

System Management Interface Forum

Direct Format Usage for PMBus Data Transfer

Jeff Klaas Intersil APEC 2017

©2017 System Management Interface Forum

Introduction

Contents

- Data Format Review
- VOUT_MODE Command
- Format Comparison
- Format Limitations
- System Examples
- Linear Format Examples
- Direct Format Examples

The DIRECT format

- simple
- intuitive to use
- simplifying choices

Data Format Review

- Linear11 (Called Literal Format in tutorials)
- Linear16 (May be signed or unsigned)
- Direct
- IEEE Half Precision Floating Point
- IEEE Single Precision Floating Point

This talk will focus on Linear and Direct formats only

LINEAR11 Format

LINEAR11 format is used for non-output voltage (See PMBus Part II, Section 7.3)

 $\mathbf{X} = \mathbf{Y} \cdot \mathbf{2}^{\mathsf{N}}$

Where

- X is the real world value
- Y is a signed 11 bit 2's complement integer
- N is a signed 5 bit 2's complement integer

The values N and Y form a 16-bit value sent over the bus as {N, Y}

LINEAR16 Format

LINEAR16 format is used for output voltage only (See PMBus Part II, Section 8.4.1)

Voltage = $V \cdot 2^N$

Where

- Voltage is the value in Volts
- V is a 16 bit integer (unsigned for LINEAR16 signed for SLINEAR16) sent over bus
- N is a signed 5 bit 2's complement integer from the VOUT_MODE Parameter

DIRECT Format

DIRECT format is used for any value (See PMBus Part II, Section 7.4)

 $X = 1/m \cdot (Y \cdot 10^{-R} - b)$

Where

- X is the real world value
- Y is a two byte 2's complement integer sent over bus
- m is the slope coefficient, a two byte 2's complement integer
- b is the offset, a two byte 2's complement integer
- R is the exponent, a one byte 2's complement integer

Coefficients m, b, and R are read using the COEFFICIENTS command or obtained from the device literature

VOUT_MODE Command

VOUT_MODE is an 8-bit value {Mode, Parameter}

- Upper 3 bits define the Mode
- Lower 5 bits define the Parameter

Two cases of interest

- LINEAR16 Mode = 0, the Parameter is the 2's complement exponent
- DIRECT Mode = 2, the Parameter is zero

Typical usage – Read-Only

Format Comparison

All data formats have a restriction on range and resolution

Range

- LINEAR11 has only 1024 steps
- LINEAR16 has 32768 steps signed or 65536 unsigned

Resolution

- LINEAR11 and LINEAR16 formats have resolution that is a power of 2
- DIRECT format has resolution that is 1/m times a power of 10

Which has better fit for overall accuracy? Ease of use?

System Management

Smart Battery System

Implementers Forum

SMBUS

Analog System

System Management

Smart Battery System

Implementers Forum

SMBUS

Digital System

Need for Better Resolution

 VOUT positioning resolution versus absolute precision available with LINEAR16 and DIRECT are basically equivalent – difference is power of 2 versus power of 10.

• Telemetry data is a different story – 11-bits for LINEAR11 versus 16-bits for DIRECT.

LINEAR16 Format Examples

Choose exponent N to be -10

 $X = Y \cdot 2^{-10}$ which gives 0.977 mV LSB size with +/-32 V range

Choose exponent N to be -12

 $X = Y \cdot 2^{-12}$ which gives 0.244 mV LSB size with +/-8 V range

Unfriendly values in base 2 radix

Direct Format Examples

Simplify the DIRECT Format to use m=1 and b=0:

 $\mathbf{X} = \mathbf{Y} \cdot \mathbf{10}^{-\mathrm{R}}$

With R = 3, the LSB size is 1mV with 32.7V range With R = 2, the LSB size is 10mV with 327V range

Nice user friendly values in base 10 radix

Conclusion

- Direct Format is simple to use with wise coefficient choice
- Can represent wide range with decimal radix
- Data read back is exactly the setting value
- Exact voltage positioning relative to specifications
- Telemetry data is readable real world units
- Simplified debug convert to decimal then move decimal point

The End

