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ABSTRACT

An analytical technique is developed to solve nonlinear three-dimensional,
transverse and axial combustion instability problems associated with liquid-
propellant rocket motors. The Method of Weighted Residuals is used to deter-
mine the nonlinear stability characteristics of a cylindrical combustor with
uniform injection of propellants at one end and a conventional Delaval nozzle
at the other end. Crocco's pressure sensitive time-lag model 1s used to des-
cribe the unsteady combustion process. The developed model predicts the tran-
sient behavior and nonlinear wave shapes as well as limit-cycle amplitudes
and frequencies typical of unstable motor operation. The limit-cycle ampli-
tude increases with increasing sensitivity of the combustion process to pres-
sure oscillations. For transverse instabilities, calculated pressure wave-
forms exhibit sharp peaks and shallow minima, and the frequency of oscillation
is within a few percent of the pure acoustic mode frequency. For axial in-
stabilities, the theory predicts a steep-fronted wave moving back and forth

along the combustor.
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SUMMARY

An approximate analytical technique has been developed for the solution
of nonlinear three-dimensional, transverse and axial combustion instability
problems that are frequently observed in liquid-propellant rocket motors.

This theory is an extension and generalization of previous analyses, which
could analyze either transverse or axial instabilities in liquid combustors
with quasi-steady nozzles, to the practical situations of three-dimensional
instabilities in combustors with conventional DeLaval nozzles. Unlike the
quasi-steady nozzle, the presence of a conventional nozzle imposes restric-
tions upon the behavior of both the amplitudes and phases of the oscillations
at the nozzle entrance plane. The Method of Weighted Residuals 1s used to
determine the nonlinear stability characteristics of a cylindrical combustor
with uniform injection of propellants at one end and a conventional nozzle

at the other end. Crocco's pressure sensitive time-lag model is used to
deseribe the unsteady combustion process. The developed model can predict
the transient behavior and nonlinear wave shapes as well as limit-cycle ampli-
tudes and frequencies typical of unstable motor operation. These results
establish the relationship that exists between the resulting instability (i.e.
waveform, final amplitude and final frequency), the combustion parameters
(i.e., interaction index, n, and time-lag, %), and the chamber Mach number
and length-to-diameter ratio. Results indicate that the limit-cycle ampli-
tude increases with increasing sensitivity of the conmbustion process to pres-
sure oscillations. For transverse instabilities, calculated pressure waveforms
exhibit sharp peaks and shallow minima, and the frequency of oscillation is
always within a few percent of the frequency of one of the chanber's acoustic
modes. For axial instabilities, the theory predicts the presence of a steep-
fronted wave moving back and forth along the combustor. In both cases calcu-
lations of pressure and velocity perturbations at the nozzle entrance plane
show that the approximation to the nozzle boundary condition is very good.

The theory described in this report represents the final stage in the develop-
ment of a unified nonlinear theory for the solution of general three-dimen-

sional, transverse and axial combustion instability problems.




INTRODUCTION

Observation of the behavior of unstable rocket motors indicates that
combustion instability can be divided into two categories; that is, linear
and nonlinear instabilities. Iinear instabilities are spontaneous in nature,
and they are usually an outgrowth of the random combustion and flow fluctua-
tions present in the system. On the other hand, nonlinearly unstable motors
require the introduction of a finite amplitude disturbance to produce (or
trigger) combustion instability. In either case the instability, after a
transient period, reaches a limiting maximum amplitude (i.e., limit-cycle
amplitude) at which it oscillates with a given frequency that is usually
close to the frequency of one of the chamber's acoustic modes. Pressure
measurements taken during test firings of unstable motors indicate that the
limit-cycle waveforms of transverse instabilities are non-sinusoidal; that is,
they exhibit sharp peaks and flattened minima.l On the other hand, experi-
mental observations of axial instabilities indicate the presence of shock-~
like steep-fronted waves in the cha.mber.2 These results indicate that non-
linearities need to be considered in the theoretical treatment of combustion
instability.

Any analytical treatment of combustion instability should be capable of
solving nonlinear multi-dimensional combustion instability problems without
exceeding memory core limitations of current computers and without requiring
excessive computation time. To be of practical use, such a solution technique
should be conceptually simple and easily adaptable for use by industry. This
report describes the development and use of such a numerical solution tech-
nique.

Work on this problem has been in progress during the past several years,
and due to its complexity, the problem had to be tackled in stages. In ear-
lier investigations by these authors theories describing the nonlinear beha-
vior of 1ongitudinal3’u and transverse5’6 instabilities in liquid combustors
with quasi-steady nozzles were developed. These theories, which were based

upon the application of the Method of Weighted Residuals (MWR), successfully




predicted the transient behavior, nonlinear waveforms, and limit-cycle ampli-
tudes of longitudinal and transverseinstabilities in unstable liquid rockets.
This report is concerned with the development of a generalized nonlinear
theory that will be capable of analyzing three-dimensional, transverse and
axial instabilities in the more practical situations where the combustors

are attached to conventional nozzles. Obviously, this generalized theory
will encompass the above-mentioned investigations as special cases. Contrary
to the quasi-steady nozzle case, the presence of a conventional nozzle imposes
both amplitude and phase boundary conditions that must be satisfied by the
solutions of the problem at the nozzle entrance plane. The generalized the-
ory presented herein also provides a better description of the unsteady flow
field in the vicinity of the nozzle entrance plane.

The application of the theory presented herein will be demonstrated
by considering the nonlinear stability of a liquid-propellant rocket combus-
tor with uniform injection of propellants at one end and a conventional noz-
zle at the other end. Crocco's pressure sengitive time lag model7 is used to
describe the unsteady combustion process. In the sections to follow, the de-
velopment of the wave equation for the analysis of nonlinear combustion in-
stability in liquid rockets will be briefly described, the solution of this
nonlinear wave equation will be outlined, and typical results will be present-
ed and discussed. User's Manuals and program listings for the computer pro-

grams used to solve these problems are included as appendices to this report.

SYMBOLS
A&mn(t)’ BLmn(t) time-dependent amplitudes in series given by Eq. (6)
Ap(t) time-dependent amplitudes in series given by Eq. (9)
B(&) boundary residual
b&mn complex axisal acoustic eigenvalue
& velocity of sound, ft/éec
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coefficients of linear terms in Eqs.(12)
coefficients of nonlinear terms in Egs. (12)
residual of Eq. (10)
imaginary unit, /-1
Bessel function of the first kind, order m
axial and tangential mode numbers, respectively
pressure interaction index

% %2

. . *
dimensionless pressure, yp /po ey

* X
dimensionless radial coordinate, r /R,

chamber radius, ft
radial acoustic eigenfunction in Eq. (9)

dimensionless transverse mode frequency

*

dimensionless time,
* , ¥
(R,/c,)

* X
dimensionless axial velocity, u /c

(¢]

* , ¥
dimensionless velocity vector, V /e
o
unsteady combustion mass source

complex nozzle admittance
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Subscripts:

Superscripts:

dimensionless axial coordinate, z*/Rz
axial acoustic eigenfunctions

ratio of specific heats

ordering parameter

azimuthal coordinate
tangential acoustic eigenfunction in Eq. (9)

) ) . T
dimensionless density, p /pO

*
T

dimensionless pressure sensitive time lag, —) %
R /e
(R:/e.)

velocity potential

evaluated at the nozzle entrance
radial mode number

partial differentiation with respect to r, t, z, or ©

respectively

real and imaginary parts of a complex quantity, respec-

tively

stagnation quantity

perturbation quantity, differentiation with respect to
argument



- steady state quantity

* dimensional quantity, complex conjugate
~ approximate solution
ANALYSIS

Development of the Wave Equation

To keep the problem as simple as possible, yet still physically mean-
ingful, the following assumptions are made. The gas phase in the combustor
is assumed to consist of a single constituent which is thermslly and caloric-
ally perfect. Transport phenomena, such as diffusion, viscosity, and heat
conduction are neglected. The momentum interchange between the liquid and
gas phases is neglected (see Appendix A for a discussion of this assumption),
and the specific stagnation enthalpy of the unburned propellant is assumed
constant throughout the chamber. The presence of burning propellant drops
is represented by a distribution of unsteady mass sources7 and it is also
assumed that the Mach number of the combustor's mean flow is small and that
the waves have moderate smplitudes.

As a result of the last two assumptions, the governing conservation
equations may be combined and the unsteady flow in the combustor can be de-
scribed by a single nonlinear wave equation. The derivation of this equation
appears in Refs. 8 and 9, where it was assumed that each perturbation quanti-
ty and the mean flow Mach number were of O(e), where ¢ is an ordering para-
meter that is a measure of the wave amplitude. After neglecting all terms of
0(33) or higher and combining equations, one obtains the following nonlinear
partial differential equation that describes the behavior of the velocity po-

tential, &, of the combustor disturbance:
v2® _ 5. =2V.gs, +y(v.T)8, +2vd.vq, + (y - 1)2 V2§ + W (1)
b Tt + g Y t m

Equation (1) is the desired wave equation, and it is gimilar to the inhomo-
geneous wave equation solved by Maslen and MoorelO in a related study on non-

linear acougtics. This equation accounts for the following effects: (1) the




effect of a steady state flow on the wave motion (viz., the first two terms
on the right-hand side), (2) the coupling between the gas dynamical oscilla-
tions and the unsteady combustion process (viz., the last term on the right-
nand side), and (3) the second order nonlinearities of the gas dynamical
processes (viz., the third and fourth terms on the right-hand side).

Tn sddition to satisfying Eq. (1), the desired solutions must satisfy
rigid wall boundary conditions at the injector end of the chamber and at the
chamber walls, while a nozzle admittance condition must be satisfied at the
nozzle entrance. These boundary conditions are given (in a cylindrical coor-

dinate system) by:

3 =0atr =1
r
 =0atz =0
Z
B(8) = g, + ¥ =0atz =2z (2)

The nozzle admittance, ¥, is a complex number defined by

Y=Y +iv, = (w/p), | 2, (3)
where W is the dimensionless axial velocity perturbation and p’ is the di-
mensionless pressure perturbation.

It should be pointed out that due to the absence of an appropriate
nonlinear nozzle admittance boundary condition, the golutions of the problem
are required to satisfy a linear nozzle admittance. Although inconsistent
with the nonlinear wave equation, the linear nozzle admittance condition is
used herein with the hope that the solution techniques developed herein will
also be applicable when nonlinear nozzle admittence conditions become avail-
able. Also, the relative importance of nozzle nonlinearities is not known
at the moment and it is quite possible that the linear nozzle boundary condi-
tion used herein adequately describes the flow conditions at the nozzle en-
trance.

The unsteady combustion process is represented by mass sources distri-
buted throughout the wolume of the chamber, and the response of the mass
sources to pressure oscillations is agsumed to be described by Crocco's pres-
sure sensitive time-lag hy'pothesis.7 The mass source perturbation, w! R

m
is then given by:5’8




du =
W= -y oo [@t(r,e,z,t) - 8.(r,0,z,t - T)] (1)

where n is the pressure "interaction index" that describes the sensitivity of
the combustion process to pressure oscillations, and 7, commonly referred to
as the sensitive time-lag, is the part of the total combustion time-lag during
which the combustion process is sensitive to pressure oscillations. The un-
steady combustion response described by Eq. (4) is linear and the comments
made above regarding the use of a linear nozzle admittance boundary condition
are also applicable to this case.

Substituting Eq. (4) into Eq. (1) and expressing the resulting equation
in a cylindrical coordinate system yields the following wave equation:

1 1

er * r Qr * ;E'Qee * sz B Qtt

-2% 9%

rrt

2
- r2 Qeéet - EQZQ

zt

.y
2

r

1
- - = +
(v 1)¢t(§rr tTe 8ot @ZZ)
- du
- 2ud . - Ye o
aa -
+yn == [ét(r,e,z,t) - Qt(r,e,z,t - 7)] =0 (5)

The combustor and nozzle geometries considered in this study, as well as the

cylindrical coordinate system used in writing Eq. (5), are shown in Fig. 1.

Method of Solution

Since Eq. (5) has no known closed-form mathematical solution, it is
necessary to resort to the use of either exact numerical solution techniques
or approximate analytical techniques. For multi-dimensional problems, the
exact numerical solution techniques generally exceed the computer storage
capacities, therefore an approximate solution technique is used herein.

The experience of previous investigators in the fields of structural stabili-
ty and aeroelasticity indicates that an approximate solution technique known
as the Method of Weighted Residualsll’ 12 may be effective in the solution

of this nonlinear wave equation.
In order to employ the Method of Weighted Residuals in the solution

on Eq. (5), it is first necessary to express the velocity potential, 2, ag an

8
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approximating series expansion, 3. The question naturally arises as to what
form of gseries expansion should be used. Inasmuch as the experimentally ob-
served pressure oscillations during combustion instability usually resemble
the natural acoustic modes of the chamber, the velocity potential, %, is ex-
panded in terms of the natural acoustic modes of the chamber with unknown
time-dependent amplitudes.

In previous analyses3’6 of related problems the approximate solutions
were expressed in terms of the acoustic modes for a cylindrical chamber with
solid wall boundary conditions at both the injector and the nozzle ends.
Conseguently, the approximation of the flow conditions at the nozzle entrance
was poor. In the present analysis a better approximation to the flow at the
nozzle entrance is obtained by expanding the velocity potential in terms of
the acoustic eigenfunctions for a chamber with a solid wall boundary condition
at the injector end and a nozzle admittance condition at the other end. This
removes both the two-dimensionality and the quasi-steady nozzle restrictions
imposed upon the previous investigations. ,

The velocity potential, &, is therefore approximated by the following

series expansion:

¥=5 55 {8, (+) stnme +B, () cosmefz, () 3 (s )  (6)

4L mn
where the A's and B's are unknown complex functions of time, and the Z's are
the complex axial acoustic eigenfunctions. The complex form of the axial

acoustic eigenfunctions is given by

Z&mn(z) = cosh(ib&mnz) (7)

where the bLmn are the axial acoustic eigenvalues which must satisfy the

following transcendental equation:

e

2 . 2 2 2 2 2

+ =
by S0 (b[ ze) Y, Y2(Smn + bLmn) cos (bLmnze) 0 (8)
Equations (7) and (8) are obtained by linearizing Eq. (5) and solving the re-
sulting equation for the case of no mean flow or combustion (i.e., the acous-
tic case) subject to the boundary conditions specified in Eq. (2). Each
term in the above expansion exactly satisfies the solid wall boundary condi-

tions at the injector end (i.e., at z = 0) and at the chamber wall (i.e., at

10




r = 1); however, due to the unknown time dependence of Fq. (6) the nozzle
admittance condition imposed at z = Zg is not exactly satisfied by the indi-
vidual terms. Including both the sin mo and cos mo fterms in the expansion for
% allows for the possibility of either spinning or standing wave solutions.
In order to simplify the algebra involved in the application of the
Method of Weighted Residuals, the development of the associated computer
program, and the presentation of the results; the expansion of the velocity
potential is written as a single summation as follows:
. X
2 =2 A (8)2 (2)8,(e)R (r) (9)
p=1

where the Ap's are the unknown time-dependent amplitudes. In order to use

Eq. (9) a correspondence must be established between the index, p, in Eq. (9)
and the mode-numbers 4, m, and n in Eq. (6). Such a correspondence is given
in Table 1 for a three mode series consisting of the spinning first tangential
(1T) mode (£ =0 , m =1, n = 1), the spinning second tangential (2T) mode

(L =0, m=2, n=1), and the first radial (1R) mode (£ =0, m = 0, n = 1).

Table 1

Correspondence Between Eq. (6) and (9) for a Three-Mode Series

Mod L m n A ®
P e (p) (p) (p) o Y
1 1T 0 1 1 AOll(t) sin @
2 1T 0 1 1 BOll(t) cos ©
3 2T 0 2 1 A (%) sin 20
021
L 2T 0 2 1 BOZl(t) cos 29
5 1R 0 0 1 BOOl(t) 1

Before proceeding with the analysis, the wave equation (i.e., Eq. (1))
must be modified for use with the assumed complex solution given by Equation
(9). This modification is necessary because only the real part of the assum-
ed solution is physically meaningful. It can easily be shown that ifed=¢
+ i¥ is a solution to Eq. (1), the real part, ¢, is not a solution to Eq. (1).

11



This failure of ¢ to satisfy Eq. (1) is due to the presence of the nonlinear
terms in this equation. It can also be shown, however, that a modified wave
equation can be constructed for which the real part of its solution satisfies

the original wave equation (i.e., Eq. (1)). This modified wave equation is
given by:

7

2 - -
E(3) =v°% -8, -2 .8 - v(v.]) e - W
1 -4 1+ i
- — % - — ¥
> [vé-vét + v§ véﬂ 5 [W'V@é + vd .vgt]
- 1 . 2 %_2 %
22 {@ - 1) 270 + €58
: 2 %2
+(1+1) [étv g + v @] =0 (10)

where Q* is the complex conjugate of &. The derivation of this equation is
discussed in Appendix B. Thus, the Method of Weighted Residuals will be used
to obtain approximate solutions to Eq. (10) ( i.e., 3 = @ + i¥) from which the
real part, a, will be taken as the approximate golution of Eq. (1).

In order to obtain a solution, the unknown time-dependent mode-amplitudes
(i.e., Ap(t)) are determined by the following mathematical procedure. The as-
sumed series expension, ¥, (i.e., Eq. (9)) is substituted into the wave equation
(i.e., Eq. (10)) to form the equation residual, E(?). similarly, substituting
the series expansion into the nozzle boundary condition (i.e., the last of Eq.
(2)) yields the boundary residual, B(3). In the event that these residuals
are both identically zero, the solution is an exact solution. The residuals
E(g) and B(g) represent the errors incurred by using the approximate solution,
3.

According to the modified version of the Method of Weighted Residuals,
developed by the authors in Refs. 5 and 8, the residuals E(3) and B(%) must
satisfy the following orthogonelity conditions:

2z

E(3)2§(2)®j(e)Rj (r)rdrdedz

O @
O
o =

B(Q)Z;(ze)@)j(B)Rj(r)rdrde =0 (11)

1
O‘—a%)
O —p
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where in the present study the complex conjugate of the axial eigenfunction,
Z%, is used in the weighting functions. The chosen weighting functions must
J

correspond to the terms that appear in the assumed series solution; that is,
Eq. (9).

Evaluating the spatial integrals in Eq. (11) yields the following system
of N complex ordinary differential equations to be solved for the unknown conm-

plex amplitude functions, Ap(t):

N 2a n
. + C . . _ .
Y ool = o ) + [op(3,0) - (3,9) ] %o
p=l
N N
d[A t - 7)) ary
+ nC,(3,p) } +2 2 {D (35p,0) A —— + D, (5,p,0)A =%
p=1 g=1
x g
+ D3(j,p,q)A - Du(a,p,q)Ap T } (12)

The coefficients appearing in the above equations are determined by evaluating

the various integrals of hyperbolic, trigonometric, and Bessel functions that
arise from the spatial integrations indicated in Eq. (11). A user's manual for
the computer program COEFFS3D used to calculate these coefficients is given in
Appendix C.

The time-dependent behavior of an engine following the introduction of
a disturbance is determined by specifying the form of the initial disturbance
and then following the subsequent behavior of the individual modes by numerical-
ly integrating Egs. (12). Once the time-dependence of the individual modes is
known, the velocity potential, 5, is calculated from Eq. (9). The pressure
perturbation at any location within the chamber is related to the real part of

% (i.e., ) by the following second-order momentum equation (see Refs. 5 and 8):

~

~ -\~ ~2 ~2 2 ~2
p' = "'Y[‘Pt + u(z)th + %((pr +%2<Pe + (PZ) - %‘P‘b] (13)
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A user's manual for the computer program, LCYC3D, which obtains numerical so-
lutions of Egs. (12) and (13) is given in Appendix D.

In summary, the theory presented in this section represents a two-stage
simplification of the original problem. In the first stage the problem has been
reduced to the solution of a single nonlinear, partial differential equation
(i.e., Eq. (1)). In the second stage the solution was expanded in a series of
acoustic modes with time-dependent coefficients and the Method of Weighted
Residuals was used to replace the salution of the nonlinear partial differential
equation with the solution of a system of nonlinear, ordinary differential
equations (i.e., BEq. (12)). Typical numerical solutions of these equations will

be presented and discussed in the following section.

RESULTS AND DISCUSSION

The generalized three-dimensional theory introduced in the previous
section has been used to obtain both linear and nonlinear data for pure trans-
verse modes and pure longitudinal modes for rocket motors with conventional
nozzles. Nonlinear data for the first tangential (1T) mode and the first lon-
gitudinal (1L) mode has also been obtained for combustors with quasi-steady
nozzles for comparison with the results of the previous two-dimensional theories.

Linear Solutions

Before proceeding with the nonlinear analysis, it was desired to obtain
pumerical solutions of the linearized equations (i.e., Egs. (12) with D, =D, =
D3 = Du = 0) in order to determine how closely the approximate solutions satis-
fied the nozzle boundary condition. The linear solution is also needed for com-
parison with the corresponding nonlinear results. The linear solutions were
obtained by assuming a one-mode series expansion consisting only of the mode
under consideration. Due to the presence of the retarded variables (i.e.,
d[AP(t - ;)]/dt) in Eqs. (12), it is necessary to specify the initial ampli-
tudes over the interval -r <t < 0. In this study the initial values were
chosen such that the nozzle boundary condition was exactly satisfied during
this initial time period. Solutions were obtained for values of n and ; on
the neutral stability limit (see Appendix E for the determination of neutral
stability limits) for various conventional nozzle configurations. The nozzle

admittance was expressed in the form, Y = Ae 1¢’ where A is the amplitude fac-

1k




tor and ¢ is the phase shift. The pressure perturbation, p’., and the axial
velocity perturbation, u’, at the nozzle entrance were calculated numerically
for several values of the nozzle phase shift, ¢. These calculated values were

then used to compute the ratios (u’/p')z_Z , which were then compared with the
e

specified nozzle admittance values. These results are shown in Tables (2) and
(3) where A, and @, are the computed values of the amplitude factor and phase
shift, respectively. These results show that the approximation to the nozzle
boundary condition is very good for both the 1T and 1L modes; that is, the
maximum error in the amplitude ratio is about 5% and the maximum error in
rhase is approximately 0.5 degree. These results are in contrast with previous
theoretical investigations where the representation of the unsteady flow con-

ditions in the vicinity of the nozzle entrance was very poor.

Table 2. 1T Mode Linear Solutions (Numerical).

A = 0.02 Error at Nozzle
(p _ . An-A (pn— (P
(Degrees) T A (Degrees)

0 1.2 0.66416 -.029 0.4

0 1.7 0.55001 .003 0.4

0 2.2 0.6471.0 .03Y4 0.4
L5 1.2 0.66137 -.031 0.5
45 1.7 0.54490 .001 0.5
L5 2.2 0.63665 .032 0.5
90 1.2 0.62507 -.031 0.3
90 1.7 0.51252 -.001 0.3
90 2.2 0.59758 .028 0.3
135 1.2 0.577h6 -.031 -0.1
135 1.7 0.47274 -.004 -0.1
135 2.2 0.55353 .023 -0.1
180 1.2 0.54825 -.030 -0.4
180 1.7 0.45003 - .00k -0.4
180 2.2 0.53121 .022 -0.4
225 1.2 0.55357 -.030 -0.4
225 1.7 0.45677 -.003 -0.4
225 2.2 0.54292 .024 -0.5
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270 1.2 0.58854 -.029 -0.3
270 1.7 0.48787 .001 -0.3
270 2.2 0.58090 .028 -0.3
315 1.2 0.63362 -.029 0.1
315 1.7 0.52602 .003 0.1
315 2.2 0.62368 .032 0.1
Table 3. 1L Mode Linear Solutions (Numerical).
A =0.02 Error at Nozzle
] A - A ®, " @
p
(Deg?ees) A (Degrees)
0 0.6 1.44680 -0.048 0.4
0 1.0 1.01686 0.002 0.4
0 1.4 1.37401 0.049 0.4
L5 0.6 1.42h1lh -0.048 0.5
Ls 1.0 0.99216 0.001 0.5
45 1.4 1.32746 0.047 0.5
90 0.6 1.33681 -0.046 0.3
90 1.0 0.92275 -0.001 0.3
90 1.4 1.23131 0.042 0.3
135 0.6 1.23678 -0.044 -0.1
135 1.0 0.85007 -0.002 -0.1
135 1.4 1.14229 0.038 -0.1
180 0.6 1.18443 -0.043 -0.4
180 1.0 0.81682 -0.003 -0.4
180 1.4 1.11190 0.036 -0.4
225 0.6 1.20963 -0.0L43 -0.5
225 1.0 0.84176 -0.001 -0.5
225 1.4 1.15854 0.039 ~0.5
270 0.6 1.29571 -0.0k44 -0.3
270 1.0 0.91003 0.001 -0.3
270 1.4 1.25539 0.0kLk -0.3
315 0.6 1.39320 -0.046 0.1
315 1.0 0.98248 0.003 0.1
315 1.4 1.34k523 0.049 0.1




Nonlinear Solutions

Nonlinear solutions have been computed for both the 1T mode and the 1L
mode. For the 1T mode calculations a three mode series expansion consisting
of the 1T, 2T (second tangential), and 1R (first radial) modes was used. These
are the same modes that were included in the series expansion used in the pre-
vious two-dimensional transverse instability studies.5’6 In these studies it
was shown that convergence was obtained with this three mode series; that is,
the addition of higher transverse modes (i.e., 3T, UT, etc.) to the basic series
had little effect on the solution. The 1L mode computations were made using a
series congisting of the first five longitudinal modes (i.e., 1L, 2L, 3L, b1,
and 5L). It has been shown by Lores and Zinn3’u that convergence is obtained

with this five-mode series.

Transverse Mode Solutions. Nonlinear solutions have been computed for

rocket combustors with quasi-steady nozzles (i.e., real admittances) and also
for nozzles with complex admittances. The quasi-steady nozzle solutions were
generated for comparison with the results of the previous two-dimensional the-

ory.5 Tor this case the nozzle admittance is given “b;y::L

y =Y=%3
T 2y e

Y, = 0 (1)

For nozzles with complex admittances the admittance was expressed in the form,
Y = Aei¢. For both cases limit-cycle amplitudes and waveforms have been com-
puted for both standing and spinning first tangential instability. This re-
quired three series terms to describe standing instability and five series
terms to describe spinning instebility. Typical computation times on a Uni-
vac 1108 computer to reach a limit-cycle were one minute for a standing wave
and two minutes for a spinning wave.

Wall pressure waveforms (r = 1) were computed at the injector face
(z = 0) and at the nozzle entrance (z = Ze) for three azimuthal locations,
B = OO, B = MSO, and 8 = 90°. The initial conditions for standing waves were
chosen such that a pressure anti-node occurred at 6 = 0°. Injector pressure
waveforms for both standing and spinning instability are shown in Fig. 2 for

combustors with quasi-steady nozzles. These waveforms exhibit sharp peaks

17



18

Injector Pressure Perturbation, p'

Injector Pressure Perturbation, p'

8 =0°
0.4 N\ N\ /T
8 =4
,—\\\‘ _ ,’\\\ ’,-‘ \\
0.2 /\ ‘\\> 8 =230 ‘\\X SN\ A
’, rd /i 7”7 4
' QN XN N K
0 //, A 7 \\\ A / r, \\ 7 \\ x //I, x 7 ‘
\ \ \ .
/ ’ \ / ’ /! /
/ N \\ \/ ,/ \/ \\ \./' ,’/ \\/
0.2 \ yi N\ )
/ \ // ‘\ /
\\_/
-0.4
0.6
158 160 162 164 166
Dimensionless Time, t
(a) Standing Wave: n = 0.65, T = 1.7, v = 1.2, ﬁe =0.2, z_ = 1.0
1.0
e - OO )."50 %0
& “~N ~
0.5 XN /X X
/ / \ \ II ’ \\ 4 7 \\
! v o ! \ / \
[ \ / \ ! \
r g \\ \ / \ /
/ A ¥4 1 \
Y rl / \\ \\ r / r,
7
77 y /7] % /
/ 14 AY / \ /
..b-./_/ ! \\‘ — _~~_/,_// :‘ /__//
0.5
384 386 388 390 392

(b) Spinning Wave: n = 0.58, T =

Figure 2.

Dimensionless Time, t

1.7, v = 1.2, ﬁe =0.2, z_ = 1.0

Nonlinear Pressure Waveforms for the 1T Mode.




and shallow minima; they are nearly identica% in shape to those calculated
using the previous two-dimensional theory.s’b Comparison ol injector and
nozzle pressure waveforms (6 = OO) shows that there is very little variation
in pressure with axial position. These waveforms are in qualitative agree-
ment with the results of pressure measurements taken during test firings of
unstable rocket m.otors.l

To check the accuracy of the approximation of the nozzle boundary
condition, wall pressure and axial velocity waveforms were calculated at the
nozzle entrance. The error at the nozzle boundary (z = ze) is shown for non-
linear standing and spinning 1T mode instabilities in Fig. 3. Here the axial
velocity perturbation, u’, and the product of the quasi-steady nozzle admit-
tance and the pressure perturbation, er' are plotted as a function of time.
The latter quantity is the axial velocity perturbation that would be obtained
at the nozzle entrance if the nozzle boundary condition were exactly satis-
fied (i.e., the nozzle admittance condition requires that u’/ = er' at z = ze).
Most of the discrepancy between the two curves is due to a slight phase shift
between pressure and velocity and the second harmonic distortion of the pres-
sure waveform resulting from the nonlinearities of the system. The nozzle
boundary condition is satisfied in an average sense, however, for the ratio
of the velocity amplitude (peak-to-peak) to pressure amplitude (peak-to-peak)
is very close to the required value, Yr'

In another study, limit-cycle amplitudes were calculated as a function
of n and T for standing 1T mode instability. Values of n in the linearly un-
stable region were chosen for below resonant (¥ = 1.9), resonant (T = 1.706),
and above resonant (T = 1.5) conditions. The resulting amplitudes are compared
with those obtained with the two-dimensional theory in Fig. 4., This figure
shows that the three-dimensional theory predicts a slightly higher limit-cycle
amplitude than the two-dimensional theory for chambers with quasi-steady nozzles.

Figure L alsc shows that the three-dimensional theory, like the previous
two-dimensional one, cannot predict triggering of 1T mode instability by the
introduction of finite amplitude disturbances. This result was expected since
it was shown in Refs. 6 and 8 that the second order (i.e., 0(32)) theory can
predict triggering only for pure radial modes (m=0,n=1,2...). Such

triggering limits for the 1R mode are discussed in Ref. 9. It has also been

19



0.010

0.005

-0.005

0 2 1 6
Dimensionless Time, t

Spinning
0.010

n = 0.58 ] \

0.005

-0.005

Dimensionless Time, t

Figure 3. ©Nozzle Boundary Condition for Nonlinear 1T Mode
Solutions for Quasi-Steady Nozzles.

20




*9pPO IT 9U3 I03 sspnyITdwy oToAD-3TWTI ‘4 SJNITI
u ‘xapul uoT3orJIajUI
08'0 GlL*0 0L*0 G9°0 00
Rzosyy, q-¢ <@ o}
Kxoayl, d-2
T = \ k

"0

9'0

Y

o'T

(1d-3d) spngrrduy Sanssaad

21



shown, however, that triggering of 1T mode instability can be described when

the O(¢3) terms are retained in the analysis.g’lh The third order theory

given in Refs. 8 and 14 is limited to a single mode in the approximating

series expansions. A more general multi-mode third-order theory is now under
development and the results will be presented in a future publication. It

is also suspected that nonlinear unsteady combustion effects (not included in ~
the present analysis) may play an important role in the triggering phenomenon.

For nozzles with complex admittances a study was conducted to determine -
the effect of the nozzle phase shift, ¢, upon the limit-cycle amplitudes and
waveforms for both standing and spinning 1T mode instability. The effect of
nozzle phase shift on the nonlinear pressure and velocity waveforms at the
nozzle entrance plane is shown in Fig. 5 for spinning waves. This figure
shows that, while ¢ has little or no effect on the pressure waveforms, the
phase and shape of the velocity waveforms is strongly dependent on ¢. The
effect of ¢ on the limit-cycle amplitude for standing 1T mode instability is
shown in Fig. 6. For a given value of n and T (in the linearly unstable re-
gion for the 1T mode), Fig 6 shows a sinusoidal variation of limit-cycle am-
plitude with ¢ having a maximum amplitude at about ¢ = 200° and a minimm am-
plitude at about ¢ = 20°. 1In this connection, it should be pointed out that
according to linear results nozzle damping is a maximum at @ = o° and a mini-
mum at ¢ = 1800; thus the observed shifts must be due to nonlinearities.

In order to determine how well the solutions approximate the nozzle
boundary condition, the amplitude ratio and phase shift between pressure and
velocity at the nozzle entrance have been calculated from the nonlinear solu-
tions and have been compared with the specified nozzle admittance condition.

Since the waveforms are non-sinusoidal, an approximate amplitude ratio, Ac’

was calculated by taking the ratio of peak-to-peak velocity amplitude to -
peak-to-peak pressure amplitude. The approximate phase shift, 9, was calcu-
lated from the following formula: *
. - tu
9 = | T—2] x 360 (15)

where tp is the average of an ascending zero-crossing and the following de-

scending zero-crossing for the pressure perturbation, tu is a similar average
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for the velocity perturbation, and T is the period of oscillation. The re-
sults of this study are shown in Fig. 7 for both standing and spinning waves.
Tor standing waves the calculated amplitude ratios are seen to be consistent-
1y higher than required by the nozzle admittance condition (dashed line),
while for spinning waves the calculated amplitude ratios are lower than re-
quired. TFor both standing and spinning waves the calculated phase shifts are
in excellent agreement with the imposed phase shifts. This study shows that
the three-dimensional theory provides a good approximation to the nozzle
boundary condition for the 1T mode, considering that the nonlinear solutions
are being forced to satisfy a linear boundary condition.

Longitudinal Mode Solutions. Letting m and n equal zero in Eq. (6)

and using a series consisting of the first five longitudinal modes (i.e., 4 =
1, 2, ... 5), limit-cycle solutions were calculated for quasi-steady nozzles
as well as for nozzles with complex admittances. The longitudinal mode so-
lutions required somewhat longer computation times than the transverse mode
gsolutions; the time required to reach a limit cycle was from three to four
minutes on the Univac 1108 computer.

Longitudinal mode solutions for chambers with quasi-steady nozzles
were compared with the solutions previously obtained by Lores and Z.:'Lnns’br
using a one-dimensional theory. DPressure waveforms at the injector face
are compared for both resonant and off-resonant conditions in Fig. 8 which
shows excellent agreement between the two theories. Pressure and velocity
waveforms at the nozzle entrance as well as injector face pressure waveforms
are shown in Fig. 9 for quasi-steady nozzles, while Fig. 10 shows waveforms
at the nozzle entrance for nozzles with complex admittance (¢ = 45° and
@ = 900). In each case the results indicate the presence of a steep-fronted
pressure wave moving back and forth in the chamber. This behavior is in
agreement with experimental observations of axial insta'bilities.2 The
relation between pressure and velocity waveforms at the nozzle entrance is
a fairly good approximation to the nozzle admittance condition (see Figs. 9
and 10) in spite of the highly nonlinear waveforms. The results of this
investigation indicate that the three-dimensional nonlinear theory is appli-
cable to longitudin-.l instabilities as well ags transverse instabilities. The

theory can also be uced to investigate the nonlinear behavior of combined

25



26

Computed Amplitude Ratio

Computed Phase Shift

0.04

L)
O Standing (n = 0.65)
O Spinning (n = 0.58)
0.03
(o]
o) ©
0.02fcmmac e Qe o QU o OIS, S
& g % I' 0 ‘(?
a
Q
0.01 -
0
0° %0° 180° 270° 360°
Nozzle Phase Shift, o
360° 1
pre =
O Standing (n = 0.65) -~
O Spinning (n = 0.58) R-1
270° o’
"q
g
1&0 ‘:f’r
ﬂ"g’
9° &
v’D"
o d
g
0° %° 180° 270° 360°
Nozzle Phase Shift, o
Figure 7. Nozzle Boundary Condition for

Nonlinear 1T Mode Solutions.




’
i

Injector Pressure Perturbation, p

0.L4

Al

0.3
0.2 +

0.1}

Resonant: T

Above =0.7, n =
Y
1
\
1}
)
:
-0.1 i ! .
\4' v N vV
-0.2 L - N
Below Resonant: T =1.3, n=1.33
0.2 } .
0.1 i i i3
L\
0 - | + t
-0.1 } Ha -
[} IR}
\\’ \]
-0.2 L \ .
.0.3 1 1 1 1 L L
0 1 2 3 L 5 6
Dimensionless Time, t
Figure 8. Comparison of Nonlinear 1L Mode

Solutions for Quasi-Steady Nozzles.

27



0 ‘uot3eqInlaagd L3TO0T9A TOTXY

0.005
-0.005

4 -0.010

0.2
|
i H]
- g
B
ord
(4]
[} [e]
5 o 2
Suv
SS
{ e
o -
. &g
(o]
20 o
0O ~ ~
v N N
g 88
g8 8 8
1]
1
-
;
_..
‘_
1
[}
¥l
0
(@]

\g fuoTqrqQINgIad sanssaad

Dimensionless Time, t °

Longitudinal Mode Waveforms
for Quasi-Steady Nozzles.

Figure 9,

28




2
7

n ‘uorqeqanyaad AGTOOTSA TBTXV STZZON

w@ ‘uyoTgeRQINGJISd SINSSdIJ STZZON

oo ey = Q© = = @
o o o o O o o (@}
@) O O o O o o o
o O nw Aw (@) O O ﬂ_u ﬁ_v
T
.
Qd
Q
(o))
! -
—i
1
=i
LY
O
—
]
. -
"
[e]
[T}
=y
1l -
S
, -
= Q 4] = =
O O (@) h.u ﬁ_u

98

97

96

9

oL

93

t

Dimensionless Time,

Iongitudinal Mode Waveforms for Nozzles

with Complex Admittances.

Figure 10.

29




longitudinal-transverse instabilities, although no results for instabilities

of this type are presented in this report.
CONCLUDING REMARKS

A general three-dimensional second-order nonlinear theory has been
developed for predicting the linear and nonlinear behavior of combustion in-
stability in liquid-propellant rocket combustors. This theory contains previous
analyses of transverse and longitudinal instabilities as special cases. Further-
more it extends the previous analyses which were applicable only to combustors
with quasi-steady nozzles, to the more practical cases of combustors with con-
ventional Delaval nozzles. The present theory can be used to predict the sta-
bility characteristics of longitudinal, transverse and combined longitudinal-
transverse modes for various ligquid-propellant rocket motor designs.

Results obtained for combustors with quasi-steady nozzles are in excel-
lent agreement with the predictions of previous theories for both transverse
and longitudinal instabilities. For combustors with conventional nozzles the
limit-cycle amplitude varies sinusoidally with nozzle phase shift, ¢, having a
maximum value at ¢ = 200° and a minimum value at @ = 20°. The nozzle phase
shift has a strong effect on the axial velocity waveforms at the nozzle entrance
while having only a minor influence on the nonlinear pressure waveforms. In
both cases, the nonlinear theory developed in this paper provides a good approx-
imation to the unsteady flow conditions at the nozzle entrance plane. This is
in contrast to the previous theories which provided a relatively poor approxi-
mation to the nozzle boundary condition.

The results presented in this report establish the relationship that
exists between the resulting instability (i.e., waveform, final amplitude, and
final frequency), the combustion parameters (i.e., interaction index, n, and
time-lag ;), and the chamber Mach number and length-to-diameter ratio. These
results indicate that the limit-cycle amplitude increases with increasing sen-
sitivity of the combustion process to pressure oscillations. For transverse
instabilities, calculated pressure waveforms exhibit sharp peaks and shallow
minima, and the frequency of oscillation is always within a few percent of the
frequency of one of the chamber's acoustic modes. For axial instabilities, the
theory predicts the presence of a steep-fronted wave moving back and forth

along the combustor. In both cases the calculated pressure waveforms are in
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good qualitative agreement with available experimental data.
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APPENDIX A
MOMENTUM INTERCHANGE BETWEEN LIQUID AND GAS PHASES

The results bPresented in this report were obtained under the assumption
that the momentum interchange between the liquid droplets and the burned gases
is negligible. This assumption will now be relaxed for the special case of
uniformly distributed combustion, and it will be shown that this momentum

interchange is an important stabilizing effect.

Analzsis

The momentum equation for two-phase flow was derived in Ref. 8 and is
given by:

v 1
L5t ey ]e - ey (32

where X and XL are the gas and liquid velocity, respectively. The term on the
right-hand-side of Eq. (A-l) represents a momentum source to the gas produced
by the burning liquid drops. This momentum source consists of two parts: (l)
the force necessary to accelerate the evolved gases from the droplet velocity
to the gas velocity (i.e., the term -Wm(X - XL)) and (2) the nerodynamic drag
of the droplets (i.e., the term -C(X - XL)).

In order to derive a wave equation for the velocity potential 3 it

is necessary to make the following assumptions: (1) the drag term is negli-

gible compared with the acceleration term, (2) liquid velocity fluctuations
are negligible, ang (3) the combustion ig uniformly distributed throughout the

chamber, Neglecting the drag term, perturbing, and neglecting third order quan-

tities gives the following €xpression for the momentum source perturbation, M’:

M oy, (a-2)
This is simplified further by neglecting the liguid velocity perturbation,
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introducing the velocity potential, and using the steady-state relation,
ﬁm = d0/dz, to obtain:

P
M7= - Vs (A-3)

Finally, the assumption of uniformly distributed combustion gives dﬁ/dz =

constant which yields:
M= -V =— @] (A-4)

Perturbing the left-hand-side of Eq. (A-1), introducing the velocity potential,
and combining with Eq. (A-U4) gives: -

05 , 1 - ad 1 12
v =5’ — =Vd.Ve - = = -
[5_t+rp T, Tt ¢ 2%] 0 (A-5)
which can be integrated to obtain:

,’o PR U S 12

P "Y[®t+u¢z+dz§+2w Ve - 3% (A-6)

Equation (A-6) is similar to Eq. (13), where the additional term (du/dz)s
arises from the droplet momentum source. Following the procedure outlined
in Ref. 8, the momentum equation given by Eq. (A-6) is conbined with the con-

tinuity and energy equations to obtain the desired wave equation:
2 - di 2
v - = + — + . - ’ -
¢ - 8., = 20, (y + l)dz@t 2Vg- Ve, + (v 1)@tv g+ W (A-7)

Comparing Eq. (A-7) with Eq. (1) shows that the droplet momentum source
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appears only in the second term on the right-hand-side of this equation,
where the factor v in Eq. (1) becomes (¥ + 1) in Eq. (A-7).

Applying the Method of Weighted Residuals to obtain approximate solutions
to Eq. (A-7) yields a set of ordinary differential equations identical to Egs.
(12) where the coefficient 02(j,p) is now given by:

Z V4
c~(3,p) {2‘[ e'( )z'z*d + (v + 1) edl-‘z 7 dz + YYZ ( )z*( )} X
= u\z .AZ - .QZ AZ
AL S P Y L dzp gt T THptEe %y e

T
X f2 d IlR R.rd A-8
) 0,0;d6 R r (A-8)

Equation (A-8) is readily obtained from Eq. (C-3) by replacing v in the second
term by v + 1.

Linear Stability Limits

Linear stability limits for the 1L mode were calculated by the method
described in Appendix E for the following two cases: (1) the droplet momen-
tum source was included in the analysis and (2) the droplet momentum source
was neglected. The results were compared with the linear stability limit
calculated by Mitchell15 on a plot of interaction index, n, versus stretched
time-lag, u, where p = ¢/ (see Fig. A-1). This figure shows excellent agree-
ment between the results of Mitchell (solid curve) and the present theory
(circle symbols) when the droplet momentum source is included. Neglecting the
droplet momentum source shifts the stability curve to much lower values of n
(dashed curve), which indicates that the droplet momentum source is an impor-

tant stabilizing effect.

Nonlinear Solutions

In the second-order analysis presented in this report, the droplet momen-
tum source affects the nonlinear solutions primarily by increasing the linear
stability of the system. This is readily shown in Fig. (A-2) where the limit-
cycle amplitude is plotted as a function of the displacement, gn, above the

neutral stability limit. By plotting the limit-cycle amplitudes in this manner,
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Figure A-1. Effect of Droplet Momentum Source on Linear Stability
Limits for the 1L Mode.
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Injector Pressure Amplitude (Pk-Pk)

36

1.4 T T T T T
Without Droplet Momentum Source
1.2
........ With Droplet Momentum Source
1.0
0.8
0.6
0.4
0.2 / Standing 1T Mode =
0 ] ] ]
0.02 0.0k4 0.06 0.08 0.10 0.12 0.1h4
Displacement Above Neutral Stability Limit, 6n
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the effect of thé shift in the neutral stability curves is removed so that
only the nonlinear effect of the momentum source is seen. Figure A-2 shows
that, for edual displacements above the neutral stability limits, including
the droplet momentum source results in a slightly smaller limit-cycle ampli-
tude. This difference in limit-cycle amplitude is negligible for most practi-
cal purposes.

For combustors with uniformly distributed combustion it has been shown
that the droplet momentum source is an important effect which is easily in-
corporated into the present analysis. Consequently the computer programs
based on this theory include the droplet momentum source as an optional feature
(see Appendices C, D, and E).

For chambers with non-uniform combustion distributions, Egs. (A-6) and
(A-7) are no longer applicable; however, the droplet momentum source can be
taken into account in the following manner. Using the present theory with
the droplet momentum source omitted, the neutral stability limit, nl(?), is
calculated and the limit-cycle amplitudes are determined as a function of §n
as in Fig. A-2. In addition, the linear stability limit, ng(}), is calculated
using a linear theory which includes the droplet momentum source and is not
restricted to uniformly distributed combustion (such as in Ref. (15)). Assum-
ing that the nonlinear effect of the droplet momentum source is also small for
non-uniformly distributed combustion and using the values of §n and ng(}) cal~
culated above, the desired plot of limit-cycle amplitude as a function of n

is readily obtained.
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APPENDIX B

USE OF COMPLEX VARTIABLES IN THE SOLUTION OF
NONLINEAR DIFFERENTIAL EQUATIONS

It is often convenient to use complex variables in the solution of the
linear equations which arise in acoustics, combustion instability and related
fields. In this case the solution is expressed in complex form, and the real
part represents the physically meaningful solution. However, care must be
used when applying this technique in the solution of nonlinear equalions. The
difficulties that are encountered in applying the complex variable technique
to nonlinear problems will be illustrated by analyzing the following simplified

example, Consider the nonlinear wave equation given by:
Vs - 5, = 8 (B-1)
tt t

A complex solution of Eq. (B-1) of the form § = ® + iy would be useful only
if its real part, ¢, satisfies Eq. (B-1), which would be the case if the equa-
tion were linear. However, straightforward substitution of % = ot iy into
Eq. (B-1) and separating its real and imaginary parts yields the following

equation for ¢ :

Vo - oy = g - VY (8-2)

indicating that the real part, ¢, does not satisfy Eq. (B-1) because of the
extra term,.—yyt, appearing on the right hand side. In order to eliminate
this extra term, the form of the original differential equation (i.e., Eq.
(B-1)) must be modified.

Since Eq. (B-1) supposedly describes some physical phenomenon, and
since only the real part of the complex solution is physically meaningful,
then the nonlinear term §§  should really be expressed as the product Re(s) X
Re(@t) which is equivalent to (@@t + @@: + Q*Qt + Q*Qz)/u. Substituting this
expression into Eq. (B-1) yields:
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o B * * * x
Ve - g, = 4[e8, t a8t e t+ B, (B-3)

Substituting & = ¢ + iy into Eq. (B-3) and separating its real and imaginary
parts yield:

2
Voo~ o = o9
(3-4)

2
vVY-vy, =0

which shows that the real part of the solution of Eq. (B-3) satisfies the de-
sired equation (i.e., Eq. (B-1)) and the imaginary part satisfies a homogeneous
linear wave equation. This technique was applied to the solution of nonlinear
combustion instability problems (i.e., to Eq. (1)), and the resulting modified
wave equation was solved using the Method of Weighted Residuals. Due to the
approximate nature of the Method of Weighted Residuals, however, the resulting
solution contained an error term which grew without limit. Consequently, the
above procedure had to be modified in order to obtain satisfactory solutions
of Eq. (1) using the Method of Weighted Residuals.

An alternate technique is to modify Eq. (B-1) such that both the real
and imaginary parts satisfy the original equation. This can be done by re-

placing terms of the form 3¢, with Re(@)Re(@t) + iIm(@)Im(@t); using the

relations:
*
§ + Q* ét * ét 1 * * X %
Re(8)Re(s,) = ( 5 )( 5 ) = ﬁ[@ét t gt 3ot @t]
* Qt - @Z (B'S)

. . & - B
iIm(3)Im(s,) = -1 ( )( ) _ _L[ P * %

t 2 2 =~ @@t @@t 3 @t + 3 @t]

in Eq. (B-1) gives:

v - gy =31 - D(er e e) + (1 )(es ¢ 8e,) ] (3-6)

Substituting § = ¢ + iy into Eq. (B-6) and separating into its real and imagi-
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nary parts gives:

2 —
Vo~ @y T R
(B-7)
2
VY'Yt.t=Wt

which shows that both ¢ and y satisfy Eq. (B-1). Applying this method to the
solution of Eq. (1) yields the modified wave equation (i.e., Eq. (10)) used in -

the present investigation.
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APPENDIX C
PROGRAM COEFFS3D: A USER'S MANUAL

Statement of the Problem

Program COEFFS3D calculates the coefficients of both the linear and non-
linear terms which appear in Egs. (12). These coefficients are required as
input for Program ICYC3D (see Appendix D) which numerically integrates this sy-
stem of equations. The coefficients that are required depend on the choice of
terms to be included in the series solution for & (see Eq. (9)), therefore
this information must be provided as input to Program COEFFS3D. The output
of Program COEFFS3D is either punched onto cards or stored on drum (FASTRAND)
for input to Program ICYC3D.

The coefficients to be calculated are functions of various integrals

of hyperbolic, trigonometric, and Bessel functions and are given by the follow-

ing expressions:

zZ, on 1
¢ (3,p) IZZ*d @@deIRR d (c-1)
= . Az . .rar -
0P P J Ipa P J
0 0 0
Z Z 211’ 1
¢, (3,p) = {s p)IZZ dz-JZ”Z dz+Z(z)Z(z)}I®®deJRerr
0 0 (c-2)
z VA
e e__
Cg(a,p) = {2 I u(z)ZpZj dz + vy I e Zij dz + yYZp(ze)Zj(ze) (c-3)
0 0
21'\’ 1
XI@@.deIRR.rdr
D J D J
0
Z 2m 1
03(J,p)={y EZZpZ dZJ®® dBIRerr (c-k)
0
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z z* dz]}

@)

D2(j,p,q) =31 +1) {le‘zpz 7% az + T2 [ _[ Z (z) z?j‘ dz +

Dy

D), (3,050 =2(1 - 1) {T J.z

where

0]

Z
e

Z

e
¥, %% LIPS VI
ZZd+T[IZ 7 Z, dz +
N RN
0]

(3 =3(1 +1i {T fZ*ZZ’fdz+T[J.Z '2'7% az +
0 0

f *)”zz dz]}
0

3]

lf z*)"zz dz]}
0

on on 1
I@@@.d@IRRerr+j®®® dej Y;lg
2T 1
xJ@@@_ dGIRRR.rdr
on 1 Paqyj PdJ

=j®®®.d6fRRR,rdr
Paj Paj

Lo

0

(p) x

(c-5)

(c-6)

(c-7)

(c-8)



In the equations on the prior page the notation of Eq. (9) is used; that is,

a single index (i.e., j, P, or q) is used to identify a particular series term
rather than the mode numbers used in Eq. (6). The index j identifies the
equations in which a given coefficient appears which corresponds to the weight-
ing function used in deriving that equation. For the coefficlents of the linear
terms (i.e., the C's) the index p identifies the amplitude function which the
coefficient multiplies. For coefficients of the nonlinear terms, (i.e., the D' s)
p identifies the factor which is not differentiated with respect to time, (i. e.,
Ap or Ap ), while g identifies the differentiated factor (i.e. dAp/dt or dAp"/dt.

Due to the complex nature of the axial eigenfunctions, the above coefficients

are complex numbers.

Structure of the Numerical Calculations

A flow chart for Program COEFFS3D is shown in Figure (C-1). The program
can be divided into five major sections: (1) input, (2) calculation of the
complex linear coefficients, (3) calculation of the complex nonlinear coeffi-
cients, (L4) obtaining coefficients of the equivalent uncoupled real system,
and (5) output.

The inputs to the program include the various parameters describing
the chamber geometry, the nozzle boundary condition, the modes included in the
approximating series expansion, and various control numbers, as well as the
roots of the Bessel functions.

In the second section the axial acoustic eigenvalues are calculated by
means of Subroutines EIGVAL and FCNS, and the integrals of the products of
two axial eigenfunctions are computed by means of Subroutines AXTIAL1l and UBAR.
The integrals involving radial and tangential eigenfunctions are evaluated by
using the orthogonality properties of these functions. The complex linear co-
efficients are then calculated according to Egs. (C-1) throush (C-4) and are
normalized by dividing by Co(j, i)

In the third section the integrals of products of three Bessel functions
are calculated using Subroutines RADIAL and JBES, while similar integrals in-
volving azimuthal eigenfunctions and axial eigenfunctions are computed using
Subroutines AZIMIL and AXIAL2 respectively. The normalized complex nonlinear
coefficients are obtained from Egs. (C-5) through (C-8) by dividing by Co(j, j).

In the fourth section the normalized complex coefficients are used to
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Figure C-1. Flow Chart for Program COEFFS3D




obtain the coefficients for the equivalent system of real differential equations
obtained by separating the real and imaginary parts of the complex equations.
Since the axial eigenfunctions are non-orthogonal, the resulting system of
equations may be coupled in the second derivative terms. Therefore, a matrix
inversion procedure is used to obtain the coefficients of an equivalent system
which is not coupled in the second derivatives.

In the last section the computed values of the coefficients are either

printed out, punched onto cards, or stored on drum (FASTRAND file) as desired.

Input Data

The input data consists of the chamber parameters (i.e., ratio of speci-
fic heats, steady state Mach number , and length-to-diameter ratio), the nozzle
admittance ratio, various control numbers, and information indicating which
modes are included in the approximate series expansion. Regarding the latter
information, each term in the series is identified by the integer variable J.
The nature of each term is specified by the four integers L(J), M(J), N(J),
and NS(J), and each term is given a four character name NAME(J). In this
manner the coefficients are identified by the integers J associated with the
modes involved rather than the corresponding axial, azimuthal, and radial
mode numbers.

The following comments pertain to the detailed description of the input.
The location number refers to columns of the card. Three formats are used for
input: "A" indicates alphanumeric characters, "I" indicates integers, and
"F" indicates real numbers with a decimal point. For the "I" and "F" formats
the values are placed in fields of five and ten locations, respectively, and

the numbers must be placed in the rightmost locations of the allocated field.

No. of
Cards Location Type Input Item Comments
1 1-72 A TITLE Title of Case
1 1-10 F GAMMA Ratio of specific heats, y.
11-20 F UE Steady state Mach number at
nozzle entrance, U, -
21-30 F RLD Length-to-diameter ratio,
L/D = z./2
31-L0 F ZCOMB Lenth of combustion zone,
z
c/z

e MS



No. of
Cards

h1-ks

46-50

6-10

11-15

16-20

If NEGL = 1:
1 1-10

11-20

End of input for NEGL = 1.
If NOZZIE = 1:

NJIMAX 1-5
6-15
16-25
End of Input for NOZZIE =
NJIMAX 1-5
6-10

46

Location Type

I

Input Item

NDROPS

NOZZIE
NJIMAX

NONLIN

NEGL

NOUT

SM1

sMm2

AMPL(J)

PHASE (J)

L(J)

Comments

If O: droplet momentum
source neglected. If 1:
droplet momentum source
included.

If O:
If 1:

quasi-steady nozzle.
conventional nozzle.

Number of series terms (com- ,

plex). (NJMAX < 10)

If 0: 1linear terms only.
If 1: 1linear and nonlinear
terms.

If O: ©Nonzero coefficients
calculated.

If 1: ©Small coefficients
neglected.

If O: printed output only.
If 1: printed and written

into FASTRAND file.
If 2: FASTRAND only.
If 3: card output only.

Linear coefficients with
absolute value less than
SM1 neglected.

Nonlinear coefficients with
absolute value less than
SM2 neglected.

Integer which identifies
series term.

Amplitude factor of nozzle
admittance, A.

Phase of nozzle admittance, .

Integer which identifies
series term.

Axial mode number, 4.
(0<L(J)<10)
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No. of

Cards Location Type Input Ttem Comments

11-15 I M(J) Tangential mode number, m.
(0<L(J)<8)

16-20 I N(J) Radial mode number, n.
(0= (g)<5)

21-25 I NS(J) NS(J) = 1: @, = sin(me)
NS(J) = 2: ®§ = cos(md)

26-30 A NAME (J) Four character name.

The first card gives a title (maximum 72 characters) used to identify
the run. The second card gives the chamber parameters (i.e., Vs ﬁe, L/D, zc),
determines whether the droplet momentum source is included in the analysis
(see Appendix A), and specifies the type of nozzle (quasi-steady or conven-
tional). If a quasi-steady nozzle is specified the nozzle admittance is cal-
culated using Eqs. (14), and no further information concerning the nozzle is
required. The contol numbers are given on the third card. Due to computer
storage limitations the series expansion is limited to ten terms, thus NJMAX <
10. The control number NEGL gives the option to neglect all coefficients
with absolute value smaller than a given number, thus allowing a considerable
saving in computation time when the equations are numerically integrated by
Program ICYC3D. It has been found that neglecting coefficients with absolute
value smaller than 0.1 (i.e., SML = SM2 = 0.1) reduces the computation time
by half and has a negligible effect on the resulting solutions. For conven-
tional nozzles a series of NJMAX cards is read which gives the nozzle ad-
mittance (amplitude and phase) for each term in the series. This is followed
by another series of NJMAX cards giving the mode numbers for each series term.

The proper input for program COEFFS3D will be illustrated with the
following example. Suppose the velocity potential & is expressed in terms of
the first tangential (1T), the second tangential (2T), and the first radial
(1R) modes. It is also desired to investigate instability of the spinning
type, therefore both sin(mg) and cos(m®) terms are included in the series.
However, for the 1R mode (m=0) there is no corresponding sin(me) term, there-
fore the resulting series will contain five terms. A nozzle admittance of
A = 0.02 and @ = MSO will be assumed for each term in the series, and coeffic-

ients smaller than 0.l as well as the droplet momentum source will be neglected.
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The output data will be punched on cards. A sample input for this case is
given in Table (C-1) below.

Table C-1. Sample Input.

ol ], [ e el T T T T T LTI T LTI LTI
(LI T BLRL LTI T RL I T T ok LTI LI TRER [TTBL[ ] Thl]
(LB TT T LI TR T CB T T T LI T T LTI TITITIITT L
CLLLLL Lol b T T T o T T T LT CLL LI LTI LT LLITIT,
(L LRl [T Tol Bl TT T T T MLl U T LTI TT LTI LTI LLITITT
(CLTEC LT T bRl T T BBl T T T T LI LLLLIILTLTTITT)
(CLLBTTT T RLIeBl T T T Lol [T T LTI LTIV LTI LT LI T
(CLL BT T L bRl T T T T 6ol TTT LTI LT LI ITLTTL T[]
(LTTBL LTI T lok bl T T RISl [ TTTT LT LTI LTI TTLLTI ]
CLLBLT LTl T IL T TG T T T Wolsal [T T T TITLLLTTTL])
CCL LR LTl [T TRl T UL T T e Blobbl T TTIT [T [ITTTITLTLT]
(LLLBC LTl [T Bl T Ll T T Al hloghl TT LTI T TLLITLTLT)
(CLTR T TT Bl TITRIT TG T Tl ool TT LTI T LTI TLLIT
CCTTBLT LTIl T TTol TTT T TT T Bl Bloobl TT TTT T T T TTTTTTTTTT)

After the last card in the sequence described above is read, the program
is executed and control returns to the input section. Thus, several cases can
be executed on the same run. If no further cards are given the run is termi-
nated.

In addition to the above card input, roots of the Bessel functions S
which give zero slope at r = 1 and the associated values Jm(Smn) are needed for
these calculations. These values were taken from Ref. (16) form = 0, 1,...8
and n = 1,2...5; they are automatically put into the program by means of a DATA

statement, which is an integral part of the program.
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Complex Linear Coefficients

For NDROPS = O the complex linear coefficients are computed from Egs.
(C-1) through (C-4) and are stored in the complex array CC(KC,NJ,NP). For
NDROPS = 1 the coefficients 02(j,p) are computed from Eq. (A-8).

In order to calculate these coefficients the following information is
needed: (1) the axial acoustic eigenvalues, b&mn’ (2) the steady state Mach
number distribution, u(z), (3) the orthogonality properties of the trans-
verse eigenfunctions, and (4) the integrals of products of two axial eigen-

functions. The calculation of these quantities is described below.

Axial Acoustic Figenvalues. The axial acoustic eigenvalues are deter-

mined by numerically solving the transcendental equation given by Eq. (8).
This is done by first substituting b&mn = €ymn + iann and Y = Yr + iYi
into Eq. (8) and separating real and imaginary parts. This yields a pair

of simultaneous equations of the form:

f(e:T}) =0
(c-9)
g( e,T]) =0
where
(M) = (& = TIF(esn) - hemile,m)
+ 72{[(\13 - Yig)(szin + e - ng) - lerrYie"n] G(e,m)
" M[YrYi<S§m +e o) ¢ (Yi - Yi)e”}{(e’n)} (c-10)
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gle>M) = (& - 19)H(e,sm) + eTF(esm)
+ 72{[YrYi(S§n + 32 - ng) + (Yi - Y?)eﬂ]G(e,n)

- [(Yi - Yi)(sin + 32 - ﬂ2> + “YrYieﬂ]H(e,ﬂ)} (c-11)

and

F(e,M) = sinz(eze)coshg(nze) - cosg(eze)sinhg(nze)
G(e,q) = cose(eze)coshg(nze) - sine(eze)sinhg(nze) (c-12)
H(e,M) = sin(eze)cos(eze)sinh(nze)cosh(nze)

In the above equations the subscripts on ¢ and T have been omitted.
Equations (C-9) are solved by Subroutine EIGVAL using Newton's Method
for two unknowns.l7 In this method successive approximations to the roots

are generated by the recursion formilas:

fg - gf
®i+1 T €5 T [ J%f,gS ]i
(c-13)
-fg
Mi1 = [ ]
where the Jacobian J(f,g) is given by:
J(f,g) =fg -gr (C-14)

e e
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and the subscripts indicate partial differentiation with respect to ¢ and 7.
The quantities f, g, fe’ fn, ge, gn are calculated by the Subroutine FCNS.

The iteration is started by assuming the following values for g and n:

e, = e, ta cos(g)
(c-15)
m, =2 sin(g)
where for 4 = O: €n = 0
a = 10A/ z
B = 9/2 + 45 (degrees)
(c-16)
and for 4 # O: €y ='bn/ze
a8 = A/ze
B =¢* 9 (degrees)

The iteration is terminated when the errors pe and ATl are smaller than 10_7.
If the iteration fails to converge after LO iterations or the Jacobian
vanishes a warning message is printed. FORTRAN listings of Subroutines

EIGVAL and FCNS are given at the end of this appendix,

Steady State Mach Number Distribution. The steady state Mach number

distribution is calculated by means of Subroutine UBAR which must be sup-
plied by the user. This distribution must be of the form shown in Fig.
(C-2) where the Mach number varies from zero at the injector face (z = 0)
to its maximum value at the end of the combustion zone (z = ZC) and remains
constant until the nozzle entrance (z = Ze) is reached. Thus the Mach

number is given by

u(z) = U(z)l—le (02 < Zc)

(c-17)
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u(z) = ﬁe (zc <7 < Ze)

where U(0) = 0 and U(Zc) = 1. Although the function U(z) may be arbitrary,
the results presented in this report were obtained using a linear Mach num-
ber distribution in the combustion zone (i.e., uniformly distributed com-

bustion). Thus the function U(z) in the listing of UBAR provided herein is
given by:

U(z) = z/zc (c-18)

In addition to the Mach number distribution (NOPT = 1), the first (NOPT = 2)

and second (NOPT = 3) derivatives are also calculated.

>
=
[}

U(z)ﬁe

Steady-State Velocity, u

(] I P IPPEEE

N
(e]
o

Axial Coordinate, Zz

Figure C-2. Steady-State Mach Number Distribution.
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Orthogonality of Transverse Eigenfunctions. The tangential eigen-

functions have the following orthogonality properties:

21 217
in(m 6)sin(m.g)dg = I cos(m g)cos(m.0)dp = O m m,
josm<p> (m,0)  cos(m_0)cos(ns0) Y
= m = m,. 0
m p =y F
(¢-19)
21
cos{m @ s{m.8)dg = 2 m =m, =0
jo (m8)cos(me)de = 2 m = m,
[Totntmg)
sin(m cos(m.9)dg = O for all m and m.
. ( pG os( JG) ) or a 5 a ;

For the special case of nb = nﬁ = O the integral involving sines vanishes.

The orthogonality property of the radial eigenfunctions is given by:

IlR R.rdr =
j

o}

|
o

gp # nj (m.p = nﬁ)

5 (c-20)

Smn - m? 2
R R.rdr = [J (s )] n =n, (m =m,)
o P J 2%; LA I A

|

Since the tangential integrals vanish when m.p # mB it is not necessary to
calculate the radial integrals for m # m,. These orthogonality properties
are used to calculate the integrals, fi" @p@jde and J% RpRjrdr, which appear
in Egs. (C-1) through (C-4). For a series containing pure transverse modes
only (4 = O), it is easily seen that all of the linear coefficients vanish
except those corresponding to p = j, yielding a system of equations which

are not coupled in the linear terms.

Axial Integrals. The integrals of products of two axial eigenfunctions

are calculated by Subroutine AXIALL. According to the value of the input

parameter NOPT these integrals are calculated as follows:
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z . . *
e 4 : s1nh[1(b +b.)z ]
NOPT = 1t I 7 7.z = %{ S
pJ ; x
o i(b_ + b.)
D J
*
sinh[i(b - b))z ]
+ B J el } (c-21)
i(b -b,)
( P J .
z A
e//* > e *
NOPT = 2: 7. 7.dz = -b I 7. 7.dz (c-22)
o P pdy P
z
e _—
du * .
NOPT = 33 I I Zijdz (evaluated numerically)
o
pA
e_ /%
NOPT = L1 I u(z)Zijdz (evaluated numerically)
0

The last two integrals, which involve the mean flow Mach nunber, are eval-
uated by means of Simpson's Rule. A FORTRAN listing of AXTALl is provided
at the end of this appendix.

Complex Nonlinear Coefficients.

The complex nonlinear coefficients are calculated from Egs. (C-5)
through (C-8) and are stored in the complex arrays, CDL(NJ,NP,NQ),
CD2(NJ,NP,NQ), CD3(NJ,NP,NQ), and CDL4(NJ,NP,NQ) .

In order to calculate these coefficients, the various integrals of
axial, azimuthal, and radial eigenfunctions must be evaluated. Since many
of the azimuthal integrals are zero they are evaluated first, and the re-
maining integrals are computed only if the corresponding azimuthal integral
is nonzero. The subroutines used to calculate these integrals are described

in the following paragraphs.

Azimuthal Integrals. The azimuthal integrals are calculated by Sub-

routine AZIMTL according to the value of NOPT as follows:

2
NOPT = 1 : I ® .d
. p®q;5 0
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2TT r
NOPT = 2 : .d
. ®p®q@3 ]

These integrals are easily evaluated analytically; for most values of p, q,
and j they are zero. The nonzero integrals are readily expressed in terms

of the following integrals:

2m
cos{m cos(m cos{m.g)dg =7/2 for m.=m +m
Jcontme)cos(n p)cos(n 0)ae =/ j=m tm,
m =m, +m, or
p J q
=m, +m c-2
m, = mg o+ (c-23)
2
cos(m 9)sin(m @)sin(m.g)de = 1/2 for m =m + m. r
fo (pe) (qe) (Je)e / L =Ty tmy o
m, =m +m (c-24)
J b q
217 /
cos(m 0)sin(m 9)sin(m.g)dg = =T/2 for m =m + m, c-2
[ costmy@)sialm 0)sin(nje)ac =m +m, (c-25)

where mp, mq, and mj are nonzero. If any one of the tangential mode numbers

is zero (corresponding to a radial mode) the following values are obtained:

2n
cos(m @)cos(m @§)cos{m,6)dg = 2 m =m =m, =0
J‘o (mo)cos(m 9)cos(m,6)de = 21 m = m = m
= m =0.m =
T T By Ty
(c-26)
mq=O,mp=m,
m, =0, m =m
J D q
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en

i i aq = = 0 = . C-2
IO cos(mpe)s1n(mqe)s1n(mje) 0= m s mg = (c-27)

Subroutine AZIMTL consists of two sections. In the first section the
azimuthal integral is expressed as the product of a constant factor and one
of the basic forms given in Egs. (C-23) and (C-24). The second section is
essentially a series of logical tests to determine if the mode numbers, mp,
m s and m, satisfy any of the conditions for Egs. (C-23) through (C-27). If
any of these conditions is satisfied the appropriate value is multiplied by
the corresponding factor determined in the first section and the product is
assigned to the output variable (i.e., RESULT), otherwise the value zero is

assigned.

Radial Integrals. Subroutine RADIAL calculates the radial integrals
which appear in Eqs. (C-5) through (C-8) according to NOPT as follows:

L
NOPT =1 : R R R.rdr
Yo aJ
- 1
NOPT = 2 R R R sdr
t.o J°
nlll
NOPT = 3 : R R R.rdr
Yo P aaa

where the R's are the Bessel functions, Jm(Smnr). These integrals are com-
puted numerically using Simpson's Rule with 100 subdivisions. In calculating

the integrands the derivatives of the Bessel functions are given by:

[Jm-l(smnr) - Jn&l(smnr)] for m=1,2,3,...

(c-28)

’
=L
Jm (Smnr) =5

Jé(smnr) = —Jl(Smnr)
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The integrand of the second integral (NOPT = 2) is indeterminate at the lower
limit of integration. However a limit exists, denoted by L, which vanishes

with the following exceptions:

L = Smn(p)/2 for m =1, m =m =0

b a J
L =28 2 f m =1, m =m. =0 C-2
m(@/2 for m =1, m -n (c-29)
L =258 i)/ 2 for m. =1, m =m =20
)/ o : > Wy = m

All of the calculationd in Subroutine RADIAL are carried out in double
pPrecision arithmetic. The results are given as a single precision number.

Subroutine JBES computes the double Precision Bessel functions which are
needed for the above calculations. A description of this subroutine and a

program listing are given in Chapter 23 of Ref. (18).

Axial Integrals. The integrals of the products of three axial eigen-
functions (see Egs. (C-5) through (C-8)) are computed by Subroutine AXTALD
according to the input parameters NOPT and NCONJ. The three basic forms
are specified by NOPT as follows:

Ze N
NOPT = 1 f 72 7Z 7.4z
o P
Z
ell*
NOPT = 2 : ‘ f 2 7 7 .dz
g %%
Z
e » x
NOPT = : f Z 7 7.4z
3 o Pa

When NCONJ = 1 these basic forms are calculated; these are the forms appearing

in the expression for Dl(j, P, a) (see Eq. (C-5)). For NCONJ = 2 the second

function in the integrand is replaced by its complex conjugate to obtain the
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integrals appearing in the expression for D2(j,p,q). The integrals appearing
in the expressions for D3(j,p,q) and Du(j,p,q) are obtained by setting
NCONJ = 3 and NCONJ = 4 respectively.

The basic forms are calculated from the following analytical formilas:

z

[~ *
e sinh{i(b. +b + 1)z ]
f 7.7 % dz = & { 1o * By 7 el
o Pa L

*
i(lb_+Db_+D.)
D a J

*
sinh[i(b +b - bz ]
. P g " "37%]

*
i(fb_+Db_ -0b.)
p q J

*
sinh[i(b b+ b))z
p ~ g °j7%

+
*x

i(b_ -b_ +1.)

p a

-
sinh[i(b -b_ -b.)z
P q Jj’ e

-} (c-30)

+

*
i(b. - Db_-b.)
P q J

*
e, 4y sinh[i(b +b +b.)z ]
Z 7 7.dz = % b b P94 J e
o P2 pd i(b_ +b_ +1b.)
P q

!
1

*
sinh[i(b +b -b.)z ]
P g j’"e

*
i(b_ +b_ -1b.)
b q J

*
sinh[i(b b +b)z ]
p - g “j’%

*
i b -b + b.
(b, - by + b))

s1nh[1(b - b - b, )z ] }

i{b_-b -b
<pq>

(c-31)

Z V4

e » * € *
7.7 7.dz b2 I Z 7 7 .dz (c-32)
pJ, P79

Pay
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The remaining forms are obtaihed from Egs. (C-30) through (C-32) by replacing
the appropriate elgenvalues with their complex congugates, thus, for NOPT = 2
bq is replaced by bq, for NOPT = 3 bp is replaced with b 0’ and both bp and
bq are replaced by their conjugates for NOPT = .,

FORTRAN l1istings for Subroutines AZIMIL, RADIAL, and AXIALZ2 are given at
the end of this appendix.

Coefficients for Equivalent Real System.

Equations (12) are a system of complex differential equations to be
solved for the unknown complex amplitude functions, A (t) In order to solve
these equations numerically they must first be separated into their real and
imaginary parts. This is done by assuming that A (t) F (t) + iG (t), sub-
stituting into Egs. (12), and separating real and 1mag1nary parts to obtain
an equivalent system of real differential equations that describe the behavior
of the Fp’s and Gp's. Since these equations contain twice ags many unknown
functions (i.e., F (t) and g (t)) as hgs. (12), it is convenient to re-index

the unknown functlons and tlelr coefficients as follows:

Fp(t) = ng_l(t)

(c-33)
Gp(t) = ng(t)

Thus the B's with odd indices correspond to the real parts, b (t), and the
B's with even indices correspond to the imaginary parts, G (t) The corre-

sponding set of differential equations is given by:

dB
4 ' . I'4 4
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dal B (t-;) 2N 2N B

* “C;(J"P) at Z ) {D (3,008, Zt
p=l ¢=1

»

j=1,2,3, ...2N (C-34)

Tne real coefficients in Egs. (C-34) (i.e., CO,C C C3, and D ) are related
to the complex coefficients in Egs. (12) (i.e., Cys

3, l Du) as
follows:

4
¢, (2j-1, 2p-1)

re [0, (3,p) ]

4
¢ (25-1, 20) = -In [ (3,p) ]
(c-35)
¢(23, 2p-1) = In [C(3,p) ]
4
¢ (23, 20) = Re [ (3,)]
for k = 0,1,2,3, 3§ =1,2,...N, p=1,2,...N and

4 -

D (2j'ls2p'l)EQ'l) Re LDl(j3P,Q) + D2(j,p’Q) + D3(j’p>Q) + Du(jaP:Q)]

7
D (2j-1,2p-1,2q)

Im L—Dl(j’p’q) + Dg(j:P)Q) - D3(j,P;Q) + Du(j:P’q)]

’ _
D (gj'lﬁepaeq‘l) In ‘Dl(j,p,Q) - Dz(j,P,Q) + D3(3,P;Q) + Du(j,p>Q)]

4
D (Ej‘lazp:EQ) Re L-Dl(j’p’q) + Dg(j,P,Q) + D3(j,P,Q) - Du(jap’Q)]

1

(c-36)
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S

'
D (2j,2p-1,29-1)

M (s : . .
Im 1D, (35p50) + Dy(3,p50) + Do(3,p,q) + Du(a,p,q)]

/

D (2J >2P"laEQ)

1

Re | Dy (J5p5) - D,y(3.9,a) + Do(j,p,a) - DM(J,p,q)]

7

D (2j,2p,2q-1)

)
Be | 0y (3,2,0) + ,(3,0,0) = Dy(3,2,0) - D,(3,0,0) |

7

D (25,2p,20) = In|-Dy(3,9,) *+ Do(3,,a) + D(4,ps0) - D,(5,0,0) ]

for j = 1,2,...N, p=1,2,...N, q=1,2,...N. The linear coefficients
are stored in the arrays CL(NJ,NP) for k = O and C(KC,NJ,NP) for k = 1,2,3.
The nonlinear coefficients are stored in the array D(NJ,NP,NQ).

In general Egs. (C-34) are coupled in the second derivatives; that is,

they are of the form:

2N 2
r d B ‘ ,
z: {CO(JaP) ——52 } = j(Bl’BE""BQN) (c-37)
e at

/

where there are two or more CO terms in each equation. This coupling results

from the non-orthogonality of the axial eigenfunctions. In order to numeri-

cally integrate Egs. (C-34), they must be decoupled by transforming to the

form:

—d _ _
5 fj(Bl,Bg,...BgN) (c-38)

in which only one second derivative appears in each equation. Using Eqg.

(C-38), it is seen that Eq. (C-37) can be expressed as

Cof = & (C-39)

/

where CO is the 2N X 2N matrix of coefficients of the coupled system, f is
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the column matrix corresponding to the right-hand-side of the decoupled
system, and g is the column matrix corresponding to the right-hand-side of

the coupled system. To decouple Eqs. (C-37), therefore, Eq. (C-39) is solved
for f, thus:

f = cO g (c-L0)

where Cél is the inverse of the matrix CO. Performing these operations and

equating the coefficients of like terms in f and Colg gives the following

relations:

ON
~ . _l ’ )
¢.(Jp) = }E cg (3,%)¢; (k,p) i=1,2,3

k=12N (c-k1)
~ . _l ’
D(J:P’Q) = ZCO (.j,k)D (k>P3Cl)

k=1

where Ci and D are thflcorresponding coefficients of the decoupled system.
The matrix inverse, CO , 1s computed by the subroutine GJR, which is a
standard Univac 1108 library program, and is stored in the array C1(NJ,NP).
A listing of GJR and instructions for its use are given in Ref. (19).

The calculation of Ci(j,p) and D(j,p,q), which are the coefficients for
the equivalent set of real, decoupled equations, is the final step in the
computations performed by COEFFS3D. The coefficients are stored in the arrays
C(KC,NJ,NP) and D(NJ,NP,NQ), replacing those computed from Eqs. (C-35) and
(C-36). The output of these coefficients is described below.

Output

According to the value of the control number NOUT, the coefficients
calculated by Program COEFFS3D are printed, punched onto cards, or stored on

drum (FASTRAND). These three output modes will now be discussed indivi-
dually.

Printed Output. Since the printed output cannot be used as input to
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Program LCYC3D, the option "printed output only" (NOUT = 0O) is only used for
checkout purposes. Printed output can also be obtained in conjunction with
the drum storage mode (NOUT = 1). Since the printed output format can only
accommodate five series terms (complex), it should only be used for NJMAX < 5.

The first page of printed output gives a restatement of the input para-
meters. This page is headed by the title of the case (TITLE) which is fol-
lowed by the ratio of specific heats (GAMMA), the steady state Mach number
at the nozzle entrance (UE), the length-to-diameter ratio (L/D), and the
length of the combustion zone as a fraction of the chamber length (ZCOMB).
After statements concerning the presence or absence of the liquid droplet
momentum source and the type of nozzle considered, a restatement of the input
parameters J, L(J), M(J), N(J), NS(J), and NAME(J) which describe the terms
in the series expansion of & is given. This tabulation also includes addi-
tional parameters needed by Program LCYC3D: Smn’ the dimensionless frequen-
cy of the mode (SMN); Jm(smn)’ the associated value of the Bessel function
(JM(SMN)); the real part (EPS) and the imaginary part (ETA) of the axial
acoustic eigenvalue; and the real part (YR) and imaginary part (YI) of the
nozzle admittance. N
- The nexpvthree pages give the decoupled linear coefficients, Cl(j,p),
Cg(j,p), and CB(j,p). These coefficients are presented in the matrix format
with the rows corresponding to the index J and the columns corresponding to
Epe index p. The remaining pages give the decoupled nonlinear coefficients
D(j,p,q) for each value of j. Here the rows correspond to the index p and
the columns correspond to the index q.

A sample printed output for the five term series used in the sample

input is given in Tables (C-2) through (C-4).

Drum Storage. When available drum storage, such as the FASTRAND system

used with the Univac 1108, is the most convenient means of storing the out-
put of Program COEFFS3D. In the absence of such a system, the program can
be easily modified to store the coefficients on magnetic tape. In either
case magnetic tape can be used as a back-up file or for permanent storage
of the data. The control statements needed to execute these procedures

depend upon the computer facilities being used and cannot be described in
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this manual.

Card Output. When a drum or magnetic tape storage is not available,
punched card output can be used (NOUT = 3). This method becomes unwieldy,
however, when a large number of coefficients is involved since only one co-
efficient can be punched on a card. The format for both drum and card out-

put is the same and is given below:

Number
of Cards Location Type Output Item Comments
1 1-10 F GAMMA Same as for input.
11-20 F UE Same as for input,.
21-30 F ZE Dimensionless chamber length,
(2L/D).
31-40 F ZCOMB Same as for input.
41-45 I NDROPS Same as for input.
46-50 I NJMAX Nunber of unknown functions,
Bp(t) (see Eq. (C-34)).
NJMAX/2 1-5 I J Same as input.
6-10 I "L(J) "
11-15 I M(J) "
16-20 I w(J) "
21-25 I Ns(J) "
26-35 F s(J) Root of Bessel function, S
36-45 F SI(J) Associated value of Bessel
function, J (S ).
m' mn
L6-50 A NAME(J) Same as input.
NJMAX/2 1-5 I J Same as input.
6-15 F YR Real part of nozzle admit-
tance, Y .
r
16-25 F YI Imaginary part of nozzle
admittance, Yi'
26-35 F EPS Real part of axial eigen-
value, g.
36-45 F ETA Imaginary part of axial

eigenvalue, 7.
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Number

of Cards Location
1 1-5
KMAX(1) 1-5
6-10
11-25
1 1-5
KMAX(2) 1-5
6-10
11-25
1 1-5
KMAX(3) 1-5
6-10
11-25
1 1-5
KMAX( L) 1-5
6-10
11-15
16-30

Txpe

EHoH -

Output Item

KMAX(1) -

NJ
NP
¢(1,NJ,NP)

KMAX(2)

NJ
NP
¢(2,NJ,NP)

KMAX( 3)

NJ
NP
c(3,NJ,NP)

KMAX(4)

NJ
NP
NQ
D(NJ,NP,NQ)

Comments

Number of nonzero linear
coefficients of type Cl(J,P)-
Index, j.

Index, p.

Linear coefficient,Cl(j,p)-
Number of nonzero linear
coefficients of type Cz(j,p).
Index, j.

Index, p.

Linear coefficient, Co(J,D).
Number of nonzero linear
coefficients of type C3(j,p).
Index, j.

Index, p.

Linear coefficient, C3(j,p).
Number of nonzero nonlinear
coefficients.

Index, j.

Index, p.

Index, q.

Nonlinear coefficient,
D(3,p,a).

The first card of output gives the chamber parameters Y, ﬁe’ L/D, and

zc/ze; the droplet momentum source control number, NDROPS; and the number

of unknown real functions (i.e., B _(t)), NJMAX. This is followed by

p

NJMAX/2 cards (the number of unknown complex functions, Ap(t)) describing

the terms included in the series expansion of 3.

The next NJMAX/2 cards

gives the complex nozzle admittance (Yr and Yi) and the corresponding com-

plex axial eigenvalue (€ and T) for each complex series term.

coefficlents are given in three sets of cards.

The linear

The first card in the set

gives the number of coefficients of the given type, while the remaining
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cards give the indices j and p and the coefficient Ei(j,p). The next card
gives the number of nonlinear coefficients and is followed by cards giving
the indices j, p, g and the corresponding coefficient D(j,p,q). Both linear
and nonlinear coefficients are given in a field of 15 spaces with six deci-
mal places. For NEGL = O only the nonzero coefficients (absolute value
greater than 10—5) are given, while for NEGL = 1 only linear coefficients
with absolute value greater than SMl and nonlinear coefficients with abso-
lute value greater than SM2 are given.

A sample card output produced by the sample input of Table (C-1) is

given in Table (C-5) below.

Table C-5. Sample Card Output.

H]MIZIOHJoHHHHOIOJ o] Hlil JOIOOIOMH
JUiHHHITNi!IlIliHlHilI ]

[ Jofofolole] [ [ Jo[ [ [ o[ |
LISs[afa[7] Talolala] ]

U lil 181411 181111

LllUleHOIJlllil[LUiUJHzHHﬂHlilillHleISlin IBIOTM
LT LT[ lol [T J2[ [TT]a[ 1] []a] [ 1s]:lolslaizlel | | | ]. [4:8lelslo] Inlolzlil
HTIT‘?HIIIOHHLZIHIIilHHzIHlal IOHH JHIT‘%@IGISIOI IB|012111
UIHSMIHHIHOHIH:LHHTZIHM 181311171[1111 40‘21716U810W1ﬂ
llllJilHlILJMMIIIHOH]MHIIlolslilzlealllil?]ﬂfllillllu]
HI ]HHl]oJHMHHTO[il*‘il‘*]HJH0111|2|2HHH I+!511HIHH
HHBHHIH HHHHH MUHHHMJJH @1 MHJIH
LHIHHH]HMHIHHil‘*Jll‘rlHlllilolel.ll?HH 12151111I51IU|H
HIHSUIIllOIilﬂiLHH Hilﬂﬂ‘%lllllh’il‘?lﬂmIll2181117IHHIH
HIMHU lLlHIHIHIHIIIIHHHI‘HH HHH_IHH
UHIiHJHiHTJlI]J? BJIOISI?INHHHHHHHTM]HTHIP
LJJHHHHHHIHIHHIIHIlllHHll"Mlllllllllll‘]
[IllilfJHHilolllHUiHlGlﬂﬂ%ﬂﬂlLHlIIHHHIHHHHHB
l'HiHHhﬂHlllHllH llHllllll‘lUHlHHlll Hl
lH MTIIMIHHJIHGlikZl?lHlHlHl HIHHHHTIH
lHWITHHIH J LLI]I }lJHHHHlIHJHHHHHH

17 11T I

l
(TT ol Tl [T [[TL.Ielelsag [T [[[T11111]

TTITTITITT]
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FORTRAN Listing.

QOO0 000O00A0A0A0O0NA0NANN0NAOA0000C00 000

kR kk ok kb hkkk kX PROGRAM COEFF S3D #abakakarok ok ok sk vt 3 ok ok o 2 ok oo o o ok o e

THIS PRCGRAM COMPUTES THE COEFFICIENTS WHICH AFPEAR
IN THE DIFFERENTIAL EQUATIONS WHICH GOVERN THE MODE-AMFLI TUDE
FUNCTIONS. THESE COEFFICIENTS ARE STORED ON DRWMY OR
PUNCHED ONT0O CARDS FOR INPUT INTO PROGEAM LCYC3D.

THE FOLLOWING INPUTS ARE REQUI RED:
THE TITLE OF THE CASE.
GAMMA 1S THE SPECIFIC HEAT RATIO.
UE IS THE STEADY STATE MACH NUMBER AT THE NOZZLE ENTRANCE.
RLD IS THE LENGTH-TO-DIAMETER RATIO.
ZCOMB 15 THE LENGTH OF THE REGION OF UNIFORMLY DI STRIBUTED
COMBUSTION» EXPRESSED AS A FRACTION OF THE CHAMBER LENGTH.
NDROPS DETERMINES THE PKRESENCE OF DROPLET MOMENTUM SOURCES:
NDROPS = 0 DROPLET MOMENTUM SOURCE NEGLECTED.
NDROPS = | DROPLET MOMENTUM SQOUKRCE INCLUDED.
NOZZLE SPECIFIES THE TYPE OF NOZZLE USED:
NOZZLE = O QUASI-STEADY.
NOZZLE = CONVENTIONAL NOZZLE.
FOR CONVENTIONAL NOZZLE:
AMPL IS THE NOZZLE AMPLITUDE RATIO.
PHASE 15 THE NOZZLE PHASE SHIFT.
NJMAX IS THE NUMBER OF MODE-AMFLITUDE FUNCTIONS IN THE ASSUMED
SERIES SOLUTIONe NJMAX MUST NOT EXCEED 10.
THE COEFFICIENTS COMPUTED ARE DETERMINED BY NONLIN AS FOLLOWS:
NONLIN = Q LINEAR COEFFICIENTS ONLY.
NONLIN = 1 BOTH LINEAR AND NONLINEAR COEFFICIENTS.
COEFFICIENTS TO BE NEGLECTED ARE DETERMINED BY NEGL
AS FOLLOW S:
NEGL 0 TERMS SMALLER THAN 0.00001 ARE NEGLECTED.
NEGL 1 LINEAR TERMS SMALLER THAN SM1 AND NONLINEAR
TERMS SMALLER THAN SM2 ARE NEGLECTED.
THE OUTPUT 1S DETERMINED BY NOUT AS FOLLOWS:
NOUT = 0 PRINTED OUTFUT ONLY.
NOUT = 1 PRINTED AND STORED ON DRUM (FASTRAND FILE).
NOUT = 2 FASTRAND FILE ONLY.
NOUT = 3 CARD OUTPUT ONLY.
EACH MODE-AMPLITUDE IS ASSIGNED AN INTEGER J.
THE MODE IS SPECIFIED BY THE INDICES L(J)» M(CJ)s AND NC(J)e
L(J) IS THE AXIAL MODE NUMBER AND MUST NOT EXCEED 10.
M(J) IS THE AZIMUTHAL MODE NUMBER AND MUST NOT EXCEED 8.
NCJ) IS THE RADIAL MODE NUMBER AND MUST NOT EXCEED Se
THE INTEGER NS(J) IS ASSIGNED AS FOLLOWSS
NS = 1 A-FUNCTION SIN(M*THETA) * COSHCI*B%Z)>
NS = 2 B-FUNCTION COSCM*THETA) * COSH(I*B*Z)
NAME(J) 15 A FOUR-CHARACTER NAME.
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DIMENSION LC10)» NC10)» NAMEC10)» SC10)s SJC10)» TITLEC80)»
1 RJROOT(1055)» RJUVAL(10s5)» C1¢20,20)s C(3,20,20)»
2 D(20,20,20)» AMPLC10)» PHASEC10), AZIC(2),

3 BES1€¢9,9,9)» BES2(9,9,9)s BES3(9,959),
4 V(2), JC(20), TSC3,20), TSQC20)s KMAXC4)

COMPLEX CRSLT» Cl, ZEJ» ZEPl, ZEF2, CZE, CAZ» CRADs
1 Gl, DCOEFs CGAM, CAX» BC10)» BCC10)» YNOZC10)»
e CNORM(C10)s CSSQC10)» TANINTC2), RADINTC3)»

3 AXINTC45,3)» CCC4»,10,10)s CD1€10,105,10)»
4 CD2(10,10,10)» AX(4)» Tls, T2, Di1» D2» D3» D4»
S - CD3(10,10510)> CD4(10510,10)

COMMON B /BLK2/ M(C10)» NSC10)

DATA INPUT.

PI = 3.1415927

SM1 = 0.00001

M2 = 0.00001

Cl = (0«0s1.0)

INPUT ROOTS AND VALUES OF BESSEL FUNCTIONSe.

DATA (CRJROOT(I»Jds J = 155)s I = 1,9)/

1 3¢83171» 74015595 10173475 1332369, 1647063,

2 1484118, S5e33144s 853632, 11¢70600s 14.86359,
3 305424, 64706135 94969475 13170375 16+34752»
4 4201195 B+401524s 1134592, 14458585, 1778875,
S S¢31755, 9282405 12.68191s 1596411, 19.19603»
6 6415625 10519865 1398719, 1731284, 20.57551»
7 Te50127s 11734945 1526818, 184637445 2193172,
8 84577845 12¢93239s 16529375 19.94185, 2326805,
9 9+64742, 144115525 17774015 2122906, 24.587207/

DATA (CRJVALCI»J)s J = 1,5), 1 = 1,9)/

1 =0040276» 04300125 =0424970s 0218365 =0+19647,
2 0581875 =0434613» 0.27330» -0+23330» O0«20701»
3 048650, =0.31353» 025474, ~0+22088, 0.19794,
? ] 0443439, =0:.291165 0240745 =04210975 019042,
S5 0439965, ~0.27438s 0422959, =0+202765 O«18403»
6 037409, ~D«26109» 0422039, -0+19580s O0«17849s
7 035414, =0425017» 0212615 -018978, 0¢17363»
8 033793, ~0+24096» 0.20588, ~0+18449, 0416929,
9 032438, =0+23303» 0419998, =0:179792 0+165397

INPUT PARAMETERS.

4 READ (555000, END = 600) (TITLECI)s I = }, 72)

READ (5,5001) GAMMA, UEs RLD, ZCOMBs» NDROPS, NOZZLE
IF <(GAMMA) 6005 600, 8

8 READ (5,5004) NJMAX» NONLIN, NEGL»
IF (NEGL «EQ. 1) READ (5,5005) SMl,

NOUT
sMme



[t X2 NrNe]

aoano0an

12

15
25

20

IF (NOZZLE .EQ» 1) GO T0 5

COMPUTE ADMITTANCE FOR QUASI-STEADY NOZZLE.
Y = (GAMMA - 1.0) * UE/(2.0 * GAMMA)

DO 3 J = 1, NUMAX

AMPLCYY = ¥

PHASE(J) = 0.0

CONTINUE

GO TO 7

DO 6 I = 1, NJMAX

READ (5,5003) J» AMFL(J), PHASE(J)

CONTINUE

DO 10 I = 1, NJMAX

READ (5,5002) J» L(J), MCJ)s NCJI» NSCJI» NAMECJ)
CONTINUE

DO 12 J = 1, NJMAX

THETA = PHASE(J) * PI/180.0
YR = AMPL(J) * COSCTHETA)
YI = AMPLC(J) * SINCTHETA)
YNOZCJ) = CMPLX(YR,YI)
CONTINUE

ZE = 2.0 * RLD

CZE = CMFLX(ZE,0.0)

CGAM = CMPLX(GAMMA,(Q+0)

CAX = CGAM

IF (NDROPS .EQe 1) CAX = CGAM + (1.050.0)

#*****#***************##****#******************************#****

ASSIGN ARRAYS FOR ROOTS OF BESSEL FUNCTIONS.
DO 20 J = 1, NJMAX

IF ((M(J) +EQe 0) «ANDe (NCJ) <EQe 0)) GO TO 15
MM = M(J) + |

NN = NCJ)

SCJ) = RJROOT(MM,NN).

SJCJ) = RJVAL (MM, NN)

GO TO 25 )

SCJ)Y = Q.0

SJCJ) = 1.0 .

S5Q = S(J) * S(J)

CS5Q(J) = CMPLXCSS0,0.0)
CONTINUE

************t***#*****************************************#*##*#
CALCULATE AXIAL ACOUSTIC EIGENVALUES.

FIND MAXIMUM VALUES OF L(J)» M(J)s» AND NCJ).
KN = 9
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30

40

105

112

120

125

LMAX = ¢

MMAX = 0

NMAX = 0

DO 30 J = 1, NuMAX

IF (LCJ) <GT. LMAX) LMAX = LD
IF (MC(J) .GT. MMAX) MMAX MDD
IF (NCJ) «GT. NMAX) NMAX = NI
IF (NCJ) «NEe NC12) KN = 1|
CONTINUE

LMAX = LMAX + |

MMAX = MMAX + 1}

COMPUTE EIGENVALUES.

DO 40 J = 1, NJMAX

LL = LCD)

SMN = S(J)

YAMPL = AMPL(J)

YPHASE = PHASE(J)

CALL EIGVAL(LL:SMN:GAMMAuZE:YAMPLoYPHASE:CRSLT)
B(J) = CRSLT

BC(J) = CONJG(CRSLT)

CONTINUE

*******!HHHI*********#*t*********#*#***t#ttt******t**tt****#t**tt
CALCULATE LINEAR COEFFICIENTS.

DO 100 NJ = 1, NJMAX
DO 100 NP = 1, NJMAX

ZERO COEFFICIENT ARRAYS.
DO 105 KC = 1, 4
CCCKCsNJUsNP) = (0+0,040)
CONTINUE

ORTHOGONALITY PROPERTY OF TANGENTIAL EIGENFUNCTIONS.
IF ¢ NSC(NP) o«NE. NSC(NJ) ) GO TO 100

IF (M(NP) «NE. M(NJ)) GO TO 100

IF (M(NJ) «EQ. . 0) GO 70 112

AZ = p]

GO TO 120

IF ¢ NSC(NJ) <EQ. 1) GO TO 100

AZ = 2.0 * PI

ORTHOGONALITY PROPERTY OF RADIAL EIGENFUNCTIONS.
IF (NCNP) «NE. NC(NJ)) GO TO0 100

IF (S(NP)) 125, 122, 125

SQM = M(NJ) * MCNJ)

S5Q = SC(NP) * S(NP)

SJSQ = SJC(NJ) = SJ(N )
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122

127

130

100

140

RAD = (SSQ - S@M) % SJSQ/(2.0 * S5Q)
GO TO 127
RAD = 0.5

CALCULATE AXIAL INTEGRALS.

DO 130 NOPT = 1, 4

CALL AXIAL1(NOPT,NPsNJsUE»ZE,ZCOMB, CRSLT)
AXC(NOPT) = CRSLT

CONTINUE

EVALUATE FUNCTIONS AT NOZZLE END.

ZEJ = CCOSH(CI*BC(NJ)*CZE)

ZEP] = CCOSH(CI*B(NP)*CZE)

ZEP2 = CI * B(NP) * CSINHCCI*B(NP)*CZE)

CAZ = CMPLXCAZ,0.0)
CRAD = CMPLX(RAD»0.0)

COEFFICIENT OF THE SECOND DERIVATIVE OF A(CP)e.
CCC(1,NJ»NP) = AX(1) * CAZ * CRAD

COEFFICIENT OF A(P).
CC(2,NJ>NP) = (CSSQINPI*AX(1) = AX(2) + ZEP2%ZEJ) * CAZ * CRAD

COEFFICIENT OF THE FIRST DERIVATIVE OF ACP).
CCC3sNJsNP) = (CAX*AX(3) + (2¢0,0+0)%AXC4)
+ CGAM*YNOZ(NP)*ZEP1*ZEJ) * CAZ * CRAD

COEFFICIENT OF THE RETARDED DERIVATIVE OF ACP).
CCC4,NJ,NP) = CGAM * AX(3) * CAZ * CRAD

CONTINUE

NORMALIZE LINEAR COEFFICIENTSe

DO 140 NJ = 1, NJMAX

CNORM(NJ) = CC(1,NJ>NJ)

DO 140 NP = 1, NJMAX

DO 140 KC = 1, 4

CCC(KCsNJsNP) = CCCKCsNJsNP)/CNORMINJ)
CONTINUE

N AR RN KRR R A AR AR AR A AR A A A A AR Aok Rk KRR AR
COMPUTE NONLINEAR COEFFICIENTS.

IF (NONLIN .E@. 0> GO TO 402
Gl = (CGAM = (1¢050¢0)) * (0¢5,0.0)

COMPUTATIONS OF BESSEL INTEGRALS WHEN ALL SERIES TERMS HAVE THE
SAME RADIAL MODE NLMBER N(CJ).

P



IF CKN «EQ. 1) GO TO 170

DO 150 MP = 1, MMAX

DO 150 MQ = 1, MMAX

DO 150 MJ = i, MMAX

BES1(MP,MQsMJ) = Q.0

BES2(MP.MQ,MJ) =

BES3C(MP,MQ,MJ) =

Ll = MP - |

L2 = MQ ~

L3 = MJ -

LM = L1 + L2
= L] ¢+
MN = L2 + L3
IF CC(L3<EQeLM) «0Re (L2+EQ¢LN) .ORe¢ (L1.EQ.MN)) GO TO 160
GO TO 150

160 IF (NMAX +EQ. 0) GO TO 165
Al = RJROO TC(MP,NMAX)

A2 = RJROOT(MQ,NMAX)
A3 = RJROO T(MJs,NMAX)
GO TO 167

165 Al = Q0.0
A2 = Q.0
A3 = 0.0

167 CALL RADIAL(C1,L1,L2,L3,A1,A2,A3,RESULT)
BES1(MP»MQsMJ) = RESULT
CALL RADIAL(2,L1,L2,L3,A1,A2,A3,RESULT)
BES2(MP,MQsMJ) = RESULT
CALL RADIAL(C3,L1,L2,L3,A1,A2,A3,RESULT)
BES3(MP,MQ,MJ) = RESULT

150 CONTINUE

170 DO 200 NJ = 1, NJMAX
DO 200 NP = 1, NJMAX
DO 200 NG = 1, NJMAX

CD1(NJsNPsNQ) = (0+0,0.0)
CD2(NJsNPsNQ) = (0+020.0)

DO 210 U = 1, 2

CALL AZ1NTL(JsNPsNQsNJs RESULT)

AZ1C(J) = RESULT

TANINTC(J) = CMPLXC(RESULT»0.0)
210 CONTINUE

IF CAZIC1)) 220, 225, 220
225 IF (AZI(2)) 220, 200, 220

220 IF (KN .EQ. 0) GO TO 222
L1l = M(NP)
L2 = MC(NQ)
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244

242

240

250
200

402

L3 = M(NJ)
Al = S(NP)
A2 = S(NQ)
A3 = S(NJ)
GO TO 244

MF = M(NP) + 1
M@ = MC(NQ) + 1
MJ = M(NJ) + 1

RADINTC(1) = CMPLX(BES1(MP,MQsMJ)»0.0) P
RADINT(2) = CMPLX(BES2(MP,MQsMJ)»0.0)
RADINT(3) = CMPLX(BES3(MP,sMQsMJ)>0.0)

DO 240 J = 15 3

IF (KN «EQ. 0) GO TO 242

CALL RADIAL (JsL1,L2,L3,A1,A2,A3,RESULT)
RADINT(J) = CMPLXCRESULT»0.0)

DO 240 NC = 1,4

CALL AXIAL2(JsNCsNPsNQsNJsZEs CRSLT)
AXINT(NC,J) = CRSLT

CONTINUE

DO 250 J = 1,4
Gl * CSSQ(NF) * AXINT(Js1)

Gl * AXINT(J»3)

AXINTCJs 1) * TANINTC1) * RADINTC(3)

AXINT(J»1) * TANINT(2) * RADINT(2)

AXINTC(J»2) * TANINTC1) * RADINTC1)

D4 = (T2 - T1) * TANINTC1) * RADINTC1)

DCOEF = (0+550.0) * (D1 + D2 + D3 + D4)/CNORM(NJ)
IF (J «EQ« 1) CDI(NJ,NP,NQ)

(=}
—
ny Nnw

= (105-1.0) * DCOEF
IF (J «EQe 2) CD2(NJsNPsNQ) = (1.051.0) * DCOEF
IF (J <EQe 3) CD3(NJUSNP>NQ) = (l1e0s10) * DCOEF
IF (J «EQe 4) CD4(NJsNPsNQ) = (1+0s=1+0) * DCOEF
CONTINUE
CONTINUE

e e R L R el Ll L LT D I 2 g P,
CALCULATE COEFFICIENTS FOR EQUIVALENT REAL SYSTEM.

DO 350 NJ = 1, NJMAX
NEWJ = (2 * NJ) - 1|
NEWJ1 = NEWJ + 1

DO 350 NP = 1, NJMAX
NEWP = (2 * NP) = 1
NEWP1 = NEWP + 1

COEFFICIENTS OF LINEAR TERMSe
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CCR = REAL(CC(1,NJ,NP))
CCI = AIMAGCCCC1,NJU,NP))
C1(NEWJ,NEWF) = CCR
CIC(NEWJ,NEWP1) = -CCI
C1(NEWJ1,NEWP) = CCI
CI1C(NEWJI,NEWF1) = CCR
DO 360 KC = 1,3
CCR = REAL(CC(KC+1,NJ,NP))
CCI = AIMAGCCCC(KC+1,NJsNP))
C(KC,NEWJ,NEWP) = CCR
CCKC,NEWJsSNEWP1) = «CCI
C(KC,NEWJ1,NEWP) = CCI
C(KC,NEWJ1,NEWP1) = CCR
360 CONTINUE

COEFFICIENTS OF NONLINEAR TERMS.

IF (NONLIN .EQ. 0) GO TO 350

B0 370 N@ = 1, NuMAX

NEWQ = (2 * NQ) -

NEWQ1 = NEWQ + |

CDIR = REALCCD1(NJ,NP,N@))

CD1I = AIMAGCCDI1C(NJ,NPsNQ))

CD2R = REAL(CD2(NJ,NP,NQ))

CD2I = AIMAG(CD2(NJ,NF,N@))

CD3R = REAL(CD3(NJ,NP,NQ))

CD3I = AIMAG(CD3(NJ,NP,NQ))

CD4R = REAL(CD4(NJ,NP,NQ))
CDAl = AIMAGCCD4(NJ,NP,NQ))
D(NEWJ,NEWP,NEWQ) = CDIR + CD2R + CD3R + CD4R
D(NEWJ,NEWP,NEWQ1) = -CDI1I + CDh21 - CD3I + CD4l
D(NEWJ,NEWP1,NEWQ) = =CD]] = Cbel + CD31 + CcD4I
D(NEWJ,NEWP1,NEWQ1) = -CDIR + CD2R + CD3R - CD4R
D(NEWJI,NEWP,NEWQ) = CDII + €Dh2I + CD3I + CD4l
D(NEWJ1,NEWP,NEWQ1) = CDIR - CD2R + CD3R - CD4R
D(NEWJ1,NEWP1,NEW@) = CDIR + CD2R =~ CD3R - CD4R
D(NEWJ1,NEWP1,NEWQl) = =-CDII + cbal + CD3I - Ccp4l

370 CONTINUE

350 CONTINUE

****t******#**}##*###‘**********#**##**#**#*********##****t*#**t

COMPUTE COEFFICIENTS FOR THE EQUATIONS WHICH ARE DECOUFLED
IN THE SECOND DERIVATIVES.

DO 405 KC = ], 4
KMAX(KC) = ¢
405 CONTINUE

CALCULATE INVERSE OF THE MATRIX Cl(I,J)e
JMAX = NJMAX
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420

430

440

445
415

410

NJMAX = 2 * NJMAX

Vil) = |
CALL GJR(C1520520sNJMAX205%$5005JCs V)

USE INVERSE TO CALCULATE DECOUPLED COEFFICIENTS.
DO 410 NP = 1, NJMAX

LINEAR COEFFICIENTS.

DO 420 NJ = 1, NJMAX

DO 420 KC = 1, 3

TSCKC,NJ) = 0.0

DO 420 K = 1, NJMAX

TSCKCsNJ) = TSCKCsNJ) + CIC(NJ,K) * CCKCs»K»NP)
CONTINUE i

DO 430 NJ = 1, NJMAX

DO 430 KC = 1, 3

CCKCo»NJ»NP) = TSCKC,NJ)

ABSVAL = ABSC(C(KCs»NJsNP))

IF CABSVAL +GE. SM1) KMAXCKC) = KMAXCKC) + 1
CONTINUE

NONLINEAR COEFFICIENTS.

IF (NONLIN «EQs 0) GO T0 410

DO 415 NQ = 1, NJMAX

DO 440 NJ = 1, NJMAX

TSQI(NJ) = 0.0

DO 440 K = 1, NJMAX

TSQ(NJ) = TSQINJ)Y + CI(NJsK) * DCKsNP,NQ)
CONTINUE

DO 445 NJ = 1, NJMAX

DC(NJ>NPsN@> = TSQ(NJ)

ABSVAL = ABS(D(NJsNP>NQ))

IF (ABSVAL +.GE. SM2) KMAX(4) = KMAX(C4) + 1}
CONTINUE ’

CONTINUE

CONTINUE

N Rk ok oo ok ok koK ok A ook oo o o e ok ok o ok ko Ao ok Ak ok ok ok K kK ko ko ko
OUTPUT.

IF (NOUT «GE. 2) GO TO 455
PRINTED OUTPUT.
WRITE €6,6001) (TITLECI), I = 1, 72)

WRITE (6,6002) GAMMA> UE, RLD» ZCOMB
IF C(NDROPS «EQs 0) WRITE (6,6020)

I
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IF (NDROPS +EQ.
IF (NOZZLE +EQ.
WRITE (62,6004)
DO 310 J = 1,

WRITE (6,6003)

310 CONTINUE

1
0

WRITE (6.,6021)
WRITE (6,6012)

JMAX

NAMECJ),
SCJ),

Js LCJ)s MCJIs» NCJ)»
SJ(J)» BCJ), YNOZ(CJ)

NSCJI»

IF (NONLIN «EQ< 0) WRITE (6,6013)
Cc
C OUTPUT OF LINEAR COEFFICIENTS.
PO 320 KC = 1, 3 ’
IF (KC «EQe¢ 1) WRITE (6,6005)
IF (KC +EQe 2) WRITE (626006)
IF (KC +EQ¢ 3) WRITE (6,6007)
WRITE (6,6008) (Js J = 1, NJMAX)
VRITE (6,6014)
DO 320 NJ = 1, NJMAX
WRITE (656009) NJ» (CCKCsNJ»NP)» NP = 1, NJMAX)
320 CONTINUE
C
C OUTPUT OF NONLINEAR COEFFICIENTSe.
IF (NONLIN «EQe 0) GO TO 452
DO 400 NJ = 1, NJMAX
VRITE (6,6010) NJ
WRITE (6,6011) (Js» J = 1, NJMAX)
WRITE (656015)
DO 400 NP = 1, NJMAX
WRITE (656009) NP» (D(NJ>NPsNQ), N@ = 1, NJMAX)
400 CONTINUE
452 IF (NOUT «EQe 0) GO TO 4
Cc
455 IF (NOUT <EQ. 3) GO TO 480
(v
C WRITE COEFFICIENTS ON FASTRAND FILE.
C
WRITE (9,7001) GAMMA, UE, ZE, ZCOMB» NDROPS, NJMAX
c ;
DO 4S50 J = 1, JMAX
VRITE €(9,7002) J» LC(J)» M(J)s NC(JI)s» NSCJI» SCJ)s SJCJ)»
1 NAMEC(J)
450 CONTINUE
C
DO 457 J = 1, JMAX
VRITE (9,7006) J, YNOZ(J)» BC(J)
457 CONTINUE
C
DO 460 KC = 1, 3
WVRITE (9,7003) KMAX(KC)
DO 460 NJ = 1, NJMAX
DO 460 NP = 1, NJMaX




ABSVAL = ABS(C(HKCsNJ»NP))
IF (ABSVAL .GE. SM1) WRITE (9,7004) NJ» NP, C(KCs»NJ>NP)

460 CONTINUE
c
WRITE (9,7003) KMAX(CQ)
IF (NONLIN «.EQ. 0) GO T0 4
DO 470 NJ = 1, NJMAX
DO 470 NP = 1, NJMAX
DO 470 NQ = 1., NJMAX
ABSVAL = ABS(D(NJ,NP,N@))
IF CABSVAL «GEe SM2) WRITE €9,7005) NJ» NP, NQ, D(NJ>NP,s NQ)
470 CONTINUE
GO TO 4
c
C PUNCHED CARD OUTPUT.
c
480 PUNCH 7001 GAMMA, UE, ZE, ZCOMB, NDROPS, NJMAX
c
DO 482 U = 1, Jmax
PUNCH 7002 J, LCJ), M(J), NCJI)» NSCJI» SCUIs SUCd),
1 NAME(J)
482 CONTINUE
DO 484 J = 1, uMax
PUNCH 7006 J» YNOZ(J), B(J)
484 CONTINUE
c
DO 486 KC = 1, 3
PUNCH 7003 KMAXCKC)
DO 486 NJ = 1, NJMAX
DO 486 NP = 1, NJMAX
ABSVAL = ABSCC(KC,NJ,NP))
IF (ABSVAL +GE. SM1) PUNCH 7004 NJ» NP, CC(KC,NJ>NP)
486 CONTINUE
C
PUNCH 7003 KMAX(4)
IF (NONLIN .EQ. 0) GO TO 4
DO 488 NJ = '}, NuMax
DO 488 NP = 1, NuMAX
DO 488 NO@ = 1, NyMAX
ABSVAL = ABS(D(NJ,NP,N@))
IF (ABSVAL +GE. SM2) PUNCH 7005 NJ» NP, NQ, DC(NJ,NF,NQ)
488 CONTINUE
GO TO 4
c
c ERROR EXIT
S00 IF (JCC1)) 510, 510, S20
510 JC(1) = ABS(JCC1))

WRITE €6,6017) Jc(1)
GO TO 4
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520 WRITE (6,6018) JC(1)
GO TO 4
600 CONTINUE
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FORMAT SPECIFICATIONS.

5000 FORMAT (72A1)

5001 FORMAT (4F10.0.215)

5002 FORMAT (515,1X,A4)

$003 FORMAT (15,2F10.0)

5004 FORMAT (€415)

5005 FORMAT (2F10.0)

6001 FORMAT (C1lH1,1X»72A17/7)

6002 FORMAT (2X,8HGAMMA = ,FS¢2s,5Xs SHUE = »F5¢25 SXs6HL/D = ,F8+5,»
i 5X»8HZCOMB = ,F5.2/)

6003 FORMAT (2X,A4,515s6F10+5/)

6004 FORMAT (2X////2X,29HNAME J L M N N S» 7Xs 3HSMN, 3X»
1 THJIMCSMN) » 7Xs 3HEP S, 7Xs 3HETA» 8X» 2HYR, 8X, 2HY1/7/)

600S FORMAT (1H1,45H DECOUPLED COEFFICIENT OF B(P)s CCladsPIr2/)

6006 FORMAT (1H1,44H DECOUPLED COEFFICIENT OF THE DERIVATIVE OF.»
1 6H B(P)1,5X,8HC(2sJsP)///)

6007 FORMAT (1H1,39H DECOUPLED COEFFICIENT OF THE RETARDED,
1 20H DERIVATIVE OF BC(P)2,5Xs8HC(3.,JsP)/77)

6008 FORMAT (7X, 1HF»18,9112)

6009 FORMAT (2X//2X»13,3Xs10F12.6)

6010 FORMAT (1H1,42H DECOUPLED COEFFICIENT OF BC(P) %* DB(Q)/DT»
1 19H IN EQUATION FOR B(s12,1H)/7/)

6011 FORMAT (7X,1HQ,18,9112)

6012 FORMAT (2X,19HQUASI-STEADY NOZZLE/)

6013 FORMAT (2X//2X»24HLINEAR COEFFICIENTS ONLY)

6014 FORMAT (4%, 1HJ)

6015 FORMAT (4X,1HF)

6017 FORMAT (1H1,31H OVERFLOVW DETECTED» LAST ROW = ,15)

6018 FORMAT (1H1,34H SINGULARITY DETECTED, LAST ROW = ,195)

6020 FORMAT (2X,*DROPLET MOMENTUM SOURCE NEGLECTED'/)

6021 FORMAT (2X, 'DROPLET MOMENTUM SOURCE INCLUDED'/)

7001 FORMAT (4F10+5,215)

7002 FORMAT (515,2F10+5,1XsA4)

7003 FORMAT (15)

7004 FORMAT (215sF15¢6)

7005 FORMAT (315,F15+6)

7006 FORMAT (IS5,4F10.5)
END
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SUBROUTINE EIGVAL(L, SMN»GAMMA,ZE» YAMPL» YPHASEs RESULT)

COMPLEX RESULT
COMMON /BLK1l/ GSQ» ABSQs ALBET, SMNSQ

**t**************##***#******************#*****#*t*#****#*#*******

THIS SUBROUTINE COMPUTES THE COMFLEX AXIAL ACOUSTIC EIGENVALUES
FOR A CYLINDRICAL CHAMBER WITH A NOZZLE AND STORES THEM IN
RESULTe.

THE EIGENVALUES ARE COMPUTED BY MEANS OF NEWTONS METHOD.

THE INPUT PARAMETERS ARE AS FOLLOWSS

L IS THE AXTAL MODE NUVBER.

SMN 1S THE DIMENSIONLESS ACOUSTIC FREQUENCY.
GAMMA IS THE SPECIFIC HEAT RATIO.

ZE IS THE LENGTH-TO-RADIUS RATIO.

YAMPL 1S THE NOZZLE AMPLITUDE FACTOR.
YPHASE IS THE NOZZLE PHASE SHIFT IN DEGREES.

#f***#********************t********************************##**#**

Pl = 3.1415927
ERR = 0.0000001

IF CYAMPL) Ss 60, S

CALCULATE CONSTANTS.

PHASE = YPHASE * PI/180+0

ALPHA = YAMPL * COSCPHASE)

BETA = YAMPL * SINCPHASE)

GSQ = GAMMA * GAMMA

ABSQ = (ALPHA * ALPHA) - (BETA * BETA)
ALBET = ALPHA * BETA

SMNSQ = SMN * SMN

ASSIGN INITIAL GUESS FOR EIGENVALUE.
IF (L .EQ. 0) GO TO 45
RL =L

PHI = Pl1/2.0 + PHASE

XM = RL * PI/ZE

A = YAMPL/ZE

X0 = XM + A*COSCPHI)

Y0 = A*SIN(PHI)

GO TO 47

PHI = Pl/4.0 + 0«5%*PHASE
A = YAMPL * 10.0/ZE

X0 = A * COSCPHI)

YO = A x SINCPHI)

ITERATION USING NEWTONS METHOD FOR A SYSTEM OF TWO EQUATIONS
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60

10
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IN TWO UNKNOWNS.

L1 =0
X = X0
Y = Y0

CALL FCNS(X:Y:ZE:F:G:FX:FY:GX:GY)

1F CL1
RJFG =
IF C(RJF

«EQs 40) GO TO S0
(FX * GY) - (GX x FY)
G) 20, 30, 20

DELTAX = (-F * GY + G * FY)/RJFG
DELTAY = (=G * FX + F & GX)/RJFG

Ll = L1
X=X+
Y=Y+

+ 1
DELTAX
DEL TAY

TEST FOR CONVERGENCE.

IF (ABS

(DELTAX) «GEe ERR «ORe ABSC(DELTAY) +GEe ERR) GO TO 40

GO TO 10

WARNING

MESSAGES

VRITE (6,6005)
GO T0 10

WRITE ¢

656006)

GO TO 10

CASE OF
RL = L

HARD VWALL (YAMPL = ().

X = RL * P1/ZE

Y = 0.0

RESULT = CMPLX(X,Y)

FORMAT
FORMAT
FORMAT
RETURN
END

SPECIFICATIONS.
(2X//2X» 16HJACOBIAN 1S ZERO//)
(2X//2X» 3SHFAILED TO CONVERGE IN 40 I TERATIONS//)



Qa6

[sEsNeNel

aQaaon

10

20

SUBROUTINE FCNS(XsYsZEsF»GsFX»FY»GXsGY)

THIS SUBROUTINE COMPUTES THE FUNCTIONS F(X,Y) AND G(X,Y)
AND THEIR PARTIAL DERIVATIVES WITH RESPECT TO X AND Y.

COMMON /BLK1/ GSQ» ABSQs, ALBET, SMNSQ

COMPUTE THE TRIGONOMETRIC FUNCTIONS., THE HYPERBOLIC FUNCTIONS
AND THEIR SQUARES.

I =1

ARGX = ZE * X
ARGY = ZE * Y

SX = SINCARGX)

CX = COSCARGX)>
SHY = SINHCARGY)
CHY = COSHCARGY)
IF (I «EQ. 2) GO TO 20
SXS5@ = SX * SX
CXsSQ = CX * CX
SHYSQ = SHY * SHY
CHYSQ = CHY * CHY
ARGX = 2.0 * ARGX
ARGY = 2.0 * ARGY
1 =2

GO TO 10

COMPUTE TRANSCENDENTAL FUNCTIONS AND THEIR DERIVATIVES

FF = (SXSQ * CHYSQ) - (CXSQ * SHYSQ)
GG = (CXSQ * CHYSQ) - (SXSQ * SHYSQ)
HH = 0425 * SX * SHY

FFX = ZE * SX * CHY

GGY = ZE * CX * SHY

FFY = -GGY

GGX = =-FFX

HHX = Q+5 * GGY

HHY = 0.5 x FFX

COMPUTE FACTORS

XYSQ = (X * X) = (Y =» Y)

XY = X xY

SMNXY = SMNSQ + XYS@Q

Fl = (ABSQ * SMNXY) - (4.0 * ALBET * XY)
F2 = (ALBET * SMNXY) + (ABSQO * XY)

Gl = (ABSQ * SMNXY) + (440 * ALBET * XY)

FX1 = (2.0 * X % ABSQ) = (4.0 * ALBET = Y)
FX2 = (2.0 * X * ALBET) + (ABSQ * Y

FY1l = (-2.0 *# Y % A3SQ) =« (4.0 # ALBET * X)
FY2 = (-2.0 * Y = ALBET) + (ABSQ * X)
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GX1 = (2.0 * X * ABSQ) + (4.0 * ALBET * Y)
GYl = (~2.0 * Y * ABSQ) + (4.0 * ALBET * X)

COMPUTE F(X»Y) AND G(X,Y)

F = (XYSQ * FF) = (4.0 * XY * HH)

*+ GSQ@ * ((F1 * GG) + (4.0 * F2 * HH))
G = (XYSQ * HH) + (XY * FF)

+ GSQ * ((F2 * GG) - (G1 =* HH))

COMPUTE THE PARTIAL DERIVATIVES OF F AND G

FX = (2.0 * X * FF) + (XYSQ * FFX)

=40 * ((Y * HH) + (XY * HHX))

+ GSQ * ((FX1 * GG) + (F1 x* GGX)

+ €40 * FX2 * HH) + (4.0 % F2 * HHX))
FY = (~2.0 * Y * FF) + (XYSQ * FFY)

=4¢0 * ((X * HH) + (XY * HHY))

+ GSQ@ * ((FYl * GG) + (Fl * GGY)

+ (4.0 * FY2 * HH) + (440 % F2 * HHY))
GX = (2.0 * X * HH) + (XYSQ * HHX)

+ (Y * FF) + (XY % FFX)

+ GSQ * ((FX2 * GG) + (F2 % GGX)

=(GX1 * HH) = (Gl * HHX))
GY = (-2.0 * Y *» HH) + (XYSQ * HHY)

+ (X * FF) + (XY * FFY)

2 + G5Q * ((FY2 * GG) + (F2 = GGY?

3

=C(GY1 * HH) = (Gl * HHY))
RETURN
END
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SUBROUTINE AXIAL1(NOPT,NPsNJ»UE,ZE»ZCOMB, RESULT)

THIS SUBROUTINE CALCULATES THE INTEGRAL OVER THE INTERVAL
(0,»ZE) OF THE FOLLOWING FUNCTIONS ACCORDING TO THE VALUE
OF NOPT:

NOPT = 1 Z(NP) * ZC(NJ)
NOPT = 2 ZPP(NP) * ZC(NJ)
NOPT = 3 UP * Z(NP) * ZC(NJ)
NOPT = 4 U * ZP(NP) * ZC(NJ)

IN THE ABOVE EQUATIONS:

Z(NP) IS THE AXIAL ACOUSTIC EIGENFUNCTION OF INDEX NP.

Z(NJ) IS THE AXIAL ACOUSTIC EIGENFUNCTION OF INDEX NJe.

ZC 1S5 THE COMFLEX CONJUGATE OF THE AXIAL EIGENFUNCTION.

ZP AND ZPP ARE THE FIRST AND SECOND DERIVATIVES OF THE

AXIAL EIGENFUNCTIONS RESPECTIVELY.

U IS THE STEADY STATE VELOCITY DISTRIBUTION AND UP IS ITS
AXIAL DERIVATIVE.

THE VELOCITY DISTRIBUTION IS COMPUTED BY THE SUBROUTINE UBARe.

REAL MAG

COMPLEX CI, CZE, BP, BJ» Ti» T2, CH» Fls F2, F3» CZ» ARG,
1 S1ls» 52, S3» RESULT, FUNCTCS00), BC10)

COMMON B

Cl = (0051.0)

CZE = CMPLX(ZE,0.0)
BP = B(NP)

BJ = CONJG(B(NJ))

IF (NOFT «GT. 2) GO TO S0

CALCULATE INTEGRALS BY MEANS OF ANALYTICAL EXPRESSIONS FOR
NOPT = 1 AND NOPT = 2.

ARG = (BP + BJ) * CI

MAG = CABS(ARG)

IF (MAG) 20, 25, 20

Tl = CSINHCARG*CZE)/ARG
GO TO 30

Tl = CZE

ARG = (BP - BJ) * (Il

MAG = CABS(ARG)

IF (MAG) 35, 40, 35

T2 = CSINHC(ARG*CZE) /ARG

60 TO 45

T2 = CZE

RESULT = (Tl + T2) * (0¢5,0.0)

IF (NOPT «E@e 2) RESULT = ~B(NP) * B(NP) * RESILT
GO TO 100
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NUMERICAL EVALUATION OF INTEGRALS FOR NOPT = 3 AND NOPT = 4.

COMPUTE STEP SIZE FOR SIMPSON INTEGRATION.
N = S0

RN = N

RESULT = (0.0,0.0)

IC = ZCoMB

IC = 2 - IC

DO 90 J = 1, IC

IF (J «EQes 1) H = ZCOMB * ZE/RN

IF CJ «EQe 2) H = (1.0 - ZCOMB) * ZE/RN
IF CJ «EQe 1) ZO = 0.0

IF (J «<EQe 2) 20 = ZCOMB * ZE

NPl = N + |

CH = CMPLX(H,0.0)

COMPUTE INTEGRANDS.

DO 60 1 = 1, NP1

STEP = [ - 1}

Z = (STEP * H) + 20

IF (CI<EQel) «ANDe (JeEQe2)) Z = Z + H/7100.0
IF (NOPT +EQ. 3) CALL UBAR(2,UE,ZE,ZCOMB»Z,F)
IF (NOPT «EQ. 4) CALL UBARC 1, UE»ZE»ZCOMB»Z, F)
Fl = CMPLX(F,0.0)

CZ = CMPLX(Z,0.0)

ARG = CI * BP

IF (NOPT «EQe 3) F2 = CCOSH(CARG*CZ)

IF (NOPT «EQe. 4) F2 = ARG * CSINHCARG*CZ)

ARG = CI * BJ

F3 = CCOSHCARG*CZ)

FUNCT(I) = F1 * F2 % F3

CONTINUE

PERFORM SIMPSON INTEGRATION.
NM]l = N - |

S1 = FUNCTC1) + FUNCTC(NP1)
S2 = (0¢050.0)

S3 = (0.0,0.0)

DO 701 = 2, N» 2

S2 = S2 + FUNCT(I)
CONTINUE

DO 801 = 3, NM1, 2

S3 = S3 + FUNCT(I)
CONTINUE

RESULT = RESULT +

CH * (S1 + (€4.0,0.0)%52 + (2¢050+0)%53)/(¢3.050.0)

90 CONTINUE

100 CONTINUE

RETURN
END
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SUBROUTINE UBARCNOPT» UE,ZE,ZCOMB,»Z, RESULT)

THIS SUBROUTINE CALCULATES THE STEADY STATE VELOCITY
DISTRIBUTION FOR UNIFORMLY DI STRIBUTED COMBUSTION COMPLETED AT
Z = ZCOMB * ZE WHERE:

UE IS THE EXIT MACH NUMBER.

ZE IS THE DIMENSIONLESS LENGTH.

Z 1S5 THE AXIAL COORDINATE.

IF NOPT = | THE DISTRIBUTION IS CALCULATED.
1F NOPT = 2 THE DERIVATIVE 1S CALCULATEDe
IF NOPT = 3 THE SECOND DERIVATIVE IS CALCULATED.

ECZ = ZCOMB * ZE
GO TO ¢10-,20,30)s NOPT

IF (Z +LEe« ECZ) RESULT = UE * Z/ECZ
IF (Z «GT. ECZ) RESULT = UE

GO TO 40

IF (Z «LE. ECZ) RESULT = UE/ECZ

IF €Z +GTs ECZ) RESULT = 0.0
GO TO 40

RESULT = 0.0

CONTINUE

RETURN

END
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SUBROUTINE AZIMTLC(NOPT,NP,NQsNJ» RESW T

DIMENSION NFCNC3), SG(2)
COMMON /BLK2/ MC10), NSC1OD

**#***********#**#****#**************#***##***#***‘#**t#*##***##**

THIS SUBROUTINE CALCULATES THE INTEGRAL OVER THE INTERVAL
(0, 2%xP1) OF THE FOLLOWING FUNCTIONS ACCORDING TO THE VALUE
OF NOPT:

NOPT = 1| THCNP) * THCNQ) * TH(NJ)
NOPT = 2 THP(NP) * THP(NG@) * TH(NJ)

IN THE ABOVE EQUATIONS:

TH(NP)» TH(NQ>» AND TH(NJ) ARE THE TANGENTIAL EIGENFUNCTIONS
AND NP» NQ, AND NJ ARE THEIR INDICESe. ’

THP 1S THE DERIVATIVE OF THE TANGENTIAL EIGENFUNCTIONS.

IF NS = 1 TH = SIN(M*THETA)
IF NS = 2 TH = COS(M*THETA)

***‘**#**#**##***##**#***************##**#**#*****##t*********##t*

RESULT = 0.0
FACTOR = 1.0
Pl = 3.1415027

DISTINGUISH BETWEEN SINES AND COSINES.
DO 10 K1 = 1, 3

NFCN(K1) = |

CONTINUE

IF  (NS(NJ)«EQe2) NFCN(3) = 2

IF (NOPT «EQ. 2) GO TO 20

IF  (NS(NP)«EQ.2) NFCN(1) = 2

IF  (NS(NQ@).EQ.2) NFCN(2) = 2

GO TO 30

IF  (NS(NP)«E@e1) NFCNC1) = 2

IF (NS(N@)<E@e1) NFCN(2) = 2

DO 40 K1 = 1,2

SGCK1) = 1.0

IF (NFCNCK1) «EQe 1) SG(K1) = =-1.0
CONTINUE

FACTOR = SG(1) * SG(2) * MCNP) * M(NQ)

NSUM = O

DO 50 K1 = 1, 3

NSUM = NSUM + NFCN(K1)
CONTINUE
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IF ((NSWM +EQe 3) «ORe (NSUM +EQe 5)) GO TO 60
IF (NSUM «EQe 4) GO TO 70
IF (NSUM «.EQ. 6 GO TO 80

KOPT = 2

IF (NFCNC1) +EQ. 2) GO TO 72
GO TO 74

LL = MCNP)

MM = MCNQ)

NN = MC(NJ)

GO TO 90

IF (NFCN(2) +EQs 2) GO TO 76
GO TO 78

LL = MC(NQ)

MM = MCNP)

NN = M(NJ)

GO TO S0

LL = MCNJ)

MM = M(NP)

NN = MC(NQ)

GO TO 90

KOPT = 1

LL = MI(NP)
MM = M(NQ)
NN = M(NJ)

COMPUTE VALUES OF THE INTEGRAL Se

IF (CLL.NE«0) «ANDe (MM.NE«O) «AND. C(NN.NE.0)> GO TO 101
GO TO 103

LM = LL + MM

LN = LL + NN

MN = MM + NN

IF ((NNeEQeLM) +ORe (MMeEQ.LN)) RESULT = PI/2.0

IF (LL .EQ. MN? GO TO 102

GO TO 104

IF C(KOPT +EQe 1) RESULT = PI/2.0

IF (KOPT «EQ. 2) RESULT = =PI/2.0

GO TO 104 -

IF (C(LL<EQ+0) +ANDe (MM<EQe0) +ANDe (NN<EQ.0)> GO TO 10S

IF ((KOPT<EQe1) «ANDe (NNeEQe0O) <ANDe (LL.EQ.MM)) RESWLT = Pl
IF (C(KOPT«EQe1) <ANDe (MMeEGe0) «ANDe (LLoEQ.NN)) RESULT = PI

IF ((LL «EQs 0) +ANDe (MM <EQ«. NN)) RESULT = Pl
GO TO 104

IF (KOPT <EQ. 1) RESULT = 2.0 * PI

CONTINUE

RESULT = FACTOR * RESULT

CONTINUE

RETURN

END
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SUBROUTINE RADIAL(NOPT,L,MsNsAsB,C,s RESULT)

THIS SUBROUTINE CALCULATES THE INTEGRAL OVER THE INTERVAL
€0,1) OF THE FOLLOWING PRODUCTS OF THREE BESSEL FUNCTIONS:

NOPT = 1 JLCA*R) * JM(B#*R) * JNC(C*R) * R
NOPT = 2 JLCA*R) * JM(B*R) * JNCC*R)/R

NOPT

3 JPL(A*R) * JPM(B%#R) * JNCC*R) * R

JL IS THE BESSEL FUNCTION OF FIRST KIND OF ORDER L
JPL IS THE DERIVATIVE OF JL WITH RESPECT TO R

L» M» N ARE NON-NEGATIVE INTEGERS

A> B» C ARE REAL NUMBERS

DIMENSION FUNCT(200)
DOUBLE PRECISION DN, DH» DSTEP» DR» ARGl» ARG2» ARG3,

1 BESl,» BES2, BES3, BESHs BESL», PROD»
2 FUNCT, BESLIM, Sl, S2, S3

NN = 100

DN = NN

DH = 1.0/DN

NPl = NN + |

DO 10 I = 1, NP1
DSTEP = [ = ]
DR = DH * DSTEP
ARGl = A * DR
ARG2 = B * DR
ARG3 = C * DR

CALL JBES(N,ARG3,BES3,%$500)
IF (NOPT «EQ« 3) GO TO 101
CALL JBES(L,ARG1,BES1,$500)
CALL JBES(M,ARG2,BES2,$500)

GO TO 102
IF (L .EQ@. 0> GO TO 103
CALL JBES(L+1,ARG1,BESH»$500) »

CALL JBES(L-1,ARG1,BESL,$500)
BES1 = A * (BESL - BESH)/2.0
GO TO 104

CALL JBES(C1,ARG1,BES1,$500)
BES] = -BES] * A

IF (M «<EQ. 0) GO TO 10S
CALL JBES(M+1,ARG2,BESHs $500)
CALL JBES(M=15ARG2,1ESL» $500)
BES2 = B x (BESL - BESH)/2.0
GO TO 102
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CALL JBES(1,ARG2,BES2,$500)
BES2 = -BES2 * B
PROD = BES]1 * BES2 * BES3

IF (NOPT +EQe 2) GO TO 110

FUNCT(1) = PROD * DR

GO TO 10

IF (I «EQe 1> GO TO 111

FUNCT(C1) = PROD/DR

GO TO 10

BESLIM = 0.0

IF (¢L.EQel) <ANDe (MeEQe0) ANDe (N.EQ.0))
IF (CL+EQe0) «ANDe (MeEQel) «ANDe (N+EQ«0))
IF (CL<EQe¢Q) «ANDe (MeEQe0) +ANDe (Ne¢EQe1))
FUNCT(I) = BESLIM

CONTINUE

NM1 = NN - 1

S1 = FUNCTC1) + FUNCT(NP1)
S2 = 0.0

S3 = 0.0

DO 20 I = 2, NN, 2

S2 v S2 + FUNCTCI)
CONTINUE

DO 30 I = 3, NMl, 2

§3 = S3 + FUNCT(I)
CONTINUE

RESULT = DH * (Sl + 4¢0%S2 + 2.0%S5S3)/3.0
GO TO 501

WRITE (6, 6000)

FORMAT (1H1, 10HERROR JBES)
CONTINUE

RETURN

END

BESLIM = A/2.0
BESLIM = B/2.0
BESLIM = C/2.0
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SUBROUTINE AXIAL2(NOPT,NCONJ>NP,NQsNJ»ZE, RESULT)

TH1S SUBROUTINE CALCULATES THE INTEGRAL OVER THE INTERVAL
(0,ZE) OF THE FOLLOWING FUNCTIONS ACCORDING TO THE VALUES
OF NOPT AND NCONJ:

FOR NCONJ = 1 AND:

NOPT = |} Z(NP) * Z(NQ) * ZCI(ND)
NOPT = 2 ZP(NP) = ZP(NQ) * ZCI(NJ)
NOPT = 3 ZPP(NP) * Z(NQ) * ZC(NJ)
FOR NCONJ = 2 AND:

NOPT = | ZCNP) * ZC(NQ) * ZC(NJ)
NOPT = 2 ZP(NP) * ZPC(NQ) #* ZC(NJ)
NOPT = 3 ZPP(NP) # ZC(NQ) % ZC(NJ)
FOR NCONJ = 3 AND:

NOPT = 1 ZCINP) * Z(NQ) * ZC(NJ)
NOPT = 2 ZPCCNP) * ZP(NQ) * ZC(NJ)
NOPT = 3 ZPPC(NP) * Z(NQ) * ZCINJ)
FOR NCONJ = 4 AND:

NOPT = 1 ZCCNP> * ZC(NQ) * ZC(NJ)
NOPT = 2 ZPC(NP) * ZPC(NQ) * ZC(NJ)
NOPT = 3 ZPPC(NP) * ZC(NQ) % ZC(NJ)

IN THE ABOVE EQUATIONS:

Z(NP), Z(NQ)» AND Z(NJ) ARE THE AXIAL ACOUSTIC EIGENFUNCTIONS
AND NP> NQ» AND NJ ARE THEIR INDICES.

ZP 1S THE FIRST DERIVATIVE OF THE AXIAL EIGENFUNCTIONS.

ZPP 1S THE SECOND DERIVATIVE OF THE AXIAL EIGENFUNCTION Se

ZC AND ZPC ARE COMPLEX CONJUGATES OF Z AND ZP RESPECTIVELY.

REAL MAG

COMPLEX CI» CF» CZE» BP» BQ, BJ, SWM, RESULT,
1 ARG(4), FUNCTC4), B(10)

COMMON B

CALCULATE INTEGRALS BY MEANS OF ANALYTICAL. EXPRESSIONS.
CI = (0+051.0)

CF = (025,0.0)

CZE = CMPLX(ZE,0.0)

BP = B(NP)

BQ = B(NQ)

BJ = CONJG(B(NJ))

IF ((NCONJ <EQ< 2) «ORe (NCONJ «EQ. 4)) BQ = CONJG(BQ)
IF (NCONJ «GTe 2) BP = CONJG(BP)

ARGC(1) = (BP + BQ + BJ) * CI
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ARG(2) = (BP + BQ ~ BJ) * CI

ARG(3) = (BP -~ BQ + BJ) * Cl

ARG(4) = (BP - BQ = BJ) * CI

DO 10 J = 1,4

MAG = CABSCARG(J))

IF (MAG) 12, 15, 12

FUNCT(J) = CSINHCARGCJI*CZE) /ARG (CJ)

GO TO 10

FUNCT(J) = CZE

CONTINUE

IF (NOPT .EQ. 2) GO TO 30

SUM = FUNCT(1) + FUNCTC2) + FUNCT(3) + FUNCTC(4)
RESULT = CF * SUM

IF (NOPT .EQes 3) RESULT = -BP * BP * RESULT
GO TO0 SO

SUM = FUNCT(1) + FUNCT(2) - FUNCT(3) - FUNCT(4)
RESULT = =CF * BP * BQ * SuM

CONTINUE

RETURN

END
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APPENDIX D

PROGRAM LCYC3D: A USER'S MANUAL

General Description

Using the three-dimensional second-order theory described in this report
Program LCYC3D calculates the nonlinear stability characteristics of a cylin-
drical combustion chamber with distributed combustion and a conventional noz-
zle. The response of the burning rate to pressure oscillations is described
by Crocco's time-lag model. For given values of the operating parameters
(i.e., n, T, ¥, ﬁe, and L/D), a given series expansion, and a given initial
disturbance Program LCYC3D integrates Egs. (C-38) to obtain the time behavi-
or of the unknown mode-amplitude functions (i.e., Bj(t)). From this infor-
mation a time history of the pressure oscillation is determined. The program
determines the final amplitude of the pressure oscillation attained in a
linearly unstable engine (i.e., limit-cycle amplitude). Since the second-
order analysis does not predict "triggering”, however, the threshold ampli-
tude above which a finite amplitude disturbance can trigger instability in a
linearly stable engine (i.e., triggering limit) is not calculated by Program
LCYC3D. For either transient or limit-cycle conditions, the program prints
out time histories of both pressure and axial velocity perturbations from
which the amplitude, frequency, and wave shapes can be determined. The op-

tion to produce plotted output using a CALCOMP plotter is also provided.

Program Structure

A flow chart for Program LCYC3D is given in Fig. (D-1). This program
performs the following operations: (1) reads the input data, (2) caleulates
the initial conditions, (3) numerically integrates the differential equations,
(k) tests for limit cycles (optional), and (5) prints and plots the resulting
solutions.

The inputs to the program include the data generated by Program COEFFS3D,
the combustion parameters n and T, various control numbers, and a description
of the initial disturbance. The data from COEFFS3D is read first and then

printed out. Next the space dependent coefficients appearing in the series
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expansions for ét’ ée, and @Z are computed and printed out. These coeft'i-
cients are calculated by Subroutine PHICFS for use in the computation of the
pressure and axial velocity perturbations. The remaining input data is then
read, and following program execution, control is returned to this point (see
Fig. D-1) so that several cases (i.e., different values of n and T) may be
run for a given set of coefficients generated by COEFFS3D.

After input of the initial amplitudes of the real parts (i.e. s 2 l(t))
of the complex amplitude functions, the initial amplitudes of the imaginary
parts (i.e., B2j(t)) are calculated such that the nozzle admittance condition
is satisfied for -T <t < O. These amplitudes are then printed ocut. Next
the integration step-size, At, is calculated such that the interval
-T <t <0 is divided into NDIV equal increments. Assuming a sinusoidal
initial disturbance, the initial amplitudes of B (t) and B J(t) are used
to calculate these functions and their derlvatlves at each of the NDIV + 1
discrete points in -T<t < 0. These values are needed in order to start the
numerical solution of the differential equations (i.e., Egs. (C-38)). The
initial values of the amplitude functions are stored in the array U(I,J)
where the index I varies from 1 (t = -T) to NDIV + 1 (t = 0) and the index
J identifies the function. The corresponding initial values of the pressure
and velocity perturbations are then printed out. This section also calcu-
lates the coefficients C (J,p) - nC3(j,p) and dEB(J,p) which are the coeffi-
cients of @ /dt and d[B (t -7 J/dt in Egs. (C-38).

After the starting values are calculated, Eqs. (C-38) are solved using
a modified form of the fourth order Runge Kutta method. Starting at t = 0
(1 = NDIV+1), the amplitude functions at t + At are calculated, using the
Subroutine RHS to evaluate the functions fj(Bl’BE""BEN) on the right hand
sides of Egs. (C-38). The amplitude functions and the coefficients from
PHICFS are then used to compute the pressure and axial velocity perturbations
by Subroutine PRSVEL. The values of the amplitude functions at t + At are
stored in U(I + 1,J), while the pressure and axial velocity perturbations are
stored in the arrays PRESS(NPRES) and AXVEL(NPRES) where NPRES specifies the
locations in the chamber where the data is calculated. Pressure data at one
location (specified by NLOC) is also stored in the array PRS(I + 1). After

checking for maximum and minimum values of U(I,J) and PRS(I), the data may
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be printed out Gf NTEST = O and TSTART < t < TQUIT) or stored in plot arrays
as desired. The time is then increased by At (i.e., I is increased by 1) and
the calculations are repeated. This process continues until 250 integration
steps have been computed (t = 250At), after which transfer is made to the
limit-cycle section.

In the limit-cycle section a test for a limit-cycle is made if NTEST = 1.
If the test is satisfied, NTEST is set to zero so that no further tests will
be made and the results can be printed or plotted. In either case the final
values (for 250-NDIV < I < 250) replace the initial values (for 1 < I <
NDIV+l) in the arrays U(I,J) and PRS(I), I is again assigned the value NDIV+1,

and another 250 integration steps are calculated. This process continues un-

til one of the following conditions is satisfied: (1) NTEST = O and t s TQUIT,

(2) a limit-cycle is reached and t > TQUIT, and (3) more than 250 cycles of
the pressure oscillation have been computed (MAXNO > 500). At this point the
numerical calculations are terminated and the time history of the pressure
amplitude (maxima and minima) are printed out and/or plotted as desired.

As can be seen from Fig. D-1 the output is not confined to a single
section of the program but is produced in several different sections. Thus
data is printed out or plotted shortly after it is calculated, which greatly
reduces the amount of core storage required. All plots are generated by Sub-
routine GRAPHS which uses standard Univac 1108 plot routines.go

FORTRAN listings of Program LCYC3D and Subroutines PHICFS, PRSVEL, RHS,
and GRAPHS are provided at the end of this appendix.

Input Data

A precise definition of the input data required to run the computer
program is given below. This input data consists of three parts: (1) the
control number NOUTCF, (2) the parameters and coefficients generated by Pro-
gram COEFFS3D and (3) the data describing the cases to be run (see Fig. D-1).
For each input case the following information must be provided: (1) the
combustion parameters n and T; (2) a series of control numbers; and (3) infor-
mation describing the initial disturbance.

The control number NOUTCF determines whether the coefficients from

COEFFS3D will be printed, and it appears on the first card of input. This
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card is followed by the coefficient deck generated by COEFFS3D and the data
describing the cases to be run. Since the coefficient data has already been
described in Appendix C, it will be omitted from the following detailed des-
cription of the input. As in Appendix C the location number refers to the
columns of the card. Again three formats are used for input: "A" indicates
alphanumeric characters, "I'" indicates integers, and "F" indicates real num-
bers with a decimal point. For the "I" formats the values are placed in
fields of five locations, while a field of ten locations is used with the
"F'" formats. In either case the numbers must be placed in the rightmost

locations of the allocated field.

No. of
Cards Location Type Input Item Comments
1 1-5 I NOUTCF If 0: coefficients are not
printed out.
If 1: linear coefficients
only are printed out.
If 2: all coefficients are
printed out.
1 1-72 A TITLE Title used to label plots.
1 1-10 F EN Interaction index, n.
11-20 F TAU Time-lag, T.
21-30 F H Time-increment for numerical
integration, at. *
31-40 F TSTART Time at which output of solu-
tions begins.
L431-50 F TQUIT Time at which output of solu-
tions ends.
1 1-5 I NTEST If 0: compute transient beha-

vior.

If 1: compute limit-cycle be-

havior.

6-10 I JMODE Identifies the amplitude func-
tion used to test for limit-
cycles.

* Tgis value is adjusted slightly by the program to divide the interval
-+ <t £ 0 into NDIV equal parts.
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No. of

Cards Location Type Input Item Comments
11-15 I NLOC Determines location for wall

pressure maxima and minima.
If1: z=0, 9 =0°
If 2: z =0, g = 45°
If 3: z =0, g = 90°

16-20 I NTERMS Number of amplitude functions
given initial values.

21-25 I NPZ Determines how secondary
instability zones are handled.

If 0: all instability zones
retained.

If 1: secondary zones elim-
inated.

26-30 I NOUT Determines output.
If 0: printed output only.

If 1 < NOUT < 6: both print-
ed and plotted output, NOUT
gives number of last plot
produced.

If 1 < NOUT < 6 the following two cards are read:

1 1-10 F YHI(1) Maximum ordinate for pressure
plots.
11-20 F YHI(5) Maximum ordinate for velocity
plots.
21-30 F YLAB(l) Interval for ordinate labeling
of pressure plots.
31-k40 F YLAB(5) Interval for ordinate labeling
of velocity plots.
1 1-5 I ITICY(1) Number of ordinate tic marks
for pressure plots.
6-10 I ITICY(5) Number of ordinate tic marks
for velocity plots.
11-15 I NFIRST Gives the number of the first
plot produced.
16-20 I NOMIT If 0: amplitude plot produced.

If 1: amplitude plot omitted.
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No. of
Cards Location Type Input Item Comments

End of input for 1 < NOUT < 6.

NTERMS 1-5 I J Identifies complex amplitude
function.
6-15 I AST Amplitude of sin(wt) term in .
initial conditions.
16-25 I ACT Amplitude of cos(wt) term in

initial conditions.

The input data describing the cases to be run is given on a series of
three or more cards. These cards are preceded by a title card which gives
a title (TITLE) to be used to identify any plots produced by the run. This
title appears before the first plot generated and does not appear on the
printed output. The title card is included only for the first case of the
run; on all subsequent cases it is omitted.

The first card of the series gives the interaction index, n, and the
time-lag, T, for the motor under consideration (EN and TAU); the time-
increment, At, used in the numerical integrations (H); and the times (TSTART
and TQUIT) at which output begins and ends. For all cases considered in this
report a time-increment (dimensionless) of H = 0.050 was used, which gives
about 70 steps per cycle for the 1T mode. For T = 1.7 this input value was
adjusted by the program to obtain H = 0.04857 which divides -T s t < O into
35 equal parts. For transient cases (NTEST = 0) printed output is given for
TSTART < t < TQUIT. When the limit-cycle behavior is calculated (NTEST = l),
TSTART and TQUIT are measured from the time at which the limjit-cycle is
reached, tLC' Thus the limit-cycle solutions are printed out for
(tLC + TSTART) < t < (th + TQUIT). Two or three cycles of limit-cycle data
for the 1T mode are obtained with TSTART = O and TQUIT = 10. For plotted
output, the time axis is always 10 units long, therefore (TQUIT - TSTART) > 10 ‘
to obtain plots.

The second card of the series gives the control numbers, NTEST, JMODE,
NLOC, NTERMS, NPZ, and NOUT. The task to be performed by Program LCYC3D is
specified by NTEST. If NTEST = O the transient behavior (growth or decay) of

the pressure oscillation is determined, while for NTEST = 1 the program
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searches for a limit-cycle amplitude. JMODE identifies the "principal"
series term, the amplitude function used in the limit-cycle test. This is
usually the lowest frequency mode (i.e., 1T or 1L) in the approximating
series expansion. NLOC gives the location at which the amplitude-time his-
tory (maxima and minima) of the wall pressure perturbation is calculated.
The number of complex series terms Aj(t) receiving initial values is speci-
fied by NTERMS, while all other series terms are initially zero. The para-
meter NPZ determines how the secondary instability zones (phantom zones) are

handled by Program LCYC3D. For NPZ = 1 the phantom zones are eliminated by

dropping the combustion terms for a given mode when T > }cut where:
52 .1
- 2
T =20 _ on [32 + 2T (D-1)
cut w mn Z2
e

A similar procedure was used in the axial instability studies by Lores and

3

Zinn. The transverse instability data presented herein was obtained with

NPZ = O, while NPZ = 1 was used in the axial instability studies to facili-
tate comparison with the results of Ref. (3). The last control number NOUT
determines which plots, if any, are produced. For NOUT = O no plots are
produced. For 1 < NOUT < 6, NOUT gives the number of the last plot produced,

where the plots are numbered as given in Table D-1 below:

Table D-1. Nunbering of Plots.

No. of Plot Quantity Axial Azimuthal
(NPLOT) Plotted Location Coordinate

1 Pressure Injector 0°

o) 1" " )450

3 1 i 90°

L " Nozzle 0°

5 Axial Velocity " °

6 Nozzle Boundary " °

Term
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The nozzle boundary term given on the last plot is discussed- later in this
appendix.

If plots are produced, two additional cards are needed to give the max-
imum and minimum values of the variables to be plotted, YHI(NPLOT) and
YLO(NPLOT); the intervals for ordinate labeling (YLAB(NPLOT)); and the num-
ber of ordinate tic marks, ITICY(NPLOT). All of the plots are symmetric “
about the time-axis so that YLO(NPLOT) = -YHI(NPLOT), and ITICY(NPLOT) must
be negative to obtain the centerline. Since the ordinate scales and labeling =
are the same for all pressure plots (NPLOT = 1,2,3,4) this data is read for
NPLOT = 1 only; likewise the data for the last two plots is read for NPLOT =
5 only. 1In addition NFIRST gives the number of the first plot produced,
giving additional control over the number of plots produced. NOMIT deter-
mines whether a plot of pressure amplitude versus time (location specified
by NLOC) is produced.

The remaining cards give the initial amplitudes of the complex series
terms, Aj(t), needed to start the numerical integration. Only the amplitudes
of the real parts, B2j-l(t)’ are given on these cards, while the amplitudes
of the imaginary parts, BQJ(t)’ are determined from the nozzle admittance
condition. For each value of J the amplitudes AST and ACT are assigned to
the arrays AS(NP) and AC(NP) where NP = 2J - 1. The computation of the
amplitudes of the imaginary parts, AS(NP + 1) and AC(NP + 1), is discussed
later. The initial values of the series terms are then calculated from the

formula:
Bp(t) = AS(NP)sin(wpt) + AC(NP)cos(wpt) (-T <t <0) (D-2)

where wp is the acoustic frequency. The derivatives, dBp/dt, are also re-
quired for starting the numerical integration; they are obtained simply by
differentiating Eq. (D-2).

The proper input for pure standing and pure spinning single-mode initial
disturbances is given as follows. For g standing mode, only the cos(mg) terms

are retained in the series and NTERMS = 1. 4 single card is read giving the

amplitude of the initial disturbance. For g spinning mode, both sin(mg) and
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cos(mg) terms are included in the series expansion. It is convenient to pair
these terms such that the index J corresponds to a sin(mg) term and J + 1
corresponds to a cos(me) term. TFor an initial disturbance of amplitude A
spinning in the counterclockwise direction (@ increasing), NTERMS = 2 and

two cards are read giving ‘the following data:

J : AST

1l

A and ACT

Il
O

J+ 1 : AST

0 and ACT

1l
=3

In both cases above initial amplitudes are required only for the mode initi-
ally present, and the initial amplitudes of all other modes included in the
series expansion are zero.

The proper input for Program LCYC3D will be illustrated with the follow-
ing example. Assuming that the velocity potential & is expressed in terms of
the 1R, 1T, and 2T modes*, it is desired to determine the limit-cycle beha-
vior of a linearly unstable engine (n = 0.57486, T = 1.7, ﬁe = 0.2, L/D = 0.5)
with a nozzle admittance of A = 0.02 and ¢ = 45°, Sample input is given for
the case of a spinning 1T mode disturbance of amplitude 0.3. The principal
series term is the cos(mg) term for the 1T mode (i.e., BOll(t)), thus JMODE
= 2. Plots are desired for the pressure, axial velocity, and nozzle boundary
condition at the nozzle entrance, thus NOUT = 6 and NFIRST = L.

To run the case described above the data deck must be assembled as
follows. The card specifying NOUTCF is followed by the coefficient deck
produced by Program COEFFS3D; in this example it contains the information
given in the sample output for COEFFS3D shown in Appendix C. The coefficient

deck is followed by the data for the case to be run as shown in the sample
input below:

*
This is the same case used to illustrate Program COEFFS3D.
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Table D-2. Sample Input.

L'J'[’1'12’1‘1’1'1'|’°1"l"l"l"l"l"J"l"r'l"r"l’|’1"1”1"|"1 LTI LTI TITITTTL TIT
F, Tl e s, ol Jol. ble] [eb -] Pleleleelels] [ T T[T

(LTIl Tl [T LT T UL T TL LRl obl LI TLT T RER T T T T kTl
LllllilHHzllHIiHJHzIIIHOHIIIGIIIIHLIIHIJJJHIJH
LJIIHHilI5lIIIIIIOIIOI3HHII[I0'[5HIHIIOI[oIilllH[IJITT
llllelﬂlllclﬂllmIIHOHIIHIHIJIHHHIIIIHHHIH
LIIHilIHIIIIOIblIIIHIIOIIOIIIIIIllllll,lxlnlmlHIIHIHT
(TR T T RL ol [T IR LT LTI LTI ITTTITIIIT

Coefficients in Series for Qt’ Qe, and @Z.

As seen from Eq. (13) the real parts of the time and space derivatives
of the velocity potential (i.e., ¢t, wr’ ¢e, ¢Z) are needed in order to com-
pute the pressure perturbation. Differentiating the complex series expan-
sion given by Eq. (9) and evaluating at the chamber wall (r = 1) gives the

following expansions:

dA
z-—a-% Zp(z)® (e)R (1) = Xct(P’Z’G) _d% (D-L)
p=1
z A (6)z (z)@ (6)R (1) = ZC (2,2,0)A (1) (p-5)
p=1 p=1
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ZA ()2, (2)g, ()R }:c p,2,0)A (t) (D-6)

p=1 p=1

where the complex coefficients Ct’ Ce, and CZ are functions of z and g. The
quantity, @r’ is not needed since ér = 0 at the chanber wall. The complex
coefficients Ct’ Ce, and CZ are calculated by Subroutine PHICFS and are
assigned to the variables, Cl, C2, and C3 respectively. The coefficilents in
the series expansions for the corresponding real parts (i.e.,vt, we, wz) are

related to the complex coefficients by:

C; (2p—l, Z, 9)

Re[Ct(p, Z, e)]

-1 ¢ (p, 2, 0)]

’ ’

where similar relations hold for Ce and CZ. The real coefficients are stored
in the arrays CFT(NPRES, NP), CFTH(NPRES, NP), and CFZ(NPRES, NP) where NPRES

determines the location in the chamber as given in Table D-3 below:

(D-7)
C; (ep) Z, 9)

Table D-3. Chamber Locations for Pressure Calculations.

Axial Azimuthal
NPRES Location (z) Location ()
1 0 0°
2 0 45°
3 0 90°
Y Zg 0°
5 Z Ls°
6 Zq 90°

Initial Amplitudes

The initial amplitudes of the real parts of the complex series terms

(i.e., B2j-l(t)) are specified in the input to the program. The initial
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amplitudes of the imaginary parts (i.e., B, (t)) however,
such that the nozzle admittance condition 1s satisfied for
is done by introducing the linear expressions for u’ and p”

admittance relation and assuming periodic solutions. This

are calculated
-7 <t 0. This
into the nozzle

yields a set of

linear algebraic equations relating the amplitudes of the real and imaginary

parts of the complex series terms. For given values of the amplitudes of the

real parts, AS(NP) and AC(NP), these equations are solved to obtain the ampli-

tudes of the imaginary parts, AS(NP + 1) and AC(NP + 1).

mulas are used in this calculation.

2 2
AS(NJ + 1) = —(rgal - rlag) / (al + ag)

The following for-

(D-8)
AC(NJ + 1) = (rla +ra ) / (al + ag )
where
r) =8, [AC(NJ)] - a) [AS(NJ)]
(D-9)
r, = -a, [AC(NJ)] - ag [AS(NJ)]
and
a; = (1 + erﬁe)CFZ(NPRES, NJ+1) - inijFT(NPRES, NJ+1)
a, = erijFT(NPRES, NJ+1) + inﬁeCFZ(NPRES, NJ+1)
(D-10)
ay = -(1 + erﬁe)CFZ(NPRES, NJ) + inijFT(NPRES, NJ)

erijFT(NPRES, NJ) + 7YiueCFZ(NPRES, NJ)

©
=
I}

In Egs. (D-8) through (D-10) wj is the acoustic frequency and CFT and CFZ are
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the coefficients in the series for ¢% and wz computed previously. The above
conditions are applied at a pressure anti-node for each series term, there-
fore NPRES = L (z = zZ,s 6 = 0°) for a cos(mg) term and NPRES = 6 (z = Zg> O = 90°)
for a sin(mg) term.

For nozzles with phase shifts of ¢ = 90° and @ = 270° the quantity
a; + a, vanishes and Egs. (D-8) become indeterminate. In these cases the amp-

litudes of the imaginary parts are given by:

AS(NJ + 1) = Ac(NJ)

(D-11)

AC(NT + 1) = AS(NJ)

which provides a good approximation to the nozzle admittance condition.

Integration of the Differential Equations

For purposes of numerical integration Eqs. (C-38) are written as an

equivalent system of first order differential equations as follows:

dB,

—d = -
T 5 (D-12)

Y d
4B, ,

— -
dt J7p P (-13)

1
vs}

1]
Hy
—
oo}
[vs}
~

where the dependent variables are now Bj and Bj' These equations are solved
numerically using the fourth order Runge-Kutta method. Due to the presence
of retarded variables in Egs. (D-12) and (D-13) the formulas (see Ref. 21)
used in the Runge-Kutta method must be slightly modified.

The appropriate formulas for applying the Runge-Kutta method to problems
involving a time-delay are readily obtained by considering a single equation

of the following form:

F = £(x,t) + glx(t - 7)) (D-1%)
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Noting that at any step of the integration the value of x(t - T) has already
been determined from previous steps, the function g can be considered to be a
known function of time g(t).

Since x(t) is computed only at discrete points xn<tn) it is desired that
the retarded variable x(tn - T) will coincide with such previously computed
points. This can be accomplished by choosing the step-size pt such that it
divides the time-lag T into k equal increments. Thus 1 = kpat and the Runge-

Kutta formulas which apply to Eq. (D-14) can now be written as:

»
|

l N
R 3<kl + 2k, + 2Ky * K )

5
I

L= {EGet) + el O hat
k, = {f(xn + kl/2, o+ at/2) + g(xn_k+%)}At (D-15)
kg = {f(xn + k2/2, b+ at/2) + g(xn_k+%)}At

Ky, = {f(xn * k3’ tn At) g(Xn—k+l)]’At

Equations (D-15) are readily extended to handle the system of equations given
by Egqs. (D-12) and (D-13). It is seen from Egs. (D-15) that k values of the
dependent variables prior to the initial values are needed to start the inte-
gration.

Although the initial wave shape can be an arbitrary function of time, it
is assumed that initially the mode-amplitudes are sinusoidal functions of time
oscillating with the natural frequency wj. Thus each mode~amplitude function

is expressed in the following form:

Bj(t) = AS(J)sin(wjt) + AC(J)cos(wjt)

(D-16)
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B;(t) = wj[AS(J)cos(wjt) - AC(J)sin(wjt)]

where - <t < O.

In Program LCYC3D both the functions Bj(t) and the derivatives B;(t) are
stored in the same array U(I,J). The Bj(t) (N functions) are stored in the
first half of the array (1 < J < N), while the remaining space (N + 1 < J < 2N)
is used to store the values of B/(t). Thus for a given value of j (1 < j < N),
Bj(t) is stored in U(I,J) and Bg(t) is stored in U(I,J + N). 1In addition the

retarded variables Bg(t - 7) are stored in the array RV(J,K) as follows:

RV(7,1) = B(t - 7)
RV(J,2) = RV(J,3) = B;(t - T+ At/2) (D-17)
RV(J,L) = B;(t - 7+ At)

The values of Bj(t - 7+ At/2) are computed from Bj(t - 1), Bj(t - T+ AL,

and Bj(t - 1 + 2At) using a three-point interpolation.

Pressure and Axial Velocity Perturbations

From the calculated time dependence of the series terms Program LCYC3D
computes the dimensionless pressure perturbation, p’, with the aid of Egs.
(D-4) through (D-6) and either Eq. (13) for NDROPS = O or Eq. (A-6) for
NDROPS = 1. The pressure is calculated at the injector face (z = 0) and the
nozzle entrance plane (z = ze) for three angular positions along the peri-
phery of the chamber (i.e., r = 13 § = 0°, 45°, 90°). The results are stored
in the array PRESS(NPRES) where NPRES gives the location according to Table
D-3. The axial velocity perturbation at the nozzle entrance, ué, is calcula-
ted for § = 0°, 45°, 90° using the relation u’ = ¢, and Eq. (D-6), and the
results are stored in AXVEL(K), where K = NPRES-3. In addition the quantity,
Re[-yY@tJ, is calculated at the nozzle entrance for § = O  and assigned to
the variable YPHI. From Eq. (2) it is seen that YPHI is the axial velocity
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at the nozzle entrance (i.e., ué) if the nozzle admittance condition is exactly
satisfied. Since the solutions generated by Program LCYC3D are approximate,
the difference between ué and YPHI is a measure of the accuracy of this approx-

imation at the nozzle boundary.

Maximum and Minimum Values

In order to determine the transient behavior and limit-cycle amplitudes
it is necessary to follow the growth or decay of the amplitudes of the series
terms and the pressure perturbation. The maxima and minima of the principal
series term (specified by JMODE) are assigned to the array UMAX(MAXNO) where
MAXNO is a counter variable. For the pressure perturbation, maximum and mini-
mnm values at the location specified by NLOC are stored in PMAX(MAXP), and the
corresponding times of maximum and minimum are stored in TIMAX(MAXP). Since
the solutions are calculated only at discrete points, the maximum and minimum

values are computed using a three-point interpolation scheme.

Calculation of Limit-Cycle Amplitude

A limit-cycle amplitude is calculated by specifying an initial disturbance
and continuing the step-by-step integration of Eqs.(D-lE)and(D-l@ until a
periodic solution is obtained; that is, the amplitude of the oscillation
remains essentially constant. The test for convergence to a limit cycle is
performed upon a single series term, usually the most important term in the
series, in the following manner. After the first 500 integration steps,
usually about 10 cycles for the 1T mode, the amplitude of the principal series
0" If
the change in amplitude | A. - A is greater than the maximum permissible

1 0
change ¢, the calculations are continued and the change in amplitude during

termAl is compared with its amplitude after 250 integration steps A

the next 250 integration steps is calculated. The Process is repeated until
|Ak - Ak-l| < € at which point the computation is terminated. The amplitudes
used in the above calculations are determined by averaging the absolute values
of UMAX(MAXNO) over the last two complete cycles for each 250 integration
steps. A value of € = 0.001 is used in Program LCYC3D which gives sufficient

accuracy for most cases.
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Output

Printed Output. The printed output produced by Program LCYC3D consists

of the five sections discussed below.

Section 1 is a restatement of the input from Program COEFFS3D. It in-
cludes the following information: (a) the ratio of specific heats (GAMMA),
the mean flow Mach number at the nozzle entrance (UE), the dimensionless
chamber length (ZE), the length of the combustion zone as a fraction of the
chanber length (ZCOMB), and the number of series terms (real) NJMAX; (b) a
statement regarding the presence or absence of the droplet momentum source;
(c) the parameters which describe and identify each term in the series expan-
sion; (d) the nozzle admittance (YR and YI) and the axial acoustic eigenvalue
(EPS and ETA) for each series term; (e) the nonzero linear coefficients,
C(KC, NJ, NP); and (f) the nonzero nonlinear coefficients, D(NJ, NP, NQ).

The nonlinear coefficients are omitted from the output for NOUTCF = 1, and
no coefficients are printed out for NOUTCF = O.

Section 2 gives the coefficients needed for computation of the wall
pressure waveforms; that is, the coefficients in the series for @t, @e, and
P, These are given for each of the NJMAX series terms at each of the six
locations specified by NPRES (see Table D-3).

Section 3 gives the initial amplitudes (AS(J) and AC(J)) of all series
terms included in the assumed initial disturbance. This section also states
whether the limit-cycle behavior is calculated and whether plots are produced.

Section 4 gives the time-dependent solutions for the following quantities:
(a) the injector pressure perturbation at g = 0°, 45°, 90°; (b) the nozzle
pressure perturbation at ¢ = O°, M5°, 90°; (¢) the nozzle axial velocity
perturbation at g = 0°, 45°, 90°; and (d) the nozzle boundary term, Re[-yYQt],
at ¢ = 0°. This output is given in two parts: (l) the initial values for
-+ <t <0 and (2) the solutions for ti st < tf, where ti and tf are deter-
mined by the input parameters TSTART and TQUIT (see discussion on Input). On
the first page of each part a heading gives the interaction index, n, and the
time-lag, 7, and the chamber parameters, Ys ﬁe’ and L/D.

Section 5 gives the time history of the pressure amplitude (maximmum and

minimum values) for the chamber location specified by NLOC. This information
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is printed as an array of number pairs giving the value of the pressure maxi-
mum or minimum (upper number) and the corresponding time of maximum or minimum
(lower number). This information is useful in determining the growth (or decay)
rate of the transient solutions, and it provides a check on the convergence of

the solution to a limit-cycle.

Plotted Output. According to the values of NOUT and NFIRST the pressure

and axial velocity waveforms given in Section 4 of the printed output may be
plotted using a Calcomp plotter. The data over the dimensionless time interval
for printed output, ti <t < tf, is plotted in sections of 10 units in length
beginning at t = ti. Thus for each quantity plotted, N plots are produced
where N is the largest multiple of 10 contained in the interval ti <t < tf.

The data left over (i.e., for ti + 10N < t <« tf) is not plotted. All quantities
to be plotted for a given time interval are plotted before proceeding to the
next time interval.

The data given in Section 5 of the printed output (pressure maxima only)
is also plotted if NOUT > O and NOMIT = O. The abscissa and ordinate ranges
for this plot are not specified in the input, but are calculated such that
all of the data falls within these ranges. This plot is always the last plot
produced.

All of the above plots are scaled to fit on standard 81" x 11" paper
and scissor-lines are plotted for trimming plots to this size. The data is
plotted as individual points using a small circle symbol, and all of the values
computed during the given time interval are plotted. Before the first plot is

produced the identifying title (see Input) is printed.

Sample Output. The following sample output illustrates the printed and

plotted output produced by Program LCYC3D for the sample input given in Table
D-2.
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GAMMA = 1.200

UE =

Table D-4,

«200

ZE =

DROPLET MOMENTUM SOURCE 1S NEGLECTED

NAME

A01l1
8011
AD24
8021
BOG1

NEGCNRE

J

PNEGUN+

r

(=N =Rl

M

ONN -

YR

«01414
Nikly
01414
«01414y
«01414

2

e b

Y1

01414
01414
01414
01414
(01414

NS

NN -

SMN

1.84118
1.,84118
3.05424
3.05424
3.83171

ePs

« 08122
«08122
«10617
«10617
11993

NUMBER OF COEFFICIENTS C(1,NJeNP) IS

Ctl,
Ctl,
Ctl,
Ctl,
Ctle
C(ly
Ctl,
Ct1,
Ctl,

cil.loolq)

1.
20
3
4y
LY}
6
T
8
9

1
2
3
4
5
o
7
8
9

)
)
)
)
)
}
)
}
)

3.39060
3.39060
3.39060
2.39060
933021
9.33021
9.33021
9.33021
14,68491
14,68491

NUMBER OF COEFFICIENTS C(2/NJeNP) IS

Cta,
C(2,
(-
Ci2,
Ct2y
Ct2,
Ce2y
C(2y
Cea,

Ct2+10010)

)
2
3
LX)
Se
Y}
T
8¢
9

1
pd
3
4

)
)
)
)

«26153
«26153
«26153
«26153
26457
e 26457
« 26457
« 26654
26654

NUMBER OF COEFFICIENTS C(3+NJIMNP) IS

Ci3,
Ci3,
C(3,
Ct3y
Ct3,
Ct3
Ct3y

1,
2
3
4
S
6
Te

1)
2)
)

mn

S)
6)
7)

Haithn oo

«24000
24000
«+24000
«24000
«24000
«24000
«24000

1,0000n

JM(SMN)

58187
58187
«48650
«48650
-. 40276

ETA
« 19451
e 19451
«25115
«25115
«28170

10

19

ig

Sample Output, Section 1.

Zcoms =

1,00

NJMAX = 19
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Table D-4. (Continued)

Ct3,» 80 8) = .24000
Ct3r 99 9) = «24000
Ct3r10010) = «24000

NUMBER OF COEFFICIENTS D(NJoNP.N@) IS 50

Dt v 1 7) = -1.73504
Dt 10 1» 9) = -2.33866
O 1¢ 3¢ 5) = 1,73504
Ot ¢ 50 3) = 1,49783
DU 1» 70 1) = -1,49783
OC 4» 90 1) = -1,96281
Dt 2, 2¢» 8) = -1,73505
D( 2¢ 2010y = -2.33867
Ot 2¢r 4 6) = 1,73505
D( 2r 60 4) = 1.,49784
Dt 20 8¢ 2) = -1.49784
Dt 2,10, 2) = -1,96282
DU 3» 10 5) = 1.,73504
Dt 3¢ 30 7) = 1,73504
D( 3» 3» 9) = -2433866
Dt 3¢ 5¢ 1) = 1,49783
Ot 3» 70 3) = 1.49783
Dt 30 99 3) = -1,96281
D( 49 2¢ 6) = 1,73505
DU 9¢r 4 b) = 1,73505
D( “¢ 4010) = -24.33867
Ot 49 69 2) = 1.49784
D( 49 8¢ 4) = 1,49784
Dt 4010, 4) = -1.96282
Dt 5S¢ 1¢ 3) = -1,13133
Dt 50 3¢ 1) = -1,13133
Ot 5¢ 5 9) = =3.07465
DL 5¢ 99 5) = -2.81865
Dt 60 29 4) = -1,13132
O( 60 4» 2) = -1.13132
Dt 60 6010) = -3.07469
D( 6010, 6) = -2.,81868
Dt 7 1 1) = 1.13133
Dt 7» 3¢ 3) = -1,13133
Dt 70 70 9) = =3.07465
Ot 7¢ 990 7) = =2,81865
Dt 8» 20 2) = 1,13132
Dt 8¢ 49 4y = -1,13132
Dt 8 8r10) = =-3.07469
Dt 8010, 8) = -2.81868
Dt 90 1» 1) = 1.04087
DU 99 3» 3) = 1,04087
Dt 990 590 5) = -.21090
D( 9 70 7y = -.21090
Dt 9» 9 9) = 4,18784
D(10e 20 2) = 1,04087
D(10s 40 4) = 1.04087
Dt10r» 6¢ ©) = -,21091
D(10» 8¢ b) = -.21091
D(10910,10) = 4,18793
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Table D-5.

Sample Output, Section 2.

COEFFICIENTS FOR COMPUTATION OF WALL PRESSURE WAVEFORMS

[
OVENOCWNMEULUNE OOVENCUVEGUNK-

P

CORNOUNMELN -

-

-
CORPBNOCUFEOGNK

GtV

b4

«000
.000
000
«000
.000
.000
«000
.000
«000
«000

000
<000
«000
«000
«000
+000
«000
«000
«000
«000

.000
«000
<000
«000
«000
<000
000
«000
«000
«000

1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000

1.000
1.000
1.000

THETA
(DEGRLES)

-0

«0
«0
<0
o0
o0
«0
o0
o0

“5.0
45,0
45,0
45,0
45,0
45,0
“5,.0
45.0
45,0
45,0

90.0
90.0
90.0
0.0
90.0
90.0
90.0
90.0
90.0
90.0

0
0
o0

o0
o0
.0
«0

0
45.0

45.0
45.0

COEFFICIENTS IN SERIES FOR:

TIME
CERIVATIVE

«0000000
«0000Ug0
«5818700
«0000000
0000000
«0000000
«4865090
«00000600
«4027600
«00000G0

114442
00000600
4114442
«0000000
« 4865000
«0000000
«0000000
«0000000
e 4027600
0000000

«5818700
«0000000
0000000
«00000040
«00000y0
«0000000
«4865000
«0000000
«4027690
«0000000

«0000000
«0000000
«5909575
« 0092403
«0000000
«0000000
4990979
« 0130845
=+4158379
«0137546

4178700
«0065339
+4178700

THETA
DERIVATIVE

«5818a70n
0000000
0000000
.000000n
9730900
0000000
0000000
.0000000
0000000
0000000

4114442
.000n00N
-. 4114442
.000000N
‘00000000
0000000
-+9730N00
0090000
«000000n
«000000n

-.000000n
«009000n
.000000n

=.973000n
«000000n
0000001
0000000
«000000n
«0000000

«5909575
«0092403
«00n000n
+000000n
+9981959
«0261690n
«000000n
«00n0000
«000000n
«0000000

«4178700
«0065339
-.,417R700

DE

AXIAL
RIVATIVE

«000000V
«000000V
.000000V
.000u00U
.000000UV
.0000000V
.0000000C
«000u00U
.0000000
.009000U

0000000
0000000
» 000000V
.000u000
«000000V
.000000V
.000v00U
.0000000
«0000000
0000000

0000000
«000u000
.0000000
«0000000
0000000
.0000000
0000000
0000000
.0000000
.0000000

.0000000
.0000000
.0181736
.0185766
«0000000
.0000000
0251885
0263938
.0261428
.0278051

.0128507
«0131356
«0128507
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Table D-5. (Continued)

4 1,000 45,0 «0065339 -,0065339 0131356
5 1,000 45.0 «4990979 -.0000000 0251885
6 1.000 45.0 .0130845 =-.000000N 0263938
7 1,000 4540 -,0000000 ~.9981959 -, 0000000
8 1.000 45.0 -,0000000 -.026169n -.000000U
9 1.000 4540 -,4158379 .00%0000 -.0261428
19 1.000 45,0 ~,0137546 .0000n00 -,0278051
1 1.000 90.0 5909575 -.,00n0000 0181736
2 1.000 90.0 20092403 -.,0000000 0185766
4 1.000 90.0 -.0000000 -.0092403 -.,000000UVL
5 1.000 90.0 -.0000000 -.9981950 -.0000000
[ 1.000 90.0 -,0000000 -,0261690 =-.000000U
7 1.000 S0.0 -.4990979 «0000001 ~-.0251885
8 1.000 90.0 -,0130845 +0000000 -.0263938
9 1.000 90.0 -,4158379 .000000n -.0261428
A0 1.000 90.0 ~.0137546 «0000000 -.0278051
Table D-6. Sample Output, Section 3.
INITIAL COMDITIONS ARE UF THE FORM:
UtIed) = ACULJ)I=COS(FREG=T) + AS(J)xSIN(FREQXT))» * EXP{DAMP*T)
J DAMPING FREGHENCY AClY) AS (V)
1 «00000000 1.84118000 «000n00N0 «30000000
el «00000000 1.84118000 ~-.30278619 -,00209447
3 .00000000 1.84118¢000 «30000000 .00N00000
4 «00000000 1.84118000 -.00209447 +30278619

THE LIMIT-CYCLE BEHAVIOR IS CALCULATED.

THIS RUN PRODUCES PLOTTED OUTPUT,
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dokdorkkpkkkkkadr PROGRAM LCYC3D #¥kkiokkoordikdokhdokfk gk kxpnnkd

THIS PROGRAM CALCULATES THE NONLINEAR BEHAVIOR OF
TRANSVERSE, AXIAL, OR COMBINED LONGITUDINAL-TRANSVERSE
INSTABILITIES IN A CYLINDRICAL CCMBUSTION CHAMBER WITH
UNIFORM PROPELLANT INJECTIONs, DISTRIBUTED COMBUSTION
PROCESSs AND A CONVENTIONAL NOZZLE. THE COMBUSTION PROCESS
1S DESCRIBED BY CROCCO'S TIME-LAG MODEL. BOTH TRANSIENT'
AND LIMIT-CYCLE SOLUTIONS ARE CALCULATED.

THE FOLLOWING INPUTS ARE REQUIRED:

(1) THE CONTROL NUMBER» NOUTCF.
(2) THE COEFFICIENTS FROM PROGRAM COEFFS3D.
(3) THE DATA DECHK.

NOUTCF DETERMINES PRINTOUT OF COEFFICIENTS.
IF NOUTCF = 0 COEFFICIENTS ARE NOT PRINTED OUT.
IF NOUTCF = 1 LINEAR COEFFICIENTS ONLY ARE PRINTED OUT.
IF NOUTCF = 2 ALL COEFFICIENTS ARE FRINTED OUT.

THE DATA DECK CONSISTS OF THE FOLLOWING CARDS:
FIRST CARD:

EN 1S THE INTERACTION INDEXe.

TAU 1S THE TIME LAG.

H 1S THE INTEGRATION STEP SIZE.

TSTART IS THE TIME AT WHICH OUTPUT STARTS.

TQUIT IS THE TIME AT WHICH COMPUTATIONS ARE TERMINATED.

SECOND CARD:

NTEST IS TASK CONTROL NUMBER:

IF NTEST = O COMFUTE TRANSIENT BEHAVIOR.

IF NTEST = 1 COMPUTE THE LIMIT-CYCLE BEHAVIOR.
JMODE IS THE MODE-AMPLITUDE USED TO TEST FOR LIMIT-CYCLES.
NLOC DETERMINES THE LOCATION OF THE WALL FRESSURE MAXIMA
AND MINIMA:

IF NLOC = 1 LOCATION IS Z = 0» THETA = O DEGREES.
IF NLOC = 2 LOCATION 1S Z = 0, THETA = 45 DEGREES.
IF NLOC = 3 LOCATION IS Z = 0, THETA = 90 DEGREES.

NTERMS IS THE NUMBER OF TERMS GIVEN INITIAL VALUES.
NPZ DETERMINES HOW SECONDARY STABILITY ZONES (PHANTOM
ZONES) ARE HANDLEDe.
IF NPZ = 0 PHANTOM ZONES ARE RETAINED.
. IF NPZ = 1 PHANTOM ZONES ARE ELIMINATED.
NOUT 1S THE OUTPUT CONTROL NUMBER.
IF NOUT = O PRINTED OUTPUT ONLY.
IF NOUT > O BOTH PRINTED AND FLOTTED OUTPUT» NOUT
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DETERMINES THE NUMBER OF THE LAST PLOT
PRODUCED.

DATA FOR SETTING UP PLOTS (THIRD AND FOURTH CARDS):

YHIC1) IS THE MAXIMUM ORDINATE FOR PRESSURE FPLOTS.
YHIC5) IS THE MAXIMUM ORDINATE FOR VELOCITY PLOTS.
NOTE: THE ORDINATE SCALES FOR PRESSURE AND VELOCITY PLOTS
ARE SYMMETRIC ABOUT ZERC.
YLAB IS THE INTERVAL FOR ORDINATE LABELING FOR ABOVE PLOTS.
ITICY IS THE NUMBER OF ORDINATE TIC MARKS FOR ABOVE PLOTSe
NOTE: ITICY SHOULD BE NEGATIVE FOR PHKESSURE AND VELOCITY FLOTS
TO OBTAIN CENTERLINE.
NFIRST 1S THE NUMBER OF THE FIRST PLOT PRODUCED.
NOMIT DETERMINES WHETHER AMPLI TUDE FLOT 1S PRODUCEDS
IF NOMIT = 0 AMFLITUDE FLOT 1S PRODUCED.
IF NOMIT = 1 AMPLITUDE PLOT IS OMITTED.

INITIAL AMPLITUDES OF F~FUNCTIONS (REMAINING CARDS):

AS(J) IS THE AMNPLITUDE OF THE SINE TERM.
AC(J) IS THE AMPLITUDE OF THE COSINE TERM.

COMPLEX YNOZ(C10)», BC(10)s Cl» C25 C3» CPHIT(10)» CSUM», A

DIMENSION LC10), NC10)» SC10)s NAMEC10)» ASC20)s ACC20)»
UC250, 4035 AAC4), YC4D)» FZC4540), YPC40)» UZC40),
CP(3,20,20), FRQ1(20)s DMP1(20), WMAX(S500),UAVG(100)
Z(6)s ANGLE(6)» THETA(6)» CFT(6s20), YIC20),
CFTH(6520)» CFZ(6,20)» PRESS(6), AXVEL(3), YRC20),
TPLOT(S00)» YPLOT(6,500)» DUMMYT(S500), DUMMYY(S00),
IBUF(3000%, ITTC4)s ITY1C7), ITY2¢7)> ITY3C(T)»
ITY4C7)s ITYSC6)» TAUCUTC20), ITY6(B)»
1TP(3)» TITLEC12), PRSC(500), TIC(S00)» PMAX(S00).,
TIMAX(500)» YLO(6)» YHIC6)» YLAB(6)s ITICY(6)

VRV U D N e

COMMON RUC20,4), C(3,20,20)> DC20,400)»
KPMAX( 3,203, IC(3.20,20)» KPAMAX(20).
2 IDP(205400), 1DQC20,400)
COMMON /BLK2/ MC10)» NSC10)s SJC10), B
COMMON /BLK3/ NJMAXs, NLMAX, GAMMA, COEF(3s20)

[

DATA ITT/*DIMENSIONLESS TIME» T'/,
ITY1/*INJECTOR PRESSURE PERTURBATION, THETA = 0%/,
ITY2/*'INJECTOR PRESSURE PERTURBATION, THETA = 45'/,
ITY3/*INJECTOR PRESSURE PERTURBATION, THETA = $0°'/,
ITY4/*NOZZLE PRESSURE PERTURBATIONs THETA = 0'/,
ITYS/°NOZZLE AXIAL VELOCITY» THETA = 0'/,
ITY6/°'NOZZLE B.Cs (RE(-GAMMA*Y*PHIT)) AT THETA = 0'/»

VD WM -
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C

7 ITP/'FRESSURE PEAKS®/

LAST = 250
ERR = 0.001
TDEL = 10.0

NPT = O

AACLl) = 0.0
AA(2) = Qo5
AAC3) = 0.5
AAC4) = 1.0

PI = 31415927
READ (5,5003> NOUTCF

kgkdkokdokkkkkkk COEFFICIENT INPUT SECTION *%kkkkkikkkkkikikikkkokkikkkikk

THIS VERSION OF LCYC3D READS THE COEFFICIENT DATA FROM
A FASTRAND FILE GENERATED BY PROGRAM COEFFS3D. TO READ
THIS DATA FROM CARDS, USE READ (5, XXXX) INSTEAD OF

READ (9,XXXX) IN THIS SECTION.

INPUT OF MOTOR PARAMETERS AND NUMBER OF TERMS.
READ (9,5001) GAMMAs, UE, ZE, ZCOMBs NDROPS, NJMAX
VRITE (6,6001) GAMMA, UE, ZE, ZCOMB, NJMAX

IF (NDROPS <EQe 0) WRITE (6,6030)

IF (NDROPS «EQ. 1) WRITE (6,6031)

NU = 2 % NJMAX

JMX = NJMAX/2

RLD = 05 * ZE

WRITE (6,6002)

INPUT OF DESCRIPTION OF SERIES EXPANSION.

DO 10 K = 1, JMX

READ (9,5002) NJ» L(NJ)» M(NJ)» N(NJIs» NSC(NJ)s SC(NJ)» SJ(NJI.,
1 NAME(NJ)

VRITE (6,6003) NAME(NJ)» NJs L(NJ)» M(NJ)» NC(NJ)» NSINJ).,

1 S(NJ)» SJ(NJ)

10 CONTINUE

WRITE (6,6010)

DO 1S5S K = 1, JMX

READ (9,5010) J» YNOZ(J)» BCJ)
WRITE (6,6015) J» YNOZ(J)» BC(J)
NJ = (2 % J) - 1

YR(NJ) = REAL(YNOZ(J))

YI(NJ) = AIMAGCYNOZ (J))
YR(NJ+1) = YR(NJ)

YIC(NJ+1) = YI(NJ)

15 CONTINUE
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aQaaoon

20

30

45
40

52

55
SO

ZERO LINEAR COEFFICIENT ARRAYS.
DO 20 KC = 1, 3

DO 20 NJ = 1, 20

DO 20 NP = 1, 20

C(KCsNJ>NP) = 0.0

CP(KC,NJ>NP) = 0.0

CONTINUE

ZERO NONLINEAR COEFFICIENT AKRAY.
DO 30 NJ = 1, 20

DO 30 NPQ@ = 1, 400

D(NJsNPQ) = 0.0

CONTINUE

INPUT OF LINEAR COEFFICIENTS.

DO 40 KC = 1, 3

READ (9,5003) KMAX

IF (NOUTCF «GTe 0) WRITE (6,6004) KC» KMAX

IF (KMAX +EQ. 0> GO TO 40

DO 45 K = 1, KMaX

READ (9,5004) NJs NP> CP(KCs»NJ»NP)

IF (NOUTCF «GTes 0) WRITE €6,6005) KC» NJ» NP, CP(KC,NJ,NP)
CONTINUE

CONTINUE

INPUT OF NONLINEAR COEFFICIENTS.

READ (9,5003) NLMAX

IF (NOUTCF «EQe 2) WRITE (656006) NLMAX
IF (NLMAX «EQe. 0) GO TO 50

DO 52 NJ = 1, 20

KPEGMAX(NJ) = ©

CONTINUE

DO 55 K = 1, NLMAX

READ (9,5005) NJ» NP, N@» DT

IF (NOUTCF +EQ. 2) WRITE (6,6007) NJ» NP, NQ, DT
KP@MAX(NJ) = KPEMAX(NJ) + 1

KPQ = KPOMAX(NJ)

IDP(NJ»KFQ) = NP

IDQ(NJ,KPQ) = N@

D(NJ,KPQ) = DT

CONTINUE

CONTINUE

kkkkkkkx%kx%%% PRESSURE COEFFICIENT SECTION #kokokskokohof ook sk kskakon ok okokok ook
CALCULATE SPATIAL COORDINATES FOR PRESSURE COMPUTATION.
DO S1 NFRES = 1, 3

Z(NPRES) = 0.0
RTHETA = NPRES - }
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51

53

56

S7

ANGLE(NPRES) RTHETA * 45.0
THETA(NPRES) RTHETA * PIl1/4.0
Z(NPRES + 3) ZE

ANGLE(NPRES + 3) = ANGLE(NFRES)
THETACNPRES + 3) = THETA(NPRES)

CONTINUE

CALCULATE COEFFICIENTS FOR PRESSURE TIME HISTORIES.
DO 53 NPRES = 1, 6

DO 53 J = 1, JMX

NP = (2 * J) - 1

Z1 = Z(NPRES)

ANG = THETA(NFRES)

CALL PHICFS(J,Z1,ANG»C1,C2,C3)
IF (NPRES «EQes 4) CPHIT(J) = C1
CFT(NPRES,NP) = REAL(C1)
CFT(NPRES,NP+1) = -AIMAG(C!)
CFTH(NPRES,NP) = REAL(C2)
CFTH(NPRES,NP+1) = -AIMAG(C2)
CFZ(NPRES,>NP) = REAL(C3)
CFZ(NPRES,NP+1) = -AIMAG(C3)
CONTINUE

OUTPUT OF COEFFICIENTS FOR PRESSURE TIME HISTORIES.

WRITE (6,6020)

DO S6 NPRES = 1, 6

WRITE (6,6014)

DO S6 J = 1, NJMAX

WRITE (6,6021) J» Z(NPRES)» ANGLEC(NPRES).

1 CFT(NPRES»J)» CFTH(NPRESsJ)» CFZ{(NPRES,J)
CONTINUE

kkkokokoakkokkkokkk DATA INPUT SECTION skokaokokaktkokk ok ook ook ok 30k 3ok ok ok o o o o okok ok ok ok
READ (5,5000) TITLE

ZERO INITIAL VALUE AND FREQUENCY ARRAYSe.
DO S7 K = 1, NJMAX

AS(K) = 0.0

AC(K) = 0.0

FRQI(K) = Q.0

CONTINUE

READ C0:.:BUSTION AND CONTROL PARAMETERS.
READ (S»5006, END = 300) EN» TAU, Hs TSTART, TQUIT

READ CONTROL NUMBERS.
READ (5,5008) NTEST, JMODE, NLOC, NTERMS, NPZ, NOUT
JMODE = (2 * JYODE) - 1
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581

JPMODE = JMODE + NJMAX
IF (NOUT «GTe 0) NPT = 1}

IF (NOUT «EQe. 0) GO TO 9

READ DATA FOR SETTING UP FLOTS.

READ (5,5009) YHI(1), YHI(5), YLABC1), YLAB(S)
READ (5,5008) ITICY(1)» ITICY(S)» NFIRST, NOMIT

*kkkkrknkknkx INITIAL AMPLITUDES SECTION soksksakskak ok ook ok ok ok ks ok ok ook ok o
DO 58 K = 1, NTERMS

INPUT INITIAL AMPLITUDES FOR F-FUNCTIONS.
READ (5,5007) J» AST, ACT

NJ = (2 x Jg) - 1

AS(NJ) = AST

AC(NJ) = ACT

CALCULATE FREQUENCY AND DAMPING.
RL = L(J)

AX = RL *x PI/ZE

AXSQ = AX * AX

$5Q = S(J) * S(Jh)

FRQ1(NJ) = SQRT(SS@ + AXSQ)
DMP1(NJ) = 0.0

FRQ1(NJ+1) = FRE1(NJ)

DMP1(NJ+1> = DMP1(NJ)

CALCULATE INITIAL AMPLITUDES FOR G-FUNCTIONS.

IF (FRQ1(NJ)) 58, 58s S81
GYRU = GAMMA*YR(NJY*UE

GYIF = GAMMA*YI(NJ)*FRQ1(NJ)
GYRF = GAMMA*YR(NJ)*FRQ1(NJ)
GYIU = GAMMA*YI(NJ)*UE

NPRES = 4
IF (NSCJ) «EGQ. 1) NPRES = 6

Al = (140 + GYRU>*CFZ(NPRES,NJ+1)
= GYIF*CFT(NPRESsNJ+1)

A2 = GYRF*CFT(NPRESsNJ+1) + GYIU*CFZ(NPRES:NJ;I)
A3 = =(10 + GYRU)*CFZ(NPRES,NJ) 4+ GYIF*CFT(NPRES,»NJ)
A4 = GYRF*CFT(NPRESsNJ) + GY1U*CFZ(NPRES,NJ)

DET = Al%Al + A2%A2

IF (DET .LT. 0.0000J01> GO TO S83
Rl = A3*%AC(NJ) - A4%AS(NJ)

R2 = ~A4*%AC(NJ) = A3*AS(NJ)
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583

58

592
591
590

59

602

604

605

AC(NJ+1) = (R1*Al + R2%A2)/DET

AS(NJ+1) = ~-(R2%xAl - RI*A2)/DET

GO TO S8

AC(NJ+1) = -AS(NI)

AS(NJ+1) = AC(NJ) -
CONTINUE

OUTPUT OF INITIAL AMPLITUDES.
WRITE (6,6016)

DO 590 J = 1, NJMAX

IF CASCJ)) S91s 592, S91

1F CACCJ)) 591s 590s 591

WRITE (6,6017) J» DMP1¢J)» FRQ1CJ)» AC(JIIs ASCI)
CONTINUE

IF (NTEST «EQ. 0) WRITE (6,6025)
IF (NTEST «EQ. 1) WRITE (6s6026)
IF (NPZ «EQe. 1) WRITE (6,6028)

IF (NOUT «GE. 1) WRITE (6,6027)

*kkkkkkxxkkkx LINEAR COEFFICIENTS SECTION *aakikkokakkskkkkokkakkkokkkokkk

DO S9 KC = 1, 3
DO 59 NJ = 1, 10
KPMAX(KC,NJ) = O
CONTINUE

IF (NPZ +EQ. 0) GO TO 605
DO 602 J = 1, JMX

NJ = (2 % J) - 1

RL = L(J)

AX = RL * PI/ZE

AXSQ = AX * AX

S$5@ = 5C¢J) * S{J)

OMEGA = SQRT(SSQ + AXSQ)
TAUCUT(NJ) = 2.0 * PI/OMEGA
TAUCUT(NJ+1) = TAUCUT(NJ)
CONTINUE ’

DO 604 NJ = 1, NJUMAX

DO 604 NP = 1, NJMAX A
IF (TAU «GTe. TAUCUT(NP)) CP(3,NJsNP) = 0.0

CONTINUE

COMPUTE LINEAR COEFFICIENTS FOR GIVEN VALUES OF EN AND TAU.
DO 60 NJ = 1, NJMAX

DO 60 NP = ], NJMAX

CT = CP(1,NJ.NP)
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61

62

63

64

65

60

753
752

751

IF (CT) 61, 62, 61
KPMAX(1,NJ) = KPMAXC1,NJ) + |
KP = KPMAX(1,NJ)

ICC15NJ»KP) = NP

C(1,NJ,KP) = CT

CT = CP(2,NJ>NP) = EN*CP(3,NJ>NP)
IF (CT) 63, 64, 63
KPMAX(2,NJ) = KFMAX(2,NJ) + 1
KP = KPMAX(2,NJ)

ICC2,NJ,KP) = NP

CC(2,NJ,KP) = CT

CT = EN * CP(3,NJsNP)

IF ¢CT) 65, 60, 65
KPMAX(3,NJ) = KPMAX(3,NJ) + 1|
KP = KPMAX(3,NJ)

IC(3sNJ,KP) = NP

C(3sNJ-KP) = CT

CONTINUE

*kkxkkuxnkk*x STEP-SIZE COMPUTATION 3o 2 0 20 o e o ok ae e e o o ok o ok e ok o o o ok e o o o ok ok oK

NDIV = 1.0 + TAU/H
RN = NDIV

H = TAU/RN

H6 = H/6.0

rnkkkkhkkhrk INITIAL VALUES SECTION kokskokkakoorsh ko son oo ook hon &k ok

WRITE (6,6008) EN, TAU, GAMMA, UE» RLD
WRITE (6,6009)

WRITE €656022) (ANGLECJ)s J = 156)» (ANGLE(J)Y» J = 1,3)
WRITE (6,6012)

NP1 = NDIV + 1

DO 70 1 = 1, NP1

NSTEP = I - NP1

RSTEP = NSTEP

TIME = RSTEP * H

TICI) = TIME

DO 75 J = 1, NJMAX

JP = J + NJMAX

IF (ACCJ)) 751, 753, 751

IF C(ASC(J)) 751, 752, 7s1

UCI,Jd) = 0.0

UCI1,JP) = 0.0

GO TO 75

ARG = FRQLC¢J) * TIME

FSIN = SINCARG)

FCOS = COSCARG)

FEXP = EXP(DNMP1(J)*TIME)

UCILJ) = CASCJI*FSIN + ACCJ)*FCOS) * FEXP
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UCIsJP) = C(CASCJ) * FCOS) = CACCJ) * FSIN)) * FRQICJ) * FEXP
1 + DMP1(J) * UC1.,J)
75 CONTINUE
C CALCULATE INITIAL VALUES OF PRESSURE AND VELOCITY.
DO 704 NPRES = 1, 6
DO 702 J = 1, NJMAX

COEF(1sJ) = CFT(NFRES,J)
COEF(2,J) = CFTH(NFRES,J)
COEF(3,J) = CFZ(NPHES,J)

702 CONTINUE
DO 703 J = 1, NU
Y(J) = UCI.d)
703 CONTINUE

UBAR = 0.0
IF (NPRES «GT. 3) UBAR = UE
UMS = 0.0

IF ((NDROPS<EQe1) «ANDe (NPRES«LTe4)) UMS = UE/(ZE*ZCOMB)
CALL PRSVELCUBAR,MS»YsPsVUTH,VZ)
PRESS(NPRES) = P
IF (NPRES «GT. 3) AXVEL(NPRES - 3) = VZ
704 CONTINUE
PRS(I) = PRESS(NLOC)

c CALCULATE INITIAL VALUES OF NOZZLE B.Ce.
C5UM = (0+050+0)
DO 710 J = 1, JMX
JP = NJMAX + (2 * J) - |
FT = Y(JP)
GT = Y(JP+1)
A = CMPLXC(FT»GT)
CSUM = CSUM + YNOZ(J) * CPHIT(J) * A
710 CONTINUE
SUM = REAL(CSUM)

YPHI = -GAMMA * SUM

WRITE €6,6011) NSTEP» TIMEs, (PRESS(J)s J = 1,6)»

1 CAXVEL(J)s J = 1,3), YPHI

70 CONTINUE

v

WRITE (656008) EN» TAU, GAMMA, UEs RLD

WRITE (6,6022) (ANGLE(J)s» J = 1,56)» C(ANGLECJ)» J = 1,3)
c
c *akkkskkrkknk INITIALIZE CONTROL NUMBERS sk##sksokskokdokk % xmokook ko k
c

LINE = 8

K=0

MAXNGC = ©

MAXP = 0

IF (NOUT «EQ. 0) GO TO 100

JPLOT = 0

TMIN = TSTART
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90

100

105

110

120

130

144

148

140

150

TMAX = TSTAKRT + TDEL
YLOCL1) = =YHIC1)

DO 90 J = 2,4
YHICJ) = YHI(1)
YLOCJ) = YLO(1)
YLABCJ) = YLAB(1)
ITICYC(J) = ITICYC(D)
CONTINUE

YLOC(S) = ~YHI(S)
YHIC(6) = YHI(5)
YLOC6) = YLOC(S)
YLABC6) = YLAB(S)
ITICY(6) = ITICY(S)

*¥xrknnsrerhke NUMERICAL CALCULATIONS SECTION 2 Ao o oK o oo oK R K
I = NPI

RUNGE-KUTTA INTEGRATION SCHEME.
NSTEP = (1 - NFl + (LAST - NF1) * K)
RSTEP = NSTEF

TIME = RSTEF * H

TIC1) = TIME

DO 110 J = 1, NJMAX

JP = J + NJUMAX

RVCJs 1) = UCI-NDIVsJF)

RV(J»4) = UCI-NDIV+1,JF)

RVU(J>2) = 0+375%RVCJs1) + 0.75%RV(Jr4) - 0+125%UCI-NDIV+2,JF)
RV(J»3) = RU(Js2)

CONTINUE

DO 120 J = 1, NU
YCJ) = UCI,d)

CONTINUE

CALL RHS(NU»1,Y,YP)

DO 130 J = 1, NU

FZC(1,4J) = YECOD)

CONTINUE

DO 140 II = 2,4

DO 144 J = 1, NU

UZCJ) = Y(J) + AACII) = H * FZ(I1I-1,d)
CONTINUE

CALL RHSC(NU,I11,UZ,YP)

DO 148 J = 1, NU

FZC(I1,J) = YP(J)

CONTINUE

CONTINUE

DO 1S0 J = 1, NU

UCI+1,d) = YCU) + (FZC15d)+2.0%(FZ(2,U)+FZ(3,J)) + FZ(4,J)) * He
CONTINUE
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134

152

154

650

170

171

160

173

CALCULATE PRESSURE TIME HISTORIESe
DO 154 NPRES = 1, 6
DO 152 J = 1, NJMAX

CCEF(1,J) = CFT(NFHES,»J)
COEF(2,J) = CFTH(NFRES»J)
COEF(3,J) = CFZ(NFRES,J)
CONTINUE

UBAR = 0.0

IF (NPFKES «GT. 3) UBAR = UE
US = 0.0

IF ((NDROPSe«EQe1) <ANDe (NPHRESeLTe4)) WMS = UR/(ZE#ZCOMB)
CALL FRSVELC(UBAR»UNMS,»YsFsVTH,VZ)

PRESS(NPRES) = P

IF (NPRES «GTe 3) AXVEL(NFRES - 3) = VZ

CONTINUE

PRS(CI) = FRESS(NLOC)

CALCULATE VALUES OF NOZZLE Be«C.
CSuM = (0.0,0.0)

DO 6S0 J = 1, JMX

JP = NJMAX + (2 * J) - 1

FT = Y(JP)

GT = Y(JF+1)

A = CMFLX(FT.GT)

CSum = CSUM + YNOZ(J) % CPHIT(J) * A
CONTINUE

SuM = REAL(CSUM)

YFHI = -GANMMA * SUM

DETERMINE MAXIMA AND MINIMA OF PKINCIPAL MODE-AMFLI TUDE
FUNCTION FOR USE IN DETERMINING LIMIT-CYCLE BEHAVIOR.
IF (UCI,»JFMODE) * UCI+1,JFMODE)) 170, 170, 160

FDEN = UCI,JPNMODE) = UCI+1,JPMOLE)

IF (PDEN) 171, 160, 171

PP = UCI,»JFMCDE)/PDEN

PA = (PP - 1.0) * FPF * 0.5

PB = 1.0 = (PP * PP)

PC = (FF + 1.0) % FP * 0.5

FAXNO = MAXNC + 1

UMAX(MAXNO) = PA*U(I-1,JMODE) + PB*U(1,JMODE) + FC*UCI+1,JMODE)
IF (MAXNO «GE. S00) GO TO 250

CONTINUE

DETERMINE MAXINMUM AND MINIMUM FRESSURE AT LOCATION SPECIFIED
BY NLOC.

DPL = PhRS(I) - PRS(I-1)

DPS = PRS(I-1) = PRS(I-2)

IF (DFL*LFS) 173, 173, 175

PNUNM = PRS(I-2) - FRS(1)




174

175
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ao

1001

1000
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FDEN = 2.0 * (FRS(I-2) + PRS(1) - 2+.0%FRSC(I-1))
IF (PDEN) 174, 175, 174

PP = PNUM/FDEN

FA = (PF = 1.0) * PP * Q.5

PB = 1.0 - (FP * FF)

FC = (PP + 1+0) * FF * 05

MAXF = MAXP ¢+ 1

FMAX(MAXF) = PA*PRS(I-2) + FB*FRS(1-1) + FC*xFRS(I)
TIMAX(MAXF) = TICI-1) + FF*H

IF (MAXP «GE. 500) GO TO 250

CONTINUE

IF (NTEST «EQ. 1) GO TO 1S5

IF (TIME +LTe TSTART) GO TO 155

IF ((NOUT +EQ¢ 0) «ORe C(NOUT +GTe 6)) GO TO 156

*kkknkxknknkkk TIME HISTORY PLOTTING SECTION %k skok ok o skokoak ok sk ok ok ok ok ok o oK

IF (TMAX «GT. TQUIT) GO TO 156
IF (CTIME «GTe TMAX) «ORe C(JFLOT «GEe 500)) GO TO 1000

JPLOT = JFLOT + 1

FILL TIME ARRAY FOR PLOTTING.
TPLOTC(JFLOT) = TINME

FILL INJECTCR PRESSURE ARRAYS FOR PLOTTING (THETA = 0, 45, 90)
DO 1001 J = 1,3

YFLOT(J»JFLCT) = FRESS(J)

CONTINUE

FILL NOZZLE PRESSURE ARRAY FOR PLOTTING (THETA = 0)
YPLOTC4,JFLOT) = PRESS(4)

FILL NOZZLE AXIAL VELOCITY ARKAY FOR FLOTTING (THETA = O)
YPLOT(S»JPLOT), = AXVEL(1)

FILL NOZZLE B«.C+ ARRAY FOR FLOTTING C(THETA = 0).
YFLOT(6,JPLOT) = YPHI

GO TO 156

NUM = JFLOT

PLOT TIME HISTORIES.

DO 1020 NPLOT = NFIRST» NOUT

JPLOT = O
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c ASSIGN FLOTTING FARAMETERS.
YMIN = YLOCNFLOT)
YMAX = YHI(NFLOT)
NTICY = ITICY(NFLOT)
DELY = YLAB(NFLOT)

c
(o} ELIMINATE FOINTS THAT ARE OUT OF THE ORDINATE RANGE.
DO 1010 J = 1, NUM
IF (CYFLOTC(NPLOT>J) «LTe YMIN) <ORe (YPLGT(NPLOT&Q) «GT. YMAX))
1 GO TO 1010
JPLOT = JFLOT + 1
DUMMYTC(JPLOT) = TFLOTC(J)
DUMMYY(JFLOT) = YPLOT(NFLOT»J)
1010 CONTINUE
C
IF (JPLOT +EQ. 0) GO TO 1020
GO TO (1011,1012,1013,1014,1015,1016)» NFLOT
c
C FLOT INJECTOR FRESSURE AT THETA = O DEGREES.
1011 CALL GHAPHS(1BUF, 30005 4sJFLGT» 115 NTICY, TMNAXS YMAXs TMINS YMINS
i ITT:ITYlo21:41:DUMMYT:DUMMYY;Q.O:BELY:TITLE)
GO TO 1020
c
Cc PLOT INJECTOR FRESSURE AT THETA = 45 DEGREES.

1012 IF (M(JMODE) EQ. 0) GO TO 1020
CALL GRAPHSCIBUF, 30005 45JFLOT> 1 15NTICY» TMAX, YMAX, TMIN, YMIN,
1 ITT,1TY2,21,42, DUMMYT» DMMYYs 2¢ 05 DELY+TI TLE)
GO TO 1020
C
(o PLOT INJECTOR FRESSURE AT THETA = 90 DEGREES.
1013 IF (M(JMODE) .EQ. Q) GO TO 1020

CALL GRAPHSCIBUF, 3000, 45JFLOT»11,NTICY> TMAX> YMAXs TMIN, YMNIN,

1 ITT>1TY3,21542, DWMYTs DUMNMYY> 2.0, DELY>» TITLE)
GO TO 1020
(o
C PLOT NOZZLE PRESSUKE AT THETA = O DEGRFES.
1014 CALL GBAFHS(IBUF:3000:4’dPLOT:lloNTlCY:TMAK:YMAX:TMIN:YNIN:
1 ITT>1TY4,215 39, DWMMY T> DUMMYY» 2.05 DELY > TITLE)
GO TO 1020
C
C PLOT NOZZLE AXIAL VELOCITY AT THETA = O DEGHKEES.
1015 CALL GRAPHS(IBUF:SOOOJQJJFLOTollnNTlCY:TMAX:YMAX:TMIN:YMIN:
1 ITT>ITYS,21532, DUMMY To DUMMYY» 240, DELY» TI TLE)
GO TO 1020
C
C PLOT NOZZLE B+Ce. AT THETA = 0O DEGREES.
1016 CALL GRAPHS(IBUF:3000:4JJFL0T:1IJNTICY:TMAX:YMAX:TMIN:YMIN:
1 ITT>I1TY6s215 44, DUSMYT, DPWMYY» 2.0, DELY, TI TLE)
C

1020 CONTINUE
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156

157

155

180

190

REASSIGN FLOTTING FARAMETERS FOR NEXT SET OF PLOTS.
JPLOT = O

TMIN = TMAX

TMAX = TMAX + TDEL

*kkkxkxxkrkd*x TIME HISTOKY FRINTED OUTPUT SECTION #kskkkkkkkkkikkk

WRITE (6s56011) NSTEP, TIME» (FRESSCJ)s J = 156)»

i (AXVEL(CJ)s J = 153)», YFHI

LINE = LINE + |

IF (TIME «GT. TQUIT) GO TO 250

IF (LINE «LT. 52) GO TO 155

WRITE (6,6013)

WRITE (6,6022) (ANGLE(J)» J = 15635 (ANGLECJ)» J = 1,3)
LINE = 4

I =1+ '
IF (I +LTe LAST) - GO TO 105

*kkokkkokkkdkkhk LIMIT-CYCLE SECTION ks kskokskok sk ook ok ok okok ok ok ook ok 3k ok o ook ok ok ook ok ok ok

TEST FOR LIMIT CYCLE.

K=K+ 1}

IF ((NTEST -EQe 0) «ORe (MAXNO LT+ 80)) GO TO 190
UTOT = 0.0

DO 180 J = 0, 3

JMAX = MAXNO - J

UTOT = UTOT + ABSCWMAXC(JMAX))
CONTINUE

UAVG(K) = UTOT/4+0

IF (K «EQe 1) GG TO 190

CHANGE = UAVG(K) - UAVG(K~1)
ABSCHG = ABS(CHANGE/UAVG(K))

IF (ABSCHG +GT. ERR) GO TO 190
™ = TIME/2.0

I™™M = T
ITM = 2%xITM + 2
™ = ITM

TSTART = TM + TSTART
TQUIT = ™ + TQUIT
TMIN = TSTART

TMAX = TSTART + TDEL
NTEST = 0

RE-ASSIGN ARRAYS.

DO 200 1 = 1, NF1
ILAST = LAST - NF1 + 1
PRS(1) = PRSCILAST)
TICI) = TICILAST)
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200

250

255

260

264

262

DO 200 J = 1, NU
UCI»J) = UCILAST,J)
CONTINUE

GO TO 100

**kkxererransx PRESSURE MAXIMA AND MINIMA PRINTOUT #akkakkssikkmihkes

WRITE (6-6023) Z(NLOC)» ANGLEC(NLOC), MAXP
LINE = 4

D0 2S5 JST = 1, MAXF, 8

JSTART = JST

JSTCP = JST + 7

IF (JSTOF «GT. MAXP) JSTOF MAXF

WRITE (6,6024) (FMAX(J)» J JSTART, JSTOF)
WRITE (6,6024) (TIMAX(J)» J = JSTART, JSTOF)
WRITE (6,6014)

LINE = LINE + 3

IF (LINE .LTe. 52) GO TO 255

LINE = 0

WRITE (656013)

CONTINUE

IF (CNOUT +EQe 0O) +ORe (NOMIT «EQ. 1)) GO TO S

*akkkkkkkkksx PRESSURE MAXIMA FLOTTING SECTION koo ok

DETERMINE LARGEST VALUE OF FMAX.
AMPMAX = 0.0

DO 260 J = 1, MAXP

IF (PMAX(J) .LT. AMPMAX) GO TO 260
AMPMAX = FMAX(J)

CONTINUE

RANGE OF PLOT AND COORDINATE LABELING.
ITM = ANMPMAX + 1.0

AMPMAX = ITM™

I™ = 1.0 + TIMAX(MAXF)>/50.0

TMAX = 1ITM * SO

DELX = TMAX/10.0

DELY = AMPMAX/10.0

ELIMINATE NEGATIVE VALUES.
JFLOT = 0

DO 262 J = 1, MAXF

IF (PMAX(J)) 262, 264, 264
JPLOT = JPLOT + 1
DUMMYTC(JFLOT) = TIMAX(J)
DUMMYY(JFLOT) = FMAX(J)
CONTINUE
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c
C
c

FLOT VALUES.
CALL GRAPHS(CIBUF, 3000545 JFLOTs 1015 101, TMAXs AMPMAX, 00500 0»
1 ITT>I1TP»215 14, DWMY T> DUMMYY » DELX» DELY> TITLE)

GO TO S

TURN OFF FLOTTING ROUTINE.
300 IF (NPT +EQe 1) CALL SHPAKG

*EERKKEXXXK %% READ FORMAT SPECIFICATIONS s skskookskokok ks ok ok ok ok o ok ok ok ok o ok

5000 FORMAT (12A6)

5001 FORMAT (4F10.0,215)
5002 FORMAT (515s2F 105, 1XsA4)
5003 FORMAT (IS)

5004 FORMAT (215,F15+6)
5005 FORMAT (3I5,F15.6)
5006 FORMAT (SF1040) ‘
5007 FORMAT (15,2F10.0)
5008 FORMAT (715)

5009 FORMAT (7F10.0)
5010 FORMAT (I15-4F10.5)

*hkxkkrxkkkkk WRITE FORMAT SPECIFICATIONS ko skokaok ok ook ok ok ook ek ok ok sk ook ok ok

6001 FORMAT (1H1,9H GAMMA = ,F5.3,5X, SHUE = ,F5e3»
1 SX»5HZE = ,FBe5,5X,8HZCOMB = ,F5.2,
2 SXs BHNJMAX = ,12//)
6002 FORMAT (2X»29HNAME J L M N NS, 7X» 3HSMN, 3%,
1 THJM( SMN)Y /)
6003 FORMAT (2X»A4,515,2F10+5)
6004 FORMAT (1HO0»26H NUMBER OF COEFFICIENTS C(s11510H»NJsNP) IS,15/)
6005 FORMAT (2Xs2HCCs11s1Hss1251Hs512,4H) = »,F10.5)
6006 FORMAT (1H0,38H NUMBER OF COEFFICIENTS D(NJ>NF.NQ) 1S,15/)
6007 FORMAT (2Xs2HD(51251H»512,1Hs512,8H) = »F10e5)
6008 FORMAT(1H1,45H COMBUSTION FARAMETERS: INTEKACTION INDEX = »F7¢5.,
12X, 1 IHTIME-LAG = ,F7+5/2X, 17THMOTOR FARAMETERS:» 19X,
GHGAMMA = 2F7e5,23H EXIT MACH NUMBER = ,F7.5,
22H ° LENGTH/DIAMETER = sFTe5/77)
6009 FORMAT (2Xs 1S8HINITIAL CONDITIONS//)
6010 FORMAT C(1HO» 5X» 1HJ» 8X5 2HYR» 8Xs 2HY I » 7%» 3HEPS» 7Xs 3HETA/ /)
6011 FORMAT (2XsI5,F12¢55; 10F10.5)
6012 FORMAT (1HO)
6013 FORMAT (1H1)
6014 FORMAT C(1H )
6015 FORMAT (2X51554F10.5)
6016 FORMAT (1H1,36H INITIAL CONDITIONS ARE OF THE FORM://
2Xs 49HUCI U3 = AC(JII*COSCFREQ*T) + ASCJI*SINCFREQ*T))»
14H * EXP(DAMP%T)///6Xs 1HJs8X» THDAMFING,»
6Xs 9HFREQUENCY» 10Xs SHACCJ)» 10Xs SHASCJ) /7))

[A 3

W N
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6017
6020

6021
6022

6023

6024
6025
6026
6027
6028
6030
6031

B WK =

8 WIN -

FORMAT
FORMAT

FORMAT
FORNMAT

FORMAT

FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
END

(2X5155,4F1587)

C(1H1»546H COEFFICIENTS FOR COMPUTATION OF WALL PRESSURE,
10H WAVEFORMS//743Xs 2THCOEFFICIENTS IN SERIES FOht//
22Xs SHTHETA, 10Xs 4HTIME, 10X» SHTHETA» 10X» SHAXI AL/

6Xs 1HJ»9Xs 1HZ» 3X»9H(DEGKREES)» 5X» 10HDERIVATIVE,»
5X» 10HDERIVATIVE, 5X» 10HDERIVATIVE/ /)

(2Xs155F10¢3,F12¢153F15.7)

(26X» 17THINJECTOR PRESSURE, 14X, 1SHNOZZLE FRESSURE»
12Xs 21HNOZZLE AXIAL VELOCITY/3X»4HSTEP»8Xs» 4HTIME,
FSe0s5H DEGesFSe0s5H DEGesFSe0s5H DEGes
FS¢055H DEGesF5¢05,5H DEGe»>F5.005H DEGes
FS5e0,5H DEGesFS¢0s5H DEGesFS5e0sS5H DEGes6Xs 4HYPHI//)

(1H1,38H PRESSURE MAXIMA AND MINIMA AT: Z = »FS5e2s
11H THETA = »F4.1719H VALUES COMPUTED: »13//7)

C(l1H »7X5,8F13+6) ’

(2X/772Xs 3THTHE TRANSIENT BEHAVIOR IS CALCULATED.)

(2X//72X»39HTHE LIMIT-CYCLE BEHAVIOR IS CALCULATED.)

(2X//72X5, 33HTHI S KUN FRODUCES FLOTTED OUTPUT.)

(2X/7/72X, ' THE PHANTOM ZONES ARE ELIMINATED. ')

(2Xs> *DROFLET MOMENTUM SOQOURCE 1S NEGLECTED'/)

(2X, *DROPLET MOMENTW SOURCE 1S INCLUDED'/)
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SUBROUTINE PHICFS(NF»Z» THETA»CT> CTH» CZ)

THIS SUBKOUTINE COMPUTES THE COEFFICIENTS NEEDED TO
CALCULATE THE WALL PRESSURE FERTUKBATION.

NP 1S THE INDEX OF THE COMPLEX SERIES TERM.

Z 15 THE AXIAL LOCATION.

THETA 1S THE AZIMUTHAL LOCATION.

CT IS THE COEFFICIENT IN THE SERIES FORK THE TIME DERIVATIVE OF
THE VELOCITY POTENTIAL.

CTH IS THE COEFFICIENT IN THE SERIES FOR THE THETA DERIVATIVE
OF THE VELOCITY POTENTIAL.

CZ 1S THE COEFFICIENT IN THE SERIES FOR THE AXIAL DERIVATIVE
OF THE VELOCITY POTENTIAL.

COMPLEX Cl, CZ,» CAXI, CAXIZ, CRADs» CAZl, CAZITH»
B(10)s CT> CTHs CzZ ’
COMMON /BLK2/ MC10)» NSC10)s SJC10)» B

Cl = €0.0,1.0)

CZ = CMFLX(Z,0.0)

CAXI = CCOSH(CI * B(NP) * CzZ)

CAXIZ = CI * BC(NP) * CSINHCCI * B(NF) * CZ)
CRAD = CMFLXCSJ(NF)»0.0)

EM = M(NF)

ARG = EM * THETA

FSIN = SINCARG)

FCOS = COSCARG)

AZlI = FCOS

IF (NSC(NP) <EQ. 1) AZ1 = FSIN

AZITH = EM * FCOS

IF (NS(NF) <EQ. 2) AZITH = =EM *x FSIN
CAZI = CMFLXCAZI1,0.0)

CAZITH = CMFLXCAZITH»0.0)

CT = CAZI * CAXI * CRAD
CTH = CAZITH * CAX1 * CRAD
CZ = CAZ1 * CAXIZ * CRAD

RETUERN
END
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SUBROUTINE PRSVEL(CUBAR,WS,»YsPsVTH, VZ)
THIS SUBROUTINE COMFUTES THE WALL FRESSURE AND VELOCITY.

UBAR IS THE LOCAL AXIAL STEADY STATE MACH NUMBER.

UMS IS THE DERIVATIVE OF THE MACH NUMBER FORK THE CASE
WHEN DROFLET MOMENTUM SOUKRCES AKE INCLUDEDe.

Y IS THE ARRAY CONTAINING VALUES OF THE MODE-AMFLI TUDE
FUNCTIONS AND THEIR DERIVATIVES.

P IS THE VALUE CF THE WALL PRESSURE FERTURBATION.

VTH IS THE TANGENTIAL COMPONENT OF VELOCITY AT THE WALL.
VZ IS THE AXIAL COMPONENT OF VELOCITY AT THE WALL.

DIMENSION YC(40), SUMC4), SUMSQC3I)
COMMON /BLK3/ NJMAX, NLMAX, GAMMA, COEF(3,20)

DO 10 I = 1, 4
SUMCI) = 0.0
CONTINUE

DO 201 = 1, 4

DO 20 J = 1, NJMAX

JY = J

IF (I +EQe 1) JY = J + NJMAX

I1 =1

IF (I «EQ. 4) 11 = 1

SUMCI) = SUMCI) + Y(JY) * COEF(II,J)
CONTINUE

PLIN = SUM(C1) + UBAR*SUM(3) + WMS*SUM(C4)
PNL = 0.0

IF (NLMAX +EQ. 0) GO TO 40

DO 301 = 1, -3

SUMSE(I) = SUMCI) * SUMCI)

CONTINUE

PNL = Q0«5 * (SUMSQC2) + SUMSQC3) - SUMSQC1))

P = -GAMMA * (FLIN + PNL)
VTH = sumM(2)
VZ = SUM(3)

RETUERN
END




20
25

30

40
45

50
55

SUBROUTINE RHS(NU»II, U, UP)

DIMENSION UINB), UF(ND)

COMMON RV(20,4), C(3,20,20)» D(20,400),

1 KPMAX(3,20)s IC(3,20,20), KFGMAX(20),
2 IDF(20,400), 1D&C20,400)

COMMON /BLK3/ NJMAX, NLMAX, GAMMA,

DO 10 NJ = 1, NJMAX

NJP = NJ + NJMAX

UP(NJ) = U(NJP)

SL1 = 0.0

SL2 = 0.0

SL3 = 0.0

SNL = 0.0

MAaX KFMAX(C1,NJ)

IF (MAX «EQe 0) GO TO 25

DO 20 KP = 1, MAX

NP = ICC15sNJLKF)

SL1 = SL1 + (CCl,oNJ>KP) * U(NF))
CONTINUE )

MAX = KPMAX(2,NJ)

IF (MAX «EQ. 0) GO TO 35

DO 30 KP = 1, MAX

NFP = IC(2,NJ,KP) + NJMAX

SL2 = SL2 + (C(2,NJsKF) * U(NPP))
CONTINUE

MAX = KFMAX(3,NJ)

IF (MAX +EQe. 0) GO TO 45

DO 40 KP = 1, MAX

NP = 1C(3,NJsKP)

SL3 = SL3 + (C(3,NJsKP) * RU(NP,11))
CONTINUE

IF (NLMAX «EQe 0) GO TO 55

MAX = KPOMAX(NJ)

IF (MAX <EQe 0) GO TO 55

DO S0 KPQ = 1, MAX

NP = IDP(NJ,KPQ)

NQP = IDQ(NJ,KPQ) + NJMAX

SNL = SNL + (D(NJ,KFQ@) * U(NP) * UCNQPF))
CONTINUE

UP(NJF) = =-(SL]1 + SL2 + SL3 + SNL)
CONTINUE

RETURN

END

COEF( 3, 20)
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COMFILER (FLD=ABS)

SUBROUTINE GRAFHSCIBUF,NLOCsLDEVsNTOTsNTICXsNTICY,

1 XMAXsYMAX,XMIN,YMIN,ITITLX>ITITLY,LTI TLX>LTITLY»XARRAY,
2 YARRAY:DELX:DELY:TITLE)

c--_- ................... P L L L X aeooaooee PGB aTE---e e pupirapepeperer X X L X Xk
c

C IDENTIFIER MEANING TYFE

c

C 1IBUF3 ADDKESS OF BUFFER AREA FOR FLOT OUTFUT INTEGER

C NLOC: NUMBER OF LOCATIONS IN BUFFER AREA (>=2000) INTEGER

C LDEV: LOGICAL DEVICE NUMBER FOR FLOT INTEGER

C NTOT: NUMBER OF FOINTS TO BE FLCOTTED INTEGER

C NTICX: NUMBER OF TIC MAKKS CN ABSCISSA (>=2) INTEGER

C NTICY: NUMBER OF TIC MARKS ON ORDINATE (>=2) INTEGER

C XMAX: UPFER LIMIT GOF ABSCISSA DOMAIN REAL

C YMAX: UFFER LINMIT OF ORDINATE HKANGE REAL

C XMIN: LOWER LIMIT OF ABSCISSA DOMAIN REAL

C YMIN: LOWER LIMIT OF ORDINATE RANGE REAL

C ITITLXt ABSCISSA LABEL F1ELDATA ARBRAY
C ITITLY: ORDINATE LABEL FIELDATA ARhKAY
C LTITLX: NUMBER OF CHARACTERS IN ITITLX INTEGEK

C LTITLY: NUMBER OF CHARACTERS IN ITITLY INTEGER

C XARRAY: ABSCISSA POINTS IN TERMS OF XMIN-XMAX COORD'S REAL ARRAY

C YARRAY: ORDINATE POINTS IN TERMS OF YMIN-YMAX COORD'S KEAL ARRAY

C DELXs INTERVALS OF ABSCISSA TIC MARK LABELING

c IN TERMS OF XMIN-XMAX COORDINATES REAL

C DELY: INTERVALS OF CRDINATE TIC MARK LABELING

C IN TERMS OF YMIN-YMAX COORDINATES REAL

C TITLEs LABEL FOR THE WHOLE RUN FIELDATA ARRAY
c

Coev-emmccccecccacecaesc=" e eecmteccecec et eemeceTeeeemeeaeem . em—.a—-———

DIMENSION IBUF(NLCC)»XAKRAY (NTOT)»YARRAY(NTOT)»ITITLXC1),
1 ITITLYC(1)YLITC100)
DIMENSION TITLE(I)

LOGICAL ZEKO
DEFINEZERC=NDEC.LT+0«ANDABSC(FPN)eLTee5

1 +OReNDEC«GT«O0-ANDeABS(FFN) cLTeS«e*10e**(~NLEC-1)
DEFINE DNDEC= NDEC-FLD(O:36:ZERO)*NDEC'FLD(0:36:ZEEO)
DEFINE IFIX(FARG)=INT(FARG++5)

DATA J/1/

DATA HEIGET/ 105/

DATA INTEGQ/ 1/

DATA ABSCIS/8./

DATA ORDINA/6e/

DATA 1CODE/~-1/
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DATA TOPMAR/1.+/
DATA BOTMAR/ 1.5/
REAL LEFMAR
DATA LEFMAR/ 1.9/
DATA RYTMAR/1e1/
DATA FACT/1.s/
DATA MAXIS/1/
DATA MLINE/1/
DATA HTLAB/.10S5/

19 INITIAL COMFUTATION OF DERIVED FARAMETERS
AND INITIAL PLOTS CALL v
20 SKIPS PRELIMINARIES FOF 2ND AND SUBSEQUENT CALLS

------------- -----------------------—-—-----------..----—- —ococone o

GO TO €19,20),J

YDIT(1) = 3./19.

TICKLE = HEIGHT/2.

ROTFAC = < 3+/14e % HEIGHT - 4./7. * HEIGHT
STARTL = 6 * HEIGHT + ROTFAC + TICKLE

SEPLAB = STARTL + 15 * HEIGHT

SYMBLH = 0.070

REAL LABSEF

LABSEP = 4. * HEIGHT

ASTART = 2« * HEIGHT

DO 1 I = 2,100

YDITCI) = YDITCI = 1) + (2 * MODCI»2) + 1)/19.
YDITC100) = YDITC100) + 5

CALL PLOTS(IBUF,NLOC,LLEV)

CALL FACTORC1.)

J =2

CALL SYMBOL (HEIGHT»36 * HEIGHT + S¢SsHEIGHT» TITLE» 2704572)
CALL PLOTCles = o5, = 3)

DO 21 = 1,100

CALL PLOTCO.,YDIT(I)»3 - MOD(CI,2))

DO 33 1 = 1,100

YDITC(I) = YDIT(I) - ABSCIS - RYTMAR

XPAGE = BOTMAR + ORDINA

GO TO 2019

XPAGE = BOTMAR + ORDINA + TOFMAR
CALL WHERE(RXPAGE, KYPAGE,FACT)
YPAGE = RYPAGE - LEFMAR

CALL PLOT(XFAGE,YPAGE, =~ 3)

CALL FACTOR(FACT)
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146

C ~ecemmm——- cececoca- cmcecmccccccaneee c————— ceccccaa . cecwa

c

c DRAW AXES AND LABELING MAXIS TIMES

C

c ------- - s R e R A e L X T K L A X X X X X E X T X KX K X X K N X K L S K Sl Bl A & 4

DO 100 I = 1,MAXIS
100 CALL MYAXIS

C ~ecccmcacenc—= cocemmc—a——= cemmeec e e n——-- S g,
C

c DRAW POINTS, OPTIONAL CENTERLINE,AND PAGE SCISSOELINE

c MLINE TIMES

C

C eeecmcccccccncaa cecaememee cecsccncmscccscenanacsnne P crcmacane

DO 200 I = 1,MLINE
200 CALL MYLINE

RETURN
c ............................ L R L L conscsocrcecsecnvcacacwnaen ccocaves
C
c ENTRY POINT SHPARG
c TERMINATE PLOTTING SEQUENCE
c
C =~weccccccceccecoccae Ty g cecsccccaccs - —-- crcecsn e
ENTRY SHPARG
CALL WHERE(RXFAGE, RYPAGE, 1)
CALL PLOT(RXPAGE» RYPAGE»999)
RETURN
C ~=cccm= A S, iy g g . [ .
c
c SUBROUTINE MYAXIS C(INTERNAL)
c
c A5 dn SRR OD GR ED R B EP D G G G AL L TS AR b AR W W - G e A 4 e - - as e b e e - s e A s e - an

SUBROUTINE MYAXIS
STARTL = 6 * HEIGHT + ROTFAC + TICKLE
IMAX = IFIX(C(YMAX - YMIN)/DELY)
TICSEP = ORDINA/CABS(NTICY) - 1)
CALL DENDEC(YMAX,DELY,NDEC)
K= 1
N = (ABS(NTICY)/IMAX) = 1 + MOD(ABS(NTICY),?2)
DO 9 1 = 0,IMAX
GO TO C131,12),K
11 IFC2 * JLT.IMAX)GO TO 12
CALL AXLAB(OQ+»ITITLY,LTITLY,HTLAB)
K= 2
12 FPN = YMAX - 1 * DELY
IFCZEROYFPN = O.
T™MID = 1.
XPAGE = <+« I * ORDINA/IMAX = <5 * HEIGHT
IFCFPN)113, 122,118
113 IF(NDEC - 2)115,1145112
114 YPAGE = STARTL




115
116

117
119
120

121
122
118
123
124
125
126
127

128
112

110

24

25

813
814

815

GO TO 112

IF(NDEC - 1)>117»,116s112

YPAGE = STARTL - HEIGHT

GO TO 112

IFCABS(FPN) = 100+)119,1165116
IFCABS(FPN) - 10.)120,1215121
YPAGE = STARTL - 3 * HEIGHT

GO TO 112
YPAGE = STARTL - 2 * HEIGHT
GO TO 112
YPAGE = STARTL - 4 * HEIGHT
GO TO 112

IF(NDEC - 2)1235116s112
IF(NDEC - 1)125s,1245112
IFCFPN = 104)12151165116

IF(FPN - 10.)122,120,126
IFCFPN - 100+)120,121,127
IF(FPN - 1000+)12151165128
IFCFPN - 10000¢)11651145114

NNDEC = DNDEC

CALL NUMBER(XPAGE,YFAGEs»HEIGHT»FFN» 270+ sNNDEC)
XPAGE = = I * (ORDINA/IMAX)

DO 10 JJ = 15N

YPAGE = TICKLE * TMID

CALL PLOT(XPAGE»YPAGE,3)

YPAGE = YPAGE * ( - 1 + I/IMAX * 5)
CALL PLOT(XPAGE,YPAGE,2)
IFC(I/IMAX)110511059

YPAGE = O

CALL PLOT(XPAGE,YPAGE,3)

XPAGE = XPAGE - TICSEP

CALL PLOT(XPAGE, YFAGE,2)

TMID = 5

CONTINUE

CONTINUE

K=1

IMAX = IFIX((XMAX - XMIN)/DELX)
TICSEP = ABSCIS/C(NTICX - 1)
XPAGE = -~ ASTART - ORDINA

CALL DENDEC(XMAX, DELX,NDEC)

DO 28 I = 0,IMAX

STARTL = = I * ABSCIS/IMAX

GO TO (24,25)sK

IF(2 * 1.LT.IMAX)GO TO 25

CALL AXLAB(270+,ITITLX,LTITLXsHTLAB)
K= 2

XPAGE = - ASTART - ORDINA

FPN = XMIN + [ * DELX
IFCZEROIFPN = Q.
IFC(FPN)813,822,818

IF(NDEC - 2)815,811,23

YPAGE = STARTL + 106e¢/7¢ *x HEIGHT
GO TO 23

IF(NDEC - 1)817,816,23
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816 YPAGE = STARTL + 25./14. % HEIGHT
GO TO 23

817 IFCABSCFPN) - 100.)819,816,816

819 IFCABS(FPN) = 10+)820,821,821

820 YPAGE = STARTL + 11+/14. * HEIGHT

GO TO 23

821 YPAGE = STARTL + 9¢/7¢ =% HEIGHT
GO TO 23

822 YPAGE = STARTL + 2./7. * HEIGHT
GO TO 23

818 IF(NDEC - 2)823,816,23

823 IF(NDEC - 1)825,824,23

824 IF(FPN - 10-)821:816:816

825 IF(FFN - 10.)822,8205,826

826 IF(FPN - 100+)820,821,827

827 IF(FPN - 1000.)821,816,828

828 IFCFFN - 10000.)816,814,814

23 NNDEC = DNDEC

28 CALL NUMBERCXPAGE, YPAGE,HEIGHTs FPNs 270+ 5NNDEC)
N = (NTICX/IMAX) = 1 + MOD(NTICX»2)
DO 26 1 = IMAX,0, - 1
TMID = 1.
YPAGE = -~ 1 * ABSCIS/IMaAX
DO 27 JJ = 1,N
XPAGE = =~ ORDINA - TICKLE * TMID
CALL PLOT(XPAGE,YPAGE, 3)
XPAGE = XPAGE + (TICKLE + FLD(O:36: I.NE«QO) * TICKLE) * TMID
CALL PLOT(XPAGE,YPAGE,2)
IFCId111,265111

111 XPAGE = - ORDINA
CALL PLOT(XPAGE,YPAGE, 3)
YPAGE = YPAGE + TICSEP
CALL PLOT(XPAGE>YPAGE,2)
TMID = «5S

27 CONTINUE

26 CONTINUE
RETURN
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SUBROUTINE MYLINE

ITOP = IFIX(CABSCIS + RYTMAR + «5)/11e. * 99.)

IBOT = IFIXCRYTMAR/11. * 99.)

DO 17 I = 1,NTOT

XPAGE = (YARRAY(I) - YMAX)>/(YMAX - YMIN) * ORDINA

YPAGE = (XMIN - XARRAY(I))>/(XMAX - XMIN) * ABSCIS
17 CALL SYMBOL(XPAGE,YFAGEs SYMBLH»INTEQs 270+, ICODE)

IF(NTICY.GE.0)GO TO 22

XPAGE = - ORDINA/2.

YPAGE = - ABSCIS

CALL PLOT(XPAGE,YPAGE, 3)

DO 18 1 = IBOT,ITOP

148




AR

18 CALL PLOT(XPAGE,YDIT(13,3 - MOD(1,2))
22 XPAGE = TOPMAR

YPAGE = =~ ABSCIS = RYTMAR ~ 5

CALL PLOT(XPAGE,YPAGEs 3)

DO 21 1 = 1,100

21 CALL PLOT(XPAGE,YDITCI)s3 - MOD(I1,2))
RETURN
c .......................... - e - - e an e - o @ oo - e e W e e S e S e -
C
C SUBROUTINE AXLAB (INTERNAL)
c
(o Rt T U

SUBROUTINE AXLAB(ANGLE,IBCD,NCHARX,»HEIGHT)
DIMENSION IBCD(7)
LOGICAL S
INTEGER QSQ/° S‘/
K= 2
NCHAR = NCHARX
S = «FALSE.
IFCABSC(ANGLEY «GTe«13G0 TO 30
XPAGE = - ORDINA/2¢ = NCHAR * HEIGHT/2
YPAGE = SEPLAB
GO TO 31
30 XPAGE = -~ ORDINA - LABSEP
YPAGE = =~ ABSCIS/2¢. + NCHAR * HEIGHT/2
31 LSTART = 6 * MODCNCHAR,6) - 12
IF(LSTART+EQ. - 12)LSTART = 24
LOOK = NCHAR/6 + ]l
IFCLSTART+EQ. - 6)GO0 TO 13
1F(FLD(0s12,"'»S')+EQ.FLDCLSTART» 12, IBCDCLOOKY>)>G0 TO 15
GO TO 14
13 IFCFLDC0s65"'s"')eNE.FLD(30565,IBCD(LOCK = 1)))G0 TO 14
IFC(FLD(0»65"'S')«NE«FLD(0s 6,IBCD(LOOK)>)>>GO TO 14
15 NCHAR = NCHAR - 1|
S = «TRUE.
14 CALL SYMBOL(XPAGE,YPAGE,HEIGHT»1BCDs ANGLE, NCHAR)
IFC(S)CALL SYMBOL(999¢5999.,2 * HEIGHT/3sQ5Q,ANGLE» 2)
RETURN

SUBKOUTINE DENDEC(EMAX, DELQ,NDEC)
IFCINTCABS(QMAX))«GE.10)GO TO 5
IFCAMODCABSC(GMAX - DELQ)s+1)eGEe«01)GO TO 7
NDEC = 1 ’
RETURN

S NDEC = = 1
RETURN

7 NDEC = 2
RETURN
END
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APPENDIX E

USER'S MANUAL FOR THE LINEAR STABILITY
PROGRAMS: LINSOL AND LSTB3D

General Description

Two auxiliary programs, LINSOL and LSTB3D, calculate the linear stability
characteristics of a cylindrical combustion chamber with distributed combus-
tion and a conventional nozzle. For given values of the operating parameters
(i.e., n, 7, v, i, and L/D) and a given nozzle admittance (i.e., A and @),
Program LINSOL calculates the growth rate, A, and the frequency, w, of a
given acoustic mode. For given values of # Program LSTB3D calculates the
corresponding values of n and @ for neutral stability (A = 0). These programs
are based on an analytical solution of the linearized version of Egs. (12).
After a discussion of the linear analysis, Programs LINSOL and LSTB3D will be

described.

Linear Analysis

For a single acoustic mode, dropping the nonlinear terms in Eqs. (12)

yields the following linear equation:

2 d[A(t - rr)]
d A dA _
Et—g' + ClA + (02 - nC3)d—t + nC3—T—-— = 0 (E-l)

where A(t) is the unknown complex amplitude function for the mode under con-
sideration and the coefficients are obtained from Egs. (C-1) through (C-4)

by dividing by C Thus the coefficients are complex numbers given by:

0"

Ze

* *
Z’(ze)Z (ze) - J' 7Z"7 dz

2 0
C, =8 + E-2
1 mn Ze x ( )

I 77 4z

(o]
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e % S
- ’ ana,, . * *
+ —_— +
2fo w(z)Z’Z dz XIO 2L dz yYZ(ze)Z (ze)

C2 = Ze (E‘3)
I ZZ dz
o]

Z
e _ -

du,,*
EEZZ dz

-0 E-l
— (5-4)
f 77 dz
o

where the droplet momentum source has been neglected. When the droplet
momentum source is included, the v in the second term of Egq. (E-3) is re-
placed by y + 1 (see Appendix A).

The linear solutions are determined by substituting a solution of the

form:

A(t) = gelATi0)t (E-5)

into Eq. (E-1) and separating real and imaginary parts to obtain:

2 2 -AT - .
Wr=C t AT (C2r - nC3)A - Cow * C3ne A (Acosgr + wsinggs) (E-6)

- nCB)w + ne.e Mycoswt

A?3 } (E-7)

sinwT

L= { Cs * (G

20 + C2i - nC3e

= + i = + 3
where Cl Clr lcli’ C2 C2r 1021, and C3

equations are solved numerically by Program LINSOL to obtain the growth rate,

is always real. The above

A, and the frequency, y, for given values of n and 7.
The equations describing the neutral stability limits are obtained by

substituting A = O into Egqs. (E-6) and (E-7). Solving the resulting equations

151



for n and w2 gives:

C + C
_ _er 1i/w
T ¢ (1 - cos wT) (E-8)
3
WS = Clr + u)(nC3 sin wT - CEi) (E-9)

which are solved numerically by Program LSTB3D.

Program LINSOL

Program Structure. A flow chart for Program LINSOL is given in Fig. (E-1) .

This program consists of the following major sections: (1) input, (2) calcula-

and C_, (3) iterative solution for A and w,

tion of the coefficients Cl’ C2, 3

and (4) output.

Input. The input data required by Program LINSOL includes: (1) a title
for the run, (2) the chamber parameters Y, > L/D, and zc/ze, (3) several
control numbers, (4) the nozzle admittance, (5) the mode under consideration,
and (6) the values of n and T for the cases to be run. This data is described
in the following table where the location number refers to the columns of the
card and the following three formats are used: alphanumeric characters (&),
integers (I), and numbers with a decimal point (F). For the "I" formats the
values are placed in fields of five locations, while a field of ten locations
is used with the "F" formats. In either case the numbers must be placed in

the rightmost locations of the allocated field.

No. of
Cards Location Type Input Item Comments
1 1-72 A TITLE Title of run.
1 1-10 F GAMMA Specific heat ratio, v.
11-20 F UE Steady state Mach number
at nozzle entrance, ﬁe.
21-30 F RLD Length-to-diameter ratio,
L/D = ze/2.
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No. of

Cards Location Type Input Item Comments
31-40 F ZCOMB Length of combustion zone,
zC/ze.
41-45 1 NDROPS If O: droplet momentum

source neglected.

If 1: droplet momentum
source included.

46-50 I NOZZLE. If O: quasi-steady nozzle.
If 1: conventional nozzle.

51-55 I NOPT If 1: all coefficients in-
cluded.

If 2: imaginary parts
neglected.
If NOZZLE = 1 :

1 1-10 F YAMPL Amplitude factor of nozzle
admittance, A.
11-20 F YPHASE Phase of nozzle admittance,
P-
End of input for NOZZLE = 1.

1 1-5 I L Axial mode number, 4
(0 <L <10).
6-10 I M Tangential mode number, m
(0 <M< 8).
11-15 I N Radial mode number, n
(0 <N <5).
16-20 I NCASES Number of cases to be run

(NCASES < 100).

NCASES 1-10 F TAU Time-lag, T.
11-20 F EN Interaction Index, n.

The title on the first card should identify the mode under consideration.
On the second card of input all quantities are the same as those given in the
input to COEFFS3D (see Appendix C) except NOPT. NOPT gives the option to
neglect the imaginary parts of the coefficients Cl and C,. which are an order

2
of magnitude smaller than the corresponding real parts. Neglecting these
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imaginary parts (NOPT = 2) yields linear solutions consistent with the non-
linear solutions obtained when the small coefficients are neglected (NEGL = 1
in input to COEFFS3D). The values of n and ¥ for the cases to be run are
given on a series of NCASES cards. These cards are all read and the values
of T and n are stored in the arrays TAU(J) and EN(J) before any computations
are made.

In addition to the above card input, the acoustic frequencies Smn are
also needed for these calculations. As in Program COEFFS3D these values are

given in a DATA statement, which is an integral part of the program.

Calculation of Cl’ C2, and C3. In this section the coefficients Cl’ C
and C; appearing in Egs. (E-6) and (E-7) are calculated using Eqs. (E-2)

through (E-4). As in Program COEFFS3D the axial acoustic eigenvalues necess-

2’

ary for these computations are calculated by Subroutines EIGVAL and FCNS, and
the integrals of the products of two axial eigenfunctions appearing in Egs.

(E-2) through (E-4) are computed by Subroutines AXTALL and UBAR. Listings of

these subroutines are given in Appendix C.

Iterative Solution for A and w. Equations (E-6) and (E-7) are of the

form:

Clr + f(A,U.))

e
i

(E-10)
g(n,w)

-
[l

where the quantity f(p,w) is small compared to C,,. and A is small in most

cases. Starting with an initial guess of

22
w =/82 +'{’_.'U.__
1 mn 22

€ (E-11)
M =0
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Egs. (E-10) are solved iteratively using the following recursion formulas:

2
e = Cpp * T(Apw)
(E-12)
Moy = 8(059) -

At each step of the iteration the quantities Ap and aAw are calculated, where

BN =] Ay - Ay
(E-13)

AW =| wk+l - wkl

and the computations are terminated when k = 4O or when Ap and AW are less

than ¢ = 10-6. The process usually converges in less than 15 iterations.

Output. The output generated by Program LINSOL consists of a restate-
ment of the input data followed by the calculated results in tabular form.
For each case the tabulated results give the values of T and n (TAU and EN),
the corresponding values of the growth rate A and the frequency w ( LAMBDA
and OMEGA), and the number of iterations (ITER). When ITER is 4O the last
values of A and w are given followed by the warning message "FAILED TO CONVERGE."

Sample Input and Output. A sample input for the 1T mode is given in
Table E-1 followed by the resulting output in Table E-2.

Program LSTB3D

Program Structure. A flow chart for Program LSTB3D is given in Figure

2

(E-2). This program consists of the following major sections: (1) input,

(2) calculation of the coefficients C;» C,5 and Co, (3) iterative solution

3
for n and ® for neutral stability, and (4) output.
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Table E-1. Sample Input for LINSOL.

ht[hbb@]lllfl[llllll IFIIIIJIIIIIIIII1IJITJT7|||llTﬁTjT]Tﬁ
LLlllllhlklllll lblhlllllllblb [TIT] hlbllllmllllhll TR

LLJlllblkhllllllhblbl IIILIIT]IIIIIIIIIIIIIJIllllil]]llT7
LLlellllherlhllIJhlllIIIIJLJIIIIIIIIIIlllllJlll [TITTT]
’ Ujllllld]ﬂlllllIldldlllllll]lllllllll[lllllllllllllllrr
[IITTTTTTT*T Llol.Islelsfelel [ [ TT T[T 1ITITTT] ITTTITTTTITTITIT)
’ LL[IIIIIIIlllllllllllllIlllllllllllllIlIIIJIIIIIIIIIIFF
LLJIIIlklblllblBPBKR!I]IIIJIIIIIIIIIIIJIlllllllll!lllllIT
LLJIIllhlblllllllblel!llll]lllIllllll!lllllllllllllllrl

Table E-2. Sample Output for LINSOL.

1T MODE.

DROPLET MOMENTUM SOURCE NEGLECTED

GAMMA = .20 UE = <20 L/D = + 50000 ZCOMB = 1.00
AMPL = +02000 PHASE = 45.0
TAU EN LAMBDA OMEGA ITER

1400 +50000 -+01789 1.86593
1400 .58396 «00000 1.87005
1400 .60000 +00339 1.87078
1.700 .S0000 =+00975 1.83602
1700 +54490 =+00000 1.83612
1.700 .60000 «01176 1.83618
2000 +50000 -«01537 1.80691

24000 .+57562 + 00000 1.80410

meQOQQQQ

2.000 +60000 00487 1.80322
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Figure E-2. Flow Chart for Program LSTB3D.
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Input. The input data required by Program LSTB3D is basically the same
as required by Program LINSOL. The first two cards, which give the title of
the case, the chamber parameters, and the control numbers, are identical in
content and format to those required by LINSOL. The third card gives the
mode numbers {, m, and n and is followed by a card giving the nozzle admittance
if a conventional nozzle is specified. The last card gives the values of #

for the cases to be run. A detailed description of this input is given below.

No. of
Cards Location Type Input Item Comments
1 1-72 A TITLE See input for LINSOL.
1 1-40 F GAMMA, UE, See input for LINSOL.
RLD, ZCOMB
41-55 I NDROPS, See input for LINSOL.
NOZZLE, NOPT
1 1-15 I L, M N See input for LINSOL

If NOZZLE = 1 :

1 1-20 F YAMPL, YPHASE See input for LINSOL.

End of input for NOZZLE = 1.

1 1-10 F TAUMIN Smallest value of 7.
11-20 F TAUMAX Largest value of 7.
21-30 F DELTAU Increment in T.

The last card gives the values of T which are used in the computation of
the neutral stability limit. Thus computations are begun for & = TAUMIN, 7T is
increased by increments of DELTAU, and computations are terminated when
T > TAUMAX,

After completion of the computations program control returns to the read
statement for the nozzle admittance, thus neutral stability curves can be cal-
culated for several different nozzles for the same set of chamber and mode

parameters.

Calculation of Cl’ Cg’ and C3. The calculation of the coefficients Cl’

C,, and C3 appearing in Egs. (E-8) and (E-9) is performed in the same manner as
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given in program LINSOL.

Iterative Solution for n and w. The values of n and @ for neutral sltabil-

1ty are calculated for each value of % by solving Eqs. (E-8) and (E-9) using

the following iteration scheme:

Cop + Cpy/my
n, = -
C3(l ~ coswkT)
(E-1k)
WS =+ (n, C sinw, T-C..)
k+1 1r kVk3 21

The iteration is started by using Wy =,/Clr and is stopped when k = 40 or
An and A®w are less than ¢ = 10 . Convergence is usually obtained in less

than 20 iterations.

Output. The output generated by Program LSTB3D consists of a restatement
of the input data followed by the calculated results in tabular form. For
each value of T in the range TAUMIN < * < TAUMAX, the tabulated results give
the value of T (TAU), the corresponding values of n and w for neutral stabil-
ity (EN and OMEGA), and the number of iterations (ITER). If ITER is 40 the
last values of n and w computed are given followed by the warning message
"FAILED TO CONVERGE."

Sample Tnput and Output. A sample input for the 1T mode is given in
Table E-3 and is followed by the resulting output in Table E-L.

Table E-3. Sample Input for LSTB3D.

uwllmloblemlml"l"l"mlmlmmumm1111|H|1|1"l”l“l"ﬁr
CLLLTL e Rl [T T Tl el TTTT T el BL T T LT TTRERL T TRl T LTIl T LT
umomlmmmlHHHHHHWTWTWW’
(LTIl lolel [T L LTl I ITTTIT LTI LTI LT LI LI TLITT LT ITIT
LLIHIIIoleIIIIIIIIzIIsHHIIHOIIiEDTJJIIHIIHIHIHHIW
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1T MODE.

Table E-4.

DROPLET MOMENTUM SOURCE NEGLECTED

GAMMA = 1.20

AMPL = «02000

TAU
+60000
« 70000
< 80000
+90000

1.00000
1+10000
1.20000
1+30000
140000
1.50000
1.60000
1.70000
1.80000
1.90000
2.00000
2.10000
2.20000
2.30000
2.40000
2.50000
2460000
2470000

2.80000

UE = .20
PHASE =

EN OMEGA
1.66353  2.03102
1.31671  1.99646
1.08482  1.96911
92333  1.94663
+80765  1.92753
+72330  1.91089
«66137  1.89605
+61616  1.88255
+58396  1.87005
+56230  1.85827
+54961  1.84702
«54490 1483612
+54769  1.82542
+55785  1.81479
¢57562  1.80410
60157  1.79325
«63666  1.78210
-68221  1.77055
+74006  1.75847
-81258  1.74575
90278  1.7322a
1.01446  1.71783
1.15226 170240

RL

45.00

D=

ITER

o 0 u 60 0 0 o0 0 600 000 o

v 0 0 w

10
11

14
17
21

Sample Output for LSTB3D.

+«50000

ZCOMB =

1.00
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FORTRAN Listings

FERERXRERREREARRRREE PROGRAM LINSOL #sktdobohoh bbb ohoo b b o b o

THIS PROGRAM COMPUTES THE DAMPING (LAMBDA) AND FREQUENCY
(OMEGA) FOR GIVEN VALUES OF THE INTERACTION INDEX (EN) AND
THE TIME-LAG C(TAU)e THIS PROGRAM IS BASED ON AN ANALYTICAL
SOLUTION OF THE COMPLEX DIFFERENTIAL EQUATION.

THE FOLLOVING INPUTS ARE REQUIRED:

FIRST CARD:
THE TITLE OF THE CASE.

SECOND CARD:
GAMMA 1S THE SPECIFIC HEAT RATIO.
UE 1S THE STEADY STATE MACH NUMBER AT THE NOZZLE ENTRANCE.
RLD IS THE LENGTH-TO-DIAMETER RATI10.
ZCOMB IS THE LENGTH OF THE COMBUSTION ZONE, EXPRESSED
" AS A FEACTION OF THE CHAMBER LENGTH.
NDROPS DETERMINES THE PRESENCE OF DROPLET MOMENTUM SOURCESS
NDROPS = 0 DROPLET MOMENTUM SOURCE NEGLECTED.
NDROPS = 1 DROPLET MOMENTUM SOURCE INCLUDED.
NOZZLE SPECIFIES THE TYPE OF NOZZLE USED:
NOZZLE = 0 QUASI~STEADY
NOZZLE = 1 CONVENTIONAL NOZZLE
NOPT SPECIFIES THE SOLUTIONS DESIRED.
NOPT = 1 COUPLING COEFFICIENTS INCLUDED.
NOPT = 2 COUPLING COEFFICIENTS NEGLECTED.

THIRD CARD (FOR CONVENTIONAL NOZZLE ONLY)3
YAMPL IS THE AMPLITUDE OF THE NOZZLE ADMI TTANCE.
YPHASE 1S THE PHASE OF THE NOZZLE ADMI TTANCE.

FOURTH CARDt

THE MODE 1S SPECIFIED BY THE INDICES L, Ms» AND N.

L 1S5 THE AXIAL MODE NUMBER AND MUST NOT EXCEED 10.

M IS THE AZIMUTHAL MODE NUMBER AND MUST NOT EXCEED 8.
N 1S THE RADIAL MODE NUMBER AND MUST NOT EXCEED S.
NCASES 1S THE NUMBER OF CASES TO BE RUN.

REMAINING CARDSt
TAU 1S THE TIME LAG.
EN IS THE INTERACTION INDEX.

G()Ot’OC’OC’ﬁ(’OC’Ot’Q(’O(’O¢1G(1OC?OC’O(ﬁﬂ(’ﬁ(\ﬂ(§ﬂ(§f)0¢50(1Q¢10(’O

‘#t#*‘****#t#t#***#t*#*#***t*#**********##******#**‘#*****#***‘*##

COMPLEX YNOZ, RESULT» B(10), BC, AXC4)s Cl, CZE,»

1 CGAM, ZEJs ZEPl, ZEP2, CC, CD» CE, CSS5Q, CAX
DIMENSION TITLEC72),

1 RJROOTC10,5),

2 D(5), OMEGAC100),

3 ENC100), TAUC100)

REAL LAMBDAC100)

COMMON B
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ana

ananoaon

wpgknnprkkik DATA INPUT SECTION *%#%xxssxkikkpkkrkRekrgkkiigxggig

ERR = 0.000001
Pl = 31415927
Cl = (00,100

DATA ((RJROOT(I,J)s» J = 155) I = 1,9)/

VAN ND W -

10

3.83171»
184118,
305424,
4420119,
531755,
641562,
750127,
857784,
964742,

701559,
533144,
670613,
8.01524,
9.+28240,
1051986,
11.73494,
12.93239,
14411552,

INPUT PARAMETERS.

READ (5, 50007
READ (5,5001)
IF (NOZZLE

+EQe 1)

1017347,

853632,

996947,
1134592,
1268191,
13.98719,
15.26818,
1652937»
1777401,

13.32369»
11.70600»
1317037»
1458585,
1596411,
17.31284,
1863744,
1994185,
21.22906»

(TITLECI)» I = 1, 72)
GAMMA, UE, RLD» ZCOMB» NDROPS, NOZZLE, NOPT
GO TO S

INPUT ROOTS AND VALUES OF BESSEL FUNCTIONS.

16.47063»
1486359,
1634752,
1778875,
19.19603»
20.57551,
21+93172»
23.26805»
24.58720/

COMPUTE ADMITTANCE FOR QUASI-STEADY NOZZLE.

YAMPL = (GAMMA ~

YPHASE = 0.0

GO TO 7

READ (5,5002) YAMPL, YPHASE

READ (5,5003) L,

M, No

NCASES

THETA = YPHASE * P1/180.0
YR = YAMPL * COSC(THETA)
YI = YAMPL * SINCTHETA)
YNOZ = CMPLX(YR,YI)

ZE = 2.0 * RLD
CZE = CMPLX(ZE»0+0)
CGAM = CMPLX(GAMMA,0.0)

CAX = CGAM
IF (NDROPS

«EQe 1)

DO 10 J = 1, NCASES

READ (5,5002) TAU(J),

CONTINUE

ENCD)

1.0) * UE/(2.0 * GAMMA)

CAX = CGAM + (1050007

*kkkkkkkkaxkkk PRELIMINARY CALCULATIONS *%%%fkkbkbhhhkhkghhhbnghinnk

ASSIGN ARRAYS FOR ROOTS OF BESSEL FUNCTIONS.
0) <ANDe (N «EQe¢ 0))

IF ((M +EQ.
MM = M + |

NN = N

SMN = RJROOT(MMsNN)

GO TO 1S

163



ao0oo0 anon

(e XoNe])

a0o

164

15

20

100

S0

$S

GO TO 20
SMN = 0.0

SSQ = SMN * SMN *
CSSQ = CMPLX(S5Q,0+0)

CALCULATE AXIAL ACOUSTIC EIGENVALUES. e
CALL EIGVAL(L:SMN:GAMMA:ZE:YAMPL:YPHASE:RESULT)

B(1) = RESULT

BC = CONJG(RESULT)

s4kxsxxssx00% CALCULATE AXIAL INTEGRALS A Ao oo ook ok o o o o ook ook

DO 100 NT = 1, 4

CALL AXIAL!(NT:lolaUEoZEuZCOMBJRESULT)
AX(NT) = RESULT

CONTINUE

Rk ok ok CALCULATE VAL UES AT NOZZLE ENTRANCE Wk dakok ok ok ok ok ok

ZEJ = CCOSHCCI*BC*CZE)
ZEP1 = CCOSH(CI*B(1)*CZE)
ZEP2 = CI * B(1) = CSINHC(CI*B(1)*CZE)

¥EEsnkne0nx% CALCULATE COEFFICIENTS FRRRRRRRRRRRRR R R ook

CC = (Css@*Ax(1) - AX(2) + ZEP2*ZEJ)/7AX( 1)
CD = (CAX*AX(3) + (2:050+0)%AX(4)

+ CGAM*YNOZ*ZEP!*ZEJ)/AX(1)
CE = CGAM*AX(3)/AX(1)

D(1) = REAL(CC)

D(3) = REAL(CD)

D(S) = REAL(CE)

IF (NOPT .EQ. 2> GO TO 50
D(2) = AIMAG(CC)

DC4) = AINMAG(CD)

GO TO 55

D(2) = 0.0

DC4) = Q.0

*xx%%%x CALCULATION OF DAMPING AND FREQUENCY WA oo ok o o ok ok

VRITE (6,6001) (TITLECIY)> I = 1, 72)
IF (NDROPS «EQ. 0) WRITE (6,6020)

1F (NDROPS .E@. 1) WRITE (6,6021)

IF (NOPT «.E@. 2) WRITE (6,6015)

WRITE (6,6002) GaMMA, UE, RLD, ZCOMR
IF (NOZZLE .EQ. 0) WRITE (6,6012)
WRITE (6,6005) YAMFL, YFHASE

WRITE (6,6011)

LINE = )4




210

216

217

220

200

CALCULATE INITIAL GUESSES FOK FREQUENCY.

RL = L

AXl = RL * PI/ZE

AXSQ = AXI =x AX]

55Q = SMN = SMN

FRQ = SQRT(SSQ + AXSQ)

DO 200 J = 1, NCASES

C2R = D(3) - ENCJ) * D(S)
C3 = EN(J) * D(5)

LAMBDA(1) = 0.0
OMEGA(1) = FRQ

K=}
X = LAMBDACK)

Y = OMEGA(K)

XT = X * TAUCD)
YT = Y * TAUCJ)
EX = EXF(=-XT)
SN = SINCYT)

CS = COSCYT)
X50 = X * X

WSQ = D(1) + X5Q + CBR*X - DC4)*Y
+ C3*EX*(X*CS + Y#%SN)

A = D(2) + C2R#Y + C3*EX*Y*CS

BB = 2.0%Y + D(4) - C3I*EX*SN

OMEGA(K+1) = SQKRT(WSEQ)
LAMBDA(K+1) = -A/BB

IF (K «EQ+ 40) GO TO 216

DX = ABS(LAMBDA(K+1) - LAMBDACK))
DY = ABS(OMEGA(CK+]1) - OMEGA(K))

K=K+ |

IF (C(DX «LT+ ERR) .ANDe (DY

GO TO 210

WRITE (6,6009) TAUCJ), EN(J)» LAMBDACK), OMEGA(K), K

GO TO 220

WRITE (6,6008) TAUCJY» EN(J), LAMBDA(K)» OMEGACK), K

LINE = LINE + 2

IF (LINE +LT. 54) GO TO 200

WRITE (6,6007)
WRITE (6,6011)
LINE = 4

CCNTINUE

ERR)) GO TO 217
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s N s NeNeNe]

c
C

¥Erdsssdksk4% FORMAT SPECIFICATIONS FRRARR R ook ok ook o oo ok ok ok

READ FURMATS
5000 FORMAT (72A1)
5001 FORMAT C4F10+0,315)
5002 FOFMAT (2F10.0)
S003 FORMAT (415)

WRITE FORMATS
6001 FORMAT (1H1,1Xs72A1/)
6002 FORMAT (2X,BHGAMMA = 2F5.2,5Xs SHUE = »F5¢2,5Xs6HL/D = 2FBe5,
1 S5X»BHZCOMB = ,F5.2/)
6005 FORMAT (2X, THAMFL = +F8-55,5%X,8HPHASE = »F6e1/)
6007 FORMAT (1H )
6008 FORMAT (2XsFS5+3,FB8+5,2F105,167)
6009 FORMAT (2X0F503:F8-S:2F1005:16:SXolGHFAILED TO CONVERGE/)
6011 FORMAT (2X//14X:3HTAU:6X:2HEN:4Xa6HLAMBDA:SXoSHOMEGAo
1 2X» 4HITER/)
6012 FORMAT (2X, 19HQUASI-STEADY NOZZLE/)
6015 FORMAT (2X,24HCOUFLING TERMS NEGLECTED/)
6020 FORMAT (2X, 'DROFLET MOMENTUM SOUKCE NEGLECTED'/)
6021 FORMAT (2X»'DROFLET MOMENTWM SOURCE INCLULED'/)
END




PR N N s N s N s N e e N e N N s N o N e N e e N e N e N N e R e K e e N Ry e K K e N R e R Ko K2 R s Ra R R R N N 2

FERRRERERERRRRRERAE PROGRAM LSTBID %tk hasasktnshhddhhsrehhttnis

THIS PROGRAM COMPUTES THE LINEAR STABILITY LIMITS CONSISTENT
WITH THE THREE-DIMENSIONAL SECOND-ORDER THEORY .

THE FOLLOVWING INPUTS ARE REQUIREDS

FIRST CARD:
THE TITLE OF THE CASE.

SECOND CARD:
GAMMA 1S THE SPECIFIC HEAT RATIO.
UE IS THE STEADY STATE MACH NUMBER AT THE NOZZLE ENTRANCE.
RLD IS THE LENGTH-TO-DIAMETER RATIO.
ZCOMB 1S THE LENGTH OF THE COMBUSTION ZONE, EXPRESSED
AS A FRACTION OF THE CHAMBER LENGTH.
NDROPS DETERMINES THE PRESENCE OF DROFLET MOMENTUM SOURCESS
NDROPS = O DROFLET MOMENTUM SOURCE NEGLECTED.
NDROPS = 1| DROPLET MOMENTUM SOURCE INCLUDED.
NOZZLE SPECIFIES THE TYPE OF NOZZLE USED:
NOZZLE = 0O QUASI~-STEADY
NOZZLE = | CONVENTIONAL NOZZLE
NOPT SPECIFIES WHICH SOLUTION WILL BE COMPUTED.
NOPT = | COUPLING COEFFICIENTS INCLUDED.
NOPT = 2 ‘COUPLING COEFFICIENTS NEGLECTED.

THIRD CARD:

THE MODE IS SPECIFIED BY THE INDICES L, M, AND N.

L 1S THE AXIAL MODE NUMBER AND MUST NOT EXCEED 10.

M 1S THE AZIMUTHAL MODE NUWMBER AND MUST NOT EXCEED 8e
N IS THE RADIAL MODE NUMBER AND MUST NOT EXCEED 5.

FOURTH CARD (IF CONVENTIONAL NOZZLE):
YAMPL IS THE AMPLITUDE OF THE NOZZLE ADMI TTANCE.
YPHASE 1S THE PHASE OF THE NOZZLE ADMITTANCE.

REMAINING CARDS:
TAUMIN IS THE MINIMUM VALUE OF THE TIME-LAG.
TAUMAX 1S THE MAXIMUM VALUE OF THE TIME-LAGs
DELTAU IS THE INCREMENT IN TIME-LAG.

*##*‘#***#t**#*************#*******#******************#***#*#t*‘**

COMPL EX YNOZ, RESULT, BC10), BC, AXC4)s CI, CZE»

1 CGAM, ZEJ, ZEP1s ZEP2, CC» CD» CE» CSS@s CAX
DIMENSION TITLEC72), ’

1 RJROOTC10,5),

e OMEGA{100), ENC100)

COMMON B
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OVRIRAUN D WM

sekktrrsksnt DATA INPUT SECTION *dhkkkbkkhkihrgihdhiheprkhhesriik

ERR = 0.000001
PI = 3.1415927
Cl = €(0<«0,1.0)

INFUT ROOTS AND VALUES OF BESSEL FUNCTIONSe

DATA ((RJROOT(I,J),

3.83171,»
1.84118,»
305424,
4.20119,
531755,
641562,
750127,
8457784,
9.64742,

701559,
533144,
6706135
801524,
928240,
1051986,
1173494,
1293239,
1411552,

INPUT PARAMETERS.

J= 1,5, 1=

1017347»

853632,

996947,
11.34592,
12.68191,
13.98719,
15.26818»
16452937,
1777401,

1,93/

1332369,
1170600,
1317037,
14. 58585,
1596411,
1731284,
1863744,
1994185,
2122906,

1647063,
1486359,
1634752»
17.7887S»
19.19603»
20.57551,»
21.93172,
23.26805,
24.587207/

READ (5,5000) (TITLECI)» I = 1},
READ (S5,5001) GAMMA, UEs, RLD,
READ (5,5002) L, M» N

8 IF (NOZZLE <EQ. 1) GO TO S

C COMPUTE ADMITTANCE FOR QUASI-STEADY NOZZLE.

YAMPL = (GAMMA = 1+0) * UE/(2.0 * GAMMA)
YPHASE = 0.0
GO TO 7

5 READ (5,5003,END = 300) YAMPL, YPHASE

7 READ (5,5003, END = 300) TAUMIN, TAUMAX», DELTAU

72)

ZCOMB» NDROPSs, NOZZLE» NOPT

THETA = YPHASE * P1/180.0
YR = YAMPL * COSCTHETA)
Yl = YAMPL * SINCTHETA)
YNOZ = CMPLX(YR,YI) o

ZE = 2.0 * RLD

CZE = CMPLX(ZE»0.0)
CGAM = CMPLX(GAMMA,0+0)
CAX = CGAM .
IF (NDROPS +E@e 1) CAX = CGAM + (1.0,0.0)

*kkkrkhkxkkrt PRELIMINARY CALCULATIONS skkkkkmmbnkhmkninkikkknks ki

[+ N RNl

ASSIGN ARRAYS FOR ROOTS OF BESSEL FUNCTIONS.
IF ((M +EQe 0) +AND. (N «EQe¢ 0)) GO TO 15
MM = M+ |

NN = N

SMN = RJROOT(MM,NN)

GO TO 20

SMN = 0.0

55@ = SMN * SMN

CSSQ@ = CMPLX(SSQ,0.0)

15
20
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(¢ NeNe] (¢ NeKy]

aan

QO o000

100

50

55

1

CALCULATE AXIAL ACOUSTIC EIGENVALUES.

CALL EIGVAL(L, SMN,GAMMA,ZE,YAMPL, YPHASEs RESULT)
BC(1) = RESULT

BC = CONJGC(RESULT)

knkhnkkkkhkk CALCULATE AXIAL INTEGRALS #kkskaikokok sk skakkok ok sk dko o o o ok o ok o
DO 100 NT = {, 4

CALL AXIAL1C¢NT»1,1,UEs,ZE»ZCOMB, RESULT)

AXCNT) = RESULT

CONTINUE

kkkkkkrshidnk CALCULATE VALUES AT NOZZLE ENTRANCE #%%skokikkkikk gk
ZEJ = CCOSH(CI*BC*CZE)

ZEP] = CCOSH(CI*B(1)*CZE)

ZEP2 = CI * B(1) * CSINHCCI*BC1)*CZE)

Axkapnbkkhes CALCULATE COEFFICIENTS #ksuhkbkmhkhbinmhih kb hkhgnn

cc (CSSQ*AX(1) = AX(2) + ZEP2*%ZEJ)/AX(1)
CD = (CAX*AX(3) + (2.0,0+0)%AX(4)

+ CGAM*YNOZ*Z EP1%ZEJ)/AXC1)
CE = CGAM*AX(3)/AX(1)

C1 REAL(COC)

D] = REAL(CD)

E = REAL(CE)

IF (NOPT «EQ. 2) GO TO SO
C2 = AIMAG(CO)

D2 = AIMAG(CD)

GO TO 55

C2 = 0.0

D2 = 0.0

*kkxsxksrsx CALCULATION OF LINEAR STABILITY LIMIT #kkkns
OMEGAC1) = SQRT(CI)

WRITE €6,6001) (TITLECJ)s J = 1,72)
IF (NDROPS «EQs 0) WRITE (656025)

IF (NDROPS «EQ. 1) WRITE (6,6026)

IF (NOPT «EQs 2) WRITE (6,6022)

VRITE (6,6002) GAMMA, UE, RLDs» ZCOMB
IF (NOZZLE +EQ. 0) WRITE (6,6012)
WRITE (6,6005) YAMPL, YPHASE

WRITE (6,6010)

LINE = 12

TAU = TAUMIN

370 IF C(TAU +GT. TAUMAX) GO TO 8
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K=}
310 WT = OMEGA(CK) * TAU

BB = (D1 + C2/0MEGACK))/E

EN(K) = BB/(1.0 -~ COS(WT))

6 = (E*EN(K)*SINC(WT) - D2) * OMEGA(K)

OMEGACK+1) = SGQRT(C1 + G)

IF (K «EQe 40) GO TO 316

IF (K «EQ« 1) GO TO 311

DN = ABSC(EN(K) -~ EN(K-1))

DW = ABS(OMEGACK+1) =~ OMEGA(K))

IF C(DN +LTe ERR) «ANDe (DV .LT. ERR)). GO TO 317
311 K= K + 1

GO TO 310

316 WRITE €6,6013) TAU» ENCK)» OMEGACK)» K
60 TO 318 ‘
317 WRITE €6,6014) TAU» ENCK)» OMEGACK)» K

318 LINE = LINE + 2
TAU = TAU + DELTAU .
IF CC(LINE «LTe 60) «ORe (TAU +GTe. TAUMAX)) GO TO 370
WVRITE (6,601%5)
VRITE (6,6010)
LINE = 6
GO TO 370

300 CONTINUE

*kkkkrexkkknknk FORMAT SPECIFICATIONS kakskakokokorakskokskokokokokokokokk ks kakkk kg

anooon Q

READ FORMATS
S000 FORMAT (72Al)
5001 FORMAT (4F10.0,315)
5002 FORMAT (315%5)
S003 FORMAT (3F10.0)

Cc
C WRITE FORMATS
6001 FORMAT (1H1,1X,72A1/)
6002 FORMAT (2X,»8HGAMMA = ,FS5¢2,5XsSHUE ® ,FS5+¢2,5Xs 6HRLD = ,FB8¢5,
1 SX»BHZCOMB = ,FS52/)
6003 FORMAT (2XsA45515,4F10e¢5/)
6005 FORMAT (2X, 7THAMPL = ,F8¢5,5Xs8HPHASE = ,F7.2/)
6007 FORMAT C1H )
6008 FORMAT (1HO)
6010 FORMAT (2X//8X»3HTAU,8X,2HEN, 5X» SHOMEGA, 6Xs 4HI TER/)
6012 FORMAT (2X»19HQUASI-STEADY NOZZLE/)
6013 FORMAT (2X»3F10¢5,110,5X»19H FAILED TO CONVERGE/)
6014 FORMAT (2X»3F10+5,1107)
6015 FORMAT (1H1)
6022 FORMAT (2X»24HCOUFLING TERMS NEGLECTED/)
6025 FORMAT (2X» *DROPLET MOMENTUM SOURCE NEGLECTED®'/)
6026 FORMAT (2X»°'DROPLET MOMENTUM SOURCE INCLUDED'/)
END
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