COMP6248 Reproducibility Challenge

COMP6248 REPRODUCIBILITY CHALLENGE
HIGH-QUALITY SELF-SUPERVISED DEEP IMAGE DENOISING

David Jones, Richard Crosland & Jason Barrett
Department of Electronics & Computer Science
University of Southampton

{ds3jlnl5, rtclgl6, jbl7glé6}@soton.ac.uk

1 INTRODUCTION

The aim of denoising is to reduce noise in a corrupted image while preserving features. Traditional
techniques include median filtering and non-local means. Recently a focus has been placed on
training autoencoder neural networks to learn this typically non-linear mapping. Often these models
will be trained via supervised methods, requiring clean and noisy image pairs for training; when
a clean target is not provided the training is considered to be self-supervised. This report details
the reimplementation of the NeurIPS 2019 conference paper ‘High-Quality Self-Supervised Deep
Image Denoising’ (Laine et al.,[2019)). It claims significant improvements to both the image quality
and training efficiency over other self-supervised methods. An overview of the reimplementation
process and a comparison of results against a subset of those seen in the original paper follow.

2 BACKGROUND

2.1 SELF-SUPERVISED DEEP IMAGE DENOISING (SSDN)

This paper introduces a network architecture that incorporates a blindspot into the receptive field
of the convolution and down-sampling layers. This has a resultant effect of the central pixel not
being considered as part of the loss function so that the autoencoder does not learn the identity
when the target is the same as the input; thus permitting self-supervised learning. This follows on
from the concepts of Noise2Void (Krull et al., 2018), which uses a mask to replace the central pixel
with a different value. At evaluation time it is deemed that the central pixel likely carries relevant
information, and is therefore incorporated back into the cleaned image via Bayes’ rule, as in the
following equation:
p(zly, Qy) < p(y|2)p(|y)

where z is the clean value of pixel being analysed, y the noisy value, and €2,, the noisy context. The
model learns the value of p(z|€2,), and the noise model is either given as a parameter to training,
or learnt via a second, internal model. The mean value of this inference can then be used, as it
minimises the MSE loss, and as such maximises the PSNR.

2.2 BASELINES

To supplement results, implementations of baseline models were required for comparison. The
following gives a brief overview of the baselines used in the original paper which were also reim-
plemented:

e CBM3D (Dabov et al., 2007) is the colour variant of the block-matching and 3D filtering
algorithm used for noise reduction. This is a state-of-the-art non-neural network approach
which does not require training.

e Noise2Clean (N2C), as named in the original paper, is an autoencoder that uses clean
reference images in training alongside standard MSE; this can generally be considered the
best-case scenario for training-based approaches.

o Noise2Noise (N2N) (Lehtinen et al.l [2018)) is an approach to image denoising that trains
using two different noisy versions of the same image. This removes the need for clean
references but still has limited applications.

COMP6248 Reproducibility Challenge

o Noise2Void (N2V) (Krull et al., [2018) is a self-supervised training method that introduces
a blindspot via a masking scheme. This involves selecting a certain percentage of pixels in
an image patch as centre pixels for sub-patches. From each sub-patch, a random pixel is
selected to replace the centre pixel. The training loss is calculated using this mask rather
than the whole image.

3 IMPLEMENTATION OVERVIEW

The original paper, for which the source code was availableﬂ was implemented in Tensorflow. The
reimplementatio instead used PyTorch. The original paper’s supplement details the network struc-
ture, defining a network based on U-Net (Ronneberger et al., |2015) with additional layers for han-
dling creation and collation of multiple rotated views of the input, as well as modification to layers
to handle upward shifts. These modifications define the blindspot in the network. The network
was implemented as per the specification. Where details were not specified, such as the upsampling
method, the original source was referred to (it using nearest-neighbour). All other baseline networks
used the same U-Net architecture without blindspot additions. The differences between methods,
other than the network used, were the inputs/targets and loss calculation pipeline. Data preparation
involved adding synthetic noise and padding to shapes accepted by the networks.

The paper itself details the loss function and integration of the prior. For SSDN this involved prior
calculation using either the known o, learning of a constant o using a single learnable parameter,
or a variable o using a separate U-Net. When the prior is not incorporated this is referred to as
SSDN-pu. Other features implemented and used in testing, but not discussed in this report, include
support for Poisson noise, diagonal covariance matrices, and single channel inputs. Impulse noise
was not implemented.

Initialisation of weights was handled as directed using |He et al.|(2015)). Initial testing showed when
using parameter estimation, the model failed to converge; this was traced in the original source to
the last layer using zeroed weights in the parameter estimation network; this was not mentioned
in either the paper or supplement. Training conditions were mimicked using the Adam optimiser
with default parameters except the learning rate, which was set every iteration following a cosine
ramp-down, ramp-up. It should be noted that training used an iteration based approach (not epoch
based), where each iteration is a random cropped patch of a randomly sampled image from the
training dataset (without replacement). The dataset would then reset once all images are used. The
suggested minibatch-size of 4 was used with this batch split across GPUs if available. Tensorboard
and checkpointing were implemented alongside the implementation to aid tracking and allow paus-
ing/resuming of long training runs.

The main implementation issue that occurred was a misunderstanding of how to treat noise addition.
The paper expected that synthetic noise is not clipped after addition; this leads to values outside
the standard uint8 boundary (< 0 and > 255). Initial reimplementations clipped these values
to closer represent real-world scenarios, this caused performance drops with a known parameter
and with parameter estimation to fail completely. These results are attributed to clipping causing
truncated noise addition, which would require different prior calculations — performance for this is
not known. Establishing this issue required fine inspection of the original source and was not clear
in either the supplement or paper.

4 RESULTS

Due to limited compute infrastructure it was decided to limit result reproduction to a single noise
type and level — Gaussian (o = 25); this is one of the main benchmarks provided in the original
paper. The original paper typically used 2,000,000 iterations per training, however, due to slower
hardware and a slightly slower implementation this would take approximately 7 days per training
(versus 16 hours). Therefore the number of iterations used for each model was 200,000 unless
stated. Outputs from the models are evaluated by their peak signal-to-noise ratio (PSNR), calculated
between the clean (pre-noised) image and the cleaned noisy image. This metric is commonly used

!Tensorflow Source, https://github.com/NVlabs/selfsupervised-denoising
2PyTorch Source, https://github.com/COMP6248-Reproducability-Challenge/selfsupervised-denoising

COMP6248 Reproducibility Challenge

to quantify the extent to which an image has been restored after removing noise with higher values
suggesting less noise. The training curves for a subset of the models are shown in Figure[I} Table[]
show calculated metrics for SSDN and all neural-net baselines, with data for CBM3D sourced from
Laine et al|(2019). Additional verification of the parameter estimation aspects of the network was
performed using a variable o network configuration trained on images with o between 25 and 50.
This was trained for 844k iterations and achieved a PSNR of 28.89dB on the BSD300 dataset.

_ 30 T 30 _

[a]

<

a4 29 1 — N2C

é 28 - N2V
s SSDN-

o //—’VW — SN
me= SSDN-TF
T T T T T T T T T
0 50000 100000 150000 200000 0 50000 100000 150000 200000
Iteration Iteration

Figure 1: Training and validation curves comparing PSNRs [5th-100th percentile] of
implementation versus baselines. Gaussian noise (o = 25). Training (ImageNet-Validation) [left],
Validation (BSD300-Test) [right]. N.B. Variable o estimation used for SSDN.

Table 1: Validation PSNRs for denoising images from both the Kodak and BSD300 dataset with
Gaussian noise (o = 25). See Figurelzlfor example image comparison.

Method o known? KODAK BSD300 Average
CBM3D (Untrained Baseline) no 31.81 30.40 31.11
N2C (Baseline) no 32.19 31.22 31.71
N2N (Baseline) no 32.16 31.20 31.68
N2V (Baseline) no 31.03 30.24 30.64
SSDN (u only) no 30.00 28.56 29.28
SSDN no 31.61 30.55 31.08
SSDN yes 32.12 31.13 31.63

-

- g - —

Test Image Input CBM3D N2C SSDN (p) SSDN
(KODAK-2) 20.59 dB 32.44 dB 32.80 dB 31.38 dB 32.73 dB

Figure 2: Results of applying SSDN and Baselines to Gaussian (¢ = 25 noise [0 known])

5 DISCUSSION

Despite constraints in breadth of models trained and training durations, a range of results were
reproduced from the original paper with relative comparisons against the baselines showing the
expected trends. Results in Table[I] correspond to the results shown in Table 1 of the original paper,
covering validation performance of: CBM3D, N2C, N2N and different configurations of SSDN.
A major claim is that SSDN’s training performance matches that of N2C; this was reproducible
even when o was not known as can be seen in Figure [I] Likewise, visual checks using Figure 2]

COMP6248 Reproducibility Challenge

show very little detail difference between N2C and SSDN. Validation performance with o known
also manages to exceed that of CBM3D as expected. In validation, SSDN is expected to achieve
an average PSNR of 31.73dB (on BSD300 and KODAK); with a known sigma across the same
datasets; the reproduced results show a similar 31.63dB average PSNR, only 0.1dB less with one
tenth of the training iterations. Since the number of training iterations in these experiments is lower
than that used in the original paper, it is not possible to verify the performance of the fully trained
network, however the trend of all plots indicate that further training would keep increasing PSNR
for all models. One discrepancy noted between the paper and its results, as well as the reproduced
results, is a claim made in the abstract that the methods introduced improve images quality, however
they are only ever seen to at best match the state-of-the-art results, rather that exceed them.

One key claim of this paper is that it achieves improved training efficiency compared to state-of-the-
art self-supervised denoising methods. The original paper suggests training the N2V baseline by
maintaining a smoothed network created from an exponential moving average of previous weights;
this is not suggested by [Krull et al.| (2018). The reproduced baseline results (Figure[T), which do not
do this, indicate that the implementation of SSDN does indeed learn at a higher rate (PSNR achieved
in same iterations) than N2V. However, it should be noted that the training time per iteration for
SSDN was 4 x that of N2V due to loss calculation and the 4 x larger network, it is therefore unclear
if real-world training performance is improved.

To verify the implementation, training performance was captured in the same configuration using
the original Tensorflow implementation (SSDN-TF in Figure[I). Although training PSNRs tracked
almost exactly, the validation PSNRs from the Tensorflow implementation decreased significantly
after approximately 65,000 iterations (this was repeatable for default seed setups). It is not clear
why this occurred but may be a quirk in training or highlight a potential issue in their original
implementation that was not carried to the PyTorch implementation.

6 CONCLUSION

When reading the paper, the reader is provided with a detailed account of the theory behind the
workings of the paper, as well as justifications for the changes made to the previous solutions to
the problem. The provision of the supplement also gave more specific details about the model itself
that would not be crucial to the theory, namely details about testing, and the architecture of the
network used. The combination of paper and supplement alone was not enough to fully reproduce
the results. The authors’ code was also required, shedding light on the clipping issue discussed at
the end of Section [3| In conclusion, fully utilising a combination of sources allowed for a successful
reimplementation and reproduction of results.

REFERENCES

Kostadin Dabov, Alessandro Foi, Vladimir Katkovnik, and Karen Egiazarian. Color image denoising
via sparse 3d collaborative filtering with grouping constraint in luminance-chrominance space.
volume 1, pp. I - 313, 09 2007. ISBN 978-1-4244-1437-6. doi: 10.1109/1CIP.2007.4378954.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification, 2015.

Alexander Krull, Tim-Oliver Buchholz, and Florian Jug. Noise2void - learning denoising from
single noisy images. CoRR, abs/1811.10980, 2018. URL http://arxiv.org/abs/1811.
10980.

Samuli Laine, Jaakko Lehtinen, and Timo Aila. Self-supervised deep image denoising. CoRR,
abs/1901.10277, 2019. URL http://arxiv.org/abs/1901.10277,

Jaakko Lehtinen, Jacob Munkberg, Jon Hasselgren, Samuli Laine, Tero Karras, Miika Aittala, and
Timo Aila. Noise2noise: Learning image restoration without clean data. CoRR, abs/1803.04189,
2018. URL http://arxiv.org/abs/1803.041809.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomed-
ical image segmentation. CoRR, abs/1505.04597, 2015. URL http://arxiv.org/abs/
1505.04597.

http://arxiv.org/abs/1811.10980
http://arxiv.org/abs/1811.10980
http://arxiv.org/abs/1901.10277
http://arxiv.org/abs/1803.04189
http://arxiv.org/abs/1505.04597
http://arxiv.org/abs/1505.04597

	Introduction
	Background
	Self-Supervised Deep Image Denoising (SSDN)
	Baselines

	Implementation Overview
	Results
	Discussion
	Conclusion

