. [Online].
Available: https://doi.org/10.3758/BF03204766

[11] J. Pennington, R. Socher, and C. D. Manning, “Glove: Global vectors
for word representation,” in Empirical Methods in Natural Language
Processing (EMNLP), 2014, pp. 1532–1543. [Online]. Available:
http://www.aclweb.org/anthology/D14-1162

[12] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov, “Dropout: A simple way to prevent neural
networks from overfitting,” Journal of Machine Learning
Research, vol. 15, pp. 1929–1958, 2014. [Online]. Available:
http://jmlr.org/papers/v15/srivastava14a.html

[13] X. Zhang, J. Zhao, and Y. LeCun, “Character-level convolutional
networks for text classification,” in Advances in Neural Information
Processing Systems 28, C. Cortes, N. D. Lawrence, D. D. Lee,
M. Sugiyama, and R. Garnett, Eds. Curran Associates, Inc., 2015,
pp. 649–657. [Online]. Available: http://papers.nips.cc/paper/5782-
character-level-convolutional-networks-for-text-classification.pdf


