
ptg



ptg

WPF 4
UNLEASHED

800 East 96th Street, Indianapolis, Indiana 46240 USA

Adam Nathan



ptg

WPF 4 Unleashed 
Copyright © 2010 by Pearson Education

All rights reserved. No part of this book shall be reproduced, stored in a retrieval 
system, or transmitted by any means, electronic, mechanical, photocopying, recording, 
or otherwise, without written permission from the publisher. No patent liability is 
assumed with respect to the use of the information contained herein. Although every 
precaution has been taken in the preparation of this book, the publisher and author 
assume no responsibility for errors or omissions. Nor is any liability assumed for 
damages resulting from the use of the information contained herein.

ISBN-13: 978-0-672-33119-0 
ISBN-10: 0-672-33119-5

Library of Congress Cataloging-in-Publication Data

Nathan, Adam.
WPF 4 unleashed / Adam Nathan.

p. cm.
Includes index.
ISBN 978-0-672-33119-0

1.  Windows presentation foundation. 2.  Application software. 3.  Microsoft .NET 
Framework.  I. Title. 

QA76.76.A65N386 2010
006.7’882—dc22

2010017765

Printed in the United States on America

First Printing June 2010

Trademarks 
All terms mentioned in this book that are known to be trademarks or service marks 
have been appropriately capitalized. Sams Publishing cannot attest to the accuracy of 
this information. Use of a term in this book should not be regarded as affecting the 
validity of any trademark or service mark.

Warning and Disclaimer 
Every effort has been made to make this book as complete and as accurate as possi-
ble, but no warranty or fitness is implied. The information provided is on an “as is” 
basis. The author(s) and the publisher shall have neither liability nor responsibility to 
any person or entity with respect to any loss or damages arising from the information 
contained in this book or from the use of the programs accompanying it.

Bulk Sales 
Sams Publishing offers excellent discounts on this book when ordered in quantity for 
bulk purchases or special sales. For more information, please contact

U.S. Corporate and Government Sales

1-800-382-3419

corpsales@pearsontechgroup.com

For sales outside of the U.S., please contact

International Sales

international@pearsoned.com

Editor-in-Chief
Karen Gettman 

Executive Editor
Neil Rowe 

Development Editor
Mark Renfrow 

Managing Editor
Kristy Hart 

Project Editor
Betsy Harris

Copy Editor
Kitty Wilson 

Indexer
Erika Millen 

Proofreader
Kathy Ruiz 

Technical Editors
Dwayne Need
Robert Hogue
Joe Castro
Jordan Parker 

Publishing Coordinator
Cindy Teeters 

Book Designer
Gary Adair 

Composition
Bronkella Publishing LLC

  From the Library of Wow! eBook



ptg

Contents at a Glance
Introduction . .................................................................................................................................................. 1

Part I Background 

1 Why WPF, and What About Silverlight? . ................................................................................ 9

2 XAML Demystified . ................................................................................................................................ 21

3 WPF Fundamentals . .............................................................................................................................. 73

Part II Building a WPF Application

4 Sizing, Positioning, and Transforming Elements . .......................................................... 97

5 Layout with Panels . ............................................................................................................................. 115

6 Input Events: Keyboard, Mouse, Stylus, and Multi-Touch . ................................. 159

7 Structuring and Deploying an Application . ..................................................................... 195

8 Exploiting Windows 7 . ..................................................................................................................... 233

Part III Controls

9 Content Controls . ................................................................................................................................ 261

10 Items Controls . ....................................................................................................................................... 275

11 Images, Text, and Other Controls . .......................................................................................... 309

Part IV Features for Professional Developers

12 Resources . .................................................................................................................................................... 343

13 Data Binding . ........................................................................................................................................... 363

14 Styles, Templates, Skins, and Themes . ................................................................................. 415

Part V Rich Media 

15 2D Graphics . ............................................................................................................................................. 475

16 3D Graphics . ............................................................................................................................................. 537

17 Animation . ................................................................................................................................................ 607

18 Audio, Video, and Speech . ............................................................................................................ 653

Part VI Advanced Topics

19 Interoperability with Non-WPF Technologies . .............................................................. 675

20 User Controls and Custom Controls . ................................................................................... 721

21 Layout with Custom Panels . ....................................................................................................... 751

Index . ............................................................................................................................................................. 775

  From the Library of Wow! eBook



ptg

Table of Contents

Introduction 1

Who Should Read This Book? . ......................................................................................................... 2
Software Requirements . ......................................................................................................................... 3
Code Examples. ............................................................................................................................................. 4
How This Book Is Organized. ............................................................................................................ 4

Part I: Background. ....................................................................................................................... 4
Part II: Building a WPF Application . .............................................................................. 4
Part III: Controls . ........................................................................................................................... 5
Part IV: Features for Professional Developers . ........................................................ 5
Part V: Rich Media . ..................................................................................................................... 5
Part VI: Advanced Topics . ....................................................................................................... 6

Conventions Used in This Book . ................................................................................................... 6

Part I Background

1 Why WPF, and What About Silverlight? 9

A Look at the Past . .................................................................................................................................. 10
Enter WPF . .................................................................................................................................................... 11
The Evolution of WPF. ......................................................................................................................... 14

Enhancements in WPF 3.5 and WPF 3.5 SP1 . ..................................................... 15
Enhancements in WPF 4 . ................................................................................................... 16

What About Silverlight? . .................................................................................................................... 18
Summary . ........................................................................................................................................................ 19

2 XAML Demystified 21

XAML Defined . ......................................................................................................................................... 23
Elements and Attributes . .................................................................................................................... 24
Namespaces . ................................................................................................................................................ 26
Property Elements . .................................................................................................................................. 29
Type Converters. ....................................................................................................................................... 30
Markup Extensions. ................................................................................................................................ 32
Children of Object Elements . ......................................................................................................... 35

The Content Property . ........................................................................................................... 35
Collection Items. ......................................................................................................................... 36
More Type Conversion . ......................................................................................................... 38

  From the Library of Wow! eBook



ptg

Mixing XAML with Procedural Code . ..................................................................................... 40
Loading and Parsing XAML at Runtime. ................................................................. 40
Compiling XAML . ..................................................................................................................... 43

Introducing XAML2009 . .................................................................................................................... 48
Full Generics Support. ............................................................................................................ 49
Dictionary Keys of Any Type . .......................................................................................... 50
Built-In System Data Types . .............................................................................................. 50
Instantiating Objects with Non-Default Constructors . ............................... 51
Getting Instances via Factory Methods. ................................................................... 51
Event Handler Flexibility . ................................................................................................... 52
Defining New Properties . ..................................................................................................... 53

Fun with XAML Readers and Writers . ..................................................................................... 53
Overview . ......................................................................................................................................... 53
The Node Loop . ........................................................................................................................... 56
Reading XAML. ............................................................................................................................. 57
Writing to Live Objects . ....................................................................................................... 61
Writing to XML . ......................................................................................................................... 63
XamlServices . ................................................................................................................................ 64

XAML Keywords . ...................................................................................................................................... 67
Summary . ........................................................................................................................................................ 70

Complaint 1: XML Is Too Verbose to Type. .......................................................... 71
Complaint 2: XML-Based Systems Have Poor Performance . .................. 71

3 WPF Fundamentals 73

A Tour of the Class Hierarchy. ....................................................................................................... 73
Logical and Visual Trees . .................................................................................................................... 75
Dependency Properties . ..................................................................................................................... 80

A Dependency Property Implementation. .............................................................. 81
Change Notification . .............................................................................................................. 83
Property Value Inheritance. ................................................................................................ 85
Support for Multiple Providers. ....................................................................................... 87
Attached Properties. .................................................................................................................. 89

Summary . ........................................................................................................................................................ 93

Part II Building a WPF Application

4 Sizing, Positioning, and Transforming Elements 97

Controlling Size . ....................................................................................................................................... 98
Height and Width . .................................................................................................................... 98
Margin and Padding. ............................................................................................................ 100
Visibility . ....................................................................................................................................... 102

  From the Library of Wow! eBook



ptg

Controlling Position . ......................................................................................................................... 103
Alignment . .................................................................................................................................... 103
Content Alignment. .............................................................................................................. 104
FlowDirection . ........................................................................................................................... 105

Applying Transforms. ......................................................................................................................... 106
RotateTransform . ..................................................................................................................... 108
ScaleTransform. ......................................................................................................................... 109
SkewTransform. ......................................................................................................................... 112
TranslateTransform . .............................................................................................................. 112
MatrixTransform . .................................................................................................................... 112
Combining Transforms . ..................................................................................................... 113

Summary . .................................................................................................................................................... 114

5 Layout with Panels 115

Canvas . ......................................................................................................................................................... 116
StackPanel. .................................................................................................................................................. 118
WrapPanel . ................................................................................................................................................ 120
DockPanel. .................................................................................................................................................. 122
Grid . ................................................................................................................................................................. 125

Sizing the Rows and Columns. ..................................................................................... 130
Interactive Sizing with GridSplitter . ........................................................................ 132
Sharing Row and Column Sizes . ................................................................................. 134
Comparing Grid to Other Panels . .............................................................................. 136

Primitive Panels . .................................................................................................................................... 137
TabPanel . ....................................................................................................................................... 137
ToolBarPanel. .............................................................................................................................. 138
ToolBarOverflowPanel . ....................................................................................................... 138
ToolBarTray . ................................................................................................................................ 138
UniformGrid. .............................................................................................................................. 138
SelectiveScrollingGrid. ......................................................................................................... 138

Handling Content Overflow. ....................................................................................................... 139
Clipping. ......................................................................................................................................... 139
Scrolling. ......................................................................................................................................... 141
Scaling. ............................................................................................................................................. 143

Putting It All Together: Creating a Visual Studio–Like Collapsible, 
Dockable, Resizable Pane . ........................................................................................................... 147

Summary . .................................................................................................................................................... 157

WPF 4 Unleashedvi

  From the Library of Wow! eBook



ptg

6 Input Events: Keyboard, Mouse, Stylus, and Multi-Touch 159

Routed Events. ......................................................................................................................................... 159
A Routed Event Implementation . .............................................................................. 160
Routing Strategies and Event Handlers . ............................................................... 161
Routed Events in Action . .................................................................................................. 162
Attached Events . ..................................................................................................................... 165

Keyboard Events. .................................................................................................................................... 168
Mouse Events . ......................................................................................................................................... 170

MouseEventArgs . ..................................................................................................................... 171
Drag and Drop . ......................................................................................................................... 172
Capturing the Mouse . ......................................................................................................... 173

Stylus Events . ........................................................................................................................................... 174
StylusDevice . .............................................................................................................................. 174
Events . ............................................................................................................................................. 175

Multi-Touch Events. ............................................................................................................................. 176
Basic Touch Events. ................................................................................................................ 177
Manipulation Events for Panning, Rotating, and Zooming. ................. 180

Commands . ............................................................................................................................................... 188
Built-In Commands . ............................................................................................................ 189
Executing Commands with Input Gestures . ..................................................... 192
Controls with Built-In Command Bindings . ..................................................... 193

Summary . .................................................................................................................................................... 194

7 Structuring and Deploying an Application 195

Standard Windows Applications. .............................................................................................. 195
The Window Class . ................................................................................................................ 196
The Application Class. ......................................................................................................... 199
Showing a Splash Screen . .................................................................................................. 205
Creating and Showing Dialogs . ................................................................................... 206
Persisting and Restoring Application State. ........................................................ 209
Deployment: ClickOnce Versus Windows Installer. .................................... 210

Navigation-Based Windows Applications . ........................................................................ 211
Pages and Their Navigation Containers . .............................................................. 212
Navigating from Page to Page . ..................................................................................... 214
Passing Data Between Pages. .......................................................................................... 219

Gadget-Style Applications . ............................................................................................................ 223
XAML Browser Applications . ....................................................................................................... 224

Limited Feature Set . .............................................................................................................. 226
Integrated Navigation. ......................................................................................................... 228
Deployment . .............................................................................................................................. 229

Loose XAML Pages. .............................................................................................................................. 231
Summary . .................................................................................................................................................... 232

Contents vii

  From the Library of Wow! eBook



ptg

8 Exploiting Windows 7 233

Jump Lists . .................................................................................................................................................. 233
JumpTask . ...................................................................................................................................... 234
JumpPath . ...................................................................................................................................... 241

Taskbar Item Customizations. ..................................................................................................... 245
Using a Taskbar Item Progress Bar. ............................................................................ 246
Adding an Overlay to the Taskbar Item . .............................................................. 247
Customizing the Thumbnail Content. ................................................................... 247
Adding Thumb Buttons to the Taskbar Thumbnail . ................................... 248

Aero Glass . .................................................................................................................................................. 249
TaskDialog . ................................................................................................................................................ 253
Summary . .................................................................................................................................................... 256

Part III Controls

9 Content Controls 261

Buttons. ......................................................................................................................................................... 263
Button . ............................................................................................................................................. 264
RepeatButton . ............................................................................................................................. 265
ToggleButton . ............................................................................................................................. 265
CheckBox. ...................................................................................................................................... 266
RadioButton . .............................................................................................................................. 266

Simple Containers . .............................................................................................................................. 268
Label . ................................................................................................................................................ 268
ToolTip . ........................................................................................................................................... 269
Frame . ............................................................................................................................................... 271

Containers with Headers . .............................................................................................................. 272
GroupBox. ...................................................................................................................................... 273
Expander. ....................................................................................................................................... 273

Summary . .................................................................................................................................................... 274

10 Items Controls 275

Common Functionality . .................................................................................................................. 276
DisplayMemberPath . ............................................................................................................ 277
ItemsPanel. .................................................................................................................................... 278
Controlling Scrolling Behavior . ................................................................................... 280

Selectors . ...................................................................................................................................................... 281
ComboBox . .................................................................................................................................. 282
ListBox . ........................................................................................................................................... 287
ListView . ......................................................................................................................................... 290

WPF 4 Unleashedviii

  From the Library of Wow! eBook



ptg

TabControl . .................................................................................................................................. 291
DataGrid . ....................................................................................................................................... 292

Menus . ........................................................................................................................................................... 298
Menu . ............................................................................................................................................... 298
ContextMenu . ........................................................................................................................... 301

Other Items Controls . ....................................................................................................................... 302
TreeView . ....................................................................................................................................... 302
ToolBar . ........................................................................................................................................... 304
StatusBar . ....................................................................................................................................... 307

Summary . .................................................................................................................................................... 308

11 Images, Text, and Other Controls 309

The Image Control . ............................................................................................................................. 309
Text and Ink Controls . ..................................................................................................................... 311

TextBlock . ...................................................................................................................................... 313
TextBox . ......................................................................................................................................... 315
RichTextBox . .............................................................................................................................. 316
PasswordBox. .............................................................................................................................. 316
InkCanvas . .................................................................................................................................... 316

Documents. ................................................................................................................................................ 318
Creating Flow Documents . .............................................................................................. 318
Displaying Flow Documents . ......................................................................................... 329
Adding Annotations. ............................................................................................................ 331

Range Controls . ...................................................................................................................................... 334
ProgressBar . .................................................................................................................................. 335
Slider . ................................................................................................................................................ 335

Calendar Controls . .............................................................................................................................. 336
Calendar . ....................................................................................................................................... 336
DatePicker . .................................................................................................................................... 338

Summary . .................................................................................................................................................... 339

Part IV Features for Professional Developers

12 Resources 343

Binary Resources . .................................................................................................................................. 343
Defining Binary Resources. .............................................................................................. 344
Accessing Binary Resources. ............................................................................................ 345
Localizing Binary Resources . .......................................................................................... 350

Logical Resources. .................................................................................................................................. 351
Resource Lookup . .................................................................................................................... 355
Static Versus Dynamic Resources . .............................................................................. 355
Interaction with System Resources . .......................................................................... 360

Summary . .................................................................................................................................................... 362

Contents ix

  From the Library of Wow! eBook



ptg

13 Data Binding 363

Introducing the Binding Object . .............................................................................................. 363
Using Binding in Procedural Code . .......................................................................... 363
Using Binding in XAML. ................................................................................................... 365
Binding to Plain .NET Properties . .............................................................................. 367
Binding to an Entire Object . .......................................................................................... 369
Binding to a Collection. ..................................................................................................... 370
Sharing the Source with DataContext. ................................................................... 374

Controlling Rendering . .................................................................................................................... 375
String Formatting . .................................................................................................................. 375
Using Data Templates . ......................................................................................................... 378
Using Value Converters . ................................................................................................... 381

Customizing the View of a Collection. ................................................................................ 386
Sorting. ............................................................................................................................................. 386
Grouping . ...................................................................................................................................... 388
Filtering . ......................................................................................................................................... 392
Navigating. .................................................................................................................................... 392
Working with Additional Views. ................................................................................. 394

Data Providers . ....................................................................................................................................... 396
XmlDataProvider . .................................................................................................................... 397
ObjectDataProvider . .............................................................................................................. 401

Advanced Topics . .................................................................................................................................. 403
Customizing the Data Flow . .......................................................................................... 403
Adding Validation Rules to Binding . ....................................................................... 405
Working with Disjoint Sources . ................................................................................... 409

Putting It All Together: The Pure-XAML Twitter Client. ........................................ 412
Summary . .................................................................................................................................................... 414

14 Styles, Templates, Skins, and Themes 415

Styles . ............................................................................................................................................................. 416
Sharing Styles . ........................................................................................................................... 418
Triggers . ........................................................................................................................................... 423

Templates. .................................................................................................................................................... 430
Introducing Control Templates . ................................................................................. 431
Getting Interactivity with Triggers . .......................................................................... 432
Restricting the Target Type . ............................................................................................ 434
Respecting the Templated Parent’s Properties. ................................................. 435
Respecting Visual States with Triggers. ................................................................... 442
Respecting Visual States with the Visual State Manager (VSM) . ........ 447
Mixing Templates with Styles . ..................................................................................... 456

Skins . ............................................................................................................................................................... 458

WPF 4 Unleashedx

  From the Library of Wow! eBook



ptg

Themes. ......................................................................................................................................................... 465
Using System Colors, Fonts, and Parameters. ................................................... 465
Per-Theme Styles and Templates. ................................................................................ 466

Summary . .................................................................................................................................................... 470

Part V Rich Media

15 2D Graphics 475

Drawings . .................................................................................................................................................... 476
Geometries . .................................................................................................................................. 479
Pens . .................................................................................................................................................. 489
Clip Art Example . .................................................................................................................... 491

Visuals. ........................................................................................................................................................... 493
Filling a DrawingVisual with Content . ................................................................. 493
Displaying a Visual on the Screen. ............................................................................ 496
Visual Hit Testing . .................................................................................................................. 499

Shapes . ........................................................................................................................................................... 505
Rectangle . ...................................................................................................................................... 507
Ellipse. ............................................................................................................................................... 508
Line . .................................................................................................................................................. 509
Polyline . ......................................................................................................................................... 510
Polygon . ......................................................................................................................................... 511
Path . .................................................................................................................................................. 511
Clip Art Based on Shapes . ................................................................................................ 512

Brushes. ......................................................................................................................................................... 513
Color Brushes . ........................................................................................................................... 513
Tile Brushes . ................................................................................................................................ 520
Brushes as Opacity Masks. ................................................................................................ 527

Effects . ........................................................................................................................................................... 529
Improving Rendering Performance . ....................................................................................... 532

RenderTargetBitmap . ............................................................................................................ 532
BitmapCache . ............................................................................................................................. 533
BitmapCacheBrush . .............................................................................................................. 535

Summary . .................................................................................................................................................... 535 
16 3D Graphics 

537

Getting Started with 3D Graphics. .......................................................................................... 538
Cameras and Coordinate Systems. .......................................................................................... 542

Position . ......................................................................................................................................... 543
LookDirection . ........................................................................................................................... 544
UpDirection. ................................................................................................................................ 548
OrthographicCamera Versus PerspectiveCamera. .......................................... 551

Contents xi

  From the Library of Wow! eBook



ptg

Transform3D . ........................................................................................................................................... 554
TranslateTransform3D . ....................................................................................................... 556
ScaleTransform3D . .................................................................................................................. 557
RotateTransform3D . .............................................................................................................. 559
Combining Transform3Ds . .............................................................................................. 562

Model3D. ...................................................................................................................................................... 563
Lights . ............................................................................................................................................... 563
GeometryModel3D . .............................................................................................................. 571
Model3DGroup . ....................................................................................................................... 584

Visual3D . ...................................................................................................................................................... 586
ModelVisual3D. ......................................................................................................................... 587
UIElement3D . ............................................................................................................................. 588
Viewport2DVisual3D . ........................................................................................................... 590
3D Hit Testing. ........................................................................................................................... 592

Viewport3D. ............................................................................................................................................... 593
2D and 3D Coordinate System Transformation. .......................................................... 596

Visual.TransformToAncestor . ......................................................................................... 596
Visual3D.TransformToAncestor and 

Visual3D.TransformToDescendant . ....................................................................... 600
Summary . .................................................................................................................................................... 605

17 Animation 607

Animations in Procedural Code . .............................................................................................. 608
Performing Animation “By Hand” . .......................................................................... 608
Introducing the Animation Classes . ........................................................................ 609
Simple Animation Tweaks . .............................................................................................. 616

Animations in XAML . ....................................................................................................................... 621
EventTriggers Containing Storyboards . ................................................................. 621
Using Storyboard as a Timeline . ................................................................................. 629

Keyframe Animations. ....................................................................................................................... 630
Linear Keyframes . .................................................................................................................... 631
Spline Keyframes . .................................................................................................................... 633
Discrete Keyframes. ................................................................................................................ 634
Easing Keyframes. .................................................................................................................... 636

Easing Functions . .................................................................................................................................. 637
Built-In Power Easing Functions . ................................................................................ 637
Other Built-In Easing Functions . ................................................................................ 639
Writing Your Own Easing Function. ........................................................................ 640

Animations and the Visual State Manager. ....................................................................... 643
Transitions . .................................................................................................................................. 647

Summary . .................................................................................................................................................... 651

WPF 4 Unleashedxii

  From the Library of Wow! eBook



ptg

18 Audio, Video, and Speech 653

Audio . ............................................................................................................................................................. 653
SoundPlayer. ................................................................................................................................ 654
SoundPlayerAction. ................................................................................................................ 654
MediaPlayer . ................................................................................................................................ 655
MediaElement and MediaTimeline. .......................................................................... 656

Video . ............................................................................................................................................................. 658
Controlling the Visual Aspects of MediaElement . ........................................ 658
Controlling the Underlying Media. .......................................................................... 661

Speech. ........................................................................................................................................................... 664
Speech Synthesis . .................................................................................................................... 664
Speech Recognition. .............................................................................................................. 667

Summary . .................................................................................................................................................... 672

Part VI Advanced Topics

19 Interoperability with Non-WPF Technologies 675

Embedding Win32 Controls in WPF Applications . ................................................... 677
A Win32 Webcam Control . ............................................................................................ 678
Using the Webcam Control in WPF . ....................................................................... 681
Supporting Keyboard Navigation. .............................................................................. 687

Embedding WPF Controls in Win32 Applications . ................................................... 692
Introducing HwndSource . ................................................................................................ 692
Getting the Right Layout . ................................................................................................ 696

Embedding Windows Forms Controls in WPF Applications . ........................... 699
Embedding a PropertyGrid with Procedural Code. ...................................... 700
Embedding a PropertyGrid with XAML . .............................................................. 702

Embedding WPF Controls in Windows Forms Applications . ........................... 704
Mixing DirectX Content with WPF Content . ............................................................... 708
Embedding ActiveX Controls in WPF Applications. ................................................. 714
Summary . .................................................................................................................................................... 718

20 User Controls and Custom Controls 721

Creating a User Control. .................................................................................................................. 723
Creating the User Interface of the User Control . .......................................... 723
Creating the Behavior of the User Control . ...................................................... 725
Adding Dependency Properties to the User Control . ................................. 728
Adding Routed Events to the User Control. ...................................................... 731

Contents xiii

  From the Library of Wow! eBook



ptg

Creating a Custom Control . ......................................................................................................... 732
Creating the Behavior of the Custom Control . ............................................. 733
Creating the User Interface of the Custom Control. ................................... 739
Considerations for More Sophisticated Controls. .......................................... 743

Summary . .................................................................................................................................................... 750

21 Layout with Custom Panels 751

Communication Between Parents and Children. ........................................................ 752
The Measure Step . .................................................................................................................. 752
The Arrange Step . .................................................................................................................... 754

Creating a SimpleCanvas . .............................................................................................................. 755
Creating a SimpleStackPanel. ....................................................................................................... 760
Creating an OverlapPanel . ............................................................................................................ 763
Creating a FanCanvas . ..................................................................................................................... 768
Summary . .................................................................................................................................................... 773 
Index 

775

WPF 4 Unleashedxiv

  From the Library of Wow! eBook



ptg

About the Author

Adam Nathan is a principal software development engineer for Microsoft Visual Studio, 
the latest version of which has been transformed into a first-class WPF application. Adam 
was previously the founding developer and architect for Popfly, Microsoft’s first product 
built on Silverlight, named one of the 25 most innovative products of 2007 by PCWorld 
Magazine. Having started his career on Microsoft’s Common Language Runtime team, 
Adam has been at the core of .NET and WPF technologies since the very beginning.

Adam’s books have been considered required reading by many inside Microsoft and 
throughout the industry. He is the author of the best-selling WPF Unleashed (Sams, 2006) 
that was nominated for a 2008 Jolt Award, Silverlight 1.0 Unleashed (Sams, 2008), and .NET 
and COM: The Complete Interoperability Guide (Sams, 2002); a coauthor of ASP.NET: Tips, 
Tutorials, and Code (Sams, 2001); and a contributor to books including .NET Framework 
Standard Library Annotated Reference, Volume 2 (Addison-Wesley, 2005) and Windows 
Developer Power Tools (O’Reilly, 2006). Adam is also the creator of PINVOKE.NET and its 
Visual Studio add-in. You can find him online at www.adamnathan.net, or @adamnathan 
on Twitter.

  From the Library of Wow! eBook

www.adamnathan.net


ptg

Dedication

To Lindsay, Tyler, and Ryan.

Acknowledgments

As always, I’d like to thank my wonderful wife, Lindsay, for her incredible support and 
understanding. Our life is always heavily affected by the seemingly never-ending process 
of writing a book, and by now you think she would have run out of patience. However, 
she has never been more supportive than she has been for this book. Lindsay, I couldn’t 
have done it without you.

Although most of the process of writing a book is very solitary, this book came together 
because of the work of many talented and hard-working people. I’d like to take a moment 
to thank some of them by name.

I’d like to sincerely thank Dwayne Need, senior development manager from the WPF 
team, for being a fantastic technical editor. His feedback on my drafts was so thorough 
and insightful, the book is far better because of him. I’d like to thank Robert Hogue, Joe 
Castro, and Jordan Parker for their helpful reviews. David Teitlebaum, 3D expert from the 
WPF team, deserves many thanks for agreeing to update the great 3D chapter originally 
written by Daniel Lehenbauer. Having Daniel’s and David’s perspectives and advice 
captured on paper is a huge benefit for any readers thinking about dabbling in 3D.

I’d also like to thank (in alphabetical order): Brian Chapman, Beatriz de Oliveira Costa, 
Ifeanyi Echeruo, Dan Glick, Neil Kronlage, Rico Mariani, Mike Mueller, Oleg Ovetchkine, 
Lori Pearce, S. Ramini, Rob Relyea, Tim Rice, Ben Ronco, Adam Smith, Tim Sneath, David 
Treadwell, and Paramesh Vaidyanathan.

I’d like to thank the folks at Sams—especially Neil Rowe and Betsy Harris, who are always a 
pleasure to work with. I couldn’t have asked for a better publishing team. Never once was I 
told that my content was too long or too short or too different from a typical Unleashed 
title. They gave me the complete freedom to write the kind of book I wanted to write.

I’d like to thank my mom, dad, and brother for opening my eyes to the world of 
computer programming when I was in elementary school. If you have children, please 
expose them to the magic of writing software while they’re still young enough to care 
about what you have to say! (WPF and Silverlight can even help you make the experience 
fun!)

Finally, I thank you for picking up a copy of this book and reading at least this far! I hope 
you continue reading and find the journey of exploring WPF 4 as fascinating as I have!

  From the Library of Wow! eBook



ptg

We Want to Hear from You!

As the reader of this book, you are our most important critic and commentator. We value 
your opinion and want to know what we’re doing right, what we could do better, what 
areas you’d like to see us publish in, and any other words of wisdom you’re willing to 
pass our way.

You can email or write me directly to let me know what you did or didn’t like about this 
book—as well as what we can do to make our books stronger.

Please note that I cannot help you with technical problems related to the topic of this book, and 
that due to the high volume of mail I receive, I might not be able to reply to every message.

When you write, please be sure to include this book’s title and author as well as your 
name and phone or email address. I will carefully review your comments and share them 
with the author and editors who worked on the book.

E-mail: feedback@samspublishing.com

Mail: Neil Rowe 
Executive Editor
Sams Publishing 
800 East 96th Street 
Indianapolis, IN 46240 USA

Reader Services

Visit our website and register this book at informit.com/register for convenient access to 
any updates, downloads, or errata that might be available for this book.

  From the Library of Wow! eBook



ptg

This page intentionally left blank 

  From the Library of Wow! eBook



ptg

Introduction

Thank you for picking up WPF 4 Unleashed! Windows Presentation Foundation (WPF) is
Microsoft’s premier technology for creating Windows graphical user interfaces, whether 
they consist of plain forms, document-centric windows, animated cartoons, videos, 
immersive 3D environments, or all of the above. WPF is a technology that makes it easier 
than ever to create a broad range of applications. It’s also the basis for Silverlight, which 
has extended WPF technology onto the Web and into devices such as Windows phones.

Ever since WPF was publicly announced in 2003 (with the code name “Avalon”), it has 
gotten considerable attention for the ways in which it revolutionizes the process of creat-
ing software—especially for Windows programmers used to Windows Forms and GDI. It’s 
relatively easy to create fun, useful, and shareable WPF samples that demonstrate all kinds 
of techniques that are difficult to accomplish in other technologies. WPF 4, released in 
April 2010, improves on previous versions of WPF in just about every dimension.

WPF is quite a departure from previous technologies in terms of its programming model, 
underlying concepts, and basic terminology. Even viewing the source code for WPF (by 
cracking open its components with a tool such as .NET Reflector) is a confusing experi-
ence because the code you’re looking for often doesn’t reside where you’d expect to find 
it. When you combine all this with the fact that there are often several ways to accom-
plish any task in WPF, you arrive at a conclusion shared by many: WPF has a very steep 
learning curve.

That’s where this book comes in. As WPF was developed, it was obvious that there would 
be no shortage of WPF books in the marketplace. But it wasn’t clear to me that the books 
would have the right balance to guide people through the technology and its unique 
concepts while showing practical ways to exploit it. Therefore, I wrote the first edition of 
this book, Windows Presentation Foundation Unleashed, with the following goals in mind:

. To provide a solid grounding in the underlying concepts, in a practical and 
approachable fashion

. To answer the questions most people have when learning the technology and to 
show how commonly desired tasks are accomplished

. To be an authoritative source, thanks to input from members of the WPF team who 
designed, implemented, and tested the technology

. To be clear about where the technology falls short rather than selling the technol-
ogy as the answer to all problems

. To be an easily navigated reference that you can constantly come back to

The first edition of this book was far more successful than I ever imagined it would be. 
Now, almost four years later, I believe that this second edition accomplishes all the same

  From the Library of Wow! eBook



ptg

goals but with even more depth. In addition to covering new features introduced in WPF
3.5, WPF 3.5 SP1, and WPF 4, it expands the coverage of the existing features from the 
first version of WPF. Whether you’re new to WPF or a long-time WPF developer, I hope 
you find this book to exhibit all these attributes.

Who Should Read This Book?
This book is for software developers who are interested in creating user interfaces for 
Windows. Regardless of whether you’re creating line-of-business applications, consumer-
facing applications, or reusable controls, this book contains a lot of content that helps 
you get the most out of the platform. It’s designed to be understandable even for folks 
who are new to the .NET Framework. And if you are already well versed in WPF, I’m 
confident that this book still has information for you. At the very least, it should be an 
invaluable reference for your bookshelf.

Because the technology and concepts behind WPF are the same ones behind Silverlight, 
reading this book can also make you a better developer for Windows Phone 7 and even a 
better web developer.

Although this book’s content is not optimized for graphic designers, reading this book 
can be a great way to understand more of the “guts” behind a product like Microsoft 
Expression Blend.

To summarize, this book does the following:

. Covers everything you need to know about Extensible Application Markup 
Language (XAML), the XML-based language for creating declarative user interfaces 
that can be easily restyled

. Examines the WPF feature areas in incredible depth: controls, layout, resources, data 
binding, styling, graphics, animation, and more

. Highlights the latest features, such as multi-touch, text rendering improvements, 
new controls, XAML language enhancements, the Visual State Manager, easing func-
tions, and much more

. Delves into topics that aren’t covered by most books: 3D, speech, audio/video, docu-
ments, effects, and more

. Shows how to create popular user interface elements, such as galleries, ScreenTips, 
custom control layouts, and more

. Demonstrates how to create sophisticated user interface mechanisms, such as Visual 
Studio–like collapsible/dockable panes

. Explains how to develop and deploy all types of applications, including navigation-
based applications, applications hosted in a web browser, and applications with 
great-looking nonrectangular windows

. Explains how to create first-class custom controls for WPF

WPF 4 Unleashed2

  From the Library of Wow! eBook



ptg

. Demonstrates how to create hybrid WPF software that leverages Windows Forms, 
DirectX, ActiveX, or other non-WPF technologies

. Explains how to exploit new Windows 7 features in WPF applications, such as Jump 
Lists, and how to go beyond some of the limitations of WPF

This book doesn’t cover every last bit of WPF. (In particular, XML Paper Specification 
[XPS] documents are given only a small bit of attention.) WPF’s surface area is so large 
that I don’t believe any single book can. But I think you’ll be pleased with the breadth 
and depth achieved by this book.

Examples in this book appear in XAML and C#, plus C++/CLI for interoperability discus-
sions. XAML is used heavily for a number of reasons: It’s often the most concise way to 
express source code, it can often be pasted into lightweight tools to see instant results 
without any compilation, WPF-based tools generate XAML rather than procedural code, 
and XAML is applicable no matter what .NET language you use, such as Visual Basic 
instead of C#. Whenever the mapping between XAML and a language such as C# is not 
obvious, examples are shown in both representations.

Software Requirements
This book targets the final release of version 4.0 of Windows Presentation Foundation, the 
corresponding Windows SDK, and Visual Studio 2010.

The following software is required:

. A version of Windows that supports the .NET Framework 4.0. This can be Windows 
XP with Service Pack 2 (including Media Center, Tablet PC, and x64 editions), 
Windows Server 2003 with Service Pack 1 (including the R2 edition), Windows 
Vista, or later versions.

. The .NET Framework 4.0, which is installed by default starting with Windows Vista. 
For earlier versions of Windows, you can download the .NET Framework 4.0 for free 
from http://msdn.com.

In addition, the following software is recommended:

. The Windows Software Development Kit (SDK), specifically the .NET tools it 
includes. This is also a free download from http://msdn.com.

. Visual Studio 2010 or later, which can be a free Express edition downloaded from 
http://msdn.com.

If you want additional tool support for WPF-based graphic design, Microsoft Expression 
(specifically Expression Blend) can be extremely helpful.

A few examples are specific to Windows Vista, Windows 7, or a computer that supports 
multi-touch, but the rest of the book applies equally to all relevant versions of Windows.

Introduction 3

  From the Library of Wow! eBook

http://msdn.com
http://msdn.com
http://msdn.com


ptg

Code Examples
The source code for examples in this book can be downloaded from http://informit.com/ 
title/9780672331190 or http://adamnathan.net/wpf.

How This Book Is Organized
This book is arranged into six main parts, representing the progression of feature areas 
that you typically need to understand to use WPF effectively. But if you’re dying to jump 
ahead and learn about a topic such as 3D or animation, the book is set up to allow for 
nonlinear journeys as well. The following sections provide a summary of each part.

Part I: Background
This part includes the following chapters:

. Chapter 1: Why WPF, and What About Silverlight?

. Chapter 2: XAML Demystified

. Chapter 3: WPF Fundamentals

Chapter 1 introduces WPF by comparing it to alternative technologies and helping you 
make decisions about when WPF is appropriate for your needs. Chapter 2 explores XAML 
in great depth, giving you the foundation to understand the XAML you’ll encounter in 
the rest of the book and in real life. Chapter 3 highlights the most unique pieces of WPF’s 
programming model above and beyond what .NET programmers already understand.

Part II: Building a WPF Application
This part includes the following chapters:

. Chapter 4: Sizing, Positioning, and Transforming Elements

. Chapter 5: Layout with Panels

. Chapter 6: Input Events: Keyboard, Mouse, Stylus, and Multi-Touch

. Chapter 7: Structuring and Deploying an Application

. Chapter 8: Exploiting Windows 7

Part II equips you with the knowledge to assemble and deploy a traditional-looking appli-
cation (although some fancier effects, such as transforms, nonrectangular windows, and 
Aero Glass, are also covered). Chapters 4 and 5 discuss arranging controls (and other 
elements) in a user interface. Chapter 6 covers input events, including new support for 
engaging multi-touch user interfaces. Chapter 7 examines several different ways to 
package and deploy WPF-based user interfaces to make complete applications. Chapter 8 
ends this part by showing slick ways to exploit features in Windows 7 that can help make 
your application look modern.

WPF 4 Unleashed4

  From the Library of Wow! eBook

http://informit.com/title/9780672331190
http://adamnathan.net/wpf
http://informit.com/title/9780672331190


ptg

Part III: Controls
This part includes the following chapters:

. Chapter 9: Content Controls

. Chapter 10: Items Controls

. Chapter 11: Images, Text, and Other Controls

Part III provides a tour of controls built into WPF. There are many that you’d expect to 
have available, plus several that you might not expect. Two categories of controls— 
content controls (Chapter 9) and items controls (Chapter 10)—are important and deep 
enough topics to merit their own chapters. The rest of the controls are examined in 
Chapter 11.

Part IV: Features for Professional Developers
This part includes the following chapters:

. Chapter 12: Resources

. Chapter 13: Data Binding

. Chapter 14: Styles, Templates, Skins, and Themes

The features covered in Part IV are not always necessary to use in WPF applications, but 
they can greatly enhance the development process. Therefore, they are indispensable for 
professional developers who are serious about creating maintainable and robust applica-
tions or components. These topics are less about the results visible to end users than they 
are about the best practices for accomplishing these results.

Part V: Rich Media
This part includes the following chapters:

. Chapter 15: 2D Graphics

. Chapter 16: 3D Graphics

. Chapter 17: Animation

. Chapter 18: Audio, Video, and Speech

This part of the book covers the features in WPF that typically get the most attention. The 
support for 2D and 3D graphics, animation, video, and more enable you to create a stun-
ning experience. These features—and the way they are exposed—set WPF apart from 
previous systems. WPF lowers the barrier to incorporating such content in your software, 
so you might try some of these features that you never would have dared to try in the 
past!

Introduction 5

  From the Library of Wow! eBook



ptg

Part VI: Advanced Topics
This part includes the following chapters:

. Chapter 19: Interoperability with Non-WPF Technologies

. Chapter 20: User Controls and Custom Controls

. Chapter 21: Layout with Custom Panels

The topics covered in Part VI are relevant for advanced application developers, or devel-
opers of WPF-based controls. The fact that existing WPF controls can be radically restyled 
greatly reduces the need for creating custom controls.

Conventions Used in This Book
Various typefaces in this book identify new terms and other special items. These typefaces 
include the following:

Typeface Meaning

Italic Italic is used for new terms or phrases when they are initially defined and occa-
sionally for emphasis.

Monospace Monospace is used for screen messages, code listings, and command 
samples, as well as filenames. In code listings, italic monospace type is 
used for placeholder text.
Code listings are colorized similar to the way they are colorized in Visual Studio. 
Blue monospace type is used for XML elements and C#/C++ keywords, brown 
monospace type is used for XML element names and C#/C++ strings, green 
monospace type is used for comments, red monospace type is used for XML 
attributes, and teal monospace type is used for type names in C# and C++.

Throughout this book, you’ll find a number of sidebar elements:

WPF 4 Unleashed6

What is a FAQ sidebar?

A FAQ sidebar presents a question 
readers might have regarding the subject 
matter in a particular spot in the book—and 
then provides a concise answer.

?
FA Q

Digging Deeper Sidebars

A Digging Deeper sidebar presents advanced or 
more detailed information on a subject than is 
provided in the surrounding text. Think of Dig-
ging Deeper material as stuff you can look into 
if you’re curious but can ignore if you’re not.

D I G G I N G  D E E P E R

A tip is a bit of information that can help 
you in a real-world situation. Tips often offer 
shortcuts or alternative approaches to 
produce better results or to make a task 
easier or quicker.

T I P

A warning alerts you to an action or a 
condition that can lead to an unexpected 
or unpredictable result—and then tells you 
how to avoid it.

WA R N I N G

  From the Library of Wow! eBook



ptg

PART I

Background

IN THIS PART

CHAPTER 1 Why WPF, and What About 
Silverlight? 9

CHAPTER 2 XAML Demystified 21

CHAPTER 3 WPF Fundamentals 73

  From the Library of Wow! eBook



ptg

This page intentionally left blank 

  From the Library of Wow! eBook



ptg

CHAPTER 1

Why WPF, and What
About Silverlight?

In movies and on TV, the main characters are typically an 
exaggeration of the people you encounter in real life.
They’re more attractive, they react more quickly, and they 
somehow always know exactly what to do. The same could 
be said about the software they use.

This first struck me back in 1994 when watching the movie
Disclosure, starring Michael Douglas, Demi Moore, and an 
email program that looks nothing like Microsoft Outlook! 
Throughout the movie, we’re treated to various visual 
features of the program: a spinning three-dimensional “e,” 
messages that unfold when you open them and crumple 
when you delete them, hints of inking support, and slick 
animations when you print messages. (The email program 
isn’t even the most unrealistic software in the movie. I’ll 
just say “virtual reality database” and leave it at that.)

Usability issues aside, Hollywood has been telling us for a 
long time that software in the real world isn’t as 
compelling as it should be. You can probably think of 
several examples on your own of TV shows and movies 
with comically unrealistic software. But lately, real-world 
software has been catching up to Hollywood’s standards! 
You can already see it in traditional operating systems (yes, 
even in Windows), on the web, and in software for devices 
such as the iPhone, iPad, Zune, TiVo, Wii, Xbox, Windows 
phones, and many more. Users have increasing expecta-
tions for the experience of using software, and companies 
are spending a great deal of time and money on user inter-
faces that differentiate themselves from the competition. 
This isn’t limited to consumer-facing software; even busi-
ness applications and internal tools can greatly benefit 
from a polished user interface.

IN THIS CHAPTER

. A Look at the Past

. Enter WPF

. The Evolution of WPF

. What About Silverlight?

  From the Library of Wow! eBook



ptg

With higher demands placed on user interfaces, traditional software development 
processes and technologies often fall short. Modern software usually needs to support 
rapid iteration and major user interface changes throughout the process—whether such 
changes are driven by professional graphic designers, developers with a knack for design-
ing user interfaces, or a boss who wants the product to be more “shiny” and animated. 
For this to be successful, you need technology and tools that make it natural to separate 
the user interface from the rest of the implementation as much as possible and to decou-
ple visual behavior from the underlying program logic. Developers should be able to 
create a fully functional “ugly” application that designers can directly retheme without 
requiring developers to translate their artwork. The Win32 style of programming, in 
which controls directly contain code to paint and repaint themselves, makes rapid user 
interface iteration far too difficult for most projects.

In 2006, Microsoft released a technology to help people create 21st-century software that 
meets these high demands: Windows Presentation Foundation (WPF). With the release of 
WPF 4 in 2010, the technology is better than ever at delivering amazing results for just 
about any kind of software. Almost a decade after Tom Cruise helped popularize the idea 
of multi-touch computer input in the movie Minority Report, and after successful multi-
touch implementations in a variety of devices (most notably the iPhone), WPF 4 and 
Windows 7 are bringing multi-touch to the masses. Hollywood better start coming up 
with some fresh ideas!

A Look at the Past
The primary technologies behind many Windows-based user interfaces—the graphics 
device interface (GDI) and USER subsystems—were introduced with Windows 1.0 in 1985. 
That’s almost prehistoric in the world of technology! In the early 1990s, OpenGL (created 
by Silicon Graphics) became a popular graphics library for doing advanced two-dimen-
sional (2D) and three-dimensional (3D) graphics on both Windows and non-Windows 
systems. This was leveraged by people creating computer-aided design (CAD) programs, 
scientific visualization programs, and games. DirectX, a Microsoft technology introduced 
in 1995, provided a new high-performance alternative for 2D graphics, input, communi-
cation, sound, and eventually 3D (introduced with DirectX 2 in 1996).

Over the years, many enhancements have been made to both GDI and DirectX. GDI+, 
introduced in the Windows XP time frame, tried to improve upon GDI by adding support 
for features such as alpha blending and gradient brushes. It ended up being slower than 
GDI due to its complexity and lack of hardware acceleration. DirectX (which, by the way, 
is the technology behind Xbox) continually comes out with new versions that push the 
limits of what can be done with computer graphics. With the introduction of .NET and 
managed code in 2002, developers were treated to a highly productive model for creating 
Windows (and web) applications. In this world, Windows Forms (built on top of GDI+) 
became the primary way a C#, Visual Basic, and (to a lesser degree) C++ developer started 
to create new user interfaces on Windows. Windows Forms has been a successful and 
productive technology, but it still has all the fundamental limitations of GDI+ and USER.

CHAPTER 1 Why WPF, and What About Silverlight?10

  From the Library of Wow! eBook



ptg

Starting with DirectX 9, Microsoft shipped a DirectX framework for managed code (much 
like it shipped libraries specifically for Visual Basic in the past), which eventually was 
supplanted by the XNA Framework. Although this enables C# developers to use DirectX 
without most of the complications of .NET/COM interoperability, these managed frame-
works aren’t significantly easier to use than their unmanaged counterparts unless you’re 
writing a game. (The XNA Framework makes writing a game easier because it includes 
new libraries specifically for game development and works with compelling tools such as 
the XNA Framework Content Pipeline and XNA Game Studio Express.)

So although you could have developed a Windows-based email program with the 3D 
effects seen in Disclosure ever since the mid-1990s with non-GDI technologies (actually, 
probably mixing DirectX or OpenGL with GDI), such technologies are rarely used in 
mainstream Windows applications even more than a decade later. There are several 
reasons for this: The hardware required to get a decent experience hasn’t been ubiquitous 
until recently, it has been at least an order of magnitude harder to use alternative tech-
nologies, and GDI-based experiences have been considered “good enough.”

Graphics hardware continues to get better and cheaper and consumer expectations 
continue to rise, but until WPF, the difficulty of creating modern user experiences had not 
been addressed. Some developers would take matters into their own hands to get cooler-
looking applications and controls on Windows. A simple example of this is using bitmaps 
for buttons instead of using the standard button control. These types of customizations 
can not only be expensive to develop, but they also often produce a flakier experience. 
Such applications often aren’t as accessible as they should be, don’t handle high dots-per-
inch (DPI) settings very well, and have other visual glitches.

Enter WPF
Microsoft recognized that something brand new was needed that escaped the limitations 
of GDI+ and USER yet provided the kind of productivity that people enjoy with frame-
works like Windows Forms. And with the continual rise of cross-platform applications 
based on HTML and JavaScript, Windows desperately needed a technology that’s as fun 
and easy to use as these, yet with the power to exploit the capabilities of the local 
computer. Windows Presentation Foundation (WPF) is the answer for software developers 
and graphic designers who want to create modern user experiences without having to 
master several difficult technologies. Although “Presentation” sounds like a lofty term for 
what I would simply call a user interface, it’s probably more appropriate for describing the 
higher level of visual polish that’s expected of today’s applications and the wide range of 
functionality included in WPF!

The highlights of WPF include the following:

. Broad integration—Prior to WPF, a Windows developer who wanted to use 3D, 
video, speech, and rich document viewing in addition to normal 2D graphics and 
controls would have to learn several independent technologies with a number of 
inconsistencies and attempt to blend them together without much built-in support. 
But WPF covers all these areas with a consistent programming model as well as tight 
integration when each type of media gets composited and rendered. You can apply

Enter WPF 11
1

  From the Library of Wow! eBook



ptg

the same kind of effects consistently across different media types, and many of the 
techniques you learn in one area apply to all the other areas.

. Resolution independence—Imagine a world in which moving to a higher resolu-
tion or DPI setting doesn’t mean that everything gets smaller; instead, graphics and 
text simply get crisper! Envision user interfaces that look reasonable on a small 
netbook as well as on a 60-inch TV! WPF makes this easy and gives you the power 
to shrink or enlarge elements on the screen independently from the screen’s resolu-
tion. A lot of this is possible because of WPF’s emphasis on vector graphics.

. Hardware acceleration—WPF is built on Direct3D, so content in a WPF applica-
tion—whether 2D or 3D, graphics, or text—is converted to 3D triangles, textures, 
and other Direct3D objects and then rendered by hardware. This means that WPF 
applications get the benefits of hardware acceleration for smoother graphics and all-
around better performance (due to work being offloaded to graphics processing 
units [GPUs] instead of central processor units [CPUs]). It also ensures that all WPF 
applications (not just high-end games) receive benefits from new hardware and 
drivers, whose advances typically focus on 3D capabilities. But WPF doesn’t require 
high-end graphics hardware; it has a software rendering pipeline as well. This 
enables features not yet supported by hardware, enables high-fidelity printing of 
any content on the screen, and is used as a fallback mechanism when encountering 
inadequate hardware resources (such as an outdated graphics card or even a high-
end one that has simply run out of GPU resources such as video memory).

. Declarative programming—Declarative programming is not unique to WPF, as 
Win16/Win32 programs have used declarative resource scripts to define the layout 
of dialog boxes and menus for over 25 years. And .NET programs of all types often 
leverage declarative custom attributes plus configuration and resource files based on 
Extensible Markup Language (XML). But WPF takes declarative programming to the 
next level with Extensible Application Markup Language (XAML; pronounced 
“Zammel”). The combination of WPF and XAML is similar to using HTML to define 
a user interface—but with an incredible range of expressiveness. This expressiveness 
even extends beyond the bounds of user interfaces; WPF uses XAML as a document 
format, a representation of 3D models, and more. The result is that graphic design-
ers are empowered to contribute directly to the look and feel of applications, as well 
as some behavior for which you’d typically expect to have to write code. The next 
chapter examines XAML in depth.

. Rich composition and customization—WPF controls can be composed in ways 
never before seen. You can create a ComboBox filled with animated Buttons or a Menu 
filled with live video clips! Although these particular customizations might sound 
horrible, it’s important that you don’t have to write a bunch of code (or any code!) 
to customize controls in ways that the control authors never imagined (unlike 
owner-draw in prior technologies). Along the same lines, WPF makes it quite easy to 
“skin” applications with radically different looks (covered in Chapter 14, “Styles, 
Templates, Skins, and Themes”).

CHAPTER 1 Why WPF, and What About Silverlight?12

  From the Library of Wow! eBook



ptg

In short, WPF aims to combine the best 
attributes of systems such as DirectX 
(3D and hardware acceleration), 
Windows Forms (developer productiv-
ity), Adobe Flash (powerful animation 
support), and HTML (declarative 
markup). With the help of this book, I 
think you’ll find that WPF gives you 
more productivity, power, and fun than 
any other technology you’ve worked 
with in the past!

Enter WPF 13
1

D I G G I N G  D E E P E R

GDI and Hardware Acceleration

GDI is actually hardware accelerated on 
Windows XP. The video driver model explicitly 
supported accelerating common GDI opera-
tions. Windows Vista introduced a new video 
driver model that does not hardware acceler-
ate GDI primitives. Instead, it uses a “canon-
ical display device” software implementation 
of the legacy video driver for GDI. However, 
Windows 7 reintroduced partial hardware 
acceleration for GDI primitives.

FA Q

Does WPF enable me to do something that I couldn’t have previously done?

Technically, the answer is “No,” just like C# and the .NET Framework don’t enable you 
to do something that you couldn’t do in assembly code. It’s just a question of how much 
work you want to do to get the desired results!

If you were to attempt to build a WPF-equivalent application from scratch without WPF, you’d 
not only have to worry about the drawing of pixels on the screen and interaction with input 
devices, you’d also need to do a ton of additional work to get the accessibility and localiza-
tion support that’s built in to WPF, and so on. WPF also provides the easiest way to take 
advantage of Windows 7 features, such as defining Jump List items with a small chunk of 
XAML (see Chapter 8, “Exploiting Windows 7”).

So I think most people would agree that the answer is “Yes” when you factor time and 
money into the equation!

?

FA Q

When should I use DirectX instead of WPF?

DirectX is more appropriate than WPF for advanced developers writing hard-core “twitch 
games” or applications with complex 3D models where you need maximum performance. 
That said, it’s easy to write a naive DirectX application that performs far worse than a similar 
WPF application.

DirectX is a low-level interface to the graphics hardware that exposes all the quirks of what-
ever GPU a particular computer has. DirectX can be thought of as assembly language in the 
world of graphics: You can do anything the GPU supports, but it’s up to you (the application 
author) to support all the hardware variations. This is onerous, but such low-level hardware 
access enables skilled developers to make their own tradeoffs between fine-grained quality 
and speed. In addition, DirectX exposes cutting-edge features of GPUs as they emerge more 
quickly than they appear in WPF.

?

  From the Library of Wow! eBook



ptg

The Evolution of WPF
Oddly enough, WPF 4 is the fourth major release of WPF. It’s odd because the first release 
had the version number 3.0! The first release in November 2006 was called WPF 3.0 
because it shipped as part of the .NET Framework 3.0. The second release—WPF 3.5— 
came almost exactly a year later (one day shy, in fact). The third release, once again, came 
almost a year later (in August 2008). This release was a part of Service Pack 1 (SP1) for 
.NET 3.5, but this was no ordinary service pack as far as WPF was concerned—it 
contained many new features and improvements.

In addition to these major releases, Microsoft introduced a “WPF Toolkit” in August 2008 
at http://wpf.codeplex.com that, along with miscellaneous tools and samples, gets 
updated several times a year. The WPF Toolkit has been used as a way to ship features 
more quickly and in an experimental form (often with full source code). Features intro-
duced in the WPF Toolkit often “graduate” to get included in a future release of WPF, 
based on customer feedback about their desirability and readiness.

When the first version of WPF was released, tool support was almost nonexistent. The 
following months brought primitive WPF extensions for Visual Studio 2005 and the first 
public preview release of Expression Blend. Now, Visual Studio 2010 not only has first-
class support for WPF development but has been substantially rewritten to be a WPF 
application itself! Expression Blend, an application built 100% with WPF, has also gained 
a lot of functionality for designing and prototyping great user interfaces. And in the past 
several years, numerous WPF-based applications have been released from companies such 
as Autodesk, SAP, Disney, Blockbuster, Roxio, AMD, Hewlett Packard, Lenovo, and many 
more. Microsoft itself, of course, has a 
long list of software built with WPF 
(Visual Studio, Expression, Test and Lab 
Manager, Deep Zoom Composer, 
Songsmith, Surface, Semblio, Robotics 
Studio, LifeCam, Amalga, Games for 
Windows LIVE Marketplace, Office

CHAPTER 1 Why WPF, and What About Silverlight?14

Continued

In contrast, WPF provides a high-level abstraction that takes a description of a scene and 
figures out the best way to render it, given the hardware resources available. (It’s a retained 
mode system rather than an immediate mode system.) 2D is the primary focus of WPF; its 
3D support is focused on data visualization scenarios and integration with 2D rather than 
supporting the full power of DirectX. 

The downside of choosing DirectX over WPF is a potentially astronomical increase in develop-
ment cost. A large part of this cost is the requirement to test an application on each 
driver/GPU combination you intend to support. One of the major benefits of building on top of 
the WPF is that Microsoft has already done this testing for you! You can instead focus your 
testing on low-end hardware for measuring performance. The fact that WPF applications can 
even leverage the client GPU in a partial-trust environment is also a compelling differentiator.

Note that you are able to use both DirectX and WPF in the same application. Chapter 19, 
“Interoperability with Non-WPF Technologies,” shows how this can be done.

T I P

To inspect the WPF elements used in 
any WPF-based application, you can use 
the Snoop tool available from 
http://snoopwpf.codeplex.com.

  From the Library of Wow! eBook

http://wpf.codeplex.com
http://snoopwpf.codeplex.com


ptg

Communicator Attendant, Active Directory Administrative Center, Dynamics NAV, Pivot, 
PowerShell ISE, and many more).

Let’s take a closer look at how WPF has changed over time.

Enhancements in WPF 3.5 and WPF 3.5 SP1
The following notable changes were made to WPF in versions 3.5 and 3.5 SP1:

. Interactive 3D—The worlds of 2D and 3D were woven together even more seam-
lessly with the UIElement3D base class, which gives 3D elements input, focus, and 
events; the odd-sounding Viewport2DVisual3D class, which can place any interac-
tive 2D controls inside a 3D scene; and more. See Chapter 16, “3D Graphics.”

. First-class interoperability with DirectX—Previously, WPF applications could 
only interoperate with DirectX via the lowest common denominator of Win32. 
Now, WPF has functionality for interacting directly with Direct3D surfaces with the 
D3DImage class rather than being forced to interact with its host HWND. One benefit 
from this is the ability to place WPF content on top of DirectX content and vice 
versa. See Chapter 19.

. Better data binding—WPF gained support for XLINQ binding, better validation 
and debugging, and output string formatting in XAML that reduces the need for 
custom procedural code. See Chapter 13, “Data Binding.”

. Better special effects—The first version of WPF shipped with a handful of 
bitmap effects (blur, drop shadow, outer glow, emboss, and bevel) but with a 
warning to not use them because their performance was so poor! This has changed, 
with a new set of hardware-accelerated effects and a whole new architecture that 
allows you to plug in your own custom hardware-accelerated effects via pixel 
shaders. See Chapter 15, “2D Graphics.”

. High-performance custom drawing—WPF didn’t previously have a good 
answer for custom drawings that involve thousands of points or shapes, as even the 
lowest-level drawing primitives have too much overhead to make such things 
perform well. The WriteableBitmap class was enhanced so you can now specify 
dirty regions when drawing on it rather than getting a whole new bitmap every 
frame! Because WriteableBitmap only lets you set pixels, it is a very primitive form 
of “drawing,” however.

. Text improvements—There’s now better performance, better international 
support (improved input method editor [IME] support and improved Indic script 
support), and enhancements to TextBox and RichTextBox. See Chapter 11, “Images, 
Text, and Other Controls.”

. Enhancements to partial-trust applications—More functionality became avail-
able in the partial-trust sandbox for .NET applications, such as the ability to use 
Windows Communication Foundation (WCF) for web service calls (via 
basicHttpBinding) and the ability to read and write HTTP cookies. Also, support for 
XAML Browser Applications (XBAPs)—the primary mechanism for running partial-trust

The Evolution of WPF 15
1

  From the Library of Wow! eBook



ptg

WPF applications—was extended to the Firefox web browser instead of just Internet 
Explorer (In WPF, however, the add-on that enables this is no longer installed by 
default.)

. Improved deployment for applications and the .NET Framework—This 
arrived in many forms: a smaller and faster .NET Framework installation process 
thanks to the beginnings of a .NET Framework “client profile” that excludes server-
only .NET pieces such as ASP.NET; a new “bootstrapper” component that handles all 
.NET Framework dependencies, installations, and upgrades for you as well as 
enabling setups with custom branding; and a variety of new ClickOnce features.

. Improved performance—WPF and the underlying common language runtime 
implemented several changes that significantly boosted the performance of WPF 
applications without any code changes needed. For example, the load time (espe-
cially first-time load) has been dramatically improved, animations (especially slow 
ones) are much smoother, data binding is faster in a number of scenarios, and 
layered windows (described in Chapter 8) are now hardware accelerated. Other 
performance improvements were made that you must opt into due to compatibility 
constraints, such as improved virtualization and deferred scrolling in items controls, 
described in Chapter 10, “Items Controls.”

Enhancements in WPF 4
WPF 4 brings the following changes, on top of the changes from previous versions:

. Multi-touch support—When running on computers that support multi-touch 
and run Windows 7 or later, WPF elements can get a variety of input events, from 
low-level data, to easy-to-consume manipulations (such as rotation and scaling), to 
high-level—including custom—gestures. The built-in WPF controls have also been 
updated to be multi-touch aware. The WPF team leveraged the work previously 
done by the Microsoft Surface team (whose software is built on WPF). As a result, 
multi-touch in WPF 4 is compatible with version 2 of the Surface SDK, which is 
great news for anyone considering developing for both Windows and Surface. See 
Chapter 6, “Input Events: Keyboard, Mouse, Stylus, and Multi-Touch.”

. First-class support for other Windows 7 features—Multi-touch is a cool new 
feature of Windows 7, but there are plenty of others that don’t require special hard-
ware—so many more users will appreciate their inclusion. WPF provides the best 
way to integrate with new taskbar features such as Jump Lists and icon overlays, 
integrate with the latest common dialogs, and more. See Chapter 8.

. New controls—WPF 4 includes controls such as DataGrid, Calendar, and 
DatePicker, which originally debuted in the WPF Toolkit. See Chapter 11.

. Easing animation functions—Eleven new animation classes such as BounceEase, 
ElasticEase, and SineEase enable sophisticated animations with custom rates of 
acceleration and deceleration to be performed completely declaratively. These 
“easing functions” and their infrastructure were first introduced in Silverlight 3 
before being adopted by WPF 4.

CHAPTER 1 Why WPF, and What About Silverlight?16

  From the Library of Wow! eBook



ptg

. Enhanced styling with Visual State Manager—The Visual State Manager, 
originally introduced in Silverlight 2, provides a new way to organize visuals and 
their interactivity into “visual states” and “state transitions.” This feature makes it 
easier for designers to work with controls in tools such as Expression Blend, but 
importantly also makes it easier to share templates between WPF and Silverlight.

. Improved layout on pixel boundaries—WPF straddles the line between being 
automatically DPI independent (which requires ignoring physical pixel boundaries) 
and having visual elements that look crisp (which, especially for small elements, 
requires being aligned on pixel boundaries). From the beginning, WPF has 
supported a property called SnapsToDevicePixels that forces “pixel snapping” on 
elements. But using SnapsToDevicePixels can be complex and doesn’t help in some 
scenarios. Silverlight went back to the drawing board and created a property called 
UseLayoutRounding that works more naturally. WPF 4 now has this property. Just set 
it to true on a root element, and the positions of that element plus all of children 
will be rounded up or down to lie on pixel boundaries. The result is user interfaces 
that can scale and can easily be crisp!

. Non-blurry text—WPF’s emphasis on DPI independence and a scalable user inter-
face has been an issue for small text—the kind of text that occurs a lot in traditional 
user interfaces on 96-DPI screens. This has frustrated numerous users and develop-
ers. In fact, I’ve always claimed that I can spot a user interface created with WPF 
simply by looking at the blurriness of its text. WPF 4 has finally addressed this with 
an alternative way to render text that can make it look as crisp as GDI-based text yet 
with almost all the benefits that WPF brings. Visual Studio 2010, for example, uses 
this rendering mode for its text documents. Because there are some limitations to 
the new rendering approach, you must opt into it. See Chapter 11.

. More deployment improvements—The .NET Framework client profile can run 
side-by-side with the full .NET Framework, and it can be used in just about every 
scenario relevant for WPF applications. In fact, .NET 4.0 projects in Visual Studio 
2010 target the smaller client profile by default.

. More performance improvements—In order to make vector graphics perform 
as well as possible, WPF can cache 
rendered results as bitmaps and 
reuse them. For advanced scenar-
ios, you can control this behavior 
with the new CacheMode property.
See Chapter 15. The heavy usage of 
WPF in Visual Studio 2010 drove a 
lot of miscellaneous performance 
improvements into WPF 4 across 
the board, but all WPF applications 
get to enjoy these improvements.

The Evolution of WPF 17
1

FA Q

What will be added to WPF after 
version 4?

Nothing has been announced at the time of 
writing, but I think it’s safe to say that perfor-
mance and increased synergy with Silverlight 
will continue to be two major themes of 
WPF’s evolution. Plus, the WPF Toolkit 
provides some clues to future features that 
could be integrated into the core platform, 
such as chart controls, a BreadcrumbBar 
control, a NumericUpDown control, and more.

?

  From the Library of Wow! eBook



ptg

What About Silverlight?
Silverlight is a small, lightweight version of the .NET Framework targeted at rich web 
scenarios (as an alternative to Adobe Flash and Flex, for example). Silverlight chose to 
follow WPF’s approach to creating user interfaces rather than creating yet another distinct 
technology—and this approach has some great benefits. It was first released in 2007 and, 
like WPF, is already in its fourth major version. Silverlight 4 was released in April 2010, a 
few days after the release of WPF 4.

The relationship between WPF and Silverlight is a bit complex, and there is some confu-
sion about when to use one technology versus the other. This is further exacerbated by 
the fact that WPF applications can run inside a web browser (as XBAPs) and be just as 
“web based” as Silverlight applications, and Silverlight applications can run outside a web 
browser, even in an offline mode.

Silverlight is mostly a subset of WPF plus the most fundamental classes in the .NET 
Framework (core data types, collection classes, and so on). Each new version of Silverlight 
includes more and more WPF functionality. Although compatibility with WPF and the 
full .NET Framework is a goal for Silverlight, its creators have taken some opportunities to 
learn from mistakes made in WPF and the .NET Framework. They have made some 
changes and begun to support new features that don’t yet exist in the full .NET 
Framework. Some of these changes or additions have been later adopted by WPF and the 
full .NET Framework (such as the Visual State Manager and layout rounding), but others 
have not (such as video brushes and perspective transforms). There are parts of WPF and 
the .NET Framework that Silverlight will probably never support.

The bottom line is that the question to ask yourself isn’t “Should I use WPF or 
Silverlight?” but rather, “Should I use the full .NET Framework or the small .NET 
Framework?” If you will require functionality that exists only in the full .NET Framework, 
then the choice is pretty simple. And WPF is the recommended user interface technology 
to use with the full .NET Framework. Similarly, if the ability to run on a Mac or devices

CHAPTER 1 Why WPF, and What About Silverlight?18

FA Q

Are there any differences with WPF, depending on the version of Windows?

WPF exposes APIs that are relevant only for Windows 7 and later, such as multi-touch 
functionality and various features described in Chapter 8. Besides that, WPF has a few 
behavioral differences when running on Windows XP (the oldest version of Windows that WPF 
supports). For example, 3D objects do not get antialiased.

And, of course, WPF controls have different default themes to match their host operating 
system (Aero on Windows Vista and Windows 7 versus Luna on Windows XP).

Windows XP also has an older driver model that can negatively impact WPF applications. The 
driver model in later versions of Windows virtualizes and schedules GPU resources, making a 
system perform better when multiple GPU-intensive programs are running. Running multiple 
WPF or DirectX applications might bog down a Windows XP system but shouldn’t cause 
performance issues on more recent versions of Windows.

?

  From the Library of Wow! eBook



ptg

other than a standard PC is a requirement, then the choice is also clear. And Silverlight 
has only one user interface technology (although it interoperates with HTML nicely). 
Otherwise, the best choice depends greatly on the nature of the software and the target 
audience.

Ideally, you wouldn’t have to make an up-front choice of which framework you want to 
target. Ideally, you could use the same codebase—even the same compiled binaries—and 
have an easy way to morph the application to exploit capabilities of the underlying 
device, whether your program is running on a mobile device, a full Windows PC, or a 
Mac. Maybe one day that will be true, but in the meantime, having a common codebase 
that can work for both WPF and Silverlight involves a bit of work. The most common 
approach has been to create a Silverlight-compatible codebase with #ifdef blocks for 
WPF-specific functionality, so you can compile separately for Silverlight versus WPF with 
minimal divergence in code.

It is my expectation (and hope) that the distinction between WPF and Silverlight will fade 
over time. While Silverlight is a much cooler name than Windows Presentation 
Foundation, the fact that these technologies have different names causes trouble and arti-
ficial distinctions. The way to think of Silverlight and WPF is as two implementations of 
the same basic technology. In fact, inside Microsoft, largely the same team works on both. 
Microsoft talks a lot about having a “client continuum” to target all platforms and devices 
with common skills (what you learn in this book), common tools (Visual Studio, 
Expression Blend, and others), and at least common code (a .NET language such as C# or 
VB along with XAML, for example) if not common binaries. While it would be overkill to 
call this book WPF and Silverlight Unleashed, it should be comforting to know that the 
knowledge you gain from this book can help you be an expert in both WPF and 
Silverlight.

Summary
As time passes, more software is delivering high-quality—sometimes cinematic—experi-
ences, and software that doesn’t risks looking old-fashioned. However, the effort involved 
in creating such user interfaces—especially ones that exploit Windows—has been far too 
difficult in the past.

WPF makes it easier than ever before to create all kinds of user interfaces, whether you 
want to create a traditional-looking Windows application or an immersive 3D experience 
worthy of a role in a summer blockbuster. Such a rich user interface can be evolved fairly 
independently from the rest of an application, allowing graphic designers to participate in 
the software development process much more effectively. But don’t just take my word for 
it; read on to see for yourself how it’s done!

Summary 19
1

  From the Library of Wow! eBook



ptg

This page intentionally left blank 

  From the Library of Wow! eBook



ptg

CHAPTER 2

XAML Demystified

Throughout .NET technologies, XML is used to expose 
functionality in a transparent and declarative fashion.
XAML, a dialect of XML, has been especially important 
since its introduction with the first version of WPF in 2006. 
It is often misunderstood to be just a way to specify user 
interfaces, much like HTML. By the end of this chapter, 
you will see that XAML is about much more than arranging 
controls on a computer screen.

In WPF and Silverlight, XAML is primarily used to describe 
user interfaces (although it is used to describe other things 
as well). In Windows Workflow Foundation (WF) and 
Windows Communication Foundation (WCF), XAML is 
used to express activities and configurations that have 
nothing to do with user interfaces.

The point of XAML is to make it easy for programmers to 
work together with experts in other fields. XAML becomes 
the common language spoken by all parties, most likely via 
development tools and field-specific design tools. But 
because XAML (and XML in general) is generally human 
readable, people can participate in this ecosystem armed 
with nothing more than a tool such as Notepad.

In WPF and Silverlight, the “field experts” are graphic 
designers, who can use a design tool such as Expression 
Blend to create a slick user interface while developers inde-
pendently write code. What enables the developer/designer 
cooperation is not just the common language of XAML but 
the fact that great care went into making functionality 
exposed by the relevant APIs accessible declaratively. This 
gives design tools a wide range of expressiveness (such as 
specifying complex animations or state changes) without 
having to worry about generating procedural code.

IN THIS CHAPTER

. XAML Defined

. Elements and Attributes

. Namespaces

. Property Elements

. Type Converters

. Markup Extensions

. Children of Object Elements

. Mixing XAML with Procedural 
Code

. Introducing XAML2009

. Fun with XAML Readers and 
Writers

. XAML Keywords

  From the Library of Wow! eBook



ptg

Even if you have no plans to work with graphic designers, you should still become famil-
iar with XAML for the following reasons:

. XAML can be a very concise way to represent user interfaces or other hierarchies of 
objects.

. The use of XAML encourages a separation of front-end appearance and back-end 
logic, which is helpful for maintenance even if you’re only a team of one.

. XAML can often be easily pasted into tools such as Visual Studio, Expression Blend, 
or small standalone tools to see results without any compilation.

. XAML is the language that almost all WPF-related tools emit.

This chapter jumps right into the mechanics of XAML, examining its syntax in depth and 
showing how it relates to procedural code. Unlike the preceding chapter, this is a fairly 
deep dive! Having this background knowledge before proceeding with the rest of the book 
will not only help you understand the code examples but give you better insight into 
why the APIs in each feature area were designed the way they were. This perspective can 
be helpful whether you are building WPF applications or controls, designing class libraries 
that you want to be XAML friendly, or building tools that consume and/or produce 
XAML (such as validation tools, localization tools, file format converters, designers, and 
so on).

CHAPTER 2 XAML Demystified22

T I P

There are several ways to run the XAML examples in this chapter, which you can download 
in electronic form with the rest of this book’s source code. For example, you can do the 
following:

. Save the content in a .xaml file and open it inside Internet Explorer (in Windows Vista 
or later, or in Windows XP with the .NET Framework 3.0 or later installed). Firefox can 
also work if you install an add-on. However, by default your web browser will use the 
version of WPF installed with the operating system rather than using WPF 4. 

. Paste the content into a lightweight tool such as the XAMLPAD2009 sample included 
with this chapter’s source code or Kaxaml (from http://kaxaml.com), although the 
latter has not been updated to use WPF 4 at the time of writing.

. Create a WPF Visual Studio project and replace the content of the main Window or 
Page element with the desired content, which might require some code changes.

Using the first two options gives you a couple great ways to get started and do some experi-
mentation. Mixing XAML with other content in a Visual Studio project is covered at the end of 
this chapter.

  From the Library of Wow! eBook

http://kaxaml.com


ptg

XAML Defined
XAML is a relatively simple and general-purpose declarative programming language suit-
able for constructing and initializing objects. XAML is just XML, but with a set of rules 
about its elements and attributes and their mapping to objects, their properties, and the 
values of those properties (among other things).

Because XAML is just a mechanism for using .NET APIs, attempts to compare it to HTML, 
Scalable Vector Graphics (SVG), or other domain-specific formats/languages are 
misguided. XAML consists of rules for how parsers/compilers must treat XML and has 
some keywords, but it doesn’t define any interesting elements by itself. So, talking about 
XAML without a framework like WPF is like talking about C# without the .NET 
Framework. That said, Microsoft has formalized the notion of “XAML vocabularies” that 
define the set of valid elements for a given domain, such as what it means to be a WPF 
XAML file versus a Silverlight XAML file versus any other type of XAML file.

XAML Defined 23
2

FA Q

What happened to XamlPad?

Earlier versions of the Windows SDK shipped with a simple tool called XamlPad that 
allows you to type in (or paste) WPF-compatible XAML and see it rendered as a live user 
interface. Unfortunately, this tool is no longer being shipped due to lack of resources. (Yes, 
contrary to popular belief, Microsoft does not have unlimited resources!) Fortunately, there 
are several alternative lightweight tools for quickly experimenting with XAML, including the 
following:

. XAMLPAD2009—A sample in this book’s source code. Although it lacks the bells and 
whistles of the other tools, it provides full source code. Plus, it’s the only tool that 
supports XAML2009 (explained later in this chapter) at the time of writing.

. Kaxaml—A slick tool downloadable from http://kaxaml.com, created by Robby 
Ingebretsen, a former WPF team member.

. XamlPadX—A feature-filled tool downloadable from http://blogs.msdn.com/llobo/ 
archive/2008/08/25/xamlpadx-4-0.aspx, created by Lester Lobo, a current WPF team 
member.

. XAML Cruncher—A ClickOnce application available at http://charlespetzold.com/wpf/ 
XamlCruncher/XamlCruncher.application, created by Charles Petzold, prolific author and 
blogger.

?

  From the Library of Wow! eBook

http://kaxaml.com
http://blogs.msdn.com/llobo/archive/2008/08/25/xamlpadx-4-0.aspx
http://blogs.msdn.com/llobo/archive/2008/08/25/xamlpadx-4-0.aspx
http://charlespetzold.com/wpf/XamlCruncher/XamlCruncher.application
http://charlespetzold.com/wpf/XamlCruncher/XamlCruncher.application


ptg

The role XAML plays in relation to WPF is often confused, so it’s important to reempha-
size that WPF and XAML can be used independently from each other. Although XAML 
was originally designed for WPF, it is used by other technologies as well. Because of its 
general-purpose nature, XAML can be applied to just about any object-oriented technol-
ogy if you really want it to be. Furthermore, using XAML in WPF projects is optional. 
Almost everything done with XAML can be done entirely in your favorite .NET proce-
dural language instead. (But note that the reverse is not true.) However, because of the 
benefits listed at the beginning of the chapter, it’s rare to see WPF used in the real world 
without XAML.

CHAPTER 2 XAML Demystified24

D I G G I N G  D E E P E R

Specifications for XAML and XAML Vocabularies

You can find detailed specifications for XAML and two XAML vocabularies in the following 
places:

. XAML Object Mapping Specification 2006 (MS-XAML): http://go.microsoft.com/fwlink/ 
?LinkId=130721

. WPF XAML Vocabulary Specification 2006 (MS-WPFXV): http://go.microsoft.com/fwlink/ 
?LinkId=130722

. Silverlight XAML Vocabulary Specification 2008 (MS-SLXV): http://go.microsoft.com/ 
fwlink/?LinkId=130707

D I G G I N G  D E E P E R

XAML Functionality Unavailable in Procedural Code

There are a few things that can be done in XAML that can’t be done with procedural code. 
These are all fairly obscure, and covered in Chapters 12 and 14:

. Creating the full range of templates. Procedural code can create templates using
FrameworkElementFactory, but the expressiveness of this approach is limited. 

. Using x:Shared=”False” to instruct WPF to return a new instance each time an element
is accessed from a resource dictionary.

. Deferred instantiation of items inside of a resource dictionary. This is an important perfor-
mance optimization, and only available via compiled XAML.

Elements and Attributes
The XAML specification defines rules that map .NET namespaces, types, properties, and 
events into XML namespaces, elements, and attributes. You can see this by examining the 
following simple (but complete) XAML file that declares a WPF Button and comparing it 
to the equivalent C# code:

  From the Library of Wow! eBook

http://go.microsoft.com/fwlink/?LinkId=130721
http://go.microsoft.com/fwlink/?LinkId=130721
http://go.microsoft.com/fwlink/?LinkId=130722
http://go.microsoft.com/fwlink/?LinkId=130722
http://go.microsoft.com/fwlink/?LinkId=130707
http://go.microsoft.com/fwlink/?LinkId=130707


ptg

XAML:

<Button xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”

Content=”OK”/>

C#:

System.Windows.Controls.Button b = new System.Windows.Controls.Button();

b.Content = “OK”;

Although these two snippets are equivalent, you can instantly view the XAML in Internet 
Explorer and see a live button fill the browser window, as pictured in Figure 2.1, whereas 
the C# code must be compiled with additional code to be usable.

Elements and Attributes 25
2

FIGURE 2.1 A simple WPF Button declared in a .xaml file.

Declaring an XML element in XAML (known as an object element) is equivalent to instan-
tiating the corresponding .NET object via a default constructor. Setting an attribute on the 
object element is equivalent to setting a property of the same name (called a property 
attribute) or hooking up an event handler of the same name (called an event attribute). For 
example, here’s an update to the Button that not only sets its Content property but also 
attaches an event handler to its Click event:

XAML:

<Button xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”

Content=”OK” Click=”button_Click”/>

C#:

System.Windows.Controls.Button b = new System.Windows.Controls.Button();

b.Click += new System.Windows.RoutedEventHandler(button_Click);

b.Content = “OK”;

This requires a method called button_Click to be defined somewhere, with the appropri-
ate signature, which means that the XAML file can no longer be rendered standalone, as 
in Figure 2.1. The “Mixing XAML with Procedural Code” section at the end of this

  From the Library of Wow! eBook



ptg

chapter explains how to work with XAML that requires additional code. Note that XAML, 
like C#, is a case-sensitive language.

CHAPTER 2 XAML Demystified26

D I G G I N G  D E E P E R

Order of Property and Event Processing

At runtime, event handlers are always attached before any properties are set for any object 
declared in XAML (excluding the Name property, described later in this chapter, which is set 
immediately after object construction). This enables appropriate events to be raised in 
response to properties being set without worrying about the order of attributes used in XAML.

The ordering of multiple property sets and multiple event handler attachments is usually 
performed in the relative order that property attributes and event attributes are specified on 
the object element. Fortunately, this ordering shouldn’t matter in practice because .NET 
design guidelines dictate that classes should allow properties to be set in any order, and the 
same holds true for attaching event handlers.

Namespaces
The most mysterious part about comparing the previous XAML examples with the equiva-
lent C# examples is how the XML namespace 
http://schemas.microsoft.com/winfx/2006/xaml/presentation maps to the .NET name-
space System.Windows.Controls. It turns out that the mapping to this and other WPF 
namespaces is hard-coded inside the WPF assemblies with several instances of an 
XmlnsDefinitionAttribute custom attribute. (In case you’re wondering, no web page 
exists at the schemas.microsoft.com URL—it’s just an arbitrary string like any name-
space.)

The root object element in a XAML file must specify at least one XML namespace that is 
used to qualify itself and any child elements. You can declare additional XML namespaces 
(on the root or on children), but each one must be given a distinct prefix to be used on 
any identifiers from that namespace. For example, WPF XAML files typically use a second 
namespace with the prefix x (denoted by using xmlns:x instead of just xmlns):

xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”

This is the XAML language namespace, which maps to types in the 
System.Windows.Markup namespace but also defines some special directives for the XAML 
compiler or parser. These directives often appear as attributes to XML elements, so they 
look like properties of the host element but actually are not. For a list of XAML keywords, 
see the “XAML Keywords” section later in this chapter.

  From the Library of Wow! eBook

http://schemas.microsoft.com/winfx/2006/xaml/presentation


ptg

Namespaces 27
2

D I G G I N G  D E E P E R

The Implicit .NET Namespaces

WPF maps all the following .NET namespaces from a handful of WPF assemblies to the WPF 
XML namespace (http://schemas.microsoft.com/winfx/2006/xaml/presentation) 
used throughout this book:

. System.Windows

. System.Windows.Automation

. System.Windows.Controls

. System.Windows.Controls.Primitives

. System.Windows.Data

. System.Windows.Documents

. System.Windows.Forms.Integration

. System.Windows.Ink

. System.Windows.Input

. System.Windows.Media

. System.Windows.Media.Animation

. System.Windows.Media.Effects

. System.Windows.Media.Imaging

. System.Windows.Media.Media3D

. System.Windows.Media.TextFormatting

. System.Windows.Navigation

. System.Windows.Shapes

. System.Windows.Shell

Because this is a many-to-one mapping, the designers of WPF needed to take care not to 
introduce two classes with the same name, despite the fact that the classes are in separate 
.NET namespaces.

T I P

Most of the standalone XAML examples in this chapter explicitly specify their namespaces, but in 
the remainder of the book, most examples assume that the WPF XML namespace (http:// 
schemas.microsoft.com/winfx/2006/xaml/presentation) is declared as the primary name-
space, and the XAML language namespace (http://schemas.microsoft.com/winfx/2006/ 
xaml) is declared as a secondary namespace, with the prefix x. If you want to view such content 
in your web browser or copy it into a lightweight viewer such as the XAMLPAD2009 sample, be 
sure to add these explicitly.

Using the WPF XML namespace (http://schemas.microsoft.com/winfx/2006/xaml/ 
presentation) as a default namespace and the XAML language namespace (http://

  From the Library of Wow! eBook

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml
http://schemas.microsoft.com/winfx/2006/xaml
http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml


ptg

schemas.microsoft.com/winfx/2006/xaml) as a secondary namespace with the prefix x is 
just a convention, just like it’s a convention to begin a C# file with a using System; 
directive. You could instead write the original XAML file as follows, and it would mean 
the same thing:

<WpfNamespace:Button 

xmlns:WpfNamespace=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”

Content=”OK”/>

Of course, for readability it makes sense for your most commonly used namespace (also 
known as the primary XML namespace) to be prefix free and to use short prefixes for any 
additional namespaces.

CHAPTER 2 XAML Demystified28

D I G G I N G  D E E P E R

WPF Has Accumulated Multiple WPF XML Namespaces over Time

It’s practically a given that real-world WPF XAML will choose to use the WPF XML namespace 
as the default namespace, but it turns out that more than one XML namespace is mapped to 
the main WPF types in the various System.Windows namespaces.

WPF 3.0 shipped with support for http://schemas.microsoft.com/winfx/2006/xaml/ 
presentation, but WPF 3.5 defined a new XML namespace— http://schemas.microsoft.
com/netfx/2007/xaml/presentation—mapped to the same WPF types. (WinFX was the 
original name for a set of technologies introduced in the .NET Framework 3.0, including WPF, 
WCF, and WF. That term was abandoned, hence the change in namespace.) WPF 4 has once 
again defined a new XML namespace that is mapped to the same WPF types: 
http://schemas.microsoft.com/netfx/2009/xaml/presentation.

Despite all these options, it is best to stick with the original http://schemas.microsoft. 
com/winfx/2006/xaml/presentation namespace because it works in all versions of WPF. 
(Whether your content works with all versions of WPF is another story, as to do so it must 
stick to features present only in WPF 3.0.) Note that Silverlight also supports the 
http://schemas.microsoft.com/winfx/2006/xaml/presentation namespace to make it 
easier to use XAML meant for WPF inside a Silverlight project, although it also defines its 
own alternative namespace, http://schemas.microsoft.com/client/2007, which is not 
supported by WPF.

The XML namespaces are confusing. They are not schemas. They do not represent a closed 
set of types that were available when the namespace was introduced. Instead, each version 
of WPF retrofits all previous namespaces with any new assembly/namespace pairs intro-
duced in the new version. Therefore, the winfx/2006 namespace effectively means “version
3.0 or later,” the netfx/2007 namespace means “version 3.5 or later,” and so on. However, 
WPF 4 accidentally excludes some namespace/assembly pairs from the netfx/2009 name-
space, which makes using omitted types (like TextOptions) pretty challenging!

When loose XAML is loaded into Internet Explorer, it is loaded by PresentationHost.exe, 
which decides which version of the .NET Framework to load based on the XML namespaces 
on the root element. If the netfx/2009 namespace is present it will load version 4.0, other-
wise it will load whichever 3.x version is present.

  From the Library of Wow! eBook

http://schemas.microsoft.com/winfx/2006/xaml
http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/netfx/2007/xaml/presentation
http://schemas.microsoft.com/netfx/2007/xaml/presentation
http://schemas.microsoft.com/netfx/2009/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/client/2007


ptg

Property Elements
The preceding chapter mentioned that rich composition is one of the highlights of WPF. 
This can be demonstrated with the simple Button from Figure 2.1, because you can put 
arbitrary content inside it; you’re not limited to just text! To demonstrate this, the follow-
ing code embeds a simple square to make a Stop button like what might be found in a 
media player:

System.Windows.Controls.Button b = new System.Windows.Controls.Button(); 

System.Windows.Shapes.Rectangle r = new System.Windows.Shapes.Rectangle();

r.Width = 40;

r.Height = 40;

r.Fill = System.Windows.Media.Brushes.Black;

b.Content = r; // Make the square the content of the Button

Button’s Content property is of type System.Object, so it can easily be set to the 40x40 
Rectangle object. The result is pictured in Figure 2.2.

Property Elements 29
2

FIGURE 2.2 Updating the WPF Button with complex content.

That’s pretty neat, but how can you do the same thing in XAML with property attribute 
syntax? What kind of string could you possibly set Content to that is equivalent to the 
preceding Rectangle declared in C#? There is no such string, but XAML fortunately 
provides an alternative (and more verbose) syntax for setting complex property values: 
property elements. It looks like the following:

<Button xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”> 

<Button.Content>

<Rectangle Height=”40” Width=”40” Fill=”Black”/> 

</Button.Content> 

</Button>

The Content property is now set with an XML element instead of an XML attribute, 
making it equivalent to the previous C# code. The period in Button.Content is what 
distinguishes property elements from object elements. Property elements always take the 
form TypeName.PropertyName, they are always contained inside a TypeName object

  From the Library of Wow! eBook



ptg

element, and they can never have attributes of their own (with one exception—the x:Uid 
attribute used for localization).

Property element syntax can be used for simple property values as well. The following 
Button that sets two properties with attributes (Content and Background):

<Button xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation” 

Content=”OK” Background=”White”/>

is equivalent to this Button, which sets the same two properties with elements:

<Button xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”> 

<Button.Content>

OK 

</Button.Content> 

<Button.Background>

White 

</Button.Background> 

</Button>

Of course, using attributes when you can is a nice shortcut when hand-typing XAML.

Type Converters
Let’s look at the C# code equivalent to the preceding Button declaration that sets both 
Content and Background properties:

System.Windows.Controls.Button b = new System.Windows.Controls.Button();

b.Content = “OK”;

b.Background = System.Windows.Media.Brushes.White;

Wait a minute. How can “White” in the previous XAML file be equivalent to the static 
System.Windows.Media.Brushes.White field (of type 
System.Windows.Media.SolidColorBrush) in the C# code? Indeed, this example exposes a 
subtlety with using strings to set properties in XAML that are a different data type than 
System.String or System.Object. In such cases, the XAML parser or compiler must look 
for a type converter that knows how to convert the string representation to the desired data 
type.

WPF provides type converters for many common data types: Brush, Color, FontWeight, 
Point, and so on. They are all classes deriving from TypeConverter (BrushConverter, 
ColorConverter, and so on). You can also write your own type converters for custom data 
types. Unlike the XAML language, type converters generally support case-insensitive 
strings.

Without a type converter for Brush, you would have to use property element syntax to set 
the Background in XAML, as follows:

CHAPTER 2 XAML Demystified30

  From the Library of Wow! eBook



ptg

<Button xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”

Content=”OK”> 

<Button.Background>

<SolidColorBrush Color=”White”/> 

</Button.Background> 

</Button>

And even that is only possible because of a type converter for Color that can make sense 
of the “White” string. If there were no Color type converter, you could still write the 
following:

<Button xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation” 

Content=”OK”> 

<Button.Background>

<SolidColorBrush> 

<SolidColorBrush.Color>

<Color A=”255” R=”255” G=”255” B=”255”/> 

</SolidColorBrush.Color> 

</SolidColorBrush>

</Button.Background> 

</Button>

But this is only possible because of a type converter that can convert each “255” string 
into a Byte value expected by the A, R, G, and B properties of the Color type. Without this 
type converter, you would basically be stuck. Type converters don’t just enhance the read-
ability of XAML, they also enable values to be expressed that couldn’t otherwise be 
expressed.

Type Converters 31
2

D I G G I N G  D E E P E R

Using Type Converters in Procedural Code

Although the C# code that sets Background to System.Windows.Media.Brushes.White 
produces the same result as the XAML declaration that assigns it to the “White” string, it 
doesn’t actually use the same type conversion mechanism employed by the XAML parser or 
compiler. The following code more accurately represents the runtime retrieval and execution 
of the appropriate type converter for Brush:

System.Windows.Controls.Button b = new System.Windows.Controls.Button();

b.Content = “OK”;

b.Background = (Brush)System.ComponentModel.TypeDescriptor.GetConverter( 

typeof(Brush)).ConvertFromInvariantString(“White”);

Unlike in the previous C# code, in this case, misspelling White would not cause a compila-
tion error but would cause an exception at runtime, as with XAML. (Although Visual Studio 
does provide compile-time warnings for mistakes in XAML such as this.)

  From the Library of Wow! eBook



ptg

Markup Extensions
Markup extensions, like type converters, enable you to extend the expressiveness of 
XAML. Both can evaluate a string attribute value at runtime (except for a few built-in 
markup extensions that are currently evaluated at compile time for performance reasons) 
and produce an appropriate object based on the string. As with type converters, WPF 
ships with several markup extensions built in.

Unlike type converters, however, markup extensions are invoked from XAML with 
explicit and consistent syntax. For this reason, using markup extensions is a preferred 
approach for extending XAML. In addition, using markup extensions enables you to over-
come potential limitations in existing type converters that you don’t have the power to 
change. For example, if you want to set a control’s background to a fancy gradient brush 
with a simple string value, you can write a custom markup extension that supports it 
even though the built-in BrushConverter does not.

CHAPTER 2 XAML Demystified32

D I G G I N G  D E E P E R

Finding Type Converters

So how does a XAML parser or compiler find an appropriate type converter for a property 
value? By looking for a System.ComponentModel.TypeConverterAttribute custom 
attribute on the property definition or on the definition of the property’s data type.

For example, the BrushConverter type converter is used when setting Button’s Background 
property in XAML because Background is of type System.Windows.Media.Brush, which has 
the following custom attribute:

[TypeConverter(typeof(BrushConverter)), …] 

public abstract class Brush : … 

{

… 

}

On the other hand, the FontSizeConverter type converter is used when setting Button’s 
FontSize property because the property (defined on the base Control class) has the follow-
ing custom attribute:

[TypeConverter(typeof(FontSizeConverter)), …] 

public double FontSize 

{

get { … } 

set { … }

}

In this case, marking the type converter on the property is necessary because its data type 
(double) is too generic to always be associated with FontSizeConverter. In fact, in WPF, 
double is often associated with another type converter, LengthConverter.

  From the Library of Wow! eBook



ptg

Whenever an attribute value is enclosed in curly braces ({}), the XAML compiler/parser 
treats it as a markup extension value rather than a literal string (or something that needs 
to be type-converted). The following Button uses three different markup extension values 
with three different properties:

<Button xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation” 

xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml” 

Background=”{x:Null}”

Height=”{x:Static SystemParameters.IconHeight}”

Content=”{Binding Path=Height, RelativeSource={RelativeSource Self}}”/>

The first identifier in each set of curly braces is the name of the markup extension class, 
which must derive from a class called MarkupExtension. By convention, such classes end 
with an Extension suffix, but you can leave it off when using it in XAML. In this 
example, NullExtension (seen as x:Null) and StaticExtension (seen as x:Static) are 
classes in the System.Windows.Markup namespace, so the x prefix must be used to locate 
them. Binding (which doesn’t happen to have the Extension suffix) is in the 
System.Windows.Data namespace, so it can be found in the default XML namespace.

If a markup extension supports them, comma-delimited parameters can be specified. 
Positional parameters (such as SystemParameters.IconHeight in the example) are treated 
as string arguments for the extension class’s appropriate constructor. Named parameters 
(Path and RelativeSource in the example) enable you to set properties with matching 
names on the constructed extension object. The values for these properties can be markup 
extension values themselves (using nested curly braces, as done with the value for 
RelativeSource) or literal values that can undergo the normal type conversion process. If 
you’re familiar with .NET custom attributes (the .NET Framework’s popular extensibility 
mechanism), you’ve probably noticed that the design and usage of markup extensions 
closely mirrors the design and usage of custom attributes. That is intentional.

In the preceding Button declaration, NullExtension enables the Background brush to be 
set to null, which isn’t natively supported by BrushConverter (or many other type 
converters, for that matter). This is just done for demonstration purposes, as a null 
Background is not very useful. StaticExtension enables the use of static properties, fields, 
constants, and enumeration values rather than hard-coding literals in XAML. In this case, 
the Button’s Height is set to the operating system’s current height setting for icons, 
exposed by the static IconHeight property on a System.Windows.SystemParameters class. 
Binding, covered in depth in Chapter 13, “Data Binding,” enables Content to be set to the 
same value as the Height property.

Markup Extensions 33
2

Markup extension class

Positional parameter

Named parameters

  From the Library of Wow! eBook



ptg

Because markup extensions are just classes with default constructors, they can be used 
with property element syntax. The following Button is identical to the preceding one:

<Button xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation” 

xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”>

<Button.Background> 

<x:Null/>

</Button.Background> 

<Button.Height>

<x:Static Member=”SystemParameters.IconHeight”/>

</Button.Height> 

<Button.Content>

<Binding Path=”Height”> 

<Binding.RelativeSource>

<RelativeSource Mode=”Self”/> 

</Binding.RelativeSource> 

</Binding>

</Button.Content> 

</Button>

This transformation works because these markup extensions all have properties corre-
sponding to their parameterized constructor arguments (the positional parameters used 
with property attribute syntax). For example, StaticExtension has a Member property that

CHAPTER 2 XAML Demystified34

D I G G I N G  D E E P E R

Escaping the Curly Braces

If you ever want a property attribute value to be set to a literal string beginning with an open 
curly brace ({), you must escape it so it doesn’t get treated as a markup extension. This can 
be done by preceding it with an empty pair of curly braces, as in the following example:

<Button xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”

Content=”{}{This is not a markup extension!}”/>

You can also use a backslash to escape characters such as an open curly brace, a single 
quote, or a double quote.

Alternatively, you could use property element syntax without any escaping because the curly 
braces do not have special meaning in this context. The preceding Button could be rewritten 
as follows:

<Button xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”> 

<Button.Content>

{This is not a markup extension!}

</Button.Content> 

</Button>

Data binding (covered in Chapter 13) takes advantage of this escaping with string formatting 
properties that use curly braces as part of their normal string syntax.

  From the Library of Wow! eBook



ptg

has the same meaning as the argument that was previously passed to its parameterized 
constructor, and RelativeSource has a Mode property that corresponds to its constructor 
argument.

Children of Object Elements 35
2

D I G G I N G  D E E P E R

Markup Extensions and Procedural Code

The actual work done by a markup extension is specific to each extension. For example, the 
following C# code is equivalent to the XAML-based Button that uses NullExtension, 
StaticExtension, and Binding:

System.Windows.Controls.Button b = new System.Windows.Controls.Button(); 

// Set Background:

b.Background = null; 

// Set Height:

b.Height = System.Windows.SystemParameters.IconHeight; 

// Set Content: 

System.Windows.Data.Binding binding = new System.Windows.Data.Binding(); 

binding.Path = new System.Windows.PropertyPath(“Height”); 

binding.RelativeSource = System.Windows.Data.RelativeSource.Self;

b.SetBinding(System.Windows.Controls.Button.ContentProperty, binding);

However, this code doesn’t use the same mechanism as the XAML parser or compiler, which 
rely on each markup extension to set the appropriate values at runtime (essentially by invok-
ing each one’s ProvideValue method). The procedural code equivalent of this mechanism is 
often complex, sometimes requiring context that only a parser would have (such as how to 
resolve an XML namespace prefix that could be used in StaticExtension’s Member). 
Fortunately, there is no reason to use markup extensions this way in procedural code!

Children of Object Elements
A XAML file, like all XML files, must have a single root object element. Therefore, it 
should come as no surprise that object elements can support child object elements (not 
just property elements, which aren’t children, as far as XAML is concerned). An object 
element can have three types of children: a value for a content property, collection items, 
or a value that can be type-converted to the object element.

The Content Property
Most WPF classes designate a property (via a custom attribute) that should be set to what-
ever content is inside the XML element. This property is called the content property, and it 
is really just a convenient shortcut to make the XAML representation more compact. In 
some ways, these content properties are like the (often-maligned) default properties in old 
versions of Visual Basic.

  From the Library of Wow! eBook



ptg

Button’s Content property is (appropriately) given this special designation, so the follow-
ing Button:

<Button xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation” 

Content=”OK”/>

could be rewritten as follows:

<Button xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”>

OK 

</Button>

Or, more usefully, this Button with more complex content:

<Button xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”> 

<Button.Content>

<Rectangle Height=”40” Width=”40” Fill=”Black”/> 

</Button.Content> 

</Button>

could be rewritten as follows:

<Button xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”> 

<Rectangle Height=”40” Width=”40” Fill=”Black”/>

</Button>

There is no requirement that the content property must actually be called Content; classes 
such as ComboBox, ListBox, and TabControl (also in the System.Windows.Controls name-
space) use their Items property as the content property.

Collection Items
XAML enables you to add items to the two main types of collections that support index-
ing: lists and dictionaries.

Lists
A list is any collection that implements System.Collections.IList, such as 
System.Collections.ArrayList or numerous collection classes defined by WPF. For 
example, the following XAML adds two items to a ListBox control whose Items property 
is an ItemCollection that implements IList:

<ListBox xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”> 

<ListBox.Items>

<ListBoxItem Content=”Item 1”/> 

<ListBoxItem Content=”Item 2”/>

</ListBox.Items> 

</ListBox>

CHAPTER 2 XAML Demystified36

  From the Library of Wow! eBook



ptg

This is equivalent to the following C# code:

System.Windows.Controls.ListBox listbox = new System.Windows.Controls.ListBox(); 

System.Windows.Controls.ListBoxItem item1 =

new System.Windows.Controls.ListBoxItem();

System.Windows.Controls.ListBoxItem item2 =

new System.Windows.Controls.ListBoxItem(); 

item1.Content = “Item 1”; 

item2.Content = “Item 2”; 

listbox.Items.Add(item1); 

listbox.Items.Add(item2);

Furthermore, because Items is the content property for ListBox, you can shorten the 
XAML even further, as follows:

<ListBox xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”> 

<ListBoxItem Content=”Item 1”/> 

<ListBoxItem Content=”Item 2”/>

</ListBox>

In all these cases, the code works because ListBox’s Items property is automatically 
initialized to any empty collection object. If a collection property is initially null instead 
(and is read/write, unlike ListBox’s read-only Items property), you need to wrap the items 
in an explicit element that instantiates the collection. WPF’s built-in controls do not act 
this way, so an imaginary OtherListBox element demonstrates what this could look like:

<OtherListBox> 

<OtherListBox.Items>

<ItemCollection>

<ListBoxItem Content=”Item 1”/> 

<ListBoxItem Content=”Item 2”/>

</ItemCollection>

</OtherListBox.Items> 

</OtherListBox>

Dictionaries
System.Windows.ResourceDictionary is a commonly used collection type in 
WPF that you’ll see more of in Chapter 12, “Resources.” It implements 
System.Collections.IDictionary, so it supports adding, removing, and enumerating 
key/value pairs in procedural code, as you would do with a typical hash table. In XAML, 
you can add key/value pairs to any collection that implements IDictionary. For example, 
the following XAML adds two Colors to a ResourceDictionary:

<ResourceDictionary 

xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation” 

xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”> 

<Color x:Key=”1” A=”255” R=”255” G=”255” B=”255”/> 

<Color x:Key=”2” A=”0” R=”0” G=”0” B=”0”/>

</ResourceDictionary>

Children of Object Elements 37
2

  From the Library of Wow! eBook



ptg

This leverages the XAML Key keyword (defined in the secondary XML namespace), which 
is processed specially and enables us to attach a key to each Color value. (The Color type 
does not define a Key property.) Therefore, the XAML is equivalent to the following C# 
code:

System.Windows.ResourceDictionary d = new System.Windows.ResourceDictionary(); 

System.Windows.Media.Color color1 = new System.Windows.Media.Color(); 

System.Windows.Media.Color color2 = new System.Windows.Media.Color(); 

color1.A = 255; color1.R = 255; color1.G = 255; color1.B = 255; 

color2.A = 0;   color2.R = 0;   color2.G = 0;   color2.B = 0;

d.Add(“1”, color1);

d.Add(“2”, color2);

Note that the value specified in XAML 
with x:Key is treated as a string unless a 
markup extension is used or the 
XAML2009 parser is used (see the later 
“Introducing XAML2009” section); no 
type conversion is attempted otherwise.

More Type Conversion
Plain text can often be used as the child 
of an object element, as in the following 
XAML declaration of SolidColorBrush:

<SolidColorBrush>White</SolidColorBrush>

This is equivalent to the following:

<SolidColorBrush Color=”White”/>

even though Color has not been designated as a content property. In this case, the first 
XAML snippet works because a type converter exists that can convert strings such as 
“White” (or “white” or “#FFFFFF”) into a SolidColorBrush object.

Although type converters play a huge role in making XAML readable, the downside is 
that they can make XAML appear a bit “magical,” and it can be difficult to understand 
how it maps to instances of .NET objects. Using what you know so far, it would be 
reasonable to assume that you can’t declare an abstract class element in XAML because 
there’s no way to instantiate it. However, even though System.Windows.Media.Brush is an 
abstract base class for SolidColorBrush, GradientBrush, and other concrete brushes, you 
can express the preceding XAML snippets as simply:

<Brush>White</Brush>

because the type converter for Brushes understands that this is still SolidColorBrush. This 
may seem like an unusual feature, but it’s important for supporting the ability to express 
primitive types in XAML, as demonstrated in “The Extensible Part of XAML.”

CHAPTER 2 XAML Demystified38

Lists, Dictionaries, and the XAML2009 
Parser

Although the WPF XAML parser has histori-
cally only supported IList and 
IDictionary collections, the XAML2009 
parser (described in the later “Introducing 
XAML2009” section) supports more. It first 
looks for IList and IDictionary, then for 
ICollection<T> and IDictionary<K,V>, 
then for the presence of both Add and 
GetEnumerator methods.

D I G G I N G  D E E P E R

  From the Library of Wow! eBook



ptg

Children of Object Elements 39
2

The Extensible Part of XAML

Because XAML was designed to work with the .NET type system, you can use it with just 
about any .NET object (or even COM objects, thanks to COM interoperability), including ones 
you define yourself. It doesn’t matter whether these objects have anything to do with a user 
interface. However, the objects need to be designed in a “declarative-friendly” way. For 
example, if a class doesn’t have a default constructor and doesn’t expose useful instance 
properties, it’s not going to be directly usable from XAML (unless you use the XAML2009 
parser). A lot of care went into the design of the WPF APIs—above and beyond the usual 
.NET design guidelines—to fit XAML’s declarative model.

The WPF assemblies are marked with XmlnsDefinitionAttribute to map their .NET name-
spaces to XML namespaces in a XAML file, but what about assemblies that weren’t 
designed with XAML in mind and, therefore, don’t use this attribute? Their types can still be 
used; you just need to use a special directive as the XML namespace. For example, here’s 
some plain old C# code using .NET Framework APIs contained in mscorlib.dll:

System.Collections.Hashtable h = new System.Collections.Hashtable();

h.Add(“key1”, 7);

h.Add(“key2”, 23);

and here’s how it can be represented in XAML:

<collections:Hashtable 

xmlns:collections=”clr-namespace:System.Collections;assembly=mscorlib” 

xmlns:sys=”clr-namespace:System;assembly=mscorlib” 

xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”> 

<sys:Int32 x:Key=”key1”>7</sys:Int32> 

<sys:Int32 x:Key=”key2”>23</sys:Int32>

</collections:Hashtable>

The clr-namespace directive enables you to place a .NET namespace directly inside XAML. 
The assembly specification at the end is necessary only if the desired types don’t reside in 
the same assembly that the XAML is compiled into. Typically the assembly’s simple name is 
used (as with mscorlib), but you can use the canonical representation supported by 
System.Reflection.Assembly.Load (although with no spaces allowed), which includes 
additional information such as a version and/or public key token.

Two key points about this example really highlight the integration with not only the .NET type 
system but specific types in the .NET Framework:

. Child elements can be added to the parent Hashtable with the standard XAML x:Key 
syntax because Hashtable and other collection classes in the .NET Framework have 
implemented the IDictionary interface since version 1.0.

. System.Int32 can be used in this simple fashion because a type converter already 
exists that supports converting strings to integers. This is because the type converters 
supported by XAML are simply classes that derive from 
System.ComponentModel.TypeConverter, a class that has also been around since 
version 1.0 of the .NET Framework. This is the same type conversion mechanism used 
by Windows Forms (enabling you to type strings into the Visual Studio property grid, for 
example, and have them converted to the appropriate type).

D I G G I N G  D E E P E R

  From the Library of Wow! eBook



ptg

Mixing XAML with Procedural Code
WPF applications can be written entirely in procedural code in any .NET language. In 
addition, certain types of simple applications can be written entirely in XAML, thanks to 
the data-binding features described in Chapter 13, the triggers introduced in the next 
chapter, and the fact that loose XAML pages can be rendered in a web browser. However, 
most WPF applications are a mix of XAML and procedural code. This section covers the 
two ways that XAML and code can be mixed together.

Loading and Parsing XAML at Runtime
WPF has a runtime XAML parser exposed as two classes in the System.Windows.Markup 
namespace: XamlReader and XamlWriter. And their APIs couldn’t be much simpler. 
XamlReader contains a few overloads of a static Load method, and XamlWriter contains a 
few overloads of a static Save method. Therefore, programs written in any .NET language 
can leverage XAML at runtime without much effort. The .NET Framework 4.0 ships a new, 
separate set of XAML readers and writers but with a fair number of caveats. They are not 
important for this discussion but are covered later, in the “Fun with XAML Readers and 
Writers” section.

XamlReader

The set of XamlReader.Load methods parse XAML, create the appropriate .NET objects, 
and return an instance of the root element. So, if a XAML file named MyWindow.xaml in 
the current directory contains a Window object (explained in depth in Chapter 7,

CHAPTER 2 XAML Demystified40

XAML Processing Rules for Object Element Children

You’ve now seen the three types of children for object elements. To avoid ambiguity, any valid 
XAML parser or compiler follows these rules when encountering and interpreting child 
elements:

1. If the type implements IList, call IList.Add for each child.

2. Otherwise, if the type implements IDictionary, call IDictionary.Add for each child, 
using the x:Key attribute value for the key and the element for the value. (Although 
XAML2009 checks IDictionary before IList and supports other collection inter-
faces, as described earlier.)

3. Otherwise, if the parent supports a content property (indicated by 
System.Windows.Markup.ContentPropertyAttribute) and the type of the child is 
compatible with that property, treat the child as its value.

4. Otherwise, if the child is plain text and a type converter exists to transform the child 
into the parent type (and no properties are set on the parent element), treat the child 
as the input to the type converter and use the output as the parent object instance.

5. Otherwise, treat it as unknown content and potentially raise an error.

Rules 1 and 2 enable the behavior described in the earlier “Collection Items” section, rule 3 
enables the behavior described in the section “The Content Property,” and rule 4 explains 
the often-confusing behavior described in the “More Type Conversion” section.

D I G G I N G  D E E P E R

  From the Library of Wow! eBook



ptg

“Structuring and Deploying an Application”) as its root node, the following code could be 
used to load and retrieve the Window object:

Window window = null; 

using (FileStream fs =

new FileStream(“MyWindow.xaml”, FileMode.Open, FileAccess.Read)) 

{

// Get the root element, which we know is a Window 

window = (Window)XamlReader.Load(fs);

}

In this case, Load is called with a FileStream (from the System.IO namespace). After Load 
returns, the entire hierarchy of objects in the XAML file is instantiated in memory, so the 
XAML file is no longer needed. In the preceding code, the FileStream is instantly closed 
by exiting the using block. Because XamlReader can be passed an arbitrary Stream (or 
System.Xml.XmlReader, via a different overload), you have a lot of flexibility in retrieving 
XAML content.

Mixing XAML with Procedural Code 41
2

XamlReader also defines LoadAsync instance methods that load and parse XAML content 
asynchronously. You’ll want to use LoadAsync to keep a responsive user interface during the 
loading of large files or files over the network, for example. Accompanying these methods 
are a CancelAsync method for halting the processing and a LoadCompleted event for 
knowing when the processing is complete.

The behavior of LoadAsync is a bit odd, however. The work is done on the UI thread via 
multiple Dispatcher.BeginInvoke calls. (WPF tries to break the work up into 200-millisec-
ond chunks.) Furthermore, this asynchronous processing is only used if 
x:SynchronousMode=”Async” is set on the root XAML node. If this attribute is not set, 
LoadAsync will silently load the XAML synchronously.

T I P

Now that an instance of the root element exists, you can retrieve child elements by 
making use of the appropriate content properties or collection properties. The following 
code assumes that the Window has a StackPanel object as its content, whose fifth child is 
an OK Button:

Window window = null; 

using (FileStream fs =

new FileStream(“MyWindow.xaml”, FileMode.Open, FileAccess.Read)) 

{

// Get the root element, which we know is a Window 

window = (Window)XamlReader.Load(fs);

} 

// Grab the OK button by walking the children (with hard-coded knowledge!) 

StackPanel panel = (StackPanel)window.Content;

Button okButton = (Button)panel.Children[4];

  From the Library of Wow! eBook



ptg

With a reference to the Button, you can do whatever you want: Set additional properties 
(perhaps using logic that is hard or impossible to express in XAML), attach event handlers, 
or perform additional actions that you can’t do from XAML, such as calling its methods.

Of course, the code that uses a hard-coded index and other assumptions about the user 
interface structure isn’t very satisfying, as simple changes to the XAML can break it. 
Instead, you could write code to process the elements more generically and look for a 
Button element whose content is an “OK” string, but that would be a lot of work for such 
a simple task. In addition, if you want the Button to contain graphical content, how can 
you easily identify it in the presence of multiple Buttons?

Fortunately, XAML supports naming of elements so they can be found and used reliably 
from procedural code.

Naming XAML Elements
The XAML language namespace has a Name keyword that enables you to give any element 
a name. For the simple OK button that we’re imagining is embedded somewhere inside a 
Window, the Name keyword can be used as follows:

<Button x:Name=”okButton”>OK</Button>

With this in place, you can update the preceding C# code to use Window’s FindName 
method that searches its children (recursively) and returns the desired instance:

Window window = null; 

using (FileStream fs =

new FileStream(“MyWindow.xaml”, FileMode.Open, FileAccess.Read)) 

{

// Get the root element, which we know is a Window 

window = (Window)XamlReader.Load(fs);

} 

// Grab the OK button, knowing only its name 

Button okButton = (Button)window.FindName(“okButton”);

FindName is not unique to Window; it is defined on FrameworkElement and 
FrameworkContentElement, which are base classes for many important classes in WPF.

CHAPTER 2 XAML Demystified42

Naming Elements Without x:Name

The x:Name syntax can be used to name elements, but some classes define their own prop-
erty that can be treated as the element’s name (by marking themselves with System. 
Windows.Markup.RuntimeNamePropertyAttribute). For example, FrameworkElement and 
FrameworkContentElement have a Name property, so they mark themselves with 
RuntimeNameProperty(“Name”). This means that on such elements you can simply set the 
Name property to a string rather than use the x:Name syntax. You can use either mechanism, 
but you can’t use both simultaneously. Having two ways to set a name is a bit confusing, but 
it’s handy for these classes to have a Name property for use by procedural code.

D I G G I N G  D E E P E R

  From the Library of Wow! eBook



ptg

Compiling XAML
Loading and parsing XAML at runtime is 
interesting for dynamic skinning scenar-
ios or for .NET languages that don’t have 
the necessary support for XAML compila-
tion. Most WPF projects, however, lever-
age the XAML compilation supported by 
MSBuild and Visual Studio. XAML 
compilation involves three things: 
converting a XAML file into a special binary 
format, embedding the converted content as 
a binary resource in the assembly being built, 
and performing the plumbing that connects XAML with procedural code automatically. 
C# and Visual Basic are the two languages with the best support for XAML compilation.

Mixing XAML with Procedural Code 43
2

In all versions of WPF, the Binding markup extension can be used to reference a named 
element as a property value:

<StackPanel xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”> 

<Label Target=”{Binding ElementName=box}” Content=”Enter _text:”/> 

<TextBox Name=”box”/>

</StackPanel>

(In this case, assigning the TextBox as the Target of the Label gives it focus when the 
Label’s access key, Alt+T, is pressed.) WPF 4 includes a new, simpler markup extension 
(that finds the element at parse time rather than runtime): 
System.Windows.Markup.Reference. It can be used as follows: 

<StackPanel xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”

xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”> 

<Label Target=”{x:Reference box}” Content=”Enter _text:”/> 

<TextBox Name=”box”/>

</StackPanel>

Or, when a relevant property is marked with the 
System.Windows.Markup.NameReferenceConverter type converter (as in this case), a 
simple name string can be implicitly converted into the referenced instance:

<StackPanel xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”> 

<Label Target=”box” Content=”Enter _text:”/> 

<TextBox Name=”box”/>

</StackPanel>

T I P

Supporting Compiled XAML with Any 
.NET Language

If you want to leverage XAML compilation 
with an arbitrary .NET language, there are 
two basic requirements for enabling this: 
having a corresponding CodeDom provider 
and having an MSBuild target file. In addi-
tion, language support for partial classes is 
helpful but not strictly required.

D I G G I N G  D E E P E R

  From the Library of Wow! eBook



ptg

If you don’t care about mixing procedural code with your XAML file, then all you need to 
do to compile it is add it to a WPF project in Visual Studio with a Build Action of Page. 
(Chapter 7 explains ways to make use of such content in the context of an application.) 
But for the typical case of compiling a XAML file and mixing it with procedural code, the 
first step is specifying a subclass for the root element in a XAML file. This can be done 
with the Class keyword defined in the XAML language namespace, for example:

<Window xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation” 

xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml” 

x:Class=”MyNamespace.MyWindow”>

… 

</Window>

In a separate source file (but in the same project), you can define the subclass and add 
whatever members you want:

namespace MyNamespace 

{

partial class MyWindow : Window 

{

public MyWindow() 

{

// Necessary to call in order to load XAML-defined content!

InitializeComponent(); 

…

}

Any other members can go here…

} 

}

This is often referred to as the code-behind file. If you reference any event handlers in 
XAML (via event attributes such as Click on Button), this is where they should be 
defined.

The partial keyword in the class definition is important, as the class’s implementation is 
spread across more than one file. If the .NET language doesn’t support partial classes (for 
example, C++/CLI and J#), the XAML file must also use a Subclass keyword in the root 
element, as follows:

<Window xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation” 

xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml” 

x:Class=”MyNamespace.MyWindow” x:Subclass=”MyNamespace.MyWindow2”>

… 

</Window>

With this change, the XAML file completely defines the Subclass (MyWindow2 in this case) 
but uses the Class in the code-behind file (MyWindow) as its base class. Therefore, this

CHAPTER 2 XAML Demystified44

  From the Library of Wow! eBook



ptg

simulates the ability to split the implementation across two files by relying on inheri-
tance.

When creating a WPF-based C# or Visual Basic project in Visual Studio, or when you use 
Add New Item… to add certain WPF items to a project, Visual Studio automatically 
creates a XAML file with x:Class on its root, creates the code-behind source file with the 
partial class definition, and links the two together so they are built properly.

If you’re an MSBuild user and want to understand the contents of the project file that 
enables code-behind, you can open any of the C# project files included with this book’s 
source code in a simple text editor such as Notepad. The relevant part of a typical project 
is as follows:

<ItemGroup> 

<Page Include=”MyWindow.xaml”/>

</ItemGroup> 

<ItemGroup>

<Compile Include=”MyWindow.xaml.cs”> 

<DependentUpon>MyWindow.xaml</DependentUpon> 

<SubType>Code</SubType>

</Compile> 

</ItemGroup>

For such a project, the build system 
generates several items when processing 
MyWindow.xaml, including these:

. A BAML file (MyWindow.baml), 
which gets embedded in the 
assembly as a binary resource by 
default.

. A C# source file (MyWindow.g.cs), 
which gets compiled into the 
assembly like all other source code.

BAML
BAML, which stands for Binary Application Markup Language, is simply XAML that has 
been parsed, tokenized, and converted into binary form. Although almost any chunk of 
XAML can be represented by procedural code, the XAML-to-BAML compilation process 
does not generate procedural source code. So, BAML is not like Microsoft intermediate 
language (MSIL); it is a compressed declarative format that is faster to load and parse (and 
smaller in size) than plain XAML. BAML is basically an implementation detail of the 
XAML compilation process. Nevertheless, it’s interesting to be aware of its existence. In 
fact, WPF 4 contains a public BAML reader class (see the “Fun with XAML Readers and 
Writers” section).

Mixing XAML with Procedural Code 45
2

x:Class can only be used in a XAML file 
that gets compiled. But you can sometimes 
compile a XAML file with no x:Class just 
fine. This simply means that there is no 
corresponding code-behind file, so you can’t 
use any features that rely on the presence 
of procedural code. Therefore, adding a 
XAML file to a Visual Studio project without 
an x:Class directive can be a handy way to 
get the deployment and performance bene-
fits of compiled XAML without having to 
create an unnecessary code-behind file.

T I P

  From the Library of Wow! eBook



ptg

Generated Source Code
Some procedural code does get generated in the XAML compilation process (if you use 
x:Class), but it’s just some “glue code” similar to what had to be written to load and 
parse a loose XAML file at runtime. Such files are given a suffix such as .g.cs (or .g.vb), 
where the g stands for generated.

Each generated source file contains a partial class definition for the class specified with 
x:Class on the root object element. This partial class contains a field (internal by default) 
for every named element in the XAML file, using the element name as the field name. It 
also contains an InitializeComponent method that does the grunt work of loading the 
embedded BAML resource, assigning the fields to the appropriate instances originally 
declared in XAML, and hooking up any event handlers (if any event handlers were speci-
fied in the XAML file).

Because the glue code tucked away in the generated source file is part of the same class 
you’ve defined in the code-behind file 
(and because BAML gets embedded as a 
resource), you often don’t need to be 
aware of the existence of BAML or the 
process of loading and parsing it. You 
simply write code that references named 
elements just like any other class 
member, and you let the build system 
worry about hooking things together.
The only thing you need to remember is 
to call InitializeComponent in your 
code-behind class’s constructor.

CHAPTER 2 XAML Demystified46

There Once Was a CAML…

Prerelease versions of WPF had the ability to compile XAML into BAML or MSIL. This MSIL 
output was called CAML, which stood for Compiled Application Markup Language. The idea 
was to enable the choice of optimizing for size (BAML) or speed (CAML). But the team 
decided not to burden the WPF codebase with these two independent implementations that 
did essentially the same thing. BAML won out over CAML because it has several advan-
tages: It’s less of a security threat than MSIL, it’s more compact (resulting in smaller down-
load sizes for web scenarios), and it can be localized postcompilation. Furthermore, using 
CAML was not appreciably faster than using BAML, as people had theorized it would be. It 
generated a lot of code that would only ever run once. This is inefficient, it bloats DLLs, it 
doesn’t take advantage of caches, and so on.

D I G G I N G  D E E P E R

Don’t forget to call
InitializeComponent in the construc-
tor of your code-behind class!

If you fail to do so, your root element won’t 
contain any of the content you defined in 
XAML (because the corresponding BAML 
doesn’t get loaded), and all the fields 
representing named object elements will 
be null.

WA R N I N G

  From the Library of Wow! eBook



ptg

Mixing XAML with Procedural Code 47
2

Procedural Code Inside XAML

XAML actually supports an obscure “code-inside” feature in addition to code-behind (some-
what like in ASP.NET). This can be done with the Code keyword in the XAML language name-
space, as follows:

<Window xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation” 

xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml” 

x:Class=”MyNamespace.MyWindow”>

<Button Click=”button_Click”>OK</Button> 

<x:Code><![CDATA[

void button_Click(object sender, RoutedEventArgs e) 

{

this.Close(); 

}

]]></x:Code>

</Window>

When such a XAML file is compiled, the contents inside the x:Code element get plopped 
inside the partial class in the .g.cs file. Note that the procedural language is not specified 
in the XAML file; it is determined by the project containing this file.

Wrapping the code in <![CDATA[…]]> isn’t required, but it avoids the need to escape less-
than signs as &lt; and ampersands as &amp;. That’s because CDATA sections are ignored 
by XML parsers, whereas anything else is processed as XML. (The tradeoff is that you must 
avoid using ]]> anywhere in the code, because that terminates the CDATA section!)

Of course, there’s no good reason to pollute your XAML files with this “code-inside” feature. 
Besides making the division between user interface and logic messier, loose XAML pages 
don’t support it, and Visual Studio doesn’t support any of its typical code features, such as 
IntelliSense and syntax coloring.

D I G G I N G  D E E P E R

Can BAML be decompiled back into XAML?

Sure, because BAML can be converted into a graph of live object instances, and these 
instances can be serialized as XAML, regardless of how they were originally declared.

The first step is to retrieve an instance that you want to be the root of the XAML. If you don’t 
already have this object, you can call the static 
System.Windows.Application.LoadComponent method to load it from BAML, as follows:

System.Uri uri = new System.Uri(“/WpfApplication1;component/MyWindow.xaml”, 

System.UriKind.Relative);

Window window = (Window)Application.LoadComponent(uri);

?
FA Q

  From the Library of Wow! eBook



ptg

Introducing XAML2009
Although XAML is a general-purpose language whose use is broader than that of WPF, 
WPF’s XAML compiler and parsers are architecturally tied to WPF. Therefore, they are not 
usable by other technologies without taking a dependency on WPF. The .NET Framework
4.0 fixes this by introducing a new System.Xaml assembly that contains a bunch of func-
tionality for processing XAML. WPF (and WCF and WF) take a dependency on 
System.Xaml—not the other way around.

At the same time, the .NET Framework 4.0 introduces a handful of new features for the 
XAML language. This second generation of the XAML language is referred to as 
XAML2009. (To differentiate, the first generation is sometimes referred to as XAML2006.) 
The System.Xaml assembly supports XAML2009, unlike the older APIs 
(System.Windows.Markup.XamlReader and System.Windows.Markup.XamlWriter from the 
previous section), which only support XAML2006.

The new XAML2009 features, outlined in this section, are nothing revolutionary but 
represent a nice set of incremental improvements to XAML. However, don’t get too 
excited; for the most part, these features are not usable in WPF projects because XAML 
compilation still uses the XAML2006-based APIs, as do Visual Studio’s WPF designer and 
editor, due to schedule constraints.

CHAPTER 2 XAML Demystified48

Continued

Yes, that code is loading BAML despite the .xaml suffix. This differs from previous code that 
uses FileStream to load a .xaml file because with LoadComponent, the name specified as 
the uniform resource identifier (URI) does not have to physically exist as a standalone .xaml 
file. LoadComponent can automatically retrieve BAML embedded as a resource when given 
the appropriate URI (which, by MSBuild convention, is the name of the original XAML source 
file). In fact, Visual Studio’s autogenerated InitializeComponent method calls 
Application.LoadComponent to load embedded BAML, although it uses a different over-
load. Chapter 12 provides more details about this mechanism of retrieving embedded 
resources with URIs.

After you’ve gotten a hold of the root element instance, you can use the 
System.Windows.Markup.XamlWriter class to get a XAML representation of the root 
element (and, therefore, all its children). XamlWriter contains five overloads of a static Save 
method, the simplest of which accepts an object instance and returns appropriate XAML as 
a string: 

string xaml = XamlWriter.Save(window);

It might sound a little troubling that BAML can be so easily “cracked open,” but it’s really no 
different from any other software running locally or displaying a user interface locally. (For 
example, you can easily dig into a website’s HTML, JavaScript, and Cascading Style Sheets 
[CSS] files.) The popular .NET Reflector tool has a BamlViewer add-in (see 
http://codeplex.com/reflectoraddins) that displays BAML embedded in any assembly as 
XAML.

  From the Library of Wow! eBook

http://codeplex.com/reflectoraddins


ptg

At the time of writing, it is unclear when WPF will completely switch over to XAML2009. 
(Note that Silverlight doesn’t support XAML2009 either; it doesn’t even support the entire 
XAML2006 specification!) In WPF 4, however, you can take advantage of these features 
when using loose XAML with a host that processes the XAML with the XAML2009-based 
APIs, such as the XAMLPAD2009 sample from this book’s source code or Internet Explorer 
when the netfx/2009 XML namespace is used.

Therefore, the XAML2009 features are interesting to learn about, even if they are not yet 
terribly useful. Most of them revolve around the idea of making a wider range of types 
directly usable from XAML. This is good news for class library authors, as XAML2009 
imposes fewer restrictions for making class libraries XAML friendly. On its own, each 
feature provides a small improvement in expressiveness, but many of the features work 
together to solve real-world problems.

Full Generics Support
In XAML2006, the root element can be an instantiation of a generic class, thanks to the 
x:TypeArguments keyword. x:TypeArguments can be set to a type name or a comma-
delimited list of type names. But because x:TypeArguments can only be used on the root 
element, generic classes generally have not been XAML friendly.

A common workaround for this limitation is to derive a non-generic class from a generic 
one simply so it can be referenced from XAML, as in the following example:

C#:

public class PhotoCollection : ObservableCollection<Photo> {}

XAML:

<custom:PhotoCollection> 

<custom:Photo …/> 

<custom:Photo …/>

</custom:PhotoCollection>

In XAML2009, however, x:TypeArguments can be used on any element, so a class like 
ObservableCollection<Photo> can be instantiated directly from XAML:

<collections:ObservableCollection TypeArguments=”custom:Photo”> 

<custom:Photo …/> 

<custom:Photo …/>

</collections:ObservableCollection>

In this case, collections is assumed to map to the System.Collections.ObjectModel 
namespace that contains ObservableCollection.

Introducing XAML2009 49
2

  From the Library of Wow! eBook



ptg

Dictionary Keys of Any Type
In XAML2009, type conversion is now attempted with x:Key values, so you can success-
fully add items to a dictionary with non-string keys without using a markup extension. 
Here’s an example:

<collections:Dictionary x:TypeArguments=”x:Int32, x:String”> 

<x:String x:Key=”1”>One</x:String> 

<x:String x:Key=”2”>Two</x:String>

</collections:Dictionary>

Here, collections is assumed to map to the System.Collections.Generic namespace.

CHAPTER 2 XAML Demystified50

Turning Off the Type Conversion of Non-String Dictionary Keys

For backwards compatibility, the XAML2009 XamlObjectWriter has a setting for turning off 
the new automatic type conversion. This is controlled by the XamlObjectWriterSettings. 
PreferUnconvertedDictionaryKeys property. When set to true, System.Xaml won’t 
convert keys if the dictionary implements the non-generic IDictionary interface, unless: 

. System.Xaml has already failed calling IDictionary.Add on this same instance, or 

. The dictionary is a well-known type from the .NET Framework that System.Xaml knows
requires conversion.

D I G G I N G  D E E P E R

Built-In System Data Types
In XAML2006, using core .NET data types such as String or Int32 is awkward due to the 
need to reference the System namespace from the mscorlib assembly, as seen previously 
in this chapter:

<sys:Int32 xmlns:sys=”clr-namespace:System;assembly=mscorlib”>7</sys:Int32>

In XAML2009, 13 .NET data types have been added to the XAML language namespace 
that most XAML is already referencing. With a namespace prefix of x, these data types are 
x:Byte, x:Boolean, x:Int16, x:Int32, x:Int64, x:Single, x:Double, x:Decimal, x:Char, 
x:String, x:Object, x:Uri, and x:TimeSpan. Therefore, the previous snippet can be 
rewritten as follows:

<x:Int32 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”>7</x:Int32>

But it is typically seen as follows in a XAML file already referencing the XAML language 
namespace:

<x:Int32>7</x:Int32>

  From the Library of Wow! eBook



ptg

Instantiating Objects with Non-Default Constructors
XAML2009 introduces an x:Arguments keyword that enables you to specify one or more 
arguments to pass to a class’s constructor. Consider, for example, the System.Version 
class, which has a default constructor and four parameterized constructors. You could not 
construct an instance of this class in XAML2006 unless someone provided an appropriate 
type converter (or unless you were happy with the behavior of the default constructor, 
which produces a version number of 0.0).

In XAML2009, you can instantiate this class with its constructor that accepts a single 
string as follows:

<sys:Version x:Arguments=”4.0.30319.1”/>

The constructor argument doesn’t have to be a string; the attribute value undergoes type 
conversion as necessary.

Unlike x:TypeArguments, x:Arguments does not allow you to specify multiple arguments 
in the attribute value with a comma-delimited string. Instead, you can use the element 
form of x:Arguments to specify any number of arguments. For example, calling 
System.Version’s constructor that accepts four integers can be done as follows:

<sys:Version> 

<x:Arguments>

<x:Int32>4</x:Int32> 

<x:Int32>0</x:Int32> 

<x:Int32>30319</x:Int32> 

<x:Int32>1</x:Int32>

</x:Arguments>

</sys:Version>

Getting Instances via Factory Methods
With the new x:FactoryMethod keyword in XAML2009, you can now get an instance of a 
class that doesn’t have any public constructors. x:FactoryMethod enables you to specify 
any public static method that returns an instance of the desired type. For example, the 
following XAML uses a Guid instance returned by the static Guid.NewGuid method:

<Label xmlns=http://schemas.microsoft.com/winfx/2006/xaml/presentation 

xmlns:x=http://schemas.microsoft.com/winfx/2006/xaml 

xmlns:sys=”clr-namespace:System;assembly=mscorlib”>

<sys:Guid x:FactoryMethod=”sys:Guid.NewGuid”/>

</Label>

When x:FactoryMethod is used with x:Arguments, the arguments are passed to the static 
factory method rather than to a constructor. Therefore, the following XAML calls the 
static Marshal.GetExceptionForHR method, which accepts an HRESULT error code as input

Introducing XAML2009 51
2

  From the Library of Wow! eBook



ptg

and returns the corresponding .NET exception that would be thrown by the common 
language runtime interoperability layer when encountering such an error:

<Label xmlns=http://schemas.microsoft.com/winfx/2006/xaml/presentation 

xmlns:x=http://schemas.microsoft.com/winfx/2006/xaml 

xmlns:sys=”clr-namespace:System;assembly=mscorlib” 

xmlns:interop=

“clr-namespace:System.Runtime.InteropServices;assembly=mscorlib”> 

<sys:Exception x:FactoryMethod=”interop:Marshal.GetExceptionForHR”> 

<x:Arguments>

<x:Int32>0x80004001</x:Int32> 

</x:Arguments> 

</sys:Exception>

</Label>

Figure 2.3 shows the result of the previous two Labels stacked in the same XAML content, 
as rendered by the XAMLPAD2009 sample.

CHAPTER 2 XAML Demystified52

FIGURE 2.3 Displaying two instances retrieved via static factory methods.

Event Handler Flexibility
Event handlers can’t be assigned in a loose XAML2006 file, but they can be assigned in a 
loose XAML2009 file as long as the root instance can be located and it has a method with 
a matching name and appropriate signature. In addition, in XAML2009, the value of an 
event attribute can be any markup extension that returns an appropriate delegate:

<Button Click=”{custom:DelegateFinder Click}”/>

As with any markup extension, it can accept arbitrary input and perform arbitrary logic 
to look up the delegate.

  From the Library of Wow! eBook



ptg

Defining New Properties
XAML is primarily focused on instantiating existing classes and setting values of their 
predefined properties. Two new elements in XAML2009—x:Members and the correspond-
ing x:Property—enable the definition of additional properties directly inside XAML. This 
functionality doesn’t apply to WPF, however. You can see it used in Windows Workflow 
Foundation XAML, as in the following example:

<Activity x:Class=”ActivityLibrary1.Activity1” …> 

<x:Members>

<x:Property Name=”argument1” Type=”InArgument(x:Int32)”/> 

<x:Property Name=”argument2” Type=”OutArgument(x:String)”/> 

</x:Members>

… 

</Activity>

Fun with XAML Readers and Writers
You have already seen how to read and write XAML with XamlReader.Load and 
XamlWriter.Save from the System.Windows.Markup namespace. These APIs have been 
around since the first version of WPF and still work just fine on WPF content—as long as 
that content stays within the XAML2006 subset.

The new System.Xaml assembly contains System.Xaml.XamlReader and 
System.Xaml.XamlWriter abstract base classes (not to be confused with the aforemen-
tioned reader/writer classes) that are the foundation of a new way to read and write 
XAML. The classes in System.Xaml are much more flexible than the “black box” conver-
sion done by the older classes, and they support XAML2009.

Overview
XamlReader is designed to generate a stream of logical XAML nodes from an arbitrary 
source (dictated by the concrete derived implementation), and XamlWriter is designed to 
consume such a stream of XAML nodes and write them out in an arbitrary way. The 
following derived readers and writers are currently shipped as public classes:

Readers (derived from System.Xaml.XamlReader):

. System.Xaml.XamlXmlReader—Reads XML (by working with a System.Xml. 
XmlReader, System.IO.TextReader, System.IO.Stream, or filename string)

. System.Xaml.XamlObjectReader—Reads a live object graph

. System.Windows.Baml2006.Baml2006Reader—Reads BAML (the 2006 form still used 
by WPF)

. System.Xaml.XamlBackgroundReader—Wraps another XamlReader, implementing 
double-buffering so the reader can do its work on a separate thread from a writer

Fun with XAML Readers and Writers 53
2

  From the Library of Wow! eBook



ptg

Writers (derived from System.Xaml.XamlWriter):

. System.Xaml.XamlXmlWriter—Writes XML (using either a System.Xml.XmlWriter, 
System.IO.TextWriter, or Stream)

. System.Xaml.XamlObjectWriter—Produces a live graph of objects

XAML readers and XAML writers work together much like the readers and writers else-
where in the .NET Framework, such as ones in the System.IO and System.Xml name-
spaces. The result is an ecosystem in which many different readers and writers can be 
mixed and matched, where the notion of logical XAML nodes becomes the common 
connection. This is pictured in Figure 2.4, with the readers and writers that ship with the 
.NET Framework. The XAML node stream is not tightly associated with the XML text 
representation but rather the logical notion of a hierarchy of objects with various 
members set to various values.

CHAPTER 2 XAML Demystified54

XML

BAML

Object
Graph

Readers

…

XML

…

Object
Graph

Writers

XAML 
Nodes

FIGURE 2.4 Readers and writers working together to enable all sorts of transformations.

The … parts of Figure 2.4 are important, as there can be a rich set of third-party readers 
and writers that enable a wide variety of transformations. Over the past few years, people 
have shared a number of converters that transform XAML to and from other file formats 
(although not yet based on these new APIs at the time of writing). These formats include 
more than 40 3D formats (Autodesk 3ds Max and Maya, AutoCAD DXF, NewTek 
LightWave, and so on), Adobe Illustrator/Photoshop/Flash/Fireworks, SVG, HTML 5 
Canvas, Visio, PowerPoint, Windows Metafile (WMF), Enhanced Metafile (EMF), and even 
Visual Basic 6 forms!

  From the Library of Wow! eBook



ptg

Fun with XAML Readers and Writers 55
2

The functionality in this section works best with non-WPF XAML!

There’s a reason this section is called “Fun with XAML Readers and Writers.” Sure, these 
classes are fun to work with, but you might have to limit your use of them to experimental 
tinkering for now. The current version of XamlObjectReader doesn’t support several aspects 
of WPF objects, so for WPF XAML serialization, you’ll have to stick with System.Windows. 
Markup.XamlWriter. If you’re using XAML for non-WPF purposes, then it should work great 
for you.

WA R N I N G

Why is XamlXmlReader better at reading a XAML file than a simple
XmlReader? Isn’t XAML just XML?

XamlXmlReader does use XmlReader to do its work, but it provides two important features 
on top of the reading of XML:

. It abstracts away differences in XML representations that have equivalent meanings in 
XAML.

. It produces a XAML node stream that is compatible with any XAML writer and contains 
rich information not even present in the source XML.

The first point is crucial for reducing the amount of work needed to consume XAML. The 
following three chunks of XAML all express the same concept—a Button whose content 
property called Content is set to the string “OK”:

<!-- Implicit setting of the content property: --> 

<Button xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”>

OK 

</Button> 

<!-- Setting the property via property element syntax: --> 

<Button xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”> 

<Button.Content>

OK 

</Button.Content> 

</Button> 

<!-- Setting the property via property attribute syntax: --> 

<Button xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”

Content=”OK”/>

These three snippets look very different to XmlReader but are made to look the same by 
XamlXmlReader. This is exactly what a XAML-consumption tool wants (unless the tool is 
doing something like enforcing style guidelines on the textual representation of XAML), and it 
takes considerable extra work. For example, XamlXmlReader can only know that that the first 
snippet is equivalent to the other two by examining the definition of Button and discovering 
that it has a content property named Content.

?
FA Q

  From the Library of Wow! eBook



ptg

The Node Loop
Performing a transformation from one format to another involves reading XAML nodes 
from an appropriate reader and sending them to an appropriate writer. XamlReader and 
XamlWriter are designed to make this easy, enabling you to write a simple “node loop” 
that performs the necessary reading and writing from beginning to end. With a XAML 
reader called reader and a XAML writer called writer, here is what a simple node loop 
looks like:

// Simple node loop 

while (reader.Read()) 

{

writer.WriteNode(reader); 

}

What actually happens in this loop depends on the type of the reader and writer. The 
XAMLPAD2009 sample has the goal of reading XAML in XML format (stored in a string) 
and producing a live object graph that can be attached (and therefore rendered) inside its 
own user interface. Therefore, Listing 2.1 uses the simple node loop with XamlXmlReader 
and XamlObjectWriter to accomplish this. Most of the effort involves getting 
XamlXmlReader to read an XML string. The easiest way to do this is to create a 
System.IO.StringReader for the string which can be passed to XamlXmlReader (because 
StringReader is a TextReader).

LISTING 2.1 A Simple Node Loop That Converts a XAML XML String to a Live Object Graph

public static object ConvertXmlStringToObjectGraph(string xmlString) 

{

// String -> TextReader -> XamlXmlReader 

using (TextReader textReader = new StringReader(xmlString)) 

using (XamlXmlReader reader = new XamlXmlReader(textReader, 

System.Windows.Markup.XamlReader.GetWpfSchemaContext())) 

using (XamlObjectWriter writer = new XamlObjectWriter(reader.SchemaContext)) 

{

// Simple node loop 

while (reader.Read()) 

{

writer.WriteNode(reader); 

}

CHAPTER 2 XAML Demystified56

Continued

As for the second point, the rich information present in the XAML node stream provided by 
XamlXmlReader (or any XAML reader) is a result of combining the input data with the defini-
tions of the types being referenced. For example, through XamlXmlReader, you can discover 
that Content is a content property, and its type is System.Object.

  From the Library of Wow! eBook



ptg

LISTING 2.1 Continued

// When XamlObjectWriter is done, this is the root object instance 

return writer.Result;

} 

}

The WPF schema context is passed to XamlObjectWriter to make it work better with WPF 
XAML. It enables a number of features and compatibility quirks that aren’t appropriate 
for general-purpose XAML processing.

Reading XAML
XAML readers expose a lot of useful information about the resultant XAML node stream, 
so you can do a whole lot more than just blindly write the nodes into some other form, 
such as morphing the content during the transformation.

The most important XamlReader property to inspect when writing a custom node loop is 
NodeType, which can be one of eight enumeration values:

. StartObject—The reader is positioned at the start of an explicit object, such as an 
element’s start tag in XML or the beginning of a markup extension in a property 
value.

. GetObject—The reader is positioned at the start of an implicit object, such as a 
collection whose items appear in XAML but not the collection itself (as seen with 
ListBox in the earlier “Collection Items” section).

. EndObject—The reader is positioned at the end of an object (which was previously 
discovered via StartObject or GetObject). Every StartObject and GetObject node 
is matched with a corresponding EndObject node later in the stream.

. StartMember—The reader is positioned at the start of an object’s member: a property 
(attached or not), an event (attached or not), or a XAML directive such as x:Key. 
Every member belongs to a parent object, so you won’t encounter a StartMember 
node without first encountering a StartObject or GetObject node. Note that in 
XML, it doesn’t matter whether the member is specified using property attribute 
syntax or property element syntax—it still shows up as a member, not an object.

. EndMember—The reader is positioned at the end of a member (which was previously 
discovered via StartMember). Every StartMember node is matched with a correspond-
ing EndMember node later in the stream.

. Value—The reader is positioned at the start of a member’s value. Every value is asso-
ciated with a member, so you won’t encounter a Value node without first encoun-
tering a StartMember node (and a StartObject or GetObject node before that).

. NamespaceDeclaration—The reader is positioned at the declaration of an XML 
namespace (which associates the namespace value with a prefix). Note that these 
appear in the XAML node stream immediately before the StartObject node that

Fun with XAML Readers and Writers 57
2

  From the Library of Wow! eBook



ptg

“contains” these declarations. This might sounds surprising, but given that the 
namespace declarations provide context to even the root element, it’s valuable to 
have that context first.

. None—The reader is positioned at something that is not a real node, such as the end 
of a file. This NodeType can be safely ignored.

XamlReader defines four important properties that enable you to extract the relevant data 
about any node: Type, Member, Value, and Namespace. The data that you can retrieve from 
these properties depends on the node type of its current position. For example, when 
NodeType is StartObject, Type is set to a XamlType instance, and the other three proper-
ties are null. When NodeType is StartMember, Member is set to a XamlMember instance, and 
the other three properties are null. When NodeType is Value, the Value property is the 
only one that is non-null, and when NodeType is NamespaceDeclaration, Namespace is the 
only non-null property.

In addition, all the XAML readers in the .NET Framework 4.0 (except for 
XamlObjectReader) implement an IXamlLineInfo interface that produces line number 
information when available. When the HasLineInfo property is true, you can retrieve 
row and column data from LineNumber and LinePosition properties, respectively.

CHAPTER 2 XAML Demystified58

What are these XamlType and XamlMember instances exposed by XAML 
readers?

These classes expose a XAML-specific form of .NET reflection.

XamlType wraps System.Type (which is available from XamlType’s UnderlyingType prop-
erty), adding XAML-specific concepts such as content properties, attached properties, and 
much more. This layer of abstraction also enables XamlType to represent non-.NET types, if 
desired.

XamlMember effectively wraps System.Reflection.MemberInfo (which is available from 
XamlMember’s UnderlyingMember property when there actually is an underlying 
MemberInfo). It also adds XAML-specific concepts such as IsDirective and 
PreferredXamlNamespace properties.

?
FA Q

To demonstrate what working with a XAML reader looks like in depth, Table 2.1 traces 
through the node stream produced by XamlXmlReader when reading the XAML content in 
Listing 2.2. The indenting of the XamlNodeType values illustrates the nesting of objects, 
members, and values.

LISTING 2.2 Sample XAML Content to Demonstrate the Behavior of XamlXmlReader

<StackPanel xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation” 

xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”>

<!-- Set names two different ways --> 

<Button Name=”okButton” Click=”okButton_Click”>OK</Button>

  From the Library of Wow! eBook



ptg

LISTING 2.2 Continued

<Button x:Name=”cancelButton”>Cancel</Button> 

<ListBox>

<!-- Set content three different ways --> 

<ListBoxItem Content=”Item 1”/> 

<ListBoxItem>Item 2</ListBoxItem> 

<ListBoxItem> 

<ListBoxItem.Content>

Item 3 

</ListBoxItem.Content> 

</ListBoxItem>

</ListBox> 

</StackPanel>

TABLE 2.1 The XAML Node Stream Produced by XamlXmlReader When Reading Listing 2.2 

Line Line
XamlNodeType Data Number Position

NamespaceDeclaration Namespace=”…/xaml/presentation”, 1 13
Prefix=””

NamespaceDeclaration Namespace=”…/xaml”, Prefix=”x” 2 13
StartObject Type=StackPanel 1 2

StartMember Member=Children of type 4 4
UIElementCollection

GetObject null 4 4

StartMember Member=_Items, a XamlDirective 4 4
of type List<Object>

StartObject Type=Button 4 4
StartMember Member=Name of type String 4 11

Value Value=”okButton” 4 11
EndMember null 4 11

StartMember Member=Click of type 4 27
RoutedEventHander (IsEvent=true)

Value Value=”okButton_Click” 4 27
EndMember null 4 27
StartMember Member=Content of type Object 4 54

Value Value=”OK” 4 54
EndMember null 4 54

EndObject null 4 54
StartObject Type=Button 5 4

StartMember Member=Name, a XamlDirective of 5 11
type String

Value Value=”cancelButton” 5 11

Fun with XAML Readers and Writers 59
2

  From the Library of Wow! eBook



ptg

TABLE 2.1 Continued

Line Line
XamlNodeType Data Number Position

EndMember null 5 11
StartMember Member=Content of type Object 5 41

Value Value=”Cancel” 5 41
EndMember null 5 41

EndObject null 5 41
StartObject Type=ListBox 6 4

StartMember Member=Items of type 8 6
ItemCollection

GetObject null 8 6

StartMember Member=_Items, a XamlDirective 8 6
of type List<Object>

StartObject Type=ListBoxItem 8 6
StartMember Member=Content of type Object 8 18

Value Value=”Item 1” 8 18
EndMember null 8 18

EndObject null 9 6
StartObject Type=ListBoxItem 9 6

StartMember Member=Content of type Object 9 26
Value Value=”Item 2” 9 26

EndMember null 9 26
EndObject null 9 26
StartObject Type=ListBoxItem 10 6

StartMember Member=Content of type Object 11 6
Value Value=”Item 3” 13 7

EndMember null 13 7
EndObject null 14 7

EndMember null 15 5
EndObject null 15 5

EndMember null 15 5
EndObject null 15 5

EndMember null 16 3
EndObject null 16 3

EndMember null 16 3
EndObject null 16 3

Notice that all three ListBoxItem elements are represented identically in Table 2.1, as are 
the two Button elements, although it is possible to tell the difference between the use of 
Button’s Name property and the use of the x:Name XAML directive. (In the latter case, 
XamlMember is a derived XamlDirective type whose IsDirective property returns true.)

CHAPTER 2 XAML Demystified60

  From the Library of Wow! eBook



ptg

Also notice that GetObject, EndMember, and EndObject are not accompanied with any 
additional information; relevant information must be derived from the rest of the node 
stream. Because of this, interesting transformations to XAML often involve maintaining 
your own stack with data related to objects and/or members.

Fun with XAML Readers and Writers 61
2

Markup Compatibility

The markup compatibility XML namespace 
(http://schemas.openxmlformats.org/markup-compatibility/2006, typically used with 
an mc prefix) contains an Ignorable attribute that instructs XAML processors to ignore all 
elements/attributes in specified namespaces if they can’t be resolved to their .NET 
types/members. (The namespace also has a ProcessContent attribute that overrides 
Ignorable for specific types inside the ignored namespaces.)

Expression Blend takes advantage of this feature to do things like add design-time proper-
ties to XAML content that can be ignored at runtime. Here’s an example:

<StackPanel xmlns=”http://schemas.microsoft.com/client/2007” 

xmlns:d=”http://schemas.microsoft.com/expression/blend/2008” 

xmlns:mc=”http://schemas.openxmlformats.org/markup-compatibility/2006” 

mc:Ignorable=”d” d:DesignWidth=”100” d:DesignHeight=”100”> 

… 

</StackPanel>

mc:Ignorable can be given a space-delimited list of namespaces, and mc:ProcessContent 
can be given a space-delimited list of elements.

When XamlXmlReader encounters ignorable content that can’t be resolved, it doesn’t report 
any nodes for it. If the ignorable content can be resolved, it will be reported normally. So 
consumers don’t need to do anything special to handle markup compatibility correctly.

D I G G I N G  D E E P E R

Writing to Live Objects
The XAMLPAD2009 sample doesn’t convert XAML to live objects as-is; it makes a few 
modifications to the XAML content to ensure that a wider range of WPF XAML can be 
rendered successfully. Specifically, it makes two modifications to the content:

. It removes all event members, because unless the handler can be located, 
XamlObjectWriter would fail with an exception explaining, for example, “Failed to 
create a ‘Click’ from the text ‘button_Click’.” Note that XamlObjectWriter has a 
RootObjectInstance property that could be set to an object with appropriate event 
handlers, but stripping out the events is the easiest approach, and usually just fine 
for a XAML experimentation tool. It also removes x:Class because it’s not valid for 
loose XAML.

. It converts any Window element into a Page element instead. Chapter 7 covers these 
elements in depth, but the bottom line is that a Window element cannot be a child 
of another element, and XAMLPAD2009 always attempts to attach the root instance 
as a child of its own user interface. There are other ways to handle this (such as

  From the Library of Wow! eBook

http://schemas.openxmlformats.org/markup-compatibility/2006


ptg

detecting when the root is a Window element and launching it on its own), but swap-
ping one XAML node with another makes for an instructive sample.

Listing 2.3 shows the custom node loop that makes these two customizations while trans-
forming the content from an XML string to live objects.

LISTING 2.3 A Custom Node Loop That Converts a XAML XML String to a Live Object Graph 
with Modifications

public static object ConvertXmlStringToMorphedObjectGraph(string xmlString) 

{

// String -> TextReader -> XamlXmlReader 

using (TextReader textReader = new StringReader(xmlString)) 

using (XamlXmlReader reader = new XamlXmlReader(textReader, 

System.Windows.Markup.XamlReader.GetWpfSchemaContext())) 

using (XamlObjectWriter writer = new XamlObjectWriter(reader.SchemaContext)) 

{

// Node loop 

while (reader.Read()) 

{

// Skip events and x:Class 

if (reader.NodeType == XamlNodeType.StartMember &&

reader.Member.IsEvent || reader.Member == XamlLanguage.Class) 

{

reader.Skip(); 

}

if (reader.NodeType == XamlNodeType.StartObject && 

reader.Type.UnderlyingType == typeof(Window))

{

// Turn a Window into a Page 

writer.WriteStartObject(new XamlType(typeof(Page),

reader.SchemaContext)); 

} 

else 

{

// Otherwise, just write the node as-is 

writer.WriteNode(reader);

}

}

// When XamlObjectWriter is done, this is the root object instance 

return writer.Result;

} 

}

CHAPTER 2 XAML Demystified62

  From the Library of Wow! eBook



ptg

Listing 2.3 leverages XamlReader’s Skip method to skip event members (IsEvent = true) 
and any x:Class members. (The latter is checked with help from the handy 
System.Xaml.XamlLanguage static class, which exposes all XamlDirectives and the built-in 
system XamlTypes as read-only properties for easy comparison.) When the reader is on a 
StartObject or StartMember node, Skip advances the stream to the node after the match-
ing EndObject/EndMember (skipping any nested objects/members, which is exactly what 
we want). When the reader is on any other node type, calling Skip is equivalent to calling 
Read again: It advances to the next node.

For the Window/Page replacement, only the StartObject node needs to be swapped out. 
Recall that an EndObject node doesn’t have any data associated with it; its meaning 
depends on the rest of the node stream. So an EndObject node for Window can happily 
become an EndObject node for Page. This replacement doesn’t properly transfer Window’s 
members to the Page, however, because they are resolved on the Window by the reader 
before the node loop begins. The source code accompanying this book does the extra 
work of creating a new member on the Page for each applicable member set on the 
Window.

You’ve seen from Listings 2.1 and 2.3 that XamlObjectWriter.Result is set to the root 
object instance when the node loop is finished. More specifically, every time an 
EndObject node is successfully written, XamlObjectWriter.Result is set to the live object 
instance corresponding to that object. Because the last EndObject written to the node 
stream belongs to the root node, the final value of Result is the root.

Writing to XML
Writing WPF objects to XAML in XML form is a common activity. Because 
XamlObjectReader doesn’t currently support WPF objects, Listing 2.4 demonstrates 
converting from XML to XML by pairing up XamlXmlReader with XamlXmlWriter. This 
may sound nonsensical, but the combination produces a simple “XAML scrubber” that 
normalizes the input XML to produce consistently represented, consistently spaced XML 
with comments removed.

LISTING 2.4 A “XAML Scrubber” That Normalizes the Input XML

public static string RewriteXaml(string xmlString) 

{

// String -> TextReader -> XamlXmlReader 

using (TextReader textReader = new StringReader(xmlString)) 

using (XamlXmlReader reader = new XamlXmlReader(textReader)) 

// TextWriter -> XmlWriter -> XamlXmlWriter 

using (StringWriter textWriter = new StringWriter()) 

using (XmlWriter xmlWriter = XmlWriter.Create(textWriter,

new XmlWriterSettings { Indent = true, OmitXmlDeclaration = true })) 

using (XamlXmlWriter writer = new XamlXmlWriter(xmlWriter,

reader.SchemaContext)) 

{

Fun with XAML Readers and Writers 63
2

  From the Library of Wow! eBook



ptg

LISTING 2.4 Continued

// Simple node loop 

while (reader.Read()) 

{

writer.WriteNode(reader); 

}

return textWriter.ToString(); 

}

}

Just about all the work is setting up the reader and writer. XamlXmlReader is constructed 
the same way as in the previous listing. XamlXmlWriter is constructed from an XmlWriter, 
which is constructed from a System.IO.StringWriter. (XmlWriter could alternatively be 
constructed with a StringBuilder.) The use of XmlWriter enables pretty printing (each 
element on a separate line with appropriate indenting) as well as the removal of an 
unnecessary XML declaration (<?xml version=”1.0” encoding=”utf-16”?>). If you don’t 
care about these things and are fine with all the content being emitted on the same line, 
you could directly give XamlXmlWriter the StringWriter (because it’s a TextWriter) rather 
than wrap it in the XmlWriter:

// TextWriter -> XamlXmlWriter 

using (StringWriter textWriter = new StringWriter()) 

using (XamlXmlWriter writer = new XamlXmlWriter(textWriter,

reader.SchemaContext)) 

{

… 

}

XamlServices
To minimize the amount of code you need to write, the most common uses for XAML 
readers and writers are packaged in a set of easy-to-use static methods in a class called 
System.Xaml.XamlServices. It has the following methods:

. Load—Depending on the overload, you can give it a filename string, a Stream, a 
TextReader, an XmlReader, or a XamlReader, and it returns the root of the corre-
sponding live object graph, like the older XamlReader.Load API. Internally, Load uses 
XamlXmlReader and XamlObjectWriter to do its work, as in Listing 2.1.

. Parse—Like Load, Parse returns the root of a live object graph, but it accepts XAML 
content as a string for input. Internally, it creates a StringReader for the string, 
creates an XmlReader and then a XamlXmlReader so it can call Load. This makes 
Parse just like the ConvertXmlStringToObjectGraph method in Listing 2.1.

. Save—Save takes an object as input and, depending on the overload, returns the 
content as a string, Stream, TextWriter, XmlWriter, or XamlWriter, or even saves the

CHAPTER 2 XAML Demystified64

  From the Library of Wow! eBook



ptg

contents directly to a text file. Internally, Save uses XamlObjectReader and 
XamlXmlWriter (unless you pass in a different XamlWriter). It sets the XmlWriter’s 
Indent and OmitXmlDeclaration properties to true, just like in Listing 2.4.

. Transform—Transform performs a basic node loop with whatever reader and writer 
are passed in.

XamlServices.Transform is actually slightly more sophisticated than the simple node 
loop presented earlier. It preserves line number and line position information if both the 
reader and the writer support the appropriate interfaces to produce and consume it 
(IXamlLineInfo for the reader and IXamlLineInfoConsumer for the writer). Therefore, 
Transform effectively does the following:

public static void Transform(XamlReader reader, XamlWriter writer) 

{

IXamlLineInfo producer = reader as IXamlLineInfo; 

IXamlLineInfoConsumer consumer = writer as IXamlLineInfoConsumer; 

bool transferLineInfo = (producer != null && producer.HasLineInfo &&

consumer != null && consumer.ShouldProvideLineInfo);

// Better node loop 

while (reader.Read()) 

{

// Transfer line info 

if (transferLineInfo && producer.LineNumber > 0)

consumer.SetLineInfo(producer.LineNumber, producer.LinePosition);

writer.WriteNode(reader); 

}

}

Therefore, the node loop from Listing 2.1 could be replaced (and slightly enhanced) by 
replacing the node loop with a call to XamlServices.Transform, as shown in Listing 2.5. 
Of course, the whole ConvertXmlStringToObjectGraph method is unnecessary, as it is a 
duplication of XamlServices.Parse.

LISTING 2.5 A Minor Simplification to Listing 2.1

public static object ConvertXmlStringToObjectGraph(string xmlString) 

{

// String -> TextReader -> XamlXmlReader 

using (TextReader textReader = new StringReader(xmlString)) 

using (XamlXmlReader reader = new XamlXmlReader(textReader, 

System.Windows.Markup.XamlReader.GetWpfSchemaContext())) 

using (XamlObjectWriter writer = new XamlObjectWriter(reader.SchemaContext)) 

{

// The node loop

Fun with XAML Readers and Writers 65
2

  From the Library of Wow! eBook



ptg

LISTING 2.5 Continued

XamlServices.Transform(reader, writer);

// When XamlObjectWriter is done, this is the root object instance 

return writer.Result;

} 

}

CHAPTER 2 XAML Demystified66

Beware of XamlServices gotchas with WPF XAML!

You might expect that you could combine XamlServices.Parse and XamlServices.Save to 
implement the XAML scrubber from Listing 2.4 in an easy, albeit inefficient, manner:

public static string RewriteXaml(string xmlString) 

{

return XamlServices.Save(XamlServices.Parse(xmlString)); 

}

This would be inefficient because internally the string goes through a XamlXmlReader to be 
written to live objects with a XamlObjectWriter (the root of which is returned by 
XamlServices.Parse), and then the hierarchy of objects is read by a XamlObjectReader 
before being written by a XamlXmlWriter into an XmlWriter to produce the final string. The 
intermediate step of transferring to live objects is problematic for more than just perfor-
mance reasons; it requires special treatment in the face of certain XAML such as event 
handlers that need to be attached or an x:Class directive that needs to be resolved.

Even worse than these limitations, the code simply doesn’t work because 
XamlObjectWriter doesn’t currently support WPF objects. Instead, you could use the older 
XamlReader and XamlWriter:

return System.Windows.Markup.XamlWriter.Save( 

System.Windows.Markup.XamlReader.Parse(xmlString));

Or, if you care about pretty printing:

using (StringWriter textWriter = new StringWriter()) 

using (XmlWriter xmlWriter = XmlWriter.Create(textWriter, 

new XmlWriterSettings { Indent = true, OmitXmlDeclaration = true })) 

{

System.Windows.Markup.XamlWriter.Save(

System.Windows.Markup.XamlReader.Parse(xmlString), xmlWriter); 

return textWriter.ToString();

}

But these approaches still suffer from the problems inherent to converting the XAML to live 
objects as an intermediate step.

WA R N I N G

  From the Library of Wow! eBook



ptg

XAML Keywords
The XAML language namespace 
(http://schemas.microsoft.com/winfx/ 
2006/xaml) defines a handful of 
keywords that must be treated specially 
by any XAML compiler or parser. They 
mostly control aspects of how elements 
get exposed to procedural code, but 
several are useful even without any 
procedural code. You’ve already seen 
some of them (such as Key, Name, Class, 
Subclass, and Code), but Table 2.2 lists 
them all. They are listed with the 
conventional x prefix because that is how they usually appear in XAML and in documen-
tation.

TABLE 2.2 Keywords in the XAML Language Namespace, Assuming the Conventional x 
Namespace Prefix

Keyword Valid As Version Meaning

x:AsyncRecords Attribute on root 2006+ Controls the size of asynchronous 
element XAML-loading chunks.

x:Arguments Attribute on or 2009 Specifies an argument (or multiple 
element inside any arguments in the element syntax) to 
element be passed to the element’s construc-

tor. When used with 
x:FactoryMethod, specifies argu-
ment(s) for the factory method.

x:Boolean An element 2009 Represents a System.Boolean.
x:Byte An element 2009 Represents a System.Byte.
x:Char An element 2009 Represents a System.Char.
x:Class Attribute on root 2006+ Defines a class for the root element 

element that derives from the element type, 
optionally prefixed with a .NET name-
space.

XAML Keywords 67
2

The Microsoft XAML Toolkit, available from http://code.msdn.microsoft.com/XAML, builds on 
System.Xaml and provides several compelling features, such as XAML integration into the 
FxCop tool and a XAML Document Object Model (DOM). The XAML DOM is a LINQ-friendly set 
of APIs that enables even easier inspection and modification of XAML content compared 
what the readers and writers in this chapter enable. The toolkit also includes additional 
schema contexts—SilverlightSchemaContext for Silverlight XAML and UISchemaContext 
that provides a common abstraction for WPF XAML and Silverlight XAML.

T I P

Special Attributes Defined by the W3C

In addition to keywords in the XAML 
language namespace, XAML also supports 
two special attributes defined for XML by the 
World Wide Web Consortium (W3C): 
xml:space for controlling whitespace 
parsing and xml:lang for declaring the 
document’s language and culture. The xml 
prefix is implicitly mapped to the standard 
XML namespace: http://www.w3.org/ 
XML/1998/namespace.

D I G G I N G  D E E P E R

  From the Library of Wow! eBook

http://www.w3.org/XML/1998/namespace
http://www.w3.org/XML/1998/namespace
http://code.msdn.microsoft.com/XAML
http://schemas.microsoft.com/winfx/2006/xaml
http://schemas.microsoft.com/winfx/2006/xaml


ptg

TABLE 2.2 Continued 

Keyword Valid As Version Meaning

x:ClassAttributes Attribute on root 2009 Not used by WPF; contains attributes 
element and must be relevant for Windows Workflow 
used with x:Class Foundation activities.

x:ClassModifier Attribute on root 2006+ Defines the visibility of the class 
element and must be specified by x:Class (which is public 
used with x:Class by default). The attribute value must 

be specified in terms of the proce-
dural language being used (for 
example, public or internal for C#).

x:Code Element anywhere in 2006+ Embeds procedural code to be 
XAML, but must be inserted into the class specified by 
used with x:Class x:Class.

x:ConnectionId Attribute 2006+ Not for public use.
x:Decimal An element 2009 Represents a System.Decimal.
x:Double An element 2009 Represents a System.Double.
x:FactoryMethod Attribute on any 2009 Specifies a static method to be called 

element to retrieve the element instance 
instead of its constructor.

x:FieldModifier Attribute on any 2006+ Defines the visibility of the field to be 
nonroot element but generated for the element (which is 
must be used with internal by default). As with 
x:Name (or equivalent) x:ClassModifier, the value must be 

specified in terms of the procedural 
language (for example, public, 
private, … for C#).

x:Int16 An element 2009 Represents a System.Int16.
x:Int32 An element 2009 Represents a System.Int32.
x:Int64 An element 2009 Represents a System.Int64.
x:Key Attribute on an 2006+ Specifies the key for the item when 

element whose added to the parent dictionary.
parent implements 
IDictionary

x:Members Not valid in WPF 2009 Defines additional members for the 
XAML root class specified by x:Class.

x:Name Attribute on any 2006+ Chooses a name for the field to be 
nonroot element but generated for the element, so it can 
must be used with be referenced from procedural code.
x:Class

x:Object An element 2009 Represents a System.Object.
x:Property Not valid in WPF 2009 Defines a property inside an

XAML x:Members element.

CHAPTER 2 XAML Demystified68

  From the Library of Wow! eBook



ptg

TABLE 2.2 Continued 

Keyword Valid As Version Meaning

x:Shared Attribute on any 2006+ Can be set to false to avoid sharing 
element in a the same resource instance in 
ResourceDictionary, multiple places, as explained in 
but only works if Chapter 12.
XAML is compiled

x:Single An element 2009 Represents a System.Single.
x:String An element 2009 Represents a System.String.
x:Subclass Attribute on root 2006+ Specifies a subclass of the x:Class 

element and must be class that holds the content defined 
used with x:Class in XAML, optionally prefixed with a 

.NET namespace (used with 
languages without support for partial 
classes).

x:SynchronousMode Attribute on root 2006+ Specifies whether the XAML content is 
element allowed to be loaded asynchronously.

x:TimeSpan An element 2009 Represents a System.TimeSpan.
x:TypeArguments Attribute on any 2006+ Makes the class generic (for example, 

element in XAML2009, List<T>) with the specified generic 
or attribute on root argument instantiations (for example, 
element that must be List<Int32> or List<String>). Can 
used with x:Class be set to a comma-delimited list of 
in XAML2006 generic arguments, with XML name-

space prefixes for any types not in the 
default namespace.

x:Uid Attribute on any 2006+ Marks an element with an identifier 
element used for localization, as described in 

Chapter 12.
x:Uri An element 2009 Represents a System.Uri.
x:XData Element used as 2006+ An arbitrary XML data island that 

the value for any remains opaque to the XAML parser,
property of type as explained in Chapter 13.
IXmlSerializable

Table 2.3 contains additional items in the XAML language namespace that can be 
confused as keywords but are actually just markup extensions (real .NET classes in the 
System.Windows.Markup namespace). Each class’s Extension suffix is omitted from the 
table because the classes are typically used without the suffix.

XAML Keywords 69
2

  From the Library of Wow! eBook



ptg

TABLE 2.3 Markup Extensions in the XAML Language Namespace, Assuming the 
Conventional x Namespace Prefix

Extension Meaning

x:Array Represents a .NET array. An x:Array element’s children are the elements of 
the array. It must be used with x:Type to define the type of the array.

x:Null Represents a null reference. 
x:Reference A reference to a named element. It has a single positional parameter, which

is the name of the referenced element. 
x:Static References any static property, field, constant, or enumeration value defined 

in procedural code. This can even be a nonpublic member in the same 
assembly, when XAML is compiled. Its Member string must be qualified with 
an XML namespace prefix if the type is not in the default namespace.

x:Type Represents an instance of System.Type, just like the typeof operator in C#. 
Its TypeName string must be qualified with an XML namespace prefix if the 
type is not in the default namespace.

Summary
You have now seen how XAML fits in with WPF and, most importantly, you now have 
the information needed to translate most XAML examples into a language such as C# and 
vice versa. However, because type converters and markup extensions are “black boxes,” a 
straightforward translation is not always going to be obvious. That said, invoking a type 
converter directly from procedural code is always an option if you can’t figure out the 
conversion that the type converter is doing internally! (Many classes with corresponding 
type converters even expose a static Parse method that does the same work, for the sake 
of simpler procedural code.)

I love the fact that simple concepts that could have been treated specially by XAML (such 
as null or a named reference) are expressed using the same markup extension mechanism 
used by third parties. This keeps the XAML language as simple as possible, and it ensures 
that the extensibility mechanism works really well.

As you proceed further with WPF, you might find that some WPF APIs can be a little 
clunky from procedural code because their design is often optimized for XAML use. For 
example, WPF exposes many small building blocks (enabling the rich composition 
described in the previous chapter), so a WPF application generally must create far more 
objects manually than, say, a Windows Forms application. Besides the fact the XAML 
excels at expressing deep hierarchies of objects concisely, the WPF team spent more time 
implementing features to effectively hide intermediate objects in XAML (such as type 
converters) rather than features to hide them from procedural code (such as constructors 
that create inner objects on your behalf).

Most people understand the benefit of WPF having the separate declarative model 
provided by XAML, but some lament XML as the choice of format. The following sections 
are two common complaints and my attempt to debunk them.

CHAPTER 2 XAML Demystified70

  From the Library of Wow! eBook



ptg

Complaint 1: XML Is Too Verbose to Type
This is true: Almost nobody enjoys typing lots of XML, but that’s where tools come in. 
Tools such as IntelliSense and visual designers can spare you from typing a single angle 
bracket! The transparent and well-specified nature of XML enables you to easily integrate 
new tools into the development process (creating a XAML exporter for your favorite tool, 
for example) and also enables easy hand-tweaking or troubleshooting.

In some areas of WPF—complicated paths and shapes, 3D models, and so on—typing 
XAML by hand isn’t even practical. In fact, the trend from when XAML was first intro-
duced in beta form has been to remove some of the handy human-typable shortcuts in 
favor of a more robust and extensible format that can be supported well by tools. But I 
still believe that being familiar with XAML and seeing the WPF APIs through both proce-
dural and declarative perspectives is the best way to learn the technology. It’s like under-
standing how HTML works without relying on a visual tool.

Complaint 2: XML-Based Systems Have Poor Performance
XML is about interoperability, not about an efficient representation of data. So, why 
should most WPF applications be saddled with a bunch of data that is relatively large and 
slow to parse?

The good news is that in a normal WPF scenario, XAML is compiled into BAML, so you 
don’t pay the full penalties of size and parsing performance at runtime. BAML is both 
smaller in size than the original XAML and optimized for efficient use at runtime. 
Performance pitfalls from XML are therefore limited to development time, which is when 
the benefits of XML are needed the most.

Summary 71
2

  From the Library of Wow! eBook



ptg

This page intentionally left blank 

  From the Library of Wow! eBook



ptg

CHAPTER 3

WPF Fundamentals

To finish Part I, “Background,” and before moving on to 
the really fun topics, it’s helpful to examine some of the 
main concepts that WPF introduces above and beyond 
what .NET programmers are already familiar with. The 
topics in this chapter are some of the main culprits respon-
sible for WPF’s notoriously steep learning curve. By famil-
iarizing yourself with these concepts now, you’ll be able to 
approach the rest of this book (or any other WPF docu-
mentation) with confidence.

Some of this chapter’s concepts are brand new (such as 
logical and visual trees), but others are just extensions of 
concepts that should be quite familiar (such as properties). 
As you learn about each one, you’ll see how to apply it to a 
very simple piece of user interface that most programs 
need—an About dialog.

A Tour of the Class Hierarchy
WPF’s classes have a very deep inheritance hierarchy, so it 
can be hard to get your head wrapped around the signifi-
cance of various classes and their relationships. A handful 
of classes are fundamental to the inner workings of WPF 
and deserve a quick explanation before we get any further 
in the book. Figure 3.1 shows these important classes and 
their relationships.

These 12 classes have the following significance:

. Object—The base class for all .NET classes and the 
only class in the figure that isn’t WPF specific.

IN THIS CHAPTER

. A Tour of the Class Hierarchy

. Logical and Visual Trees

. Dependency Properties

  From the Library of Wow! eBook



ptg

FIGURE 3.1 The core classes that form the foundation of WPF.

. DispatcherObject—The base class meant for any object that wishes to be accessed 
only on the thread that created it. Most WPF classes derive from DispatcherObject 
and are therefore inherently thread-unsafe. The Dispatcher part of the name refers 
to WPF’s version of a Win32-like message loop, discussed further in Chapter 7, 
“Structuring and Deploying an Application.”

. DependencyObject—The base class for any object that can support dependency 
properties, one of the main topics in this chapter.

. Freezable—The base class for objects that can be “frozen” into a read-only state for 
performance reasons. Freezables, once frozen, can be safely shared among multiple 
threads, unlike all other DispatcherObjects. Frozen objects can never be unfrozen, 
but you can clone them to create unfrozen copies. Most Freezables are graphics 
primitives such as brushes, pens, and geometries or animation classes.

. Visual—The base class for all objects that have their own 2D visual representation. 
Visuals are discussed in depth in Chapter 15, “2D Graphics.”

. UIElement—The base class for all 2D visual objects with support for routed events, 
command binding, layout, and focus. These features are discussed in Chapter 5, 
“Layout with Panels,” and Chapter 6, “Input Events: Keyboard, Mouse, Stylus, and 
Multi-Touch.”

. Visual3D—The base class for all objects that have their own 3D visual representa-
tion. Visual3Ds are discussed in depth in Chapter 16, “3D Graphics.”

. UIElement3D—The base class for all 3D visual objects with support for routed events, 
command binding, and focus, also discussed in Chapter 16.

. ContentElement—A base class similar to UIElement but for document-related pieces 
of content that don’t have rendering behavior on their own. Instead,

CHAPTER 3 WPF Fundamentals74

2D 3D Documents

Object

DispatcherObject

DependencyObject

Freezable Visual Visual3D

UIElement

FrameworkElement

Control

UIElement3D ContentElement

FrameworkContentElement

  From the Library of Wow! eBook



ptg

ContentElements are hosted in a Visual-derived class to be rendered on the screen. 
Each ContentElement often requires multiple Visuals to render correctly (spanning 
lines, columns, and pages).

. FrameworkElement—The base class that adds support for styles, data binding, 
resources, and a few common mechanisms for Windows-based controls, such as 
tooltips and context menus.

. FrameworkContentElement—The analog to FrameworkElement for content. Chapter 
11, “Images, Text, and Other Controls,” examines the FrameworkContentElements in 
WPF.

. Control—The base class for familiar controls such as Button, ListBox, and 
StatusBar. Control adds many properties to its FrameworkElement base class, such 
as Foreground, Background, and FontSize, as well as the ability to be completely 
restyled. Part III, “Controls,” examines WPF’s controls in depth.

Throughout the book, the simple term element is used to refer to an object that derives 
from UIElement or FrameworkElement, and sometimes ContentElement or 
FrameworkContentElement. The distinction between UIElement and FrameworkElement or 
between ContentElement and FrameworkContentElement is not important because WPF 
doesn’t ship any other public subclasses of UIElement and ContentElement.

Logical and Visual Trees
XAML is natural for representing a user interface because of its hierarchical nature. In 
WPF, user interfaces are constructed from a tree of objects known as a logical tree.

Listing 3.1 defines the beginnings of a hypothetical About dialog, using a Window as the 
root of the logical tree. The Window has a StackPanel child element (described in Chapter
5) containing a few simple controls plus another StackPanel that contains Buttons.

LISTING 3.1 A Simple About Dialog in XAML

<Window xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation” 

Title=”About WPF 4 Unleashed” SizeToContent=”WidthAndHeight” 

Background=”OrangeRed”> 

<StackPanel>

<Label FontWeight=”Bold” FontSize=”20” Foreground=”White”>

WPF 4 Unleashed 

</Label> 

<Label>© 2010 SAMS Publishing</Label> 

<Label>Installed Chapters:</Label> 

<ListBox>

<ListBoxItem>Chapter 1</ListBoxItem> 

<ListBoxItem>Chapter 2</ListBoxItem>

</ListBox>

Logical and Visual Trees 75
3

  From the Library of Wow! eBook



ptg

<StackPanel Orientation=”Horizontal” HorizontalAlignment=”Center”> 

<Button MinWidth=”75” Margin=”10”>Help</Button> 

<Button MinWidth=”75” Margin=”10”>OK</Button>

</StackPanel> 

<StatusBar>You have successfully registered this product.</StatusBar>

</StackPanel> 

</Window>

Figure 3.2 shows the rendered dialog (which you can 
easily produce by pasting the content of Listing 3.1 
into a tool such as the XAMLPAD2009 sample from 
the previous chapter), and Figure 3.3 illustrates the 
logical tree for this dialog.

Note that a logical tree exists even for WPF user inter-
faces that aren’t created in XAML. Listing 3.1 could be 
implemented entirely in procedural code, and the 
logical tree would be identical.

The logical tree concept is straightforward, but why 
should you care about it? Because just about every 
aspect of WPF (properties, events, resources, and so on) 
has behavior tied to the logical tree. For example, property values are sometimes propa-
gated down the tree to child elements automatically, and raised events can travel up or 
down the tree. This behavior of property values is discussed later in this chapter, and this 
behavior of events is discussed in Chapter 6.

CHAPTER 3 WPF Fundamentals76

LISTING 3.1 Continued

FIGURE 3.2 The rendered 
dialog from Listing 3.1.

String String

String String

String

Label Label Label

ListBoxItem ListBoxItem

String String

Button Button

ListBox StackPanel StatusBar

String

Window

StackPanel

FIGURE 3.3 The logical tree for Listing 3.1.

The logical tree exposed by WPF is a simplification of what is actually going on when the 
elements are rendered. The entire tree of elements actually being rendered is called the

  From the Library of Wow! eBook



ptg

visual tree. You can think of the visual tree as an expansion of a logical tree, in which 
nodes are broken down into their core visual components. Rather than leaving each 
element as a “black box,” a visual tree exposes the visual implementation details. For 
example, although a ListBox is logically a single control, its default visual representation 
is composed of more primitive WPF elements: a Border, two ScrollBars, and more.

Not all logical tree nodes appear in the 
visual tree; only the elements that derive 
from System.Windows.Media.Visual or 
System.Windows.Media.Visual3D are 
included. Other elements (and simple 
string content, as in Listing 3.1) are not 
included because they don’t have inher-
ent rendering behavior of their own.

Figure 3.4 illustrates the default visual tree for Listing 3.1 when running on Windows 7 
with the Aero theme. This diagram exposes some inner components of the user interface 
that are currently invisible, such as the ListBox’s two ScrollBars and each Label’s Border. 
It also reveals that Button, Label, and ListBoxItem are all composed of the same elements, 
except Button uses an obscure ButtonChrome element rather than Border. (These controls 
have other visual differences as the result of different default property values. For example, 
Button has a default Margin of 10 on all sides, whereas Label has a default Margin of 0.)

Because they enable you to peer inside the deep composition of WPF elements, visual trees 
can be surprisingly complex. Fortunately, although visual trees are an essential part of the 
WPF infrastructure, you often don’t need to worry about them unless you’re radically 
restyling controls (covered in Chapter 14, “Styles, Templates, Skins, and Themes”) or 
doing low-level drawing (covered in 
Chapter 15). Writing code that depends 
on a specific visual tree for a Button, for 
example, breaks one of WPF’s core 
tenets—the separation of look and logic.
When someone restyles a control such as 
Button using the techniques described in 
Chapter 14, its entire visual tree is 
replaced with something that could be 
completely different.

However, you can easily traverse both the logical and visual trees using the somewhat 
symmetrical System.Windows.LogicalTreeHelper and System.Windows.Media. 
VisualTreeHelper classes. Listing 3.2 contains a code-behind file for Listing 3.1 that, 
when run under a debugger, outputs a simple depth-first representation of both the logical 
and visual trees for the About dialog. (This requires adding x:Class=”AboutDialog” and 
the corresponding xmlns:x directive to Listing 3.1 in order to hook it up to this procedural 
code.)

Logical and Visual Trees 77
3

Some lightweight XAML viewers, such as the 
XamlPadX tool mentioned in the preceding 
chapter, have functionality for exploring the 
visual tree (and property values) for the 
objects that it renders from XAML.

T I P

Avoid writing code that depends on a 
specific visual tree!

Whereas a logical tree is static without 
programmer intervention (such as dynami-
cally adding/removing elements), a visual 
tree can change simply because a user 
switches to a different Windows theme!

WA R N I N G

  From the Library of Wow! eBook



ptg

FIGURE 3.4 The visual tree for Listing 3.1, with logical tree nodes emphasized.

LISTING 3.2 Walking and Printing the Logical and Visual Trees

using System; 

using System.Diagnostics; 

using System.Windows; 

using System.Windows.Media;

public partial class AboutDialog : Window 

{

public AboutDialog() 

{

InitializeComponent(); 

PrintLogicalTree(0, this);

}

protected override void OnContentRendered(EventArgs e) 

{

base.OnContentRendered(e);

PrintVisualTree(0, this);

CHAPTER 3 WPF Fundamentals78

AdornerLayerItemsPresenter

Window

StackPanel

Border

AdornerDecorator

AdornerLayer

Label

Border

ContentPresenter

TextBlock

Label

Border

ContentPresenter

TextBlock

Button

ButtonChrome

ContentPresenter

TextBlock

Button

ButtonChrome

ContentPresenter

TextBlock

Border

ItemsPresenter

DockPanel

StatusBarItem

Border

ContentPresenter

TextBlock

Border

ContentPresenter

TextBlock

Border

ContentPresenter

TextBlock

Label

Border

ContentPresenter

TextBlock

ListBox StackPanel StatusBar

Border

ScrollViewer

Grid

ListBoxItem ListBoxItem

AdornerLayerContentPresenter

ScrollContentPresenter

VirtualizingStackPanel

ScrollBar ScrollBarRectangle

  From the Library of Wow! eBook



ptg

}

void PrintLogicalTree(int depth, object obj)

{

// Print the object with preceding spaces that represent its depth 

Debug.WriteLine(new string(‘ ‘, depth) + obj);

// Sometimes leaf nodes aren’t DependencyObjects (e.g. strings) 

if (!(obj is DependencyObject)) return;

// Recursive call for each logical child 

foreach (object child in LogicalTreeHelper.GetChildren(

obj as DependencyObject))

PrintLogicalTree(depth + 1, child); 

}

void PrintVisualTree(int depth, DependencyObject obj)

{

// Print the object with preceding spaces that represent its depth 

Debug.WriteLine(new string(‘ ‘, depth) + obj);

// Recursive call for each visual child 

for (int i = 0; i < VisualTreeHelper.GetChildrenCount(obj); i++)

PrintVisualTree(depth + 1, VisualTreeHelper.GetChild(obj, i)); 

}

}

When calling these methods with a depth of 0 and the current Window instance, the result 
is a text-based tree with exactly the same nodes shown in Figures 3.2 and 3.3. Although 
the logical tree can be traversed within Window’s constructor, the visual tree is empty until 
the Window undergoes layout at least once. That is why PrintVisualTree is called within 
OnContentRendered, which doesn’t get called until after layout occurs.

Logical and Visual Trees 79

LISTING 3.2 Continued

3

Visual trees like the one represented in Figure 3.4 are often referred to simply as element 
trees, because they encompass both elements in the logical tree and elements specific to 
the visual tree. The term visual tree is then used to describe any subtree that contains 
visual-only (illogical?) elements. For example, most people would say that Window’s default 
visual tree consists of a Border, an AdornerDecorator, two AdornerLayers, a 
ContentPresenter, and nothing more. In Figure 3.4, the top-most StackPanel is generally 
not considered to be the visual child of the ContentPresenter, despite the fact that 
VisualTreeHelper presents it as one.

T I P

  From the Library of Wow! eBook



ptg

Navigating either tree can sometimes be 
done with instance methods on the 
elements themselves. For example, the 
Visual class contains three protected 
members (VisualParent, 
VisualChildrenCount, and 
GetVisualChild) for examining its visual 
parent and children. FrameworkElement, the common base class for controls such as 
Button and Label, and its peer FrameworkContentElement both define a public Parent 
property representing the logical parent and a protected LogicalChildren property for the 
logical children. Subclasses of these two classes often publicly expose their logical chil-
dren in a variety of ways, such as in a public Children collection. Some classes, such as 
Button and Label, expose a Content property and enforce that the element can have only 
one logical child.

Dependency Properties
WPF introduces a new type of property called a dependency property that is used through-
out the platform to enable styling, automatic data binding, animation, and more. You 
might first meet this concept with skepticism, as it complicates the picture of .NET types 
having simple fields, properties, methods, and events. But when you understand the 
problems that dependency properties solve, you will likely accept them as a welcome 
addition.

A dependency property depends on multiple providers for determining its value at any 
point in time. These providers could be an animation continuously changing its value, a 
parent element whose property value propagates down to its children, and so on. 
Arguably the biggest feature of a dependency property is its built-in ability to provide 
change notification.

The motivation for adding such intelligence to properties is to enable rich functionality 
directly from declarative markup. The key to WPF’s declarative-friendly design is its heavy 
use of properties. Button, for example, has 111 public properties (98 of which are inher-
ited from Control and its base classes)! Properties can be easily set in XAML (directly or 
by using a design tool) without any procedural code. But without the extra plumbing in 
dependency properties, it would be hard for the simple action of setting properties to get 
the desired results without the need to write additional code.

In this section, we briefly look at the implementation of a dependency property to make 
this discussion more concrete, and then we dig deeper into some of the ways that depen-
dency properties add value on top of plain .NET properties:

. Change notification

. Property value inheritance

. Support for multiple providers

CHAPTER 3 WPF Fundamentals80

In the Visual Studio 2010 debugger, you can 
click the little magnifying glass next to an 
instance of a Visual-derived variable to 
navigate and visualize the visual tree.

T I P

  From the Library of Wow! eBook



ptg

Understanding most of the nuances of dependency properties is usually important only 
for custom control authors. However, even casual users of WPF need to be aware of what 
dependency properties are and how they work. For example, you can only style and 
animate dependency properties. After working with WPF for a while, you might find 
yourself wishing that all properties would be dependency properties!

A Dependency Property Implementation
In practice, dependency properties are just normal .NET properties hooked into some 
extra WPF infrastructure. This is all accomplished via WPF APIs; no .NET languages (other 
than XAML) have an intrinsic understanding of a dependency property.

Listing 3.3 demonstrates how Button effectively implements one of its dependency prop-
erties, called IsDefault.

LISTING 3.3 A Standard Dependency Property Implementation

public class Button : ButtonBase 

{

// The dependency property 

public static readonly DependencyProperty IsDefaultProperty;

static Button() 

{

// Register the property 

Button.IsDefaultProperty = DependencyProperty.Register(“IsDefault”,

typeof(bool), typeof(Button), 

new FrameworkPropertyMetadata(false, 

new PropertyChangedCallback(OnIsDefaultChanged)));

… 

}

// A .NET property wrapper (optional) 

public bool IsDefault 

{

get { return (bool)GetValue(Button.IsDefaultProperty); } 

set { SetValue(Button.IsDefaultProperty, value); }

}

// A property changed callback (optional) 

private static void OnIsDefaultChanged(

DependencyObject o, DependencyPropertyChangedEventArgs e) { … } 

…

}

The static IsDefaultProperty field is the actual dependency property, represented by the 
System.Windows.DependencyProperty class. By convention, all DependencyProperty fields

Dependency Properties 81
3

  From the Library of Wow! eBook



ptg

are public, static, and have a Property suffix. Several pieces of infrastructure require that 
you follow this convention: localization tools, XAML loading, and more.

Dependency properties are usually created by calling the static
DependencyProperty.Register method, which requires a name (IsDefault), a property 
type (bool), and the type of the class claiming to own the property (Button). Optionally 
(via different overloads of Register), you can pass metadata that customizes how the 
property is treated by WPF, as well as callbacks for handling property value changes, 
coercing values, and validating values. Button calls an overload of Register in its static 
constructor to give the dependency property a default value of false and to attach a dele-
gate for change notifications.

Finally, the traditional .NET property called IsDefault implements its accessors by calling 
GetValue and SetValue methods inherited from System.Windows.DependencyObject, the 
low-level base class from which all classes with dependency properties must derive. 
GetValue returns the last value passed to SetValue or, if SetValue has never been called, 
the default value registered with the property. The IsDefault .NET property (sometimes 
called a property wrapper in this context) is not strictly necessary; consumers of Button 
could directly call the GetValue/SetValue methods because they are exposed publicly. But 
the .NET property makes programmatic 
reading and writing of the property 
much more natural for consumers, and 
it enables the property to be set via 
XAML. WPF should, but does not, 
provide generic overloads of GetValue 
and SetValue. This is primarily because 
dependency properties were invented 
before .NET generics were widely used.

CHAPTER 3 WPF Fundamentals82

Visual Studio has a snippet called propdp 
that automatically expands into a definition 
of a dependency property, which makes 
defining one much faster than doing all the 
typing yourself!

T I P

.NET property wrappers are bypassed at runtime when setting dependency prop-
erties in XAML!

Although the XAML compiler depends on the property wrapper at compile time, WPF calls the 
underlying GetValue and SetValue methods directly at runtime! Therefore, to maintain parity 
between setting a property in XAML and procedural code, it’s crucial that property wrappers 
not contain any logic in addition to the GetValue/SetValue calls. If you want to add custom 
logic, that’s what the registered callbacks are for. All of WPF’s built-in property wrappers 
abide by this rule, so this warning is for anyone writing a custom class with its own depen-
dency properties.

WA R N I N G

On the surface, Listing 3.3 looks like an overly verbose way of representing a simple 
Boolean property. However, because GetValue and SetValue internally use an efficient 
sparse storage system and because IsDefaultProperty is a static field (rather than an 
instance field), the dependency property implementation saves per-instance memory

  From the Library of Wow! eBook



ptg

compared to a typical .NET property. If all the properties on WPF controls were wrappers 
around instance fields (as most .NET properties are), they would consume a significant 
amount of memory because of all the local data attached to each instance. Having 111 
fields for each Button, 104 fields for each Label, and so forth would add up quickly! 
Instead, 89 out of Button’s 111 public properties are dependency properties, and 82 out of 
Label’s 104 public properties are dependency properties.

The benefits of the dependency property implementation extend to more than just 
memory usage, however. The implementation centralizes and standardizes a fair amount 
of code that property implementers would have to write to check thread access, prompt 
the containing element to be re-rendered, and so on. For example, if a property requires 
its element to be re-rendered when its value changes (such as Button’s Background prop-
erty), it can simply pass the FrameworkPropertyMetadataOptions.AffectsRender flag to 
an overload of DependencyProperty.Register. In addition, this implementation enables 
the three features listed earlier that we’ll now examine one-by-one, starting with change 
notification.

Change Notification
Whenever the value of a dependency property changes, WPF can automatically trigger a 
number of actions, depending on the property’s metadata. These actions can be re-render-
ing the appropriate elements, updating the current layout, refreshing data bindings, and 
much more. One of the most interesting features enabled by this built-in change notifica-
tion is property triggers, which enable you to perform your own custom actions when a 
property value changes, without writing any procedural code.

For example, imagine that you want the text in each Button from the About dialog in 
Listing 3.1 to turn blue when the mouse pointer hovers over it. Without property triggers, 
you can attach two event handlers to each Button, one for its MouseEnter event and one 
for its MouseLeave event:

<Button MouseEnter=”Button_MouseEnter” MouseLeave=”Button_MouseLeave”

MinWidth=”75” Margin=”10”>Help</Button> 

<Button MouseEnter=”Button_MouseEnter” MouseLeave=”Button_MouseLeave”

MinWidth=”75” Margin=”10”>OK</Button>

These two handlers could be implemented in a C# code-behind file as follows:

// Change the foreground to blue when the mouse enters the button 

void Button_MouseEnter(object sender, MouseEventArgs e) 

{

Button b = sender as Button; 

if (b != null) b.Foreground = Brushes.Blue;

}

// Restore the foreground to black when the mouse exits the button 

void Button_MouseLeave(object sender, MouseEventArgs e) 

{

Dependency Properties 83
3

  From the Library of Wow! eBook



ptg

Button b = sender as Button; 

if (b != null) b.Foreground = Brushes.Black;

}

With a property trigger, however, you can accomplish this same behavior purely in
XAML. The following concise Trigger object is just about all you need:

<Trigger Property=”IsMouseOver” Value=”True”> 

<Setter Property=”Foreground” Value=”Blue”/>

</Trigger>

This trigger can act on Button’s IsMouseOver property, which becomes true at the same 
time the MouseEnter event is raised and false at the same time the MouseLeave event is 
raised. Note that you don’t have to worry about reverting Foreground to black when 
IsMouseOver changes to false. This is automatically done by WPF!

The only trick is assigning this Trigger to each Button. Unfortunately, because of a 
confusing limitation, you can’t apply property triggers directly to elements such as 
Button. You can apply them only inside a Style object, so an in-depth examination of 
property triggers is saved for Chapter 14. In the meantime, to experiment with property 
triggers, you can apply the preceding Trigger to a Button by wrapping it in a few inter-
mediate XML elements, as follows:

<Button MinWidth=”75” Margin=”10”> 

<Button.Style>

<Style TargetType=”{x:Type Button}”> 

<Style.Triggers>

<Trigger Property=”IsMouseOver” Value=”True”> 

<Setter Property=”Foreground” Value=”Blue”/>

</Trigger> 

</Style.Triggers> 

</Style>

</Button.Style>

OK 

</Button>

Property triggers are just one of three types of triggers supported by WPF. A data trigger is a 
form of property trigger that works for all .NET properties (not just dependency proper-
ties), also covered in Chapter 14. An event trigger enables you to declaratively specify 
actions to take when a routed event (covered in Chapter 6) is raised. Event triggers always 
involve working with animations or sounds, so they aren’t covered until Chapter 17, 
“Animation.”

CHAPTER 3 WPF Fundamentals84

  From the Library of Wow! eBook



ptg

Property Value Inheritance
The term property value inheritance (or prop-
erty inheritance for short) doesn’t refer to 
traditional object-oriented class-based inheri-
tance but rather the flowing of property 
values down the element tree. A simple 
example of this can be seen in Listing 3.4, 
which updates the Window from Listing 3.1 
by explicitly setting its FontSize and 
FontStyle dependency properties. Figure 3.5 
shows the result of this change. (Notice that 
the Window automatically resizes to fit all the 
content thanks to its slick SizeToContent 
setting!)

LISTING 3.4 The About Dialog with Font 
Properties Set on the Root Window

<Window xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation” 

Title=”About WPF 4 Unleashed” SizeToContent=”WidthAndHeight” 

FontSize=”30” FontStyle=”Italic”

Background=”OrangeRed”> 

<StackPanel>

<Label FontWeight=”Bold” FontSize=”20” Foreground=”White”>

WPF 4 Unleashed 

</Label> 

<Label>© 2010 SAMS Publishing</Label> 

<Label>Installed Chapters:</Label> 

<ListBox>

<ListBoxItem>Chapter 1</ListBoxItem> 

<ListBoxItem>Chapter 2</ListBoxItem>

</ListBox> 

<StackPanel Orientation=”Horizontal” HorizontalAlignment=”Center”>

<Button MinWidth=”75” Margin=”10”>Help</Button> 

<Button MinWidth=”75” Margin=”10”>OK</Button>

</StackPanel>

Dependency Properties 85
3

Don’t be fooled by an element’s Triggers collection!

FrameworkElement’s Triggers property is a read/write collection of TriggerBase items 
(the common base class for all three types of triggers), so it looks like an easy way to attach 
property triggers to controls such as Button. Unfortunately, this collection can only contain 
event triggers, so its name and type are misleading. Attempting to add a property trigger (or 
data trigger) to the collection causes an exception to be thrown at runtime.

WA R N I N G

FIGURE 3.5 The About dialog with
FontSize and FontStyle set on the 
root Window.

  From the Library of Wow! eBook



ptg

<StatusBar>You have successfully registered this product.</StatusBar> 

</StackPanel>

</Window>

For the most part, these two settings flow all the way down the tree and are inherited by 
children. This affects even the Buttons and ListBoxItems, which are three levels down the 
logical tree. The first Label’s FontSize does not change because it is explicitly marked 
with a FontSize of 20, overriding the inherited value of 30. The inherited FontStyle 
setting of Italic affects all Labels, ListBoxItems, and Buttons, however, because none of 
them have this set explicitly.

Notice that the text in the StatusBar is unaffected by either of these values, despite the 
fact that it supports these two properties just like the other controls. The behavior of 
property value inheritance can be subtle in cases like this for two reasons:

. Not every dependency property participates in property value inheritance. 
(Internally, dependency properties can opt in to inheritance by passing 
FrameworkPropertyMetadataOptions.Inherits to DependencyProperty.Register.)

. There may be other higher-priority sources setting the property value, as explained 
in the next section.

In this case, the latter reason is to blame. A few controls, such as StatusBar, Menu, and 
ToolTip, internally set their font properties to match current system settings. This way, 
users get the familiar experience of controlling their font via Control Panel. The result can 
be confusing, however, because such controls end up “swallowing” any inheritance from 
proceeding further down the element tree. For example, if you add a Button as a logical 
child of the StatusBar in Listing 3.4, its FontSize and FontStyle would be the default 
values of 12 and Normal, respectively, unlike the other Buttons outside of the StatusBar.

CHAPTER 3 WPF Fundamentals86

LISTING 3.4 Continued

Property Value Inheritance in Additional Places

Property value inheritance was originally designed to operate on the element tree, but it has 
been extended to work in a few other contexts as well. For example, values can be passed 
down to certain elements that look like children in the XML sense (because of XAML’s prop-
erty element syntax) but are not children in terms of the logical or visual trees. These 
pseudochildren can be an element’s triggers or the value of any property (not just Content 
or Children), as long as it is an object deriving from Freezable. This may sound arbitrary 
and isn’t well documented, but the intention is that several XAML-based scenarios “just 
work” as you would expect, without requiring you to think about it.

D I G G I N G  D E E P E R

  From the Library of Wow! eBook



ptg

Support for Multiple Providers
WPF contains many powerful mechanisms that independently attempt to set the value of 
dependency properties. Without a well-defined mechanism for handling these disparate 
property value providers, the system would be a bit chaotic, and property values could be 
unstable. Of course, as their name indicates, dependency properties were designed to 
depend on these providers in a consistent and orderly manner.

Figure 3.6 illustrates the five-step process that WPF runs each dependency property 
through in order to calculate its final value. This process happens automatically, thanks to 
the built-in change notification in dependency properties.

Dependency Properties 87
3

Determine 
Base Value

Evaluate 
(if an Expression)

Apply
Animations Coerce Validate

FIGURE 3.6 The pipeline for calculating the value of a dependency property.

Step 1: Determine the Base Value
Most of the property value providers factor into the base value calculation. The following 
list reveals the ten providers that can set the value of most dependency properties, in 
order from highest to lowest precedence:

1. Local value 

2. Parent template trigger

3. Parent template

4. Style triggers

5. Template triggers

6. Style setters

7. Theme style triggers

8. Theme style setters

9. Property value inheritance 

10. Default value

You’ve already seen some of the property value providers, such as property value inheri-
tance (#9). Local value (#1) technically means any call to DependencyObject.SetValue, but 
this is typically seen with a simple property assignment in XAML or procedural code 
(because of the way dependency properties are implemented, as shown previously with 
Button.IsDefault). Default value (#10) refers to the initial value registered with the 
dependency property, which naturally has the lowest precedence. The other providers, 
which all involve styles and templates, are explained further in Chapter 14.

  From the Library of Wow! eBook



ptg

This order of precedence explains why StatusBar’s FontSize and FontStyle were not 
impacted by property value inheritance in Listing 3.4. The setting of StatusBar’s font 
properties to match system settings is done via theme style setters (#8). Although this has 
precedence over property value inheritance (#9), you can still override these font settings 
using any mechanism with a higher precedence, such as simply setting local values on 
StatusBar.

CHAPTER 3 WPF Fundamentals88

If you can’t figure out where a given dependency property is getting its current value, you can 
use the static DependencyPropertyHelper.GetValueSource method as a debugging aid. 
This returns a ValueSource structure that contains a few pieces of data: a 
BaseValueSource enumeration that reveals where the base value came from (step 1 in the 
process) and Boolean IsExpression, IsAnimated, and IsCoerced properties that reveal 
information about steps 2 through 4.

When calling this method on the StatusBar instance from Listing 3.1 or 3.4 with the 
FontSize or FontStyle property, the returned BaseValueSource is DefaultStyle, revealing 
that the value comes from a theme style setter. (Theme styles are sometimes referred to as 
default styles. The enumeration value for a theme style trigger is DefaultStyleTrigger.)

Do not use this method in production code! Future versions of WPF could break assumptions 
you’ve made about the value calculation. In addition, treating a property value differently, depend-
ing on its source, goes against the way things are supposed to work in WPF applications.

T I P

Clearing a Local Value

The earlier “Change Notification” section demonstrates the use of procedural code to 
change a Button’s Foreground to blue in response to the MouseEnter event and then 
changing it back to black in response to the MouseLeave event. The problem with this 
approach is that black is set as a local value inside MouseLeave, which is much different 
from the Button’s initial state, in which its black Foreground comes from a setter in its 
theme style. If the theme is changed and the new theme tries to change the default 
Foreground color (or if other providers with higher precedence try to do the same), this 
change is trumped by the local setting of black.

What you likely want to do instead is clear the local value and let WPF set the value from the 
relevant provider with the next-highest precedence. Fortunately, DependencyObject provides 
exactly this kind of mechanism with its ClearValue method. This can be called on a Button
b as follows in C#:

b.ClearValue(Button.ForegroundProperty);

(Button.ForegroundProperty is the static DependencyProperty field.) After calling 
ClearValue, the local value is simply removed from the equation when WPF recalculates the 
base value.

Note that the trigger on the IsMouseOver property from the “Change Notification” section does 
not have the same problem as the implementation with event handlers. A trigger is either 
active or inactive, and when it is inactive, it is simply ignored in the property value calculation.

D I G G I N G  D E E P E R

  From the Library of Wow! eBook



ptg

Step 2: Evaluate
If the value from step one is an expression (an object deriving from
System.Windows.Expression), WPF performs a special evaluation step to convert the 
expression into a concrete result. Expressions mostly appear in data binding (the topic of 
Chapter 13, “Data Binding”).

Step 3: Apply Animations
If one or more animations are running, they have the power to alter the current property 
value (using the value after step 2 as input) or completely replace it. Therefore, anima-
tions (the topic of Chapter 17) can trump all other property value providers—even local 
values! This is often a stumbling block for people who are new to WPF.

Step 4: Coerce
After all the property value providers have had their say, WPF passes the almost-final 
property value to a CoerceValueCallback delegate, if one was registered with the depen-
dency property. The callback is responsible for returning a new value, based on custom 
logic. For example, built-in WPF controls such as ProgressBar use this callback to 
constrain its Value dependency property to a value between its Minimum and Maximum 
values, returning Minimum if the input value is less than Minimum and Maximum if the input 
value is greater than Maximum. If you change your coercion logic at runtime, you can call 
CoerceValue to make WPF run the new coercion and validation logic again.

Step 5: Validate
Finally, the potentially coerced value is passed to a ValidateValueCallback delegate, if 
one was registered with the dependency property. This callback must return true if the 
input value is valid and false otherwise. Returning false causes an exception to be 
thrown, canceling the entire process.

Dependency Properties 89
3

WPF 4 adds a new method to DependencyObject called SetCurrentValue. It directly 
updates the current value of a property without changing its value source. (The value is still 
subject to coercion and validation.) This is meant for controls that set values in response to 
user interaction. For example, the RadioButton control modifies the value of the IsChecked 
property on other RadioButtons in the same group, based on user interaction. In prior 
versions of WPF, it sets a local value, which overrides all of the other value sources and can 
break things like data binding. In WPF 4, RadioButton has been changed to use 
SetCurrentValue instead.

T I P

Attached Properties
An attached property is a special form of dependency property that can effectively be 
attached to arbitrary objects. This may sound strange at first, but this mechanism has 
several applications in WPF.

  From the Library of Wow! eBook



ptg

For the About dialog example, imagine that rather than setting FontSize and FontStyle 
for the entire Window (as is done in Listing 3.4), you would rather set them on the inner 
StackPanel so they are inherited only by the two Buttons. Moving the property attributes 
to the inner StackPanel element doesn’t work, however, because StackPanel doesn’t have 
any font-related properties of its own! Instead, you must use the FontSize and FontStyle 
attached properties that happen to be defined on a class called TextElement. Listing 3.5 
demonstrates this, introducing new XAML syntax designed especially for attached proper-
ties. This enables the desired property value inheritance, as shown in Figure 3.7.

LISTING 3.5 The About Dialog with Font Properties Moved to the Inner StackPanel

<Window xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation” 

Title=”About WPF 4 Unleashed” SizeToContent=”WidthAndHeight” 

Background=”OrangeRed”> 

<StackPanel>

<Label FontWeight=”Bold” FontSize=”20” Foreground=”White”>

WPF 4 Unleashed 

</Label> 

<Label>© 2010 SAMS Publishing</Label> 

<Label>Installed Chapters:</Label> 

<ListBox>

<ListBoxItem>Chapter 1</ListBoxItem> 

<ListBoxItem>Chapter 2</ListBoxItem>

</ListBox> 

<StackPanel TextElement.FontSize=”30” TextElement.FontStyle=”Italic”

Orientation=”Horizontal” HorizontalAlignment=”Center”> 

<Button MinWidth=”75” Margin=”10”>Help</Button> 

<Button MinWidth=”75” Margin=”10”>OK</Button>

</StackPanel> 

<StatusBar>You have successfully registered this product.</StatusBar>

</StackPanel> 

</Window>

TextElement.FontSize and
TextElement.FontStyle (rather than simply 
FontSize and FontStyle) must be used in the 
StackPanel element because StackPanel does not 
have these properties. When a XAML parser or 
compiler encounters this syntax, it requires that 
TextElement (sometimes called the attached prop-
erty provider) have static methods called 
SetFontSize and SetFontStyle that can set the 
value accordingly. Therefore, the StackPanel 
declaration in Listing 3.5 is equivalent to the follow-
ing C# code:

CHAPTER 3 WPF Fundamentals90

FIGURE 3.7 The About dialog 
with FontSize and FontStyle 
set on both Buttons via inheri-
tance from the inner StackPanel.

  From the Library of Wow! eBook



ptg

StackPanel panel = new StackPanel();

TextElement.SetFontSize(panel, 30); 

TextElement.SetFontStyle(panel, FontStyles.Italic); 

panel.Orientation = Orientation.Horizontal; 

panel.HorizontalAlignment = HorizontalAlignment.Center; 

Button helpButton = new Button(); 

helpButton.MinWidth = 75; 

helpButton.Margin = new Thickness(10); 

helpButton.Content = “Help”;

Button okButton = new Button(); 

okButton.MinWidth = 75; 

okButton.Margin = new Thickness(10); 

okButton.Content = “OK”; 

panel.Children.Add(helpButton); 

panel.Children.Add(okButton);

Notice that the enumeration values such as FontStyles.Italic, Orientation.Horizontal, 
and HorizontalAlignment.Center were previously specified in XAML simply as Italic, 
Horizontal, and Center, respectively. This is possible thanks to the EnumConverter type 
converter in the .NET Framework, which can convert any case-insensitive string.

Although the XAML in Listing 3.5 nicely represents the logical attachment of FontSize 
and FontStyle to StackPanel, the C# code reveals that there’s no real magic here, just a 
method call that associates an element with an otherwise-unrelated property. One of the 
interesting things about the attached property abstraction is that no .NET property is a 
part of it!

Internally, methods such as SetFontSize simply call the same
DependencyObject.SetValue method that a normal dependency property accessor calls, 
but on the passed-in DependencyObject rather than the current instance:

public static void SetFontSize(DependencyObject element, double value) 

{

element.SetValue(TextElement.FontSizeProperty, value); 

}

Similarly, attached properties also define a static GetXXX method (where XXX is the name 
of the property) that calls the familiar DependencyObject.GetValue method:

public static double GetFontSize(DependencyObject element) 

{

return (double)element.GetValue(TextElement.FontSizeProperty); 

}

As with property wrappers for normal dependency properties, these GetXXX and SetXXX 
methods must not do anything other than make a call to GetValue and SetValue.

Dependency Properties 91
3

  From the Library of Wow! eBook



ptg

CHAPTER 3 WPF Fundamentals92

Understanding the Attached Property Provider

The most confusing part about the FontSize and FontStyle attached properties used in 
Listing 3.5 is that they aren’t defined by Button or even Control, the base class that 
defines the normal FontSize and FontStyle dependency properties! Instead, they are 
defined by the seemingly unrelated TextElement class (and also by the TextBlock class, 
which could alternatively be used in the preceding examples).

How can this possibly work when TextElement.FontSizeProperty is a separate 
DependencyProperty field from Control.FontSizeProperty (and 
TextElement.FontStyleProperty is separate from Control.FontStyleProperty)? The 
key is the way these dependency properties are internally registered. If you were to look at 
the source code for TextElement, you would see something like the following:

TextElement.FontSizeProperty = DependencyProperty.RegisterAttached( 

“FontSize”, typeof(double), typeof(TextElement), new FrameworkPropertyMetadata( 

SystemFonts.MessageFontSize, FrameworkPropertyMetadataOptions.Inherits |

FrameworkPropertyMetadataOptions.AffectsRender |

FrameworkPropertyMetadataOptions.AffectsMeasure), 

new ValidateValueCallback(TextElement.IsValidFontSize));

This is similar to the earlier example of registering Button’s IsDefault dependency prop-
erty, except that the RegisterAttached method optimizes the handling of property meta-
data for attached property scenarios.

Control, on the other hand, doesn’t register its FontSize dependency property! Instead, it 
calls AddOwner on TextElement’s already-registered property, getting a reference to exactly 
the same instance:

Control.FontSizeProperty = TextElement.FontSizeProperty.AddOwner( 

typeof(Control), new FrameworkPropertyMetadata(SystemFonts.MessageFontSize, 

FrameworkPropertyMetadataOptions.Inherits));

Therefore, the FontSize, FontStyle, and other font-related dependency properties inherited 
by all controls are the same properties exposed by TextElement!

Fortunately, in most cases, the class that exposes an attached property (the GetXXX and 
SetXXX methods) is the same class that defines the normal dependency property, avoiding 
this confusion.

D I G G I N G  D E E P E R

Attached Properties as an Extensibility Mechanism

As in previous technologies such as Windows Forms, many classes in WPF define a Tag 
property (of type System.Object) intended for storing arbitrary custom data with each 
instance. But attached properties are a more powerful and flexible mechanism for attaching 
custom data to any object deriving from DependencyObject. It’s often overlooked that 
attached properties even enable you to effectively add custom data to instances of sealed 
classes (and WPF has plenty of them)!

D I G G I N G  D E E P E R

  From the Library of Wow! eBook



ptg

Although the About dialog example uses attached properties for advanced property value 
inheritance, attached properties are most commonly used for layout of user interface 
elements. (In fact, attached properties were originally designed for WPF’s layout system.) 
Various Panel-derived classes define attached properties designed to be attached to their 
children for controlling how they are arranged. This way, each Panel can apply its own 
custom behavior to arbitrary children without requiring all possible child elements to be 
burdened with their own set of relevant properties. It also enables systems such as layout 
to be easily extensible, because anyone can write a new Panel with custom attached prop-
erties. Chapter 5, “Layout with Panels,” and Chapter 21, “Layout with Custom Panels,” 
have all the details.

Summary
In this chapter and the preceding two chapters, you’ve learned about all the major ways 
that WPF builds on top of the foundation of the .NET Framework. The WPF team could 
have exposed its features via typical .NET APIs, as in Windows Forms, and still have 
created an interesting technology. Instead, the team added several fundamental concepts 
that enable a wide range of features to be exposed in a way that can provide great produc-
tivity for developers and designers.

Indeed, when you focus on these core concepts, as this chapter does, you can see that the 
landscape isn’t quite as simple as it used to be: There are multiple types of properties,

Summary 93
3

Continued

A further twist to the story of attached properties is that although setting them in XAML 
relies on the presence of the static SetXXX method, you can bypass this method in proce-
dural code and call DependencyObject.SetValue directly. This means that you can use any 
dependency property as an attached property in procedural code. For example, the following 
code attaches ItemsControl’s IsTextSearchEnabled property to a Button and assigns it a 
value:

// Attach an unrelated property to a Button and set its value to true: 

okButton.SetValue(ItemsControl.IsTextSearchEnabledProperty, true);

Although this seems nonsensical, and it certainly doesn’t magically enable new functionality 
on this Button, you have the freedom to consume this property value in a way that makes 
sense to your application or component.

There are more interesting ways to extend elements in this manner. For example, 
FrameworkElement’s Tag property is a dependency property, so you can attach it to an 
instance of GeometryModel3D (a class you’ll see again in Chapter 16, that is sealed and 
does not have a Tag property), as follows:

GeometryModel3D model = new GeometryModel3D(); 

model.SetValue(FrameworkElement.TagProperty, “my custom data”);

This is just one of the ways in which WPF provides extensibility without the need for tradi-
tional inheritance.

  From the Library of Wow! eBook



ptg

multiple trees, and multiple ways of achieving the same results (such as writing declara-
tive versus procedural code)! Hopefully you can now appreciate some of the value of these 
new mechanisms. Throughout the rest of the book, these concepts generally fade into the 
background as we focus on accomplishing specific development tasks.

CHAPTER 3 WPF Fundamentals94

  From the Library of Wow! eBook



ptg

PART II

Building a WPF 
Application

IN THIS PART

CHAPTER 4 Sizing, Positioning, and 
Transforming Elements 97

CHAPTER 5 Layout with Panels 115

CHAPTER 6 Input Events: Keyboard, Mouse, 
Stylus, and Multi-Touch 159

CHAPTER 7 Structuring and Deploying an 
Application 195

CHAPTER 8 Exploiting Windows 7 233

  From the Library of Wow! eBook



ptg

This page intentionally left blank 

  From the Library of Wow! eBook



ptg

CHAPTER 4

Sizing, Positioning, and
Transforming Elements

When building a WPF application, one of the first things 
you must do is arrange a bunch of controls on the applica-
tion’s surface. This sizing and positioning of controls (and 
other elements) is called layout, and WPF contains a lot of 
infrastructure to provide a feature-rich layout system.

Layout in WPF boils down to interactions between parent 
elements and their child elements. Parents and their chil-
dren work together to determine their final sizes and posi-
tions. Although parents ultimately tell their children where 
to render and how much space they get, they are more like 
collaborators than dictators; parents also ask their children 
how much space they would like before making their final 
decision.

Parent elements that support the arrangement of multiple 
children are known as panels, and they derive from the 
abstract System.Windows.Controls.Panel class. All the 
elements involved in the layout process (both parents and 
children) derive from System.Windows.UIElement.

Because layout in WPF is such a big and important topic, 
this book dedicates three chapters to it:

. Chapter 4, “Sizing, Positioning, and Transforming
Elements”

. Chapter 5, “Layout with Panels”

. Chapter 21, “Layout with Custom Panels”

This chapter focuses on the children, examining the 
common ways that you can control layout on a child-by-
child basis. Several properties control these aspects, most of

IN THIS CHAPTER

. Controlling Size

. Controlling Position

. Applying Transforms

  From the Library of Wow! eBook



ptg

which are summarized in Figure 4.1 for an arbitrary element inside an arbitrary panel. 
Size-related properties are shown in blue, and position-related properties are shown in 
red. In addition, elements can have transforms applied to them (shown in green) that can 
affect both size and position.

CHAPTER 4 Sizing, Positioning, and Transforming Elements98

VerticalAlignment

Margin

Height

Width

HorizontalAlignment

FlowDirection
Content

Element

Panel

Padding

LayoutTransform 
RenderTransform

FIGURE 4.1 The main child layout properties examined in this chapter.

The next chapter continues the layout story by examining the variety of parent panels 
built in to WPF, each of which arranges its children in unique ways. Creating custom 
panels is an advanced topic reserved for the final part of the book.

Controlling Size
Every time layout occurs (such as when a window is resized), child elements tell their 
parent panel their desired size. WPF elements tend to size to their content, meaning that 
they try to be large enough to fit their content and no larger. (Even Window does this, but 
only when you explicitly set its SizeToContent property as done in the preceding 
chapter.) This size can be influenced on individual instances of children via several 
straightforward properties.

Height and Width
All FrameworkElements have simple Height and Width properties (of type double), and 
they also have MinHeight, MaxHeight, MinWidth, and MaxWidth properties that can be used 
to specify a range of acceptable values. Any or all of these can be easily set on elements in 
procedural code or in XAML.

An element naturally stays as small as possible, so if you use MinHeight or MinWidth, it is 
rendered at that height/width unless its content forces it to grow. In addition, that

  From the Library of Wow! eBook



ptg

growth can be limited by using 
MaxHeight and MaxWidth (as long as 
these values are larger than their Min 
counterparts). When using an explicit 
Height and Width at the same time as 
their Min and Max counterparts, Height 
and Width take precedence as long as 
they are in the range from Min to Max. 
The default value of MinHeight and 
MinWidth is 0, and the default value of 
MaxHeight and MaxWidth is 
Double.PositiveInfinity (which can be 
set in XAML as simply “Infinity”).

Controlling Size 99
4

Avoid setting explicit sizes!

Giving controls explicit sizes, especially 
ContentControls such as Button and 
Label, opens up the risk of cutting off text 
when users change system font settings or 
if the text gets translated into other 
languages. Therefore, you should avoid 
setting explicit sizes unless absolutely 
necessary. Fortunately, setting explicit 
sizes is rarely necessary, thanks to the 
panels described in the next chapter.

WA R N I N G

The Special “Auto” Length

FrameworkElement’s Height and Width have a default value of Double.NaN (where NaN 
stands for not a number), meaning that the element will be only as large as its content 
needs it to be. This setting can also be explicitly specified in XAML using “NaN” (which is 
case sensitive) or the preferred “Auto” (which is not case sensitive), thanks to the 
LengthConverter type converter associated with these properties. To check if one of these 
properties is autosized, you can use the static Double.IsNaN method.

D I G G I N G  D E E P E R

To complicate matters, FrameworkElement also contains a few more size-related properties:

. DesiredSize (inherited from UIElement)

. RenderSize (inherited from UIElement)

. ActualHeight and ActualWidth

Unlike the other six properties that are input to the layout process, these are read-only 
properties representing output from the layout process. An element’s DesiredSize is calcu-
lated during layout, based on other property values (such as the aforementioned Width, 
Height, MinXXX, and MaxXXX properties) and the amount of space its parent is currently 
giving it. It is used internally by panels.

RenderSize represents the final size of an element after layout is complete, and 
ActualHeight and ActualWidth are exactly the same as RenderSize.Height and 
RenderSize.Width, respectively. That’s right: Whether an element specified an explicit 
size, specified a range of acceptable sizes, or didn’t specify anything at all, the behavior of 
the parent can alter an element’s final size on the screen. These three properties are, there-
fore, useful for advanced scenarios in which you need to programmatically act on an 
element’s size. The values of all the other size-related properties, on the other hand, aren’t 
very interesting to base logic on. For example, when not set explicitly, the value of Height 
and Width are Double.NaN, regardless of the element’s true size.

  From the Library of Wow! eBook



ptg

All these properties are put into context in Chapter 21.

CHAPTER 4 Sizing, Positioning, and Transforming Elements100

Be careful when writing code that uses ActualHeight and ActualWidth (or
RenderSize)!

Every time the layout process occurs, it updates the values of each element’s RenderSize 
(and, therefore, ActualHeight and ActualWidth as well). However, layout occurs asynchro-
nously, so you can’t rely on the values of these properties at all times. It’s safe to access 
them only within an event handler for the LayoutUpdated event defined on UIElement.

Alternatively, UIElement defines an UpdateLayout method to force any pending layout 
updates to finish synchronously, but you should avoid using this method. Besides the fact 
that frequent calls to UpdateLayout can harm performance because of the excess layout 
processing, there’s no guarantee that the elements you’re using properly handle the poten-
tial reentrancy in their layout-related methods.

WA R N I N G

Margin and Padding
Margin and Padding are two very similar properties that are also related to an element’s 
size. All FrameworkElements have a Margin property, and all Controls (plus Border) have a 
Padding property. Their only difference is that Margin controls how much extra space gets 
placed around the outside edges of the element, whereas Padding controls how much 
extra space gets placed around the inside edges of the element.

Both Margin and Padding are of type System.Windows.Thickness, an interesting class that 
can represent one, two, or four double values. The meaning of these values is demon-
strated in Listing 4.1, which applies various Padding and Margin settings to Label 
controls. The second set of Labels is wrapped in Borders because the margin settings 
would not be noticeable otherwise. Figure 4.2 shows the rendered result for each Label if 
each one is individually placed in a Canvas (a panel covered in the next chapter). 
Although not shown in this figure, Margin permits negative values. Padding does not.

Four different Paddings:

Four different Margins:

FIGURE 4.2 The effects of Padding and Margin.

  From the Library of Wow! eBook



ptg

LISTING 4.1 Applying Padding and Margin Values with One, Two, or Four Digits

<!-- PADDING: -->

<!-- 1 value: The same padding on all four sides: -->

<Label Padding=”0” Background=”Orange”>0</Label> 

<Label Padding=”10” Background=”Orange”>10</Label>

<!-- 2 values: Left & Right get the 1st value, 

Top & Bottom get the 2nd value: -->

<Label Padding=”20,5” Background=”Orange”>20,5</Label>

<!-- 4 values: Left,Top,Right,Bottom: -->

<Label Padding=”0,10,20,30” Background=”Orange”>0,10,20,30</Label>

<!-- MARGIN: -->

<Border BorderBrush=”Black” BorderThickness=”1”> 

<!-- No margin: --> 

<Label Background=”Aqua”>0</Label>

</Border>

<Border BorderBrush=”Black” BorderThickness=”1”> 

<!-- 1 value: The same margin on all four sides: --> 

<Label Margin=”10” Background=”Aqua”>10</Label>

</Border>

<Border BorderBrush=”Black” BorderThickness=”1”> 

<!-- 2 values: Left & Right get the 1st value,

Top & Bottom get the 2nd value: -->

<Label Margin=”20,5” Background=”Aqua”>20,5</Label> 

</Border>

<Border BorderBrush=”Black” BorderThickness=”1”> 

<!-- 4 values: Left,Top,Right,Bottom: --> 

<Label Margin=”0,10,20,30” Background=”Aqua”>0,10,20,30</Label>

</Border>

Label has a default Padding of 5, but it can be overridden to any valid value. That is why 
Listing 4.1 explicitly sets the first Label’s Padding to 0. Without the explicit setting, it 
would look like the fifth Label (the one demonstrating the implicit Margin of 0), and the 
visual comparison to the other Padding values would be confusing.

Controlling Size 101
4

  From the Library of Wow! eBook



ptg

Visibility
Visibility (defined on UIElement) might sound like a strange property to talk about in 
the context of layout, but it is indeed relevant. An element’s Visibility property actually 
isn’t Boolean but rather a three-state System.Windows.Visibility enumeration. Its values 
and meanings are as follows:

. Visible—The element is rendered and participates in layout.

. Collapsed—The element is invisible and does not participate in layout.

. Hidden—The element is invisible yet still participates in layout.

CHAPTER 4 Sizing, Positioning, and Transforming Elements102

The Syntax for Thickness

The comma-delimited syntax supported by Margin and Padding are enabled by (what else?) 
a type converter. System.Windows.ThicknessConverter constructs a Thickness object 
based on the input string. Thickness has two constructors, one that accepts a single 
double, and one that expects four. Therefore, it can be used in C# as follows: 

myLabel.Margin = new Thickness(10);         // Same as Margin=”10” in XAML 

myLabel.Margin = new Thickness(20,5,20,5);  // Same as Margin=”20,5” in XAML 

myLabel.Margin = new Thickness(0,10,20,30); // Same as Margin=”0,10,20,30” in XAML

Note that the handy two-number syntax is a shortcut only available through the type 
converter!

D I G G I N G  D E E P E R

What unit of measurement does WPF use?

The LengthConverter type converter associated with the various length properties 
supports specifying explicit units of cm, pt, in, or px (the default).

By default, all absolute measurements, such as the numbers used in this section’s size-
related properties, are specified in device-independent pixels. These “logical pixels” are 
meant to represent 1/96 inch, regardless of the screen’s DPI setting. Note that device-inde-
pendent pixels are always specified as double values, so they can be fractional.

The exact measurement of 1/96 inch isn’t important, although it was chosen because on a 
typical 96-DPI display, 1 device-independent pixel is identical to 1 physical pixel. Of course, 
the notion of a true “inch” depends on the physical display device. If an application draws a 
1-inch line on my laptop screen, that line will certainly be longer than 1 inch if I hook up my 
laptop to a projector!

What is important is that all such measurements are DPI independent. But this functionality 
alone doesn’t prevent items from shrinking when you increase the screen resolution. To get 
resolution independence, you need the automatic scaling functionality discussed in the next 
chapter.

?
FA Q

  From the Library of Wow! eBook



ptg

A Collapsed element effectively has a size of zero, whereas a Hidden element retains its 
original size. (Its ActualHeight and ActualWidth values don’t change, for example.) The 
difference between Collapsed and Hidden is demonstrated in Figure 4.3, which compares 
the following StackPanel with a Collapsed Button:

<StackPanel Height=”100” Background=”Aqua”> 

<Button Visibility=”Collapsed”>Collapsed Button</Button> 

<Button>Below a Collapsed Button</Button>

</StackPanel>

to the following StackPanel with a Hidden Button:

<StackPanel Height=”100” Background=”Aqua”> 

<Button Visibility=”Hidden”>Hidden Button</Button> 

<Button>Below a Hidden Button</Button>

</StackPanel>

Controlling Position 103
4

FIGURE 4.3 A Hidden Button still occupies space, unlike a Collapsed Button.

Controlling Position
This section doesn’t discuss positioning elements with (X,Y) coordinates, as you might 
expect. Parent panels define their own unique mechanisms for enabling children to posi-
tion themselves (via attached properties or simply the order in which children are added 
to the parent). A few mechanisms are common to all FrameworkElement children, 
however, and that’s what this section examines. These mechanisms are related to align-
ment and a concept called flow direction.

Alignment
The HorizontalAlignment and VerticalAlignment properties enable an element to 
control what it does with any extra space that its parent panel gives it. Each property has 
a corresponding enumeration with the same name in the System.Windows namespace, 
giving the following options:

. HorizontalAlignment—Left, Center, Right, and Stretch

. VerticalAlignment—Top, Center, Bottom, and Stretch

  From the Library of Wow! eBook



ptg

Stretch is the default value for both properties, although various controls override the 
setting in their theme styles. The effects of HorizontalAlignment can easily be seen by 
placing a few Buttons in a StackPanel and marking them with each value from the 
enumeration:

<StackPanel> 

<Button HorizontalAlignment=”Left” Background=”Red”>Left</Button> 

<Button HorizontalAlignment=”Center” Background=”Orange”>Center</Button> 

<Button HorizontalAlignment=”Right” Background=”Yellow”>Right</Button> 

<Button HorizontalAlignment=”Stretch” Background=”Lime”>Stretch</Button>

</StackPanel>

The rendered result appears in Figure 4.4.

These two properties are useful only when a parent 
panel gives the child element more space than it needs. 
For example, adding VerticalAlignment values to 
elements in the StackPanel used in Figure 4.4 would 
make no difference, as each element is already given the 
exact amount of height it needs (no more, no less).

CHAPTER 4 Sizing, Positioning, and Transforming Elements104

FIGURE 4.4 The effects of
HorizontalAlignment on 
Buttons in a StackPanel.

Interaction Between Stretch Alignment and Explicit Element Size

When an element uses Stretch alignment (horizontally or vertically), an explicit Height or 
Width setting still takes precedence. MaxHeight and MaxWidth also take precedence, but 
only when their values are smaller than the natural stretched size. Similarly, MinHeight and 
MinWidth take precedence only when their values are larger than the natural stretched size. 
When Stretch is used in a context that constrains the element’s size, it acts like an align-
ment of Center (or Left if the element is too large to be centered in its parent).

D I G G I N G  D E E P E R

Content Alignment
In addition to HorizontalAlignment and VerticalAlignment properties, the Control class 
also has HorizontalContentAlignment and VerticalContentAlignment properties. These 
properties determine how a control’s content fills the space within the control. (Therefore, 
the relationship between alignment and content alignment is somewhat like the relation-
ship between Margin and Padding.)

The content alignment properties are of the same enumeration types as the correspond-
ing alignment properties, so they provide the same options. However, the default value 
for HorizontalContentAlignment is Left, and the default value for 
VerticalContentAlignment is Top. This wasn’t the case for the previous Buttons, however, 
because their theme style overrides these settings. (Recall the order of precedence for 
dependency property value providers in the preceding chapter. Default values have the 
lowest priority and are trumped by styles.)

  From the Library of Wow! eBook



ptg

Figure 4.5 demonstrates the effects of HorizontalContentAlignment, simply by taking the 
previous XAML snippet and changing the property name as follows:

<StackPanel> 

<Button HorizontalContentAlignment=”Left” Background=”Red”>Left</Button> 

<Button HorizontalContentAlignment=”Center” Background=”Orange”>Center</Button> 

<Button HorizontalContentAlignment=”Right” Background=”Yellow”>Right</Button> 

<Button HorizontalContentAlignment=”Stretch” Background=”Lime”>Stretch</Button>

</StackPanel>

In Figure 4.5, the Button with
HorizontalContentAlignment=“Stretch” might not 
appear as you expected. Its inner TextBlock is indeed 
stretched, but TextBlock is not a true Control (rather 
just a FrameworkElement) and, therefore, doesn’t have 
the same notion for stretching its inner text.

FlowDirection
FlowDirection is a property on FrameworkElement (and 
several other classes) that can reverse the way an 
element’s inner content flows. It applies to some panels 
and their arrangement of children, and it also applies to the way content is aligned inside 
child controls. The property is of type System.Windows.FlowDirection, with two values: 
LeftToRight (FrameworkElement’s default) and RightToLeft.

The idea of FlowDirection is that it should be set to RightToLeft when the current 
culture corresponds to a language that is read from right to left. This reverses the meaning 
of left and right for settings such as content alignment. The following XAML demon-
strates this, with Buttons that force their content alignment to Top and Left but then 
apply each of the two FlowDirection values:

<StackPanel> 

<Button FlowDirection=”LeftToRight”

HorizontalContentAlignment=”Left” VerticalContentAlignment=”Top” 

Height=”40” Background=”Red”>LeftToRight</Button>

<Button FlowDirection=”RightToLeft” 

HorizontalContentAlignment=”Left” VerticalContentAlignment=”Top” 

Height=”40” Background=”Orange”>RightToLeft</Button>

</StackPanel>

The result is shown in Figure 4.6.

Controlling Position 105
4

FIGURE 4.5 The effects of
HorizontalContentAlignment 
on Buttons in a StackPanel.

  From the Library of Wow! eBook



ptg

Notice that FlowDirection does not affect the flow of 
letters within these Buttons. English letters always flow 
left to right, and Arabic letters always flow right to left, 
for example. But FlowDirection reverses the notion of 
left and right for other pieces of the user interface, 
which typically need to match the flow direction of 
letters.

FlowDirection must be explicitly set to match the 
current culture (and can be done on a single, top-level 
element). This should be part of your localization 
process.

Applying Transforms
WPF contains a handful of built-in 2D transform classes (derived from 
System.Windows.Media.Transform) that enable you to change the size and position of 
elements independently from the previously discussed properties. Some also enable you 
to alter elements in more exotic ways, such as by rotating or skewing them.

All FrameworkElements have two properties of type Transform that can be used to apply 
such transforms:

. LayoutTransform, which is applied before the element is laid out

. RenderTransform (inherited from UIElement), which is applied after the layout 
process has finished (immediately before the element is rendered)

Figure 4.7 demonstrates the difference between applying a transform called 
RotateTransform as a LayoutTransform versus a RenderTransform. In both cases, the 
transform is applied to the second of three consecutive Buttons in a StackPanel. When 
applied as a LayoutTransform, the third Button is pushed out of the way. But when 
applied as a RenderTransform, the third Button is placed as if the second Button weren’t 
rotated.

CHAPTER 4 Sizing, Positioning, and Transforming Elements106

FIGURE 4.6 The effects of
FlowDirection on Buttons 
with Top and Left content 
alignment.

Rotation as a LayoutTransform Rotation as a RenderTransform

FIGURE 4.7 The difference between LayoutTransform and RenderTransform on the middle 
of three Buttons in a StackPanel.

  From the Library of Wow! eBook



ptg

UIElements also have a handy RenderTransformOrigin property that represents the start-
ing point of the transform (the point that remains stationary). For the RotateTransform 
used in Figure 4.7, the origin is the Button’s top-left corner, which the rest of the Button 
pivots around. LayoutTransforms, on the other hand, don’t have the notion of an origin 
because the positioning of the transformed element is completely dictated by the parent 
panel’s layout rules.

RenderTransformOrigin can be set to a System.Windows.Point, with (0,0) being the 
default value. This represents the top-left corner, as in Figure 4.7. An origin of (0,1) repre-
sents the bottom-left corner, (1,0) is the top-right corner, and (1,1) is the bottom-right 
corner. You can use numbers greater than 1 to set the origin to a point outside the 
bounds of an element, and you can use fractional values. Therefore, (0.5,0.5) represents 
the middle of the object. Figure 4.8 demonstrates the five origins most commonly used 
with the RenderTransform from Figure 4.7.

Applying Transforms 107
4

(0,0) (0,1) (1,0) (1,1) (0.5,0.5)

FIGURE 4.8 Five common RenderTransformOrigins used on the rotated Button from 
Figure 4.7.

Thanks to System.Windows.PointConverter, the value for RenderTransformOrigin can be 
specified in XAML with two comma-delimited numbers (and no parentheses). For 
example, the Button rotated around its center at the far right of Figure 4.8 can be created 
as follows:

<Button RenderTransformOrigin=”0.5,0.5” Background=”Orange”> 

<Button.RenderTransform>

<RotateTransform Angle=”45”/> 

</Button.RenderTransform>

Rotated 45° 

</Button>

At this point, you might be wondering why you would ever want to have a rotated 
Button in an application! Indeed, such transforms look silly on standard controls with 
their default style. They often make more sense in a heavily themed application, but even 
with default-styled controls, transforms can add a nice touch when used within anima-
tions.

  From the Library of Wow! eBook



ptg

This section looks at the five built-in 2D transforms, all in the System.Windows.Media 
namespace:

. RotateTransform

. ScaleTransform

. SkewTransform

. TranslateTransform

. MatrixTransform

RotateTransform
RotateTransform, demonstrated in the preceding section, rotates an element according to 
the values of three double properties:

. Angle—Angle of rotation, specified in degrees (default value = 0)

. CenterX—Horizontal center of rotation (default value = 0)

. CenterY—Vertical center of rotation (default value = 0)

The default (CenterX,CenterY) point of (0,0) represents the top-left corner. CenterX and 
CenterY are only useful when RotateTransform is applied as a RenderTransform because 
when LayoutTransforms are applied, the position is still dictated by the parent panel.

CHAPTER 4 Sizing, Positioning, and Transforming Elements108

What’s the difference between using the CenterX and CenterY properties on 
transforms such as RotateTransform versus using the RenderTransformOrigin

property on UIElement?

When a transform is applied to a UIElement, the CenterX and CenterY properties at first 
appear to be redundant with RenderTransformOrigin. Both mechanisms control the origin 
of the transform, and both mechanisms work only when the transform is applied as a 
RenderTransform.

However, CenterX and CenterY enable absolute positioning of the origin rather than the rela-
tive positioning of RenderTransformOrigin. Their values are specified as device-indepen-
dent pixels, so the top-right corner of an element with a Width of 20 would be specified with 
CenterX set to 20 and CenterY set to 0 rather than the point (1,0). Also, when multiple 
RenderTransforms are grouped together (described later in the chapter), CenterX and 
CenterY on individual transforms enables more fine-grained control. Finally, the individual 
double values of CenterX and CenterY are easier to use with data binding than the Point 
value of RenderTransformOrigin.

That said, RenderTransformOrigin is generally more useful than CenterX and CenterY. For 
the common case of transforming an element around its middle, the relative (0.5,0.5) 
RenderTransformOrigin is easy to specify in XAML, whereas accomplishing the same thing 
with CenterX and CenterY would require writing some procedural code to calculate the 
absolute offsets.

?
FA Q

  From the Library of Wow! eBook



ptg

Whereas Figures 4.7 and 4.8 show rotated Buttons, Figure 4.9 demonstrates what happens 
when RotateTransform is applied as a RenderTransform to the inner content of Buttons, 
with two different values of RenderTransformOrigin. To achieve this, the simple string 
inside each Button is replaced with an explicit TextBlock as follows:

<Button Background=”Orange”> 

<TextBlock RenderTransformOrigin=”0.5,0.5”> 

<TextBlock.RenderTransform>

<RotateTransform Angle=”45”/> 

</TextBlock.RenderTransform>

45° 

</TextBlock>

</Button>

Applying Transforms 109
4

Continued 

Note that you can use RenderTransformOrigin on an element simultaneously with using
CenterX and CenterY on its transform. In this case, the two X values and two Y values are 
combined to calculate the final origin point.

Text rotation around the top-left corner Text rotation around the middle

FIGURE 4.9 Using RotateTransform on the content of Buttons in a StackPanel.

The TextBlocks in the Buttons on the left side of Figure 4.9 might 
not seem to be rotated around their top-left corners, but that’s 
because the TextBlocks are slightly larger than the text. When you 
give the TextBlocks an explicit aqua Background, the rotation makes 
more sense. Figure 4.10 demonstrates this.

RotateTransform has parameterized constructors that accept an 
angle or both angle and center values, for the convenience of creat-
ing the transform from procedural code.

ScaleTransform
ScaleTransform enlarges or shrinks an element horizontally, verti-
cally, or in both directions. This transform has four straightforward double properties:

. ScaleX—Multiplier for the element’s width (default value = 1)

. ScaleY—Multiplier for the element’s height (default value = 1)

FIGURE 4.10
Inner TextBlocks 
rotated around 
their top-left 
corner, with an 
explicit back-
ground.

  From the Library of Wow! eBook



ptg

. CenterX—Origin for horizontal scaling (default value = 0)

. CenterY—Origin for vertical scaling (default 
value = 0)

A ScaleX value of 0.5 shrinks an element’s rendered 
width in half, whereas a ScaleX value of 2 doubles 
the width. CenterX and CenterY work the same way 
as with RotateTransform.

Listing 4.2 applies ScaleTransform to three Buttons 
in a StackPanel, demonstrating the ability to 
stretch them independently in height or in width. 
Figure 4.11 shows the result.

LISTING 4.2 Applying ScaleTransform to Buttons in a StackPanel

<StackPanel Width=”100”> 

<Button Background=”Red”>No Scaling</Button> 

<Button Background=”Orange”> 

<Button.RenderTransform>

<ScaleTransform ScaleX=”2”/>

</Button.RenderTransform>

X</Button> 

<Button Background=”Yellow”> 

<Button.RenderTransform>

<ScaleTransform ScaleX=”2” ScaleY=”2”/>

</Button.RenderTransform>

X + Y</Button> 

<Button Background=”Lime”> 

<Button.RenderTransform>

<ScaleTransform ScaleY=”2”/>

</Button.RenderTransform>

Y</Button> 

</StackPanel>

Figure 4.12 displays the same Buttons from Listing 4.2 (and Figure 4.11) but with explicit 
CenterX and CenterY values set. The point represented by each pair of these values is 
displayed in each Button’s text. Notice that the lime Button isn’t moved to the left like 
the orange Button, despite being marked with the same CenterX of 70. That’s because 
CenterX is relevant only when ScaleX is a value other than 1, and CenterY is relevant 
only when ScaleY is a value other than 1.

As with other transforms, ScaleTransform has a few parameterized constructors for the 
convenience of creating it from procedural code.

CHAPTER 4 Sizing, Positioning, and Transforming Elements110

FIGURE 4.11 The scaled
Buttons from Listing 4.2.

  From the Library of Wow! eBook



ptg

FIGURE 4.12 The Buttons from Listing 4.2 but with explicit scaling centers.

Applying Transforms 111
4

Interaction Between ScaleTransform and Stretch Alignment

When you apply ScaleTransform as a LayoutTransform on an element that is already 
stretching in the dimension of scaling, it has an effect only if the amount of scaling is 
greater than the amount the natural-sized element is already being stretched.

D I G G I N G  D E E P E R

How do transforms such as ScaleTransform affect FrameworkElement’s
ActualHeight and ActualWidth properties or UIElement’s RenderSize property?

Applying a transform to FrameworkElement never changes the values of these properties. 
This is true whether it is applied as a RenderTransform or LayoutTransform. Therefore, 
because of transforms, these properties can “lie” about the size of an element on the 
screen. For example, all the Buttons in Figures 4.11 and 4.12 have the same 
ActualHeight, ActualWidth, and RenderSize.

Such “lies” might surprise you, but they’re for the best. First, it’s debatable how such values 
should even be expressed for some transforms. More importantly, the point of transforms is 
to alter an element’s appearance without the element’s knowledge. Giving elements the illu-
sion that they are being rendered normally enables arbitrary controls to be plugged in and 
transformed without special handling.

?
FA Q

How does ScaleTransform affect Margin and Padding?

Padding is scaled along with the rest of the content (because Padding is internal to 
the element), but Margin does not get scaled. As with ActualHeight and ActualWidth, the 
numeric Padding property value does not change, despite the visual scaling.

?
FA Q

  From the Library of Wow! eBook



ptg

SkewTransform
SkewTransform slants an element according to the values of four double properties:

. AngleX—Amount of horizontal skew (default value = 0)

. AngleY—Amount of vertical skew (default value = 0)

. CenterX—Origin for horizontal skew (default value = 0)

. CenterY—Origin for vertical skew (default value = 0)

These properties behave much like the properties of the 
previous transforms. Figure 4.13 demonstrates 
SkewTransform applied as a RenderTransform on several 
Buttons, using the default center of the top-left corner.

TranslateTransform
TranslateTransform simply moves an element according 
to two double properties:

. X—Amount to move horizontally (default value = 0)

. Y—Amount to move vertically (default value = 0)

TranslateTransform has no effect when you apply it as a LayoutTransform, but applying 
it as a RenderTransform is an easy way to “nudge” elements one way or another. Most 
likely, you’d do this dynamically based on user actions (and perhaps in an animation). 
With all the panels described in the next chapter, it’s unlikely that you’d need to use 
TranslateTransform to arrange a static user interface.

MatrixTransform
MatrixTransform is a low-level mechanism that can be used to create custom 2D trans-
forms. MatrixTransform has a single Matrix property (of type 
System.Windows.Media.Matrix) representing a 3x3 affine transformation matrix. In case 
you’re not a linear algebra buff, this basically means that all the previous transforms (or 
any combination of them) can also be expressed using MatrixTransform.

The 3x3 matrix has the following values:

M11 M12 0

M21 M22 0

OffsetX OffsetY 1

The final column’s values are fixed, but the other six values can be set as properties of the 
Matrix type (with the same names as shown) or via a constructor that accepts the six 
values in row-major order.

CHAPTER 4 Sizing, Positioning, and Transforming Elements112

FIGURE 4.13
SkewTransform applied to
Buttons in a StackPanel.

  From the Library of Wow! eBook



ptg

Combining Transforms
A few different options exist for combining multiple transforms, such as rotating an 
element while simultaneously scaling it. You can apply both a LayoutTransform and a 
RenderTransform simultaneously. Or, you could figure out the correct MatrixTransform 
representation to get the combined effect. Most likely, however, you would take advan-
tage of the TransformGroup class.

TransformGroup is just another Transform-derived class (so it can be used wherever the 
previous classes are used), and its purpose is to combine child Transform objects. From 
procedural code, you can add transforms to its Children collection, or from XAML, you 
can use it as follows:

<Button> 

<Button.RenderTransform>

<TransformGroup> 

<RotateTransform Angle=”45”/> 

<ScaleTransform ScaleX=”5” ScaleY=”1”/> 

<SkewTransform AngleX=”30”/>

</TransformGroup>

</Button.RenderTransform>

OK 

</Button>

Figure 4.14 shows the result of all three transforms being applied to the Button.

For maximum performance, WPF calculates a combined transform out of a 
TransformGroup’s children and applies it as a single transform (much as if you had used

Applying Transforms 113
4

MatrixTransform’s Type Converter

MatrixTransform is the only transform that has a type converter to enable its use as a 
simple string in XAML. (The type converter is called TransformConverter, and it is actually 
associated with the abstract Transform class, but it only supports MatrixTransform.) For 
example, you can translate a Button 10 units to the right and 20 units down with the follow-
ing syntax:

<Button RenderTransform=”1,0,0,1,10,20” />

The comma-delimited list represents the M11, M12, M21, M22, OffsetX, and OffsetY values, 
respectively. The values 1, 0, 0, 1, 0, 0 give you the identity matrix (meaning no transform 
is done), so making MatrixTransform act like TranslateTransform is as simple as start-
ing with the identity matrix and then using OffsetX and OffsetY as TranslateTransform’s 
X and Y values. Scaling can be done by treating the first and fourth values (the 1s in the 
identity matrix) as ScaleX and ScaleY, respectively. Rotation and skewing are more compli-
cated because they involve sin, cos, and angles specified in radians.

If you’re comfortable with the matrix notation, representing transforms with this concise (and 
less-readable) syntax can be a time saver when you’re writing XAML by hand.

D I G G I N G  D E E P E R

  From the Library of Wow! eBook



ptg

MatrixTransform). Note that you can apply multiple 
instances of the same transform to a TransformGroup. 
For example, applying two separate 45° 
RotateTransforms would result in a 90° rotation.

CHAPTER 4 Sizing, Positioning, and Transforming Elements114

FIGURE 4.14 A Button that 
has been thoroughly tortured by 
being rotated, scaled, and skewed.

Not all FrameworkElements support transforms!

Elements hosting content that isn’t native to WPF do not support transforms, despite inherit-
ing the LayoutTransform and RenderTransform properties. For example, HwndHost, used 
to host GDI-based content and discussed in Chapter 19, “Interoperability with Non-WPF 
Technologies,” does not support them. Frame, a control that can host HTML (described in 
Chapter 9, “Content Controls”), supports them completely only when it is not hosting HTML. 
Otherwise, ScaleTransform can still be applied to scale its size, but the inner content won’t 
scale.

Figure 4.15 demonstrates this with a StackPanel containing some Buttons and a Frame 
containing a webpage (constrained to be 100x100). When the entire StackPanel is rotated 
and scaled, the Frame does its best to scale but doesn’t rotate at all. It ends up hiding most 
of the rotated Buttons.

FIGURE 4.15 A Frame with HTML content responds somewhat to ScaleTransform but no 
other transforms.

WA R N I N G

Normal StackPanel

StackPanel with RotateTransform and ScaleTransform

Summary
That concludes our tour of the layout properties that child elements can use to influence 
the way they appear on the screen. In this chapter, you also got some first glimpses into 
user-visible features unlike anything you’d see in Win32 or Windows Forms: rotated and 
skewed controls!

But the most important part of layout is the parent panels. This chapter repeatedly uses a 
StackPanel for simplicity, but the next chapter formally introduces this panel and all the 
other panels as well.

  From the Library of Wow! eBook



ptg

CHAPTER 5

Layout with Panels

Layout is a critical component of an application’s usabil-
ity on a wide range of devices, but without good platform 
support, getting it right can be extremely difficult. 
Arranging the pieces of a user interface simply with static 
pixel-based coordinates and static pixel-based sizes can 
work in limited environments, but these types of interfaces 
start to crumble under the influence of many varying 
factors: different screen resolutions and dimensions, user 
settings such as font sizes, or content that changes in 
unpredictable ways (such as text being translated into 
different languages). Plus, applications that don’t allow 
users to resize various pieces of them (and take advantage 
of the extra space intelligently) frustrate most users.

On my 1024x600 netbook screen, Outlook 2010 adapts 
nicely, but many programs, such as Visual Studio 2010, do 
not fare so well. If I change the screen to portrait mode 
(600x1024), Outlook 2010 does an admirable job of using 
the space intelligently, but the experience of other 
programs (such as Visual Studio 2010) gets far worse. (This 
is especially ironic because Visual Studio is at least partially 
a WPF application, whereas Outlook does not use WPF. 
However, this specific outcome is not really a result of the 
technologies being used, but rather the priority that the 
teams placed on handling small or unusual screen sizes.)

WPF contains built-in panels that can make it easy to avoid 
layout pitfalls. This chapter begins by examining the five 
main built-in panels, all in the System.Windows.Controls 
namespace, in increasing order of complexity (and general 
usefulness):

. Canvas

. StackPanel

. WrapPanel

IN THIS CHAPTER

. Canvas

. StackPanel

. WrapPanel

. DockPanel

. Grid

. Primitive Panels

. Handling Content Overflow

. Putting It All Together: 
Creating a Visual Studio–Like 
Collapsible, Dockable, 
Resizable Pane

  From the Library of Wow! eBook



ptg

. DockPanel

. Grid

For completeness, this chapter also looks at a few rarely used “primitive panels.” Then, 
after a section on content overflow (which happens when parents and children can’t 
agree on the use of available space), this chapter ends with a large example. This example 
applies a variety of layout techniques to make a relatively sophisticated user interface 
found in applications such as Visual Studio that would be hard to construct without the 
help of WPF’s layout features.

Canvas
Canvas is the most basic panel. It’s so basic, in fact, that you probably should never 
bother using it for arranging typical user interfaces. Canvas only supports the “classic” 
notion of positioning elements with explicit coordinates, although at least those coordi-
nates are device-independent pixels, unlike in older user interface systems. Canvas also 
enables you to specify coordinates relative to any corner, not just the top-left corner.

You can position elements in a Canvas by using its attached properties: Left, Top, Right, 
and Bottom. By setting a value for Left or Right, you’re stating that the closest edge of 
the element should remain a fixed distance from that edge of the Canvas. And the same 
goes for setting a value for Top or Bottom. In essence, you choose the corner in which to 
“dock” each element, and the attached property values serve as margins (to which the 
element’s own Margin values are added). If an element doesn’t use any of these attached 
properties (leaving them with their default value of Double.NaN), it is placed in the top-
left corner of the Canvas (the equivalent of setting Left and Top to 0). This is demon-
strated in Listing 5.1, and the result is shown in Figure 5.1.

LISTING 5.1 Buttons Arranged in a Canvas

<Window xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation” 

Title=”Buttons in a Canvas”> 

<Canvas>

<Button Background=”Red”>Left=0, Top=0</Button> 

<Button Canvas.Left=”18” Canvas.Top=”18”

Background=”Orange”>Left=18, Top=18</Button> 

<Button Canvas.Right=”18” Canvas.Bottom=”18”

Background=”Yellow”>Right=18, Bottom=18</Button> 

<Button Canvas.Right=”0” Canvas.Bottom=”0”

Background=”Lime”>Right=0, Bottom=0</Button> 

<Button Canvas.Right=”0” Canvas.Top=”0”

Background=”Aqua”>Right=0, Top=0</Button> 

<Button Canvas.Left=”0” Canvas.Bottom=”0”

Background=”Magenta”>Left=0, Bottom=0</Button> 

</Canvas>

</Window>

CHAPTER 5 Layout with Panels116

  From the Library of Wow! eBook



ptg

Table 5.1 evaluates the way that some of 
the child layout properties discussed in 
the preceding chapter apply to elements inside a Canvas.

TABLE 5.1 Canvas’s Interaction with Child Layout Properties 

Property Usable Inside Canvas?

Margin Partially. On the two sides used to position the element 
(Top and Left by default), the relevant two out of four 
margin values are added to the attached property values.

HorizontalAlignment and No. Elements are given only the exact 
VerticalAlignment space they need.
LayoutTransform Yes. Differs from RenderTransform because when 

LayoutTransform is used, elements always remain the 
specified distance from the selected corner of the Canvas.

Canvas 117
5

FIGURE 5.1 The Buttons in a Canvas 
from Listing 5.1.

Elements can’t use more than two of 
the Canvas attached properties!

If you attempt to set Canvas.Left and 
Canvas.Right simultaneously, 
Canvas.Right gets ignored. And if you 
attempt to set Canvas.Top and 
Canvas.Bottom simultaneously, 
Canvas.Bottom gets ignored. Therefore, 
you can’t dock an element to more than 
one corner of a Canvas at a time.

WA R N I N G

The default Z order (defining which elements are “on top of” other elements) is determined 
by the order in which the children are added to the parent. In XAML, this is the order in 
which children are listed in the file. Elements added later are placed on top of elements 
added earlier. So in Figure 5.1, the orange Button is on top of the red Button, and the 
green Button is on top of the yellow Button. This is relevant not just for the built-in panels 
that enable elements to overlap (such as Canvas) but whenever a RenderTransform causes 
an element to overlap another (as shown in Figures 4.7, 4.8, 4.11, 4.12, and 4.13 in the 
preceding chapter).

However, you can customize the Z order of any child element by marking it with the ZIndex 
attached property that is defined on Panel (so it is inherited by all panels). ZIndex is an 
integer with a default value of 0 that you can set to any number (positive or negative). 
Elements with larger ZIndex values are rendered on top of elements with smaller ZIndex 
values, so the element with the smallest value is in the back, and the element with the 
largest value is in the front. In the following example, ZIndex causes the red button to be on 
top of the orange button, despite being an earlier child of the Canvas:

T I P

  From the Library of Wow! eBook



ptg

Although Canvas is too primitive a panel for creating flexible user interfaces, it is the most 
lightweight panel. So, you should keep it in mind for maximum performance when you 
need precise control over the placement of elements. For example, Canvas is very handy 
for precise positioning of primitive shapes in vector-based drawings, discussed in Chapter 
15, “2D Graphics.”

StackPanel
StackPanel is a popular panel because of its simplicity and usefulness. As its name 
suggests, it simply stacks its children sequentially. Examples in previous chapters use 
StackPanel because it doesn’t require the use of any attached properties to get a reason-
able-looking user interface. In fact, StackPanel is one of the few panels that doesn’t even 
define any of its own attached properties!

With no attached properties for arranging children, you just have one way to customize 
the behavior of StackPanel—setting its Orientation property (of type 
System.Windows.Controls.Orientation) 
to Horizontal or Vertical. Vertical is 
the default Orientation. Figure 5.2 
shows simple Buttons, with no proper-
ties set other than Background and 
Content, in two StackPanels with only 
their Orientation set.

Table 5.2 evaluates the way that some of 
the child layout properties apply to 
elements inside a StackPanel.

CHAPTER 5 Layout with Panels118

Continued

<Canvas> 

<Button Canvas.ZIndex=”1” Background=”Red”>On Top!</Button> 

<Button Background=”Orange”>On Bottom with a Default ZIndex=0</Button>

</Canvas>

If multiple children have the same ZIndex value, the order is determined by their order in the 
panel’s Children collection, as in the default case.

Therefore, programmatically manipulating Z order is as simple as adjusting the ZIndex value. 
To cause the preceding red button to be rendered behind the orange button, you can set the 
attached property value to any number less than or equal to zero. The following line of C# 
does just that (assuming that the red button’s name is redButton):

Panel.SetZIndex(redButton, 0);

StackPanel and Right-to-Left 
Environments

When FlowDirection is set to 
RightToLeft, stacking occurs right to left 
for a StackPanel with Horizontal 
Orientation, rather than the default left-to-
right behavior.

D I G G I N G  D E E P E R

  From the Library of Wow! eBook



ptg

FIGURE 5.2 Buttons in a StackPanel, using both Orientations.

TABLE 5.2 StackPanel’s Interaction with Child Layout Properties 

Property Usable Inside StackPanel?

Margin Yes. Margin controls the space between an element and the 
StackPanel’s edges as well as space between elements.

HorizontalAlignment and Partially, because alignment is effectively ignored in the 
VerticalAlignment direction of stacking (because children get the exact amount 

of space they need). For Orientation=”Vertical”, 
VerticalAlignment is meaningless. For 
Orientation=”Horizontal”, HorizontalAlignment is 
meaningless.

LayoutTransform Yes. This differs from RenderTransform because when 
LayoutTransform is used, the remaining elements in the 
stack are pushed out further to make room. When combining 
Stretch layout with RotateTransform or SkewTransform as 
a LayoutTransform, the stretching only occurs for angles 
that are multiples of 90°.

The final sentence discussing LayoutTransform in Table 5.2 needs a little more explana-
tion. Figure 5.3 reveals that when an element that normally would be stretched is rotated, 
the stretching occurs only when edges of the element are parallel or perpendicular to the 
direction of stretching. This behavior isn’t specific to StackPanel but can be seen when-
ever an element is stretched in only one direction. This odd-looking behavior only applies 
to LayoutTransform; it doesn’t happen with RenderTransform.

StackPanel 119
5

Vertical stacks elements from top to bottom.
Horizontal stacks elements 

from left to right. 

  From the Library of Wow! eBook



ptg

FIGURE 5.3 The yellow Button is rotated 80° then 90° using LayoutTransform.

CHAPTER 5 Layout with Panels120

No stretching at 80° Stretching at 90°

Virtualizing Panels

Panels that derive from the abstract System.Windows.Controls.VirtualizingPanel class 
are important implementation details of several controls. The most notable one is 
VirtualizingStackPanel, which acts just like StackPanel but temporarily discards any 
items offscreen to optimize performance (only when data binding). Therefore, 
VirtualizingStackPanel is the best panel for data binding to a really large number of child 
elements, and ListBox uses it internally by default. It can also be used in TreeView, as 
discussed in Chapter 10, “Items Controls.” DataGridCellsPanel and 
DataGridRowsPresenter are two other virtualizing panels, and they are leveraged by 
DataGrid and its associated types, discussed in Chapter 11, “Images, Text, and Other 
Controls.”

D I G G I N G  D E E P E R

WrapPanel
WrapPanel is similar to StackPanel. But in addition to stacking its child elements, it wraps 
them to additional rows or columns when there’s not enough space for a single stack. 
This is useful for displaying an indeterminate number of items with a more interesting 
layout than a simple list, much like what Windows Explorer does.

Like StackPanel, WrapPanel has no attached properties for controlling element positions. 
It defines three properties for controlling its behavior:

. Orientation—This is just like StackPanel’s property, except Horizontal is the 
default. Horizontal Orientation is like Windows Explorer’s Thumbnails view: 
Elements are stacked left to right and then wrap top to bottom. Vertical 
Orientation is like Windows Explorer’s List view: Elements are stacked top to 
bottom and then wrap left to right.

. ItemHeight—A uniform height for all child elements. The way each child fills that 
height depends on its own VerticalAlignment, Height, and so forth. Any elements 
taller than ItemHeight get clipped.

. ItemWidth—A uniform width for all child elements. The way each child fills that 
width depends on its own HorizontalAlignment, Width, and so forth. Any elements 
wider than ItemWidth get clipped.

  From the Library of Wow! eBook



ptg

By default, ItemHeight and ItemWidth 
are not set (or, rather, they are set to 
Double.NaN). In this case, a WrapPanel 
with Vertical Orientation gives each 
column the width of its widest element, 
whereas a WrapPanel with Horizontal 
Orientation gives each row the height 
of its tallest element. So no intra-
WrapPanel clipping occurs by default.

Figure 5.4 shows four snapshots of a 
WrapPanel with Horizontal Orientation 
in action, because it is inside a Window 
that is being resized. Figure 5.5 shows the same thing for a WrapPanel with Vertical 
Orientation. When a WrapPanel has plenty of space and ItemHeight/ItemWidth aren’t set, 
WrapPanel looks just like StackPanel.

WrapPanel 121
5

You can force WrapPanel to arrange 
elements in a single row or column by 
setting its Width (for Horizontal 
Orientation) or Height (for Vertical 
Orientation) to Double.MaxValue or 
Double.PositiveInfinity. In XAML, this 
must be done with the x:Static markup 
extension because neither of these values 
is supported by the type converter for 
System.Double.

T I P

FIGURE 5.4 Buttons arranged in a WrapPanel with its default Horizontal Orientation, 
as the Window width shrinks.

FIGURE 5.5 Buttons arranged in a WrapPanel with Vertical Orientation, as the Window 
height shrinks.

WrapPanel and Right-to-Left Environments

When FlowDirection is set to RightToLeft, wrapping occurs right to left for a WrapPanel 
with Vertical Orientation, and stacking occurs right to left for a WrapPanel with 
Horizontal Orientation.

D I G G I N G  D E E P E R

Table 5.3 evaluates the way that some of the child layout properties apply to elements 
inside a WrapPanel.

  From the Library of Wow! eBook



ptg

TABLE 5.3 WrapPanel’s Interaction with Child Layout Properties 

Property Usable Inside WrapPanel?

Margin Yes. Margins are included when WrapPanel calculates 
the size of each item for determining default stack 
widths or heights.

HorizontalAlignment and Partially. Alignment can be used in the opposite 
VerticalAlignment direction of stacking, just like with StackPanel. But 

alignment can also be useful in the direction of stacking 
when WrapPanel’s ItemHeight or ItemWidth gives an 
element extra space to align within.

LayoutTransform Yes. It differs from RenderTransform because when 
LayoutTransform is used, the remaining elements are 
pushed out further to make room, but only if 
WrapPanel’s ItemHeight or ItemWidth (depending on 
the Orientation) is not set. When combining Stretch 
layout with RotateTransform or SkewTransform as a 
LayoutTransform, the stretching only occurs for angles 
that are multiples of 90°, as with StackPanel.

WrapPanel is typically not used for laying out controls in a Window, but rather for control-
ling layout inside controls. Chapter 10 explains how this is done.

DockPanel
DockPanel enables easy docking of elements to an entire side of the panel, stretching it to 
fill the entire width or height. (This is unlike Canvas, which enables you to dock elements 
to a corner only.) DockPanel also enables a single element to fill all the remaining space 
unused by the docked elements.

DockPanel has a Dock attached property (of type System.Windows.Controls.Dock), so chil-
dren can control their docking with one of four possible values: Left (the default when 
Dock isn’t applied), Top, Right, and Bottom. Note that there is no Fill value for Dock. 
Instead, the last child added to a DockPanel fills the remaining space unless DockPanel’s 
LastChildFill property is set to false. With LastChildFill set to true (the default), the 
last child’s Dock setting is ignored. With it set to false, it can be docked in any direction 
(Left by default).

Figure 5.6 displays the following five Buttons in a DockPanel (with LastChildFill left as 
true), each marked with its Dock setting:

<DockPanel> 

<Button DockPanel.Dock=”Top” Background=”Red”>1 (Top)</Button> 

<Button DockPanel.Dock=”Left” Background=”Orange”>2 (Left)</Button> 

<Button DockPanel.Dock=”Right” Background=”Yellow”>3 (Right)</Button>

CHAPTER 5 Layout with Panels122

  From the Library of Wow! eBook



ptg

<Button DockPanel.Dock=”Bottom” Background=”Lime”>4 (Bottom)</Button> 

<Button Background=”Aqua”>5</Button>

</DockPanel>

The order in which these controls are added to the DockPanel is indicated by their 
number (and color).

DockPanel 123
5FIGURE 5.6 Buttons arranged in a DockPanel.

As with StackPanel, any stretching of elements is due to their default 
HorizontalAlignment or VerticalAlignment values of Stretch. Individual elements can 
choose different alignments if they don’t want to fill the entire space that DockPanel 
gives them. Figure 5.7 demonstrates this with explicit HorizontalAlignment and 
VerticalAlignment values added to all but one Button rendered in Figure 5.6:

<DockPanel> 

<Button DockPanel.Dock=”Top” HorizontalAlignment=”Right”

Background=”Red”>1 (Top, Align=Right)</Button> 

<Button DockPanel.Dock=”Left” VerticalAlignment=”Bottom”

Background=”Orange”>2 (Left, Align=Bottom)</Button> 

<Button DockPanel.Dock=”Right” VerticalAlignment=”Bottom”

Background=”Yellow”>3 (Right, Align=Bottom)</Button> 

<Button DockPanel.Dock=”Bottom” HorizontalAlignment=”Right”

Background=”Lime”>4 (Bottom, Align=Right)</Button> 

<Button Background=”Aqua”>5</Button>

</DockPanel>

Notice that although four of the elements have chosen not to occupy all the space given 
to them, the space is not reclaimed for use by other elements.

  From the Library of Wow! eBook



ptg

FIGURE 5.7 Buttons arranged in a DockPanel that don’t occupy all the space given to 
them.

DockPanel is useful for arranging a top-level user interface in a Window or Page, where 
most docked elements are actually other panels containing the real meat. For example, 
applications typically dock a Menu on top, perhaps a panel on the side, and a StatusBar 
on the bottom, and then fill the remaining space with the main content.

The order in which children are added to DockPanel matters because each child is given 
all the space remaining on the docking edge. (This is somewhat like people selfishly 
claiming both armrests when they’re the first to sit down in an airplane or auditorium.)

Figure 5.8 displays five Buttons in a DockPanel as in Figure 5.6, but added in a different 
order (indicated by their number and color). Notice how the layout differs from that in 
the preceding figure.

CHAPTER 5 Layout with Panels124

FIGURE 5.8 Buttons arranged in a DockPanel in a different order than Figure 5.6.

DockPanel supports an indefinite number of children—not just five. When multiple 
elements are docked in the same direction, they are simply stacked in the appropriate 
direction. Figure 5.9 shows a DockPanel with eight elements—three docked on the left, 
two docked on the top, two docked on the bottom, and one filling the remaining space.

  From the Library of Wow! eBook



ptg

FIGURE 5.9 Multiple elements can be docked in all directions.

Therefore, DockPanel’s functionality is actually a superset of StackPanel’s functionality. 
With LastChildFill set to false, DockPanel behaves like a horizontal StackPanel when 
all children are docked to the left, and it behaves like a vertical StackPanel when all chil-
dren are docked to the top.

Table 5.4 evaluates the way that some of the child layout properties apply to elements 
inside a DockPanel.

TABLE 5.4 DockPanel’s Interaction with Child Layout Properties 

Property Usable Inside DockPanel?

Margin Yes. Margin controls the space between an element and the 
DockPanel’s edges as well as space between elements.

HorizontalAlignment Partially. As with StackPanel, alignment is effectively ignored in 
and VerticalAlignment the direction of docking. For Left or Right,

HorizontalAlignment is meaningless. For Top or Bottom, 
VerticalAlignment is meaningless. For the element filling the 
remaining space, however, both HorizontalAlignment and 
VerticalAlignment can be useful.

LayoutTransform Yes. Differs from RenderTransform because when
LayoutTransform is used, the remaining elements are pushed 
out further to make room. When combining Stretch layout with 
RotateTransform or SkewTransform as a LayoutTransform, 
the stretching occurs only for angles that are multiples of 90°, 
except for the element filling the remaining space (because it 
can stretch in both directions).

Grid
Grid is the most versatile panel and probably the one you’ll use most often. (Visual Studio 
and Expression Blend use Grid by default for their projects.) It enables you to arrange its 
children in a multirow and multicolumn fashion, without relying on wrapping (like 
WrapPanel), and it provides a number of features to control the rows and columns in 
interesting ways. Working with Grid is a lot like working with a TABLE in HTML.

Grid 125
5

  From the Library of Wow! eBook



ptg

Rather than continue to use simple colored buttons to demonstrate layout, Listing 5.2 uses 
Grid to build a user interface somewhat like Visual Studio’s start page in older versions. It 
defines a 4x2 Grid and arranges a Label and four GroupBoxes in some of its cells.

LISTING 5.2 A First Attempt at a Visual Studio–Like Start Page with a Grid

<Grid Background=”LightBlue”>

<!-- Define four rows: --> 

<Grid.RowDefinitions>

<RowDefinition/> 

<RowDefinition/> 

<RowDefinition/> 

<RowDefinition/>

</Grid.RowDefinitions>

<!-- Define two columns: --> 

<Grid.ColumnDefinitions>

<ColumnDefinition/> 

<ColumnDefinition/>

</Grid.ColumnDefinitions>

<!-- Arrange the children: --> 

<Label Grid.Row=”0” Grid.Column=”0” Background=”Blue” Foreground=”White” 

HorizontalContentAlignment=”Center”>Start Page</Label>

<GroupBox Grid.Row=”1” Grid.Column=”0” Background=”White” 

Header=”Recent Projects”>…</GroupBox> 

<GroupBox Grid.Row=”2” Grid.Column=”0” Background=”White”

Header=”Getting Started”>…</GroupBox> 

<GroupBox Grid.Row=”3” Grid.Column=”0” Background=”White”

Header=”Headlines”>…</GroupBox> 

<GroupBox Grid.Row=”1” Grid.Column=”1” Background=”White”

Header=”Online Articles”> 

<ListBox>

<ListBoxItem>Article #1</ListBoxItem> 

<ListBoxItem>Article #2</ListBoxItem> 

<ListBoxItem>Article #3</ListBoxItem> 

<ListBoxItem>Article #4</ListBoxItem>

</ListBox>

CHAPTER 5 Layout with Panels126

WPF also contains a class called Table in the System.Windows.Documents namespace that 
exposes similar features to Grid. However, Table is not a Panel (or even a UIElement). It 
is a FrameworkContentElement designed for the display of document content, whereas 
Grid is a Panel. Table is covered in Chapter 11.

T I P

  From the Library of Wow! eBook



ptg

</GroupBox> 

</Grid>

For the basic usage of Grid, you define the number of rows and columns by adding that 
number of RowDefinition and ColumnDefinition elements to its RowDefinitions and 
ColumnDefinitions properties. (This is a little verbose but handy for giving individual rows 
and columns distinct sizes.) You can then position child elements in the Grid using its Row 
and Column attached properties, which are zero-based integers. When you don’t explicitly 
specify any rows or columns, a Grid is implicitly given a single cell. And when you don’t 
explicitly set Grid.Row or Grid.Column on child elements, the value 0 is used for each.

Grid cells can be left empty, and multiple elements can appear in the same Grid cell. In 
this case, elements are simply rendered on top of one another according to their Z order. 
As with Canvas, child elements in the same cell don’t interact with each other in terms of 
layout; they simply overlap.

Figure 5.10 shows the rendered result of Listing 5.2.

Grid 127

LISTING 5.2 Continued

5

FIGURE 5.10 The first attempt at a Visual Studio–like start page is not very satisfactory.

The most noticeable problem with Figure 5.10 is that the list of online articles is too small. 
Also, it would probably look better if the “Start Page” label spanned the entire width of the 
Grid. Fortunately, we can solve both of these problems with two more attached properties 
defined by Grid: RowSpan and ColumnSpan.

RowSpan and ColumnSpan are set to 1 by default and can be set to any number greater than 
1 to make an element span that many rows or columns. (If a value greater than the 
number of rows or columns is given, the element simply spans the maximum number that 
it can.) Therefore, by simply adding this to the last GroupBox in Listing 5.2:

Grid.RowSpan=”3”

and adding this to the Label in Listing 5.2, you get a much better result, shown in Figure 5.11:

Grid.ColumnSpan=”2”

  From the Library of Wow! eBook



ptg

CHAPTER 5 Layout with Panels128

FIGURE 5.11 Using RowSpan and ColumnSpan improves the Visual Studio–like start page.

The Grid in Figure 5.11 still looks a little strange, however, because by default the heights 
of all rows and the widths of all columns are equal. Ideally, we’d make more room for the 
list of online articles, and we wouldn’t let the Label on top take up so much space. We 
can easily fix this by making the first row and first column size to their content. This auto-
sizing can be done by setting the appropriate RowDefinition’s Height and 
ColumnDefinition’s Width to the case-insensitive string Auto. Therefore, updating the defi-
nitions in Listing 5.2 as follows gives the result shown in Figure 5.12:

<!-- Define four rows: --> 

<Grid.RowDefinitions>

<RowDefinition Height=”Auto”/> 

<RowDefinition/> 

<RowDefinition/> 

<RowDefinition/>

</Grid.RowDefinitions>

<!-- Define two columns: --> 

<Grid.ColumnDefinitions>

<ColumnDefinition Width=”Auto”/> 

<ColumnDefinition/>

</Grid.ColumnDefinitions>

How can I give Grid cells background colors, padding, and borders, as with 
cells of an HTML TABLE?

There is no intrinsic mechanism to give Grid cells such properties, but you can simulate them 
pretty easily, thanks to the fact that multiple elements can appear in any Grid cell. To give a 
cell a background color, you can simply plop in a Rectangle with the appropriate Fill, which 
stretches to fill the cell by default. To give a cell padding, you can use autosizing and set the 
Margin on the appropriate child element. For borders, you can again use a Rectangle but give 
it an explicit Stroke of the appropriate color, or you can use a Border element instead.

?
FA Q

  From the Library of Wow! eBook



ptg

FIGURE 5.12 The final Visual Studio–like start page uses autosizing in the first row and first 
column.

Grid 129
5

Grid has a simple ShowGridLines property that can be set to true to highlight the edges 
of cells with blue and yellow dashed lines. Applications in production have no use for this, 
but this feature can be a helpful aid to “debug” the layout of a Grid. Figure 5.13 shows the 
result of setting ShowGridLines=”True” on the Grid used in Figure 5.12.

FIGURE 5.13 Using ShowGridLines on a Grid.

T I P

Continued

Just be sure to add such Rectangles or Borders to the Grid before adding any of the other 
children (or explicitly mark them with the ZIndex attached property), so their Z order puts 
them behind the main content.

  From the Library of Wow! eBook



ptg

Sizing the Rows and Columns
Unlike FrameworkElement’s Height and Width properties, RowDefinition’s and 
ColumnDefinition’s corresponding properties do not default to Auto (or Double.NaN). And 
unlike almost all other Height and Width properties in WPF, theirs are of type 
System.Windows.GridLength rather than double. This way, Grid can uniquely support 
three different types of RowDefinition and ColumnDefinition sizing:

. Absolute sizing—Setting Height or Width to a numeric value representing device-
independent pixels (like all other Height and Width values in WPF). Unlike the 
other types of sizing, an absolute-sized row or column does not grow or shrink as 
the size of the Grid or size of the elements changes.

. Autosizing—Setting Height or Width to Auto (seen previously), which gives child 
elements the space they need and no more (like the default setting for other Height 
and Width values in WPF). For a row, this is the height of the tallest element, and 
for a column, this is the width of the widest element. This is a better choice than 
absolute sizing whenever text is involved to be sure it doesn’t get cut off because of 
different font settings or localization.

. Proportional sizing (sometimes called star sizing)—Setting Height or Width 
to special syntax to divide available space into equal-sized regions or regions based 
on fixed ratios. A proportional-sized row or column grows and shrinks as the Grid is 
resized.

Absolute sizing and autosizing are straightforward, but proportional sizing needs more 
explanation. It is done with star syntax that works as follows:

. When a row’s height or column’s width is set to *, it occupies all the remaining 
space.

. When multiple rows or columns use *, the remaining space is divided equally 
between them.

. Rows and columns can place a coefficient in front of the asterisk (like 2* or 5.5*) to 
take proportionately more space than other columns using the asterisk notation. A 
column with width 2* is always twice the width of a column with width * (which is 
shorthand for 1*) in the same Grid. A column with width 5.5* is always twice the 
width of a column with width 2.75* in the same Grid.

The “remaining space” is the height or width of the Grid minus any rows or columns that 
use absolute sizing or autosizing. Figure 5.14 demonstrates these different scenarios with 
simple columns in a Grid.

The default height and width for Grid rows and columns is *. That’s why the rows and 
columns are evenly distributed in Figures 5.10 and 5.11.

CHAPTER 5 Layout with Panels130

  From the Library of Wow! eBook



ptg

FIGURE 5.14 Proportional-sized Grid columns in action.

Grid 131
5

Why doesn’t WPF, like HTML, provide built-in support for percentage 
sizing?

The most common use of percentage sizing in HTML—setting the width or height of an item 
to 100%—is handled by setting an element’s HorizontalAlignment or VerticalAlignment 
property to Stretch inside most panels. For more complicated scenarios, Grid’s propor-
tional sizing effectively provides percentage sizing, but with a syntax that takes a little getting 
used to. For example, to have a column always occupy 25% of a Grid’s width, you can mark 
it with * and ensure that the remaining columns have a total width of 3*.

The WPF team chose this syntax so developers wouldn’t have to worry about keeping the 
sum of percentages equal to 100 as rows or columns are dynamically added or removed. In 
addition, the fact that proportional sizing is specified relative to the remaining space (as 
opposed to the entire Grid) makes its behavior more understandable than an HTML table 
when mixing proportional rows or columns with fixed-size rows or columns.

?
FA Q

Using GridLength from Procedural Code

System.Windows.GridLengthConverter is the type converter that converts strings like 
“100”, “auto”, and “2*” to GridLength structures. From C#, you can use one of two 
constructors to construct the appropriate GridLength. The key is a GridUnitType enumera-
tion that identifies which of the three types of values you’re creating.

For absolute sizing, you can use the constructor that takes a simple double value (such as 
100):

GridLength length = new GridLength(100);

D I G G I N G  D E E P E R

  From the Library of Wow! eBook



ptg

Interactive Sizing with GridSplitter
Another attractive feature of Grid is its support for interactive resizing of rows and 
columns using a mouse or keyboard (or stylus or finger, depending on your hardware). 
This is accomplished with the GridSplitter class from the same namespace. You can add 
any number of GridSplitter children to a Grid and give them Grid.Row, Grid.Column, 
Grid.RowSpan, and/or Grid.ColumnSpan attached property values like any other children. 
Dragging a GridSplitter resizes at least one cell. Whether the other cells resize or simply 
move depends on whether they use 
proportional or nonproportional sizing.

By default, which cells are directly 
affected by the resizing depends on 
GridSplitter’s alignment values. Table
5.5 summarizes the behavior and also 
indicates in blue what the GridSplitter 
looks like with the various settings, 
treating the cells of the table as cells of a 
Grid.

GridSplitter has a default HorizontalAlignment of Right and a default 
VerticalAlignment of Stretch, so it docks to the right side of the specified cell by 
default. Any reasonable use of GridSplitter should set Stretch alignment in at least one 
direction. Otherwise, it ends up looking like a small dot, as seen in Table 5.5.

CHAPTER 5 Layout with Panels132

Continued 

or you can use another constructor that accepts a GridUnitType value:

GridLength length = new GridLength(100, GridUnitType.Pixel);

In both examples, the length is 100 device-independent pixels.

Double.NaN isn’t a supported value for the GridLength constructors, so for autosizing you 
must use GridUnitType.Auto:

GridLength length = new GridLength(0, GridUnitType.Auto);

The number passed as the first parameter is ignored. However, the preferred approach is to 
simply use the static GridLength.Auto property, which returns an instance of GridLength 
just like the one created by the preceding line of code. For proportional sizing, you can pass 
a number along with GridUnitType.Star:

GridLength length = new GridLength(2, GridUnitType.Star);

This example is equivalent to specifying 2* in XAML. You can pass 1 with 
GridUnitType.Star to get the equivalent of *.

Although GridSplitter fits in one cell by 
default, its resizing behavior always affects 
the entire column (when dragging horizon-
tally) or the entire row (when dragging verti-
cally). Therefore, it’s best to give it a 
ColumnSpan or RowSpan value to ensure 
that it stretches across the entire height or 
width of the Grid.

T I P

  From the Library of Wow! eBook



ptg

TABLE 5.5 The Cells Directly Affected When Dragging a GridSplitter with Various 
Alignment Settings

Grid 133
5

HorizontalAlignment

V
e
r
t
i
c
a
l
A
l
i
g
n
m
e
n
t

Current cell 
and cell to 

the left

Current cell 
and cell to 

the left

Current cell 
and cell to 

the left

Current cell 
and cell to 

the left

Current cell 
and cell to 

the right

Current cell 
and cell to 

the right

Current cell 
and cell to 

the right

Current cell 
and cell to 

the right

Cells to the 
left and right

Cells to the 
left and right

Cells to the 
left and right

Cells to the 
left and right

Current cell and cell above

Left Right Center Stretch

Current cell and cell below

Cells above and below

Cells to the left and right if 
GridSplitter is taller than it 

is wide, or cells to the top 
and bottom if GridSplitter

is wider than it is tall

Top

Bottom

Center

Stretch

When all rows or columns are proportionally sized, dragging GridSplitter changes the 
coefficients for the two affected rows or columns accordingly. When all rows or columns 
are absolutely sized, dragging GridSplitter only changes the size of the topmost or left-
most of the two affected cells (depending on the resize direction). The remaining cells get 
pushed down or to the right to make room. This same behavior applies for autosized rows 
and columns, although the row or column that gets resized is switched to absolute sizing 
on the fly.

Although you can control all aspects of the resizing behavior and direction with 
GridSplitter’s alignment properties, GridSplitter also has two properties for explicitly 
and independently controlling these aspects: ResizeDirection (of type 
GridResizeDirection) and ResizeBehavior (of type GridResizeBehavior). 
ResizeDirection defaults to Auto and can be changed to Rows or Columns, but this has an 
effect only when GridSplitter is 
stretching in both directions (the 
bottom-right cell in Table 5.5).
ResizeBehavior defaults to 
BasedOnAlignment to get the behavior in 
Table 5.5 but can be set to 
PreviousAndCurrent, CurrentAndNext, 
or PreviousAndNext to control which 
two rows or columns should be directly 
affected by the resizing.

The best way to use GridSplitter is to 
place it in its own autosized row or column. 
That way, it doesn’t overlap the existing 
content in the adjacent cells. If you do place 
it in a cell with other elements, however, be 
sure to add it last (or choose an appropriate 
ZIndex value) so it has the topmost Z 
order!

T I P

  From the Library of Wow! eBook



ptg

Sharing Row and Column Sizes
RowDefinitions and ColumnDefinitions have a property called SharedSizeGroup that 
enables multiple rows and/or columns to remain the same length as each other, even as 
any of them change length at runtime (via GridSplitter, for example). SharedSizeGroup 
can be set to a simple case-sensitive string value representing an arbitrary group name, 
and any rows or columns with that same group name are kept in sync.

For a simple example, consider the following three-column Grid shown in Figure 5.15 
that doesn’t use SharedSizeGroup:

<Grid> 

<Grid.ColumnDefinitions>

<ColumnDefinition Width=”Auto”/> 

<ColumnDefinition/> 

<ColumnDefinition/>

</Grid.ColumnDefinitions>

<Label Grid.Column=”0” Background=”Red”

HorizontalContentAlignment=”Center” VerticalContentAlignment=”Center”>1 

</Label> 

<GridSplitter Grid.Column=”0” Width=”5”/> 

<Label Grid.Column=”1” Background=”Orange”

HorizontalContentAlignment=”Center” VerticalContentAlignment=”Center”>2 

</Label> 

<Label Grid.Column=”2” Background=”Yellow”

HorizontalContentAlignment=”Center” VerticalContentAlignment=”Center”>3 

</Label>

</Grid>

The first column is autosized and has 
both a Label and a GridSplitter. The 
two remaining columns are both *-sized 
and contain only a Label. As the first 
column is enlarged, the remaining two
*-sized columns split the shrunken space 
evenly.

CHAPTER 5 Layout with Panels134

GridSplitter must be given an explicit 
Width (or Height, depending on orientation) 
in order to be seen and usable.

T I P

Default layout Layout after dragging 
GridSplitter to the right

GridSplitter GridSplitter

FIGURE 5.15 A simple Grid that doesn’t use SharedSizeGroup.

  From the Library of Wow! eBook



ptg

In contrast, Figure 5.16 shows what happens with the same Grid when the first and last 
columns are marked with the same SharedSizeGroup. First, all members in the 
SharedSizeGroup are initialized to the largest auto or absolute size. Then, as the first 
column is enlarged, the last column is enlarged to match. The middle column is now 
effectively the only *-sized column, and it fills whatever space remains.

The XAML for the Grid shown in Figure 5.16 is as follows:

<Grid IsSharedSizeScope=”True”> 

<Grid.ColumnDefinitions>

<ColumnDefinition Width=”Auto” SharedSizeGroup=”myGroup”/> 

<ColumnDefinition/> 

<ColumnDefinition SharedSizeGroup=”myGroup”/>

</Grid.ColumnDefinitions> 

<Label Grid.Column=”0” Background=”Red”

HorizontalContentAlignment=”Center” VerticalContentAlignment=”Center”>1 

</Label> 

<GridSplitter Grid.Column=”0” Width=”5”/> 

<Label Grid.Column=”1” Background=”Orange”

HorizontalContentAlignment=”Center” VerticalContentAlignment=”Center”>2 

</Label> 

<Label Grid.Column=”2” Background=”Yellow”

HorizontalContentAlignment=”Center” VerticalContentAlignment=”Center”>3 

</Label>

</Grid>

Grid 135
5

Default layout Layout after dragging 
GridSplitter to the right

GridSplitter GridSplitter

FIGURE 5.16 The Grid from Figure 5.15, but with the first and last columns in the same 
SharedSizeGroup.

The reason that the IsSharedSizeScope property needs to be set is that size groups can be 
shared across multiple grids! To avoid potential name collisions (and to cut down on the 
amount of logical tree walking that needs to be done), all uses of the same 
SharedSizeGroup must be under a common parent, with IsSharedSizeScope set to true. 
Besides being a dependency property of Grid, it’s also an attached property that can be 
used on non-Grid parents. Here’s an example:

<StackPanel Grid.IsSharedSizeScope=”True”> 

<Grid>…can use SharedSizeGroup…</Grid> 

<Grid>…can use SharedSizeGroup…</Grid>

  From the Library of Wow! eBook



ptg

<WrapPanel> 

<Grid>…can use SharedSizeGroup…</Grid>

</WrapPanel> 

</StackPanel>

The “Putting It All Together: Creating a Visual Studio–Like Collapsible, Dockable, 
Resizable Pane” section at the end this chapter leverages SharedSizeGroup across multiple 
Grids to create a useful user interface.

Comparing Grid to Other Panels
Grid is the best choice for most complex layout scenarios because it can do everything 
done by the previous panels and more, except for the wrapping feature of WrapPanel. 
Grid can also accomplish layout that would otherwise require multiple panels. For 
example, the start page displayed in Figure 5.12 could have been created with a DockPanel 
and a StackPanel. The DockPanel would be the outermost element, with the Label 
docked on top, the StackPanel docked to the left (which would contain the first three 
GroupBoxes). The last GroupBox would be left to fill the DockPanel’s remaining space.

To prove that Grid is usually the best choice, it’s interesting to see how to mimic the 
behavior of the other panels with Grid, knowing that you can take advantage of Grid’s 
extra features at any time.

Mimicking Canvas with Grid
If you leave Grid with a single row and column and set the HorizontalAlignment and 
VerticalAlignment of all children to values other than Stretch, the children get added to 
the single cell just as they do in a Canvas. Setting HorizontalAlignment to Left and 
VerticalAlignment to Top is like setting Canvas.Left and Canvas.Top to 0. Setting 
HorizontalAlignment to Right and VerticalAlignment to Bottom is like setting 
Canvas.Right and Canvas.Bottom to 0. Furthermore, applying Margin values to each 
element can give you the same effect as setting Canvas’s attached properties to the same 
values. This is what the Visual Studio designer does when the user places and moves items 
on the design surface.

Mimicking StackPanel with Grid
A single-column Grid with autosized rows looks just like a vertical StackPanel when each 
element is manually placed in consecutive rows. Similarly, a single-row Grid with auto-
sized columns looks just like a horizontal StackPanel when each element is manually 
placed in consecutive columns.

Mimicking DockPanel with Grid
With RowSpan and ColumnSpan, you can easily arrange the outermost elements to be 
docked and stretched against a Grid’s edges just like what you would see with DockPanel. 
In Figure 5.12, the start page’s Label is effectively docked along the top.

As with the previous panels, Table 5.6 evaluates the way that some of the child layout 
properties apply to elements inside a Grid.

CHAPTER 5 Layout with Panels136

  From the Library of Wow! eBook



ptg

TABLE 5.6 Grid’s Interaction with Child Layout Properties 

Property Usable Inside Grid?

Margin Yes. Margin controls the space between an element and 
the edges of its cell.

HorizontalAlignment and Yes. Unlike with the previous panels, both directions are 
VerticalAlignment completely usable unless an autosized cell causes an 

element to have no extra room. Therefore, by default, most 
elements completely stretch to fill their cells.

LayoutTransform Yes. Differs from RenderTransform because when
LayoutTransform is used, elements remain inside their 
cells (when they can) and respect their Margin. Unlike with 
RenderTransform, an element scaled outside the bounds 
of a cell gets clipped.

Primitive Panels 137
5

Although Grid looks like it can practically do it all, StackPanel and WrapPanel are better 
choices when dealing with an indeterminate number of child elements (typically as an items 
panel for an items control, described in Chapter 10. Also, a DockPanel with complicated 
subpanels is sometimes a better choice than a single Grid panel because the isolation 
provided by subpanels is more manageable when the user interface changes. With a single 
Grid, you might need to adjust RowSpan and ColumnSpan values to keep the docking illusion 
while rows and columns are added to the Grid.

T I P

Primitive Panels
The previous panels are generally useful for both application layout and control layout. 
But WPF also ships a few lightweight panels that are likely to be useful only inside 
controls, whether you’re simply restyling a built-in control (covered in Chapter 14, 
“Styles, Templates, Skins, and Themes”) or creating a custom control (covered in Chapter 
20, “User Controls and Custom Controls”). They aren’t nearly as general purpose as the 
previous panels but are worth a quick look. All these panels are in the System.Windows. 
Controls.Primitives namespace, except for ToolBarTray, which is in System. 
Windows.Controls.

TabPanel
TabPanel is a lot like WrapPanel, but with limitations in some areas and extra features in 
other areas. As its name indicates, it is used in the default style for TabControl to arrange 
its tabs. Unlike WrapPanel, it supports only horizontal stacking and vertical wrapping. 
When wrapping occurs, it evenly stretches elements so that all rows consume the entire 
width of the panel. TabControl is covered in Chapter 10.

  From the Library of Wow! eBook



ptg

ToolBarPanel
ToolBarPanel, used by the default style of ToolBar, is like StackPanel. However, it works 
in conjunction with an overflow panel (covered next) to arrange items that don’t fit in its 
own bounds (the ToolBar’s main area). ToolBar is covered in Chapter 10.

ToolBarOverflowPanel
ToolBarOverflowPanel is a simplified WrapPanel that supports only horizontal stacking 
and vertical wrapping, used by the default style of ToolBar to display the extra elements 
in the overflow area. Above and beyond WrapPanel’s functionality, it adds a WrapWidth 
property that acts like a Padding property. But there’s no compelling reason to use this 
panel over WrapPanel.

ToolBarTray
ToolBarTray supports only ToolBar children (and throws an InvalidOperationException 
if you try to add children of any other type). It arranges the ToolBars sequentially (hori-
zontally by default), and it also enables you to drag them around to form additional rows 
or compress/expand neighboring ToolBars.

UniformGrid
UniformGrid is an interesting primitive panel, although its usefulness is questionable. It’s 
a simplified form of Grid in which all rows and columns are of size * and can’t be 
changed. Because of this, UniformGrid has two simple double properties to set the 
number of rows and columns rather than the more verbose RowDefinitions and 
ColumnDefinitions collections. It also has no attached properties; children are added in 
row-major order, and there can be only one child per cell.

Furthermore, if you don’t explicitly set the 
number of rows and columns (or if the 
number of children exceeds the explicit 
number of cells), UniformGrid automatically 
chooses suitable values. For example, it auto-
matically places 2–4 elements in a 2x2 
arrangement, 5–9 elements in a 3x3 arrange-
ment, 10–16 elements in a 4x4 arrangement, 
and so on. Figure 5.17 demonstrates 
UniformGrid’s default layout when eight 
Buttons are added to it.

SelectiveScrollingGrid
SelectiveScrollingGrid is a Grid subclass 
used by the default style of the DataGridRow control. On top of Grid’s functionality, it 
adds the ability to “freeze” cells while the rest of them scroll. This behavior is controlled

CHAPTER 5 Layout with Panels138

FIGURE 5.17 Eight Buttons added to
a UniformGrid.

  From the Library of Wow! eBook



ptg

by the SelectiveScrollingOrientation property, which can be set to one of the follow-
ing values:

. None—The cells will not scroll in either direction.

. Horizontal—The cells can scroll only horizontally.

. Vertical—The cells can scroll only vertically.

. Both—The cells can scroll in any direction. This is the default value.

Handling Content Overflow
The built-in panels make their best effort to accommodate the size needs of their chil-
dren. But sometimes they are forced to give children smaller space than they would like, 
and sometimes children refuse to render completely within that smaller space. For 
example, perhaps an element is marked with an explicit width that’s wider than the 
containing panel. Or perhaps a control such as ListBox contains so many items that they 
can’t all fit within the containing Window. In such cases, a content overflow problem 
exists.

You can deal with content overflow by using several different strategies:

. Clipping

. Scrolling

. Scaling

. Wrapping

. Trimming

The first three strategies are examined in this section. You’ve already seen examples of 
wrapping with WrapPanel (plus TabPanel and ToolBarOverflowPanel). This is the only 
built-in way to get wrapping behavior for content other than text (the layout of which is 
covered in Chapter 11).

Trimming refers to a more intelligent form of clipping. It is only supported for text by the 
TextBlock and AccessText elements. They have a TextTrimming property (of type 
System.Windows.TextTrimming) that can be set to None (the default), CharacterEllipsis, 
or WordEllipsis. With the latter two values, text gets trimmed with ellipses (…) rather 
than simply being truncated at an arbitrary place.

Clipping
Clipping (that is, truncating or cropping) children is the default way that panels handle 
them when they are too large. Clipping can happen at the edges of a panel or within a 
panel (such as at the edges of a Grid cell or the fill area of a DockPanel). This behavior can 
be controlled to some degree, however.

Handling Content Overflow 139
5

  From the Library of Wow! eBook



ptg

All UIElements have a Boolean ClipToBounds property that controls whether child 
elements can be rendered outside its bounds. If an outer element’s edge coincides with 
the outer Window’s or Page’s edge, however, clipping still occurs. This mechanism is not a 
means to draw outside the bounds of a Window. (However, nonrectangular windows are 
discussed in Chapter 7, “Structuring and Deploying an Application.”)

Despite the fact that all panels inherit a ClipToBounds property, most panels automati-
cally clip their children regardless of this property’s value. Canvas and UniformGrid do not 
clip their children by default, and they both support setting ClipToBounds to true to 
force clipping.

Figure 5.18 shows the difference that ClipToBounds makes with a Button that isn’t 
entirely contained within its parent Canvas (which has a tan background).

This behavior means that unless you set ClipToBounds to true, the size of Canvas is irrele-
vant; it can be given a Height and Width of 0, yet all its contents will be rendered as if the 
Canvas occupied the whole screen!

CHAPTER 5 Layout with Panels140

ClipToBounds=“False” ClipToBounds=“True”

FIGURE 5.18 ClipToBounds determines whether children can be rendered outside their 
panel.

Controls can also control the clipping of their own content with ClipToBounds. For 
example, Button has ClipToBounds set to false by default. Figure 5.19 demonstrates the 
effect of setting it to true when its text is scaled with ScaleTransform (applied as a 
RenderTransform).

ClipToBounds=”False“ ClipToBounds=”True“

FIGURE 5.19 ClipToBounds can be used on a control such as Button to affect the render-
ing of its inner content.

Canvas can be used as an intermediate element to prevent clipping in other panels. For 
example, if a large Button gets clipped at the edge of a Grid, you can make it render past 
the edge of the Grid if you instead place a Canvas in that cell (which gets sized to fit the 
cell) and then place the Button inside that Canvas. Of course, you need to write some code 
if you want the Button to get the same stretching behavior it would have gotten by being a 
direct child of the Grid.

T I P

  From the Library of Wow! eBook



ptg

Scrolling
For many applications, the ability to scroll through content that is too large to view all at 
once is critical. WPF makes this easy because all you need to do is wrap an element in a 
System.Windows.Controls.ScrollViewer control, and the element instantly becomes 
scrollable. ScrollViewer makes use of ScrollBar controls and hooks them up to your 
content automatically.

ScrollViewer has a Content property that can be set to a single item, typically an entire 
panel. Because Content is ScrollViewer’s content property in the XAML sense, you can 
place the item requiring scrolling as its child element:

<Window Title=”Using ScrollViewer” 

xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”> 

<ScrollViewer>

<StackPanel> 

…

</StackPanel> 

</ScrollViewer>

</Window>

Figure 5.20 shows the Window containing the simple StackPanel, with and without a 
ScrollViewer.

Handling Content Overflow 141
5

Continued

You can use the same approach to work around clipping within inner cells of a Grid, but 
increasing an element’s RowSpan and/or ColumnSpan is usually the best way to enable it to 
“bleed” into adjacent cells.

Clipping occurs before RenderTransforms are applied!

When enlarging an element with ScaleTransform as a RenderTransform, the element can 
easily surpass the bounds of the parent panel yet doesn’t get clipped (unless it reaches the 
edge of the Window or Page). Shrinking an element with ScaleTransform as a 
RenderTransform is more subtle. If the unscaled element would have been clipped because 
it exceeds its parent’s bounds, the scaled element is still clipped exactly the same way, even 
if the entire element can fit! That’s because clipping is part of the layout process and 
already determined by the time RenderTransform is applied. If you need to shrink a large 
element by using ScaleTransform, applying it as a LayoutTransform might suit your needs 
better.

WA R N I N G

  From the Library of Wow! eBook



ptg

FIGURE 5.20 ScrollViewer enables scrolling of an element that is larger than the space 
given to it.

The ScrollBar controls respond to a variety of input, such as arrow keys for fine-grained 
scrolling, Page Up and Page Down for coarser scrolling, and Ctrl+Home or Ctrl+End to 
jump to the beginning or end, respectively.

ScrollViewer exposes several properties and methods for more advanced or program-
matic manipulation of scrolling, but its two most important properties are 
VerticalScrollBarVisibility and HorizontalScrollBarVisibility. Both of these prop-
erties are of type ScrollBarVisibility, an enumeration that defines four distinct states 
specific to its two ScrollBars:

. Visible—The ScrollBar is always visible, regardless of whether it’s needed. When 
it’s not needed, it has a disabled look and doesn’t respond to input. (But this is 
different from the ScrollBarVisibility value called Disabled.)

. Auto—The ScrollBar is visible if the content is big enough to require scrolling in 
that dimension. Otherwise, the ScrollBar disappears.

. Hidden—The ScrollBar is always invisible but still logically exists, in that scrolling 
can still be done with arrow keys. Therefore, the content is still given all the length 
it wants in that dimension.

. Disabled—The ScrollBar is not only invisible but doesn’t exist, so scrolling is not 
possible via mouse or keyboard. In this case, the content is only given the length of 
its parent rather than all the length it wants.

The default value for VerticalScrollBarVisibility is Visible, and the default value for 
HorizontalScrollBarVisibility is Auto, to match the scrolling behavior used by most 
applications.

Depending on the content inside ScrollViewer, the subtle difference between Hidden and 
Disabled can be not so subtle. For example, Figure 5.21 shows two different Windows 
containing a ScrollViewer with exactly the same WrapPanel. The only difference is that 
in one Window the ScrollViewer has HorizontalScrollBarVisibility set to Hidden, and 
in the other Window the ScrollViewer has it set to Disabled.

CHAPTER 5 Layout with Panels142

Not using ScrollViewer Using ScrollViewer

  From the Library of Wow! eBook



ptg

FIGURE 5.21 Although the horizontal ScrollBar is invisible in both cases, the different 
values for HorizontalScrollBarVisibility drastically alter the layout of the WrapPanel.

In the Hidden case, the WrapPanel is given as much width as it desires (the same as if 
HorizontalScrollBarVisibility were set to Visible or Auto), so it makes use of it and 
arranges all children on the same row. In the Disabled case, the WrapPanel is only given 
the width of the parent Window, so wrapping occurs as if no ScrollViewer existed.

Handling Content Overflow 143
5

HorizontalScrollBarVisibility="Hidden"

HorizontalScrollBarVisibility="Disabled"

Chapter 3, “WPF Fundamentals,” reveals that the default visual tree for ListBox contains a 
ScrollViewer. You can set its VerticalScrollBarVisibility and 
HorizontalScrollBarVisibility properties as attached properties on the ListBox to 
impact the behavior of the implicit ScrollViewer:

<ListBox ScrollViewer.HorizontalScrollBarVisibility=”Disabled”> 

…

</ListBox>

T I P

Scaling
Although scrolling is a popular and long-standing 
way to deal with large content, dynamically 
shrinking or enlarging content to “just fit” in a 
given space is more appropriate for several scenar-
ios. As a simple example, imagine that you want 
to create a card game. You need some playing 
cards, and you probably want them to scale 
proportionally with the game’s Window.

Figure 5.22 displays some shapes that form a 
vector representation of a playing card (shown 
with its source XAML in Chapter 20). These shapes

FIGURE 5.22 The shapes repre-
senting the playing card do not 
scale with the Window.

  From the Library of Wow! eBook



ptg

are placed inside a Canvas, which is inside a Window. Because of their explicit sizes, they 
do not change size as the Window gets resized (even if they were placed in a Grid rather 
than a Canvas), and, obviously, the shapes are currently far too big.

ScaleTransform can scale elements relative to their own size (and easily help with the size 
of the playing card), but it doesn’t provide a mechanism to scale elements relative to their 
available space without writing some custom code. Fortunately, 
System.Windows.Controls.Viewbox provides an easy mechanism to scale arbitrary content 
within a given space.

Viewbox is a type of class known as a decorator, a panel-like class that can have only one 
child element. It derives from System.Windows.Controls.Decorator, along with classes 
such as Border. By default, Viewbox (like most controls) stretches in both dimensions to 
fill the space given to it. But it also has a Stretch property to control how its single child 
gets scaled within its bounds. The property is a System.Windows.Media.Stretch enumera-
tion, which has the following values (demonstrated in Figure 5.23 by wrapping the 
Canvas inside a Viewbox):

. None—No scaling is done. This is the same as not using Viewbox at all.

. Fill—The child’s dimensions are set to equal the Viewbox’s dimensions. Therefore, 
the child’s aspect ratio is not necessarily preserved.

. Uniform—The child is scaled as large as it can be while still fitting entirely within 
the Viewbox and preserving its aspect ratio. Therefore, there will be extra space in 
one dimension if its aspect ratio doesn’t match. This is the default value.

. UniformToFill—The child is scaled to entirely fill the Viewbox while preserving its 
aspect ratio. Therefore, the content will be cropped in one dimension if its aspect 
ratio doesn’t match.

Although it’s unrealistic for a card game to want its cards to be the size of the Window, the 
same techniques apply for making the cards occupy a certain fraction of the Window’s size. 
In Figure 5.23, Viewbox is the child element of the Window, but in a real application, you 
would likely place the Viewbox inside an appropriately sized Grid cell.

A second property of Viewbox controls whether you want to use it only to shrink content 
or enlarge content (as opposed to doing either). This property is called StretchDirection, 
and it is a System.Windows.Controls.StretchDirection enumeration with the following 
values:

. UpOnly—Enlarges the content, if appropriate. If the content is already too big, 
Viewbox leaves the current content size as is.

. DownOnly—Shrinks the content, if appropriate. If the content is already small 
enough, Viewbox leaves the current content size as is.

. Both—Enlarges or shrinks the content, whichever is needed to get the stretching 
described earlier. This is the default value.

CHAPTER 5 Layout with Panels144

  From the Library of Wow! eBook



ptg

FIGURE 5.23 Each of the four values for Viewbox’s Stretch property changes the playing 
card’s layout.

It’s pretty amazing how easy it is to choose between a scrolling strategy and a scaling strategy 
for dealing with large content. Consider the following Window that is shown in Figure 5.20:

<Window Title=”Using ScrollViewer” 

xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”> 

<ScrollViewer>

<StackPanel> 

…

</StackPanel> 

</ScrollViewer>

</Window>

Simply changing the ScrollViewer element to Viewbox (and updating the Window’s Title) 
produces the result in Figure 5.24:

<Window Title=”Using Viewbox” 

xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”> 

<Viewbox>

<StackPanel> 

…

</StackPanel> 

</Viewbox>

</Window>

Handling Content Overflow 145
5

Stretch="None" Stretch="Fill" 

Stretch="Uniform" Stretch="UniformToFill"

  From the Library of Wow! eBook



ptg

Just like that, you can now see all eight buttons, regardless of the Window size!

CHAPTER 5 Layout with Panels146

FIGURE 5.24 The StackPanel used in Figure 5.20, but now wrapped in a Viewbox instead of 
ScrollViewer.

Viewbox removes all wrapping!

Viewbox is very handy for many situations, but it’s not a good choice for content you’d 
normally like to wrap, such as a paragraph of text or any content in a WrapPanel. That’s 
because the content is given as much space as it needs in both directions before it is 
potentially scaled. Figure 5.25 demonstrates this by using the WrapPanel with eight 
Buttons from Figure 5.21, but replacing ScrollViewer with Viewbox.

FIGURE 5.25 The WrapPanel used in Figure 5.21 has no need to wrap when placed in a 
Viewbox instead of a ScrollViewer.

The result is a single line of content that could potentially be much smaller than you would 
have liked. Giving Viewbox a StretchDirection of UpOnly rather than the default of Both 
doesn’t help either. The layout of Viewbox’s content happens before any potential scaling. 
Therefore, UpOnly prevents the Buttons from shrinking, but they are still arranged in a 
single line, as shown in Figure 5.26.

WA R N I N G

  From the Library of Wow! eBook



ptg

Putting It All Together: Creating a Visual 
Studio–Like Collapsible, Dockable, Resizable Pane
Let’s put WPF’s layout features to the test and create a more complex piece of user inter-
face. In this section, we create some Visual Studio–like panes that can be docked next to 
the window’s main content or collapsed to a button along the edge of the window. In this 
collapsed form, hovering over the button shows the pane, but rather than being docked, 
it overlaps on top of the main content. Whether it is docked or undocked, each pane is 
resizable using a splitter. Figures 5.27 through 5.33 walk through several sequential states 
of the user interface as it is being used.

Putting It All Together 147
5

Continued

FIGURE 5.26 Giving the Viewbox from Figure 2.25 a StretchDirection=”UpOnly” 
prevents the Buttons from shrinking but doesn’t affect the inner WrapPanel’s layout.

The result of this is similar to the use of HorizontalScrollBarVisibility=”Hidden” in 
Figure 5.21, except that there’s no way to scroll to the remaining content, even with the 
keyboard.

FIGURE 5.27 Both panes start out hidden, so you see only their buttons docked on the 
right.

  From the Library of Wow! eBook



ptg

CHAPTER 5 Layout with Panels148

FIGURE 5.28 Hovering over the Toolbox button presents the undocked Toolbox pane, which 
stays open unless the mouse wanders onto the main content or a different pane’s button.

FIGURE 5.29 An undocked pane can be resized, and it still overlaps the main content.

FIGURE 5.30 The Toolbox pane is docked by clicking the pushpin, making the main content 
shrink to fit beside it and making the Toolbox button on the right disappear.

FIGURE 5.31 The docked pane can still be resized with the GridSplitter, but this time 
the main content stretches and shrinks in unison.

  From the Library of Wow! eBook



ptg

FIGURE 5.32 Hovering over the Solution Explorer button presents the undocked Solution 
Explorer pane, which overlaps all other content (including the docked Toolbox pane). The 
undocked pane can be resized independently to overlap more or less of the other content.

Putting It All Together 149
5

FIGURE 5.33 The Solution Explorer pane is docked by clicking the pushpin, pushing the 
Toolbox pane over, and making the entire rightmost bar disappear because there are no more 
undocked pane buttons to show.

When both panes are undocked, they resize independently from the main content and 
each other. When both panes are docked (as in Figure 5.33), the user interface behaves 
like a single Grid with three cells that can be resized but never overlap.

So, how do you go about implementing such a user interface? Because splitters are needed 
for interactive resizing, using Grid with GridSplitters is a natural choice. No other built-
in panels provide an interactive splitter. But because undocked panes need to overlap and 
resize independently from one another, a single Grid won’t do. Instead, this example uses 
three independent Grids—one for the main content and one for each pane—layered on 
top of each other. SharedSizeGroup is then used to keep these three independent Grids in 
sync when they need to be (that is, the docked case). Figure 5.34 illustrates the structure 
of these three Grids and how they are tied together.

The bottom layer (Layer 0) contains the main content that stretches to fill the Grid when 
both panes are collapsed. Hovering over either pane’s button switches the appropriate 
pane’s visibility in Layers 1 or 2 from Collapsed to Visible. Each pane’s splitter can be 
used to adjust the space between itself and the column to the left (which is empty, reveal-
ing the content from Layer 0 behind it).

  From the Library of Wow! eBook



ptg

FIGURE 5.34 The three independent Grids used to implement two collapsible, dockable, 
resizable panes.

The main trickery occurs when it’s time to dock a panel. When docking Pane 1, the main 
content needs to be squeezed to match the width of the empty 0th column in Layer 1. 
Therefore, an empty column is dynamically added to Layer 0 and given the same width as 
Pane 1. Because a SharedSizeGroup is used rather than a hard-coded width, the bottom 
layer stays up to date as the splitter in Layer 1 is used.

The same technique is used when docking Pane 2, except that the dummy column needs 
to be added to all layers underneath (both Layers 0 and 1). This enables both docked 
panes to be seen simultaneously with no overlap, and it enables the main content on 
Layer 0 to be sized appropriately in the presence of zero, one, or two docked panes. Note 
that the ordering of the panes when both are docked is predetermined.

These three Grids are placed in (what else?) a Grid with a single row and column, so they 
can completely overlap each other while stretching to completely fill the space given to 
them. Although Layer 0 always has the bottommost Z order, the Z order between the 
other layers can get swapped so the current undocked pane is always on top.

CHAPTER 5 Layout with Panels150

Splitter

Splitter

Main Content

Layer 0

Width=*

Added when 
Pane #1 is 

docked

SharedSizeGroup #1

Added when 
Pane #2 is 

docked

Layer 1

Layer 2

Width=*

Width=*

Width=Auto

Pane #1

Width=Auto

Pane #2

Added when 
Pane #2 is 

docked

SharedSizeGroup #2

  From the Library of Wow! eBook



ptg

Listing 5.3 contains the XAML for the application shown in Figures 5.27 to 5.33, with 
some of the irrelevant parts removed for brevity. The entire project appears with this 
book’s source code (available on the book’s website, 
http://informit.com/title/9780672331190).

LISTING 5.3 VisualStudioLikePanes.xaml—The XAML Implementation of the Application 
in Figures 5.27 to 5.33

<Window x:Class=”MainWindow” 

xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation” 

xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml” 

Title=”Application with Collapsible, Dockable, Resizable Panes”>

<DockPanel> 

<Menu DockPanel.Dock=”Top”>

… 

</Menu>

<!-- The bar of buttons docked along the right edge: --> 

<StackPanel Name=”buttonBar” Orientation=”Horizontal” DockPanel.Dock=”Right”> 

<StackPanel.LayoutTransform>

<RotateTransform Angle=”90”/> 

</StackPanel.LayoutTransform>

<Button Name=”pane1Button” MouseEnter=”pane1Button_MouseEnter”>

Toolbox 

</Button> 

<Button Name=”pane2Button” MouseEnter=”pane2Button_MouseEnter”>

Solution Explorer 

</Button>

</StackPanel>

<!-- The Grid containing the three child Grids fills the DockPanel: --> 

<Grid Name=”parentGrid” Grid.IsSharedSizeScope=”True”>

<!-- Layer 0: -->

<Grid Name=”layer0” MouseEnter=”layer0_MouseEnter”> 

… (content of this Grid is similar to Listing 5.2)

</Grid>

<!-- Layer 1: -->

<Grid Name=”layer1” Visibility=”Collapsed”> 

<Grid.ColumnDefinitions>

<ColumnDefinition/> 

<ColumnDefinition SharedSizeGroup=”column1” Width=”auto”/>

</Grid.ColumnDefinitions> 

<!-- Column 0 is empty, 

but column 1 contains a Grid and a GridSplitter: -->

Putting It All Together 151
5

  From the Library of Wow! eBook

http://informit.com/title/9780672331190


ptg

<Grid Grid.Column=”1” MouseEnter=”pane1_MouseEnter” 

Background=”{DynamicResource 

{x:Static SystemColors.ActiveCaptionBrushKey}}”>

<Grid.RowDefinitions> 

<RowDefinition Height=”auto”/> 

<RowDefinition/>

</Grid.RowDefinitions> 

<!-- Row 0 contains a header,

and row 1 contains pane-specific content: --> 

<DockPanel Grid.Row=”0”>

<Button Name=”pane1Pin” Width=”26” DockPanel.Dock=”Right” 

Click=”pane1Pin_Click” Background=”White”> 

<Image Name=”pane1PinImage” Source=”pinHorizontal.gif”/>

</Button> 

<TextBlock Padding=”8” TextTrimming=”CharacterEllipsis”

Foreground=”{DynamicResource 

{x:Static SystemColors.ActiveCaptionTextBrushKey}}”

DockPanel.Dock=”Left”>Toolbox</TextBlock> 

</DockPanel> 

… (pane-specific content fills row 1)

</Grid> 

<GridSplitter Width=”5” Grid.Column=”1” HorizontalAlignment=”Left”/>

</Grid>

<!-- Layer 2: -->

<Grid Name=”layer2” Visibility=”Collapsed”> 

<Grid.ColumnDefinitions>

<ColumnDefinition/> 

<ColumnDefinition SharedSizeGroup=”column2” Width=”auto”/>

</Grid.ColumnDefinitions> 

<!-- Column 0 is empty,

but column 1 contains a Grid and a GridSplitter: --> 

<Grid Grid.Column=”1” MouseEnter=”pane2_MouseEnter”

Background=”{DynamicResource 

{x:Static SystemColors.ActiveCaptionBrushKey}}”>

<Grid.RowDefinitions> 

<RowDefinition Height=”auto”/> 

<RowDefinition Height=”auto”/> 

<RowDefinition/>

</Grid.RowDefinitions> 

<!-- Row 0 contains a header,

and rows 1 & 2 contain pane-specific content: --> 

<DockPanel Grid.Row=”0”>

<Button Name=”pane2Pin” Width=”26” DockPanel.Dock=”Right”

CHAPTER 5 Layout with Panels152

LISTING 5.3 Continued

  From the Library of Wow! eBook



ptg

Click=”pane2Pin_Click” Background=”White”> 

<Image Name=”pane2PinImage” Source=”pinHorizontal.gif”/>

</Button> 

<TextBlock Padding=”8” TextTrimming=”CharacterEllipsis”

Foreground=”{DynamicResource 

{x:Static SystemColors.ActiveCaptionTextBrushKey}}”

DockPanel.Dock=”Left”>Solution Explorer</TextBlock> 

</DockPanel> 

… (pane-specific content fills rows 1 & 2)

</Grid> 

<GridSplitter Width=”5” Grid.Column=”1” HorizontalAlignment=”Left”/>

</Grid> 

</Grid>

</DockPanel> 

</Window>

The Window’s top-level panel is a DockPanel, which arranges a Menu, the “button bar” 
StackPanel (rotated 90° with a RotateTransform), and a single-cell grid containing the 
three “layer” Grids. Notice that the Menu is added to the DockPanel before the StackPanel 
so it stretches all the way across the top.

Each layer Grid has only one column containing any content, and that content happens 
to be encased in a Grid in all three cases. Each GridSplitter is docked on the left inside 
the column with the content, so it doesn’t overlap any content from the other layers. 
One subtlety is that a TextBlock is used for each pane’s header instead of a Label so that 
TextTrimming=”CharacterEllipsis” can be set to get a more polished effect than simply 
clipping the text when the pane is resized.

Listing 5.4 contains the C# code-behind file for Listing 5.3.

LISTING 5.4 VisualStudioLikePanes.xaml.cs—The C# Implementation of the Application 
in Figures 5.27 to 5.33

using System; 

using System.Windows; 

using System.Windows.Controls; 

using System.Windows.Media.Imaging;

public partial class MainWindow : Window 

{

// Dummy columns for layers 0 and 1: 

ColumnDefinition column1CloneForLayer0; 

ColumnDefinition column2CloneForLayer0; 

ColumnDefinition column2CloneForLayer1;

Putting It All Together 153

LISTING 5.3 Continued

5

  From the Library of Wow! eBook



ptg

public MainWindow() 

{

InitializeComponent();

// Initialize the dummy columns used when docking: 

column1CloneForLayer0 = new ColumnDefinition(); 

column1CloneForLayer0.SharedSizeGroup = “column1”; 

column2CloneForLayer0 = new ColumnDefinition(); 

column2CloneForLayer0.SharedSizeGroup = “column2”; 

column2CloneForLayer1 = new ColumnDefinition(); 

column2CloneForLayer1.SharedSizeGroup = “column2”;

}

// Toggle between docked and undocked states (Pane 1) 

public void pane1Pin_Click(object sender, RoutedEventArgs e) 

{

if (pane1Button.Visibility == Visibility.Collapsed)

UndockPane(1); 

else

DockPane(1); 

}

// Toggle between docked and undocked states (Pane 2) 

public void pane2Pin_Click(object sender, RoutedEventArgs e) 

{

if (pane2Button.Visibility == Visibility.Collapsed)

UndockPane(2); 

else

DockPane(2); 

}

// Show Pane 1 when hovering over its button 

public void pane1Button_MouseEnter(object sender, RoutedEventArgs e) 

{

layer1.Visibility = Visibility.Visible;

// Adjust Z order to ensure the pane is on top: 

Grid.SetZIndex(layer1, 1); 

Grid.SetZIndex(layer2, 0);

// Ensure the other pane is hidden if it is undocked 

if (pane2Button.Visibility == Visibility.Visible)

CHAPTER 5 Layout with Panels154

LISTING 5.4 Continued

  From the Library of Wow! eBook



ptg

layer2.Visibility = Visibility.Collapsed; 

}

// Show Pane 2 when hovering over its button 

public void pane2Button_MouseEnter(object sender, RoutedEventArgs e) 

{

layer2.Visibility = Visibility.Visible;

// Adjust Z order to ensure the pane is on top: 

Grid.SetZIndex(layer2, 1); 

Grid.SetZIndex(layer1, 0);

// Ensure the other pane is hidden if it is undocked 

if (pane1Button.Visibility == Visibility.Visible)

layer1.Visibility = Visibility.Collapsed; 

}

// Hide any undocked panes when the mouse enters Layer 0 

public void layer0_MouseEnter(object sender, RoutedEventArgs e) 

{

if (pane1Button.Visibility == Visibility.Visible) 

layer1.Visibility = Visibility.Collapsed;

if (pane2Button.Visibility == Visibility.Visible) 

layer2.Visibility = Visibility.Collapsed;

}

// Hide the other pane if undocked when the mouse enters Pane 1 

public void pane1_MouseEnter(object sender, RoutedEventArgs e) 

{

// Ensure the other pane is hidden if it is undocked 

if (pane2Button.Visibility == Visibility.Visible)

layer2.Visibility = Visibility.Collapsed; 

}

// Hide the other pane if undocked when the mouse enters Pane 2 

public void pane2_MouseEnter(object sender, RoutedEventArgs e) 

{

// Ensure the other pane is hidden if it is undocked 

if (pane1Button.Visibility == Visibility.Visible)

layer1.Visibility = Visibility.Collapsed; 

}

// Docks a pane, which hides the corresponding pane button 

public void DockPane(int paneNumber)

Putting It All Together 155

LISTING 5.4 Continued

5

  From the Library of Wow! eBook



ptg

{

if (paneNumber == 1) 

{

pane1Button.Visibility = Visibility.Collapsed; 

pane1PinImage.Source = new BitmapImage(new Uri(“pin.gif”, UriKind.Relative));

// Add the cloned column to layer 0: 

layer0.ColumnDefinitions.Add(column1CloneForLayer0); 

// Add the cloned column to layer 1, but only if pane 2 is docked: 

if (pane2Button.Visibility == Visibility.Collapsed)

layer1.ColumnDefinitions.Add(column2CloneForLayer1); 

} 

else if (paneNumber == 2) 

{

pane2Button.Visibility = Visibility.Collapsed; 

pane2PinImage.Source = new BitmapImage(new Uri(“pin.gif”, UriKind.Relative));

// Add the cloned column to layer 0: 

layer0.ColumnDefinitions.Add(column2CloneForLayer0); 

// Add the cloned column to layer 1, but only if pane 1 is docked: 

if (pane1Button.Visibility == Visibility.Collapsed)

layer1.ColumnDefinitions.Add(column2CloneForLayer1); 

}

}

// Undocks a pane, which reveals the corresponding pane button 

public void UndockPane(int paneNumber) 

{

if (paneNumber == 1) 

{

layer1.Visibility = Visibility.Visible; 

pane1Button.Visibility = Visibility.Visible; 

pane1PinImage.Source = new BitmapImage

(new Uri(“pinHorizontal.gif”, UriKind.Relative));

// Remove the cloned columns from layers 0 and 1: 

layer0.ColumnDefinitions.Remove(column1CloneForLayer0); 

// This won’t always be present, but Remove silently ignores bad columns: 

layer1.ColumnDefinitions.Remove(column2CloneForLayer1);

} 

else if (paneNumber == 2) 

{

layer2.Visibility = Visibility.Visible; 

pane2Button.Visibility = Visibility.Visible;

CHAPTER 5 Layout with Panels156

LISTING 5.4 Continued

  From the Library of Wow! eBook



ptg

pane2PinImage.Source = new BitmapImage 

(new Uri(“pinHorizontal.gif”, UriKind.Relative));

// Remove the cloned columns from layers 0 and 1: 

layer0.ColumnDefinitions.Remove(column2CloneForLayer0); 

// This won’t always be present, but Remove silently ignores bad columns: 

layer1.ColumnDefinitions.Remove(column2CloneForLayer1);

} 

}

}

The C# code is hard-coded to work with exactly two panes. You would be more likely to 
generalize the code and abstract it into a custom control, but as far as layout goes, the 
concepts are the same.

Notice that there is no code to hide the “button bar” when all panes have been docked or 
to reveal it when at least one pane is undocked. This happens automatically because the 
StackPanel sizes to its content by default, so collapsing both Buttons ends up collapsing 
the StackPanel.

Although Listing 5.4 doesn’t contain very much code (or any complex code), it achieves a 
relatively sophisticated user interface.

Summary
With all the features described in this chapter and the preceding chapter, you can control 
layout in many interesting ways. This isn’t like the old days, where your only options 
were pretty much just choosing a size and choosing an (X,Y) point on the screen.

The built-in panels—notably Grid—are a key part of WPF’s capability to enable rapid 
application development. But one of the most powerful aspects of WPF’s layout is that 
parent panels can themselves be children of other panels. Although each panel was exam-
ined in isolation in this chapter, panels can be nested to provide impressive versatility.

Summary 157

LISTING 5.4 Continued

5

  From the Library of Wow! eBook



ptg

This page intentionally left blank 

  From the Library of Wow! eBook



ptg

CHAPTER 6

Input Events: Keyboard,
Mouse, Stylus, and

Multi-Touch

Now that you know how to arrange a WPF user interface, 
it’s time see how to make it interactive. This chapter covers 
two pieces of important plumbing in WPF—routed events 
and commands. It also examines the events you can 
handle for each category of input device: keyboard, mouse, 
stylus, and multi-touch.

Routed Events
Chapter 3, “WPF Fundamentals,” demonstrates how WPF 
adds more infrastructure on top of the simple notion of 
.NET properties with its dependency properties. WPF also 
adds more infrastructure on top of the simple notion of 
.NET events. Routed events are events that are designed to 
work well with a tree of elements. When a routed event is 
raised, it can travel up or down the visual and logical tree, 
getting raised on each element in a simple and consistent 
fashion, without the need for any custom code.

Event routing helps most applications remain oblivious to 
details of the visual tree (which is good for restyling) and is 
crucial to the success of WPF’s element composition. For 
example, Button exposes a Click event based on handling 
lower-level MouseLeftButtonDown and KeyDown events. 
When a user presses the left mouse button with the mouse 
pointer over a standard Button, however, he or she is really 
interacting with its ButtonChrome or TextBlock visual child. 
Because the event travels up the visual tree, the Button 
eventually sees the event and can handle it. Similarly, for

IN THIS CHAPTER

. Routed Events

. Keyboard Events

. Mouse Events

. Stylus Events

. Multi-Touch Events

. Commands

  From the Library of Wow! eBook



ptg

the media-player-style Stop Button in Chapter 2, “XAML Demystified,” a user might press 
the left mouse button directly over the Rectangle logical child. Because the event travels 
up the logical tree, the Button still sees the event and can handle it as well. (Yet if you 
really wish to distinguish between an event on the Rectangle and the outer Button, you 
have the freedom to do so.)

Therefore, you can embed arbitrarily complex content inside an element such as a Button 
or give it an arbitrarily complex visual tree (using the techniques in Chapter 14, “Styles, 
Templates, Skins, and Themes”), and a mouse left-click on any of the internal elements 
still results in a Click event raised by the parent Button. Without routed events, produc-
ers of the inner content or consumers of the Button would have to write code to patch 
everything together.

The implementation and behavior of routed events have many parallels to dependency 
properties. As with the dependency property discussion, we’ll first look at how a simple 
routed event is implemented to make things more concrete. Then we’ll examine some of 
the features of routed events and apply them to the About dialog from Chapter 3.

A Routed Event Implementation
In most cases, routed events don’t look very different from normal .NET events. As with 
dependency properties, no .NET languages (other than XAML) have an intrinsic under-
standing of the routed designation. The extra support is based on a handful of WPF APIs.

Listing 6.1 demonstrates how Button effectively implements its Click routed event. 
(Click is actually implemented by Button’s base class, but that’s not important for this 
discussion.)

Just as dependency properties are represented as public static DependencyProperty fields 
with a conventional Property suffix, routed events are represented as public static 
RoutedEvent fields with a conventional Event suffix. The routed event is registered much 
like a dependency property in the static constructor, and a normal .NET event—or event 
wrapper—is defined to enable more familiar use from procedural code and adding a 
handler in XAML with event attribute syntax. As with a property wrapper, an event 
wrapper must not do anything in its accessors other than call AddHandler and 
RemoveHandler.

LISTING 6.1 A Standard Routed Event Implementation

public class Button : ButtonBase 

{

// The routed event 

public static readonly RoutedEvent ClickEvent;

static Button() 

{

// Register the event

Button.ClickEvent = EventManager.RegisterRoutedEvent(“Click”,

CHAPTER 6 Input Events: Keyboard, Mouse, Stylus, and Multi-Touch160

  From the Library of Wow! eBook



ptg

RoutingStrategy.Bubble, typeof(RoutedEventHandler), typeof(Button)); 

…

}

// A .NET event wrapper (optional) 

public event RoutedEventHandler Click 

{

add { AddHandler(Button.ClickEvent, value); } 

remove { RemoveHandler(Button.ClickEvent, value); }

}

protected override void OnMouseLeftButtonDown(MouseButtonEventArgs e) 

{

… 

// Raise the event 

RaiseEvent(new RoutedEventArgs(Button.ClickEvent, this)); 

…

} 

…

}

These AddHandler and RemoveHandler methods are not inherited from DependencyObject 
but rather UIElement. These methods attach and remove a delegate to the appropriate 
routed event. Inside OnMouseLeftButtonDown, RaiseEvent (also defined on the base 
UIElement class) is called with the appropriate RoutedEvent field to raise the Click event. 
The current Button instance (this) is passed as the source element of the event. It’s not 
shown in this listing, but Button’s Click event is also raised in response to a KeyDown 
event to support clicking with the spacebar or sometimes the Enter key.

Routing Strategies and Event Handlers
When registered, every routed event chooses one of three routing strategies—the way in 
which the event raising travels through the element tree. These strategies are exposed as 
values of a RoutingStrategy enumeration:

. Tunneling—The event is first raised on the root, then on each element down the 
tree until the source element is reached (or until a handler halts the tunneling by 
marking the event as handled).

. Bubbling—The event is first raised on the source element and then on each element 
up the tree until the root is reached (or until a handler halts the bubbling by 
marking the event as handled).

. Direct—The event is raised only on the source element. This is the same behavior 
as a plain .NET event, except that such events can still participate in mechanisms 
specific to routed events such as event triggers.

Routed Events 161

LISTING 6.1 Continued

6

  From the Library of Wow! eBook



ptg

Handlers for routed events have a signature matching the pattern for general .NET event 
handlers: The first parameter is a System.Object typically named sender, and the second 
parameter (typically named e) is a class that derives from System.EventArgs. The sender 
parameter passed to a handler is always the element to which the handler was attached. 
The e parameter is (or derives from) an instance of RoutedEventArgs, a subclass of 
EventArgs that exposes four useful properties:

. Source—The element in the logical tree that originally raised the event.

. OriginalSource—The element in the visual tree that originally raised the event (for 
example, the TextBlock or ButtonChrome child of a standard Button).

. Handled—A Boolean that can be set to true to mark the event as handled. This is 
precisely what halts any tunneling or bubbling.

. RoutedEvent—The actual routed event object (such as Button.ClickEvent), which 
can be helpful for identifying the raised event when the same handler is used for 
multiple routed events.

The presence of both Source and OriginalSource enable you to work with the higher-
level logical tree or the lower-level visual tree. This distinction applies only to physical 
events such as mouse events, however. For more abstract events that don’t necessarily 
have a direct relationship with an element in the visual tree (for example, Click due to its 
keyboard support), the same object is passed for both Source and OriginalSource.

Routed Events in Action
The UIElement class defines many routed events for keyboard, mouse, multi-touch, and 
stylus input. Most of these are bubbling events, but many of them are paired with a 
tunneling event. Tunneling events can be easily identified because, by convention, they 
are named with a Preview prefix. These events, also by convention, are raised immedi-
ately before their bubbling counterpart. For example, PreviewMouseMove is a tunneling 
event raised before the MouseMove bubbling event.

The idea behind having a pair of events for various activities is to give elements a chance 
to effectively cancel or otherwise modify an event that’s about to occur. By convention, 
WPF’s built-in elements take action only in response to a bubbling event (when a 
bubbling and tunneling pair is defined), ensuring that the tunneling event lives up to its 
“preview” name. For example, imagine that you want to implement a TextBox that 
restricts its input to a certain pattern or regular expression (such as a phone number or 
zip code). If you handle TextBox’s KeyDown event, the best you can do is remove text that 
has already been displayed inside the TextBox. But if you handle TextBox’s 
PreviewKeyDown event instead, you can mark it as “handled” to not only stop the tunnel-
ing but also stop the bubbling KeyDown event from being raised. In this case, the TextBox 
will never receive the KeyDown notification, and the current character will not get 
displayed.

To demonstrate the use of a simple bubbling event, Listing 6.2 updates the original About 
dialog from Chapter 3 by attaching an event handler to Window’s MouseRightButtonDown

CHAPTER 6 Input Events: Keyboard, Mouse, Stylus, and Multi-Touch162

  From the Library of Wow! eBook



ptg

event. Listing 6.3 contains the C# code-behind file with the event handler implementa-
tion.

LISTING 6.2 The About Dialog with an Event Handler on the Root Window

<Window xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation” 

xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml” 

x:Class=”AboutDialog” MouseRightButtonDown=”AboutDialog_MouseRightButtonDown” 

Title=”About WPF 4 Unleashed” SizeToContent=”WidthAndHeight” 

Background=”OrangeRed”> 

<StackPanel>

<Label FontWeight=”Bold” FontSize=”20” Foreground=”White”>

WPF 4 Unleashed 

</Label> 

<Label>© 2010 SAMS Publishing</Label> 

<Label>Installed Chapters:</Label> 

<ListBox>

<ListBoxItem>Chapter 1</ListBoxItem> 

<ListBoxItem>Chapter 2</ListBoxItem>

</ListBox> 

<StackPanel Orientation=”Horizontal” HorizontalAlignment=”Center”>

<Button MinWidth=”75” Margin=”10”>Help</Button> 

<Button MinWidth=”75” Margin=”10”>OK</Button>

</StackPanel> 

<StatusBar>You have successfully registered this product.</StatusBar>

</StackPanel> 

</Window>

LISTING 6.3 The Code-Behind File for Listing 6.2

using System.Windows; 

using System.Windows.Input; 

using System.Windows.Media; 

using System.Windows.Controls;

public partial class AboutDialog : Window 

{

public AboutDialog() 

{

InitializeComponent(); 

}

void AboutDialog_MouseRightButtonDown(object sender, MouseButtonEventArgs e) 

{

// Display information about this event 

this.Title = “Source = “ + e.Source.GetType().Name + “, OriginalSource = “ +

Routed Events 163
6

  From the Library of Wow! eBook



ptg

e.OriginalSource.GetType().Name + “ @ “ + e.Timestamp;

// In this example, all possible sources derive from Control 

Control source = e.Source as Control;

// Toggle the border on the source control 

if (source.BorderThickness != new Thickness(5)) 

{

source.BorderThickness = new Thickness(5); 

source.BorderBrush = Brushes.Black;

} 

else

source.BorderThickness = new Thickness(0); 

}

}

The AboutDialog_MouseRightButtonDown 
handler performs two actions whenever a 
right-click bubbles up to the Window: It 
prints information about the event to the 
Window’s title bar, and it adds (then subse-
quently removes) a thick black border 
around the specific element in the logical 
tree that was right-clicked. Figure 6.1 
shows the result. Notice that right-clicking 
the Label reveals Source set to the Label 
but OriginalSource set to its TextBlock 
visual child.

If you run this example and right-click everything, you’ll notice two interesting behav-
iors:

. Window never receives the MouseRightButtonDown event when you right-click on 
either ListBoxItem. That’s because ListBoxItem internally handles this event as well 
as the MouseLeftButtonDown event (halting the bubbling) to implement item selec-
tion.

. Window receives the MouseRightButtonDown event when you right-click on a Button, 
but setting Button’s Border property has no visual effect. This is due to Button’s 
default visual tree, which was shown back in Figure 3.3. Unlike Window, Label, 
ListBox, ListBoxItem, and StatusBar, the visual tree for Button has no Border 
element.

CHAPTER 6 Input Events: Keyboard, Mouse, Stylus, and Multi-Touch164

LISTING 6.3 Continued

FIGURE 6.1 The modified About dialog, 
after the first Label control is right-clicked.

  From the Library of Wow! eBook



ptg

Attached Events
The tunneling and bubbling of a routed event is natural when every element in the tree 
exposes that event. But WPF supports tunneling and bubbling of routed events through 
elements that don’t even define that event! This is possible thanks to the notion of 
attached events.

Attached events operate much like attached properties (and their use with tunneling or 
bubbling is very similar to using attached properties with property value inheritance). 
Listing 6.4 changes the About dialog again by handing the bubbling SelectionChanged 
event raised by its ListBox and the bubbling Click event raised by both of its Buttons 
directly on the root Window. Because Window doesn’t define its own SelectionChanged or 
Click events, the event attribute names must be prefixed with the class name defining 
these events. Listing 6.5 contains the corresponding code-behind file that implements the 
two event handlers. Both event handlers simply show a MessageBox with information 
about what just happened.

Routed Events 165
6

Halting a Routed Event Is an Illusion

Although setting the RoutedEventArgs parameter’s Handled property to true in a routed 
event handler appears to stop the tunneling or bubbling, individual handlers further up or 
down the tree can opt to receive the events anyway! This can only be done from procedural 
code, using an overload of AddHandler that adds a Boolean handledEventsToo parameter.

For example, the event attribute could be removed from Listing 6.2 and replaced with the 
following AddHandler call in AboutDialog’s constructor:

public AboutDialog() 

{

InitializeComponent(); 

this.AddHandler(Window.MouseRightButtonDownEvent,

new MouseButtonEventHandler(AboutDialog_MouseRightButtonDown), true);

}

With true passed as a third parameter, AboutDialog_MouseRightButtonDown now receives 
events when you right-click a ListBoxItem and adds the black border!

You should avoid processing handled events whenever possible, because there is likely a 
reason the event is handled in the first place. Attaching a handler to the Preview version of 
an event is the preferred alternative.

The bottom line, however, is that the halting of tunneling or bubbling is really just an illusion. 
Tunneling and bubbling still continue when a routed event is marked as handled, but event 
handlers see only unhandled events by default.

D I G G I N G  D E E P E R

  From the Library of Wow! eBook



ptg

LISTING 6.4 The About Dialog with Two Attached Event Handlers on the Root Window

<Window xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation” 

xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml” 

x:Class=”AboutDialog” ListBox.SelectionChanged=”ListBox_SelectionChanged” 

Button.Click=”Button_Click”

Title=”About WPF Unleashed” SizeToContent=”WidthAndHeight” 

Background=”OrangeRed”> 

<StackPanel>

<Label FontWeight=”Bold” FontSize=”20” Foreground=”White”>

WPF 4 Unleashed 

</Label> 

<Label>© 2010 SAMS Publishing</Label> 

<Label>Installed Chapters:</Label> 

<ListBox>

<ListBoxItem>Chapter 1</ListBoxItem> 

<ListBoxItem>Chapter 2</ListBoxItem>

</ListBox> 

<StackPanel Orientation=”Horizontal” HorizontalAlignment=”Center”>

<Button MinWidth=”75” Margin=”10”>Help</Button> 

<Button MinWidth=”75” Margin=”10”>OK</Button>

</StackPanel> 

<StatusBar>You have successfully registered this product.</StatusBar>

</StackPanel> 

</Window>

LISTING 6.5 The Code-Behind File for Listing 6.4

using System.Windows; 

using System.Windows.Controls;

public partial class AboutDialog : Window 

{

public AboutDialog() 

{

InitializeComponent(); 

}

void ListBox_SelectionChanged(object sender, SelectionChangedEventArgs e) 

{

if (e.AddedItems.Count > 0)

MessageBox.Show(“You just selected “ + e.AddedItems[0]); 

}

void Button_Click(object sender, RoutedEventArgs e) 

{

CHAPTER 6 Input Events: Keyboard, Mouse, Stylus, and Multi-Touch166

  From the Library of Wow! eBook



ptg

MessageBox.Show(“You just clicked “ + e.Source); 

}

}

Every routed event can be used as an attached event. The attached event syntax used in 
Listing 6.4 is valid because the XAML compiler sees the SelectionChanged .NET event 
defined on ListBox and the Click .NET event defined on Button. At runtime, however, 
AddHandler is directly called to attach these two events to the Window. Therefore, the two 
event attributes are equivalent to placing the following code inside the Window’s construc-
tor:

public AboutDialog() 

{

InitializeComponent(); 

this.AddHandler(ListBox.SelectionChangedEvent,

new SelectionChangedEventHandler(ListBox_SelectionChanged)); 

this.AddHandler(Button.ClickEvent, new RoutedEventHandler(Button_Click));

}

Routed Events 167

LISTING 6.5 Continued

6

Consolidating Routed Event Handlers

Because of the rich information passed to routed events, you could handle every event that 
tunnels or bubbles with one top-level “megahandler” if you really wanted to. This handler 
could examine the RoutedEvent object to determine which event got raised, cast the 
RoutedEventArgs parameter to an appropriate subclass (such as KeyEventArgs, 
MouseButtonEventArgs, and so on), and go from there.

For example, Listing 6.5 could be changed to assign both ListBox.SelectionChanged and 
Button.Click to the same GenericHandler method, defined as follows: 

void GenericHandler(object sender, RoutedEventArgs e)

{

if (e.RoutedEvent == Button.ClickEvent) 

{

MessageBox.Show(“You just clicked “ + e.Source); 

} 

else if (e.RoutedEvent == ListBox.SelectionChangedEvent) 

{

SelectionChangedEventArgs sce = (SelectionChangedEventArgs)e; 

if (sce.AddedItems.Count > 0)

MessageBox.Show(“You just selected “ + sce.AddedItems[0]); 

}

}

D I G G I N G  D E E P E R

  From the Library of Wow! eBook



ptg

Keyboard Events
The basic keyboard events supported by all UIElements are the bubbling KeyDown and 
KeyUp events and their tunneling counterparts, PreviewKeyDown and PreviewKeyUp. The 
EventArgs parameter passed to keyboard event handlers is a KeyEventArgs that contains a 
number of properties, such as the following:

. Key, ImeProcessedKey, DeadCharProcessedKey, and SystemKey—Four properties of 
type Key, a large enumeration of every possible key. The Key property identifies what 
key the event is about. If the key is or will be processed by an Input Method Editor 
(IME), you can check the value of ImeProcessedKey. If the key is part of a dead key 
composition, the value of Key will be DeadCharProcessed, with the actual key 
revealed by the DeadCharProcessedKey property. When a system key is pressed, such 
as Alt, the value of Key will be System, with the key pressed with it revealed by the 
SystemKey property.

. IsUp, IsDown, and IsToggled—Boolean properties that reveal more information 
about the key event, although in some cases this information is redundant. (If 
you’re handling a KeyDown event, you know the key is down!) IsToggled pertains to 
keys with toggle states, such as Caps Lock and Scroll Lock.

. KeyStates—A property of type KeyStates, a bit-flags enumeration whose value is 
the combination of None, Down, or Toggled. These values map to IsUp, IsDown, and 
IsToggled, respectively. Because Toggled will sometimes be combined with Down, 
you need to be careful not to check the value of KeyStates with a simple equality 
expression. It’s easiest just to use the IsXXX methods instead.

. IsRepeat—A Boolean property that is true when the key is being repeated. This is 
the case of holding down the spacebar, for example, and getting a flurry of KeyDown 
events. IsRepeat would be true for all 
but the first KeyDown event.

. KeyboardDevice—A property of 
type KeyboardDevice that enables 
you to interact with the keyboard 
in more depth, such as asking 
about what keys are down or 
requesting focus to be moved to a 
specific element.

CHAPTER 6 Input Events: Keyboard, Mouse, Stylus, and Multi-Touch168

Continued

This is also made possible by the delegate contravariance feature in the .NET Framework, 
enabling a delegate to be used with a method whose signature uses a base class of an 
expected parameter (for example, RoutedEventArgs instead of 
SelectionChangedEventArgs). GenericHandler simply casts the RoutedEventArgs para-
meter when necessary to get the extra information specific to the SelectionChanged event.

The static System.Windows.Input.
Keyboard class and its PrimaryDevice 
property (of type KeyboardDevice) can be 
used to obtain information about the 
keyboard at any time, not just inside 
keyboard event handlers.

T I P

  From the Library of Wow! eBook



ptg

One important reason to access KeyboardDevice is for its Modifiers property of type 
ModifierKeys, another enumeration. It reveals whether certain keys are pressed in combi-
nation with the primary key. Its values are None, Alt, Control, Shift, and Windows. This is 
a bit-flags enumeration, so you won’t want to check for equality unless you care about 
the state of every modifier key. For example, the following code checks whether Alt and A 
are being pressed but doesn’t rule out Alt+Shift+A or Alt+Ctrl+A, and so on:

protected override void OnKeyDown(KeyEventArgs e) 

{

if ((e.KeyboardDevice.Modifiers & ModifierKeys.Alt) == ModifierKeys.Alt 

&& (e.Key == Key.A || e.SystemKey == Key.A))

{

// Alt+A has been pressed, potentially also with Ctrl, Shift, and/or Windows 

} 

base.OnKeyDown(e);

}

On the other hand, the following code checks for Alt+A and nothing else:

protected override void OnKeyDown(KeyEventArgs e) 

{

if (e.KeyboardDevice.Modifiers == ModifierKeys.Alt 

&& (e.Key == Key.A || e.SystemKey == Key.A))

{

// Alt+A and only Alt+A has been pressed 

} 

base.OnKeyDown(e);

}

Keyboard Events 169
6

How do I find out whether the left or right Alt, Ctrl, or Shift key was 
pressed?

The Key enumeration has separate values for LeftAlt versus RightAlt, LeftCtrl versus 
RightCtrl, and LeftShift versus RightShift. However, because the Alt key is usually 
the “system key,” it can show up as System, hiding which Alt key was actually pressed. 
Fortunately, you can use KeyboardDevice’s IsKeyDown method (or IsKeyUp or 
IsKeyToggled) to ask about specific keys, such as LeftAlt or RightAlt. For example, the 
following code checks specifically for LeftAlt+A being pressed:

protected override void OnKeyDown(KeyEventArgs e) 

{

if (e.KeyboardDevice.Modifiers == ModifierKeys.Alt 

&& (e.Key == Key.A || e.SystemKey == Key.A) 

&& e.KeyboardDevice.IsKeyDown(Key.LeftAlt))

{

?
FA Q

  From the Library of Wow! eBook



ptg

These keyboard events can get a little bit complicated in certain scenarios, but usually the 
most difficulty anybody has with keyboard handling revolves around keyboard focus. 
(This is further complicated when interoperating with non-WPF technologies, covered in 
Chapter 19, “Interoperability with Non-WPF Technologies.”) A UIElement receives 
keyboard events only if it has keyboard focus. You can control whether an element is 
eligible for focus by setting its Boolean Focusable property, which is true by default. A 
FocusableChanged event is raised whenever its value changes.

UIElements define many more properties and events related to keyboard focus. The rele-
vant properties are IsKeyboardFocused, which reports whether the current element has 
keyboard focus, and IsKeyboardFocusWithin, which reports the same thing but for the 
current element and any child elements. (These properties are read-only; to attempt to set 
keyboard focus, you can call the Focus or MoveFocus methods.) The events that report 
changes in these properties are IsKeyboardFocusedChanged, 
IsKeyboardFocusWithinChanged, GotKeyboardFocus, LostKeyboardFocus, 
PreviewGotKeyboardFocus, and PreviewLostKeyboardFocus.

Mouse Events
All UIElements support the following basic mouse events:

. MouseEnter and MouseLeave

. MouseMove and PreviewMouseMove

. MouseLeftButtonDown, 
MouseRightButtonDown, 
MouseLeftButtonUp, 
MouseRightButtonUp, and the more 
generic MouseDown and MouseUp, as 
well as the PreviewXXX versions of 
all six of these events

. MouseWheel and PreviewMouseWheel

The MouseEnter and MouseLeave events can 
be used to create “rollover” effects, 
although the preferred approach is to use a 
trigger with the IsMouseOver property.

CHAPTER 6 Input Events: Keyboard, Mouse, Stylus, and Multi-Touch170

Continued

// LeftAlt+A has been pressed 

} 

base.OnKeyDown(e);

}

Where is the event for handling 
the pressing of a mouse’s middle

button?

This information can be retrieved via the 
generic MouseDown and MouseUp events (or 
their Preview counterparts). The EventArgs 
object passed to such event handlers 
include properties that reveal which of the 
following buttons have been pressed or 
released: LeftButton, RightButton, 
MiddleButton, XButton1, or XButton2.

?
FA Q

  From the Library of Wow! eBook



ptg

UIElements also have an 
IsMouseDirectlyOver property 
(and corresponding 
IsMouseDirectlyOverChanged event) 
that exclude child elements, for 
advanced scenarios in which you know 
exactly what visual tree you are working 
with.

Mouse Events 171
6

If you don’t want an element to raise any 
mouse events (or block mouse events 
underneath), you can set its 
IsHitTestVisible property to false.

T I P

Transparent regions raise mouse events, but null regions do not!

Although you can count on IsHitTestVisible suppressing mouse events when set to 
false, the conditions for raising mouse events in the first place are a bit subtle. Setting an 
element’s Visibility to Collapsed suppresses its mouse events, whereas setting an 
element’s Opacity to 0 does not affect its event-related behavior. One more subtlety is that 
areas with a null Background, Fill, or Stroke produce areas that don’t raise mouse 
events. However, explicitly setting the Background, Fill, or Stroke to Transparent (or any 
other color) produces areas that do raise mouse events. (A null brush looks like a 
Transparent brush but differs in its hit-testability.)

WA R N I N G

MouseEventArgs
The handlers for all of the previously mentioned mouse events (other than 
IsMouseDirectlyOverChanged) are passed an instance of MouseEventArgs. This object 
exposes five properties of type MouseButtonState that provide information about each 
potential mouse button: LeftButton, RightButton, MiddleButton, XButton1, and 
XButton2. MouseButtonState is an enumeration whose values are Pressed and Released. 
It also defines a GetPosition function that returns a Point with X and Y properties, 
revealing the exact coordinates of the mouse pointer.

GetPosition is a function rather than a simple property because it enables you to get the 
mouse pointer position in more than one way. You can get the position relative to the 
top-left corner of the screen, or you can get the position relative to the top-left corner of 
any rendered UIElement. To get the screen-relative position, you can pass null as the 
single parameter to GetPosition. To get an element-relative position, you pass the desired 
element as the parameter.

Handlers for MouseWheel and PreviewMouseWheel are given an instance of 
MouseWheelEventArgs, which derives from MouseEventArgs and adds an integer Delta 
property that indicates how much the wheel has moved since the last event. Handlers for 
the 12 events in the MouseUp/MouseDown family are given an instance of 
MouseButtonEventArgs, another subclass of MouseEventArgs. MouseButtonEventArgs adds 
a ChangedButton property that tells exactly which button changed (a value from the 
MouseButton enumeration), a ButtonState property that tells whether ChangedButton was 
pressed or released, and a ClickCount property.

  From the Library of Wow! eBook



ptg

ClickCount reveals the number of consecutive clicks of the relevant mouse button, where 
the time between each click is less than or equal to the system’s double-click speed 
(configurable in Control Panel). The same way Button raises a Click event by handling 
MouseLeftButtonDown, its base Control class raises a MouseDoubleClick event by checking 
for a ClickCount of 2 inside MouseLeftButtonDown and raises a PreviewMouseDoubleClick 
event by doing the same thing inside PreviewMouseLeftButtonDown. With this support, 
you could easily react to other gestures, such as a triple-click, double-middle-button-click, 
and so on.

CHAPTER 6 Input Events: Keyboard, Mouse, Stylus, and Multi-Touch172

Canvas raises its own mouse events only within the area defined by its Width and
Height!

It’s easy to forget that Canvas has a Width and Height of 0 by default because its children 
get rendered outside the Canvas’s bounds. But mouse events for Canvas itself (ignoring 
events bubbled up from any children) get raised only within the bounding box defined by its 
Width and Height (and only then when it has a non-null Background). Therefore, by 
default, Canvas-level mouse events are raised only for its children.

WA R N I N G

Drag and Drop
UIElements expose events for working with drag-and-drop:

. DragEnter, DragOver, DragLeave, with PreviewDragEnter, PreviewDragOver, and 
PreviewDragLeave

. Drop and PreviewDrop

. QueryContinueDrag and PreviewQueryContinueDrag

This is Win32-style dragging and dropping of clipboard content to/from elements, not 
dragging/dropping of elements themselves. Elements can opt in to participating in drag-
and-drop by setting their AllowDrop property to true.

The first two sets of events give their handlers an instance of DragEventArgs, which 
contains the following:

. GetPosition—The same method exposed by MouseEventArgs

. Data—A property of type IDataObject that represents the Win32 clipboard object 
being dragged or dropped

. Effects and AllowedEffects— Bit-flags DragDropEffects enumeration values that 
can be any combination of Copy, Move, Link, Scroll, All, or None

. KeyStates—Another bit-flags enumeration (DragDropKeyStates) that reveals which 
of the following are pressed during the drag or drop: LeftMouseButton, 
RightMouseButton, MiddleMouseButton, ShiftKey, ControlKey, AltKey, or None

  From the Library of Wow! eBook



ptg

The QueryContinueDrag and 
PreviewQueryContinueDrag events are 
raised when the keyboard state or the 
state of a mouse button has changed 
during a drag. They allow handlers to 
easily cancel the whole operation. Their 
handlers are given an instance of 
QueryContinueDragEventArgs, which 
contains the following:

. KeyStates—The same property 
that DragEventArgs exposes

. EscapePressed—A separate 
Boolean property that tells whether 
the Esc key has been pressed

. Action—A property that handlers can 
set to determine the fate of the drag-and-drop operation; it can be set to a value 
from the DragAction enumeration: Continue, Drop, or Cancel

Capturing the Mouse
Suppose you wanted to support dragging and dropping of UIElements rather than clip-
board objects. It’s easy to imagine using the MouseLeftButtonDown, MouseMove, and 
MouseLeftButtonUp events to implement drag-and-drop. You could start a drag action by 
setting a Boolean variable inside an element’s MouseLeftButtonDown handler, move the 
element to remain under the mouse pointer if the Boolean is true inside its MouseMove 
handler, and then clear the Boolean inside its MouseLeftButtonUp event to end the drag-
ging. It turns out that this simple scheme isn’t quite good enough, however, because it’s 
easy to move the mouse too fast or under another element, causing the mouse pointer to 
separate from the element you’re trying to drag.

Fortunately, WPF enables any UIElement to capture and release the mouse at any time. 
When an element captures the mouse, it receives all mouse events, even if the mouse 
pointer is not within its bounds. When an element releases the mouse, the event behav-
ior returns to normal. Capture and release can be done with two functions defined on 
UIElements—CaptureMouse and ReleaseMouseCapture. (And of course, there are a number 
of corresponding properties and events that reveal the state of mouse capture. The proper-
ties are IsMouseCaptured and IsMouseCaptureWithin, and the events are 
GotMouseCapture, LostMouseCapture, IsMouseCaptureChanged, and 
IsMouseCaptureWithinChanged.)

Therefore, for a drag-and-drop implementation, you should capture the mouse inside 
MouseLeftButtonDown and release it inside MouseLeftButtonUp. The only tricky thing, 
then, is deciding the best way to actually move the element inside MouseMove. The best

Mouse Events 173
6

The static System.Windows.Input.Mouse 
class can be used to obtain information 
about the mouse at almost any time, not 
just inside mouse event handlers. What you 
can’t do is get the correct position of the 
mouse from the static Mouse.GetPosition 
during drag-and-drop. Instead, you must 
either call GetPosition from the 
DragEventArgs instance passed to the rele-
vant event handler or, if you must do this 
outside the context of an event handler, 
make a PInvoke call to the GetCursorPos 
Win32 API, which will give you the correct 
location.

T I P

  From the Library of Wow! eBook



ptg

approach depends on the layout being used in the application, but this likely involves 
applying a RenderTransform or LayoutTransform to the element being dragged.

Stylus Events
WPF has special support for a pen digitizer, also known as a stylus, found on devices such 
as a Tablet PC. (This is sometimes referred to as “ink” support.) If you don’t add any 
special support for a stylus in your application, it appears to act just like a mouse, raising 
all the relevant mouse events, such as MouseDown, MouseMove, and MouseUp. This behavior 
is essential for a stylus to be usable with programs that aren’t designed specifically for a 
Tablet PC.

However, if you want to provide an experience that is optimized for a stylus, you can inter-
act with an instance of System.Windows.Input.StylusDevice. There are three ways to get 
an instance of StylusDevice:

. You can use a StylusDevice property on MouseEventArgs to get an instance inside 
mouse event handlers. (This property will be null if there is no stylus.)

. You can use the static System.Windows.Input.Stylus class and its 
CurrentStylusDevice property to interact with the stylus at any time. (This will also 
be null if there is no stylus.)

. You can handle a number of events specific to the stylus.

This support also applies to devices with a touch digitizer rather than a pen digitizer.

CHAPTER 6 Input Events: Keyboard, Mouse, Stylus, and Multi-Touch174

I can already get stylus data by pretending it is a mouse, so what good is 
the stylus-specific information?

A pen digitizer or touch digitizer can give you two things that a normal mouse cannot (ignoring 
multi-touch, which is covered in the next section): pressure sensitivity and higher resolution.

For a handwriting or drawing application, both of these things can make the writing or drawing 
much more natural than the result you would get with a mouse. A stylus can also do more 
“tricks” than a mouse, as evidenced by some of the properties and events discussed in this 
section. In addition, because multiple styluses can be detected at the same time, this support 
provides a way to write multi-touch-capable code with only WPF 3.5 SP1 on Windows 7.

?
FA Q

StylusDevice
StylusDevice contains a number of properties, including the following:

. Inverted—A Boolean that reveals whether the stylus is being used as an eraser (with 
its back end against the screen).

. InAir—A Boolean that indicates whether the stylus is in contact with the screen, be-
cause on some devices its movement can still be registered as long as it is close enough.

  From the Library of Wow! eBook



ptg

. StylusButtons—A collection of StylusButton objects. Unlike with a mouse, there is 
no fixed list of possible buttons. Each StylusButton has a string Name and a Guid 
identifier, along with a StylusButtonState of Up or Down.

. TabletDevice—A property of type System.Windows.Input.TabletDevice that 
provides detailed information about the current hardware and which stylus capabili-
ties it provides (such as pressure-sensitivity or in-air movement). Its Type property is 
Stylus for a pen digitizer or Touch for a touch digitizer.

StylusDevice has a GetPosition method that acts like the version for the mouse, but it 
also has a richer GetStylusPoints method that returns a collection of StylusPoint 
objects. Each StylusPoint object has properties such as the following:

. X—The horizontal coordinate of the stylus point relative to the passed-in element.

. Y—The vertical coordinate of the stylus point relative to the passed-in element.

. PressureFactor—A value between 0 and 1 that indicates how much pressure was 
applied to the stylus when the point was registered. The higher the value, the more 
pressure was applied, if the hardware supports pressure sensitivity. If pressure sensi-
tivity is not supported, PressureFactor is set to 0.5.

The high resolution of a stylus explains why GetStylusPoints returns a collection of points 
(and pressures). In the time between two MouseMove events, for example, a lot of rich 
motion might have been detected and recorded.

Events
The stylus-specific events are as follows:

. StylusEnter and StylusLeave

. StylusMove and PreviewStylusMove

. StylusInAirMove and PreviewStylusInAirMove

. StylusDown, StylusUp, PreviewStylusDown, and PreviewStylusUp

. StylusButtonDown, StylusButtonUp, PreviewStylusButtonDown, and 
PreviewStylusButtonUp

. StylusSystemGesture and PreviewStylusSystemGesture

. StylusInRange, StylusOutOfRange, PreviewStylusInRange, and 
PreviewStylusOutOfRange

. GotStylusCapture and LostStylusCapture

The handlers for these events are given a StylusEventArgs instance that gives you access 
to the StylusDevice via a StylusDevice property. For convenience, it also defines InAir, 
Inverted, GetPosition, and GetStylusPoints members that wrap the same members from 
the StylusDevice.

Stylus Events 175
6

  From the Library of Wow! eBook



ptg

Some handlers are given a StylusEventArgs subclass:

. StylusDownEventArgs—StylusDown and PreviewStylusDown are given a 
StylusDownEventArgs instance, which adds an integer TapCount property that is 
analogous to ClickCount for mouse events.

. StylusButtonEventArgs—StylusButtonDown, StylusButtonUp, and the correspond-
ing Preview events are given a StylusButtonEventArgs instance, which adds a 
StylusButton property set to the relevant button.

. StylusSystemGestureEventArgs—StylusSystemGesture and 
PreviewStylusSystemGesture are given a StylusSystemGestureEventArgs instance, 
which adds a SystemGesture property set to one of the values from the 
SystemGesture enumeration: Tap, RightTap, TwoFingerTap, Drag, RightDrag, Flick, 
HoldEnter, HoldLeave, HoverEnter, HoverLeave, or None.

CHAPTER 6 Input Events: Keyboard, Mouse, Stylus, and Multi-Touch176

WPF defines a Stroke object that can be used to visually represent the information in a 
collection of StylusPoints, and an InkPresenter element that holds a collection of 
Strokes. For many drawing and handwriting scenarios, you could alternatively use the 
InkCanvas element, described in Chapter 11, “Images, Text, and Other Controls,” that inter-
nally uses an InkPresenter. InkCanvas has built-in support for exploiting a stylus, if one is 
present, and collecting/displaying strokes. With this, you don’t need to handle any Stylus 
events yourself!

T I P

Multi-Touch Events
When running on Windows 7 or later with hardware that supports multi-touch, you can 
take advantage of rich events introduced in WPF 4. These events can be separated into 
two categories—basic touch events and higher-level manipulation events.

Although multi-touch events, like stylus events, are exposed as mouse events, the reverse 
is not true. You cannot receive single-point touch events from the mouse, as if it were a 
finger on a touch device, without doing extra work to simulate a touch device.

If you want to simulate multi-touch (or even single-touch) on a “normal” computer, you can 
leverage the MultiPoint Mouse SDK (http://microsoft.com/multipoint/mouse-sdk), which 
enables up to 25 mice to be used simultaneously on the same computer! But that’s not 
enough; you need to expose MultiPoint’s functionality as a custom touch device by using the 
techniques described at http://blogs.msdn.com/ansont/archive/2010/01/30/ 
custom-touch-devices.aspx.

T I P

  From the Library of Wow! eBook

http://microsoft.com/multipoint/mouse-sdk
http://blogs.msdn.com/ansont/archive/2010/01/30/custom-touch-devices.aspx
http://blogs.msdn.com/ansont/archive/2010/01/30/custom-touch-devices.aspx


ptg

Basic Touch Events
The basic touch events look and act a lot like mouse events:

. TouchEnter and TouchLeave

. TouchMove and PreviewTouchMove

. TouchDown, TouchUp, PreviewTouchDown and PreviewTouchUp

. GotTouchCapture and LostTouchCapture

When multiple fingers are touching simultaneously, these events get raised for each finger 
independently. Equivalent mouse events get raised as well for the first finger, thanks to 
the stylus support described earlier.

Handlers for the touch events are given an instance of TouchEventArgs, which contains 
the following:

. GetTouchPoint—A method that returns a TouchPoint instance relative to the passed-
in element. This is analogous to the GetPosition method for mouse events.

. GetIntermediateTouchPoints—A method that returns a collection of TouchPoint 
instances relative to the passed-in element that got accumulated between the 
current and previous touch events. This is analogous to the GetStylusPoints 
method for stylus events.

. TouchDevice—A property that returns an instance of TouchDevice.

TouchPoint has not only a Position property but a Size property that reveals how much 
of the finger is in contact with the screen and a Bounds property that gives the exact 
contact area. It also exposes information that you already know in the context of one of 
these event handlers but can be handy at other times: the TouchDevice and an Action 
whose value can be Down, Move, or Up (from the TouchAction enumeration).

Each finger press is associated with its own TouchDevice, identified by an integer Id prop-
erty. You can use this Id (or the TouchDevice instance itself) to keep track of which finger 
is which when handling events.

Listing 6.6 leverages TouchDown, TouchMove, and TouchUp to show fingerprint clipart 
images (not actual fingerprints!) whenever and wherever a finger is in contact with the 
screen. It is the code-behind file for the following simple Window that contains a Canvas 
named canvas:

<Window x:Class=”TouchEvents.MainWindow” 

xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation” 

xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml” 

Title=”Touch Events”>

<Canvas Name=”canvas”> 

<Canvas.Background>

<LinearGradientBrush>

Multi-Touch Events 177
6

  From the Library of Wow! eBook



ptg

<GradientStop Color=”Black”/> 

<GradientStop Color=”Red” Offset=”1”/>

</LinearGradientBrush> 

</Canvas.Background> 

</Canvas>

</Window>

The result is shown in Figure 6.2.

LISTING 6.6 MainWindow.xaml.cs—Handling TouchDown, TouchMove, and TouchUp

using System; 

using System.Collections.Generic; 

using System.Windows; 

using System.Windows.Controls; 

using System.Windows.Input; 

using System.Windows.Media; 

using System.Windows.Media.Imaging;

namespace TouchEvents 

{

public partial class MainWindow : Window 

{

// Keep track of which images are used for which TouchDevices 

Dictionary<TouchDevice, Image> fingerprints =

new Dictionary<TouchDevice, Image>();

public MainWindow() 

{

InitializeComponent(); 

}

protected override void OnTouchDown(TouchEventArgs e) 

{

base.OnTouchDown(e);

// Capture this touch device 

canvas.CaptureTouch(e.TouchDevice);

// Create a new image for this new touch 

Image fingerprint = new Image { Source = new BitmapImage(

new Uri(“pack://application:,,,/fingerprint.png”)) };

// Move the image to the touch point 

TouchPoint point = e.GetTouchPoint(canvas);

CHAPTER 6 Input Events: Keyboard, Mouse, Stylus, and Multi-Touch178

  From the Library of Wow! eBook



ptg

fingerprint.RenderTransform = new TranslateTransform( 

point.Position.X, point.Position.Y);

// Keep track of the image and add it to the canvas 

fingerprints[e.TouchDevice] = fingerprint; 

canvas.Children.Add(fingerprint);

}

protected override void OnTouchMove(TouchEventArgs e) 

{

base.OnTouchMove(e);

if (e.TouchDevice.Captured == canvas) 

{

// Retrieve the right image

Image fingerprint = fingerprints[e.TouchDevice]; 

TranslateTransform transform = 

fingerprint.RenderTransform as TranslateTransform;

// Move it to the new location 

TouchPoint point = e.GetTouchPoint(canvas); 

transform.X = point.Position.X; 

transform.Y = point.Position.Y;

} 

}

protected override void OnTouchUp(TouchEventArgs e) 

{

base.OnTouchUp(e);

// Release capture 

canvas.ReleaseTouchCapture(e.TouchDevice);

// Remove the image from the canvas and the dictionary 

canvas.Children.Remove(fingerprints[e.TouchDevice]); 

fingerprints.Remove(e.TouchDevice);

} 

}

}

This scheme works very much like dragging and dropping elements, as described in the 
“Mouse Events” section, except that the element is created on TouchDown and removed on 
TouchUp. Rather than attaching event handlers directly to the three events, this listing

Multi-Touch Events 179

LISTING 6.6 Continued

6

  From the Library of Wow! eBook



ptg

overrides the corresponding OnXXX 
methods on Window.

In OnTouchDown, the code captures the 
touch device to make the dragging 
operation work reliably. Unlike with the 
keyboard, mouse, or stylus, a single 
element can capture multiple touch 
devices. In this case, the same Canvas 
captures each device. The Image is 
created from an embedded resource 
using syntax covered in Chapter 12, 
“Resources,” placed appropriately using 
a TranslateTransform, then added to 
the Canvas and a dictionary used by the 
other events. In this dictionary, the 
TouchDevice itself is used as the key.

OnTouchMove retrieves the appropriate
Image for the current TouchDevice and 
then moves it to the current TouchPoint. It makes sure that the event belongs to one of 
the TouchDevices captured by the Canvas. OnTouchUp releases touch capture then removes 
the Image from the Canvas and the dictionary.

How well this sample runs depends on your hardware. My multi-touch netbook supports 
only two simultaneous touch points, so I can’t get any more than two fingerprints to 
appear at once.

CHAPTER 6 Input Events: Keyboard, Mouse, Stylus, and Multi-Touch180

FIGURE 6.2 Pressing five fingers on the 
screen shows five fingerprint images at the 
right locations.

As of version 4, Silverlight does not have any of these touch events. If you want to write 
multi-touch code that works with both WPF and Silverlight, you can use a lower-level 
FrameReported event supported by both. FrameReported is defined on a static 
System.Windows.Input.Touch class and reports TouchPoints for the entire application. 
This is not a routed event; you’re responsible for doing hit-testing and figuring out which 
elements are being touched.

T I P

Manipulation Events for Panning, Rotating, and Zooming
Often, people want to leverage multi-touch for panning, rotating, and zooming elements. 
These actions are straightforward, as these concepts map exactly to applying a 
TranslateTransform, RotateTransform, and/or ScaleTransform. Detecting when you 
should apply these transforms and with what values is an entirely different story.

The one-finger swipe typically used for panning is a relatively simple gesture to detect, 
but trying to figure out if the user performed the two-finger rotation or zoom gesture

  From the Library of Wow! eBook



ptg

would be difficult with the previously discussed events. Furthermore, the lack of consis-
tency that would result in developers performing their own gesture recognition would 
result in frustrating user interfaces.

Fortunately, WPF provides higher-level manipulation events that make it easy to support 
panning, rotating, and zooming. These are the main manipulation events:

. ManipulationStarting and ManipulationStarted

. ManipulationDelta

. ManipulationCompleted

These events combine the information from independent touch devices updating simulta-
neously and package the data in an easy-to-consume form. For an element to receive 
these events, the IsManipulationEnabled property must be set to true on itself or a 
parent, and the relevant basic touch events must be left unhandled.

Using Manipulation Events
ManipulationStarting, followed by ManipulationStarted, gets raised when TouchDown 
happens for the first finger. ManipulationDelta gets raised for each TouchMove, and 
ManipulationCompleted gets raised after TouchUp is raised for all fingers. 
ManipulationStarting and ManipulationStarted give you the opportunity to customize 
aspects of the manipulation, restrict which manipulations are allowed, or cancel it.

The ManipulationDelta event gives you rich information about how the element is 
expected to be translated/rotated/scaled that can be applied directly to the relevant trans-
forms. It gives you this data in a ManipulationDelta class that has the following proper-
ties:

. Translation—A Vector property with X and Y values

. Scale—Another Vector property

. Rotation—A double property that specifies the angle in degrees

. Expansion—A Vector property that is redundant with Scale but reports the size 
difference in terms of absolute device-independent pixels rather than in terms of a 
multiplier

Furthermore, the ManipulationDeltaEventArgs instance passed to handlers of the 
ManipulationDelta event has two properties of type ManipulationDelta— 
DeltaManipulation, which reports the changes compared to the last time the event was 
raised, and CumulativeManipulation, which reports the changes compared to when 
ManipulationStarted was raised. So no matter how you prefer to consume the data, there 
should be a way that pleases you!

Multi-Touch Events 181
6

  From the Library of Wow! eBook



ptg

Listing 6.7 contains the code-behind file for the following Window, making it possible to 
move, rotate, and zoom the contained photo with standard swipe, spin, and pinch 
gestures:

<Window x:Class=”ManipulationEvents.MainWindow” 

xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation” 

xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml” 

Title=”Manipulation Events”>

<Canvas Name=”canvas” IsManipulationEnabled=”True”> 

<Image Name=”photo” Source=”photo.jpg”> 

<Image.RenderTransform>

<MatrixTransform/> 

</Image.RenderTransform> 

</Image>

</Canvas> 

</Window>

The result is shown in Figure 6.3.

LISTING 6.7 MainWindow.xaml.cs—Handling ManipulationDelta to Enable Panning, 
Rotating, and Zooming

using System; 

using System.Windows; 

using System.Windows.Input; 

using System.Windows.Media;

namespace ManipulationEvents 

{

public partial class MainWindow : Window 

{

public MainWindow() 

{

InitializeComponent(); 

canvas.ManipulationDelta += Canvas_ManipulationDelta;

}

void Canvas_ManipulationDelta(object sender, ManipulationDeltaEventArgs e) 

{

MatrixTransform transform = photo.RenderTransform as MatrixTransform; 

if (transform != null) 

{

// Apply any deltas to the matrix, 

// then apply the new Matrix as the MatrixTransform data: 

Matrix matrix = transform.Matrix; 

matrix.Translate(e.DeltaManipulation.Translation.X, 

e.DeltaManipulation.Translation.Y);

CHAPTER 6 Input Events: Keyboard, Mouse, Stylus, and Multi-Touch182

  From the Library of Wow! eBook



ptg

matrix.RotateAt(e.DeltaManipulation.Rotation,

e.ManipulationOrigin.X, e.ManipulationOrigin.Y); 

matrix.ScaleAt(e.DeltaManipulation.Scale.X, e.DeltaManipulation.Scale.Y,

e.ManipulationOrigin.X, e.ManipulationOrigin.Y); 

transform.Matrix = matrix;

e.Handled = true; 

}

} 

}

}

The Image named photo conveniently has a 
MatrixTransform applied as its RenderTransform, so 
all the code inside the ManipulationDelta handler 
needs to do is update the transform’s Matrix with 
data from the ManipulationDeltaEventArgs 
instance. The RotateAt and ScaleAt methods are 
used so the proper origin of rotation and scaling can 
be applied (e.ManipulationOrigin).

Manipulations are always done relative to a manipu-
lation container. By default, this is the element 
marked with IsManipulationEnabled=True, which is 
why the XAML for this example sets it on the Canvas 
rather than the Image. You can set any element as 
the manipulation container by handling the 
ManipulationStarting event and setting 
ManipulationStartingEventArgs. 

ManipulationContainer to the element.

Adding Inertia
Manipulation events include support for giving objects inertia, so they can gradually slow 
to a stop when a gesture is done rather than stopping instantly. This makes the gestures 
feel more realistic and make it easy to support things like “flicking” an object to make it 
move a distance based on the speed of the flick.

To enable inertia, you can handle the ManipulationInertiaStarting event in addition to 
any other manipulation events. ManipulationInertiaStarting—not 
ManipulationCompleted—is actually the first manipulation event raised after all fingers 
lose contact with the screen. In the handler for ManipulationInertiaStarting, you can 
opt in to the support by setting properties on ManipulationInertiaStartingEventArgs. 
TranslationBehavior, ManipulationInertiaStartingEventArgs.RotationBehavior, 
and/or ManipulationInertiaStartingEventArgs.ExpansionBehavior. This causes the 
ManipulationDelta event to continue getting raised (with ManipulationDeltaEventArgs. 
IsInertial set to true) until friction causes it to stop, at which point

Multi-Touch Events 183

LISTING 6.7 Continued

6

FIGURE 6.3 Enabling 
panning, rotating, and zooming 
on an Image by handling the 
ManipulationDelta event.

  From the Library of Wow! eBook



ptg

ManipulationCompleted is raised. (If you do nothing inside the 
ManipulationInertiaStarting event, ManipulationCompleted will get raised right after.)

Here are the properties you can set to enable inertia on position, rotation, and/or scale:

. TranslationBehavior—DesiredDisplacement, DesiredDeceleration, and 
InitialVelocity

. RotationBehavior—DesiredRotation, DesiredDeceleration, and InitialVelocity

. ExpansionBehavior—DesiredExpansion, DesiredDeceleration, InitialRadius, and 
InitialVelocity

Typically you only need to set DesiredDeceleration or the behavior-specific 
DesiredDisplacement, DesiredRotation, or DesiredExpansion. The latter properties are 
useful for ensuring that the element doesn’t go too far. By default, InitialVelocity and 
InitialRadius are initialized with the current values to ensure a smooth transition. You 
can get the various velocities at the time of the ManipulationInertiaStarting event by 
checking ManipulationInertiaStartingEventArgs.InitialVelocities, which has 
LinearVelocity, AngularVelocity, and ExpansionVelocity properties.

Listing 6.8 updates Listing 6.7 with support for inertia.

LISTING 6.8 MainWindow.xaml.cs—Handling ManipulationDelta and 
ManipulationInertiaStarting to Enable Panning, Rotating, and Zooming with Inertia 

using System;

using System.Windows; 

using System.Windows.Input; 

using System.Windows.Media;

namespace ManipulationEvents 

{

public partial class MainWindow : Window 

{

public MainWindow() 

{

InitializeComponent(); 

canvas.ManipulationDelta += Canvas_ManipulationDelta; 

canvas.ManipulationInertiaStarting += Canvas_ManipulationInertiaStarting;

}

void Canvas_ManipulationInertiaStarting(object sender,

ManipulationInertiaStartingEventArgs e) 

{

e.TranslationBehavior.DesiredDeceleration = 0.01;

e.RotationBehavior.DesiredDeceleration = 0.01;

e.ExpansionBehavior.DesiredDeceleration = 0.01; 

}

CHAPTER 6 Input Events: Keyboard, Mouse, Stylus, and Multi-Touch184

  From the Library of Wow! eBook



ptg
void Canvas_ManipulationDelta(object sender, ManipulationDeltaEventArgs e) 

{

MatrixTransform transform = photo.RenderTransform as MatrixTransform; 

if (transform != null) 

{

// Apply any deltas to the matrix, 

// then apply the new Matrix as the MatrixTransform data: 

Matrix matrix = transform.Matrix; 

matrix.Translate(e.DeltaManipulation.Translation.X, 

e.DeltaManipulation.Translation.Y); 

matrix.RotateAt(e.DeltaManipulation.Rotation,

e.ManipulationOrigin.X, e.ManipulationOrigin.Y); 

matrix.ScaleAt(e.DeltaManipulation.Scale.X, e.DeltaManipulation.Scale.Y,

e.ManipulationOrigin.X, e.ManipulationOrigin.Y); 

transform.Matrix = matrix;

e.Handled = true; 

}

} 

}

}

You need to be careful about elements getting moved completely offscreen, especially 
when inertia is involved. You can use the ManipulationBoundaryFeedback event to be 
notified when an element reaches the boundary of the manipulation container so that 
you can take steps to prevent its escape.

Multi-Touch Events 185

LISTING 6.8 Continued

6

WPF provides an easy way to make your application’s window bounce when something has 
been pushed past a boundary, similar to the scroll-past-the-end-of-a-list effect made popular 
by iPhone. Inside a ManipulationDelta event handler, you can call the 
ReportBoundaryFeedback method on the passed-in ManipulationDeltaEventArgs 
instance to make this happen. This raises the ManipulationBoundaryFeedback event, 
which is handled by WPF’s Window in order to provide this effect.

T I P

ManipulationDeltaEventArgs contains a Complete method and a Cancel
method. What’s the difference between them?

Complete halts the manipulation (both direct and inertial). Cancel also halts the manipula-
tion, but it promotes the touch input data to mouse events, where some of the behavior can 
continue for elements that are mouse aware but not touch aware.

?
FA Q

  From the Library of Wow! eBook



ptg

Listing 6.9 leverages rotation inertia to provide the “spin the prize wheel” user interface 
pictured in Figure 6.4. This listing is the code-behind file for the following Window:

<Window x:Class=”SpinThePrizeWheel.MainWindow” 

xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation” 

xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml” 

Title=”Spin the Prize Wheel”>

<Window.Background> 

<LinearGradientBrush>

<GradientStop Color=”White”/> 

<GradientStop Color=”Orange” Offset=”1”/>

</LinearGradientBrush> 

</Window.Background>

<Grid Name=”grid” IsManipulationEnabled=”True”> 

<Image Name=”prizeWheel” RenderTransformOrigin=”0.5,0.5”

Source=”prizeWheel.png” Margin=”0 30 0 0”> 

<Image.RenderTransform>

<RotateTransform/> 

</Image.RenderTransform> 

</Image> 

<Image Source=”arrow.png” VerticalAlignment=”Top” Stretch=”None”/>

</Grid> 

</Window>

LISTING 6.9 MainWindow.xaml.cs—Implementation of a Spinning Prize Wheel with Inertia

using System; 

using System.Windows; 

using System.Windows.Input; 

using System.Windows.Media;

namespace SpinThePrizeWheel 

{

public partial class MainWindow : Window 

{

public MainWindow() 

{

InitializeComponent(); 

grid.ManipulationStarting        += Grid_ManipulationStarting; 

grid.ManipulationDelta           += Grid_ManipulationDelta; 

grid.ManipulationInertiaStarting += Grid_ManipulationInertiaStarting; 

grid.ManipulationCompleted       += Grid_ManipulationCompleted;

}

void Grid_ManipulationStarting(object sender, 

ManipulationStartingEventArgs e)

CHAPTER 6 Input Events: Keyboard, Mouse, Stylus, and Multi-Touch186

  From the Library of Wow! eBook



ptg

{

e.Mode = ManipulationModes.Rotate; // Only allow rotation 

}

void Grid_ManipulationDelta(object sender, ManipulationDeltaEventArgs e) 

{

(prizeWheel.RenderTransform as RotateTransform).Angle += 

e.DeltaManipulation.Rotation; 

}

void Grid_ManipulationInertiaStarting(object sender, 

ManipulationInertiaStartingEventArgs e)

{

e.RotationBehavior.DesiredDeceleration = 0.001; 

}

void Grid_ManipulationCompleted(object sender, 

ManipulationCompletedEventArgs e)

{

// Now that the wheel has stopped, tell the user what s/he won! 

}

} 

}

Listing 6.9 handles the ManipulationStarting 
event to tell the manipulation processing that it 
only cares about rotation. This is optional 
because it only pays attention to the rotation 
data inside the ManipulationDelta event 
handler, but it’s good practice (and good for 
performance). The ManipulationDelta handler 
updates the Image’s RotateTransform, increment-
ing its Angle by e.DeltaManipulation.Rotation. 
Alternatively, it could just assign the value
e.CumulativeManipulation.Rotation to the 
Angle property, but then any subsequent spins 
would cause the wheel to jump back to 0° at the 
beginning of the spin, which would be jarring 
and unnatural.

The handler for ManipulationInertiaStarting 
gives the wheel a very small deceleration, so it 
spins for a while after contact has ended. Finally,

Multi-Touch Events 187

LISTING 6.9 Continued

6

FIGURE 6.4 Rotation inertia 
enables the wheel to keep spinning 
after you let go, as on some game 
shows.

  From the Library of Wow! eBook



ptg

the handler for ManipulationCompleted is the perfect spot to determine the final state of 
the wheel and award the user a prize.

CHAPTER 6 Input Events: Keyboard, Mouse, Stylus, and Multi-Touch188

You can take advantage of panning support built into ScrollViewer by setting its 
PanningMode property to HorizontalOnly, VerticalOnly, HorizontalFirst, 
VerticalFirst, or Both. ScrollViewer also exposes PanningDeceleration and 
PanningRatio properties. The latter is used as a multiplier when applying the manipulation 
distance to the underlying TranslateTransform.

Although the default value for PanningMode is None, several WPF controls set their internal 
ScrollViewer to a different, appropriate value in their default styles to make them multi-
touch aware without any explicit work for developers.

T I P

You can download the Surface Toolkit for Windows Touch to get numerous slick Microsoft 
Surface WPF controls that are optimized for multi-touch. This includes “surface versions” of 
most common controls (such as SurfaceButton and SurfaceCheckBox) and brand-new 
controls (such as ScatterView and LibraryStack).

T I P

Commands
Although this chapter focuses on events, it’s important to be aware of WPF’s built-in 
support for commands, a more abstract and loosely coupled version of events. Whereas 
events are tied to details about specific user actions (such as a Button being clicked or a 
ListBoxItem being selected), commands represent actions independent from their user 
interface exposure. Canonical examples of commands are Cut, Copy, and Paste. 
Applications often expose these actions through many mechanisms simultaneously: 
MenuItems in a Menu, MenuItems on a ContextMenu, Buttons on a ToolBar, keyboard short-
cuts, and so on.

You could handle the multiple exposures of commands such as Cut, Copy, and Paste with 
events fairly well. For example, you could define a generic event handler for each of the 
three actions and then attach each handler to the appropriate events on the relevant 
elements (the Click event on a Button, the KeyDown event on the main Window, and so 
on). In addition, you’d probably want to enable and disable the appropriate controls 
whenever the corresponding actions are invalid (for example, disabling any user interface 
for Paste when there is nothing on the clipboard). This two-way communication gets a 
bit more cumbersome, especially if you don’t want to hard-code a list of controls that 
need to be updated.

Fortunately, WPF’s support for commands is designed to make such scenarios very easy. 
The support reduces the amount of code you need to write (and in some cases eliminates 
all procedural code), and it gives you more flexibility to change your user interface

  From the Library of Wow! eBook



ptg

without breaking the underlying logic. Commands are not a new invention of WPF; older 
technologies such as the Microsoft Foundation Class Library (MFC) have a similar mecha-
nism. Of course, even if you’re familiar with MFC, you need to learn about the unique 
traits of commands in WPF.

Much of the power of commands comes from the following three features:

. WPF defines a number of built-in commands.

. Commands have automatic support for input gestures (such as keyboard shortcuts).

. Some of WPF’s controls have built-in behavior tied to various commands.

Built-In Commands
A command is any object implementing the ICommand interface (from System.Windows. 
Input), which defines three simple members:

. Execute—The method that executes the command-specific logic

. CanExecute—A method that returns true if the command is enabled or false if it is 
disabled

. CanExecuteChanged—An event that is raised whenever the value of CanExecute 
changes

If you wanted to create Cut, Copy, and Paste commands, you could define and implement 
three classes implementing ICommand, find a place to store them (perhaps as static fields of 
the main Window), call Execute from relevant event handlers (when CanExecute returns 
true), and handle the CanExecuteChanged event to toggle the IsEnabled property on the 
relevant pieces of user interface. This doesn’t sound much better than simply using 
events, however.

Fortunately, controls such as Button, CheckBox, and MenuItem have logic to interact with 
any command on your behalf. They expose a simple Command property (of type ICommand). 
When set, these controls automatically call the command’s Execute method (when 
CanExecute returns true) whenever their Click event is raised. In addition, they automat-
ically keep their value for IsEnabled synchronized with the value of CanExecute by lever-
aging the CanExecuteChanged event. By supporting all this via a simple property 
assignment, all this logic is available from XAML.

Even more fortunately, WPF defines a bunch of commands, so you don’t have to imple-
ment ICommand objects for commands such as Cut, Copy, and Paste and worry about 
where to store them. WPF’s built-in commands are exposed as static properties of five 
different classes:

. ApplicationCommands—Close, Copy, Cut, Delete, Find, Help, New, Open, Paste, 
Print, PrintPreview, Properties, Redo, Replace, Save, SaveAs, SelectAll, Stop, 
Undo, and more

Commands 189
6

  From the Library of Wow! eBook



ptg

. ComponentCommands—MoveDown, MoveLeft, MoveRight, MoveUp, ScrollByLine, 
ScrollPageDown, ScrollPageLeft, ScrollPageRight, ScrollPageUp, SelectToEnd, 
SelectToHome, SelectToPageDown, SelectToPageUp, and more

. MediaCommands—ChannelDown, ChannelUp, DecreaseVolume, FastForward, 
IncreaseVolume, MuteVolume, NextTrack, Pause, Play, PreviousTrack, Record, 
Rewind, Select, Stop, and more

. NavigationCommands—BrowseBack, BrowseForward, BrowseHome, BrowseStop, 
Favorites, FirstPage, GoToPage, LastPage, NextPage, PreviousPage, Refresh, 
Search, Zoom, and more

. EditingCommands—AlignCenter, AlignJustify, AlignLeft, AlignRight, 
CorrectSpellingError, DecreaseFontSize, DecreaseIndentation, EnterLineBreak, 
EnterParagraphBreak, IgnoreSpellingError, IncreaseFontSize, 
IncreaseIndentation, MoveDownByLine, MoveDownByPage, MoveDownByParagraph, 
MoveLeftByCharacter, MoveLeftByWord, MoveRightByCharacter, MoveRightByWord, 
and more

Each of these properties does not return a unique type implementing ICommand. Instead, 
they are all instances of RoutedUICommand, a class that not only implements ICommand but 
supports bubbling just like a routed event.

The About dialog revisited earlier in this chapter has a Help Button that currently does 
nothing, so let’s demonstrate how these built-in commands work by attaching some logic 
with the Help command defined in ApplicationCommands. Assuming that the Button is 
named helpButton, you can associate it with the Help command in C# as follows:

helpButton.Command = ApplicationCommands.Help;

All RoutedUICommand objects define a Text property that contains a name for the 
command that’s appropriate to show in a user interface. (This property is the only differ-
ence between RoutedUICommand and its base RoutedCommand class.) For example, the Help 
command’s Text property is (unsurprisingly) set to the string Help. The hard-coded 
Content on this Button could therefore be replaced as follows:

helpButton.Content = ApplicationCommands.Help.Text;

CHAPTER 6 Input Events: Keyboard, Mouse, Stylus, and Multi-Touch190

The Text string defined by all RoutedUICommands is automatically localized into every 
language supported by WPF! This means that a Button whose Content is assigned to 
ApplicationCommands.Help.Text automatically displays “Ayuda” rather than “Help” when 
the thread’s current user interface culture represents Spanish rather than English. Even in a 
context where you want to expose images rather than text (perhaps on a ToolBar), you can 
still leverage this localized string elsewhere, such as in a ToolTip.

Of course, you’re still responsible for localizing any of your own strings that get displayed in 
your user interface. Leveraging Text on commands can simply cut down on the number of 
terms you need to translate.

T I P

  From the Library of Wow! eBook



ptg

If you were to run the About dialog with this change, you would see that the Button is 
now permanently disabled. That’s because the built-in commands can’t possibly know 
when they should be enabled or disabled, or even what action to take when they are 
executed. They delegate this logic to consumers of the commands.

To plug in custom logic, you need to add a CommandBinding to the element that will 
execute the command or any parent element (thanks to the bubbling behavior of routed 
commands). All classes deriving from UIElement (and ContentElement) contain a 
CommandBindings collection that can hold one or more CommandBinding objects. Therefore, 
you can add a CommandBinding for Help to the About dialog’s root Window as follows in its 
code-behind file:

this.CommandBindings.Add(new CommandBinding(ApplicationCommands.Help, 

HelpExecuted, HelpCanExecute));

This assumes that methods called HelpExecuted and HelpCanExecute have been defined. 
These methods will be called back at appropriate times in order to plug in an implemen-
tation for the Help command’s CanExecute and Execute methods.

Listings 6.10 and 6.11 change the About dialog again, binding the Help Button to the 
Help command entirely in XAML (although the two handlers must be defined in the 
code-behind file).

LISTING 6.10 The About Dialog Supporting the Help Command

<Window xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation” 

xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml” 

x:Class=”AboutDialog” 

Title=”About WPF Unleashed” SizeToContent=”WidthAndHeight” 

Background=”OrangeRed”>

<Window.CommandBindings> 

<CommandBinding Command=”Help”

CanExecute=”HelpCanExecute” Executed=”HelpExecuted”/> 

</Window.CommandBindings>

<StackPanel> 

<Label FontWeight=”Bold” FontSize=”20” Foreground=”White”>

WPF 4 Unleashed 

</Label> 

<Label>© 2010 SAMS Publishing</Label> 

<Label>Installed Chapters:</Label> 

<ListBox>

<ListBoxItem>Chapter 1</ListBoxItem> 

<ListBoxItem>Chapter 2</ListBoxItem>

</ListBox> 

<StackPanel Orientation=”Horizontal” HorizontalAlignment=”Center”>

<Button MinWidth=”75” Margin=”10” Command=”Help” Content= 

“{Binding RelativeSource={RelativeSource Self}, Path=Command.Text}”/>

<Button MinWidth=”75” Margin=”10”>OK</Button>

Commands 191
6

  From the Library of Wow! eBook



ptg

</StackPanel> 

<StatusBar>You have successfully registered this product.</StatusBar>

</StackPanel> 

</Window>

LISTING 6.11 The Code-Behind File for Listing 6.10

using System.Windows; 

using System.Windows.Input;

public partial class AboutDialog : Window 

{

public AboutDialog() 

{

InitializeComponent(); 

}

void HelpCanExecute(object sender, CanExecuteRoutedEventArgs e) 

{

e.CanExecute = true; 

}

void HelpExecuted(object sender, ExecutedRoutedEventArgs e) 

{

System.Diagnostics.Process.Start(“http://www.adamnathan.net/wpf”); 

}

}

The Window’s CommandBinding can be set in XAML because it defines a default constructor 
and enables its data to be set with properties. The Button’s Content can even be set to the 
chosen command’s Text property in XAML, thanks to a popular data binding technique 
discussed in Chapter 13, “Data Binding.” In addition, notice that a type converter simpli-
fies specifying the Help command in XAML. A CommandConverter class knows about all 
the built-in commands, so the Command property can be set to Help in both places rather 
than using the more verbose {x:Static ApplicationCommands.Help}. (Custom 
commands don’t get the same special treatment.) In the code-behind file, HelpCanExecute 
keeps the command enabled at all times, and HelpExecuted launches a web browser with 
an appropriate help URL.

Executing Commands with Input Gestures
Using the Help command in a simple About dialog might seem like overkill when a 
simple event handler for Click would do, but the command has provided an extra benefit 
besides localized text: automatic binding to a keyboard shortcut.

CHAPTER 6 Input Events: Keyboard, Mouse, Stylus, and Multi-Touch192

LISTING 6.10 Continued

  From the Library of Wow! eBook



ptg

Applications typically invoke their version of help when the user presses the F1 key. Sure 
enough, if you press F1 while displaying the dialog defined in Listing 6.10, the Help 
command is automatically launched, as if you clicked the Help Button! That’s because 
commands such as Help define a default input gesture that executes the command. You 
can bind your own input gestures to a command by adding KeyBinding and/or 
MouseBinding objects to the relevant element’s InputBindings collection. (There’s no 
support for stylus or touch bindings.) For example, to assign F2 as a keyboard shortcut 
that executes Help, you could add the following statement to AboutDialog’s constructor:

this.InputBindings.Add( 

new KeyBinding(ApplicationCommands.Help, new KeyGesture(Key.F2)));

This would make both F1 and F2 execute Help, however. You could additionally suppress 
the default F1 behavior by binding F1 to a special NotACommand command as follows:

this.InputBindings.Add( 

new KeyBinding(ApplicationCommands.NotACommand, new KeyGesture(Key.F1)));

Both of these statements could alternatively be represented in XAML as follows:

<Window.InputBindings> 

<KeyBinding Command=”Help” Key=”F2”/> 

<KeyBinding Command=”NotACommand” Key=”F1”/>

</Window.InputBindings>

Controls with Built-In Command Bindings
It can seem almost magical when you encounter it, but some controls in WPF contain 
their own command bindings. The simplest example of this is the TextBox control, which 
has its own built-in bindings for the Cut, Copy, and Paste commands that interact with 
the clipboard, as well as Undo and Redo commands. This not only means that TextBox 
responds to the standard Ctrl+X, Ctrl+C, Ctrl+V, Ctrl+Z, and Ctrl+Y keyboard shortcuts 
but that it’s easy for additional elements to participate in these actions.

The following standalone XAML demonstrates the power of these built-in command 
bindings:

<StackPanel xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation” 

xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml” 

Orientation=”Horizontal” Height=”25”> 

<Button Command=”Cut” CommandTarget=”{Binding ElementName=textBox}”

Content=”{Binding RelativeSource={RelativeSource Self}, Path=Command.Text}”/> 

<Button Command=”Copy” CommandTarget=”{Binding ElementName=textBox}”

Content=”{Binding RelativeSource={RelativeSource Self}, Path=Command.Text}”/> 

<Button Command=”Paste” CommandTarget=”{Binding ElementName=textBox}”

Content=”{Binding RelativeSource={RelativeSource Self}, Path=Command.Text}”/> 

<Button Command=”Undo” CommandTarget=”{Binding ElementName=textBox}”

Content=”{Binding RelativeSource={RelativeSource Self}, Path=Command.Text}”/>

Commands 193
6

  From the Library of Wow! eBook



ptg

<Button Command=”Redo” CommandTarget=”{Binding ElementName=textBox}”

Content=”{Binding RelativeSource={RelativeSource Self}, Path=Command.Text}”/> 

<TextBox x:Name=”textBox” Width=”200”/>

</StackPanel>

You can paste this content into a XAML viewer or save it as a .xaml file to view in 
Internet Explorer, because no procedural code is necessary. Each of the five Buttons is 
associated with one of the commands and sets its Content to the string returned by each 
command’s Text property. The only new thing here is the setting of each Button’s 
CommandTarget property to the instance of the TextBox (using data binding rather than 
x:Reference to make this work with all versions of WPF). This causes the command to be 
executed from the TextBox rather than the Button, which is necessary in order for it to 
react to the commands.

This XAML produces the result in Figure 6.5. The first two Buttons are automatically 
disabled when no text in the TextBox is selected, and they are automatically enabled 
when there is a selection. Similarly, the Paste Button is automatically enabled whenever 
there is text content on the clipboard, and it is disabled otherwise.

FIGURE 6.5 The five Buttons work as expected without any procedural code, thanks to 
TextBox’s built-in bindings.

Button and TextBox have no direct knowledge of each other, but through commands they 
can achieve rich interaction. This is why WPF’s long list of built-in commands is so 
important. The more that third-party controls standardize on WPF’s built-in commands, 
the more seamless (and declarative) interaction can be achieved among controls that have 
no direct knowledge of each other.

Summary
WPF’s input events make it possible to create interactive content that leverages the full 
richness of any input device. Although routed events and commands are more complex 
than simple .NET events, they provide a great deal of functionality and make otherwise-
difficult tasks much easier.

This chapter focuses on UIElement, but the same input events can also be used with 
ContentElement, described in Chapter 11, and UIElement3D, discussed in Chapter 16, “3D 
Graphics.”

CHAPTER 6 Input Events: Keyboard, Mouse, Stylus, and Multi-Touch194

  From the Library of Wow! eBook



ptg

CHAPTER 7

Structuring and 
Deploying an

Application

We’ve covered all the basics of arranging a WPF-based 
user interface and hooking it up to logic. Now it’s time to 
see how to package it up as an application. There’s no 
single canonical way to structure a WPF application. WPF 
supports standard Windows applications that take full 
advantage of the local computer, web-based applications 
that can still provide a compelling experience despite being 
restricted by Internet zone security, and a lot of other varia-
tions on these themes.

To help you explore the differences between each type of 
application (rather than just read about them), this book’s 
source code contains a collection of sample “Photo 
Gallery” applications that are inspired by the Windows 
Live Photo Gallery. Each variation of the Photo Gallery 
corresponds to each application type covered here.

Standard Windows Applications
A standard Windows application runs locally on your 
computer and displays its user interface in one or more 
windows. Figure 7.1 shows the “standard” version of the 
Photo Gallery application.

When you create a new WPF Application project in Visual 
Studio, several files are generated for you. Most of them are 
familiar to .NET developers, such as AssemblyInfo.*, 
Resources.*, and Settings.*. But the WPF-specific meat of 
the project can be found in App.xaml and MainWindow.xaml 
(along with their corresponding code-behind files). These

IN THIS CHAPTER

. Standard Windows 
Applications

. Navigation-Based Windows 
Applications

. Gadget-Style Applications

. XAML Browser Applications

. Loose XAML Pages

  From the Library of Wow! eBook



ptg

contain the Application and Window objects that are central to this type of application. 
(In older versions of Visual Studio, the MainWindow.xaml file is called Window1.xaml 
instead.)

CHAPTER 7 Structuring and Deploying an Application196

FIGURE 7.1 Using the Photo Gallery application to browse local photos.

The Window Class
Window is the main element that traditional applications use to contain their content. A 
WPF Window is really just a Win32 window under the covers. The operating system 
doesn’t distinguish between windows with WPF content and windows with Win32 
content; it renders the chrome the same way for both, both appear in the Windows 
taskbar in the same manner, and so on. (Chrome is another name for the nonclient area, 
which contains the Minimize, Maximize, and Close buttons, among other things.)

Therefore, Window provides a straightforward abstraction for a Win32 window (like the 
Form class in Windows Forms), with a handful of simple methods and properties. After 
instantiating a Window, you can call Show to make it appear, Hide to make it disappear 
(which is the same as setting Visibility to Hidden or Collapsed), and Close to make it 
disappear for good. Despite being a Control, Window’s Win32 dependency means that you 
cannot do certain advanced things like apply a transform to it.

Window’s appearance can be controlled with properties such as Icon, Title (which is used 
as its caption), and WindowStyle. Its position can be controlled via the Left and Top prop-
erties, or you can set WindowStartupLocation to CenterScreen or CenterOwner to get 
more sophisticated behavior. In short, you can do just about everything you’d expect 
with Window by setting properties: Set Topmost to true to give it “always on top” behavior, 
set ShowInTaskbar to false if you don’t want the typical item to appear in the taskbar, 
and so on.

A Window can spawn any number of additional Windows by instantiating a Window-derived 
class and calling Show. But it can also designate any of these additional Windows as child 
Windows. A child Window is just like any other top-level Window, but it automatically gets 
closed when the parent is closed and minimized when the parent is minimized. Such a 
Window is sometimes called a modeless dialog.

  From the Library of Wow! eBook



ptg

For a Window to make another Window its child, it must set the child Window’s Owner prop-
erty (of type Window) to a reference to itself, but only after the parent has been shown. It 
can enumerate its children via a read-only OwnedWindows property.

Every time a Window becomes active or inactive (for example, from the user flipping 
between windows), a corresponding Activated and Deactivated event is raised. You can 
also attempt to force a Window to become active by calling Window’s Activate method 
(which behaves like the Win32 SetForegroundWindow API). You can prevent a Window from 
automatically being activated when it is first shown by setting its ShowActivated property 
to false.

Listing 7.1 contains portions of the MainWindow class defined by the Photo Gallery appli-
cation.

LISTING 7.1 Portions of MainWindow.xaml.cs Related to Window Management

public partial class MainWindow : Window 

{

public MainWindow() 

{

InitializeComponent(); 

}

protected override void OnClosing(CancelEventArgs e) 

{

base.OnClosing(e);

if (MessageBox.Show(“Are you sure you want to close Photo Gallery?”, 

“Annoying Prompt”, MessageBoxButton.YesNo, MessageBoxImage.Question) 

== MessageBoxResult.No)

e.Cancel = true; 

}

protected override void OnClosed(EventArgs e) 

{

base.OnClosed(e);

// Persist the list of favorites 

…

}

protected override void OnInitialized(EventArgs e) 

{

base.OnInitialized(e);

// Retrieve the persisted list of favorites 

…

Standard Windows Applications 197
7

  From the Library of Wow! eBook



ptg

} 

…

void exitMenu_Click(object sender, RoutedEventArgs e) 

{

this.Close(); 

}

… 

}

MainWindow calls InitializeComponent 
in its constructor to initialize the part of 
the Window defined in XAML. It then 
takes action on the Closing, Closed, and 
Initialized events. But it does this by 
overriding Window’s OnEventName 
methods rather than attaching event 
handlers to each event. It’s conventional 
for managed classes to expose protected 
OnEventName methods corresponding to 
each event, and WPF classes follow this 
convention. The end result is the same 
whether you override the method or 
attach an event handler, but the overrid-
ing mechanism tends to be a bit faster.
The .NET Framework designers also felt 
that the override approach is a more 
natural way for a subclass to handle base class events.

The Closing event is raised when someone attempts to close the Window, whether it’s 
done programmatically or via the user clicking the Close button, pressing Alt+F4, and so 
on. Any event handler can veto the closure, however, if it sets the Cancel property in the 
passed-in CancelEventArgs object (the same one used by Windows Forms for the same 
purpose) to true. Inside this listing’s OnClosing method, the user is presented with a 
confirmation dialog, and the closing is canceled if the user clicks the No button. In this 
example, the dialog is just an annoyance because there’s no data for the user to poten-
tially save. But a typical usage of this event is to prompt the user to save some data that 
he or she hasn’t already saved. If the closing process is not vetoed, the Window is closed, 
and the Closed event (which can’t be canceled) gets raised.

In Listing 7.1, MainWindow handles Closed to persist the list of favorite folders that the 
user might have designated while running the application. It also handles the 
Initialized event to retrieve that persisted list and update the user interface appropri-
ately. (The upcoming “Persisting and Restoring Application State” section shows the code 
that does this.) The listing ends with an event handler for the File, Exit menu, which 
closes the Window when selected.

CHAPTER 7 Structuring and Deploying an Application198

LISTING 7.1 Continued

Don’t forget to call
InitializeComponent!

This was mentioned in Chapter 2, “XAML 
Demystified,” but it’s worth repeating: If 
you don’t call InitializeComponent in 
the constructor of any class that has corre-
sponding compiled XAML, the object will 
not get constructed correctly. That’s 
because all the runtime processing of the 
compiled XAML happens inside this 
method. Fortunately, Visual Studio auto-
matically generates calls to 
InitializeComponent, so it should be 
hard to accidentally omit.

WA R N I N G

  From the Library of Wow! eBook



ptg

The Application Class
Now, the application simply needs an entry point to create and show the Window. You 
might expect to write a Main method as follows, given a MainWindow class as defined in 
Listing 7.1:

public static void Main() 

{

MainWindow window = new MainWindow(); 

window.Show();

}

This is incorrect for two reasons. First, the main thread in a WPF application must run in 
a single-threaded apartment (STA). Therefore, Main must be marked with an STAThread 
attribute. More importantly, Show is a nonblocking call; it shows the Window (by calling 
the Win32 ShowWindow API) and then immediately returns. But the call to Show is the last 
line of Main, so the application then exits. The result is MainWindow flashing on the screen 
for a fraction of a second!

Standard Windows Applications 199
7

Please tell me that I did not just read the words single-threaded
apartment! Isn’t that a legacy COM thing?

Yes, apartments are a COM mechanism. And like previous Win32-based user interface 
frameworks (including Windows Forms), WPF requires the main thread to live in a single-
threaded apartment. This is mainly the case to enable seamless interoperability with non-
WPF technologies (the topic of Chapter 19, “Interoperability with Non-WPF Technologies”). 
But even without the interoperability requirement, the STA model—in which developers don’t 
need to worry about correctly handling calls from arbitrary threads—is valuable for making 
programming with WPF easier. When an object is created on an STA thread, it can be called 
only on that same thread.

WPF enforces that many of its APIs (on DispatcherObject-derived classes) are called from 
the correct thread by throwing an exception if the call comes from any other thread. That 
way, there’s no chance of accidentally calling such members from the wrong thread and only 
seeing intermittent failures (which can be incredibly hard to debug). At the same time, WPF 
provides an easy mechanism for multiple threads to communicate with the UI thread, as 
discussed in a later sidebar.

If you don’t know anything about COM and don’t want to deal with threading, don’t worry. 
Simply mark your Main method with STAThread and forget about these rules!

?
FA Q

To prevent Main from instantly exiting after showing MainWindow, you need to tell the 
application to dispatch messages from the operating system to MainWindow indefinitely 
until it has been closed. These messages are the same Windows messages that Win32

  From the Library of Wow! eBook



ptg

applications are built on: WM_PAINT, WM_MOUSEMOVE, and so on. Internally, WPF must 
handle these messages to run on Windows. In Win32, you would write a loop (called a 
message loop or message pump) that processes incoming messages and sends them to the 
appropriate window procedure. In WPF, the easiest way to accomplish the same task is by 
using the System.Windows.Application class.

Using Application.Run
Application defines a Run method that keeps the application alive and dispatches 
messages appropriately. So the previous Main implementation can be corrected as follows:

[STAThread]

public static void Main() 

{

Application app = new Application();

MainWindow window = new MainWindow(); 

window.Show(); 

app.Run(window);

}

Application also defines a StartupUri property that provides an alternative means of 
showing the application’s first Window. It can be used as follows:

[STAThread] 

public static void Main() 

{

Application app = new Application(); 

app.StartupUri = new Uri(“MainWindow.xaml”, UriKind.Relative); 

app.Run();

}

This implementation of Main is equivalent to the previous one because the instantiation 
of MainWindow and the call to Show is done implicitly by Application. Notice that 
MainWindow is identified only by the name of the XAML source file as a uniform resource 
identifier (URI) and that an overload of Run is called that doesn’t need an instance of 
Window. WPF’s use of URIs is explained in Chapter 12, “Resources.”

The reason for having the StartupUri property is to enable this common initialization to 
be done in XAML instead. Indeed, the Visual Studio template for WPF Application 
projects defines an Application-derived class called App in XAML and sets the StartupUri 
property to the project’s main Window. For the Photo Gallery application, the content of 
App.xaml is as follows:

<Application x:Class=”PhotoGallery.App” 

xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation” 

xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml” 

StartupUri=”MainWindow.xaml”/>

CHAPTER 7 Structuring and Deploying an Application200

  From the Library of Wow! eBook



ptg

StartupUri can be set with a simple string, thanks to a type converter for Uri.

The corresponding code-behind file—App.xaml.cs—simply has the InitializeComponent 
call:

using System.Windows;

namespace PhotoGallery 

{

public partial class App : Application 

{

public App() 

{

InitializeComponent(); 

}

} 

}

This is the most common approach for structuring a standard WPF application and 
showing its main Window. Note, however, that if you have nothing custom to add to the 
Application code-behind file, you can omit it altogether.

Standard Windows Applications 201
7

Where’s the Main method in my WPF application?

When you create a WPF Application project in Visual Studio, the generated project has 
no Main method, yet it still runs as expected! In fact, if you attempt to add a Main method, 
you get a compilation error telling you that it is already defined.

Application is special-cased when it is compiled from XAML, because Visual Studio 
assigns the XAML file the build action ApplicationDefinition. This causes a Main method 
to be autogenerated. For the Photo Gallery application, this entry point can be found inside 
App.g.cs:

[System.STAThreadAttribute()] 

public static void Main() {

PhotoGallery.App app = new PhotoGallery.App(); 

app.InitializeComponent(); 

app.Run();

}

The App.g.cs file is hidden by Visual Studio unless you select Show All Files in the Solution 
Explorer.

?
FA Q

  From the Library of Wow! eBook



ptg

Other Uses for Application
The Application class is more than a simple entry point and message dispatcher. It 
contains a handful of events, properties, and methods for managing common applica-
tion-level tasks. The events, which are typically handled by overriding the OnEventName 
methods in an Application-derived class (such as the Visual Studio–generated App class), 
include Startup and Exit, Activated and Deactivated (which behave like Window’s events 
of the same names but apply to any of Application’s Windows), and even SessionEnding, 
a cancellable event that occurs when the 
user logs off or shuts down the 
computer. The data passed with this 
event tells you whether it was raised due 
to logging off or shutting down, via a 
ReasonSessionEnding enumeration.

Because applications often have multiple 
windows, Application defines a read-
only Windows collection to give you 
access to all open Windows. The initial 
Window is given a special designation and 
can be accessed via the MainWindow prop-
erty. This property is read/write, 
however, so you can give any window 
the special designation at any time.

By default, Application exits (that is, the Run method finally returns) when all Windows 
have been closed. But this behavior can be modified by setting the ShutdownMode property 
to various values of the ShutdownMode enumeration. For example, you can make 
Application exit when the main Window (designated by the MainWindow property) exits, 
regardless of the state of other Windows. Or, you could make Application continue to run

CHAPTER 7 Structuring and Deploying an Application202

How do I retrieve command-line arguments in my WPF application?

Command-line arguments are typically retrieved via a string array parameter passed to 
Main, but the common way to define WPF applications doesn’t allow you to implement the 
Main method. You can get around this in two different ways. One way is to forgo defining an 
Application-derived class in XAML, so you can manually define the Main method with a 
string array parameter. The easier way, however, is to simply call 
System.Environment.GetCommandLineArgs at any point in your application, which returns 
the same string array you’d get inside Main.

Another option for doing custom startup logic (whether command-line processing, custom 
splash screen behavior, and so on) is to change the build action of your Application-
derived class from ApplicationDefinition to Page. This enables you to provide your own 
Main method. After you perform your custom logic inside Main, you can create and run the 
Application instance with the same three lines of code that would have been generated 
inside App.g.cs.

?
FA Q

Don’t rely on a fixed index in the
Windows collection!

Windows are added to Application. 
Windows in the order in which they are 
initially shown, and they are removed from 
the collection when they are closed. 
Therefore, the index of a given Window 
inside the collection can change over the 
lifetime of an application. You should not 
assume that Windows[2], for example, is 
always going to reference the same 
Window!

WA R N I N G

  From the Library of Wow! eBook



ptg

until its Shutdown method is explicitly called, even if all Windows have been closed. This 
behavior is handy for applications that want to “minimize” to the Windows notification 
area (a practice that has thankfully fallen out of favor due to enhancements to the 
Windows taskbar).

One very handy property on the Application class is the Properties collection. 
Properties, much like application state or session state in ASP.NET, is a dictionary for 
conveniently storing data (as key/value pairs) that can easily be shared among Windows or 
other objects. Rather than define public fields or properties on your Application-derived 
class, you might want to simply store such data in the Properties collection. For 
example, Photo Gallery stores the filename of the currently selected photo in Properties 
as follows:

myApplication.Properties[“CurrentPhotoFilename”] = filename;

and it retrieves the filename as follows:

string filename = myApplication.Properties[“CurrentPhotoFilename”] as string;

Note that both the key and value are of type Object, so they are not constrained to be 
strings.

Standard Windows Applications 203
7

Application-level tasks are usually performed from code within Windows, requiring various 
Windows in an application to obtain a reference to the current Application instance. 
Fortunately, you can easily get access to this instance with the static Application.Current 
property. So the myApplication variable in the preceding code snippets can be replaced 
with Application.Current:

Application.Current.Properties[“CurrentPhotoFilename”] = filename;

T I P

How can I create a multiple-document interface (MDI) application using 
WPF?

The WPF classes don’t have built-in support for creating MDI user interfaces, but Windows 
Forms classes do. Therefore, you can use the interoperability techniques discussed in 
Chapter 19 to get MDI in a WPF application. But please don’t! MDI interfaces don’t get to 
take full advantage of multiple monitors or window management features such as Aero Snap 
introduced Windows 7 and Flip 3D introduced in Windows Vista. If you want to avoid multiple 
top-level Windows, you could consider creating a tabbed interface (really just this century’s 
version of MDI), for which WPF has built-in support.

?
FA Q

  From the Library of Wow! eBook



ptg

CHAPTER 7 Structuring and Deploying an Application204

How can I create a single-instance application using WPF?

The classic approach to implementing single-instance behavior still applies to WPF 
applications: Use a named (and, therefore, operating system-wide) mutex. The following code 
shows how you can do this in C#:

bool mutexIsNew; 

using (System.Threading.Mutex m = 

new System.Threading.Mutex(true, uniqueName, out mutexIsNew)) 

{

if (mutexIsNew) 

// This is the first instance. Run the application.

else 

// There is already an instance running. Exit!

}

Just be sure that uniqueName won’t be chosen by other applications! It’s common to gener-
ate a globally unique identifier (GUID) at development time and use that as your identifier. Of 
course, nothing prevents a malicious application from creating a semaphore with the same 
name to prevent such an application from running!

It is often desirable to communicate the command-line arguments to the running instance 
rather than silently exiting the duplicate instance. The only functionality in the .NET 
Framework for this is provided by the 
Microsoft.VisualBasic.ApplicationServices.WindowsFormsApplicationBase class 
which, despite its name, is usable from any .NET language and with WPF. Alternatively, the 
first instance could open an RPC channel and then any new instances can try to connect to 
it in order to communicate this information.

?
FA Q

Creating an Application Without Application

Although using an Application object is the recommended way to structure a WPF applica-
tion, it’s not an absolute requirement. Showing Windows without Application is easy, but 
you need to at least handle message dispatching to avoid the “instant exit” problem 
described at the beginning of this section.

This can be done using Win32 techniques, but WPF also defines a low-level Dispatcher 
class in the System.Windows.Threading namespace that enables you to perform dispatch-
ing without resorting to calling Win32 APIs.

For example, your Main method could call Dispatcher.Run rather than Application.Run 
after showing your main Window. (In fact, Application.Run internally calls Dispatcher.Run 
to get the message dispatching functionality!) But such an application still lacks other impor-
tant application-management functionality. For example, Dispatcher.Run never returns 
unless you explicitly call Dispatcher.ExitAllFrames somewhere (such as in a handler for 
the main Window’s Closed event).

D I G G I N G  D E E P E R

  From the Library of Wow! eBook



ptg

Showing a Splash Screen
Ideally there would be no need for a splash screen, but sometimes an application takes a 
bit of time to show its main window after being launched—especially the first time it is 
launched in a user’s session (called cold start time). WPF includes special functionality for 
adding a splash screen to an application.

The splash screen that is enabled by this support is an image that appears instantly when 
the application is launched and fades out when the main window appears. Although you 
are able to use a PNG file with transparency to achieve non-rectangular shapes or effects 
such as shadows, you can’t use animated content (such as an animated GIF). You can’t 
use any kind of dynamic content or WPF elements, as the splash screen is shown before 
WPF has even finished loading. (Otherwise, it could take as long to display the splash 
screen as it would have taken to display the main window!) Therefore, you can’t produce 
fancy Office 2010–style splash screens with animations and updating status text with this 
support. However, you can produce a nice experience with almost no effort.

To take advantage of this support in Visual Studio 2010, simply select Splash Screen (WPF) 
in your WPF project’s Add New Item dialog. (You can download the same item template 
for Visual Studio 2008 SP1 from http://codeplex.com.) This adds an image to your project

Standard Windows Applications 205
7

Multithreaded Applications

A typical WPF application has a single UI thread and a render thread. (The render thread is 
an implementation detail that is never directly exposed to developers. It runs in the back-
ground and handles low-level tasks such as composition.) You can spawn additional threads 
to perform background work, but you must not directly communicate from such threads with 
any DispatcherObject-derived objects created on the UI thread. (There are some excep-
tions to this, such as a Freezable object that has been frozen.)

Fortunately, WPF makes it easy for an arbitrary thread to schedule code to be run on the UI 
thread. DispatcherObject defines a Dispatcher property (of type Dispatcher) that 
contains several overloads of Invoke (a synchronous call) and BeginInvoke (an asynchro-
nous call). These methods enable you to pass a delegate to be invoked on the dispatcher’s 
corresponding UI thread. All overloads of Invoke and BeginInvoke require a 
DispatcherPriority enumeration value. DispatcherPriority defines 10 active priorities, 
ranging from the highest-priority Send (meaning execute immediately) to the lowest-priority 
SystemIdle (meaning execute only when the dispatcher’s queue is otherwise empty).

You can even give an application multiple UI threads by calling Dispatcher.Run in any new 
thread that you spawn. Therefore, you can make each Window run on a separate thread if 
your application has more than one top-level Window. Doing this is certainly not necessary 
for most applications, but such a scheme could improve your application’s responsiveness if 
it’s likely that one Window could start activities that would dominate the thread. The 
Application abstraction starts to break down in this case, however, because it is tied to a 
single Dispatcher. For example, the Application.Windows collection contains only Window 
instances created on the same thread as the Application.

D I G G I N G  D E E P E R

  From the Library of Wow! eBook

http://codeplex.com


ptg

with the build action SplashScreen that you can customize as desired. That’s all there is 
to it! Figure 7.2 shows the splash screen for the Photo Gallery example application.

CHAPTER 7 Structuring and Deploying an Application206

FIGURE 7.2 The splash screen for Photo Gallery takes advantage of transparency in the 
PNG image.

Another way to accomplish this is to simply add the desired image to your project and 
then set its build action to SplashScreen. This is the easiest approach in Visual Studio 
2008 SP1, as it doesn’t require any additional download. Or, to have a little more control 
over the splash screen, such as dynamically selecting the image or setting a maximum 
amount of time for the splash screen to show, you could use the 
System.Windows.SplashScreen class. This class contains a few simple APIs for creating, 
showing, and hiding the splash screen.

Creating and Showing Dialogs
Windows provides a set of common dialogs (modal subwindows) that you can leverage to 
handle common tasks such as opening/saving files, browsing folders, choosing fonts or 
colors, and printing. You can also create your own custom dialogs with the same modal 
behavior. (In other words, the dialog doesn’t let you return to the current Window until 
you’ve dismissed it.)

Common Dialogs
WPF provides built-in exposure to a few of the common dialogs with classes that expose 
their functionality in a handful of straightforward methods and properties. Note that

  From the Library of Wow! eBook



ptg

WPF does not natively render these 
dialogs; it internally calls Win32 APIs to 
show them and communicate with 
them. This is good, however, because it 
means that the dialogs remain consis-
tent with the version of the operating 
system on which your application is 
running.

Using a built-in common dialog is often 
just a matter of instantiating it, calling 
its ShowDialog method, and then 
processing the result. For example, 
Photo Gallery uses PrintDialog to print 
photos as follows:

void printMenu_Click(object sender, RoutedEventArgs e) 

{

string filename = (pictureBox.SelectedItem as ListBoxItem).Tag as string; 

Image image = new Image(); 

image.Source = new BitmapImage(new Uri(filename, UriKind.RelativeOrAbsolute));

PrintDialog pd = new PrintDialog(); 

if (pd.ShowDialog() == true) // Result could be true, false, or null

pd.PrintVisual(image, Path.GetFileName(filename) + “ from Photo Gallery”);

}

If you ever find yourself considering writing your own custom dialog for which a 
common dialog is already provided by Windows, please abandon those thoughts immedi-
ately. Besides being inconsistent with most Windows applications, your dialog would 
undoubtedly lack features that certain users expect and would fall further behind with 
each new version of Windows. Just look at all the features that the built-in File Open 
dialog has in Windows 7: searching; special support for things like favorite places, 
libraries, and HomeGroup; multiple views with a rich set of columns to display/sort/filter; 
a preview pane; and much more. It also has features that are not directly visible, such as 
tracking what file(s) it opens to help populate recent and frequent file lists used in places 
such as Windows 7 Jump Lists.

Custom Dialogs
Although writing your own common dialog is a bad idea, 
applications often have good reasons to show their own 
custom dialogs, such as the simple Rename Photo dialog 
used by Photo Gallery, pictured in Figure 7.3.

Standard Windows Applications 207
7

Both Windows Forms and WPF define 
managed classes that wrap Windows 
common dialogs. But in the current version 
of WPF, not all the dialogs have correspond-
ing classes in the WPF assemblies. 
(Windows Forms has ColorDialog, 
FontDialog, and FolderBrowser, whereas 
WPF still does not.) Therefore, the easiest 
way to use these omitted dialogs is to refer-
ence System.Windows.Forms.dll and use 
the managed classes defined by Windows 
Forms.

T I P

FIGURE 7.3 A custom 
dialog enables the user to 
rename a photo.

  From the Library of Wow! eBook



ptg

In WPF, creating and using such a dialog is almost the same as creating and using a 
Window. In fact, such dialogs are just Windows, typically with a little extra handling for 
returning what’s known as a dialog result.

To show a Window as a modal dialog rather than a modeless window, simply call its 
ShowDialog <$IShowDialog method>method instead of Show. Unlike Show, ShowDialog is a 
blocking call (so it doesn’t exit until the Window is closed), and it returns a nullable 
Boolean (bool? in C#). Here is how Photo Gallery consumes its custom RenameDialog:

void renameMenu_Click(object sender, RoutedEventArgs e) 

{

string filename = (pictureBox.SelectedItem as ListBoxItem).Tag as string; 

RenameDialog dialog = new RenameDialog(

Path.GetFileNameWithoutExtension(filename)); 

if (dialog.ShowDialog() == true) // Result could be true, false, or null 

{

// Attempt to rename the file 

try 

{

File.Move(filename, Path.Combine(Path.GetDirectoryName(filename), 

dialog.NewFilename) + Path.GetExtension(filename));

} 

catch (Exception ex) 

{

MessageBox.Show(ex.Message, “Cannot Rename File”, MessageBoxButton.OK, 

MessageBoxImage.Error); 

}

} 

}

When you develop a Window that you know will be used as a dialog (such as 
RenameDialog), you typically want the ShowDialog method to return true if the action 
enabled by a dialog is successful and false if it is unsuccessful or canceled. To control 
what gets returned by this method, simply set Window’s DialogResult property (of type 
bool?) to the desired value. Setting DialogResult implicitly closes the Window. Therefore, 
RenameDialog’s OK button could have an event handler like the following:

void okButton_Click(object sender, RoutedEventArgs e) 

{

this.DialogResult = true; 

}

Or it could simply have its IsDefault property set to true, which accomplishes the same 
behavior without any procedural code.

CHAPTER 7 Structuring and Deploying an Application208

  From the Library of Wow! eBook



ptg

Persisting and Restoring Application State
A standard Windows application can have full access to the computer (depending on user 
security settings), so there are many options for storing data, such as using the Windows 
Registry or the local file system. But an attractive alternative to these classic approaches is 
to use the .NET Framework’s isolated storage technology. Besides being easy to use, the 
same techniques work in all environments in which managed code can run, such as in a 
Silverlight application or a XAML Browser Application (covered later in this chapter).

Photo Gallery uses the code in Listing 7.2 to persist and retrieve the user’s favorites data 
to and from isolated storage.

LISTING 7.2 Portions of MainWindow.xaml.cs Related to Isolated Storage

protected override void OnClosed(EventArgs e) 

{

base.OnClosed(e);

// Write each favorites item when the application is about to close 

IsolatedStorageFile f = IsolatedStorageFile.GetUserStoreForAssembly(); 

using (IsolatedStorageFileStream stream = 

new IsolatedStorageFileStream(“myFile”, FileMode.Create, f)) 

using (StreamWriter writer = new StreamWriter(stream)) 

{

foreach (TreeViewItem item in favoritesItem.Items) 

writer.WriteLine(item.Tag as string);

} 

}

protected override void OnInitialized(EventArgs e) 

{

base.OnInitialized(e);

Standard Windows Applications 209
7

Another Use for ShowDialog

To get its blocking behavior while still allowing message dispatching, Window’s ShowDialog 
method effectively calls Dispatcher.Run just like Application.Run does. So, the following 
trick could be used to properly launch a WPF Window without using the Application class:

[STAThread] 

public static void Main() 

{

MainWindow window = new MainWindow(); 

window.ShowDialog();

}

D I G G I N G  D E E P E R

  From the Library of Wow! eBook



ptg

// Read each favorites item when the application is initialized 

IsolatedStorageFile f = IsolatedStorageFile.GetUserStoreForAssembly(); 

using (IsolatedStorageFileStream stream = 

new IsolatedStorageFileStream(“myFile”, FileMode.OpenOrCreate, f)) 

using (StreamReader reader = new StreamReader(stream)) 

{

string line = reader.ReadLine(); 

while (line != null) 

{

AddFavorite(line); 

line = reader.ReadLine();

} 

} 

…

}

The IsolatedStorageFile and 
IsolatedStorageFileStream classes are 
in the System.IO.IsolatedStorage 
namespace. All data stored in isolated 
storage is physically located in a hidden 
folder under the current user’s 
Documents folder.

Deployment: ClickOnce Versus 
Windows Installer
When you think of deploying standard Windows applications, you probably think of a 
setup program that places the relevant files in the Program Files directory (or a user-
chosen directory), registers the necessary components, adds itself to the installed 
programs list under Control Panel, and perhaps adds Start menu or desktop shortcuts. You 
can do all these things with a WPF application by using Windows Installer technology. 
Visual Studio contains several “Setup and Deployment” project types for doing just that.

ClickOnce, however, is a more recent and simpler installation technology (introduced 
with the .NET Framework 2.0). It’s an attractive option for installations that don’t need 
the full power of Windows Installer. Visual Studio exposes ClickOnce functionality via a 
wizard accessed from the Build, Publish menu. If you don’t have Visual Studio, you can 
use the Windows SDK, which has two tools for using ClickOnce: the mage.exe command-
line tool and the mageUI.exe graphical tool.

In short, Windows Installer has the following benefits over ClickOnce:

. Supports customized setup user interfaces, such as showing an end user license 
agreement (EULA)

CHAPTER 7 Structuring and Deploying an Application210

LISTING 7.2 Continued

For an even simpler way to persist and 
retrieve application settings, check out the 
Visual Studio–generated Settings class 
(under Properties\Settings.settings). 
This mechanism stores data in an applica-
tion configuration file and provides strongly 
typed access.

T I P

  From the Library of Wow! eBook



ptg

. Can give control over where the files are installed

. Supports arbitrary code at setup time via custom actions

. Supports installing shared assemblies in the Global Assembly Cache

. Supports registration of COM components and file associations

. Supports machine-wide installation (that is, the program is available for all users)

. Supports offline installation from a CD/DVD

ClickOnce has the following benefits over Windows Installer:

. Contains built-in support for automatic updates and rolling back to previous 
versions.

. Provides two installation models: a web-like experience where the application is 
addressed via a URL in a web browser and appears to “go away” when it is closed 
(although it is still cached for future use) and a more traditional experience where 
the application can have a Start menu shortcut and show up in Control Panel’s list 
of installed programs.

. Guarantees that installation doesn’t affect other applications because all files are 
placed in an isolated area, and no custom registration can be done.

. Practically guarantees a clean unin-
stallation because no custom code 
could be run during installation. 
(Full-trust applications still have 
the power to leave artifacts on the 
computer while they run.)

. Integrates with .NET code access 
security, enabling users to run 
applications without having to 
trust them completely.

Navigation-Based Windows Applications
Although the concept of navigation is usually associated with web browsers, many 
Windows applications implement some sort of navigation scheme: Windows Explorer, 
Windows Media Player, and, of course, the Windows Live Photo Gallery application that 
this chapter’s Photo Gallery application is based on.

The first version of Photo Gallery, represented in Figure 7.1, has hand-crafted and primi-
tive navigation functionality for traversing photos and returning to the main gallery 
screen. It turns out, however, that WPF has a lot of built-in infrastructure for adding rich 
navigation to an application with minimal effort. With these features, it becomes trivial 
to implement an application that can browse and navigate content like a web browser.

Navigation-Based Windows Applications 211
7

Many people don’t realize that ClickOnce 
can still be used even if an application 
contains unmanaged code, as long as the 
main executable isn’t entirely unmanaged. 
You might need to alter some aspects of the 
unmanaged code, however, for this to work. 
For example, if COM objects are registered, 
you would need to set up registration-free 
COM instead.

T I P

  From the Library of Wow! eBook



ptg

Although the title of this section makes it sound like the choice of using navigation 
impacts the design of your entire application, the truth is that navigation support can be 
integrated into an otherwise-traditional application as little or as much as you want. And 
even if you don’t want to expose a browser-style user interface, you can still use the navi-
gation support to structure your application more like you would structure a website. For 
example, you can organize various pieces of user interface in separate pages identifiable 
via URIs and use hyperlinks to navigate from one to another. Or you can just use naviga-
tion simply for a small chunk of an application or component, such as a wizard.

This section examines these features and highlights some of the changes made to the 
“standard” version of Photo Gallery to leverage them. Adding navigation to a WPF appli-
cation doesn’t change the discussions in the previous section about deployment, persist-
ing data, and so on. Instead, it involves becoming familiar with a few additional 
elements, such as NavigationWindow and Page.

Pages and Their Navigation Containers
Whenusing navigation in WPF, content is typically organized in Page elements. (Page is 
basically a simpler version of the Window class.) Page elements can then be hosted in one 
of two built-in navigation containers: NavigationWindow or Frame. These containers 
provide a way to navigate from one page to another, a “journal” that keeps track of navi-
gation history, and a series of navigation-related events.

CHAPTER 7 Structuring and Deploying an Application212

What’s the difference between NavigationWindow and Frame?

They have almost identical functionality, except that NavigationWindow functions 
more like a top-level browser, whereas Frame functions more like an HTML FRAME or IFRAME. 
Whereas NavigationWindow is a top-level window, Frame can fill an arbitrary (but rectangu-
lar) region of its parent element. A Frame can be nested inside a NavigationWindow or 
inside another Frame. By default, NavigationWindow has a bar along the top with 
Back/Forward buttons and Frame does not, but you can add or remove this bar on either 
element by setting the ShowsNavigationUI property on the Page it contains. In addition, 
NavigationWindow has a ShowsNavigationUI property and Frame has a 
NavigationUIVisibility property for enabling or disabling this bar, regardless of Page 
settings.

?
FA Q

The navigation-enabled version of Photo Gallery changes Application’s StartupUri to 
point to the following NavigationWindow:

<NavigationWindow x:Class=”PhotoGallery.Container” 

xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation” 

xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml” 

Title=”Photo Gallery” Source=”MainPage.xaml”>

</NavigationWindow>

  From the Library of Wow! eBook



ptg

The MainPage.xaml referenced by the NavigationWindow has a Page root that contains all 
the content that the original MainWindow.xaml previously had:

<Page x:Class=”PhotoGallery.MainPage” 

xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation” 

xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml” 

Title=”Photo Gallery” Loaded=”Page_Loaded”> 

…Application-specific content…

</Page>

Similarly, the code-behind in MainPage.xaml.cs corresponds to the code-behind that was 
previously in MainWindow.xaml.cs. The main code difference in MainPage.xaml.cs is that 
the OnClosing and OnClosed logic has been moved back to the Window level because Page 
doesn’t have these methods (nor would it be appropriate to invoke them every time the 
Page goes away).

As seen in Figure 7.4, the introduction of NavigationWindow and Page into Photo Gallery 
doesn’t appear to add much—just a new bar at the top of the window with (disabled) 
Back and Forward buttons. But it sets up the application to navigate to other content 
within the same container, which is covered next.

Navigation-Based Windows Applications 213
7

Navigation bar

FIGURE 7.4 When Photo Gallery is hosted in a NavigationWindow, an extra bar appears at 
the top.

Of course, having an extra bar along the 
top of this application looks a bit ridicu-
lous. An application such as Photo 
Gallery would be better served by imple-
menting custom Back and Forward 
buttons that hook into 
NavigationWindow’s built-in navigation 
functionality. For example, the Click 
handler for the Back button could call

WPF’s navigation containers can hold more 
than Pages; they can also hold HTML files 
(from the file system or from the Internet)! 
You can even navigate back and forth 
between WPF content and HTML content, 
using techniques described in the next 
section.

T I P

  From the Library of Wow! eBook



ptg

NavigationWindow.GoBack, and the Click handler for the Forward button could call 
NavigationWindow.GoForward.

A Page can interact with its navigation container by using the NavigationService class, 
which exposes relevant functionality regardless of whether the container is a 
NavigationWindow or a Frame. You can get an instance of NavigationService by calling 
the static NavigationService.GetNavigationService method and passing the instance of 
the Page. But even more easily, you can simply use Page’s NavigationService property. 
For example, you can set a title that is used in the drop-down menu associated with the 
Back and Forward buttons as follows:

this.NavigationService.Title = “Main Photo Gallery Page”;

Or you can refresh the current Page as follows:

this.NavigationService.Refresh();

But Page also contains a few of its own properties that control the behavior of the parent 
container, such as WindowHeight, WindowWidth, and WindowTitle. These are handy because 
you can easily set them within the XAML for the Page.

Navigating from Page to Page
The purpose of using navigation is to progress from one page to another, whether in a 
predetermined linear sequence (as with a simple wizard), a user-driven path through a 
hierarchy (as with most websites), or a dynamically generated path.

You can perform navigation in three main ways:

. Calling the Navigate method

. Using Hyperlinks

. Using the journal

Calling the Navigate Method
Navigation containers support a Navigate method that enables the current page to be 
changed. You can call Navigate with an instance of the target page or a URI that points to 
it:

// Navigate to a page instance

PhotoPage nextPage = new PhotoPage(); 

this.NavigationService.Navigate(nextPage); 

// Or navigate to a page via a URI 

this.NavigationService.Navigate(new Uri(“PhotoPage.xaml”, UriKind.Relative));

The Page specified by a URI could be a loose XAML file or a compiled resource. (Chapter 
12 explains how such URIs work in WPF.) The root element of this XAML file must be a 
Page.

CHAPTER 7 Structuring and Deploying an Application214

  From the Library of Wow! eBook



ptg

If you want to navigate to an HTML page, you must use the overload of Navigate that 
accepts a URI. Here’s an example:

this.NavigationService.Navigate(new Uri(“http://www.adamnathan.net/wpf”));

Navigation-Based Windows Applications 215
7

Navigate Exposed as Two Properties

Navigation containers have two properties that behave identically to these two overloads of 
the Navigate method. You can navigate to a Page instance by setting the Content property:

this.NavigationService.Content = nextPage;

or you can navigate via a URI by setting the Source property:

this.NavigationService.Source = new Uri(“PhotoPage.xaml”, UriKind.Relative);

Other than their ability to be set declaratively, there’s no reason to use these properties 
instead of the Navigate method.

D I G G I N G  D E E P E R

Using Hyperlink
For simple navigation schemes, WPF provides a Hyperlink element that acts much like 
hyperlinks in HTML. You can embed Hyperlinks inside a 
TextBlock element and, as with the HTML AREA (or A) tag, 
the content is automatically rendered as a clickable hyper-
link that navigates the current page to the desired target 
page. This target page is specified via Hyperlink’s 
NavigateUri property (the analog to the href attribute in 
HTML). For example, the following XAML gets rendered as 
shown in Figure 7.5:

<TextBlock>

Click <Hyperlink NavigateUri=”PhotoPage.xaml”>here</Hyperlink> to view the photo. 

</TextBlock>

Hyperlink, therefore, is really just a 
more-wordy version of the HTML A tag. 
Although it can be used programmati-
cally like any other WPF element, its 
purpose is for simple HTML-like links 
where the target page is known in 
advance.

FIGURE 7.5 A
rendered Hyperlink 
element looks like an 
HTML hyperlink.

If you want to combine the flexibility of 
programmatic navigation with the conve-
nience of Hyperlink’s automatic text 
formatting, you can use Hyperlink with a 
dummy NavigateUri value, then handle 
Hyperlink’s Click event and call Navigate 
however you desire inside this handler. 

T I P

  From the Library of Wow! eBook



ptg

Using the Journal
Both navigation containers have a journal that records navigation history, just like a web 
browser. This journal provides the logic behind the Back and Forward buttons shown in 
Figure 7.4. Internally, it maintains two stacks—a back stack and a forward stack—and uses 
them as shown in Table 7.1.

TABLE 7.1 Navigation Effects on the Journal 

Action Result

Back Pushes the current page onto the forward stack, pops a page off the 
back stack, and navigates to it

Forward Pushes the current page onto the back stack, pops a page off the 
forward stack, and navigates to it

Any other navigation Pushes the current page onto the back stack and empties the forward 
stack

The Back and Forward actions can be initiated by the user or invoked programmatically 
by calling the navigation container’s GoBack and GoForward methods (after calling 
CanGoBack or CanGoForward to avoid an exception by trying to pop an empty stack).

NavigationWindow always has a journal, but Frame might not have its own journal, 
depending on the value of its JournalOwnership property. It has the following settings:

CHAPTER 7 Structuring and Deploying an Application216

How can I have a link in an HTML page that navigates to a WPF Page?

Hyperlinks in HTML work automatically, but there’s no way to give an HREF value that 
points to a compiled WPF Page. Instead, you can use a technique similar to the previous tip 
to achieve HTML-to-WPF navigation: Use a sentinel value as the HREF value, listen to the 
Navigating event, and then dynamically change the target by calling Navigate yourself. 
(Navigating and other events are examined in the next section.) Depending on the nature 
of the desired HTML and WPF interaction, you might also want to consider creating a XAML 
Browser Application or a loose XAML page (or think about using Silverlight instead). These 
options are discussed at the end of this chapter.

?
FA Q

Hyperlink supports more complex functionality, similar to HTML hyperlinks. For example, to 
navigate a single Frame in the presence of multiple Frames, set Hyperlink’s TargetName 
property to the name of the desired Frame. To navigate to a section of a Page (like using # 
anchors in HTML), simply append a # and a name to the URI. The name can be the name of 
any element on the target page.

T I P

  From the Library of Wow! eBook



ptg

. OwnsJournal—The Frame has its own journal.

. UsesParentJournal—The history is stored in the parent container’s journal or not at 
all if the parent doesn’t have a journal.

. Automatic—Equivalent to UsesParentJournal if the Frame is hosted in either of the 
two navigation containers (NavigationWindow or Frame), or OwnsJournal otherwise. 
This is the default value.

When Frame gets its own journal, it also gets the built-in navigation buttons. But if you 
don’t want them, you can set NavigationUIVisibility to Hidden.

Navigation-Based Windows Applications 217
7

When navigating to a Page via a URI (whether done by calling the Navigate method or by 
using Hyperlink), a new instance of Page is created, even if you’ve already visited it. 
Therefore, you need to maintain your own state (via static variables or 
Application.Properties, for example) if you want a page to “remember” its data. (When 
calling an overload of Navigate that accepts a Page instance, of course, you’re in control of 
whether a new or old instance is used.)

In the case of journal navigation, however, you can force a Page to reuse the same instance 
by setting its JournalEntry.KeepAlive attached property to true.

T I P

A Page can opt out of the journal by setting its RemoveFromJournal property to true. This 
can be appropriate for pages representing a sequence of steps that shouldn’t be randomly 
visited after the transaction is complete.

T I P

Web browser–like Back and Forward actions are handled by the journal, 
but how do I implement Stop and Refresh?

There’s no built-in user interface for Stop and Refresh buttons, but navigation containers 
have ways to easily accomplish these actions.

To stop a pending navigation at any time, you can call the navigation container’s 
StopLoading method.

To refresh a page, simply call the navigation container’s parameterless Refresh method. 
This acts identically to calling Navigate with the URI or instance for the current page, except 
that the data passed to the Navigating event contains the NavigationMode.Refresh 
value, in case any event handlers want to customize their behavior in this situation.

?
FA Q

  From the Library of Wow! eBook



ptg

Navigation Events
Regardless of whether navigation occurs via Navigate, Hyperlinks, or the journal, it is 
performed asynchronously. A number of events are raised during the navigation process 
that enable you to display a rich user interface or even cancel navigation.

Figures 7.6 and 7.7 show the progression of navigation-related events when the first page 
is loaded and when navigation occurs from one page to another.

CHAPTER 7 Structuring and Deploying an Application218

Using the Journal for Purposes Other Than Navigation

You can add custom entries to the journal that have nothing to do with built-in navigation. For 
example, you could build an application-specific undo/redo scheme on top of the journal and 
get most of the functionality for free.

To do this, call the navigation container’s AddBackEntry method with an instance of a 
CustomContentState object. CustomContentState is an abstract class, so you must create 
a derived class that implements a method called Replay. Replay is called whenever going 
back or forward makes the action the current state. You can optionally override the 
JournalEntryName property to give the entry a label in the drop-down list.

Photo Gallery uses this technique to implement a simple undoable image rotation, as 
follows:

[Serializable] 

class RotateState : CustomContentState 

{

FrameworkElement element; 

double rotation;

public RotateState(FrameworkElement element, double rotation) 

{

this.element = element; 

this.rotation = rotation;

} 

public override string JournalEntryName 

{

get { return “Rotate “ + rotation + “°”; } 

}

public override void Replay(NavigationService navigationService, 

NavigationMode mode)

{

// Rotate the element by the specified amount 

element.LayoutTransform = new RotateTransform(rotation);

} 

}

D I G G I N G  D E E P E R

  From the Library of Wow! eBook



ptg

NavigationProgress is raised periodi-
cally until Navigated is raised. One 
event that isn’t shown is 
NavigationStopped. This event is raised 
instead of LoadCompleted if the naviga-
tion is canceled or if an error occurs.

Navigation-Based Windows Applications 219
7

FIGURE 7.6 Navigation events that 
are raised when the first page is loaded.

Navigation Container

1st Page

Initialized

Navigating

NavigationProgress

Loading

Navigated

LoadCompleted

Initialized

Loaded 
FIGURE 7.7 Navigation events that are raised 
when navigation occurs between two pages.

Navigation Container

1st Page

Navigating

NavigationProgress

Loading

Navigated

LoadCompleted

Unloaded

2nd Page

Initialized

Loaded

A navigation container raises the events 
shown in Figures 7.6 and 7.7 when naviga-
tion occurs within itself (including child 
containers). But Application also defines 
these events, enabling you to handle them 
in one place for all navigation containers 
within the Application.

T I P

Navigation events aren’t raised when navigating from one HTML page to 
another!

The WPF navigation events are raised when navigating from one WPF Page to another, from a 
WPF Page to an HTML page, and from an HTML page to a WPF Page. However, these events 
are not raised when navigating from one HTML page to another HTML page. Such HTML-to-
HTML navigation also doesn’t appear in the journal.

WA R N I N G

Passing Data Between Pages
When an application employs navigation for more than just document browsing, it likely 
needs to pass data from one page to another. HTML-based web applications might encode 
such data as URL parameters or use server-side variables. In WPF, you can use a variety of 
techniques for sending or returning data.

  From the Library of Wow! eBook



ptg

Sending Data to Pages
WPF supports a scheme similar to URL parameters via overloads of the Navigate method 
that accept an extra object parameter. There’s an overload for the version that accepts a 
Page instance and an overload for the version that accepts a Uri. You can pass anything 
you want via this object parameter (a simple data type, an array, a custom data structure, 
and so on), and it is sent to the target page. Here’s an example:

int photoId = 10; 

// Navigate to a page instance 

PhotoPage nextPage = new PhotoPage(); 

this.NavigationService.Navigate(nextPage, photoId); 

// Or navigate to a page via a URI 

this.NavigationService.Navigate(

new Uri(“PhotoPage.xaml”, UriKind.Relative), photoId);

For the target page to receive this data, it must handle the navigation container’s 
LoadCompleted event and check the ExtraData parameter of the event argument:

this.NavigationService.LoadCompleted += new

LoadCompletedEventHandler(container_LoadCompleted); 

… 

void container_LoadCompleted(object sender, NavigationEventArgs e) 

{

if (e.ExtraData != null)

LoadPhoto((int)e.ExtraData); 

}

A simpler scheme of passing data, however, is to use the basic version of Navigate that 
accepts a Page instance and define a constructor on the target page that accepts the 
custom data (using as many parameters as you want). This looks like the following for the 
Photo Gallery example:

int photoId = 10; 

// Navigate to a page instance 

PhotoPage nextPage = new PhotoPage(photoId); 

this.NavigationService.Navigate(nextPage);

For this to work, PhotoPage has a constructor defined as follows:

public PhotoPage(int id) 

{

LoadPhoto(id); 

}

An advantage of this approach is that the parameters can be strongly typed, so PhotoPage 
doesn’t need to check that the passed-in data is non-null or an integer. The type system 
guarantees it!

CHAPTER 7 Structuring and Deploying an Application220

  From the Library of Wow! eBook



ptg

A third approach is to globally share the data in the Application object’s Properties 
collection, discussed earlier in the chapter. Here’s an example:

// Navigate to a page by instance or URI 

Application.Properties[“PhotoId”] = 10; 

this.NavigationService.Navigate(…);

The target page can then check the value from anywhere in code that gets executed after 
Navigate is called:

if (Application.Properties[“PhotoId”] != null) 

LoadPhoto((int)Application.Properties[“PhotoId”]);

This might be the desired approach if you want to share the data between multiple pages 
(rather than explicitly pass it from page to page). However, just like the first scheme, it 
lacks the convenience of type safety.

Returning Data from Pages with PageFunction
Perhaps you want the user to navigate to a page, take some action, and then automati-
cally return to a previous page that can act on the action (and, therefore, must receive 
data from the latter page). A classic example for this is a settings or options page. You 
could simulate this behavior by navigating forward to the old page and passing the data 
using the first two of the three schemes just discussed. This process is illustrated in 
Figure 7.8.

Navigation-Based Windows Applications 221
7

MainPage MainPageSettingsPageNavigate Navigate &
Pass Data

FIGURE 7.8 Simulating the return of data by navigating forward to the page on the back 
stack.

This can be awkward, however. If you’re navigating via URI, you’d need to manually 
reconstruct the state of the new instance of MainPage to match the old instance. 
Furthermore, navigating forward to simulate the action of navigating back causes undesir-
able effects in the journal without manually manipulating it.

Instead, you could share the data globally (via Application.Properties) and have the 
target page call the navigation container’s 
GoBack method to return to the previous 
page. This works but is a bit sloppy because 
of the global (and typeless) sharing of data 
that might be relevant to only two pages 
rather than to the entire application.

Therefore, WPF provides yet another mecha-
nism to “return” data to the previous page in 
a type-safe manner and automatically navi-
gate back to it, as illustrated in Figure 7.9.

FIGURE 7.9 The commonsense naviga-
tion flow can be achieved with 
PageFunction.

MainPage SettingsPage

Return Data

Navigate

  From the Library of Wow! eBook



ptg

This can be accomplished with a funny-named class called PageFunction. A PageFunction 
is really just a Page (because it derives from Page), but it acts like a function because of its 
mechanism for returning data.

Visual Studio has a template for creating a new PageFunction just like it does for Page. 
Here’s what you get when you choose Page Function (WPF) via Visual Studio’s Add New 
Item dialog:

<PageFunction 

xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation” 

xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml” 

xmlns:sys=”clr-namespace:System;assembly=mscorlib” 

x:Class=”MyProject.PageFunction1” 

x:TypeArguments=”sys:String”

Title=”PageFunction1”>

<Grid> 

</Grid>

</PageFunction>

Notice the use of the TypeArguments keyword. PageFunction is actually a generic class (as 
in PageFunction<T>), where the type argument represents the type of the return value. 
For the PageFunction shown, the returned value must be a string. Although the use of 
generics makes defining a PageFunction a little trickier, the benefit is the type safety that 
is lacking from some of the earlier schemes.

Because PageFunction derives from Page, you can navigate to it just as you would with 
any other page:

PageFunction1 nextPage = new PageFunction1<string>(); 

this.NavigationService.Navigate(nextPage);

To receive the return value, the source page must handle PageFunction’s Return event:

nextPage.Return += new ReturnEventHandler<string>(nextPage_Return); 

… 

void nextPage_Return(object sender, ReturnEventArgs<string> e) 

{

string returnValue = e.Result; 

}

Notice that the same generic argument also applies to the ReturnEventHandler and 
ReturnEventArgs types. This enables the event argument’s Result property to be the same 
type as the data returned by the PageFunction (a string in this case).

The PageFunction can return data by wrapping it in the ReturnEventArgs type and 
calling OnReturn, which it inherits from the base PageFunction class:

OnReturn(new ReturnEventArgs<string>(“the data”));

CHAPTER 7 Structuring and Deploying an Application222

  From the Library of Wow! eBook



ptg

Gadget-Style Applications
WPF makes it easier than ever to create nonrectangular top-level windows. With this 
support, you could give an otherwise-standard application custom chrome with a more 
fun shape. Or you could create a smaller gadget-style application that looks like a custom 
object “floating” on the desktop.

To take advantage of this support, just do the following:

1. On the Window, set AllowsTransparency to true. (If you’re doing this programmati-
cally, it must be set before the Window has been shown. Otherwise, you’ll get an 
InvalidOperationException.)

2. Set the Window’s WindowStyle to None, which removes all the chrome. (Any other 
setting combined with AllowsTransparency=”True” results in an 
InvalidOperationException.)

3. Set the Window’s Background to Transparent. This prevents the content from being 
surrounded by an opaque rectangle.

4. Decide how you want the user to move the Window around and call Window’s 
DragMove method at the appropriate place to enable it. Technically, this is not a 
requirement, but an application that can’t be moved is not going to please users.

5. Consider adding a custom Close Button so the user doesn’t have to right-click the 
Windows taskbar in order to close the application. This is especially important if 
you set ShowInTaskbar to false!

Here is a XAML file for such a Window, which contains a translucent red circle and a Close 
Button:

<Window x:Class=”GadgetWindow” 

xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation” 

xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”

Height=”300” Width=”300”

AllowsTransparency=”True” WindowStyle=”None” Background=”Transparent” 

MouseLeftButtonDown=”Window_MouseLeftButtonDown”> 

<Grid>

<Ellipse Fill=”Red” Opacity=”0.5” Margin=”20”> 

<Ellipse.Effect>

<DropShadowEffect/> 

</Ellipse.Effect> 

</Ellipse> 

<Button Margin=”100” Click=”Button_Click”>Close</Button>

</Grid> 

</Window>

Gadget-Style Applications 223
7

  From the Library of Wow! eBook



ptg

DropShadowEffect, covered in Chapter 15, “2D Graphics,” is added to give the circle a bit 
more visual polish. This Window uses the following code-behind file:

using System.Windows; 

using System.Windows.Input;

public partial class GadgetWindow : Window 

{

public GadgetWindow() 

{

InitializeComponent(); 

} 

void Window_MouseLeftButtonDown(object sender, MouseButtonEventArgs e) 

{

this.DragMove(); 

} 

void Button_Click(object sender, RoutedEventArgs e) 

{

this.Close(); 

}

}

To enable the Window to be moved, the handler for MouseLeftButtonDown simply calls 
Window.DragMove. DragMove handles the rest of the logic automatically. Figure 7.10 shows 
this little application in action.

CHAPTER 7 Structuring and Deploying an Application224

FIGURE 7.10 An invisible Window that contains nonrectangular (and half-transparent) 
content.

XAML Browser Applications
WPF supports the creation of applications that run directly in a web browser. They are 
called XAML Browser Applications (XBAPs), but WPF Browser Applications would be a

  From the Library of Wow! eBook



ptg

more appropriate name. XBAPs have 
become less attractive over time as 
Silverlight has gained more of WPF’s 
power, but they still serve a purpose of 
delivering partial-trust WPF content in a 
browser, without any prompts getting in 
the way.

Creating an XBAP isn’t much different 
from creating a standard Windows appli-
cation, as long as you stay within the 
subset of the .NET Framework available 
from partial-trust code. The main differ-
ences are as follows:

. Not all features in WPF or the .NET 
Framework are accessible (by 
default).

. Navigation is integrated into the browser.

. Deployment is handled differently.

This section drills into these three aspects of XAML Browser Applications.

So how do you create a XAML Browser Application? If you have Visual Studio, you simply 
follow these steps:

1. Create a new XAML Browser Application project in Visual Studio. (Visual Studio 
appropriately calls it a WPF Browser Application instead.)

2. Create the user interface inside a Page and add the appropriate code-behind logic.

3. Compile and run the project.

If you don’t have Visual Studio, you can still use MSBuild on project files with the appro-
priate settings, as described in the Digging Deeper sidebar.

XAML Browser Applications 225
7

Do XAML Browser Applications 
work on any operating system or

in any web browser?

No. Unlike Silverlight applications, XBAPs 
require the full .NET Framework (3.0 or 
later) and therefore run only on Windows. 
They are also only supported in Internet 
Explorer (or any program that hosts the 
Microsoft WebBrowser ActiveX control) and 
Firefox (with the .NET Framework 3.5 or 
later). With the .NET Framework 4.0, Firefox 
support requires an add-on to be explicitly 
downloaded and installed. (Version 3.5 
installed the add-on automatically.)

?
FA Q

How XAML Browser Applications Work

There’s nothing XBAP-specific about the source files generated by Visual Studio. The key is in 
a handful of settings in the project file, such as these:

<HostInBrowser>True</HostInBrowser> 

<Install>False</Install> 

<TargetZone>Internet</TargetZone>

D I G G I N G  D E E P E R

  From the Library of Wow! eBook



ptg

Limited Feature Set
For a simple WPF application, you can change a few project settings, recompile, and run 
it just fine as a XAML browser application. But WPF applications usually aren’t so simple. 
What complicates developing a XAML browser application is that XBAPs run as partially 
trusted in the Internet zone, so not all APIs work in this context. For example, if you try 
to convert the standard Photo Gallery application to an XBAP, you’ll quickly find that a 
call such as the following throws a (very verbose) security exception:

// Whoops! Partially trusted code is not allowed to get this data! 

AddFavorite(Environment.GetFolderPath(Environment.SpecialFolder.MyPictures));

CHAPTER 7 Structuring and Deploying an Application226

Continued

The project file also contains a few settings to make the debugger launch
PresentationHost.exe rather than the output of the compilation.

A standard executable is generated, but it does nothing if it is run directly because the infra-
structure quits if it detects that it’s not hosted in a web browser. In addition to the EXE file, 
two XML files are generated:

. A .manifest file, which is a ClickOnce application manifest

. An .xbap file, which is simply a ClickOnce deployment manifest (typically seen with the 
.application extension for non-XBAPs)

And that’s it. XBAPs are really just online-only ClickOnce applications, but with some special 
handling by WPF for the browser-integrated experience.

Beware of ClickOnce caching!

XBAPs are based on ClickOnce technology, which has caching behavior that can be confusing 
during development. For maximum performance, a ClickOnce application is stored in a cache 
when first run. Subsequent requests to run the application go to the cache unless the appli-
cation’s version number changes. (As with isolated storage, the ClickOnce cache is imple-
mented as a hidden folder under the current user’s Documents folder.)

Therefore, if you make a change to an application, recompile it, and then run it, you won’t 
see the result of your changes if you don’t also change the version number! The default 
Visual Studio settings increment your version number each time you recompile (because of 
the AssemblyVersion(“1.0.*”) marking in the AssemblyInfo source file), so you won’t 
encounter this issue unless you give your application a fixed version number.

If you find incrementing the version number on recompilation to be unacceptable, you can 
clear the cache at any time, using the mage.exe tool in the Windows SDK. Just run 
mage -cc at a command prompt. Or you can execute the following command without requir-
ing the SDK to be installed:

rundll32 %windir%\system32\dfshim.dll CleanOnlineAppCache

WA R N I N G

  From the Library of Wow! eBook



ptg

The .NET Framework’s code access security blocks the call because it requires 
FileIOPermission, which is not granted to the Internet zone by default. (Note that indi-
vidual users could expand the set of allowed permissions in their Internet zone, but they 
are not likely to do so, nor should they do so, because of the security risks.)

For most people, figuring out what works and what doesn’t in the Internet zone is a 
process of trial and error. Some features don’t work because of their inherently insecure 
nature—for example, arbitrary access to the local file system or Registry, interoperability 
with unmanaged code, or launching 
new Windows. (You can use Popup 
elements, but they won’t extend past the 
Page’s bounds.) But some other features 
that aren’t allowed in the Internet zone 
aren’t obvious because the restriction is a 
result of implementation details. Other 
features may be restricted depending on 
the host browser. For example, WPF does 
not allow its WebBrowser control to be 
used in an XBAP when the XBAP is hosted 
in Firefox.

Despite the limitations, there is still a lot of functionality to take advantage of in the 
Internet zone. You still can display rich text and media, read/write to isolated storage (up 
to 512 KB), and open arbitrary files on the host web server. You can even launch the 
browser’s standard File, Open dialog to interact with local files (with the user’s explicit 
permission). This is done with Microsoft.Win32.OpenFileDialog as follows:

string fileContents = null;

OpenFileDialog ofd = new OpenFileDialog(); 

if (ofd.ShowDialog() == true) // Result could be true, false, or null 

{

using (Stream s = ofd.OpenFile()) 

using (StreamReader sr = new StreamReader(s)) 

{

fileContents = sr.ReadToEnd(); 

}

}

XAML Browser Applications 227
7

If you want to share the same code between 
a full-trust standard application and a 
partial-trust XBAP, it’s helpful to be able to 
determine which state you’re in at runtime 
so you can adapt to your environment. This 
can be done with the static 
BrowserInteropHelper.IsBrowserHosted 
Boolean property in the System.Windows. 
Interop namespace.

T I P

Another difference between a XAML Browser Application and a standard Windows application 
is the way in which parameters (or, really, any external data) are passed in. One simple 
approach is to send URL parameters to the HTML page hosting an XBAP and then have the 
XBAP call BrowserInteropHelper.Source to retrieve the complete URL (including parame-
ters). Another approach is to store the information in a browser cookie and then retrieve the 
cookie by using the Application.GetCookie method.

T I P

  From the Library of Wow! eBook



ptg

Integrated Navigation
All Pages in XBAPs are implicitly hosted in a NavigationWindow. In Internet Explorer 6 
and Firefox, you see the typical bar with Back and Forward buttons. This is usually not 
desirable because many XBAPs don’t take advantage of navigation. And if they do, having 
separate Back and Forward buttons right below the browser’s Back and Forward buttons is 
clumsy. To disable this unwanted navigation bar, you can set ShowsNavigationUI to false 
on your Page.

CHAPTER 7 Structuring and Deploying an Application228

How do I enable my own components to run in the Internet zone?

You use the same mechanism that applies to all .NET components: If you mark an 
assembly with the AllowPartiallyTrustedCallers attribute and install it into the Global 
Assembly Cache (which can be done only if the user trusts your code and decides to run it), 
any of the assembly’s public APIs can be called by any XBAP.

Note that marking an assembly with AllowPartiallyTrustedCallers should never be 
taken lightly. Any security bug or design flaw that makes it inappropriate for the Internet zone 
could open up your users to a severe security hole. And if that happens, they might never 
trust code from you again!

?
FA Q

How do I create a full-trust XAML Browser Application?

If you want to take advantage of functionality that requires a higher level of trust yet 
still want to be integrated into a browser, you can configure an XBAP to require full trust. The 
two actions to enable this are a bit convoluted, however:

1. In the ClickOnce application manifest (app.manifest), add Unrestricted=”true” to 
the PermissionSet XML element, as in the following example:

<PermissionSet class=”System.Security.PermissionSet” version=”1” 

ID=”Custom” SameSite=”site” Unrestricted=”true”/>

2. In the project file (with the .csproj or .vbproj extension), change this:

<TargetZone>Internet</TargetZone>

to this:

<TargetZone>Custom</TargetZone>

You can also make this change inside Visual Studio’s project properties user interface on 
the Security tab.

After you do this, deploying and running your XBAP in the Local Computer zone should work 
just fine. It’s also possible to run such a full-trust application in the Internet zone, but only if 
users list you (or, more specifically, the certificate used to sign the manifest) as a trusted 
publisher.

?
FA Q

  From the Library of Wow! eBook



ptg

Fortunately, versions 7 and later of 
Internet Explorer merge the 
NavigationWindow’s journal with the 
browser’s own journal, providing a 
much slicker experience. The separate 
navigation bar is not shown, and WPF 
journal entries automatically appear in 
the browser’s Back/Forward list, right 
along with web pages.

Deployment
Deploying an XBAP is as easy as deploying any other ClickOnce application. It’s a matter 
of using Visual Studio’s publishing wizard (or the Mage tool in the Windows SDK) and 
copying the files to a web server or file share. (The web server must also be configured to 
serve the content correctly.)

The most compelling thing about XBAPs is the fact that users can install and run them 
simply by navigating to a URL, with no plug-in required (in the case of Internet Explorer). 
In addition, unlike with other ClickOnce applications, no security prompts get in the 
way, assuming that you don’t create an XBAP that needs nonstandard permissions. (So 
you don’t even have to “click once” to view such an application!)

XAML Browser Applications 229
7

The journal integration in Internet Explorer 7 
and later applies only to the top-level Page. 
If you host an XBAP in an HTML IFRAME, you 
still get the navigation bar unless you set 
ShowsNavigationUI to false on the WPF 
Page.

T I P

There are no security prompts when running an XBAP? Isn’t that a huge 
security issue?

As with any other software features, there is some risk of enabling a security breach just by 
being enabled. But with the multiple layers of security from Windows, Internet Explorer, and 
the .NET Framework, the WPF team is confident that users are safe from hackers who would 
try to use the XBAP mechanism to circumvent security. For example, the .NET Framework 
enforces a sandbox on top of the sandbox already enforced by Internet Explorer. And 
although this amount of security should be enough in theory, WPF goes one step further and 
removes additional operating system–level privileges from the host process token (such as 
the ability to load device drivers), just in case all the other layers of security are somehow 
breached.

?
FA Q

Similar to Silverlight, XBAPs are the key to using WPF content in diverse environments. For 
example, Windows Media Center and Windows desktop gadgets enable developers to plug in 
HTML. By hosting an XBAP in an HTML page, you can create a WPF Media Center application 
or a WPF desktop gadget simply by creating an appropriate XBAP!

T I P

  From the Library of Wow! eBook



ptg

Downloading Files on Demand
ClickOnce provides support for on-demand downloading of files in an application, so you 
can design a small application that loads quickly and then downloads additional content 
as needed, based on arbitrary logic. This support is a great remedy for large XBAPs that 
would otherwise be slow to load, and it can apply to other types of applications as well.

To take advantage of this support, you can assign a set of loose files in a project to a 
download group in Visual Studio. This functionality can be found under Publish, 
Application Files in the project’s Properties page. You can then programmatically prompt 
the download and be notified when it completes by using a few APIs in the 
System.Deployment.Application namespace (in System.Deployment.dll).

Listing 7.3 demonstrates how this might be done to display a custom progress user inter-
face while the application’s main content loads. The application is assumed to start by 
loading Page1, whose code-behind file is the content of Listing 7.3. (The specific user 
interface presumed to be defined in XAML is irrelevant.) Page1 initiates the download of 
any files assigned to a download group called MyGroup and then navigates to Page2 
(which presumably uses some of these downloaded files) when the download is complete.

LISTING 7.3 Using ClickOnce Support for On-Demand Download

using System; 

using System.Windows.Controls; 

using System.Windows.Threading; 

using System.Deployment.Application;

public partial class Page1 : Page 

{

public Page1() 

{

InitializeComponent(); 

}

protected override void OnInitialized(EventArgs e) 

{

base.OnInitialized(e);

if (ApplicationDeployment.IsNetworkDeployed) 

{

// Handle the event that is raised when the download of files 

// in MyGroup is complete. 

ApplicationDeployment.CurrentDeployment.DownloadFileGroupCompleted += 

delegate {

// We’re on a different thread, so invoke GotoPage2 on the UI thread 

Dispatcher.BeginInvoke(DispatcherPriority.Send,

new DispatcherOperationCallback(GotoPage2), null); 

};

CHAPTER 7 Structuring and Deploying an Application230

  From the Library of Wow! eBook



ptg

ApplicationDeployment.CurrentDeployment.DownloadFileGroupAsync(“MyGroup”); 

} 

else 

{

// We’re not running in the context of ClickOnce (perhaps because 

// we’re being debugged), so just go directly to Page2. 

GotoPage2(null);

} 

}

// Navigates to Page2 when ready. Accepts and returns an object simply 

// to match the signature of DispatcherOperationCallback 

private object GotoPage2(object o) 

{

return NavigationService.Navigate(new Uri(“Page2.xaml”, UriKind.Relative)); 

}

}

The download support applies only when the application is run over the 
network (not locally under a debugger), so the listing first calls 
ApplicationDeployment.IsNetworkDeployed to determine whether to rely on it. If the 
application is not network deployed, all files are present locally, so the code immediately 
navigates to Page2. Otherwise, the download is prompted by calling 
DownloadFileGroupAsync. Before that call, however, an anonymous delegate is attached to 
the DownloadFileGroupCompleted event so the navigation can be initiated as soon as the 
download finishes. ApplicationDeployment defines additional events, in case you want to 
expose more fine-grained progress during the download process.

Loose XAML Pages
If the .NET Framework 3.0 or later is installed, Internet Explorer can navigate to a loose 
.xaml file just like a .html file and render it with WPF. Therefore, in certain environ-
ments, XAML can be used as a richer form of HTML, with better support for layout, text, 
graphics, and so on. It’s a bit limiting in that you can’t use any procedural code in loose 
XAML and such pages can be rendered only on Windows. Still, this support can be inter-
esting for experimentation.

Despite the lack of procedural code, you can still create pretty powerful dynamic user 
interfaces in loose XAML, thanks to data binding (covered in Chapter 13, “Data 
Binding”). Figure 7.11 shows the loose XAML version of Photo Gallery, which displays a 
static set of pictures from the web server but uses data binding to keep the snazzy zoom 
feature.

Loose XAML Pages 231

LISTING 7.3 Continued

7

  From the Library of Wow! eBook



ptg

FIGURE 7.11 Photo Gallery can still be very functional as a loose XAML page.

CHAPTER 7 Structuring and Deploying an Application232

If you want your website to take advantage of the richness of loose XAML but still want to 
show HTML to users who aren’t able to view XAML, you can maintain two versions of your 
content and adaptively pick the appropriate one. This is easy to do by checking the user 
agent string for content such as “.NET CLR 3.0.” That said, I’ve never seen a website go 
through the hassle of doing this. Adaptively adding Silverlight to your website would be a 
much better choice.

T I P

To mix HTML and loose XAML content, simply host one or more .xaml files in IFRAMEs on an 
HTML page.

T I P

Summary
WPF’s rich support for building applications covers all the basics needed by a Windows 
application and extends into areas such as web browser–like navigation and web browser– 
hosted content. As demonstrated by the Photo Gallery source code that accompanies this 
book (available from the website, http://informit.com/title/9780672331190), you can 
sometimes apply the same user interface implementation to everything from a traditional 
Windows application to a code-less “rich web page.”

The deployment of an application can be fast and easy in each case examined in this 
chapter. The only wrinkle is the prerequisite of having the right version of the .NET 
Framework installed. Fortunately, with WPF 3.0 installed by default with Windows Vista, 
WPF 3.5 installed by default with Windows 7, and WPF 4 or later likely to be installed by 
default on the next version of Windows, this prerequisite is less of an issue if you don’t 
require the most recent version of the .NET Framework.

  From the Library of Wow! eBook

http://informit.com/title/9780672331190


ptg

CHAPTER 8

Exploiting Windows 7

With every new version of Windows comes a vast 
amount of new functionality for developers to exploit, and
Windows 7 is no exception. Windows 7, like Windows 
Vista, introduced a number of new user interface concepts 
for applications to leverage. An application can appear 
much more modern and provide users some extra delight 
by exploiting these features.

This chapter begins by examining how to leverage two 
common features that make a WPF application feel more at 
home on Windows 7:

. Jump Lists

. Taskbar item customizations

After that, it demonstrates two features introduced in 
Windows Vista that are still just as relevant for Windows 7:

. Aero Glass

. TaskDialog

Jump Lists
One of the most prominent new user interface features in 
Windows 7 is Jump Lists on taskbar items. A Jump List 
contains handy shortcuts and can be seen when you right-
click or swipe upward on a taskbar item. Figure 8.1 shows 
the Jump List for Internet Explorer.

IN THIS CHAPTER

. Jump Lists

. Taskbar Item Customizations

. Aero Glass

. TaskDialog

  From the Library of Wow! eBook



ptg

Even if an application doesn’t do anything to take 
advantage of Jump Lists, it still gets a default one. 
Figure 8.2 shows the default Jump List for the previ-
ous chapter’s Photo Gallery application, when the 
application is open and when it is closed. (You can 
see a Jump List for a closed application only if it has 
been pinned to the taskbar.)

In WPF 4, the System.Windows.Shell.JumpList class 
enables you to define a custom Jump List for an 
application in simple managed code—or even in 
XAML! This doesn’t mean that you can use WPF 
visual elements inside the Jump List, just that the 
available functionality is exposed via managed 
objects with simple properties.

To associate a custom Jump List with an application, 
you set the silly-sounding JumpList.JumpList 
attached property on the Application instance to a 
JumpList instance or call the corresponding 
JumpList.SetJumpList method from procedural 
code. If you create or modify a JumpList from procedural code, you must call JumpList’s 
Apply method to send the updates to the Windows shell.

CHAPTER 8 Exploiting Windows 7234

FIGURE 8.1 The Jump List for
Internet Explorer can contain 
items in several categories.

Open application Closed but pinned application

FIGURE 8.2 The default Jump List for Photo Gallery.

JumpList has a JumpItems content property that can contain two types of items, 
JumpTasks and JumpPaths, both of which derive from a common abstract JumpItem class.

JumpTask
To a user, JumpTasks represent actions to perform, such as the Start InPrivate Browsing 
and Open new tab tasks from Figure 8.1. To a developer, JumpTasks represent programs to 
be launched (operating system tasks). These are typically used to launch the host program 
with command-line arguments that indicate which task was selected.

Listing 8.1 demonstrates the use of a few JumpTasks by updating the App.xaml file from 
the last chapter’s Photo Gallery example. The resulting Jump List is shown in Figure 8.3. 
Notice that the bottom three items (two, if the application is pinned and closed) are

  From the Library of Wow! eBook



ptg

always present, so a custom Jump List only affects what items are presented on top of 
these standard ones.

LISTING 8.1 App.xaml—Applying a Custom JumpList with Simple JumpTasks

<Application x:Class=”PhotoGallery.App” 

xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation” 

xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml” 

StartupUri=”MainWindow.xaml”>

<JumpList.JumpList> 

<JumpList>

<JumpTask Title=”Launch another instance” 

Description=”Launches another instance of this program.”/> 

<JumpTask Title=”Task #1” Arguments=”-task1”

Description=”Performs task #1.”/> 

<JumpTask Title=”Task #2” Arguments=”-task2”

Description=”Performs task #2.”/> 

</JumpList>

</JumpList.JumpList> 

</Application>

Each JumpTask has a Title shown inside the
Jump List and an optional Description used as 
its tooltip. Because no other properties are spec-
ified, the first JumpTask simply relaunches the 
host Photo Gallery application. This duplicates 
the functionality of the standard Photo Gallery 
item in the bottom section of the Jump List, so 
it doesn’t make sense for a real application to 
do this. The next two JumpTasks, however, pass 
command-line arguments so the new instance 
of Photo Gallery that gets launched can take 
some arbitrary action. Photo Gallery can use 
Environment.CommandLine at some point in its 
initialization to respond appropriately.

Jump Lists 235
8

FIGURE 8.3 A custom Jump List with 
three simple JumpTasks.

From the user’s perspective, a typical task from a Jump List doesn’t launch a new instance of 
the program but rather causes something to happen inside the already-running instance. To 
accomplish this behavior, you can make an application a single-instance application (dis-
cussed in the preceding chapter) and communicate the action back to the running instance.

T I P

Whenever an application has a custom Jump List, its items also appear in the Start menu 
when the application is selected. Figure 8.4 shows how the Jump List from Listing 8.1 
automatically enhances the Start menu.

  From the Library of Wow! eBook



ptg

CHAPTER 8 Exploiting Windows 7236

FIGURE 8.4 The same Jump List from Figure 8.3 automatically appears in the Start menu.

Visual Studio’s debugger interferes with Jump Lists!

When you run an application under the Visual Studio debugger, the application appears as 
vshost32.exe, as shown in Figure 8.5. You still see the custom JumpTasks, but their icons 
might be different, and clicking on them won’t work (because it causes vshost32.exe, rather 
than your application, to be launched). The situation is even worse for JumpPaths, described 
in the next section, which don’t appear at all. To avoid this problem, you can uncheck “Enable 
the Visual Studio hosting process” in the Debug section of the project’s properties.

FIGURE 8.5 The Jump List is affected by Visual Studio’s debugger host process.

WA R N I N G

  From the Library of Wow! eBook



ptg

Customizing JumpTask Behavior
JumpTask has a number of properties for customizing each item’s icon and for launching 
other applications besides the host. Listing 8.2 demonstrates these properties, and Figure
8.6 shows the results.

LISTING 8.2 App.xaml—Demonstrating Additional JumpTask Properties

<Application x:Class=”PhotoGallery.App” 

xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation” 

xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml” 

StartupUri=”MainWindow.xaml”>

<JumpList.JumpList> 

<JumpList>

<JumpTask Title=”Magnifier” 

Description=”Open the Windows Magnifier.” 

ApplicationPath=”%WINDIR%\system32\magnify.exe”/>

<JumpTask Title=”Calculator” 

Description=”Open the Windows Calculator.” 

ApplicationPath=”%WINDIR%\system32\calc.exe” 

IconResourcePath=”%WINDIR%\system32\calc.exe”/>

<JumpTask Title=”Notepad” 

Description=”Open Notepad.” 

ApplicationPath=”%WINDIR%\system32\notepad.exe” 

IconResourcePath=”%WINDIR%\system32\notepad.exe” 

WorkingDirectory=”%HOMEDRIVE%%HOMEPATH%”/>

<JumpTask Title=”Internet Explorer (No Add-Ons)” 

Description=”Start without ActiveX controls or extensions.” 

ApplicationPath=”%PROGRAMFILES%\Internet Explorer\iexplore.exe” 

IconResourcePath=”%PROGRAMFILES%\Internet Explorer\iexplore.exe” 

WorkingDirectory=”%HOMEDRIVE%%HOMEPATH%” 

IconResourceIndex=”6” Arguments=”-extoff”/>

</JumpList> 

</JumpList.JumpList> 

</Application>

Jump Lists 237
8

Jump Lists are shared by all instances of an application!

Jump Lists are associated with an application—not a specific window or running instance. 
Any items placed in a Jump List are persisted when the application isn’t running. If a second 
instance of an application starts and places different items in its Jump List, those items 
replace the items that the first instance previously placed.

WA R N I N G

  From the Library of Wow! eBook



ptg

Each JumpTask sets an additional property to customize 
the experience above and beyond the previous one. The 
first item leverages ApplicationPath to invoke 
magnify.exe. Notice that ApplicationPath happily 
accepts environment variable syntax, so you can reliably 
set certain paths in XAML rather than build up the path 
in procedural code.

The second JumpTask sets IconResourcePath to 
customize the icon. The icon should be a Win32 
resource embedded inside an EXE or DLL file. (You can 
specify a loose .ico file instead, but this requires a full 
path that doesn’t use environment variables, so it’s not 
reasonable to set this inside XAML.) By setting the path 
to an EXE file, you can easily get the default icon for 
that program. When IconResourcePath is null, as with 
the first JumpTask, the host executable is used. That’s 
why the first JumpTask picks up Photo Gallery’s icon.

CHAPTER 8 Exploiting Windows 7238

FIGURE 8.6 Launching 
other programs with 
customized JumpTasks.

%WINDIR%\System32\shell32.dll and %WINDIR%\System32\imageres.dll have many 
stock icons that can useful for JumpTasks. They are not guaranteed to be the same across 
different versions of Windows, but they can be helpful.

T I P

The third JumpTask sets WorkingDirectory to affect how the program (Notepad, in this 
case) is launched. As with ApplicationPath and IconResourcePath, you can use environ-
ment variable syntax inside the string.

The last JumpTask not only sets Arguments to invoke Internet Explorer in its “no add-ons” 
mode but sets IconResourceIndex to customize the icon. This is why the icon in Figure
8.6 is a house rather than the blue “e” logo. An EXE or DLL file might have a long list of 
icon resources embedded inside. When IconResourceIndex is left at its default value of 
zero, the first icon (the one also used by 
the Windows shell) is used. But if the 
EXE or DLL file has more, you simply set 
IconResourceIndex to a higher index to 
leverage it. If you specify an invalid 
index, you get a generic icon, like the 
one shown in Figure 8.5.

If you don’t want any icon next to a 
JumpTask, set its IconResourceIndex to 
-1. This works whether or not you explicitly 
set IconResourcePath.

T I P

  From the Library of Wow! eBook



ptg

Custom Categories
You can use one more property to customize the behavior of a JumpTask, although this 
one is inherited from the base JumpItem class. You can set the CustomCategory property to 
any non-empty string to place an item in a separate section with a heading other than 
the “Tasks” default.

Listing 8.3 updates Listing 8.2 by placing one item in a category called One and two items 
in a category called Two. Figure 8.8 shows the results.

LISTING 8.3 App.xaml—Using the CustomCategory Property

<Application x:Class=”PhotoGallery.App” 

xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation” 

xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml” 

StartupUri=”MainWindow.xaml”>

<JumpList.JumpList> 

<JumpList>

<JumpTask Title=”Magnifier” CustomCategory=”One” 

Description=”Open the Windows Magnifier.” 

ApplicationPath=”%WINDIR%\system32\magnify.exe”/>

Jump Lists 239
8

If you want to separate JumpTasks with a horizontal line, just add a JumpTask at the appro-
priate spot, with no properties set. Figure 8.7 shows the result of adding <JumpTask/> 
between the first two JumpTasks and again adding <JumpTask/> between the last two 
JumpTasks from Listing 8.2.

FIGURE 8.7 Adding two horizontal line separators with empty JumpTask elements.

T I P

  From the Library of Wow! eBook



ptg

<JumpTask Title=”Calculator” CustomCategory=”Two” 

Description=”Open the Windows Calculator.” 

ApplicationPath=”%WINDIR%\system32\calc.exe” 

IconResourcePath=”%WINDIR%\system32\calc.exe”/>

<JumpTask Title=”Notepad” CustomCategory=”Two” 

Description=”Open Notepad.” 

ApplicationPath=”%WINDIR%\system32\notepad.exe” 

IconResourcePath=”%WINDIR%\system32\notepad.exe” 

WorkingDirectory=”%HOMEDRIVE%%HOMEPATH%”/>

<JumpTask Title=”Internet Explorer (No Add-Ons)” 

Description=”Start without ActiveX controls or extensions.” 

ApplicationPath=”%PROGRAMFILES%\Internet Explorer\iexplore.exe” 

IconResourcePath=”%PROGRAMFILES%\Internet Explorer\iexplore.exe” 

WorkingDirectory=”%HOMEDRIVE%%HOMEPATH%” 

IconResourceIndex=”6” Arguments=”-extoff”/>

</JumpList> 

</JumpList.JumpList> 

</Application>

Items in custom categories automatically support user pinning and user removal. (The 
latter is available via a context menu.) When an item is pinned, it moves into a Pinned 
category. The user can later unpin the item, as shown in Figure 8.9.

CHAPTER 8 Exploiting Windows 7240

LISTING 8.3 Continued

FIGURE 8.8 Applying custom categories to a Jump List.

  From the Library of Wow! eBook



ptg

JumpPath
Whereas JumpTasks represent programs, JumpPaths represent files that can be opened by 
the host application. In fact, an application can use JumpPaths only if it is registered with 
Windows to handle the relevant file extension(s). To run the examples in this section, you 
can temporarily register the sample application as a handler for .JPG files. (For experi-
mentation, you probably want to do this via Windows Explorer’s Open With, Choose 
Default Program context menu item rather than doing this programmatically.) 

Listing 8.4 updates Listing 8.3 by adding a JumpPath to the existing collection of 
JumpTasks. (JumpPaths and JumpTasks can be intermingled because they share the

Jump Lists 241
8

FIGURE 8.9 Pinning a JumpTask from a custom category.

Pinning a JumpTask doesn’t work when it its Arguments property is not set!

Due to a bug in Windows 7, argument-free tasks cannot be pinned. The pin button still 
appears, but nothing happens when the user clicks on it. Fortunately, most tasks use at 
least one argument. If you want to launch a program that doesn’t need any arguments, and if 
you are not able to pass a dummy argument, you can work around this by using an interme-
diary program that accepts and ignores the argument.

WA R N I N G

Custom categories appear in order from the bottom up!

Both JumpTasks and custom categories appear in the order in which they appear inside the 
JumpItems collection. However, whereas the list of JumpTasks grows from top to bottom, the 
list of categories grows from bottom to top! That is why Two appears above One in Figures
8.8 and 8.9.

WA R N I N G

  From the Library of Wow! eBook



ptg

common JumpItem base class.) Because this file exists on the current C: drive, and because 
the application is registered to handle .JPG files, the Jump List now appears as shown in 
Figure 8.10. If either of these conditions were false, the Jump List would appear the same 
as it did in Figure 8.8.

LISTING 8.4 App.xaml—Adding a JumpPath to Listing 8.3

<Application x:Class=”PhotoGallery.App” 

xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation” 

xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml” 

StartupUri=”MainWindow.xaml”>

<JumpList.JumpList> 

<JumpList>

<JumpPath Path=”C:\Users\Adam\Pictures\DSC06397.jpg” 

CustomCategory=”Photos”/>

<JumpTask Title=”Magnifier” CustomCategory=”One” 

Description=”Open the Windows Magnifier.” 

ApplicationPath=”%WINDIR%\system32\magnify.exe”/>

… 

</JumpList>

</JumpList.JumpList> 

</Application>

CHAPTER 8 Exploiting Windows 7242

FIGURE 8.10 A JumpPath added to the Jump List from Figure 8.8 in its own Photos custom 
category.

By default, JumpPaths are placed in the Tasks category, which is a bit odd. But you can set 
CustomCategory (inherited from JumpItem) to move them to different categories. This 
approach has the advantage of making each item automatically pinnable.

  From the Library of Wow! eBook



ptg

When the user clicks the DSC06397.jpg item, a new instance of the host application is 
launched, with Path passed as the one and only command-line argument. Therefore, 
except for its icon and context menu, the JumpPath in Listing 8.4 is somewhat like the 
following JumpTask:

<JumpTask Title=”DSC06397.jpg” 

Arguments=”C:\Users\Adam\Pictures\DSC06397.jpg” 

Description=”DSC06397 (C:\Users\Adam\My Pictures)” 

CustomCategory=”Photos”/>

It is the responsibility of the application to respect the command-line argument and do 
whatever it means to “open” the file, just as with any other JumpTasks you may define.

Jump Lists 243
8

JumpPath’s Path property does not support environment variable syntax!

That is why Listing 8.4 uses a hard-coded path to the .JPG file. In practice, however, this 
should not be a big problem. Applications typically add JumpPaths dynamically from proce-
dural code, which can use arbitrary logic (including environment variables) to compose each 
path.

WA R N I N G

Recent and Frequent JumpPaths
Most applications—even ones that are registered handlers for certain file types—will have 
no reason to do anything explicit with JumpPaths. That’s because Jump Lists automati-
cally provide end-to-end functionality for the two most common types of categories— 
recent items and frequent items.

To get either one of these categories added to a Jump List, you simply set JumpList’s 
ShowRecentCategory and/or ShowFrequentCategory properties to true. These categories 
will automatically appear and be populated if appropriate files have been recently and/or 
frequently opened. Windows tracks the opening of a file whenever it is done through the 
common File Open dialog or whenever the file type association is leveraged (for example, 
by double-clicking the file in Windows Explorer or by clicking a JumpPath).

If you want to force items onto these lists (for example, if an application opens files in a 
way that doesn’t go through these mechanisms), you can call the 
JumpList.AddToRecentCategory method. It has overloads that accept either a path string, 
a JumpPath instance, or even a JumpTask instance. There is no AddToFrequentCategory 
method; you would only be able to force an item to show up as frequent by adding it to 
the recent category enough times.

Adding both categories to the JumpList from Listing 8.4 gives the result in Figure 8.11:

<JumpList ShowFrequentCategory=”True” ShowRecentCategory=”True”> 

<JumpPath Path=”C:\Users\Adam\Pictures\DSC06397.jpg”

CustomCategory=”Photos”/> 

<JumpTask Title=”Magnifier” CustomCategory=”One”

Description=”Open the Windows Magnifier.” 

  From the Library of Wow! eBook



ptg

ApplicationPath=”%WINDIR%\system32\magnify.exe”/> 

…

</JumpList>

Of course, using both categories simultaneously is 
not typical due to the high amount of overlap that is 
likely between the two lists. As seen in Figure 8.1, 
Internet Explorer chooses to show Frequent, whereas 
a lot of applications choose Recent. (Windows 7 
provides the Recent category automatically for apps 
not built to specifically take advantage of Jump Lists.)

Responding to Rejected or Removed Items
Because JumpPaths added to JumpList’s JumpItems 
property might be rejected by Windows if the appli-
cation isn’t registered to handle the file type or if the 
file doesn’t exist, items are sometimes automatically 
removed from the JumpItems collection. If you want 
to react to such automatic removal, you can handle 
JumpList’s JumpItemsRejected event.

JumpItemsRejected is raised once if one or more items 
are removed, although not until the next time a 
JumpList is applied, such as the next launch of the 
application. To handle the event for a XAML-defined 
JumpList, you should attach the handler in XAML. 
For a JumpList created in procedural code, be sure to 
attach the handler before calling Apply.

The JumpItemsRejectedEventArgs instance passed to event handlers contains a list of the 
rejected JumpItems as well as a list of JumpItemRejectionReason enumeration values. Each 
value can be one of the following:

. NoRegisteredHandler—The application is not registered to handle the file type. 

. InvalidItem—The file does not exist (or you’re running a version of Windows prior 
to Windows 7).

. RemovedByUser—The item was manually removed by the user.

. None—The item was rejected for an unknown reason.

If you only care about handling items removed by the user, you could alternatively 
handle the JumpItemsRemovedByUser event, which simply presents the list of removed 
JumpItems. It makes sense to handle this, for example, to see if the user has removed one 
of your JumpTasks. That way, you know to stop including it in the Jump List on future 
launches.

CHAPTER 8 Exploiting Windows 7244

FIGURE 8.11 Leveraging the 
built-in Recent and Frequent cate-
gories.

  From the Library of Wow! eBook



ptg

Taskbar Item Customizations
Starting with WPF 4, Window has a TaskbarItemInfo property (of type 
System.Windows.Shell.TaskbarItemInfo) that enables several customizations to an appli-
cation’s taskbar item or its corresponding thumbnail preview. For example, you can add a 
custom tooltip to the taskbar item’s thumbnail preview by setting TaskbarItemInfo’s 
Description property as follows:

<Window …> 

<Window.TaskbarItemInfo>

<TaskbarItemInfo Description=”Custom tooltip”/> 

</Window.TaskbarItemInfo>

… 

</Window>

Or, in C# you can set it this way:

public MainWindow() 

{

… 

this.TaskbarItemInfo = new TaskbarItemInfo(); 

this.TaskbarItemInfo.Description = “Custom tooltip”;

}

Taskbar Item Customizations 245
8

The Timing of the JumpItemsRejected and JumpItemsRemovedByUser Events

The fact that these events only get raised the next time JumpList.Apply is called is confus-
ing, but WPF is limited by the behavior of underlying Shell Win32 APIs. The Windows Shell 
doesn’t enable querying the current contents of a Jump List, nor does it provide a way to 
determine in advance whether an item will be accepted into a Jump List. Consumers (such 
as WPF) must try to atomically commit an entire category. Windows will then either accept or 
reject it, sometimes giving a decent error code and sometimes not. Windows also has 
heuristics for rejecting an item if the user previously removed it, but only if it was removed 
between the current attempt to update the list and the previous attempt.

JumpList’s Apply method exists to avoid trying to commit a JumpTask or JumpPath with 
only some of its properties set. The partial set of properties might cause an item to be 
invalid, or the partial set might make it valid but the full set might cause it to be rejected. 
After calling Apply, the contents of the WPF JumpList object reflect what the Shell reports 
as the accepted list. The one or two events get raised (if appropriate) within the Apply call 
because that is when WPF finds out what the user did since the last time the program 
updated the Jump List.

D I G G I N G  D E E P E R

  From the Library of Wow! eBook



ptg

Figure 8.12 shows the result of doing this.

Of course, you can do much more with 
TaskbarItemInfo besides setting a tooltip.

Using a Taskbar Item Progress Bar
Taskbar items support a built-in progress bar, which 
is useful for displaying the status of long-running 
tasks in a low-impact fashion. Windows Explorer and 
Internet Explorer take advantage of this functional-
ity, which is especially nice for keeping an eye on 
progress while you’re working inside another 
program.

Showing a progress bar is as simple as setting two 
properties on TaskbarItemInfo: ProgressValue and ProgressState. ProgressValue can be 
set to a double between 0 (0%) and 1 (100%) to affect how “filled” the progress bar is. 
ProgressState can be set to one of the following values from the 
TaskbarItemProgressState enumeration:

. Normal—Show a green progress bar.

. Paused—Show a yellow progress bar.

. Error—Show a red progress bar.

. Indeterminate—Show a green progress bar that constantly animates rather than 
showing the standard fill that reveals the value of ProgressValue.

. None—Don’t show a progress bar. This is the default value.

The first three values all result in a “normal” progress bar; the choice only affects the 
color. Yellow is meant to be used when progress is paused, and red is meant to be used 
when an error has occurred, but this is entirely in your control. For instance, you’re not 
prevented from reporting progress even when ProgressState is Paused.

The Indeterminate ProgressState is perfect for situations in which you are unable to 
report ongoing progress values. In this state, the progress bar animation ignores the value 
of ProgressValue and simply shows a standard animation.

You can update ProgressState and 
ProgressValue at any time, and you can 
see the change reflected in the progress 
bar. Figure 8.13 demonstrates all five 
values of ProgressState with 
ProgressValue set to .85.

CHAPTER 8 Exploiting Windows 7246

FIGURE 8.12 The tooltip 
supplied by TaskbarItemInfo. 
Description.

FIGURE 8.13 The five ProgressState 
settings supported by a taskbar item progress 
bar.

Normal

Paused

Error None

Indeterminate

  From the Library of Wow! eBook



ptg

Adding an Overlay to the Taskbar Item
In addition to a progress bar, taskbar items support displaying a little image overlay on 
top of its icon to communicate additional status. TaskbarItemInfo exposes this as an 
Overlay property of type ImageSource (a class examined in later chapters).

Figure 8.14 shows what happens when setting an overlay as follows:

<Window …> 

<Window.TaskbarItemInfo>

<TaskbarItemInfo Overlay=”overlay.png”/> 

</Window.TaskbarItemInfo>

… 

</Window>

Taskbar Item Customizations 247
8

The overlay in actionoverlay.png 

FIGURE 8.14 An overlay image and its use on a taskbar item.

If the user has changed the taskbar to use small icons, overlay images are not supported, 
so setting this property does nothing. Similarly, using any of the TaskbarItemInfo func-
tionality does nothing when the application 
runs on a version of Windows earlier 
than Windows 7.

When the overlay image is applied, it is 
placed in the lower-right corner and 
smoothly fades in. Similarly, removing 
the overlay by later setting Overlay to 
null smoothly fades it out.

Customizing the Thumbnail Content
By default, the thumbnail shown when hovering over a taskbar item is a live preview of 
the entire window. TaskbarItemInfo provides one small way to customize this. By setting 
the ThumbnailClipMargin property (of type Thickness), you can crop the default thumb-
nail.

Figure 8.15 demonstrates one potential use of this feature. Photo Gallery could set 
ThumbnailClipMargin (and adjust its value when the window is resized) whenever 
viewing a single photo, in order to crop out the chrome and focus on the main content.

Changing Overlay from one image to 
another does not trigger the fade effect. 
Therefore, you can rapidly update Overlay 
with a series of images to produce an 
animated result!

T I P

  From the Library of Wow! eBook



ptg

FIGURE 8.15 Clipping the taskbar thumbnail to a photo rather than the entire window.

Adding Thumb Buttons to the Taskbar Thumbnail
The last customization exposed by TaskbarItemInfo is the ability to place buttons at the 
bottom of the thumbnail preview, to provide a user interface like Windows Media Player’s 
miniature Play/Pause, Previous, and Next buttons. This is exposed as TaskbarItemInfo’s 
ThumbButtonInfos property, a collection of ThumbButtonInfo objects.

Although ThumbButtonInfo is not a WPF UIElement, it exposes the basic properties you 
would expect for a button, considering the limitation that its content can only be an 
ImageSource. Each ThumbButtonInfo has an ImageSource property for its content, a 
Description property for its tooltip, and a Click event. (However, unlike Button, its 
Click event is not a routed event. It works with plain event handlers.) ThumbButtonInfo 
also has a Command property with corresponding CommandTarget and CommandParameter 
properties, so these buttons can participate nicely in commands used by your application.

ThumbButtonInfo has a standard Visibility property, with all three possible values doing 
what you would expect. (This is a neat trick, 
considering that WPF layout is not involved 
here.) It also has a handful of Boolean prop-
erties that are all true by default except for 
the last one: IsEnabled, IsInteractive, 
IsBackgroundVisible, and 
DismissWhenClicked. The “background” 
referred to by IsBackgroundVisible is the 
button chrome; there actually is no 
customizable background for these buttons.

Figure 8.16 demonstrates the following
ThumbButtonInfos applied to Photo Gallery:

CHAPTER 8 Exploiting Windows 7248

FIGURE 8.16 Thumb buttons can be 
placed inside the thumbnail preview popup.

  From the Library of Wow! eBook



ptg

<Window …> 

<Window.TaskbarItemInfo>

<TaskbarItemInfo> 

<TaskbarItemInfo.ThumbButtonInfos>

<ThumbButtonInfo Description=”Previous” Click=”…”

ImageSource=”Images\previousSmall.gif”/> 

<ThumbButtonInfo Description=”Slideshow” Click=”…”

ImageSource=”Images\slideshowSmall.gif”/> 

<ThumbButtonInfo Description=”Next” Click=”…”

ImageSource=”Images\nextSmall.gif”/> 

<ThumbButtonInfo Description=”Undo” Click=”…”

ImageSource=”Images\counterclockwiseSmall.gif”/> 

<ThumbButtonInfo Description=”Redo” Click=”…”

ImageSource=”Images\clockwiseSmall.gif”/> 

<ThumbButtonInfo Description=”Delete” Click=”…”

ImageSource=”Images\deleteSmall.gif”/> 

</TaskbarItemInfo.ThumbButtonInfos>

</TaskbarItemInfo> 

</Window.TaskbarItemInfo>

… 

</Window>

Aero Glass 249
8

Only the first seven ThumbButtonInfos matter!

Because there is room for only seven thumb buttons on the thumbnail preview popup, only 
the first seven ThumbButtonInfos in the collection are respected. What’s subtle is that this 
is true even if some of the first seven buttons are marked with Visibility set to 
Collapsed (leaving room for later buttons to appear). Therefore, to dynamically swap 
between more than seven buttons, you actually need to add/remove items from the collec-
tion rather than simply toggle their Visibility.

WA R N I N G

How can I customize the hover color of my taskbar item?

You can’t customize this color, other than changing the colors in your icon. Windows 
picks up the dominant color of the icon and bases the glow color on that.

?
FA Q

Aero Glass
Aero Glass is the blurry, transparent window chrome that can be extended into the client 
area, introduced with Windows Vista. The easiest way to use it in a WPF application is to 
call the Win32 DwmExtendFrameIntoClientArea API. (The Dwm stands for Desktop Window

  From the Library of Wow! eBook



ptg

Manager.) With this method, you can make an entire Window a sheet of glass (as shown in 
Figure 8.17) or choose to extend the glass a specified amount from any of the Window’s 
four edges (as shown in Figure 8.18). Either way, you can add WPF content on top of the 
glass, just as you would if the Window background were a simple solid color.

CHAPTER 8 Exploiting Windows 7250

FIGURE 8.17 A glass background for the entire Window.

FIGURE 8.18 Extending glass on the bottom of the Window only.

  From the Library of Wow! eBook



ptg

If you’re using Visual C++, you can call the DwmExtendFrameIntoClientArea API directly. 
But in a language like C# or Visual Basic, PInvoke (that is, using the DllImport attribute) 
enables you to call it. PInvoke is the key to calling all the Desktop Window Manager APIs 
from C#. Listing 8.5 contains PInvoke signatures and a simple reusable utility method 
that wraps the PInvoke calls.

LISTING 8.5 Using Glass in C#

[StructLayout(LayoutKind.Sequential)] 

public struct MARGINS 

{

public MARGINS(Thickness t) 

{

Left = (int)t.Left;

Right = (int)t.Right; 

Top = (int)t.Top; 

Bottom = (int)t.Bottom;

} 

public int Left; 

public int Right; 

public int Top; 

public int Bottom;

}

public class GlassHelper 

{

[DllImport(“dwmapi.dll”, PreserveSig=false)] 

static extern void DwmExtendFrameIntoClientArea(

IntPtr hWnd, ref MARGINS pMarInset);

[DllImport(“dwmapi.dll”, PreserveSig=false)] 

static extern bool DwmIsCompositionEnabled();

public static bool ExtendGlassFrame(Window window, Thickness margin) 

{

if (!DwmIsCompositionEnabled()) 

return false;

IntPtr hwnd = new WindowInteropHelper(window).Handle; 

if (hwnd == IntPtr.Zero)

throw new InvalidOperationException( 

“The Window must be shown before extending glass.”);

// Set the background to transparent from both the WPF and Win32 perspectives 

window.Background = Brushes.Transparent; 

HwndSource.FromHwnd(hwnd).CompositionTarget.BackgroundColor = 

Aero Glass 251
8

  From the Library of Wow! eBook



ptg

Colors.Transparent;

MARGINS margins = new MARGINS(margin);

DwmExtendFrameIntoClientArea(hwnd, ref margins); 

return true;

} 

}

The GlassHelper.ExtendGlassFrame method accepts a Window and a familiar Thickness 
object for representing how much glass should be extended on all four edges. (To get the 
“sheet of glass” effect, you can pass -1 for all four sides.) After checking that desktop 
composition is enabled (a prerequisite for glass), the code maps the Thickness object to 
the MARGINS type expected by DwmExtendFrameIntoClientArea and calls this API with the 
appropriate HWND. The Window’s Background is also set to Transparent so the glass is able to 
show through. For more information about the techniques used here, consult Chapter 19, 
“Interoperability with Non-WPF Technologies.”

Any WPF Window can use GlassHelper.ExtendGlassFrame as follows:

protected override void OnSourceInitialized(EventArgs e) 

{

base.OnSourceInitialized(e); 

// This can’t be done any earlier than the SourceInitialized event: 

GlassHelper.ExtendGlassFrame(this, new Thickness(-1));

// Attach a window procedure in order to detect later enabling of desktop 

// composition 

IntPtr hwnd = new WindowInteropHelper(this).Handle; 

HwndSource.FromHwnd(hwnd).AddHook(new HwndSourceHook(WndProc));

}

private IntPtr WndProc(IntPtr hwnd, int msg, IntPtr wParam, IntPtr lParam, ref bool 

handled)

{

if (msg == WM_DWMCOMPOSITIONCHANGED) 

{

// Reenable glass: 

GlassHelper.ExtendGlassFrame(this, new Thickness(-1)); 

handled = true;

} 

return IntPtr.Zero;

}

private const int WM_DWMCOMPOSITIONCHANGED = 0x031E;

CHAPTER 8 Exploiting Windows 7252

LISTING 8.5 Continued

  From the Library of Wow! eBook



ptg

The method must not only be called during initialization but whenever desktop composi-
tion is disabled and then reenabled. This could happen because of explicit user action, or 
it could be triggered from something like Remote Desktop. To be notified of changes to 
desktop composition, you need to intercept a Win32 message 
(WM_DWMCOMPOSITIONCHANGED). See Chapter 19 to get a better understanding of how the 
preceding code works.

Figure 8.19 shows Photo Gallery using the preceding code to enable a glass background.

TaskDialog 253
8

FIGURE 8.19 A glass-enabled Photo Gallery.

TaskDialog
It’s often tempting for a developer to use MessageBox where it might be more appropriate 
to craft a custom dialog. But laziness is a fact of life, so Windows Vista introduced a new 
and improved MessageBox—called TaskDialog—that gives such developers better results 
and more flexibility. It matches the more modern look and feel of Windows and even 
enables deep customization of the dialog with additional controls.

You can take advantage of this new functionality by calling a Win32 API called 
TaskDialog. As with working with Aero Glass, PInvoke is the key to calling the 
TaskDialog API. Listing 8.6 shows a PInvoke signature for TaskDialog and its associated 
types.

LISTING 8.6 TaskDialog Signature and Types in C#

[DllImport(“comctl32.dll”, PreserveSig=false, CharSet=CharSet.Unicode)] 

static extern TaskDialogResult TaskDialog(IntPtr hwndParent, IntPtr hInstance,

string title, string mainInstruction, string content,

  From the Library of Wow! eBook



ptg

TaskDialogButtons buttons, TaskDialogIcon icon);

enum TaskDialogResult 

{

Ok=1,

Cancel=2, 

Retry=4, 

Yes=6, 

No=7, 

Close=8

} 

[Flags] 

enum TaskDialogButtons 

{

Ok = 0x0001,

Yes = 0x0002, 

No = 0x0004, 

Cancel = 0x0008, 

Retry = 0x0010, 

Close = 0x0020

} 

enum TaskDialogIcon 

{

Warning = 65535,

Error = 65534, 

Information = 65533, 

Shield = 65532

}

Unlike MessageBox, the TaskDialog API enables you to specify a main instruction that is 
visually separated from the rest of the content. It also enables you to choose an arbitrary 
mix of buttons. Figures 8.20 and 8.21 illustrate the difference between MessageBox and 
TaskDialog, based on the following code:

// Using MessageBox 

result = MessageBox.Show(“Are you sure you want to delete ‘“ + filename + “‘?”,

“Delete Picture”, MessageBoxButton.YesNo, MessageBoxImage.Warning);

// Using TaskDialog 

result = TaskDialog(new System.Windows.Interop.WindowInteropHelper(this).Handle,

IntPtr.Zero, “Delete Picture”, 

“Are you sure you want to delete ‘“ + filename + “‘?”, 

“This will delete the picture permanently, rather than sending it 

➥to the Recycle Bin.”, 

TaskDialogButtons.Yes | TaskDialogButtons.No, TaskDialogIcon.Warning);

CHAPTER 8 Exploiting Windows 7254

LISTING 8.6 Continued

  From the Library of Wow! eBook



ptg

FIGURE 8.20 A MessageBox looks a little old-fashioned and lazy on Windows 7.

TaskDialog 255
8

FIGURE 8.21 A similar TaskDialog looks more user friendly.

The use of TaskDialog requires version 6 of the Windows Common Controls DLL
(ComCtl32.dll)!

For compatibility reasons, applications don’t bind to this version by default. One way to bind 
to version 6 is to place a manifest file alongside your executable (named YourAppName. 
exe.manifest), with the following content: 

<?xml version=”1.0” encoding=”UTF-8” standalone=”yes”?>

<assembly xmlns=”urn:schemas-microsoft-com:asm.v1” manifestVersion=”1.0”> 

<assemblyIdentity version=”1.0.0.0”

processorArchitecture=”X86” name=”YourAppName” type=”win32” /> 

<description>Your description</description> 

<dependency>

<dependentAssembly> 

<assemblyIdentity

type=”win32” name=”Microsoft.Windows.Common-Controls” 

version=”6.0.0.0” processorArchitecture=”X86” 

publicKeyToken=”6595b64144ccf1df” language=”*” />

</dependentAssembly> 

</dependency>

</assembly>

This manifest can also be embedded as a Win32 resource inside your executable (with the 
name RT_MANIFEST and ID set to 1), if you don’t want to have the extra standalone file. 
Visual Studio can do this work for you, if you associate your manifest file in your project’s 
properties.

WA R N I N G

  From the Library of Wow! eBook



ptg

Summary
This chapter examines the newest Windows user interface enhancements introduced in 
Windows 7 and some of the interesting enhancements introduced in Windows Vista. 
Fortunately, WPF provides first-class support for consuming these Windows 7 features in 
XAML or the procedural .NET language of your choice. Leveraging the Windows Vista 
features requires the use of PInvoke to call the unmanaged Win32 APIs. However, the 
basic functionality is still pretty easy to use from managed code.

Although this chapter covers all the Windows 7 features that WPF exposes for easy 
consumption, it only scratches the surface of new functionality available as Win32 APIs 
in Windows 7 (and Windows Vista). Rather than start from scratch and attempt to do all 
sorts of unmanaged interoperability wizardry to consume some of these other features, 
you should download the Windows API Code Pack from 
http://code.msdn.microsoft.com/WindowsAPICodePack. The Windows API Code Pack 
contains a bunch of classes and samples that make it easy to consume a lot of Windows 7 
and Windows Vista functionality from managed code. It covers a wide variety of func-
tionality, from more advanced shell and taskbar customizations to areas such as sensors, 
linguistic services, and power management.

CHAPTER 8 Exploiting Windows 7256

Continued

If you fail to bind to this version, calling TaskDialog results in an
EntryPointNotFoundException with the message “Unable to find an entry point 
named ‘TaskDialog’ in DLL ‘comctl32.dll’.”

It is a good idea to bind to this version of the Windows Common Controls DLL even if you 
don’t use TaskDialog. If you don’t do this, any Win32 control that might get displayed, such 
as MessageBox, is given an older visual style that might look out of place.

To customize TaskDialog further, you can use a more complicated TaskDialogIndirect 
API. The Windows SDK contains samples for using this and other Win32 features in .NET 
applications. You can also check http://pinvoke.net for PInvoke signatures and types for 
just about any popular Win32 API.

T I P

If you are not yet ready to migrate an application to WPF 4, you can still take advantage of 
the Windows 7 features in this chapter by using the WPF Shell Integration Library available at 
http://code.msdn.microsoft.com/WPFShell.

This library is a .NET Framework 3.5-compatible version of the System.Windows.Shell APIs 
from WPF 4. There are a few minor incompatibilities between the two sets of APIs (for example, 
in the 3.5 library, TaskbarItemInfo is an attached property rather than a regular dependency 
property), but it provides a nice migration path for moving to a newer version of WPF at a later 
date.

T I P

  From the Library of Wow! eBook

http://pinvoke.net
http://code.msdn.microsoft.com/WindowsAPICodePack
http://code.msdn.microsoft.com/WPFShell


ptg

Summary 257
8

Whenever you exploit features in a specific version of Windows, you need to think about your 
fallback plans for running on earlier versions of Windows—if you want to support them.

For the Jump List and taskbar item features exposed through the System.Windows.Shell 
namespace, WPF gracefully handles older versions of Windows for you. If you run the related 
samples in this chapter on Windows Vista, your code that interacts with JumpList, 
TaskbarItemInfo, and so on will still execute without errors but will do nothing.

For the features that you consume directly via unmanaged interoperability, you must explicitly 
check for the version of Windows and adjust your behavior accordingly. .NET code can easily 
check the operating system version using System.Environment.OSVersion. Here’s an 
example:

if (System.Environment.OSVersion.Version.Major >= 6) 

// Windows Vista or later, so use TaskDialog

else 

// Earlier than Windows Vista, so just use MessageBox

The major/minor version of Windows 7 is 6.1, and the major/minor version of Windows Vista 
is 6.0.

T I P

  From the Library of Wow! eBook



ptg

This page intentionally left blank 

  From the Library of Wow! eBook



ptg

PART III

Controls

IN THIS PART

CHAPTER 9 Content Controls 261

CHAPTER 10 Items Controls 275

CHAPTER 11 Images, Text, and Other Controls 309

  From the Library of Wow! eBook



ptg

This page intentionally left blank 

  From the Library of Wow! eBook



ptg

CHAPTER 9

Content Controls

No modern presentation framework would be complete 
without a standard set of controls that enables you to 
quickly assemble traditional user interfaces. And Windows 
Presentation Foundation has plenty of such controls 
included “in the box.” You’ve seen a few of them in previ-
ous chapters. This part of the book takes you on a tour of 
the major built-in controls, highlighting some of what 
makes each control unique.

The figures in this book show WPF controls under the Aero 
theme from Windows 7 and Windows Vista. Most WPF 
controls contain several distinct default appearances, 
however. That’s because WPF ships with theme DLLs that 
contain control templates for the following Windows 
themes:

. Aero (the default Windows 7 and Windows Vista 
theme)

. Luna (the default Windows XP theme)

. Royale (the somewhat-obscure theme from Windows 
XP Media Center Edition 2005 and Windows XP 
Tablet PC Edition 2005)

. Classic (the theme available in Windows 2000 and 
later)

For example, Figure 9.1 displays the default appearance of a 
WPF Button control under each of the supported Windows 
themes. If WPF encounters an unsupported theme, such as 
the Zune theme released by Microsoft in 2006, it defaults 
to Classic.

IN THIS CHAPTER

. Buttons

. Simple Containers

. Containers with Headers

  From the Library of Wow! eBook



ptgFIGURE 9.1 The WPF Button’s theme-specific default appearances.

In most cases, the difference in appearance is very subtle. Of course, you can give controls 
a radically different look (based on the current theme or theme-independent) by using 
custom control templates, as discussed in Chapter 14, “Styles, Templates, Skins, and 
Themes.”

WPF’s built-in controls can be grouped roughly into the following categories, which coin-
cide with their inheritance hierarchy:

. Content controls (this chapter)

. Items controls (Chapter 10, “Items Controls”)

. Range controls (Chapter 11, “Images, Text, and Other Controls”)

. Everything else (Chapter 11)

This chapter covers content controls, which are simply controls that are constrained to 
contain a single item. Content controls all derive from 
System.Windows.Controls.ContentControl, which has a Content property of type Object 
that contains the single item (first shown with Button in Chapter 2, “XAML 
Demystified”).

Because a content control’s single item can be any arbitrary object, the control can 
contain a potentially large tree of objects. There just can be only one direct child. Besides 
Content, the other interesting member of the ContentControl class is the Boolean 
HasContent property. This simply returns false if Content is null, and it returns true 
otherwise.

CHAPTER 9 Content Controls262

Aero theme Luna theme Royale theme Classic theme

Why does ContentControl define a HasContent property? Checking for
Content==null is just as easy as checking for HasContent==false!

Welcome to the world of WPF APIs, which don’t always look like your typical .NET APIs! From 
a C# perspective, the HasContent property is redundant. But from a XAML perspective, the 
property is useful. For example, it makes it easy to use a property trigger to set various prop-
erty values when HasContent becomes true.

?
FA Q

  From the Library of Wow! eBook



ptg

The built-in content controls come in three major varieties:

. Buttons

. Simple containers

. Containers with headers

The Window class, already examined in Chapter 7, “Structuring and Deploying an 
Application,” is also a content control. Its Content is usually set to a Panel such as Grid, 
so it can contain an arbitrarily complex user interface.

Buttons
Buttons are probably the most familiar and essential user interface elements. WPF’s 
Button, pictured in Figure 9.1, has already made several appearances in this book.

Although everyone intuitively knows what a button is, its precise definition (at least in 
WPF) might not be obvious. A basic button is a content control that can be clicked but 
not double-clicked. This behavior is actually captured by an abstract class called 
ButtonBase, from which a few different controls are derived.

The ButtonBase class contains the Click event and contains the logic that defines what it 
means to be clicked. As with typical Windows buttons, a click can occur from a mouse’s 
left button being pressed down and then let up or from the keyboard with Enter or space-
bar, if the button has focus.

ButtonBase also defines a Boolean IsPressed property, in case you want to act on the 
pressed state (when the left mouse button or spacebar is held down but not yet released).

The most interesting feature of ButtonBase, however, is its ClickMode property. This can 
be set to a value of a ClickMode enumeration to control exactly when the Click event 
gets raised. Its values are Release (the default), Press, and Hover. Although changing the 
ClickMode setting on standard buttons would likely confuse users, this capability is very 
handy for buttons that have been restyled to look like something completely different. In 
these cases, it’s a common expectation that pressing an object should be the same as click-
ing it.

Buttons 263
9

Content and Arbitrary Objects

Given that a content control’s Content can be set to any managed object, it’s natural to 
wonder what happens if you set the content to a non-visual object, such as an instance of 
Hashtable or TimeZone. The way it works is fairly simple: If the content derives from WPF’s 
UIElement class, it gets rendered via UIElement’s OnRender method. Otherwise, if a data 
template is applied to the item (as described in Chapter 13, “Data Binding”), that template 
can provide the rendering behavior on behalf of the object. Otherwise, the content’s 
ToString method is called, and the returned text is rendered inside a TextBlock control.

D I G G I N G  D E E P E R

  From the Library of Wow! eBook



ptg

Several controls ultimately derive from ButtonBase, and the following sections examine 
each of them in turn:

. Button

. RepeatButton

. ToggleButton

. CheckBox

. RadioButton

Additional ButtonBase-derived controls exist, but they were designed to be used inside 
specific complex controls, such as Calendar and DataGrid.

Button
The WPF Button class adds two simple concepts on top of what ButtonBase already 
provides: being a cancel button or a default button. These two mechanisms are handy short-
cuts for dialogs. If Button.IsCancel is set to true on a Button inside a dialog (that is, a 
Window shown via its ShowDialog method), the Window is automatically closed with a 
DialogResult of false. If Button.IsDefault is set to true, pressing Enter causes the 
Button to be clicked unless focus is explicitly taken away from it.

CHAPTER 9 Content Controls264

Click’s Effect on Other Events

To raise the Click event, ButtonBase listens to more primitive events, such as 
MouseLeftButtonDown and MouseLeftButtonUp. For a ClickMode of Release or Press, 
neither of these primitive events bubbles up from a ButtonBase-derived element because 
ButtonBase sets the MouseButtonEventArgs.Handled field to true. For a ClickMode of 
Hover, the MouseEnter and MouseLeave events don’t bubble up for the same reason. If you 
want to handle the primitive mouse events on a ButtonBase-derived element, you must 
either handle the preview version of these events (PreviewMouseLeftButtonDown, 
PreviewMouseLeftButtonUp, and so on) or attach your event handler(s) in procedural code 
with the AddHandler overload that ignores whether an event has been marked as handled.

D I G G I N G  D E E P E R

What’s the difference between Button’s IsDefault and IsDefaulted
properties?

IsDefault is a read/write property that enables you to decide whether a Button should be 
the default one. The poorly named IsDefaulted property, on the other hand, is read-only. It 
indicates when a default button is in a state such that pressing Enter causes it to be 
clicked. In other words, IsDefaulted can be true only when IsDefault is true and either 
the default button or a TextBox (with AcceptsReturn set to false) has focus. The latter 
condition enables the Enter key to click the default button without tabbing out of a TextBox.

?
FA Q

  From the Library of Wow! eBook



ptg

RepeatButton
RepeatButton acts just like Button except that it continually raises the Click event as 
long as the button is being pressed. (It also doesn’t have Button’s cancel and default 
behaviors because it derives directly from ButtonBase.) The frequency of the raised Click 
events depends on the values of RepeatButton’s Delay and Interval properties, whose 
default values are SystemParameters.KeyboardDelay and 
SystemParameters.KeyboardSpeed, respectively. The default look of a RepeatButton is 
exactly the same as that of Button (shown in Figure 9.1).

The behavior of RepeatButton might sound strange at first, but it is useful (and standard) 
for buttons that increment or decrement a value each time they are pressed. For example, 
the buttons at the ends of a scrollbar exhibit the repeat-press behavior when you click 
them and hold the mouse button down. Or, if you were to build a numeric “up-down” 
control (which WPF still does not have built in), you would likely want to use two 
RepeatButtons to control the numeric value. RepeatButton is in the 
System.Windows.Controls.Primitives namespace because it is likely that you would use 
this control only as part of a more sophisticated control rather than use it directly.

ToggleButton
ToggleButton is a “sticky” button that holds its state when it is clicked (again without 
Button’s cancel and default behaviors). Clicking it the first time sets its IsChecked prop-
erty to true, and clicking it again sets IsChecked to false. The default appearance of 
ToggleButton is exactly the same as that of Button and RepeatButton.

ToggleButton also has an IsThreeState property that, if set to true, gives IsChecked 
three possible values: true, false, or null. In fact, IsChecked is of type 
Nullable<Boolean> (bool? in C#). In the three-state case, the first click sets IsChecked to 
true, the second click sets it to null, the third click sets it to false, and so on. To vary 
the order of these state changes, you could either intercept the clicks by handling the 
preview versions of the mouse events and manually set IsChecked to the value you desire, 
or you could create your own subclass and override ToggleButton’s OnToggle method to 
perform your custom logic.

Buttons 265
9

How can I programmatically click a Button?

Button, like many other WPF controls, has a peer class in the 
System.Windows.Automation.Peers namespace to support UI Automation: 
ButtonAutomationPeer. It can be used as follows with a Button called myButton:

ButtonAutomationPeer bap = new ButtonAutomationPeer(myButton); 

IInvokeProvider iip = bap.GetPattern(PatternInterface.Invoke)

as IInvokeProvider; 

iip.Invoke(); // This clicks the Button

These UI Automation classes have several members that are extremely useful for automated 
testing and accessibility.

?
FA Q

  From the Library of Wow! eBook



ptg

In addition to the IsChecked property, ToggleButton defines a separate event for each 
value of IsChecked: Checked for true, Unchecked for false, and Indeterminate for null. It 
might seem odd that ToggleButton doesn’t have a single IsCheckedChanged event, but the 
three separate events are handy for declarative scenarios.

As with RepeatButton, ToggleButton is in the System.Windows.Controls.Primitives 
namespace, which essentially means that the WPF designers don’t expect people to use 
ToggleButtons directly or without additional customizations. It is quite natural, however, 
to use ToggleButtons directly inside a ToolBar control, as described in Chapter 10.

CheckBox
CheckBox, shown in Figure 9.2, is a familiar control. But wait a minute…isn’t this section 
supposed to be about buttons? Yes, but consider the characteristics of a WPF CheckBox:

. It has a single piece of externally supplied content (so the standard check box doesn’t 
count).

. It has a notion of being clicked by mouse or keyboard.

. It retains a state of being checked or unchecked when 
clicked.

. It supports a three-state mode, where the state toggles 
from checked to indeterminate to unchecked.

Does this sound familiar? It should, because a CheckBox is 
nothing more than a ToggleButton with a different appear-
ance! CheckBox is a simple class deriving from ToggleButton 
that does little more than override its default style to the 
visuals shown in Figure 9.2.

CHAPTER 9 Content Controls266

FIGURE 9.2 The
WPF CheckBox control, 
with all three 
IsChecked states 
shown.

CheckBox Keyboard Support

CheckBox supports one additional behavior that ToggleButton does not, for parity with a 
little-known feature of Win32 check boxes. When a CheckBox has focus, pressing the plus 
(+) key checks the control and pressing the minus (–) key unchecks the control! Note that 
this works only if IsThreeState hasn’t been set to true.

D I G G I N G  D E E P E R

RadioButton
RadioButton is another control that derives from ToggleButton, but it is unique because 
it has built-in support for mutual exclusion. When multiple RadioButton controls are 
grouped together, only one can be checked at a time. Checking one RadioButton—even 
programmatically—automatically unchecks all others in the same group. In fact, users 
can’t even directly uncheck a RadioButton by clicking it; unchecking can only be done

  From the Library of Wow! eBook



ptg

programmatically. Therefore, RadioButton is designed for 
multiple-choice questions. Figure 9.3 shows the default appear-
ance of a RadioButton.

The rarely used indeterminate state of a RadioButton control 
(IsThreeState=true and IsChecked=null) is similar to the 
unchecked state in that a user cannot enable this state by click-
ing on it; it must be set programmatically. If the RadioButton is 
clicked, it changes to the checked state, but if another 
RadioButton in the same group becomes checked, any indeter-
minate RadioButtons remain in the indeterminate state.

Placing several WPF RadioButtons in the same group is very straightforward. By default, 
any RadioButtons that share the same direct logical parent are automatically grouped 
together. For example, only one of the following RadioButtons can be checked at any 
point in time:

<StackPanel> 

<RadioButton>Option 1</RadioButton> 

<RadioButton>Option 2</RadioButton> 

<RadioButton>Option 3</RadioButton>

</StackPanel>

If you need to group RadioButtons in a custom manner, however, you can use the 
GroupName property, which is a simple string. Any RadioButtons with the same GroupName 
value get grouped together (as long as they have the same logical root). Therefore, you 
can group them across different parents, as shown here:

<StackPanel> 

<StackPanel>

<RadioButton GroupName=”A”>Option 1</RadioButton> 

<RadioButton GroupName=”A”>Option 2</RadioButton>

</StackPanel> 

<StackPanel>

<RadioButton GroupName=”A”>Option 3</RadioButton> 

</StackPanel>

</StackPanel>

Or you can even create subgroups inside the same parent:

<StackPanel> 

<RadioButton GroupName=”A”>Option 1</RadioButton> 

<RadioButton GroupName=”A”>Option 2</RadioButton> 

<RadioButton GroupName=”B”>A Different Option 1</RadioButton> 

<RadioButton GroupName=”B”>A Different Option 2</RadioButton>

</StackPanel>

Buttons 267
9

FIGURE 9.3 The
WPF RadioButton, with 
all three IsChecked 
states shown.

Different
parents

Different
groups

  From the Library of Wow! eBook



ptg

Of course, the last example would be a confusing piece of user interface without an extra 
visual element separating the two subgroups!

Simple Containers
WPF includes several built-in content controls that don’t have a notion of being clicked 
like a button. Each has unique features to justify its existence. These content controls are 
the following:

. Label

. ToolTip

. Frame

Label
Label is a classic control that, as in previous technologies, can be used to hold some text. 
Because it is a WPF content control, it can hold arbitrary content in its Content prop-
erty—a Button, a Menu, and so on—but Label is really useful only for text.

You can place text on the screen with WPF in several different ways, such as using a 
TextBlock element. But what makes Label unique is its support for access keys. You can 
designate a letter in a Label’s text that gets special treatment when the user presses the 
access key—the Alt key and the designated letter. You can also specify an arbitrary 
element that should receive focus when the user presses this access key. To designate the 
letter (which can appear underlined, depending on the Windows settings), you simply 
precede it with an underscore. To designate the target element, you set Label’s Target 
property (of type UIElement).

The classic case of using a Label’s access key support with another control is pairing it 
with a TextBox. For example, the following XAML snippet gives focus to the TextBox 
when Alt+U is pressed:

<Label Target=”userNameBox”>_User Name:</Label> 

<TextBox x:Name=”userNameBox”/>

Setting the value of Target implicitly 
leverages the NameReferenceConverter 
type converter described in Chapter 2. In 
C#, you can simply set the property to 
the instance of the TextBox control as 
follows (assuming that the Label is 
named userNameLabel):

userNameLabel.Target = userNameBox;

CHAPTER 9 Content Controls268

Controls such as Label and Button support 
access keys by treating an underscore 
before the appropriate letter specially, as in 
_Open or Save _As. (Win32 and Windows 
Forms use an ampersand [&] instead; the 
underscore is much more XML friendly.) If 
you really want an underscore to appear in 
your text, you need to use two consecutive 
underscores, as in __Open or Save __As.

T I P

  From the Library of Wow! eBook



ptg

ToolTip
The ToolTip control holds its content in a floating box that appears when you hover over 
an associated control and disappears when you move the mouse away. Figure 9.4 shows a 
typical ToolTip in action, created from the following XAML:

<Button>

OK 

<Button.ToolTip>

<ToolTip> 

Clicking this will submit your request.

</ToolTip> 

</Button.ToolTip> 

</Button>

The ToolTip class can never be placed 
directly in a tree of UIElements. Instead, it 
must be assigned as the value of a separate 
element’s ToolTip property (defined on 
both FrameworkElement and 
FrameworkContentElement).

Simple Containers 269
9

FIGURE 9.4 The WPF ToolTip.

You don’t even need to use the ToolTip class when setting an element’s ToolTip property! 
The property is of type Object, and if you set it to any non-ToolTip object, the property’s 
implementation automatically creates a ToolTip and uses the property value as the 
ToolTip’s content. Therefore, the XAML for Figure 9.4 could be simplified to the following 
and give the same result:

<Button>

OK 

<Button.ToolTip>

Clicking this will submit your request.

</Button.ToolTip> 

</Button>

or it could be simplified further, as follows:

<Button Content=”OK” ToolTip=”Clicking this will submit your request.”/>

T I P

Because of the flexibility of WPF’s content controls, a WPF ToolTip can hold anything 
you want! Listing 9.1 shows how you might construct a Microsoft Office–style ScreenTip. 
The result is shown in Figure 9.5.

  From the Library of Wow! eBook



ptg

LISTING 9.1 A Complex ToolTip, Similar to a Microsoft Office ScreenTip

<CheckBox>

CheckBox 

<CheckBox.ToolTip>

<StackPanel> 

<Label FontWeight=”Bold” Background=”Blue” Foreground=”White”>

The CheckBox 

</Label> 

<TextBlock Padding=”10” TextWrapping=”WrapWithOverflow” Width=”200”>

CheckBox is a familiar control. But in WPF, it’s not much 

more than a ToggleButton styled differently!

</TextBlock> 

<Line Stroke=”Black” StrokeThickness=”1” X2=”200”/> 

<StackPanel Orientation=”Horizontal”>

<Image Margin=”2” Source=”help.gif”/> 

<Label FontWeight=”Bold”>Press F1 for more help.</Label>

</StackPanel> 

</StackPanel>

</CheckBox.ToolTip> 

</CheckBox>

Although a ToolTip can contain interactive 
controls such as Buttons, those controls 
never get focus, and you can’t click or 
otherwise interact with them.

ToolTip defines Open and Closed events in 
case you want to act on its appearance and 
disappearance. It also defines several prop-
erties for tweaking its behavior, such as its 
placement, whether it should stay open 
until explicitly closed, or even whether a 
drop shadow should be rendered.
Sometimes you might want to apply the 
same ToolTip on multiple controls, yet 
you might want the ToolTip to behave differently depending on the control to which it is 
attached. For such cases, a separate ToolTipService static class can meet your needs.

ToolTipService defines a handful of attached properties that can be set on any element 
using the ToolTip (rather than on the ToolTip itself). It has several of the same properties 
as ToolTip (which have a higher precedence in case the ToolTip in question has conflict-
ing values), but it also adds several more. For example, ShowDuration controls how long 
the ToolTip should be displayed while the mouse pointer is paused over an element, and 
InitialShowDelay controls the length of time between the pause occurring and the 
ToolTip first being shown. You can add ShowDuration to the first ToolTip example as 
follows:

CHAPTER 9 Content Controls270

FIGURE 9.5 A tooltip like the ScreenTips 
in Microsoft Office is easy to create in WPF.

  From the Library of Wow! eBook



ptg

Frame
The Frame control holds arbitrary 
content, just like all other content 
controls, but it isolates the content from 
the rest of the user interface. For 
example, properties that would normally 
be inherited down the element tree stop 
when they reach the Frame. In many respects, WPF Frames act like frames in HTML.

Speaking of HTML, Frame’s claim to fame is that it can render HTML content in addition 
to WPF content. Frame has a Source property of type System.Uri that can be set to any 
HTML (or XAML) page. Here’s an example:

<Frame Source=”http://www.adamnathan.net”/>

<Button ToolTipService.ShowDuration=”3000”> 

…

</Button>

Simple Containers 271
9

How do I get a ToolTip to appear when hovering over a disabled element?

Simply use the ShowOnDisabled attached property of the ToolTipService class. 
From XAML, this would look as follows on a Button:

<Button ToolTipService.ShowOnDisabled=”True”> 

…

</Button>

Or from C# code, you can call the static method corresponding to the attached property:

ToolTipService.SetShowOnDisabled(myButton, true);

?
FA Q

How can I forcibly close a
ToolTip that is currently 

showing?

Set its IsOpen property to false.

?
FA Q

When using Frame to navigate between web pages, be sure to handle its NavigationFailed 
event to perform any error logic and set NavigationFailedEventArgs.Handled to true. 
Otherwise, an unhandled exception (such as a WebException) gets raised on a different 
thread. The NavigationFailedEventArgs object passed to the handler provides access to 
the exception among other details.

T I P

As explained in Chapter 7, Frame is a navigation container with built-in tracking that 
applies to both HTML and XAML content. So, you can think of the Frame control as a 
more flexible version of the Microsoft Web Browser ActiveX control or the WPF 
WebBrowser control that wraps this ActiveX control.

  From the Library of Wow! eBook



ptg

Unfortunately, when Frame hosts HTML, it has several limitations that don’t apply to 
other WPF controls (due to relying on Win32 for its implementation of HTML rendering). 
For example, the HTML content is always rendered on top of WPF content, it can’t have 
effects applied to it, its Opacity can’t be changed, and so on. Frame also does not support 
rendering an arbitrary string or stream of HTML; the content must be a path or URL 
pointing to a loose file. If you require the ability to display in-memory HTML strings, the 
best option is to use the WPF WebBrowser control instead.

CHAPTER 9 Content Controls272

Compared to using Frame, WPF’s WebBrowser control (introduced in WPF 3.5 SP1) provides a 
more powerful way to host HTML. It supports rendering HTML supplied from an in-memory 
string or Stream, as well as interactivity with the HTML DOM and its script. It also provides a 
slick way to host Silverlight content in a WPF application: Just give it a URL that points to a 
Silverlight .xap file. Note that WebBrowser is not a content control; it cannot directly contain 
any WPF elements.

T I P

Frame’s Content Property

Although Frame is a content control and has a property called Content, it does not treat 
Content as a content property in the XAML sense. In other words, the Frame element in 
XAML doesn’t support a child element. You must explicitly use the Content property as 
follows:

<Frame> 

<Frame.Content>

… 

</Frame.Content> 

</Frame>

Frame accomplishes this by marking itself with an empty ContentPropertyAttribute, over-
riding the [ContentProperty(“Content”)] marking on the base ContentControl class. 
But why does it bother?

According to the designers of WPF, this was done to deemphasize the use of Frame’s 
Content property, as setting its Source property to an external file is the typical expected 
usage of Frame. And the only reason Frame is a content control is for consistency with 
NavigationWindow, discussed in Chapter 7. Note that if you set both the Source and 
Content properties, Content takes precedence.

D I G G I N G  D E E P E R

Containers with Headers
All the previous content controls either add very simple default visuals around the 
content (button chrome, a check box, and so on) or don’t add any visuals at all. The 
following two controls are a little different because they add a customizable header to the

  From the Library of Wow! eBook



ptg

main content. These controls derive from a subclass of ContentControl named 
HeaderedContentControl, which adds a Header property of type Object.

GroupBox
GroupBox is a familiar control for organiz-
ing chunks of controls. Figure 9.6 shows a 
GroupBox surrounding CheckBoxes, created 
from the following XAML:

<GroupBox Header=”Grammar”> 

<StackPanel>

<CheckBox>Check grammar as you type</CheckBox> 

<CheckBox>Hide grammatical errors in this document</CheckBox> 

<CheckBox>Check grammar with spelling</CheckBox>

</StackPanel> 

</GroupBox>

GroupBox is typically used to contain multiple items, but because it is a content control, it 
can directly contain only a single item. Therefore, you typically need to set GroupBox’s 
content to an intermediate control that can contain multiple children. A Panel, such as a 
StackPanel, is perfect for this.

Just like the Content property, the Header property can be set to an arbitrary object, and if 
it derives from UIElement, it is rendered as expected. For example, changing Header to be
a Button as follows produces the result shown in Figure 9.7:

<GroupBox> 

<GroupBox.Header>

<Button>Grammar</Button> 

</GroupBox.Header>

<StackPanel> 

<CheckBox>Check grammar as you type</CheckBox> 

<CheckBox>Hide grammatical errors in this document</CheckBox> 

<CheckBox>Check grammar with spelling</CheckBox>

</StackPanel> 

</GroupBox>

In Figure 9.7, the Button used in the 
header is fully functional. It can get 
focus, it can be clicked, and so on.

Expander
Expander is a bit exciting because it’s the 
only control examined in this chapter that doesn’t already exist in Win32-based user 
interface technologies such as Windows Forms! Expander is very much like GroupBox, but

Containers with Headers 273
9

FIGURE 9.6 The WPF GroupBox.

FIGURE 9.7 A GroupBox with a Button 
as a header, just to reinforce WPF’s flexible 
content model.

  From the Library of Wow! eBook



ptg

it contains a button that enables you to expand and collapse the inner content. (By 
default, the Expander starts out collapsed.)

Figure 9.8 displays the Expander control in its two states. This Expander was created with 
the same XAML used in Figure 9.6, but with the opening and closing GroupBox tags 
replaced with Expander tags:

<Expander Header=”Grammar”>

<StackPanel> 

<CheckBox>Check grammar as you type</CheckBox> 

<CheckBox>Hide grammatical errors in this document</CheckBox> 

<CheckBox>Check grammar with spelling</CheckBox>

</StackPanel> 

</Expander>

CHAPTER 9 Content Controls274

Collapsed Expanded

FIGURE 9.8 The WPF Expander.

Expander defines an IsExpanded property and Expanded/Collapsed events. It also enables 
you to control the direction in which the expansion happens (Up, Down, Left, or Right) 
with an ExpandDirection property.

The button inside the Expander is actually a restyled ToggleButton. Several of the more 
complicated controls use primitive controls, such as ToggleButton and RepeatButton, 
internally.

Summary
Never before has a button been so flexible! In WPF, Button and all the other content 
controls can contain absolutely anything—but they can directly contain only one item. 
Now, with the tour of content controls complete, it’s time to move on to controls that 
can directly contain more than one item—items controls.

  From the Library of Wow! eBook



ptg

CHAPTER 10

Items Controls

Besides content controls, the other major category of
WPF controls is items controls, which can contain an 
unbounded collection of items rather than just a single 
piece of content. All items controls derive from the abstract 
ItemsControl class, which, like ContentControl, is a direct 
subclass of Control.

ItemsControl stores its content in an Items property (of 
type ItemCollection). Each item can be an arbitrary object 
that by default gets rendered just as it would inside a 
content control. In other words, any UIElement is rendered 
as expected, and (ignoring data templates) any other type is 
rendered as a TextBlock containing the string returned by 
its ToString method.

The ListBox control used in earlier chapters is an items 
control. Whereas those chapters always added 
ListBoxItems to the Items collection, the following 
example adds arbitrary objects to Items:

<ListBox 

xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/ 

➥presentation”

xmlns:sys=”clr-namespace:System;assembly=mscorlib”> 

<Button>Button</Button> 

<Expander Header=”Expander”/> 

<sys:DateTime>1/1/2012</sys:DateTime> 

<sys:DateTime>1/2/2012</sys:DateTime> 

<sys:DateTime>1/3/2012</sys:DateTime>

</ListBox>

(This snippet uses sys:DateTime instead of x:DateTime so it 
works as both loose XAML and compiled XAML.)

IN THIS CHAPTER

. Common Functionality

. Selectors

. Menus

. Other Items Controls

  From the Library of Wow! eBook



ptg

The child elements are implicitly added to the Items 
collection because Items is a content property. This 
ListBox is shown in Figure 10.1. The two UIElements 
(Button and Expander) are rendered normally and are 
fully interactive. The three DateTime objects are 
rendered according to their ToString method.

As mentioned in Chapter 2, “XAML Demystified,” the
Items property is read-only. This means that you can 
add objects to the initially empty collection or remove 
objects, but you can’t point Items to an entirely differ-
ent collection. ItemsControl has a separate property—
ItemsSource—that supports filling its items with an existing arbitrary collection. The use 
of ItemsSource is examined further in Chapter 13, “Data Binding.”

CHAPTER 10 Items Controls276

FIGURE 10.1 A ListBox 
containing arbitrary objects.

To keep things simple, examples in this chapter fill items controls with visual elements. 
However, the preferred approach is to give items controls nonvisual items (for example, 
custom business objects) and use data templates to define how each item gets rendered. 
Chapter 13 discusses data templates in depth.

T I P

Common Functionality
Besides Items and ItemsSource, ItemsControl has a few additional interesting properties, 
including the following:

. HasItems—A read-only Boolean property that makes it easy to act on the control’s 
empty state from declarative XAML. From C#, you can either use this property or 
simply check the value of Items.Count.

. IsGrouping—Another read-only Boolean property that tells if the control’s items are 
divided into top-level groups. This grouping is done directly within the 
ItemsCollection class, which contains several properties for managing and naming 
groups of items. You’ll learn more about grouping in Chapter 13.

. AlternationCount and AlternationIndex—This pair of properties makes it easy to 
vary the style of items based on their index. For example, an AlternationCount of 2 
can be used to give even-indexed items one style and odd-indexed items another 
style. Chapter 14, “Styles, Templates, Skins, and Themes,” shows an example of 
using these properties.

. DisplayMemberPath—A string property that can be set to the name of a property on 
each item (or a more complicated expression) that changes how each object is 
rendered.

. ItemsPanel—A property that can be used to customize how the control’s items are 
arranged without replacing the entire control template.

  From the Library of Wow! eBook



ptg

The next two sections provide further explanation of the last two properties in this list.

DisplayMemberPath
Figure 10.2 demonstrates what happens when DisplayMemberPath is applied to the 
preceding ListBox, as follows:

<ListBox xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation” 

xmlns:sys=”clr-namespace:System;assembly=mscorlib” DisplayMemberPath=”DayOfWeek”> 

<Button>Button</Button> 

<Expander Header=”Expander”/> 

<sys:DateTime>1/1/2012</sys:DateTime> 

<sys:DateTime>1/2/2012</sys:DateTime> 

<sys:DateTime>1/3/2012</sys:DateTime>

</ListBox>

Setting DisplayMemberPath to DayOfWeek tells WPF to 
render the value of each item’s DayOfWeek property 
rather than each item itself. That is why the three 
DateTime objects render as Sunday, Monday, and Tuesday 
in Figure 10.2. (This is the ToString-based rendering of 
each DayOfWeek enumeration value returned by the 
DayOfWeek property.) Because Button and Expander 
don’t have a DayOfWeek property, they are rendered as 
empty TextBlocks.

Common Functionality 277
1

0

FIGURE 10.2 The ListBox 
from Figure 10.1 with 
DisplayMemberPath set to 
DayOfWeek.

Property Paths in WPF

DisplayMemberPath supports syntax known as a property path that is used in several areas 
of WPF, such as data binding and animation. The basic idea of a property path is to repre-
sent a sequence of one or more properties that you could also use in procedural code to get 
a desired value. The simplest example of a property path is a single property name, but if 
the value of that property is a complex object, you can invoke one of its own properties (and 
so on) by delimiting the property names with periods, as in C#. This syntax even supports 
indexers and arrays.

For example, imagine an object that defines a FirstButton property of type Button, whose 
Content property is currently set to an “OK” string. The following property path represents 
the value of the string (“OK”):

FirstButton.Content

The following property path represents the length of the string (2):

FirstButton.Content.Length

And the following property path represents the first character of the string (‘O’):

FirstButton.Content[0]

These expressions match what you would use in C#, except that no casting is required.

D I G G I N G  D E E P E R

  From the Library of Wow! eBook



ptg

ItemsPanel
Like all other WPF controls, the essence of items controls is not their visual appearance 
but their storage of multiple items and, in many cases, the ways in which their items are 
logically selected. Although all WPF controls can be visually altered by applying a new 
control template, items controls have a shortcut for replacing just the piece of the control 
template responsible for arranging its items. This mini-template, called an items panel, 
enables you to swap out the panel used to arrange items while leaving everything else 
about the control intact.

You can use any of the panels discussed in Chapter 5, “Layout with Panels” (or any Panel-
derived custom panel) as an items panel. For example, a ListBox stacks its items vertically 
by default, but the following XAML replaces this arrangement with a WrapPanel, as done 
with Photo Gallery in Chapter 7, “Structuring and Deploying an Application”:

<ListBox> 

<ListBox.ItemsPanel>

<ItemsPanelTemplate> 

<WrapPanel/>

</ItemsPanelTemplate> 

</ListBox.ItemsPanel>

… 

</ListBox>

The translation of this XAML to procedural code is not straightforward, but here’s how 
you can accomplish the same task in C#:

FrameworkElementFactory panelFactory = new 

FrameworkElementFactory(typeof(WrapPanel)); 

myListBox.ItemsPanel = new ItemsPanelTemplate(panelFactory);

Here’s an example with a custom FanCanvas that will be implemented in Chapter 21, 
“Layout with Custom Panels”:

<ListBox> 

<ListBox.ItemsPanel>

<ItemsPanelTemplate> 

<custom:FanCanvas/>

</ItemsPanelTemplate> 

</ListBox.ItemsPanel>

… 

</ListBox>

Figure 10.3 shows the result of applying this to Photo Gallery (and wrapping the ListBox 
in a Viewbox) and selecting one item. The ListBox retains all its behaviors with item selec-
tion despite the custom inner layout.

CHAPTER 10 Items Controls278

  From the Library of Wow! eBook



ptg

FIGURE 10.3 ListBox with a custom FanCanvas used as its ItemsPanel.

Common Functionality 279
1

0

How can I make ListBox arrange its items horizontally instead of 
vertically?

By default, ListBox uses a panel called VirtualizingStackPanel to arrange its items 
vertically. The following code replaces it with a new VirtualizingStackPanel that explicitly 
sets its Orientation to Horizontal:

<ListBox> 

<ListBox.ItemsPanel>

<ItemsPanelTemplate> 

<VirtualizingStackPanel Orientation=”Horizontal”/>

</ItemsPanelTemplate> 

</ListBox.ItemsPanel>

… 

</ListBox>

?
FA Q

Many items controls use VirtualizingStackPanel as their default ItemsPanel to get good 
performance. In WPF 4, this panel supports a new mode that improves scrolling performance 
even further, but you need to turn it on explicitly. To do so, you set the 
VirtualizingStackPanel.VirtualizationMode attached property to Recycling. When 
this is done, the panel reuses (“recycles”) the containers that hold each onscreen item 
rather than constructing a new container for each item.

T I P

  From the Library of Wow! eBook



ptg

If you look at the default control template for an items control such as ListBox, you can 
see an ItemsPresenter, which does the work of picking up the appropriate ItemsPanel:

<ControlTemplate TargetType=”{x:Type ListBox}”> 

<Border …>

<ScrollViewer Padding=”{TemplateBinding Padding}” Focusable=”false”> 

<ItemsPresenter SnapsToDevicePixels=”{TemplateBinding SnapsToDevicePixels}”/>

</ScrollViewer> 

</Border>

<ControlTemplate.Triggers> 

…

</ControlTemplate.Triggers> 

</ControlTemplate>

The presence of ScrollViewer in the default control template explains where the default 
scrolling behavior comes from. You can control an items control’s scrolling behavior with 
various ScrollViewer attached properties.

Controlling Scrolling Behavior
Using ListBox as an example, the following properties have the following values by 
default:

. ScrollViewer.HorizontalScrollBarVisibility—Auto

. ScrollViewer.VerticalScrollBarVisibility—Auto

. ScrollViewer.CanContentScroll—true

. ScrollViewer.IsDeferredScrollingEnabled—false

When CanContentScroll is true, scrolling is done in item-by-item chunks. When it is 
false, the pixel-by-pixel scrolling is smooth but doesn’t do anything to ensure that the 
first item is “snapped” to the edge.

When IsDeferredScrollingEnabled is false, scrolling happens in real-time while the 
scrollbar thumb is dragged. When it is true, the ScrollViewer’s contents do not update 
until the scrollbar thumb is released. When an items control is using a virtualizing panel 
and it contains a large number of complex items, setting IsDeferredScrollingEnabled to 
true can result in a significant performance improvement by avoiding the rendering of 
intermediate states. Applications such as Microsoft Outlook scroll through long lists in 
this fashion.

Here is an example of a ListBox that sets all four of these ScrollViewer attached proper-
ties to affect the ScrollViewer’s behavior in its default control template:

<ListBox 

ScrollViewer.HorizontalScrollBarVisibility=”Disabled” 

ScrollViewer.VerticalScrollBarVisibility=”Disabled” 

ScrollViewer.CanContentScroll=”False”

CHAPTER 10 Items Controls280

  From the Library of Wow! eBook



ptg

ScrollViewer.IsDeferredScrollingEnabled=”True”

>

… 

</ListBox>

ListBox is not the only items control, of course. Items controls can be divided into three 
main groups, as discussed in the following sections: selectors, menus, and others.

Selectors
Selectors are items controls whose items can be indexed and, most importantly, selected. 
The abstract Selector class, which derives from ItemsControl, adds a few properties to 
handle selection. For example, the following are three similar properties for getting or 
setting the current selection:

. SelectedIndex—A zero-based integer that indicates what item is selected or -1 if 
nothing is selected. Items are numbered in the order in which they are added to the 
collection.

. SelectedItem—The actual item instance that is currently selected.

. SelectedValue—The value of the currently selected item. By default this value is the 
item itself, making SelectedValue identical to SelectedItem. You can set 
SelectedValuePath, however, to choose an arbitrary property or expression that 
should represent each item’s value. (SelectedValuePath works just like 
DisplayMemberPath.)

All three properties are read/write, so you can use them to change the current selection as 
well as retrieve it.

Selector also supports two attached properties that can be applied to individual items:

. IsSelected—A Boolean that can be used to select or unselect an item (or to retrieve 
its current selection state)

. IsSelectionActive—A read-only Boolean that tells whether the selection has focus

Selector also defines an event—SelectionChanged—that makes it possible to listen for 
changes to the current selection. Chapter 6, “Input Events: Keyboard, Mouse, Stylus, and 
Multi-Touch,” uses this with a ListBox when demonstrating attached events.

WPF ships five Selector-derived controls, described in the following sections:

. ComboBox

. ListBox

. ListView

. TabControl

. DataGrid

Selectors 281
1

0

  From the Library of Wow! eBook



ptg

ComboBox
The ComboBox control, shown in Figure 10.4, enables users to 
select one item from a list. ComboBox is a popular control 
because it doesn’t occupy much space. It displays only the 
current selection in a selection box, with the rest of the list 
shown on demand in a drop-down. The drop-down can be 
opened and closed by clicking the button or by pressing 
Alt+up arrow, Alt+down arrow, or F4.

ComboBox defines two events—DropDownOpened and DropDownClosed—and a property— 
IsDropDownOpen—that enable you to act on the drop-down being opened or closed. For 
example, you can delay the filling of ComboBox items until the drop-down is opened by 
handling the DropDownOpened event. Note that IsDropDownOpen is a read/write property, so 
you can set it directly to change the state of the drop-down.

Customizing the Selection Box
ComboBox supports a mode in which the user can type arbitrary text into the selection 
box. If the text matches one of the existing items, that item automatically becomes 
selected. Otherwise, no item gets selected, but the custom text gets stored in ComboBox’s 
Text property so you can act on it appropriately. This mode can be controlled with two 
poorly named properties, IsEditable and IsReadOnly, which are both false by default. 
In addition, a StaysOpenOnEdit property can be set to true to keep the drop-down open if 
the user clicks on the selection box (matching the behavior of drop-downs in Microsoft 
Office as opposed to normal Win32 drop-downs).

CHAPTER 10 Items Controls282

FIGURE 10.4 The WPF
ComboBox, with its drop-
down showing.

What’s the difference between ComboBox’s IsEditable and IsReadOnly
properties?

Setting IsEditable to true turns ComboBox’s selection box into a text box. IsReadOnly 
controls whether that text box can be edited, just like TextBox’s IsReadOnly property. This 
means that IsReadOnly is meaningless unless IsEditable is true, and IsEditable being 
true doesn’t necessarily mean that the selection text can be edited. Table 10.1 sums up 
the behavior of ComboBox based on the values of these two properties.

TABLE 10.1 The Behavior for All Combinations of IsEditable and IsReadOnly 

IsEditable IsReadOnly Description

false false The selection box displays a visual copy of the selected 
item, and it doesn’t allow the typing of arbitrary text. (This is 
the default behavior.)

false true Same as above.
true false The selection box displays a textual representation of the 

selected item, and it allows the typing of arbitrary text.
true true The selection box displays a textual representation of the 

selected item, but it doesn’t allow the typing of arbitrary text.

?
FA Q

  From the Library of Wow! eBook



ptg

When the selection box is a text box, the selected item can be displayed only as a simple 
string. This isn’t a problem when items in the ComboBox are strings (or content controls 
containing strings), but when they are more complicated items, you must tell ComboBox 
what to use as the string representation for its items.

Listing 10.1 contains XAML for a ComboBox with complex items. Each item displays a 
PowerPoint design in a way that makes the ComboBox look like a Microsoft Office–style 
gallery, showing a preview and description for each item. A typical gallery in Office 
restricts the selection box to simple text, however, rather than keeping the full richness of 
the selected item. Figure 10.5 shows the rendered result of Listing 10.1, as well as what 
happens by default when this ComboBox is marked with IsEditable set to true.

LISTING 10.1 A ComboBox with Complex Items, Such as a Microsoft Office Gallery

<ComboBox> 

<!-- Item #1 --> 

<StackPanel Orientation=”Horizontal” Margin=”5”>

<Image Source=”CurtainCall.bmp”/> 

<StackPanel Width=”200”>

<TextBlock Margin=”5,0” FontSize=”14” FontWeight=”Bold” 

VerticalAlignment=”center”>Curtain Call</TextBlock> 

<TextBlock Margin=”5” VerticalAlignment=”center” TextWrapping=”Wrap”> 

Whimsical, with a red curtain background that represents a stage. 

</TextBlock>

</StackPanel> 

</StackPanel> 

<!-- Item #2 --> 

<StackPanel Orientation=”Horizontal” Margin=”5”>

<Image Source=”Fireworks.bmp”/> 

<StackPanel Width=”200”>

<TextBlock Margin=”5,0” FontSize=”14” FontWeight=”Bold”

VerticalAlignment=”center”>Fireworks</TextBlock> 

<TextBlock Margin=”5” VerticalAlignment=”center” TextWrapping=”Wrap”>

Sleek, with a black sky containing fireworks. When you need to 

celebrate PowerPoint-style, this design is for you!

</TextBlock> 

</StackPanel>

</StackPanel> 

…more items…

</ComboBox>

Obviously, displaying the type name of “System.Windows.Controls.StackPanel” in the 
selection box is not acceptable, so that’s where the TextSearch class comes in. TextSearch 
defines two attached properties that provide control over the text that gets displayed in 
an editable selection box.

Selectors 283
1

0

  From the Library of Wow! eBook



ptg

FIGURE 10.5 By default, setting IsEditable to true causes ToString-based rendering in 
the selection box.

A TextSearch.TextPath property can be attached to a ComboBox to designate the property 
(or subproperty) of each item to use as the selection box text. This works just like the 
DisplayMemberPath and SelectedValuePath properties; the only difference between these 
three properties is how the final value is used.

For each item in Listing 10.1, the obvious text to use in the selection box is the content 
of the first TextBlock because it contains the title (such as “Curtain Call” or 
“Fireworks”). Because the TextBlock is nested within two StackPanels, the desired prop-
erty path involves referencing the inner StackPanel (the second child of each item) 
before referencing the TextBlock (the first child of each inner StackPanel). Therefore, the 
TextPath attached property can be applied to Listing 10.1 as follows:

<ComboBox IsEditable=”True” TextSearch.TextPath=”Children[1].Children[0].Text”> 

…

</ComboBox>

This is a bit fragile, however, because the property path will stop working if the structure 
of the items is changed. It also doesn’t handle heterogeneous items; any item that doesn’t 
match the structure of TextPath is displayed as an empty string in the selection box.

TextSearch’s other attached property, Text, is more flexible but must be applied to indi-
vidual items in the ComboBox. You can set Text to the literal text you want to be displayed 
in the selection box for each item. It could be applied to Listing 10.1 as follows:

<ComboBox IsEditable=”True”> 

<!-- Item #1 --> 

<StackPanel TextSearch.Text=”Curtain Call” Orientation=”Horizontal” Margin=”5”>

…

CHAPTER 10 Items Controls284

IsEditable=False (default) IsEditable=True

  From the Library of Wow! eBook



ptg

</StackPanel> 

<!-- Item #2 --> 

<StackPanel TextSearch.Text=”Fireworks” Orientation=”Horizontal” Margin=”5”>

… 

</StackPanel> 

…more items…

</ComboBox>

You can use TextSearch.TextPath on the ComboBox and TextSearch.Text on individual 
items simultaneously. In this case, TextPath provides the default selection box representa-
tion, and Text overrides this representation for any marked items.

Figure 10.6 shows the result of using either TextSearch.TextPath or TextSearch.Text as 
in the preceding snippets.

Selectors 285
1

0

FIGURE 10.6 A proper-looking Office-style gallery, thanks to the use of TextSearch attached 
properties.

You can disable TextSearch by setting ItemsControl’s IsTextSearchEnabled property to 
false. ItemsControl’s IsTextSearchCaseSensitive property (which is false by default) 
controls whether the case of typing must match the case of the text.

T I P

When the SelectionChanged event gets raised, how do I get the new selec-
tion?

The SelectionChanged event is designed to handle controls that allow multiple selections, 
so it can be a little confusing for a single-selection selector such as ComboBox. The 
SelectionChangedEventArgs type passed to event handlers has two properties of type IList: 
AddedItems and RemovedItems. AddedItems contains the new selection, and RemovedItems 
contains the previous selection. You can retrieve a new single selection as follows:

?
FA Q

  From the Library of Wow! eBook



ptg

ComboBoxItem

ComboBox implicitly wraps each of its items in a ComboBoxItem object. (You can see this 
from code if you traverse up the visual tree from any of the items.) But you can explicitly 
wrap any item in a ComboBoxItem, which happens to be a content control. You can apply 
this to each item in Listing 10.1 as follows:

<!-- Item #1 --> 

<ComboBoxItem TextSearch.Text=”Curtain Call”>

<StackPanel Orientation=”Horizontal” Margin=”5”> 

…

</StackPanel> 

</ComboBoxItem> 

<!-- Item #2 --> 

<ComboBoxItem TextSearch.Text=”Fireworks”>

<StackPanel Orientation=”Horizontal” Margin=”5”> 

…

</StackPanel> 

</ComboBoxItem> 

…more items…

Notice that if you’re using the TextSearch.Text attached property, you need to move it to 
the ComboBoxItem element now that StackPanel is not the outermost element for each 
item. Similarly, the TextSearch.TextPath value used earlier needs to be changed to 
Content.Children[1].Children[0].Text.

CHAPTER 10 Items Controls286

Continued

void ComboBox_SelectionChanged(object sender, SelectionChangedEventArgs e) 

{

if (e.AddedItems.Count > 0) 

object newSelection = e.AddedItems[0];

}

And, like this code, you should never assume that there’s a selected item! Besides the fact 
that ComboBox’s selection can be cleared programmatically, it can get cleared by the user 
when IsEditable is true and IsReadOnly is false. In this case, if the user changes the 
selection box text to something that doesn’t match any item, the SelectionChanged event 
is raised with an empty AddedItems collection.

  From the Library of Wow! eBook



ptg

ListBox
The familiar ListBox control is similar to ComboBox, except that all items are displayed 
directly within the control’s bounds (or you can scroll to view additional items if they 
don’t all fit). Figure 10.7 shows a ListBox that contains the same items used in Listing
10.1.

Selectors 287
1

0

Why should I bother wrapping items in a ComboBoxItem?

ComboBoxItem exposes some useful properties—IsSelected and IsHighlighted— 
and useful events—Selected and Unselected. Using ComboBoxItem also avoids a quirky 
behavior with showing content controls in the selection box (when IsEditable is false): If 
an item in a ComboBox is a content control, the entire control doesn’t get displayed in the 
selection box. Instead, the inner content is extracted and shown. By using ComboBoxItem as 
the outermost content control, the inner content is now the entire control that you probably 
wanted to be displayed in the first place.

Because ComboBoxItem is a content control, it is also handy for adding simple strings to a 
ComboBox (rather than using something like TextBlock or Label). Here’s an example: 

<ComboBox>

<ComboBoxItem>Item 1</ComboBoxItem> 

<ComboBoxItem>Item 2</ComboBoxItem>

</ComboBox>

?
FA Q

FIGURE 10.7 The WPF ListBox.

  From the Library of Wow! eBook



ptg

Probably the most important feature of ListBox is that it can support multiple simultane-
ous selections. This is controllable via the SelectionMode property, which accepts three 
values (from a SelectionMode enumeration):

. Single—Only one item can be selected at a time, just like with ComboBox. This is the 
default value.

. Multiple—Any number of items can be selected simultaneously. Clicking an unse-
lected item adds it to ListBox’s SelectedItems collection, and clicking a selected 
item removes it from the collection.

. Extended—Any number of items can be selected simultaneously, but the behavior is 
optimized for the single selection case. To select multiple items in this mode, you 
must hold down Shift (for contiguous items) or Ctrl (for noncontiguous items) 
while clicking. This matches the behavior of the Win32 ListBox control.

CHAPTER 10 Items Controls288

ListBox Properties and Multiple Selection

Although ListBox has a SelectedItems property that can be used no matter which 
SelectionMode is used, it still inherits the SelectedIndex, SelectedItem, and 
SelectedValue properties from Selector that don’t fit in with the multiselect model.

When multiple items are selected, SelectedItem simply points to the first item in the 
SelectedItems collection (which is the item selected the earliest by the user), and 
SelectedIndex and SelectedValue simply give the index and value for that item. But it’s 
best not to use these properties on a control that supports multiple selections. Note that 
ListBox does not define a SelectedIndices or SelectedValues property, however.

D I G G I N G  D E E P E R

Just as ComboBox has its companion ComboBoxItem class, ListBox has a ListBoxItem class, 
as seen in earlier chapters. In fact, ComboBoxItem derives from ListBoxItem, which defines 
the IsSelected property and Selected and Unselected events.

The TextSearch technique shown with ComboBox in the preceding section is important for 
ListBox, too. For example, if the items in Figure 10.7 are marked with the appropriate 
TextSearch.Text values, then typing F while the ListBox has focus makes the selection 
jump to the Fireworks item. Without the use of TextSearch, pressing S would cause the 
items to get focus because that’s the first letter in System.Windows.Controls. 
StackPanel. (And that would be a weird user experience!)

T I P

  From the Library of Wow! eBook



ptg

Selectors 289
1

0

How can I get ListBox to scroll smoothly?

By default, ListBox scrolls on an item-by-item basis. Because the scrolling is based 
on each item’s height, it can look quite choppy if you have large items. If you want smooth 
scrolling, so each scrolling action shifts the items by a small number of pixels regardless of 
their heights, the easiest solution is to set the ScrollViewer.CanContentScroll attached 
property to false on the ListBox control, as shown previously in this chapter.

Be aware, however, that by making this change, you lose ListBox’s virtualization functional-
ity. Virtualization refers to the optimization of creating child elements only when they become 
visible on the screen. Virtualization is possible only when using data binding to fill the 
control’s items, so setting CanContentScroll to false can negatively impact the perfor-
mance of data-bound scenarios only.

?
FA Q

How can I sort items in a ListBox (or any other ItemsControl)?

Sorting can be done via a mechanism on the ItemsCollection object, so it applies 
equally to all ItemsControls. ItemsCollection has a SortDescriptions property that can 
hold any number of System.ComponentModel.SortDescription instances. Each 
SortDescription describes which property of the items should be used for sorting and 
whether the sort is in ascending or descending order. For example, the following code sorts 
a bunch of ContentControl items based on their Content property:

// Clear any existing sorting first 

myItemsControl.Items.SortDescriptions.Clear(); 

// Sort by the Content property 

myItemsControl.Items.SortDescriptions.Add(

new SortDescription(“Content”, ListSortDirection.Ascending));

?
FA Q

How do I get the items in my ItemsControl to have automation IDs, as 
seen in tools such as UI Spy?

The easiest way to give any FrameworkElement an automation ID is to set its Name property, 
as that is used by default for automation purposes. However, if you want to give an element 
an ID that is different from its name, simply set the AutomationProperties.AutomationID 
attached property (from the System.Windows.Automation namespace) to the desired string.

?
FA Q

  From the Library of Wow! eBook



ptg

ListView
The ListView control, which derives from ListBox, looks and acts just like a ListBox, 
except that it uses the Extended SelectionMode by default. But ListView also adds a prop-
erty called View that enables you to customize the view in a richer way than choosing a 
custom ItemsPanel.

The View property is of type ViewBase, an abstract class. WPF ships with one concrete 
subclass, GridView. Its default experience is much like Windows Explorer’s Details view. 
(In fact, in beta versions of WPF, GridView was even called DetailsView.)

Figure 10.8 displays a simple ListView created from the following XAML, which assumes 
that the sys prefix corresponds to the System .NET namespace in mscorlib.dll:

<ListView> 

<ListView.View>

<GridView> 

<GridViewColumn Header=”Date”/> 

<GridViewColumn Header=”Day of Week”

DisplayMemberBinding=”{Binding DayOfWeek}”/> 

<GridViewColumn Header=”Year” DisplayMemberBinding=”{Binding Year}”/>

</GridView> 

</ListView.View>

<sys:DateTime>1/1/2012</sys:DateTime> 

<sys:DateTime>1/2/2012</sys:DateTime> 

<sys:DateTime>1/3/2012</sys:DateTime>

</ListView>

GridView has a Columns content property 
that holds a collection of GridViewColumn 
objects, as well as other properties to 
control the behavior of the column 
headers. WPF defines a ListViewItem 
element that derives from ListBoxItem. In this case, the DateTime objects are implicitly 
wrapped in ListViewItems because they are not used explicitly.

ListView’s items are specified as a simple list, as with ListBox, so the key to displaying 
different data in each column is the DisplayMemberBinding property of GridViewColumn. 
The idea is that ListView contains a complex object for each row, and the value for every 
column is a property or subproperty of each object. Unlike ItemsControl’s 
DisplayMemberPath property, however, DisplayMemberBinding requires the use of data 
binding techniques described in Chapter 13.

What’s nice about GridView is that it automatically supports some of the advanced 
features of Windows Explorer’s Details view:

. You can reorder columns by dragging and dropping them.

. You can resize columns by dragging the column separators.

CHAPTER 10 Items Controls290

FIGURE 10.8 The WPF ListView, using
GridView.

  From the Library of Wow! eBook



ptg

. You can cause columns to automatically resize to “just fit” their content by double-
clicking their separators.

GridView doesn’t, however, support automatic sorting by clicking on a column header, 
which is an unfortunate gap in functionality. The code to sort items when a header is 
clicked is not complicated (you simply use the SortDescriptions property mentioned in 
the previous section), but you also have to manually create the little arrow in the header 
that typically indicates which column is being used for sorting and whether it’s an 
ascending or descending sort. Basically, ListView with GridView is a poor-man’s DataGrid. 
But now that WPF 4 has a real DataGrid control, the usefulness of the GridView control is 
diminished.

TabControl
The next selector, TabControl, is useful for switch-
ing between multiple pages of content. Figure 10.9 
shows what a basic TabControl looks like. Tabs in a 
TabControl are typically placed on the top, but 
with TabControl’s TabStripPlacment property (of 
type Dock), you can also set their placement to 
Left, Right, or Bottom.

TabControl is pretty easy to use. You simply add 
items, and each item is placed on a separate tab. 
Here’s an example:

<TabControl> 

<TextBlock>Content for Tab 1.</TextBlock> 

<TextBlock>Content for Tab 2.</TextBlock> 

<TextBlock>Content for Tab 3.</TextBlock>

</TabControl>

Much like ComboBox with ComboBoxItem, ListBox with ListBoxItem, and so on, 
TabControl implicitly wraps each item in its companion TabItem type. It’s unlikely that 
you’d add non-TabItem children directly to TabControl, however, because without an 
explicit TabItem there’s no way to label the corresponding tab. For example, the following 
XAML is the source for Figure 10.9:

<TabControl> 

<TabItem Header=”Tab 1”>Content for Tab 1.</TabItem> 

<TabItem Header=”Tab 2”>Content for Tab 2.</TabItem> 

<TabItem Header=”Tab 3”>Content for Tab 3.</TabItem>

</TabControl>

TabItem is a headered content control, so Header can be any arbitrary object, just like 
with GroupBox or Expander.

Selectors 291
1

0

FIGURE 10.9 The WPF 
TabControl.

  From the Library of Wow! eBook



ptg

Unlike with the other selectors, with TabItem, the first item is selected by default. 
However, you can programmatically unselect all tabs by setting SelectedItem to null or 
SelectedIndex to -1.

DataGrid
DataGrid is a versatile control for displaying multicolumn rows of data that can be sorted, 
edited, and much more. It is optimized for easy hook-up to an in-memory database table 
(such as System.Data.DataTable in ADO.NET). Wizards in Visual Studio and technologies 
such as LINQ to SQL make this connection especially easy.

Listing 10.2 shows a DataGrid that directly contains a XAML-instantiated collection of 
two instances of the following custom Record type:

public class Record 

{

public string FirstName   { get; set; } 

public string LastName    { get; set; } 

public Uri Website        { get; set; } 

public bool IsBillionaire { get; set; } 

public Gender Gender      { get; set; }

}

where the Gender enumeration is defined as follows:

public enum Gender 

{

Male,

Female

}

The five columns of data shown in Figure 10.10 (one for each property on the Record 
object) are defined in the Columns collection.

LISTING 10.2 A DataGrid with Inline Data and a Variety of Column Types

<DataGrid IsReadOnly=”True” 

xmlns:local=”clr-namespace:Listing10_2” 

xmlns:sys=”clr-namespace:System;assembly=mscorlib”>

<!-- Support for showing all genders in the DataGridComboBoxColumn: --> 

<DataGrid.Resources>

<ObjectDataProvider x:Key=”genderEnum” MethodName=”GetValues”

ObjectType=”{x:Type sys:Enum}”> 

<ObjectDataProvider.MethodParameters>

<x:Type Type=”local:Gender”/> 

</ObjectDataProvider.MethodParameters> 

</ObjectDataProvider>

CHAPTER 10 Items Controls292

  From the Library of Wow! eBook



ptg

</DataGrid.Resources>

<!-- The columns: --> 

<DataGrid.Columns>

<DataGridTextColumn Header=”First Name” Binding=”{Binding FirstName}”/> 

<DataGridTextColumn Header=”Last Name” Binding=”{Binding LastName}”/> 

<DataGridHyperlinkColumn Header=”Website” Binding=”{Binding Website}”/> 

<DataGridCheckBoxColumn Header=”Billionaire?”

Binding=”{Binding IsBillionaire}”/> 

<DataGridComboBoxColumn Header=”Gender” SelectedItemBinding=”{Binding Gender}”

ItemsSource=”{Binding Source={StaticResource genderEnum}}”/> 

</DataGrid.Columns>

<!-- The data: --> 

<local:Record FirstName=”Adam” LastName=”Nathan”

Website=”http://adamnathan.net” Gender=”Male”/> 

<local:Record FirstName=”Bill” LastName=”Gates”

Website=”http://twitter.com/billgates” IsBillionaire=”True” Gender=”Male”/>

</DataGrid>

Selectors 293

LISTING 10.2 Continued

1
0

FIGURE 10.10 The WPF DataGrid, as constructed in Listing 10.2.

The DataGrid automatically supports reordering, resizing, and sorting the columns, but 
any or all of this functionality can be disabled by setting any of the following properties 
to false: CanUserReorderColumns, CanUserResizeColumns, CanUserResizeRows, and 
CanUserSortColumns. The grid lines and headers can be easily disabled via the 
GridLinesVisibility and HeadersVisibility properties.

Listing 10.2 highlights the main column types supported by DataGrid:

. DataGridTextColumn—Perfect for strings, this column type displays a TextBlock for 
its normal display and a TextBox when the value is being edited.

. DataGridHyperlinkColumn—Turns what would be plain text into a clickable hyper-
link. However, note that there is no default behavior associated with clicking that 
link (such as opening a web browser). You must explicitly handle such actions.

  From the Library of Wow! eBook



ptg

. DataGridCheckBoxColumn—Perfect for Boolean values, this column type displays a 
CheckBox to represent a true (checked) or false (unchecked) value.

. DataGridComboBoxColumn—Perfect for enumerations, this column type displays a 
TextBlock for its normal display and a ComboBox filled with possible values when the 
value is being edited.

WPF has one more built-in column type:

. DataGridTemplateColumn—Enables an arbitrary template to be set for a value’s 
normal display as well as its editing display. This is done by setting its CellTemplate 
and CellEditingTemplate properties.

Auto-Generated Columns
When DataGrid’s items are set via ItemsSource, it attempts to automatically generate 
appropriate columns. When this happens, DataGridTextColumn is automatically used for 
strings, DataGridHyperlinkColumn is automatically used for URIs, DataGridCheckBoxColumn 
is automatically used for Booleans, and DataGridComboBoxColumn is automatically used for 
enumerations (with an appropriate items source hooked up automatically).

Therefore, the following empty DataGrid:

<DataGrid Name=”dataGrid” />

produces almost exactly the same result as Figure 10.10 when its ItemsSource is set as 
follows in code-behind:

dataGrid.ItemsSource = new Record[] 

{

new Record { FirstName=”Adam”, LastName=”Nathan”, Website= 

new Uri(“http://adamnathan.net”), Gender=Gender.Male },

new Record { FirstName=”Bill”, LastName=”Gates”, Website= 

new Uri(“http://twitter.com/billgates”), Gender=Gender.Male, 

IsBillionaire=true }

};

The only visual difference is the labels used in the headers, which now match the corre-
sponding property names. Figure 10.11 shows the result.

Besides being much simpler to construct, the DataGrid in Figure 10.11 automatically 
supports editing of the fields in each item, unlike when the items were placed directly in 
DataGrid’s Items collection. Cells in the first three columns automatically turn into 
editable TextBoxes when clicked, the CheckBoxes are clickable, and cells in the Gender 
column automatically turn into a ComboBox with the appropriate values when clicked. 
Keyboard gestures such as pressing the spacebar or F2 can also be used on the cell that has 
keyboard focus. All edits, when committed, are reflected in the underlying ItemsSource 
collection. (Unfortunately, checking the IsBillionaire box next to my name did not 
cause any change to be reflected in my bank account. Perhaps this sample has a bug.)

CHAPTER 10 Items Controls294

  From the Library of Wow! eBook



ptg

FIGURE 10.11 The WPF DataGrid, with autogenerated columns that use Record’s property 
names as the header text.

If a DataGrid already has explicit columns defined, any autogenerated columns are placed 
after them. You can customize or remove individual autogenerated columns by handling 
the AutoGeneratingColumn event, which is raised once for each column. When all the 
columns have been generated, a single AutoGeneratedColumns event is raised. To disable 
autogenerated columns altogether, simply set DataGrid’s AutoGenerateColumns property 
to false.

Selecting Rows and/or Cells
DataGrid supports multiple selection modes controlled by two properties—SelectionMode 

and SelectionUnit. SelectionMode can be set to Single for single-item selection or 
Extended for multiple-item selection (the default behavior). The definition of “item” 
depends on the value of SelectionUnit. It can be set to any of the following:

. Cell—Only individual cells can be selected.

. FullRow—Only full rows can be selected. This is the default.

. CellOrRowHeader—Either can be selected. (To select a full row, click a row header.)

When multiselection is enabled, the Shift key can be held down to select multiple 
contiguous items or the Ctrl key can be held down to select multiple noncontiguous 
items.

When rows are selected, the Selected event is raised and the SelectedItems property 
contains the items. For the DataGrid in Listing 10.2, these items would be the Record 
instances. When individual cells are selected, the SelectedCellChanged event is raised 
and the SelectedCells property contains a list of DataGridCellInfo structures that 
contain information about the relevant columns and data. Instances of DataGridRow and 
DataGridCell involved in the selection also raise their own Selected event and have an 
IsSelected property set to true.

Even if multiple cells or rows are selected, there is at most one cell that has focus at any 
time. You can get or set that cell with the CurrentCell property. In addition, the 
CurrentColumn property reveals the column containing CurrentCell, and CurrentItem 
contains the data item corresponding to CurrentCell’s row.

A lot of the support for bulk selection and selection transactions comes from the base 
MultiSelector class, which derives from Selector and was introduced in WPF 3.5. Other 
WPF controls support multiple selections, but DataGrid is the only one that derives from 
MultiSelector.

Selectors 295
1

0

  From the Library of Wow! eBook



ptg

Additional Customizations
DataGrid supports a number of customizations easily, such as its interaction with the clip-
board, virtualization, the ability to add extra details to rows, and the ability to “freeze” 
columns.

Clipboard Interaction The data that gets copied to the clipboard from a DataGrid (such as 
when pressing Ctrl+C on a selection) can be customized with the ClipboardCopyMode 
property. It can be set to the following values:

. ExcludeHeader—Column headers are not included in the copied text. This is the 
default.

. IncludeHeader—Column headers are included in the copied text.

. None—Nothing can be copied to the clipboard.

Virtualization By default, DataGrid’s rows are virtualized (UIElements are not created for 
rows offscreen, and the underlying data might even be fetched lazily, depending on the 
data source), but its columns are not. You can alter this behavior by setting 
EnableRowVirtualization to false or EnableColumnVirtualization to true. 
EnableColumnVirtualization is not true by default because it can slow down the frame 
rate when doing horizontal scrolling.

Extra Row Details DataGrid supports showing extended details on rows by setting the 
RowDetailsTemplate property. Here’s an example:

<DataGrid …> 

<DataGrid.RowDetailsTemplate>

<DataTemplate> 

<TextBlock Margin=”10” FontWeight=”Bold”>Details go here.</TextBlock>

</DataTemplate> 

</DataGrid.RowDetailsTemplate>

… 

</DataGrid>

Ordinarily, the elements inside RowDetailsTemplate would use data binding to customize 
the contents for the current row, but this example uses a simple TextBlock. Figure 10.12 
shows the result when selecting a row.

CHAPTER 10 Items Controls296

FIGURE 10.12 Showing details on a selected row in a DataGrid.

  From the Library of Wow! eBook



ptg

By default, details are shown only for the selected row(s), but this behavior can be 
changed with the RowDetailsVisibilityMode property. It can be set to one of the follow-
ing values:

. VisibleWhenSelected —The row details are shown for only selected rows. This is the 
default value.

. Visible—The row details are shown for every row.

. Collapsed—The row details are not shown for any row.

Column Freezing DataGrid supports “freezing” any number of columns, meaning that 
they never scroll out of view. This is a lot like freezing columns in Microsoft Excel. There 
are several limitations to this support: They can 
only be the leftmost columns, and frozen columns 
cannot be reordered among unfrozen columns (and 
vice versa).

To freeze one or more columns, you simply set the 
FrozenColumnCount property to a value other than 
its default value of 0. Figure 10.13 shows the 
DataGrid from Listing 10.2 but with 
FrozenColumnCount set to 2. The columns after the 
first two have been scrolled, which is why you 
can’t see the header text for the third column.

Editing, Adding, and Removing Data
We’ve already seen that editing the data 
in individual items works automatically 
with DataGrid’s ItemsSource. If the 
ItemsSource collection supports adding 
and removing items, then DataGrid 
automatically supports adding and 
removing items as well. With the previ-
ous example, wrapping the array in a 
List<Record> (so the static array is only 
used to initialize the dynamic list) is enough to enable this functionality:

dataGrid.ItemsSource = new List<Record>( 

new Record[] 

{

new Record { FirstName=”Adam”, LastName=”Nathan”, Website= 

new Uri(“http://adamnathan.net”), Gender=Gender.Male },

new Record { FirstName=”Bill”, LastName=”Gates”, Website= 

new Uri(“http://twitter.com/billgates”), Gender=Gender.Male, 

IsBillionaire=true }

} 

);

Selectors 297
1

0

FIGURE 10.13 The DataGrid 
from Listing 10.2 with 
FrozenColumnCount=”2”.

unfrozenfrozen

Can I freeze rows in a DataGrid?

No, there is no built-in support for 
that. The only other things that can be 
automatically frozen are row details. When 
AreRowDetailsFrozen is true, any row 
details that are shown do not scroll horizon-
tally.

?
FA Q

  From the Library of Wow! eBook



ptg

This gives the DataGrid an extra blank row at the bottom, so a new entry can be added at 
any time. DataGrid defines methods and commands for the common actions of begin-
ning an edit (bound to F2), cancelling an edit (bound to Esc), committing an edit (bound 
to Enter), and deleting a row (bound to Delete).

IsReadOnly can be set to true to prevent editing, and
CanUserAddRows/CanUserDeleteRows can be set to false to prevent adding and deleting. 
Listing 10.2 sets IsReadOnly to true to avoid exceptions, as the inline collection of 
Record objects does not support editing. Although editing (and switching a cell to editing 
mode) happens automatically, several events are raised during the process to customize 
the behavior: PreparingCellForEdit, BeginningEdit, CellEditEnding/RowEditEnding, 
and InitializeNewItem.

CHAPTER 10 Items Controls298

CanUserAddRows and CanUserDeleteRows can be automatically changed to false!

Depending on the values of other properties, CanUserAddRows and CanUserDeleteRows can 
become false even if you explicitly set them to true! For example, if DataGrid’s 
IsReadOnly or IsEnabled properties are set to false, these two previously mentioned prop-
erties become false. But even more subtly, if the data source doesn’t support adding and 
removing—ultimately revealed by IEditableCollectionView’s CanAddNew and CanRemove 
properties—then the two properties also become false. See Chapter 13 for more informa-
tion about collection views such as IEditableCollectionView.

WA R N I N G

Menus
WPF has both of the familiar menu controls built-in—Menu and ContextMenu. Unlike in 
Win32-based technologies, WPF menus are not special-cased over other controls to have 
distinct prominence or limitations. They are just another set of items controls, designed 
for the hierarchical display of items in a series of cascading popups.

Menu
Menu simply stacks its items horizontally, with the characteristic gray bar (by default) as its 
background. The only public API that Menu adds to its ItemsControl base class is the 
IsMainMenu property. When true (which it is by default), the Menu gets focus when the 
user presses the Alt or F10 key, matching user expectations for Win32 menus.

As with any other items control, Menu’s items can be anything, but it’s expected that 
you’ll use MenuItem and Separator objects. Figure 10.14 displays a typical menu created 
from the XAML in Listing 10.3.

LISTING 10.3 A Typical Menu, with MenuItem and Separator Children

<Menu> 

<MenuItem Header=”_File”>

<MenuItem Header=”_New...”/>

  From the Library of Wow! eBook



ptg

<MenuItem Header=”_Open...”/> 

<Separator/> 

<MenuItem Header=”Sen_d To”>

<MenuItem Header=”Mail Recipient”/> 

<MenuItem Header=”My Documents”/>

</MenuItem> 

</MenuItem> 

<MenuItem Header=”_Edit”> 

… 

</MenuItem> 

<MenuItem Header=”_View”> 

… 

</MenuItem>

</Menu>

Menus 299

LISTING 10.3 Continued

1
0

FIGURE 10.14 The WPF Menu.

MenuItem is a headered items control (derived from HeaderedItemsControl), which is much 
like a headered content control. For MenuItem, Header is actually the main object (typi-
cally text, as in Figure 10.14). The Items, if any, are the child elements that get displayed 
as a submenu. Like Button and Label, MenuItem supports access keys by using the under-
score prefix.

Separator is a simple control that, when placed in a MenuItem, gets rendered as the hori-
zontal line shown in Figure 10.14. Separator is also designed for two other items controls 
discussed later in this chapter: ToolBar and StatusBar.

Although Menu is a simple control, MenuItem contains many properties for customizing its 
behavior. Some of the interesting ones are as follows:

. Icon—Enables you to add an arbitrary object to be placed alongside the Header. The 
Icon object gets rendered just like Header, although typically a small image or 
drawing is used.

. IsCheckable—Enables you to make a MenuItem act like a CheckBox control.

  From the Library of Wow! eBook



ptg

. InputGestureText—Enables you to label an item with an associated gesture (most 
commonly a keyboard shortcut such as Ctrl+O).

MenuItem also defines five events: Checked, Unchecked, SubmenuOpened, SubmenuClosed, 
and Click. Although handling a Click event is a common way to attach behavior to a 
MenuItem, you can alternatively assign a command to MenuItem’s Command property.

CHAPTER 10 Items Controls300

Setting InputGestureText doesn’t give a MenuItem its keyboard shortcut!

In a confusing departure from systems such as Windows Forms and Visual Basic 6, with 
WPF, setting MenuItem’s InputGestureText to a string such as “Ctrl+O” doesn’t automati-
cally invoke the item when Ctrl+O is pressed! Instead, the string just serves as documenta-
tion.

To give a MenuItem a keyboard shortcut, you should hook it up to a command via its 
Command property. If the command has an associated input gesture, MenuItem’s 
InputGestureText property is automatically set to the correct string, so the shortcut is 
displayed without any explicit action.

WA R N I N G

When assigning MenuItem’s Command property to an instance of RoutedUICommand, its 
Header is automatically set to the command’s Text property. You can override this behavior 
by explicitly setting Header.

T I P

How can I make Menu arrange its items vertically instead of horizontally?

Because Menu is just another items control, you can use the same ItemsPanel trick 
shown earlier for ListBox but replace the default panel with a StackPanel:

<Menu> 

<Menu.ItemsPanel>

<ItemsPanelTemplate> 

<StackPanel/>

</ItemsPanelTemplate> 

</Menu.ItemsPanel>

… 

</Menu>

The default orientation for StackPanel is vertical, so you don’t need to set the Orientation 
property in this case. Figure 10.15 shows the result.

?
FA Q

  From the Library of Wow! eBook



ptg

ContextMenu
ContextMenu works just like Menu; it’s a simple container designed to hold MenuItems and 
Separators. You can’t embed ContextMenu directly in an element tree, however. You must 
attach it to a control via an appropriate property, such as the ContextMenu property 
defined on FrameworkElement and FrameworkContentElement. When a user right-clicks 
the element (or presses Shift+F10), the context menu is displayed.

Figure 10.16 displays a context menu applied to a ListBox as follows, using exactly the 
same MenuItems from Listing 10.3:

<ListBox> 

<ListBox.ContextMenu>

<ContextMenu> 

…The three MenuItems from Listing 10.3…

</ContextMenu> 

</ListBox.ContextMenu>

… 

</ListBox>

Menus 301
1

0

FIGURE 10.15 A vertical Menu.

If you want the entire menu to be rotated to the vertical position (with sideways text, like 
what happens in older Microsoft Office programs when you drag and dock menus to the left 
or right edge of the window), you should instead use a RotateTransform.

FIGURE 10.16 The WPF ContextMenu.

Besides the expected IsOpen property and Opened/Closed events, ContextMenu defines 
many properties for customizing the placement of the menu. By default, the menu 
appears with its upper-left corner directly under the mouse pointer. But you can change 
its Placement to something other than MousePoint (for example, Absolute) and/or set its 
HorizontalOffset and VerticalOffset to adjust this behavior.

  From the Library of Wow! eBook



ptg

Just as ToolTip has a companion ToolTipService static class for controlling properties 
from the ToolTip’s target, ContextMenu has a ContextMenuService static class for the same 
purpose. It contains several attached properties that correspond to many of the properties 
defined directly on ContextMenu.

CHAPTER 10 Items Controls302

How do I get a context menu to appear when I right-click on a disabled 
element?

Just like ToolTipService, ContextMenuService contains a ShowOnDisabled attached prop-
erty for this purpose. You can use it as follows:

<ListBox ContextMenuService.ShowOnDisabled=”True”> 

<ListBox.ContextMenu>

… 

</ListBox.ContextMenu>

… 

</ListBox>

?
FA Q

Other Items Controls
The remaining items controls—TreeView, ToolBar and StatusBar—are neither selectors 
nor menus but can still contain an unbounded number of arbitrary objects.

TreeView
TreeView is a popular control for displaying hierarchical data with nodes that can be 
expanded and collapsed, as shown in Figure 10.17. Under the Aero theme, nodes have 
triangles indicating their expanded/collapsed state, but on the other themes, such as 
Luna, nodes have the familiar plus and minus indicators.

Aero theme Luna theme

FIGURE 10.17 The WPF TreeView control.

  From the Library of Wow! eBook



ptg

TreeView, like Menu, is a very simple control. It can contain any items, and it stacks them 
vertically. But TreeView is pretty pointless unless you fill it with TreeViewItems.

TreeViewItem, just like MenuItem, is a headered items control. TreeViewItem’s Header 
property contains the current item, and its Items collection contains subitems (which, 
again, are expected to be TreeViewItems).

The TreeView in Figure 10.17 can be created with the following XAML:

<TreeView> 

<TreeViewItem Header=”Desktop”>

<TreeViewItem Header=”Computer”> 

…

</TreeViewItem> 

<TreeViewItem Header=”Recycle Bin”>

… 

</TreeViewItem> 

<TreeViewItem Header=”Control Panel”>

<TreeViewItem Header=”Programs”/> 

<TreeViewItem Header=”Security”/> 

<TreeViewItem Header=”User Accounts”/>

</TreeViewItem> 

<TreeViewItem Header=”Network”>

… 

</TreeViewItem>

</TreeViewItem> 

</TreeView>

Other Items Controls 303
1

0

TreeView Versus Selector

TreeView’s APIs make it look a lot like a Selector, but it does not derive from Selector 
because its hierarchical items can’t be naturally indexed with a simple integer. Therefore, the 
TreeView class defines its own SelectedItem and SelectedValue properties (but not 
SelectedIndex). It also defines a SelectedItemChanged event that passes simple 
OldValue and NewValue items to event handlers, as TreeView only handles single selec-
tions.

The lack of multiselect support in TreeView is an unfortunate limitation that still exists in 
WPF 4. If you require such functionality, one option is to use a third-party control, such as 
Telerik’s RadTreeView (http://telerik.com/products/wpf/treeview.aspx). You could try to 
build your own multiselect TreeView class by deriving from ListBox, but this is not easy.

D I G G I N G  D E E P E R

  From the Library of Wow! eBook

http://telerik.com/products/wpf/treeview.aspx


ptg

TreeViewItem contains handy 
IsExpanded and IsSelected properties, 
as well as four events covering all four 
states from these properties: Expanded, 
Collapsed, Selected, and Unselected. 
TreeViewItem also supports rich 
keyboard navigation, with the plus (+) 
and minus (-) keys expanding and 
collapsing an item, and the arrow keys, 
Page Up, Page Down, Home, and End 
keys enabling several ways to move focus 
from one item to another.

CHAPTER 10 Items Controls304

As of WPF 4, TreeView supports virtualiza-
tion, but you have to turn it on explicitly by 
setting the VirtualizingStackPanel. 
IsVirtualizing attached property to true 
on the TreeView. Doing so can save large 
amounts of memory and can significantly 
improve the performance of scrolling when 
there are lots of items.

T I P

Always use TreeViewItem to explicitly wrap items in a TreeView!

It might be tempting to use simple TextBlocks as leaf nodes, but when you do so, you can 
run into a subtle property value inheritance trap that can make the text in such TextBlocks 
seem to disappear. By default, selecting a parent node changes its Foreground to white, 
and if TextBlocks are direct logical children, their text turns white as well. (Although the 
implicit TreeViewItem is the visual parent for each TextBlock, the logical parent takes 
precedence for inheritance.) Against the default white background, such text cannot be seen. 
If you make TreeViewItem the explicit (logical) parent of each TextBlock, however, the 
undesirable inheritance no longer occurs.

WA R N I N G

ToolBar
The ToolBar control is typically used to group together many small buttons (or other 
controls) as an enhancement to a traditional menu system. Figure 10.18 displays a 
ToolBar created from the following XAML:

<ToolBar RenderOptions.BitmapScalingMode=”NearestNeighbor”> 

<Button><Image Source=”copy.gif”/></Button> 

<Separator/> 

<ToggleButton><Image Source=”bold.gif”/></ToggleButton> 

<ToggleButton><Image Source=”italic.gif”/></ToggleButton> 

<ToggleButton><Image Source=”underline.gif”/></ToggleButton> 

<Separator/> 

<ToggleButton><Image Source=”left.gif”/></ToggleButton> 

<ToggleButton><Image Source=”right.gif”/></ToggleButton> 

<ToggleButton><Image Source=”justify.gif”/></ToggleButton> 

<Separator/> 

<Label>Zoom</Label> 

<ComboBox>

… 

</ComboBox>

  From the Library of Wow! eBook



ptg

<Separator/> 

<Button><Image Source=”superscript.gif”/></Button> 

<Button><Image Source=”subscript.gif”/></Button> 

…

</ToolBar>

Other Items Controls 305
1

0

FIGURE 10.18 The WPF ToolBar.

Notice that the Button and ComboBox controls used in the ToolBar look different than 
they normally do. In addition, Separator now gets rendered as a vertical line instead of 
the horizontal line seen when it is placed inside a Menu. ToolBar overrides the default 
styles of its items so that they automatically get the look that most people expect from a 
ToolBar.

ToolBars can be placed anywhere in an element tree, but they are typically placed inside 
a FrameworkElement called ToolBarTray. ToolBarTray holds a collection of ToolBars (in 
its content property called ToolBars) and, unless its IsLocked property is set to true, it 
enables users to drag and reposition the ToolBars. (ToolBarTray also defines an IsLocked 
attached property that can be placed on individual ToolBars.) ToolBarTray has an 
Orientation property that can be set to Vertical to make all its ToolBars arrange its 
items vertically.

If a ToolBar contains more items than it 
can fit within its bounds, the extra 
items move to an overflow area. This 
overflow area is a popup that can be 
accessed by clicking the little arrow at 
the end of the control, as shown in 
Figure 10.19. By default, the last item is 
the first to move to the overflow area, 
but you can control the overflow behav-
ior of individual items with ToolBar’s 
OverflowMode attached property. You can 
use this property to mark an item to over-
flow AsNeeded (the default), Always, or 
Never.

You can create a Visual Studio–style 
customizable ToolBar by setting 
ToolBar.OverflowMode to Never on each 
item, then adding a Menu with the header 
“_Add or Remove Buttons” and 
ToolBar.OverflowMode set to Always (so it 
always remains in the overflow area). You 
can then add MenuItems to this Menu that 
users can check/uncheck to add/remove 
the corresponding item to/from the 
ToolBar.

T I P

FIGURE 10.19 ToolBar has an overflow area for items that don’t fit.

  From the Library of Wow! eBook



ptg

CHAPTER 10 Items Controls306

Whenever elements contain small, iconic images, it’s a good idea to set the 
RenderOptions.BitmapScalingMode attached property to NearestNeighbor. This makes 
such images look much crisper than their default rendering. The ToolBar in this section 
takes advantage of this property.

Although the property is placed on the ToolBar itself for brevity, it would be better to place it 
on each Button individually. That’s because when any of these Buttons are moved to the 
overflow popup, they no longer inherit this value. (The containing Popup element is not a 
child of the ToolBar.) The impact is subtle, but this is why the last two icons are blurry in 
Figure 10.20 compared to Figure 10.19.

T I P

Customizing Keyboard Navigation

The following ToolBar exhibits potentially problematic keyboard behavior:

<ToolBar> 

<Button>A</Button> 

<Menu>

<MenuItem Header=”B”/> 

<MenuItem Header=”C”/>

</Menu> 

<Button>D</Button>

</ToolBar>

If you give focus to the ToolBar and repeatedly press Tab, the focus gets “stuck” in a cycle 
from A to B to C to D to A to B, and so on. And if you use the left or right-arrow key to focus 
on either MenuItem, the focus gets stuck oscillating between B and C as you keep pressing 
the arrow key.

The KeyboardNavigation class in the System.Windows.Input namespace defines a 
handful of attached properties for customizing this (and other) keyboard behavior. For 
example, to avoid the cycle when tabbing through a ToolBar, you can set 
KeyboardNavigation.TabNavigation to Continue (rather than Cycle) on the ToolBar. To 
avoid the cycle when navigating through a Menu with arrow keys, you can set 
KeyboardNavigation.DirectionalNavigation to Continue on the Menu.

D I G G I N G  D E E P E R

ToolBar’s Unused Header Property

ToolBar is actually a headered items control (like MenuItem and TreeViewItem). Its Header 
property is never displayed, but it can be useful for implementing extra features for 
ToolBarTray. For example, you could add a context menu that lists all the ToolBars (using 
their Header), enabling users to add or remove them. Or, you could implement “tear off” 
ToolBars and show the Header on the floating ToolBar.

D I G G I N G  D E E P E R

  From the Library of Wow! eBook



ptg

Other Items Controls 307
1

0

StatusBar
StatusBar behaves just like Menu, but it 
stacks its items horizontally, as shown in 
Figure 10.20. It’s typically used along the 
bottom of a Window to display status 
information.

The StatusBar in Figure 10.20 can be created with the following XAML:

<StatusBar RenderOptions.BitmapScalingMode=”NearestNeighbor”> 

<Label>27 Items</Label> 

<Separator/> 

<Label>Zoom</Label> 

<ComboBox>

… 

</ComboBox> 

<Separator/> 

<Button><Image Source=”justify.gif”/></Button>

</StatusBar>

By default, StatusBar gives Separator a control template that renders it as a vertical line, 
just like when it is within a ToolBar. Items in a StatusBar (other than Separator) are 
implicitly wrapped in a StatusBarItem, but you can also do this wrapping explicitly. This 
way, you can customize their position with the layout-related attached properties 
discussed in Chapter 5.

FIGURE 10.20 The WPF StatusBar.

How can I get items in a StatusBar to grow proportionally?

It’s common to want StatusBar panes to remain proportionately sized. For example, 
perhaps you want a left pane that occupies 25% of the StatusBar’s width and a right pane 
that occupies 75% of the width. You can make this happen by overriding StatusBar’s 
ItemsPanel with a Grid and configuring the Grid’s columns as follows: 

<StatusBar>

<StatusBar.ItemsPanel> 

<ItemsPanelTemplate>

<Grid> 

<Grid.ColumnDefinitions>

<ColumnDefinition Width=”*”/> 

<ColumnDefinition Width=”Auto”/> 

<ColumnDefinition Width=”3*”/>

</Grid.ColumnDefinitions> 

</Grid>

</ItemsPanelTemplate> 

</StatusBar.ItemsPanel>

?
FA Q

  From the Library of Wow! eBook



ptg

Summary
Items controls are vital to understand for just about any WPF development. It’s hard to 
imagine a WPF application not using content controls and items controls. But unlike 
content controls, there’s a lot to learn about items controls! A recurring theme through-
out this chapter is the importance of data binding if you’re working with a sizable or 
dynamic list of items. However, there are a few more areas of WPF to cover before we get 
to data binding in depth. The next chapter covers images, text, and other controls.

CHAPTER 10 Items Controls308

Continued

<StatusBarItem Grid.Column=”0”>…</StatusBarItem> 

<Separator Grid.Column=”1”/> 

<StatusBarItem Grid.Column=”2”>…</StatusBarItem>

</StatusBar>

Note that items inside the StatusBar need to be explicitly marked with Grid.Column (which 
is meaningful only when Grid is the ItemsPanel) to avoid all being placed in column zero. 
Also, be aware that such layout properties work only for children of type StatusBarItem or 
Separator. That’s because other elements (such as the Label, ComboBox, and Button in 
the previous StatusBar snippet) would get implicitly wrapped with a StatusBarItem that 
would be missing the necessary attached properties. Therefore, you must wrap any such 
elements explicitly in a StatusBarItem.

  From the Library of Wow! eBook



ptg

CHAPTER 11 

Images, Text, and Other
Controls

This chapter looks at a wide range of controls that are 
neither content controls nor items controls. Image, some of 
the text controls, and controls such as ProgressBar and 
Slider should be familiar to you—but with more richness 
than you might first expect. The Calendar and DatePicker 
controls are new to WPF 4. This chapter also covers a 
number of FrameworkContentElements (rather than 
controls) that enable the creation of flow documents, a 
powerful but lesser-used aspect of WPF.

The Image Control
System.Windows.Controls.Image enables images (.BMP, 
.PNG, .GIF, .JPG, and so on) to be rendered in a WPF user 
interface. It has a Source property of type 
System.Windows.Media.ImageSource, but thanks to a type 
converter (System.Windows.Media.ImageSourceConverter), 
you can set the property to a simple string in XAML, as in 
this example:

<Image Source=”zoom.gif”/>

ImageSource can point to images stored at a URL, on the 
file system, or even embedded in an assembly. (Retrieving 
and displaying images embedded in assemblies is covered 
in the next chapter.) Image has the same Stretch and 
StretchDirection properties seen with Viewbox in Chapter 
5, “Layout with Panels,” for controlling how it scales.

Although using Image is straightforward, some of the 
advanced options available for image rendering are not. 
The RenderOptions.BitmapScalingMode attached property

IN THIS CHAPTER

. The Image Control

. Text and Ink Controls

. Documents

. Range Controls

. Calendar Controls

  From the Library of Wow! eBook



ptg

can be placed on Image to optimize rendering for speed versus quality. But its most impor-
tant setting, NearestNeighbor, applies nearest-neighbor bitmap scaling, which can help 
make images look more crisp. This was used on ToolBar and StatusBar in the preceding 
chapter and the Photo Gallery application from Chapter 7, “Structuring and Deploying an 
Application.” Here’s an example:

<Image RenderOptions.BitmapScalingMode=”NearestNeighbor” Source=”zoom.gif”/>

The difference this property makes is subtle when printed in this book, but the improve-
ment in clarity can make a huge difference on the computer screen. Figure 11.1 demon-
strates the images from Photo Gallery with and without NearestNeighbor applied.

CHAPTER 11 Images, Text, and Other Controls310

Default rendering RenderOptions.BitmapScalingMode="NearestNeighbor"

FIGURE 11.1 The BitmapScalingMode of NearestNeighbor keeps the edges crisp.

Rather than leveraging the type converter to convert a simple string filename into an 
ImageSource, you can explicitly set Image’s Source property to any one of several 
ImageSource subclasses to take advantage of advanced functionality. For example, the 
BitmapImage subclass contains a number of properties such as DecodePixelWidth and 
DecodePixelHeight, which can be set to values smaller than the natural size of the image 
to save a potentially-significant amount of memory. The FormatConvertedBitmap subclass 
enables you to change the pixel format of the Image to achieve various effects such as 
making it grayscale. The following XAML leverages FormatConvertedBitmap to create the 
result in Figure 11.2:

<StackPanel Orientation=”Horizontal”>

<!-- Normal image with the default pixel format of Pbgra32: --> 

<Image Source=”photo.jpg” />

<!-- Grayscale image: --> 

<Image> 

<Image.Source>

<FormatConvertedBitmap Source=”photo.jpg” DestinationFormat=”Gray32Float” />

</Image.Source> 

</Image>

<!-- Black and white image: --> 

<Image> 

<Image.Source>

<FormatConvertedBitmap Source=”photo.jpg” DestinationFormat=”BlackWhite” />

T I P

  From the Library of Wow! eBook



ptg

Text and Ink Controls
In addition to TextBlock and Label, WPF contains a handful of controls for displaying 
and editing text, whether typed with a keyboard or hand-written with a stylus. This 
section looks a bit deeper at TextBlock and also examines the following controls:

. TextBox

. RichTextBox

. PasswordBox

. InkCanvas

But first, it’s important to mention an important improvement to WPF 4 that affects all 
text rendering. From the very beginning, complaints about blurry text have plagued WPF. 
(I used to claim that I could spot a WPF-based user interface just by looking at the blurri-
ness of its text!) The design of WPF text rendering has been optimized for large text 
and/or super-high-resolution displays, accurate scaling, and high-fidelity printing. This 
design has been problematic for the size of fonts used throughout most applications and 
for the resolutions that most of today’s computers support. The polite way to explain this 
is that WPF text rendering has been ahead of its time.

Text and Ink Controls 311
1

1

Continued

</Image.Source> 

</Image>

</StackPanel>

FIGURE 11.2 Displaying an Image with three different pixel formats.

The System.Windows.Media.PixelFormats enumeration contains a long list of possible 
formats.

Pbgra32 
(default)

Gray32Float BlackWhite

  From the Library of Wow! eBook



ptg

I’m happy to report that these issues have been fixed with WPF 4. As with many perfor-
mance improvements in WPF 4, you get some text improvements for free. (For example, 
WPF will now automatically take advantage of bitmaps embedded in certain East Asian 
fonts to produce clear text at small sizes.) Other improvements require opting in, to 
preserve compatibility with existing applications .

The main feature to be aware of is the TextOptions.TextFormattingMode attached prop-
erty. It can be placed on individual text elements or, more likely, on a parent control such 
as Window to affect the text rendering for its entire tree of child elements. By setting 
TextFormattingMode to Display, you can opt in to the new WPF 4 text rendering that 
uses GDI-compatible text metrics. Its key behavior that’s important for text clarity is that 
every glyph is positioned on a pixel boundary (and its width is a whole multiple of 
pixels).

The default TextFormattingMode value—the one that has caused developers and users so 
much grief—is ironically called Ideal. In this case, the text metrics maintain high fidelity 
with the font definition, even if it means that glyphs don’t align nicely with pixel bound-
aries. In an ideal future world, where screens have a much greater pixel density than they 
do today, this would indeed give the best results (just like it does for large text today).

The TextOptions.TextRenderingMode attached property can be set to ClearType, 
Grayscale, Aliased, or Auto to control WPF’s antialiasing behavior. When it is set to Auto 
(the default), ClearType is used unless it has been 
disabled on the current computer, in which case 
Grayscale antialiasing is used.

Figure 11.3 demonstrates the difference between the 
two TextFormattingMode settings and the three non-
Auto TextRenderingMode settings, although it’s hard 
to see the difference on a printed page.

Furthermore, TextOptions.TextHintingMode can be 
set to Fixed, Animated, or Auto to optimize rendering 
based on whether the text is stationary or moving.

CHAPTER 11 Images, Text, and Other Controls312

FIGURE 11.3 Customizing the 
rendering of TextBlocks with 
FontSize=11.

Shouldn’t I always set TextFormattingMode to Display to take advantage of 
better text rendering?

No. If your text is large enough (a FontSize of around 15 or greater), Ideal text is just as 
clear as Display text, and its glyphs are arranged better. Even more importantly, if your text 
is transformed, Display text renders more poorly because the pixel alignment no longer 
applies. Display text enlarged by ScaleTransform looks the worst of all, because WPF will 
scale the original text bitmap rather than re-render it at a larger size. (It does this to guaran-
tee that the text is scaled exactly the right amount, which wouldn’t happen if pixel alignment 
happened at the larger size.) For typical small labels, however, Display is the clear winner.

?
FA Q

  From the Library of Wow! eBook



ptg

TextBlock
TextBlock contains a number of simple properties for modifying its appearance, such as 
FontFamily, FontSize, FontStyle, FontWeight, and FontStretch. The big secret of 
TextBlock, however, is that its content property is not its Text property but rather a 
collection of objects called Inlines. Although the following TextBlock gives the same 
result as setting the Text property, you’re really setting a different property:

<!-- TextBlock.Inlines is being set here: --> 

<TextBlock>Text in a TextBlock</TextBlock>

A type converter makes the value resemble a simple string, but it’s really a collection with 
one element called Run. Therefore, the preceding XAML is equivalent to the following:

<TextBlock><Run Text=”Text in a TextBlock”/></TextBlock>

which is also equivalent to the following XAML because Text is Run’s content property:

<TextBlock><Run>Text in a TextBlock</Run></TextBlock>

A Run is simply a chunk of text with identical formatting. Using a single explicit Run 
doesn’t add value, but things can start to get interesting when you use multiple Runs in 
the same TextBlock. For example, the preceding TextBlock could be expressed as follows:

<TextBlock> 

<Run>Text</Run> 

<Run> in</Run> 

<Run> a</Run> 

<Run> TextBlock</Run>

</TextBlock>

This still doesn’t change the rendering behavior. Run, however, has several formatting 
properties that can override the corresponding properties on the parent TextBlock: 
FontFamily, FontSize, FontStretch, FontStyle, FontWeight, Foreground, and 
TextDecorations. The following XAML, shown in Figure 11.4, takes advantage of these:

<TextBlock> 

<Run FontStyle=”Italic” FontFamily=”Georgia” Foreground=”Red”>Rich</Run> 

<Run FontSize=”30” FontFamily=”Comic Sans MS” Foreground=”Blue”> Text </Run> 

<Run FontFamily=”Arial Black” Foreground=”Orange” FontSize=”100”>in</Run> 

<Run FontFamily=”Courier New” FontWeight=”Bold” Foreground=”Green”> a </Run> 

<Run FontFamily=”Verdana” TextDecorations=”Underline”>TextBlock</Run>

</TextBlock>

Although this is an extreme example, the same 
technique can be used for something simple like 
italicizing or underlining a single word in a para-
graph. This is much easier than trying to use

Text and Ink Controls 313
1

1

FIGURE 11.4 Several uniquely 
formatted Runs inside a single 
TextBlock.

  From the Library of Wow! eBook



ptg

multiple TextBlocks and worrying about 
positioning each one correctly. And by 
using a single TextBlock, you get one 
consistent clipping and wrapping behav-
ior across the heterogeneous text. There 
are many more types of Inline objects 
besides Run; the “Documents” section 
later in this chapter examines them.

CHAPTER 11 Images, Text, and Other Controls314

When you add content to a TextBlock’s 
Inlines property, the (unformatted) content 
is appended to its Text property. Therefore, 
it is still valid to programmatically retrieve 
the value of the Text property when only 
Inlines is being explicitly set. For example, 
the value of Text is the expected “Rich Text 
in a TextBlock” string for the TextBlock in 
Figure 11.4.

T I P

TextBlock and Whitespace

When a TextBlock’s content is set via the Text property, any whitespace in the string is 
preserved. When its content is set via Inlines in XAML, however, whitespace is not 
preserved. Instead, leading and trailing whitespace is ignored, and any contiguous white-
space is coalesced into a single whitespace character (as in HTML).

D I G G I N G  D E E P E R

Explicit Versus Implicit Runs

Although the following TextBlock:

<TextBlock>Text in a TextBlock</TextBlock>

is equivalent to this:

<TextBlock><Run>Text in a TextBlock</Run></TextBlock>

the behavior of the type converter is not always straightforward. For example, the following
use of another Inline called LineBreak is valid:

<TextBlock>Text in<LineBreak/>a TextBlock</TextBlock>

whereas the following is not:

<TextBlock><Run>Text in<LineBreak/>a TextBlock</Run></TextBlock>

The last variation is not valid because Run’s content property (Text) is a simple string, and 
you can’t embed a LineBreak element inside a string. The content property of TextBlock 
(Inlines), however, is converted to one or more Runs via a type converter that specifically 
handles LineBreak. This type converter makes the following XAML:

<TextBlock>Text in<LineBreak/>a TextBlock</TextBlock>

equivalent to the following TextBlock containing two Runs, one on each side of the 
LineBreak:

<TextBlock><Run>Text in</Run><LineBreak/><Run>a TextBlock</Run></TextBlock>

D I G G I N G  D E E P E R

  From the Library of Wow! eBook



ptg

TextBox
The TextBox control, pictured in Figure 11.5, enables users to 
type one or more lines of text. Unlike most other controls in 
WPF, the content of TextBox is not stored as a generic 
System.Object. Instead, TextBox stores it in a string property 
called Text.

Although it looks like a simple control on the surface, TextBox has built-in support for a 
variety of features: bindings for Cut, Copy, Paste, Undo, and Redo commands (as discussed 
in Chapter 6, “Input Events: Keyboard, Mouse, Stylus, and Multi-Touch”) and even spell 
checking!

TextBox contains several methods and properties for grabbing chunks of text (by selec-
tion, by line number, and so on) as well as methods for converting between a character 
index, a line index, and a physical point within the control. It also defines TextChanged 
and SelectionChanged events.

Unless the size of the TextBox is 
constrained by its surroundings (or 
unless it is given an explicit size), it 
grows as the text inside it grows. But 
when the TextBox’s width is 
constrained, you can make the text wrap 
to form additional lines by setting its 
TextWrapping property to Wrap or 
WrapWithOverflow. Wrap never allows a 
line to go beyond the control’s bounds, 
forcing wrapping even if it’s in the 
middle of a word. WrapWithOverflow 
breaks a line only if there’s an opportu-
nity, so long words could get cut off. 
(TextBlock has the same TextWrapping 
property.)

Text and Ink Controls 315
1

1

FIGURE 11.5 A
WPF TextBox.

How can I make TextBox support 
multiple lines of text?

Setting AcceptsReturn to true allows 
users to press the Enter key to create a 
new line of text. Note that TextBox always 
supports multiple lines of text programmati-
cally. If Text is set to a string containing 
NewLine characters, it displays the multiple 
lines regardless of the value of 
AcceptsReturn. Also, the multiline support 
is completely independent from text wrap-
ping. Text wrapping applies only to individual 
lines of text that are wider than the 
TextBox.

?
FA Q

Spell Checking

To enable spell checking in a TextBox (or RichTextBox), you set the attached 
SpellCheck.IsEnabled property to true. The result is an experience similar to what you 
get in Microsoft Word: Misspelled words are underlined in red, and you can right-click to view 
and apply suggestions. The dictionary that WPF uses matches the one that Microsoft Office 
uses and is available for multiple languages (along with the corresponding language pack). 
WPF does not support custom dictionaries, however.

D I G G I N G  D E E P E R

  From the Library of Wow! eBook



ptg

RichTextBox
RichTextBox is a more advanced TextBox that can contain format-
ted text (and arbitrary objects embedded in the text). Figure 11.6 
displays a RichTextBox control with simple formatted text.

RichTextBox and TextBox share the same base class (TextBoxBase), so many of the 
features described with TextBox apply to RichTextBox as well. RichTextBox has more 
sophisticated versions of various TextBox properties. Whereas TextBox exposes simple 
integer properties such as CaretIndex, SelectionStart, and SelectionEnd, RichTextBox 
exposes a CaretPosition property of type TextPointer and a Selection property of type 
TextSelection. In addition, RichTextBox’s content is stored in a Document property of 
type FlowDocument rather than the simple string Text property. The content can even 
contain embedded UIElements, and they can be interactive and raise events if 
RichTextBox’s IsDocumentEnabled property is set to true. FlowDocuments are discussed in 
the upcoming “Documents” section.

PasswordBox
PasswordBox is a simpler TextBox designed for the entry of a pass-
word. Rather than display the text typed in, it displays little circles, 
as shown in Figure 11.7.

PasswordBox does not derive from TextBoxBase like the two previ-
ous controls, so it doesn’t support Cut, Copy, Undo, and Redo commands (although it does 
support Paste), and it doesn’t support spell checking. This is, of course, quite sensible for 
a control meant to store passwords!

If you don’t like the circle character used to represent each letter of the password, you can 
choose a new one via the PasswordChar property. (The default character is an asterisk, 
special-cased to look like a circle.)

PasswordBox’s text is stored in a string property called Password. Internally, the password 
is stored in a System.Security.SecureString object for a little bit of extra protection. The 
contents of SecureString are encrypted and aggressively cleared, unlike with 
System.String, whose unencrypted contents can remain in the garbage-collected heap for 
an indefinite amount of time.

text:TextboxPasswordChanged event. In addition, this event uses the plain 
RoutedEventHandler delegate, so no information about the old and new passwords is sent 
with the event. If you must know the current password, you can simply check the 
Password property within such an event handler.

InkCanvas
The amazing InkCanvas is a versatile element whose primary purpose is to capture hand-
writing (via a mouse or stylus, but not multi-touch), as pictured in Figure 11.8. InkCanvas 
is technically not a control, as it derives directly from FrameworkElement, but it acts very 
much like a control (except for the fact that you can’t restyle it with a new template).

CHAPTER 11 Images, Text, and Other Controls316

FIGURE 11.6 A
WPF RichTextBox.

FIGURE 11.7 A
WPF PasswordBox.

  From the Library of Wow! eBook



ptg

FIGURE 11.8 A WPF InkCanvas.

In its default mode, InkCanvas enables simple writing or 
drawing on its surface. When you use a stylus, its tip 
automatically writes, and its back end automatically 
erases. Each stroke is captured as a 
System.Windows.Ink.Stroke object and stored in 
InkCanvas’s Strokes collection. But InkCanvas also 
supports holding any number of arbitrary UIElements in 
its Children collection (a content property). This makes 
it easy to annotate just about anything with ink, as 
shown in Figure 11.9.

This figure was created by drawing on top of the follow-
ing Window:

<Window xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation” 

SizeToContent=”WidthAndHeight”> 

<Grid>

<InkCanvas> 

<Image Source=”http://adamnathan.net/blog/images/anathan.png”/>

</InkCanvas> 

</Grid>

</Window>

The SizeToContent setting is pretty interesting in this example, because if you draw out 
of bounds, the Window automatically resizes to fit your ink strokes if you haven’t resized it 
manually!

With InkCanvas’s DefaultDrawingAttributes property, you can change the appearance of 
future strokes (width, color, and so on). Stroke has its own DrawingAttributes property, 
and appearance can be modified on a stroke-by-stroke basis.

InkCanvas supports several modes, and they can be applied independently to the stylus 
tip (or mouse) via an EditingMode property and the stylus’s back end via an 
EditingModeInverted property. A read-only ActiveEditingMode property tells you which

Text and Ink Controls 317
1

1

FIGURE 11.9 A creative 
ink annotation on top of an 
image.

  From the Library of Wow! eBook



ptg

of the two modes is currently being used. All three of these properties are of type 
InkCanvasEditingMode, which has the following values:

. Ink—Draws strokes with the mouse or stylus. This is the default for EditingMode.

. InkAndGesture—Like Ink but also recognizes gestures made by the user. A list of 
gestures (such as Up, Down, Circle, ScratchOut, or Tap) can be found in the 
System.Windows.Ink.ApplicationGesture enumeration.

. GestureOnly—Only recognizes gestures; does not draw any strokes from user input.

. EraseByStroke—Erases an entire stroke when it is touched. This is the default for 
EditingModeInverted.

. EraseByPoint—Erases only the part of a stroke that is directly touched (like a tradi-
tional pencil eraser).

. Select—Selects strokes or any UIElements when touched, such that they can be 
deleted, moved, or resized within the bounds of the InkCanvas.

. None—Does nothing in response to mouse or stylus input.

Using the Select mode with normal elements that have nothing to do with ink is pretty 
interesting, as it automatically gives you a poor-man’s runtime design surface for arrang-
ing controls. InkCanvas also defines 15 events, covering everything from changing the 
editing mode, to changing, moving, or resizing selections, to collecting or erasing strokes, 
to performing gestures.

Of course, enabling ink in an application is about more than drawing mustaches on 
people’s faces! Often, you want to apply handwriting recognition to a collection of strokes 
so you can interpret it as if it were typed text. WPF has built-in gesture recognition but no 
handwriting recognition engine.

Documents
TextBlock and Label are made for displaying read-only text, whereas TextBox and 
RichTextBox are essential for displaying editable text. But when it comes to text, WPF 
includes much more functionality than is provided by these simple elements!

WPF contains a rich set of classes for creating, viewing, modifying, packaging, and storing 
high-quality documents. The focus of this section is what WPF calls flow documents. A 
flow document (represented by the FlowDocument element) contains text and other 
content that can adjust to make optimal use of the space given to the document. For 
example, on a wide-screen monitor, this could mean automatically adding extra columns.

Creating Flow Documents
FlowDocument is a FrameworkContentElement, the content-centric parallel to 
FrameworkElement. FrameworkContentElements, like FrameworkElements, support data 
binding, animation, and other WPF mechanisms, but they do not participate in WPF’s

CHAPTER 11 Images, Text, and Other Controls318

  From the Library of Wow! eBook



ptg

layout mechanism. FrameworkContentElements are ultimately housed in a 
FrameworkElement when displayed on the screen.

Another type of FrameworkContentElement is TextElement, an abstract class that repre-
sents content that can be placed inside a FlowDocument. This section examines the various 
TextElements (from the System.Windows.Documents namespace) and demonstrates how to 
compose them to create rich and flexible documents.

Documents 319
1

1

How does WPF’s flow document support relate to the XML Paper 
Specification (XPS)?

Unlike the dynamic-layout documents described in this section, XPS documents have a fixed 
layout and always look the same, whether on screen or on paper. The .NET Framework 
includes APIs for creating and viewing XPS documents (in the System.Windows.Xps and 
System.Windows.Documents namespaces), or you can use tools such as Microsoft Word to 
create and view them. In WPF applications, XPS documents are typically represented as 
instances of FixedDocument and viewed in a DocumentViewer control.

You can think of XPS documents much like Adobe PDF documents; they both have stand-
alone viewers (available on multiple platforms) and can be viewed in a web browser (with the 
right plug-in installed). One area where XPS is unique is that it’s also a native Windows spool 
file format (starting with Windows Vista). This ensures that XPS documents can be printed 
without loss of quality or fidelity and without any extra work done by the application initiating 
the printing.

The specifications for XPS and the Open Packaging Conventions used by XPS (whose APIs 
are in the System.IO.Packaging namespace) can be found at http://microsoft.com/xps.

?
FA Q

A Simple FlowDocument
The following XAML shows a straightforward FlowDocument that is simply a collection of 
Paragraphs (a type of TextElement) representing a draft of Chapter 1 from this book:

<FlowDocument xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”> 

<Paragraph FontSize=”22” FontWeight=”Bold”>Chapter 1</Paragraph> 

<Paragraph FontSize=”35” FontWeight=”Bold”>Why WPF?</Paragraph> 

<Paragraph>

In movies and on TV, the … 

</Paragraph> 

<Paragraph>…</Paragraph> 

<Paragraph>…</Paragraph> 

…

</FlowDocument>

Figure 11.10 shows the rendered result of this XAML. You can use a FlowDocument such as 
this as the root of a XAML file, and it is automatically displayed in an appropriate viewer.

  From the Library of Wow! eBook

http://microsoft.com/xps


ptg

FIGURE 11.10 A simple FlowDocument.

Two main types of TextElements exist—Blocks and Inlines. (Both of these are abstract 
classes derived from TextElement.) A Block is a rectangular region that can’t be separated 
(except when it spans multiple pages), whereas an Inline is a region that flows more 
freely with text, potentially occupying a nonrectangular space (flowing from the end of 
one line to the beginning of the next). FlowDocument supports only Blocks, such as 
Paragraph, as its children. (Its content property is called Blocks, which is a 
BlocksCollection.) We’ll look at the role of Inlines after examining Blocks more closely.

Block

WPF has five different types of Blocks:

. Paragraph—Has a collection of Inlines, which typically contain the “meat” of the 
document. In XAML, you often see Paragraph’s content set to simple text, but inter-
nally an Inline called Run is created with that content and added to the Paragraph’s 
Inlines collection, just like with TextBlock.

. Section—Groups one or more Blocks together without imposing any additional 
structure. This is handy if you want to set the same property values for multiple 
Blocks, such as a Background and Foreground.

. List—Presents a collection of ListItems as a bulleted, numbered, or plain list. Each 
ListItem can contain a collection of Blocks, so creating a typical text-based List 
involves placing a Paragraph inside each ListItem. List’s MarkerStyle property (of 
type TextMarkerStyle) provides plenty of formatting options for bullets—Box, 
Circle, Disc (the default bullet), and Square—and for numbers—Decimal, 
LowerLatin, UpperLatin, LowerRoman, and UpperRoman. A plain list can be achieved 
by setting MarkerStyle to None.

. Table—Organizes content into rows and columns, sort of like Grid but closer to an 
HTML TABLE. Table, unlike Grid, can contain only Blocks (and elements defining 
the Table’s structure).

CHAPTER 11 Images, Text, and Other Controls320

  From the Library of Wow! eBook



ptg

. BlockUIContainer—Hosts a single UIElement. Therefore, BlockUIContainer is the 
key to embedding a wide range of WPF content into a FlowDocument, whether it’s an 
Image, a MediaElement-hosted video, a Button, 3D content in a Viewport3D, and so 
on.

Listing 11.1 demonstrates the use of all five types of Blocks inside a FlowDocument. The 
resulting document is displayed in Figure 11.11.

LISTING 11.1 The FlowDocument in Figure 11.11

<FlowDocument xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation” 

xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”>

<Section LineHeight=”2” Foreground=”White” Background=”Black”> 

<Paragraph FontSize=”18”>WPF 4 Unleashed</Paragraph> 

<Paragraph FontSize=”30” FontWeight=”Bold”>Notes from Chapter 1</Paragraph>

</Section> 

<Paragraph>Here are some highlights of WPF:</Paragraph> 

<List>

<ListItem> 

<Paragraph>Broad integration</Paragraph>

</ListItem> 

<ListItem>

<Paragraph>Resolution independence</Paragraph> 

</ListItem> 

<ListItem>

<Paragraph>Hardware acceleration</Paragraph> 

</ListItem> 

<ListItem>

<Paragraph>Declarative programming</Paragraph> 

</ListItem> 

<ListItem>

<Paragraph>Rich composition and customization</Paragraph> 

</ListItem>

</List> 

<BlockUIContainer>

<Viewbox> 

<StackPanel Orientation=”Horizontal”>

<Image Source=”diagram.jpg” Margin=”5”/> 

<TextBlock VerticalAlignment=”Center” Width=”100” TextWrapping=”Wrap”>

The technologies in the .NET Framework. 

</TextBlock>

</StackPanel> 

</Viewbox>

</BlockUIContainer> 

<Paragraph>

Documents 321
1

1

  From the Library of Wow! eBook



ptg

Here’s another version of the diagram, as a Table: 

</Paragraph> 

<Table CellSpacing=”5” Padding=”15” FontFamily=”Segoe UI”> 

<Table.Background>

<LinearGradientBrush> 

<GradientStop Color=”Yellow” Offset=”0”/> 

<GradientStop Color=”Orange” Offset=”1”/>

</LinearGradientBrush> 

</Table.Background>

<!-- Define four columns: --> 

<Table.Columns>

<TableColumn/> 

<TableColumn/> 

<TableColumn/> 

<TableColumn/>

</Table.Columns>

<!-- Create three rows: --> 

<TableRowGroup>

<TableRow> 

<TableCell ColumnSpan=”4” TextAlignment=”Center”>

<Paragraph FontWeight=”Bold”>.NET Framework</Paragraph> 

</TableCell>

</TableRow>

<TableRow> 

<TableCell BorderBrush=”Black” BorderThickness=”2” Background=”LightGray”

TextAlignment=”Center” LineHeight=”70”> 

<Paragraph FontWeight=”Bold”>WPF</Paragraph>

</TableCell> 

<TableCell BorderBrush=”Black” BorderThickness=”2” Background=”LightGray”

TextAlignment=”Center”> 

<Paragraph FontWeight=”Bold”>WCF</Paragraph>

</TableCell> 

<TableCell BorderBrush=”Black” BorderThickness=”2” Background=”LightGray”

TextAlignment=”Center”> 

<Paragraph FontWeight=”Bold”>WF</Paragraph>

</TableCell> 

<TableCell BorderBrush=”Black” BorderThickness=”2” Background=”LightGray”

TextAlignment=”Center”> 

<Paragraph FontWeight=”Bold”>WCS</Paragraph>

</TableCell> 

</TableRow>

CHAPTER 11 Images, Text, and Other Controls322

LISTING 11.1 Continued

  From the Library of Wow! eBook



ptg

<TableRow> 

<TableCell BorderBrush=”Black” BorderThickness=”2” Background=”LightGray”

TextAlignment=”Center”> 

<Paragraph FontWeight=”Bold”>ADO.NET</Paragraph>

</TableCell> 

<TableCell BorderBrush=”Black” BorderThickness=”2” Background=”LightGray”

TextAlignment=”Center”> 

<Paragraph FontWeight=”Bold”>ASP.NET</Paragraph>

</TableCell> 

<TableCell BorderBrush=”Black” BorderThickness=”2” Background=”LightGray”

TextAlignment=”Center”> 

<Paragraph FontWeight=”Bold”>Windows Forms</Paragraph>

</TableCell> 

<TableCell BorderBrush=”Black” BorderThickness=”2” Background=”LightGray”

TextAlignment=”Center”> 

<Paragraph FontWeight=”Bold”>...</Paragraph>

</TableCell> 

</TableRow>

</TableRowGroup> 

</Table>

</FlowDocument>

Documents 323

LISTING 11.1 Continued

1
1

Section

List

Paragraph

BlockUIContainer

Table

FIGURE 11.11 A FlowDocument that uses all five types of Blocks.

  From the Library of Wow! eBook



ptg

Paragraphs are used throughout the document, but Section is used at the beginning to 
give two Paragraphs different Foreground, Background, and LineHeight. List is then used 
with its default settings for a straightforward bulleted list. BlockUIContainer is used to 
contain not only an Image, but a corresponding caption in the form of a TextBlock. They 
are arranged in a StackPanel and then placed inside a Viewbox so both items scale nicely 
as the width of the document changes.

Finally, for demonstration purposes, the content of the Image is mimicked with a Table. 
Notice that the APIs exposed by Table (and, therefore, the structure of elements inside 
Table in XAML) differ considerably from those of Grid. Columns are defined by placing 
TableColumn elements inside Table’s Columns collection (similar to Grid’s 
ColumnDefinitions collection), but the rows are defined directly with the content they 
contain. Table contains a TableRowGroup with a bunch of TableRows placed in the order in 
which they appear, from top to bottom. Each TableCell inside a TableRow fills the next 
available column sequentially, unless ColumnSpan is set to give different behavior. 
TableCell is the only element that can contain the Blocks that form the content of the 
Table, which, in this case, are all Paragraphs.

Table can even contain multiple TableRowGroups! The content of each one is placed 
directly below the previous one.

Figure 11.11 shows that the Table ends up looking pretty similar to the Image embedded 
in the document. Of course, the two have very different behaviors. The text in the Table 
is selectable and scales perfectly as you zoom in to the document. But whereas the Image 
is never split between pages, the Table can be. The inner text content can also wrap when 
space is tight. Figure 11.12 shows this splitting and wrapping.

CHAPTER 11 Images, Text, and Other Controls324

FIGURE 11.12 A different view of the FlowDocument from Figure 11.11, with the Table split 
between pages 2 and 3.

Inline

Inlines are elements that can be placed inside a Paragraph to make its content more 
interesting than plain text. As mentioned in the previous section, Paragraphs don’t really

  From the Library of Wow! eBook



ptg

contain a simple string, but rather a collection of Inlines. And when a Paragraph defined 
in XAML appears to contain plain text, it really contains a single Inline known as Run. 
Run has a simple Text string property and a constructor that accepts a string.

Therefore, the following Paragraph defined in XAML:

<Paragraph>Here are some highlights of WPF:</Paragraph>

is equivalent to the following C# code:

Paragraph p = new Paragraph(new Run(“Here are some highlights of WPF:”));

Other Inlines for enhancing a paragraph fall into three categories: spans, anchored 
blocks, and everything else.

Spans The most common spans are Bold, Italic, Underline, and the familiar Hyperlink 
from Chapter 7. They all fittingly derive from Span, which can also be used directly in a 
Paragraph for applying additional effects to text. Although Paragraphs already support 
making their text bold, italic, and so on 
through the setting of properties such as 
FontWeight and FontStyle, these spans make it 
possible to apply these effects to smaller regions 
within the Paragraph.

The following Paragraph, which is rendered in 
Figure 11.13, demonstrates all these spans:

<Paragraph> 

<Bold>bold</Bold> 

<Italic>italic</Italic> 

<Underline>underline</Underline> 

<Hyperlink>hyperlink</Hyperlink> 

<Span BaselineAlignment=”Superscript”>superscript</Span> 

<Span BaselineAlignment=”Subscript”>subscript</Span> 

<Span> 

<Span.TextDecorations>

<TextDecoration Location=”Strikethrough”/> 

</Span.TextDecorations>

strikethrough 

</Span>

</Paragraph>

The BaselineAlignment and 
TextDecorations properties used on 
Span are common to all Inlines, so they 
can easily be combined with Bold, 
Italic, or other effects. In addition, as 
with Paragraph, the content of any span 
is actually a collection of Inlines rather

Documents 325
1

1

FIGURE 11.13 Applying different 
spans to text in a paragraph.

Because TextBlock stores its contents as 
a collection of Inlines, you could replace 
the Paragraph tags in the previous XAML 
snippets with TextBlock tags, and they 
would still work. Label, on the other hand, 
does not directly support such content.

T I P

  From the Library of Wow! eBook



ptg

than a simple string. In the previous XAML, this means that 
there’s an implicit Run inside every child of Paragraph. This 
also means that you can easily embed spans within spans, as 
in the following Paragraph, rendered in Figure 11.14:

<Paragraph> 

a<Bold>b<Italic>c<Underline>d<Hyperlink>e</Hyperlink>f</Underline>g</Italic>h 

</Bold>i 

</Paragraph>

Anchored Blocks WPF contains two Inlines that are a bit unusual because they are 
designed to contain Blocks. They are Figure and Floater, and both derive from the 
abstract AnchoredBlock class.

Figure is like a mini-FlowDocument that can be embedded in the outer FlowDocument. The 
inner content is isolated from the outer content, which flows around the Figure. For 
example, the FlowDocument representing Chapter 1 might want to have its paragraphs 
flow around images (just like the figures in this book). This could be done as follows:

<FlowDocument xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”> 

<Paragraph FontSize=”22” FontWeight=”Bold”>Chapter 1</Paragraph> 

<Paragraph FontSize=”35” FontWeight=”Bold”>Why WPF?</Paragraph> 

<Paragraph>

<Figure Width=”130”> 

<BlockUIContainer>

<Image Source=”wpf.png”/> 

</BlockUIContainer>

</Figure>

In movies and on TV, the … 

</Paragraph> 

<Paragraph>…</Paragraph> 

<Paragraph>…</Paragraph> 

…

</FlowDocument>

Because a Figure contains Blocks, you can place a Table, Paragraphs, and so on inside it. 
But using BlockUIContainer to hold an Image is all we need in this case. The result is 
shown in Figure 11.15.

You can adjust the placement of a Figure with the HorizontalAnchor and 
VerticalAnchor properties (of type FigureHorizontalAnchor and FigureVerticalAnchor, 
respectively). The default value for HorizontalAnchor is ColumnRight, and the default

CHAPTER 11 Images, Text, and Other Controls326

FIGURE 11.14
Nesting a Hyperlink 
inside Underline inside 
Italic inside Bold.

  From the Library of Wow! eBook



ptg

FIGURE 11.15 A Figure containing an Image inside the third Paragraph of the 
FlowDocument.

Floater is a simplified form of Figure. It can contain arbitrary Blocks, but it does not 
support positioning relative to the page bounds or even spanning columns. Rather than 
having HorizontalAnchor and VerticalAnchor properties, it has a simple 
HorizontalAlignment property (of type HorizontalAlignment) that can be set to Left, 
Center, Right, or Stretch. If you don’t require the full functionality of Figure, you might 
as well use the lighter-weight Floater instead.

Other Inlines The two remaining 
Inlines don’t have anything in common 
other than the fact that they don’t 
derive from Span or AnchoredBlock. One 
of them is LineBreak, which functions as 
a newline. If you simply place an empty 
LineBreak element between any two 
characters in a paragraph, the second 
character will start on the following line.

Documents 327
1

1

value for VerticalAnchor is ParagraphTop. Both properties provide many options for 
placement based on the current column or Paragraph, or even relative to the bounds of 
the entire page. Figure 11.16 demonstrates some alternative placements for the Figure in 
Figure 11.15 by explicitly setting HorizontalAnchor and/or VerticalAnchor.

To place a page break rather than a line 
break in a FlowDocument, set the 
BreakPageBefore property to true on the 
first Paragraph you want after the break. 
BreakPageBefore is defined on Block, so 
this also applies to Section, List, 
BlockUIContainer, and Table.

T I P

  From the Library of Wow! eBook



ptg

FIGURE 11.16 Controlling the placement of a Figure with HorizontalAnchor and 
VerticalAnchor.

CHAPTER 11 Images, Text, and Other Controls328

HorizontalAnchor=”ColumnLeft"

HorizontalAnchor="PageCenter"

HorizontalAnchor="PageRight" and VerticalAnchor="PageTop"

  From the Library of Wow! eBook



ptg

The last Inline is InlineUIContainer, which is just like BlockUIContainer except with 
the ability to be inserted into a Paragraph and flow with the rest of the text. As with 
BlockUIContainer, it can contain a MediaElement-hosted video, a Button, 3D content in a 
Viewport3D, and so on, but it’s often handy 
simply to include a little inline Image. The 
following Paragraph, rendered in Figure
11.17, demonstrates this with an inline RSS 
icon next to a Hyperlink to an RSS feed:

<Paragraph> 

You can read more about this on my blog ( 

<Hyperlink NavigateUri=”http://blogs.msdn.com/adam_nathan/rss.xml”>

subscribe 

</Hyperlink> 

<InlineUIContainer>

<Image Width=”14” Source=”rss.gif”/> 

</InlineUIContainer> 

), which I try to update once a month.

</Paragraph>

Displaying Flow Documents
As mentioned earlier, a FlowDocument can be viewed (and edited) inside a RichTextBox. 
Although you can prevent user edits by setting RichTextBox’s IsReadOnly property to 
true, RichTextBox is not meant to be the typical control that applications use for docu-
ment reading.

Instead, WPF provides three additional controls for displaying flow documents. They can 
be hard to keep straight at first, but the differences are straightforward:

. FlowDocumentScrollViewer—Displays a document as one continuous file with a 
scrollbar, similar to the Web Layout mode in Microsoft Word (and similar to a read-
only RichTextBox inside a ScrollViewer).

. FlowDocumentPageViewer—Displays a document as discrete pages, similar to the Full 
Screen Reading mode in Microsoft Word.

. FlowDocumentReader—Combines FlowDocumentScrollViewer and 
FlowDocumentPageViewer into a single control and exposes additional functionality 
such as built-in text search. (This is the control you get by default if you use 
FlowDocument as the root element in your XAML file.)

Figure 11.18 shows the differences between these controls by displaying the FlowDocument 
containing the Chapter 1 draft. FlowDocumentReader is a rich control (somewhat like the 
common viewers for XPS or PDF files), but if you don’t require switching between 
scrolling and pagination, you might as well use one of the more lightweight viewers. Both 
FlowDocumentPageViewer and FlowDocumentReader (in pagination mode) automatically 
add/remove columns as you zoom out/in to maximize the use of available space.

Documents 329
1

1

FIGURE 11.17 A Paragraph with an 
inline Image, thanks to 
InlineUIContainer.

  From the Library of Wow! eBook



ptg

FIGURE 11.18 Chapter 1 displayed in each of the FlowDocument containers.

CHAPTER 11 Images, Text, and Other Controls330

FlowDocumentScrollViewer

FlowDocumentPageViewer

FlowDocumentReader

  From the Library of Wow! eBook



ptg

Notice that FlowDocumentScrollViewer doesn’t show the zoom functionality that appears 
in the other two, but you can enable this by setting its IsToolBarVisible property to 
true.

Adding Annotations
The three viewers for FlowDocument (plus DocumentViewer, the viewer for FixedDocument) 
support annotations, which enable users to highlight content or attach notes in the form 
of text or ink. The strange thing about this support is that you have to define your own 
user interface for enabling it; there are no default controls to reveal.

Although crafting your own custom user interface for annotations is tedious, it’s not very 
difficult. That’s because an AnnotationService class in the System.Windows.Annotations 
namespace exposes a command for each of the important annotation-controlling features:

. CreateTextStickyNoteCommand attaches a new text-based StickyNoteControl as an 
annotation on the selected text.

. CreateInkStickyNoteCommand attaches a new ink-based StickyNoteControl as an 
annotation on the selected text.

. DeleteStickyNotesCommand deletes the currently selected StickyNoteControl(s).

. CreateHighlightCommand highlights the selected text in the color passed as the 
command’s parameter.

. ClearHighlightsCommand removes any highlighting from the currently selected text.

Listing 11.2 defines a Window that adds a few simple Buttons on top of a 
FlowDocumentReader. Each of these Buttons is assigned to one of the previously described 
commands.

LISTING 11.2 Window1.xam—The User Interface for an Annotation-Enabled 
FlowDocumentReader

<Window 

xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation” 

xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml” 

xmlns:a=

“clr-namespace:System.Windows.Annotations;assembly=PresentationFramework” 

Title=”FlowDocumentReader + Annotations” 

x:Class=”Window1” Initialized=”OnInitialized” Closed=”OnClosed”> 

<StackPanel>

<StackPanel Orientation=”Horizontal”> 

<Label>Control Annotations:</Label> 

<Button Command=”a:AnnotationService.CreateTextStickyNoteCommand”

CommandTarget=”{Binding ElementName=reader}”> 

Create Text Note

</Button>

Documents 331
1

1

  From the Library of Wow! eBook



ptg

<Button Command=”a:AnnotationService.CreateInkStickyNoteCommand” 

CommandTarget=”{Binding ElementName=reader}”> 

Create Ink Note

</Button> 

<Button Command=”a:AnnotationService.DeleteStickyNotesCommand”

CommandTarget=”{Binding ElementName=reader}”> 

Remove Note

</Button> 

<Button Command=”a:AnnotationService.CreateHighlightCommand”

CommandParameter=”{x:Static Brushes.Yellow}” 

CommandTarget=”{Binding ElementName=reader}”>

Create Yellow Highlight 

</Button> 

<Button Command=”a:AnnotationService.ClearHighlightsCommand”

CommandTarget=”{Binding ElementName=reader}”> 

Remove Highlight

</Button> 

</StackPanel>

<FlowDocumentReader x:Name=”reader”> 

<FlowDocument>

… 

</FlowDocument>

</FlowDocumentReader> 

</StackPanel>

</Window>

The System.Windows.Annotations namespace is given an XML namespace prefix of a, 
used to refer to each of the commands on AnnotationService. Although 
AnnotationService is part of PresentationFramework, this namespace happens to not be 
included in WPF’s standard XML namespace. For the commands to work, each of these 
Buttons uses the FlowDocumentReader element as the command target. The Buttons 
become enabled and disabled automatically, based on the context in which each 
command is valid.

The only thing missing is the definition of the OnInitialized and OnClosed methods 
referenced in the XAML file. Listing 11.3 contains the code-behind file for Listing 11.2.

LISTING 11.3 Window1.xaml.cs—The Logic for an Annotation-Enabled 
FlowDocumentReader

using System; 

using System.IO; 

using System.Windows; 

using System.Windows.Annotations;

CHAPTER 11 Images, Text, and Other Controls332

LISTING 11.2 Continued

  From the Library of Wow! eBook



ptg

using System.Windows.Annotations.Storage;

public partial class Window1 : Window 

{

FileStream stream;

public Window1() 

{

InitializeComponent(); 

}

protected void OnInitialized(object sender, EventArgs e) 

{

// Enable and load annotations

AnnotationService service = AnnotationService.GetService(reader); 

if (service == null) 

{

stream = new FileStream(“storage.xml”, FileMode.OpenOrCreate); 

service = new AnnotationService(reader);

AnnotationStore store = new XmlStreamStore(stream); 

store.AutoFlush = true; 

service.Enable(store);

} 

}

protected void OnClosed(object sender, EventArgs e) 

{

// Disable and save annotations

AnnotationService service = AnnotationService.GetService(reader); 

if (service != null && service.IsEnabled) 

{

service.Disable(); 

stream.Close();

} 

}

}

The main purpose of the OnInitialized and OnClosed methods is to enable and disable 
the AnnotationService associated with the FlowDocumentReader. However, when enabling 
the service, you must also specify a Stream that persists the annotations. Listing 11.3 uses 
a standalone XML file in the current directory. When the application is closed, any anno-
tations are saved and reappear the next time the application is run (as long as the 
storage.xml file remains untouched).

Documents 333

LISTING 11.3 Continued

1
1

  From the Library of Wow! eBook



ptg

Figure 11.19 shows an instance of this annotation-enabled Window in action.

CHAPTER 11 Images, Text, and Other Controls334

FIGURE 11.19 Annotations on a FlowDocument, enabled by the custom Buttons at the top 
of the Window.

The StickyNoteControls used by annotations are full-blown WPF controls (in the 
System.Windows.Controls namespace). Therefore, you can restyle them with a completely 
different control template if you want to customize their look.

T I P

Range Controls
Range controls do not render arbitrary content like content controls or items controls. A 
range control simply stores and displays a numeric value that falls within a specified 
range.

The core functionality of range controls comes from an abstract class called RangeBase. 
This class defines properties of type double that store the current value and the endpoints 
of the range: Value, Minimum, and Maximum. It also defines a simple ValueChanged event.

This section examines the two major built-in range controls—ProgressBar and Slider. 
WPF also has a primitive ScrollBar control that derives from RangeBase, but you’re 
unlikely to want to use it directly. Instead, you would use a ScrollViewer object, as 
described in Chapter 5.

  From the Library of Wow! eBook



ptg

ProgressBar
In an ideal world, you would never need to use a ProgressBar in your software. But when 
faced with long-running operations, showing users a ProgressBar helps them realize that 
progress is indeed being made. Therefore, using a ProgressBar in the right places can 
dramatically improve usability. (Of course, it doesn’t 
improve usability as much as making the slow oper-
ation fast enough in the first place!) Figure 11.20 
displays the default look for WPF’s ProgressBar 
control.

ProgressBar has a default Minimum of 0 and a default Maximum of 100. It adds only two 
public properties to what RangeBase already provides:

. IsIndeterminate—When this is set to true, ProgressBar shows a generic animation 
(so the values of Minimum, Maximum, and Value don’t matter). This is a great feature 
when you have no clue how long something will take or are too lazy to do the work 
required to show true progress!

. Orientation—This is set to Horizontal by default but can be set to Vertical to 
make progress go from bottom to top rather than left to right. I haven’t seen appli-
cations use “thermometer-style” vertical progress bars other than the old-fashioned 
full-screen installation applications, but this property nevertheless makes it easy to 
achieve such an effect!

Range Controls 335
1

1

FIGURE 11.20 The WPF 
ProgressBar.

How can I give ProgressBar paused or stopped/error states?

Starting with Windows Vista, the Win32 progress bar can show a paused (yellow) state 
and a stopped/error (red) state. Unfortunately, the WPF ProgressBar does not have built-in 
support for this. If you want to achieve a similar effect, you need to create new templates for 
these states and apply them to the control programmatically, using techniques described in 
Chapter 14, “Styles, Templates, Skins, and Themes.”

?
FA Q

Slider
Slider is a bit more complicated than ProgressBar because it enables 
users to change the current value by moving its thumb through any 
number of optional ticks. Slider is shown in Figure 11.21.

Slider also has a default Minimum of 0, but it has a default Maximum of
10. It also defines an Orientation property (and is Horizontal by default), but it contains 
several properties for adjusting the placement and frequency of ticks, the placement and 
precision of ToolTips that can show the current value as the thumb is moved, and 
whether the thumb snaps to tick values or moves smoothly to any arbitrary value. For 
keyboard navigation purposes, Slider also contains Delay and Interval properties that 
work just like RepeatButton’s properties of the same names.

FIGURE 11.21
The WPF Slider.

  From the Library of Wow! eBook



ptg

Ticks are enabled by setting TickPlacement to TopLeft, BottomRight, or Both. The values 
for TickPlacement have odd names, but they cover both orientations of Slider. When 
TickPlacement is set to BottomRight, the ticks are on the bottom when the Slider is hori-
zontal and on the right when the Slider is vertical. Similarly, when TickPlacement is set to 
TopLeft, the ticks are on the top when the Slider is horizontal and on the left when the 
Slider is vertical. When TickPlacement is set to None (the default 
value), the thumb is given a simpler look, as shown in Figure 11.22.

One interesting feature of Slider is its support for displaying a 
smaller range within the current range, as shown in Figure 11.23. If 
IsSelectionRangeEnabled is set to true, SelectionStart and 
SelectionEnd can be set to the desired values of this “subrange.” 
There’s nothing built in to the control that enables a user to set the 
subrange via keyboard or mouse, nor does it enforce that the 
thumb stays within the subrange. With this feature, you could 
make the Slider act like the one in Windows Media Player, where 
a background bar indicates how much of the current media has 
been downloaded.

Calendar Controls
WPF 4 introduces two new calendar controls that provide rich visualizations for selecting 
and displaying dates: Calendar and DatePicker. These have been sorely missing in prior 
versions of WPF, so they are a welcome addition to the built-in set of controls.

Calendar
The Calendar control, displayed in Figure 11.24, displays a calendar that looks much like 
the main one in Windows. It supports three different modes with its DisplayMode prop-
erty. The user can initiate upward transitions from Month to Year to Decade by continuing 
to click the text in the header, and downward transitions by clicking any of the calendar 
cells. Unlike the Windows calendar, the WPF Calendar control doesn’t support a century 
mode, and its built-in style unfortunately doesn’t perform the slick animation when tran-
sitioning between modes.

CHAPTER 11 Images, Text, and Other Controls336

FIGURE 11.22
A Slider without 
any ticks.

FIGURE 11.23
Slider supports a 
selection range that 
can be a subset of 
the main range.

Month 
(the default)

Year Decade

FIGURE 11.24 The WPF Calendar, displayed with each of its DisplayMode values, as it 
appears on April 20, 2012.

  From the Library of Wow! eBook



ptg

Calendar’s DisplayDate (of type DateTime) is initialized to the current day by default 
(April 20, 2012 in Figure 11.24). Calendar ensures that the DisplayDate is initially visible, 
although the specific date doesn’t appear differently from the other dates in Month mode. 
The reason April 20 appears in gray in Figure 11.24 is that Calendar highlights today’s 
date independent of DisplayDate’s value. To turn this off, you can set Calendar’s 
IsTodayHighlighted property to false.

One or more dates in the calendar can be selected, depending on the value of 
SelectionMode:

. SingleDate—Only one date can be selected at a time, stored in the SelectedDate 
property. This is the default value.

. SingleRange—Multiple dates can be selected, but only if they are in a contiguous 
range. The selected dates are stored in the SelectedDates property.

. MultipleRange—Multiple noncontiguous dates can be selected, stored in the 
SelectedDates property.

. None—No dates can be selected.

You can set the DisplayDateStart and/or DisplayDateEnd properties (also of type 
DateTime) to restrict the range of available dates displayed inside Calendar. Figure 11.25 
shows what this looks like in each of the DisplayModes. The result can look a bit goofy, as 
the six-week layout of the Month mode and the 4x4 layout of the other two modes never 
change.

Calendar Controls 337
1

1

Month 
(the default)

Year Decade

FIGURE 11.25 The impact of setting DisplayDateStart to April 10, 2012 and 
DisplayDateEnd to April 25, 2010

Alternatively, you can choose ranges of dates to be nonselectable despite being displayed. 
This is accomplished with Calendar’s BlackoutDates property, which is a collection of

  From the Library of Wow! eBook



ptg

CalendarDateRange objects. Figure 11.26 shows the result 
of setting BlackoutDates to a pair of ranges as follows:

<Calendar> 

<Calendar.BlackoutDates>

<CalendarDateRange Start=”4/1/2012” End=”4/19/2012”/> 

<CalendarDateRange Start=”5/1/2012” End=”5/5/2012”/>

</Calendar.BlackoutDates>

</Calendar>

This only affects the Month mode.

CHAPTER 11 Images, Text, and Other Controls338

FIGURE 11.26 The impact 
of setting BlackoutDates to 
two CalendarDateRanges.

The type of the BlackoutDates property is CalendarBlackoutDatesCollection, a 
subclass of ObservableCollection<CalendarDateRange> that has one particularly handy 
method: AddDatesInPast. By calling this, you can blackout all dates before the current date. 
However, because calling this method requires procedural code, it might be easier to explic-
itly use a CalendarDateRange with a Start value of DateTime.MinValue (January 1, 0001) 
and an End value of DateTime.Today minus one day.

T I P

Designed for cultures where Sunday isn’t considered to be the first day of the week, 
Calendar’s FirstDayOfWeek property can be set to any value of the System.DayOfWeek 
enumeration to change its display accordingly. Calendar also has events covering all the 
major property changes: DisplayDateChanged, DisplayModeChanged, 
SelectionModeChanged, and SelectedDatesChanged (which handles both single selection 
and multiselect modes).

DatePicker
The other calendar control—DatePicker—is basically a TextBox 
for displaying and entering a date with an associated Calendar 
popup for visually changing the date. It is pictured in Figure
11.27.

DatePicker’s popup contains an instance of the now-familiar 
Calendar control, which is responsible for most of DatePicker’s 
interesting functionality. DatePicker contains the same proper-
ties and events as Calendar except for DisplayMode, 
SelectionMode, and the corresponding property change events. 
Instead, the popup’s DisplayMode is always Month and its 
SelectionMode is always SingleDate. Due to its single selection, 
DatePicker has a SelectedDateChanged event instead of a

FIGURE 11.27 The 
WPF DatePicker, 
with its popup 
showing after clicking 
the calendar icon.

  From the Library of Wow! eBook



ptg

SelectedDatesChanged event. It also lacks Calendar’s DisplayDateChanged event, for no 
particular reason.

DatePicker has a few unique properties and events for controlling the behavior of its 
TextBox and its interaction with the popup. The Boolean IsDropDownOpen property can be 
used to programmatically open or close the Calendar popup, or it can be inspected to 
determine its current state. CalendarOpened and CalendarClosed events are raised when 
appropriate. SelectedDateFormat controls the format of the string that gets placed in the 
TextBox when a date is selected in the Calendar. With its default value of Short, it is 
given a format such as 4/20/2012. It can also be set to Long, which gives a format such as 
Friday, April 20, 2012. At any time, the string inside the TextBox can be set or retrieved 
via DatePicker’s Text property. If a string is entered that is not a valid date, the 
DateValidationError event is raised.

DatePicker’s TextBox (a TextBox-derived class called DatePickerTextBox) is not the 
nicest-looking control—it has an odd-looking hover appearance, and the calendar icon 
that opens the popup when clicked inexplicably always shows “15” as its fake date. The 
only way to customize its appearance is to completely replace its control template.

Summary
You’ve now seen the major built-in controls that can be used for creating traditional (and 
perhaps some not-so-traditional) user interfaces. Although you can radically change the 
look of these controls by using the techniques discussed in Chapter 14, the core behavior 
described in this part of the book remains the same.

Summary 339
1

1

  From the Library of Wow! eBook



ptg

This page intentionally left blank 

  From the Library of Wow! eBook



ptg

PART IV

Features for 
Professional 
Developers

IN THIS PART

CHAPTER 12 Resources 343

CHAPTER 13 Data Binding 363

CHAPTER 14 Styles, Templates, Skins, and 
Themes 415

  From the Library of Wow! eBook



ptg

This page intentionally left blank 

  From the Library of Wow! eBook



ptg

CHAPTER 12

Resources

The .NET Framework has generic infrastructure for pack-
aging and accessing resources—the noncode pieces of an 
application or component, such as bitmaps, fonts, 
audio/video files, and string tables. As with many other 
parts of WPF, WPF not only leverages the core .NET 
resources system but adds a little more support. WPF 
supports two distinct types of resources: binary resources 
and logical resources.

Binary Resources
The first type—binary resources—is exactly what the rest of 
the .NET Framework considers to be resources. In WPF 
applications, these are typically traditional items like 
bitmaps. However, even compiled XAML gets stored as a 
binary resource behind the scenes. Binary resources can be 
packaged in three different ways:

. Embedded inside an assembly

. As loose files that are known to the application at 
compile time

. As loose files that might not be known to the applica-
tion at compile time

An application’s binary resources are often put into two 
categories: localizable resources that must change depend-
ing on the current culture and language-neutral (or nonlo-
calizable) resources that don’t change based on culture. 
This section looks at the ways in which binary resources are 
defined, accessed, and localized.

IN THIS CHAPTER

. Binary Resources

. Logical Resources

  From the Library of Wow! eBook



ptg

Defining Binary Resources
The typical procedure for defining a binary resource consists of adding the file to a Visual 
Studio project and selecting the appropriate build action in the property grid, as shown in 
Figure 12.1 for an image called logo.jpg.

CHAPTER 12 Resources344

FIGURE 12.1 Marking a file as a binary resource in Visual Studio.

Visual Studio supports several build actions for WPF applications, two of which are rele-
vant for binary resources:

. Resource—Embeds the resource into the assembly (or a culture-specific satellite 
assembly).

. Content—Leaves the resource as a loose file but adds a custom attribute to the 
assembly (AssemblyAssociatedContentFile) that records the existence and relative 
location of the file.

If you’re an MSBuild user editing a project file by hand, you can add such a file with the 
following syntax:

<BuildAction Include=”logo.jpg”/>

where BuildAction is the name of the build action. A build action may include child 
elements that refine its behavior, as in the following example:

<Content Include=”logo.jpg”> 

<CopyToOutputDirectory>Always</CopyToOutputDirectory>

</Content>

  From the Library of Wow! eBook



ptg

If you want to keep your resources as loose files, adding them to a project with a Content 
build action is not required; you could simply put them at the appropriate location when 
the application runs and not worry about adding them to the project at all. This is not 
recommended, however, because it makes accessing the resources a bit less natural (as 
described in the next section). Still, sometimes using resources that aren’t known at 
compile time is inevitable, such as files that are dynamically generated at runtime.

Resources should be embedded (with the Resource build action) if they are localizable, or 
if you feel the benefits of having a single binary file outweigh the benefits of having a 
loose file that can be easily replaced independently from the code. If neither of these is 
true, or if the content needs to be accessible directly from external entities as well 
(perhaps from HTML pages rendered inside the application), using the Content build 
action is a good choice.

Accessing Binary Resources
Whether binary resources are embedded with the Resource build action, linked as loose 
files with the Content build action, or left as loose files with no special treatment at 
compile time, WPF provides a mechanism for accessing them from code or XAML with a 
uniform resource identifier (URI). A type converter enables such URIs to be specified in 
XAML as simple strings with a few built-in shortcuts for common scenarios.

You can see this by examining the source code for the Photo Gallery application intro-
duced in Chapter 7, “Structuring and Deploying an Application.” The following XAML 
snippet from Photo Gallery references several images that are included in the project with 
the Resource build action:

<StackPanel Grid.Column=”1” Orientation=”Horizontal” HorizontalAlignment=”Center”> 

<Button x:Name=”previousButton” ToolTip=”Previous (Left Arrow)” …>

<Image Height=”21” Source=”previous.gif”/> 

</Button> 

<Button x:Name=”slideshowButton” ToolTip=”Play Slide Show (F11)” …>

Binary Resources 345
1

2

Avoid the Embedded Resource build action!

The Resource build action is confusingly similar to the EmbeddedResource build action 
(Embedded Resource in Visual Studio’s property grid). Both embed a binary resource inside 
an assembly, but the latter should be avoided in WPF projects. Whereas Resource was 
added specifically for WPF, EmbeddedResource predates WPF (and is used to embed binary 
resources in Windows Forms projects).

WPF’s APIs that reference resources via uniform resource identifiers (described in the next 
section) are designed for resources that use the build action Content or Resource only. This 
also means that resources embedded with the Content or Resource build action can be 
referenced easily from XAML, but resources embedded with the EmbeddedResource build 
action cannot be (unless you write some custom code).

WA R N I N G

  From the Library of Wow! eBook



ptg

<Image Height=”21” Source=”slideshow.gif”/> 

</Button> 

<Button x:Name=”nextButton” ToolTip=”Next (Right Arrow)” …>

<Image Height=”21” Source=”next.gif”/> 

</Button>

</StackPanel>

Note that this same XAML works even if the .gif files are given the Content build action 
instead of Resource (as long as the loose files are copied to the same directory as the 
executable when it runs). It does not work, however, if the loose .gif files are not added 
to the project.

CHAPTER 12 Resources346

Compiled XAML can’t reference a binary resource in the current directory via its 
simple filename unless it has been added to the project!

It often surprises people that compiled XAML, unlike loose XAML, can’t reference an arbitrary 
file in the current directory as follows:

<Image Height=”21” Source=”slideshow.gif”/>

If you require a resource to be loose and do not want to add it to your project, you have a 
few easy alternatives. One (unsatisfactory) alternative is to qualify the filename with its full 
path:

<Image Height=”21” Source=”C:\Users\Adam\Documents\slideshow.gif”/>

A better alternative is to use the following odd-looking syntax, described later in the 
“Accessing Resources at the Site of Origin” section:

<Image Height=”21” Source=”pack://siteOfOrigin:,,,/slideshow.gif”/>

WA R N I N G

The key to accessing binary resources, whether done with the Image element or other 
elements, is understanding what URIs you can use to address a resource that could be 
embedded or loose. Table 12.1 summarizes the main options for URI strings in XAML. 
Note that not all of these options are available for partial-trust applications.

TABLE 12.1 URIs for Accessing Binary Resources from XAML

Using logo.jpg as the Resource Name 

If the URI Is… The Resource Is…

logo.jpg Embedded in the current assembly, or loose 
and alongside the current XAML page or 
assembly (the latter case only if marked as 
Content in the project)

  From the Library of Wow! eBook



ptg

A/B/logo.jpg Embedded in the current assembly using an 
internal subfolder (A\B) structure defined at 
compile time, or loose and in an A\B subfolder 
relative to the current XAML page or assembly 
(the latter case only if marked as Content in 
the project)

c:\temp\logo.jpg Loose in the local c:\temp folder
file://c:/temp/logo.jpg Loose in the local c:\temp folder
\\pc1\images\logo.jpg Loose on the \\pc1\images UNC share 
http://adamnathan.net/logo.jpg Loose and hosted at the adamnathan.net 

website
/MyDll;Component/logo.jpg Embedded in a different assembly called 

MyDll.dll or MyDll.exe
/MyDll;Component/A/B/logo.jpg Embedded in a different assembly called 

MyDll.dll or MyDll.exe, using an internal 
subfolder structure (A\B) defined at compile 
time

pack://siteOfOrigin:,,,/logo.jpg Loose at the site of origin 
pack://siteOfOrigin:,,,/A/B/logo.jpg Loose at the site of origin in an A\B subfolder

Note that the first two entries in Table
12.1 can work with both embedded and 
loose binary resources. This means that 
you can replace loose resources with 
embedded ones (or vice versa) without 
having to change your XAML.

The notion of using subfolders with 
embedded resources might sound a little 
odd, but it can be a nice way to organize 
embedded resources just as you would 
organize loose ones. For example, say 
that you put logo.jpg in an images 
folder in your Visual Studio project, 
using either of the following in the 
project file:

<Resource Include=”images\logo.jpg”/>

or

<Content Include=”images\logo.jpg”/>

Then you can access it as follows, regardless of whether logo.jpg physically resides as a 
loose file in an images subfolder at runtime or if it’s simply embedded in the assembly:

<Image Source=”images\logo.jpg”/>

Binary Resources 347

TABLE 12.1 Continued

1
2

What happens when attempting 
to access resources on a slow

or unavailable network?

Table 12.1 shows that binary resources can 
be directly referenced from potentially unre-
liable sources such as a website or a 
Universal Naming Convention (UNC) share. 
This access is done synchronously, so you’ll 
unfortunately see an application “hang” 
while waiting for all the bits to be retrieved. 
In addition, failure to retrieve the resource 
results in an unhandled exception.

?
FA Q

  From the Library of Wow! eBook



ptg

The final four rows of Table 12.1 need a bit more explanation. The first two enable you to 
access binary resources embedded in another assembly, and the second two enable you to 
access binary resources at a special place known as a site of origin.

Accessing Resources Embedded in Another Assembly
The ability to easily access binary resources embedded in another assembly is very handy 
(and gives you more options for updating resources without needing to replace the main 
executable), but the syntax is a little bizarre. As Table 12.1 implies, the syntax is

/AssemblyReference;Component/ResourceName

where AssemblyReference identifies the specific assembly, but Component is a keyword 
and must be used literally. ResourceName is the filename (which can include subfolders).

AssemblyReference can be the simple assembly display name, or it can optionally include 
other pieces of a .NET assembly’s identity: version number and public key token (if it’s a 
strong-named assembly). So, you have four options for AssemblyReference:

. AssemblyName

. AssemblyName;vVersionNumber (the v prefix is required)

. AssemblyName;PublicKeyToken

. AssemblyName;vVersionNumber;PublicKeyToken

Accessing Resources at the Site of Origin
Although full-trust applications can hard-code a uniform resource locator (URL) or path 
for loose binary resources, taking advantage of the site of origin notion is a more main-
tainable approach. (In addition, it is required for partial-trust applications.) The site of 
origin gets resolved to different places at runtime, depending how the application is 
deployed:

. For a full-trust application installed with Windows Installer, the site of origin is the 
application’s root folder.

. For a full-trust ClickOnce application, the site of origin is the URL or UNC path 
from which the application was deployed.

. For a partial-trust XAML Browser Application (XBAP) or ClickOnce application, the 
site of origin is the URL or UNC path that hosts the application.

. For loose XAML pages viewed in a web browser, there is no site of origin. 
Attempting to use it throws an exception.

The syntax for taking advantage of the site of origin is even stranger than the syntax to 
reference resources embedded in another assembly! You must use the 
pack://siteOfOrigin:,,,/ prefix, followed by the resource name (which can contain 
subfolders). Note that siteOfOrigin is a keyword to be used literally, not a placeholder for 
other text.

CHAPTER 12 Resources348

  From the Library of Wow! eBook



ptg

Accessing Resources from Procedural Code
When creating URIs in C# for referencing resources, you aren’t able to use the XAML-
specific shortcuts from Table 12.1. Instead, such URIs must be constructed with a fully 
qualified Pack URI or a fully qualified path/URL.

For example, the following code assigns an Image’s Source property to the contents of 
logo.jpg:

Image image = new Image(); 

image.Source = new BitmapImage(new Uri(“pack://application:,,,/logo.jpg”));

This instantiates a System.Windows.Media.Imaging.BitmapImage object (which works with 
popular image formats such as JPEG, PNG, GIF, and BMP), which ultimately derives from

Binary Resources 349
1

2

Where does that awful triple-comma syntax come from?

The Pack URI format is part of the XML Paper Specification (XPS), which can be found 
at http://microsoft.com/whdc/xps/xpsspec.mspx. This is the specified format:

pack://packageURI/partPath

packageURI is actually a URI within a URI, so it is encoded by converting its forward slashes 
into commas. packageURI can point to an XPS document, such as 
file:///C:/Document.xps encoded as file:,,,C:,Document.xps. Or, in WPF programs, it 
can be one of two URIs treated specially by the platform:

. siteOfOrigin:/// (encoded as siteOfOrigin:,,,)

. application:/// (encoded as application:,,,)

Therefore, the triple commas are actually encoded forward slashes, not placeholders for 
optional parameters! (Note that these can also be specified with two slashes/commas 
rather than three.)

The application:/// package is implicitly used by all the resource references shown in 
Table 12.1 that don’t use siteOfOrigin. (This is thanks to the fact that relevant objects in 
WPF implement the IUriContext interface. IUriContext contains a single BaseUri prop-
erty that gives context to relative URIs.) In other words, the following URI used in XAML:

logo.jpg

is really just shorthand notation for this:

pack://application:,,,/logo.jpg

and this URI:

/MyDll;Component/logo.jpg

is shorthand notation for this:

pack://application:,,,/MyDll;Component/logo.jpg

You can use these longer and more explicit URIs in XAML, but there’s no good reason to.

?
FA Q

  From the Library of Wow! eBook

http://microsoft.com/whdc/xps/xpsspec.mspx


ptg

the abstract ImageSource type (the type of the Source property). The URI is represented 
by a System.Uri object.

The use of pack://application:,,,/ works only with resources belonging to the current 
project marked as Resource or Content. To reference relative loose files with no relation to 
the project, the easiest approach is to use a siteOfOrigin-based URI.

Localizing Binary Resources
If an application contains some binary resources that are specific to certain cultures, you 
can partition them into satellite assemblies (one per culture) that get loaded automati-
cally, when appropriate. If you’re doing this, then you likely have strings in your user 
interface that you need to localize as well. LocBaml, a sample tool in the Windows SDK, 
makes it easy to manage the localization of strings and other items without having to rip 
them out of XAML and manually apply a level of indirection. This section walks through 
the basics steps to get started with LocBaml and satellite assemblies.

Preparing a Project for Multiple Cultures
To specify a default culture for resources 
and automatically build an appropriate 
satellite assembly, you must add a 
UICulture element to the project file. 
Visual Studio doesn’t have a means to 
set this within its environment, so you 
can open the project file in your favorite 
text editor instead.

The UICulture element should be added under any or all PropertyGroup elements corre-
sponding to the build configurations you want to affect (Debug, Release, and so on), or to 
a property group unrelated to build configuration so it automatically applies to all of 
them. This setting should look as follows for a default culture of American English:

<Project …> 

<PropertyGroup>

<UICulture>en-US</UICulture>

…

If you rebuild your project with this setting in place, you’ll find an en-US folder alongside 
your assembly, containing the satellite assembly named AssemblyName.resources.dll.

You should also mark your assembly with the assembly-level NeutralResourcesLanguage 
custom attribute with a value matching your default UICulture setting, as follows:

[assembly: NeutralResourcesLanguage(“en-US”, 

UltimateResourceFallbackLocation.Satellite)]

CHAPTER 12 Resources350

You can open a raw project file without 
leaving Visual Studio if you right-click and 
unload it from the current solution first. 
After it’s unloaded, right-click the project 
again and select Edit from the context 
menu.

T I P

  From the Library of Wow! eBook



ptg

Marking a User Interface with Localization IDs
The next step is to apply a Uid directive from the XAML language namespace (x:Uid) to 
every object element that needs to be localized. The value of each directive should be a 
unique identifier.

This would be extremely tedious to do by hand, but it fortunately can be done automati-
cally by invoking MSBuild from a command prompt, as follows:

msbuild /t:updateuid ProjectName.csproj

Running this gives every object element in every XAML file in the project an x:Uid direc-
tive with a unique value. You can add this MSBuild task inside your project before the 
Build task, although this might produce too much noise if you rebuild often.

Creating a New Satellite Assembly with LocBaml
After compiling a project that has been enhanced with Uids, you can run the LocBaml 
tool from the Windows SDK on a .resources file generated by the build process (found 
in the obj\debug directory), as follows:

LocBaml /parse ProjectName.g.en-US.resources /out:en-US.csv

This generates a simple .csv text file containing all the property values you should need 
to localize. You can edit the contents of this file so it correctly corresponds to a new 
culture. (There’s no magic in this part of localization!) If you save the file, you can then 
use LocBaml in the reverse direction to generate a new satellite assembly from the .csv 
file! For example, if you changed the contents of the .csv file to match the French 
Canadian culture, you could save the file as fr-CA.csv and then run LocBaml as follows:

LocBaml /generate ProjectName.resources.dll /trans:fr-CA.csv /cul:fr-CA

This new satellite assembly needs to be copied to a folder alongside the main assembly 
with a name that matches the culture (fr-CA in this case).

To test a different culture, you can set 
System.Threading.Thread.CurrentThread.CurrentUICulture (and 
System.Threading.Thread.CurrentThread.CurrentCulture) to an instance of the desired 
CultureInfo.

Logical Resources
The second type of resources is a mechanism first introduced by WPF and supported by 
both WPF and Silverlight. In this chapter, these resources are called logical resources for 
lack of a better term, but mostly the book refers to them as resources in contrast to the 
binary resources just covered. (You might be tempted to call them XAML resources, but as 
with almost everything else in XAML, you can create and use them entirely in procedural 
code.)

Logical Resources 351
1

2

  From the Library of Wow! eBook



ptg

These logical resources are arbitrary .NET objects stored (and named) in an element’s 
Resources property, typically meant to be shared by multiple child elements. The 
FrameworkElement and FrameworkContentElement base classes both have a Resources 
property (of type System.Windows.ResourceDictionary), so most WPF classes you’ll 
encounter have such a property. These logical resources are often styles (covered in 
Chapter 14, “Styles, Templates, Skins, and Themes”) or data providers (covered in Chapter 
13, “Data Binding”). But this chapter demonstrates logical resources by storing some 
simple Brushes.

Listing 12.1 contains a simple Window with a row of Buttons along the bottom, similar to 
ones from the Photo Gallery user interface. It demonstrates a brute-force way to apply a 
custom Brush to each Button’s (and the Window’s) Background, as well as each Button’s 
BorderBrush. Figure 12.2 shows the result.

LISTING 12.1 Applying Custom Color Brushes Without Using Logical Resources

<Window xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation” 

Title=”Simple Window” Background=”Yellow”> 

<DockPanel>

<StackPanel DockPanel.Dock=”Bottom” Orientation=”Horizontal” 

HorizontalAlignment=”Center”> 

<Button Background=”Yellow” BorderBrush=”Red” Margin=”5”>

<Image Height=”21” Source=”zoom.gif”/> 

</Button> 

<Button Background=”Yellow” BorderBrush=”Red” Margin=”5”>

<Image Height=”21” Source=”defaultThumbnailSize.gif”/> 

</Button> 

<Button Background=”Yellow” BorderBrush=”Red” Margin=”5”>

<Image Height=”21” Source=”previous.gif”/> 

</Button> 

<Button Background=”Yellow” BorderBrush=”Red” Margin=”5”>

<Image Height=”21” Source=”slideshow.gif”/> 

</Button> 

<Button Background=”Yellow” BorderBrush=”Red” Margin=”5”>

<Image Height=”21” Source=”next.gif”/> 

</Button> 

<Button Background=”Yellow” BorderBrush=”Red” Margin=”5”>

<Image Height=”21” Source=”counterclockwise.gif”/> 

</Button> 

<Button Background=”Yellow” BorderBrush=”Red” Margin=”5”>

<Image Height=”21” Source=”clockwise.gif”/> 

</Button> 

<Button Background=”Yellow” BorderBrush=”Red” Margin=”5”>

<Image Height=”21” Source=”delete.gif”/> 

</Button>

</StackPanel>

CHAPTER 12 Resources352

  From the Library of Wow! eBook



ptg

<ListBox/> 

</DockPanel>

</Window>

Alternatively, you could organize the yellow and 
red Brushes as logical resources for the Window and 
apply them to individual elements as resource 
references. This is a nice way to separate and 
consolidate the style information, much like using 
Cascading Style Sheets (CSS) to control colors and 
styles in a webpage rather than hard-coding them 
on individual elements. The sharing of objects 
enabled by the logical resources scheme can also 
help you consume significantly less memory, 
depending on the complexity of the objects. Listing 12.2 is an update to Listing 12.1, 
using logical resources for the two Brushes.

LISTING 12.2 Consolidating Color Brushes with Logical Resources

<Window xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation” 

xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”

Title=”Simple Window”>

<Window.Resources> 

<SolidColorBrush x:Key=”backgroundBrush”>Yellow</SolidColorBrush> 

<SolidColorBrush x:Key=”borderBrush”>Red</SolidColorBrush>

</Window.Resources>

<Window.Background> 

<StaticResource ResourceKey=”backgroundBrush”/>

</Window.Background> 

<DockPanel>

<StackPanel DockPanel.Dock=”Bottom” Orientation=”Horizontal” 

HorizontalAlignment=”Center”> 

<Button Background=”{StaticResource backgroundBrush}”

BorderBrush=”{StaticResource borderBrush}” Margin=”5”> 

<Image Height=”21” Source=”zoom.gif”/>

</Button> 

<Button Background=”{StaticResource backgroundBrush}”

BorderBrush=”{StaticResource borderBrush}” Margin=”5”> 

<Image Height=”21” Source=”defaultThumbnailSize.gif”/>

</Button> 

<Button Background=”{StaticResource backgroundBrush}”

BorderBrush=”{StaticResource borderBrush}” Margin=”5”> 

<Image Height=”21” Source=”previous.gif”/>

</Button>

Logical Resources 353

LISTING 12.1 Continued

1
2

FIGURE 12.2 The rendered
Window from Listing 12.1.

  From the Library of Wow! eBook



ptg

<Button Background=”{StaticResource backgroundBrush}” 

BorderBrush=”{StaticResource borderBrush}” Margin=”5”> 

<Image Height=”21” Source=”slideshow.gif”/>

</Button> 

<Button Background=”{StaticResource backgroundBrush}”

BorderBrush=”{StaticResource borderBrush}” Margin=”5”> 

<Image Height=”21” Source=”next.gif”/>

</Button> 

<Button Background=”{StaticResource backgroundBrush}”

BorderBrush=”{StaticResource borderBrush}” Margin=”5”> 

<Image Height=”21” Source=”counterclockwise.gif”/>

</Button> 

<Button Background=”{StaticResource backgroundBrush}”

BorderBrush=”{StaticResource borderBrush}” Margin=”5”> 

<Image Height=”21” Source=”clockwise.gif”/>

</Button> 

<Button Background=”{StaticResource backgroundBrush}”

BorderBrush=”{StaticResource borderBrush}” Margin=”5”> 

<Image Height=”21” Source=”delete.gif”/>

</Button> 

</StackPanel> 

<ListBox/>

</DockPanel> 

</Window>

The definition of resources and the x:Key syntax should look familiar, from when 
ResourceDictionary was introduced in Chapter 2, “XAML Demystified.” Applying the 
resource to elements uses the StaticResource markup extension (short for 
System.Windows.StaticResourceExtension). This is applied to Window.Background with 
property element syntax, and to Button.Background and Button.BorderBrush with prop-
erty attribute syntax. Because both resources in 
this example are Brushes, they can be applied 
anywhere a Brush is expected.

Because simple yellow and red Brushes are still 
used in Listing 12.2, the result looks identical to 
Figure 12.2. But now, you can replace the Brushes 
in one spot and leave the rest of the XAML alone 
(as long as you use the same keys in the resource 
dictionary). For example, replacing the 
backgroundBrush resource with the following linear 
gradient produces the result in Figure 12.3:

CHAPTER 12 Resources354

LISTING 12.2 Continued

FIGURE 12.3 The same Window 
from Listing 12.2, but with a new 
definition for backgroundBrush.

  From the Library of Wow! eBook



ptg

<LinearGradientBrush x:Key=”backgroundBrush” StartPoint=”0,0” EndPoint=”1,1”> 

<GradientStop Color=”Blue” Offset=”0”/> 

<GradientStop Color=”White” Offset=”0.5”/> 

<GradientStop Color=”Red” Offset=”1”/>

</LinearGradientBrush>

Resource Lookup
The StaticResource markup extension accepts a single parameter representing the key to 
the item in a resource dictionary. But that item doesn’t have to be inside the current 
element’s resource dictionary. It could be in any logical parent’s collection, or even in 
application-level or system-level resource dictionaries.

The markup extension class implements the ability to walk the logical tree to find the 
item. It first checks the current element’s Resources collection (its resource dictionary). If 
the item is not found, it checks the parent element, its parent, and so on until it reaches 
the root element. At that point, it checks the Resources collection on the Application 
object. If it is not found there, it checks a collection of theme resources, a concept covered 
in Chapter 14. If it is not found there, it finally checks a system collection (which 
contains system-defined fonts, colors, 
and other settings). If the item is in 
none of these collections, it throws an 
InvalidOperationException.

Because of this behavior, resources are 
typically stored in the root element’s 
resource dictionary or in the applica-
tion-level dictionary for maximum 
sharing potential. Note that although 
each individual resource dictionary 
requires unique keys, the same key can 
be used in multiple collections. The one 
“closest” to the element accessing the 
resource will win because of the way the 
tree gets walked.

Static Versus Dynamic Resources
WPF provides two ways to access a logical resource:

. Statically with StaticResource, meaning that the resource is applied only once (the 
first time it’s needed)

. Dynamically with DynamicResource, meaning that the resource is reapplied every 
time it changes

Logical Resources 355
1

2

Be careful with application-level 
resources inside multi-threaded appli-
cations!

Recall from Chapter 7 that a WPF applica-
tion may have multiple UI threads. In such 
an application, application-level resources 
will be accessed directly by each of these 
threads. To make this work, such resources 
must either be Freezables that are frozen, 
or marked with x:Shared=false, an 
attribute described in the upcoming 
“Resources Without Sharing” section.

WA R N I N G

  From the Library of Wow! eBook



ptg

The DynamicResource markup extension (System.Windows.DynamicResourceExtension) 
implements the ability to walk the logical tree just like StaticResource does, so 
DynamicResource can often be used wherever StaticResource is used to get the same 
effect. Nothing about the resource declarations themselves make them suited for one 
versus the other; choosing StaticResource or DynamicResource is mostly about deciding 
whether you want consumers of the resource to see updates. In fact, you could even mix 
and match StaticResource and DynamicResource with the same resource key, although 
that would be a strange thing to do.

Examining the Differences
The main difference between StaticResource and DynamicResource is that any subse-
quent updates to the resource are reflected only to those elements that use 
DynamicResource. Such updates can be done in your own code (changing a yellow Brush 
to blue, for example) or they can be done by a user changing system settings.

StaticResource and DynamicResource have different performance characteristics. On the 
one hand, using DynamicResource requires more overhead than StaticResource because 
of the extra tracking. On the other hand, the use of DynamicResource can potentially 
improve load time. StaticResource references are always loaded when the Window or Page 
loads, whereas a DynamicResource reference is not loaded until it is actually used.

In addition, DynamicResource can only be used to set dependency property values, 
whereas StaticResource can be used just about anywhere. For example, you could use 
StaticResource as an element to abstract away entire controls! This Window:

<Window xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation” 

xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”> 

… 

<Image Height=”21” Source=”zoom.gif”/> 

…

</Window>

is equivalent to this Window :

<Window xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation” 

xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”>

<Window.Resources> 

<Image x:Key=”zoom” Height=”21” Source=”zoom.gif”/>

</Window.Resources>

<StackPanel> 

<StaticResource ResourceKey=”zoom”/>

</StackPanel> 

</Window>

Using elements such as Image as a resource might be an interesting way to factor XAML, 
but it doesn’t allow you to share the object. Image can have only one parent because it 
derives from Visual (therefore participating in the logical and visual trees), so any

CHAPTER 12 Resources356

  From the Library of Wow! eBook



ptg

attempt to use the same object as a resource more than once fails. For example, pasting a 
second but identical StaticResource element in the preceding XAML snippet produces an 
exception with the message “Specified Visual is already a child of another 
Visual or the root of a CompositionTarget.”

Logical Resources 357
1

2

Factoring XAML

Resources provide a nice way to factor XAML within a page. And if you store them as applica-
tion-level resources, they can live in a separate XAML file. But if you want to partition a set 
of resources into arbitrary XAML files, no matter where they are stored in the logical tree 
(perhaps for maintainability or flexibility), you can leverage the MergedDictionaries property 
of the ResourceDictionary class to achieve this.

For example, a Window could set its Resources collection as follows to merge together multi-
ple resource dictionaries from separate files:

<Window.Resources> 

<ResourceDictionary>

<ResourceDictionary.MergedDictionaries> 

<ResourceDictionary Source=”file1.xaml”/> 

<ResourceDictionary Source=”file2.xaml”/>

</ResourceDictionary.MergedDictionaries> 

</ResourceDictionary>

</Window.Resources>

The separate files must use ResourceDictionary as the root element. For example, 
file1.xaml could contain this: 

<ResourceDictionary

xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation” 

xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”> 

<Image x:Key=”logo” Source=”logo.jpg”/>

</ResourceDictionary>

If the dictionaries being merged have a duplicate key, the last one wins (unlike in the case of 
having duplicate keys in a single dictionary).

Besides this approach of using resources, creating custom controls (covered in Chapter 20, 
“User Controls and Custom Controls”) is the other way to factor XAML into multiple files. 
There is no general-purpose C/C++-preprocessor-like #include mechanism for XAML.

D I G G I N G  D E E P E R

There’s one more (and subtle) difference between static and dynamic resource access. 
When using StaticResource in XAML, forward references aren’t supported. In other 
words, any uses of the resource must appear after it is declared in the XAML file. This 
means you can’t use StaticResource with property attribute syntax if the resource is 
defined on the same element (because the resource necessarily appears afterward)! 
DynamicResource does not have this limitation.

  From the Library of Wow! eBook



ptg

This forward reference rule is the reason that the Window in Listing 12.2 uses property 
element syntax to set Background. By doing so, it ensures that the resource is defined 
before it is used.

Although DynamicResource could be used the same way, you can also use it via property 
attribute syntax in this case because it doesn’t matter that the resource is referenced 
before it is defined:

<Window xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation” 

xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”

Title=”Simple Window” Background=”{DynamicResource backgroundBrush}”>

<Window.Resources> 

<SolidColorBrush x:Key=”backgroundBrush”>Yellow</SolidColorBrush> 

<SolidColorBrush x:Key=”borderBrush”>Red</SolidColorBrush>

</Window.Resources> 

…

</Window>

Resources Without Sharing
By default, when a resource is applied in multiple places, the same object instance is used 
everywhere. This is usually the desired behavior. However, you can mark items in a 
compiled resource dictionary with x:Shared=”False” to make each request for that 
resource produce a distinct instance of the object that can be modified independently of 
the others.

One case where this behavior can be interesting is the previous example of using an 
entire Image (or any other Visual-derived object) as a resource. Such a resource can be 
applied only once in an element tree because each application is the same instance. But 
setting x:Shared=”False” changes this behavior, enabling the resource to be applied 
multiple times as independent objects. This could be done as follows:

<Window xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation” 

xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”>

<Window.Resources> 

<Image x:Shared=”False” x:Key=”zoom” Height=”21” Source=”zoom.gif”/>

</Window.Resources> 

<StackPanel>

<!-- Applying the resource multiple times works! --> 

<StaticResource ResourceKey=”zoom”/> 

<StaticResource ResourceKey=”zoom”/> 

<StaticResource ResourceKey=”zoom”/>

</StackPanel> 

</Window>

Note that x:Shared can be used only in a compiled XAML file. Its use in loose XAML files 
is not supported.

CHAPTER 12 Resources358

  From the Library of Wow! eBook



ptg

Defining and Applying Resources in Procedural Code
So far, this chapter has examined how to define and apply logical resources in XAML, but 
it hasn’t yet looked at what it means to do the same things in procedural code. 
Fortunately, defining resources in code is straightforward. The two SolidColorBrush 
resources used in Listing 12.2 can be defined as follows in C#, assuming a Window called 
window:

window.Resources.Add(“backgroundBrush”, new SolidColorBrush(Colors.Yellow)); 

window.Resources.Add(“borderBrush”, new SolidColorBrush(Colors.Red));

Applying resources in code is a different story, however. Because StaticResource and 
DynamicResource are markup extensions, the equivalent C# code to find and apply 
resources is not obvious.

For StaticResource, you can get the equivalent behavior by setting an element’s property 
to the result from its FindResource method (inherited from FrameworkElement or 
FrameworkContentElement).

So, the following Button (similar to one declared in Listing 12.2):

<Button Background=”{StaticResource backgroundBrush}” 

BorderBrush=”{StaticResource borderBrush}”/>

is equivalent to the following C# code (assuming an appropriate StackPanel variable 
named stackPanel for containing the Button):

Button button = new Button(); 

// The Button must descend from the Window before looking up resources: 

stackPanel.Children.Add(button); 

button.Background = (Brush)button.FindResource(“backgroundBrush”); 

button.BorderBrush = (Brush)button.FindResource(“borderBrush”);

FindResource throws an exception when the resource cannot be found, but you can alter-
natively call TryFindResource, which returns null when the lookup fails.

For DynamicResource, a call to an element’s SetResourceReference (also inherited from 
FrameworkElement or FrameworkContentElement) does the trick of setting up the updata-
ble binding with the dependency property.

Therefore, replacing both StaticResource references with DynamicResource:

<Button Background=”{DynamicResource backgroundBrush}” 

BorderBrush=”{DynamicResource borderBrush}”/>

is equivalent to using the following C# code:

Button button = new Button(); 

button.SetResourceReference(Button.BackgroundProperty, “backgroundBrush”); 

button.SetResourceReference(Button.BorderBrushProperty, “borderBrush”);

Logical Resources 359
1

2

  From the Library of Wow! eBook



ptg

This works as long as the Button is eventually added to the element tree as a descendant 
of the Window (where the resources are defined). Unlike the StaticResource case, such 
placement in the tree does not need to happen before referencing each resource.

The forward reference rule with StaticResource also applies to procedural code. A call to 
FindResource or TryFindResource fails if you call it before adding the resource to an 
appropriate resource dictionary with the appropriate key. SetResourceReference, on the 
other hand, can be called before the resource has been added.

CHAPTER 12 Resources360

Accessing Resources Directly

Because resource dictionaries are simple collections exposed as public properties, nothing 
prevents you from accessing a resource dictionary’s items directly in source code. For 
example, you could set a Button’s Background and BorderBrush properties as follows in 
C# (assuming a Window object called window):

Button button = new Button(); 

button.Background = (Brush)window.Resources[“backgroundBrush”]; 

button.BorderBrush = (Brush)window.Resources[“borderBrush”];

This is similar to the use of StaticResource in XAML (FindResource in code) in that it’s a 
one-time property set. However, it doesn’t search the logical tree, application, or system for 
the named resources. Therefore, this gives you less flexibility and makes the binding 
between XAML and code more brittle, but it also gives you a minor performance boost by 
avoiding the lookups. Note that there is no way to use this technique in XAML.

D I G G I N G  D E E P E R

Interaction with System Resources
One obvious place where it’s appropriate to use DynamicResource is with system settings 
encapsulated by static properties on three classes in the System.Windows namespace: 
SystemColors, SystemFonts, and SystemParameters. That’s because a user can change the 
settings via Control Panel while your application is running.

The SystemColors, SystemFonts, and SystemParameters classes define their properties in 
pairs—a property for each actual value and a corresponding property that serves as the 
resource key to be used for lookups. Each resource key property is given a Key suffix by 
convention. For example, SystemColors contains properties of type Brush called 
WindowBrush and WindowTextBrush along with properties of type ResourceKey called 
WindowBrushKey and WindowTextBrushKey.

Table 12.2 demonstrates the various ways you might try to set a Button’s background to 
the system’s currently defined “window color.” The second approach is what I see people 
do most commonly, but only the last approach is completely correct.

  From the Library of Wow! eBook



ptg

TABLE 12.2 Potential Options for Setting a System-Defined Background 

The Approach The Result

XAML: This doesn’t work. 
<Button Background=”SystemColors.WindowBrush”/> BrushConverter

C#: doesn’t support 
button.Background = (Brush)new such strings.
BrushConverter().ConvertFrom(“SystemColors.WindowBrush”);

XAML: This successfully sets 
<Button Background=”{x:Static SystemColors.WindowBrush}”/> the color once but
C#: doesn’t respond to 
button.Background = SystemColors.WindowBrush; the user changing the 

color while the 
application runs.

XAML: This doesn’t work un-
<Button Background= less you defined a 
“{StaticResource SystemColors.WindowBrushKey}”/> Brush resource with a

C#: “SystemColors.

button.Background = WindowBrushKey” key,
(Brush)FindResource(“SystemColors.WindowBrushKey”); which would have no 

relation to the static 
property you probably 
want to use.

XAML: SystemColors.

<Button Background= WindowBrush is not 
“{StaticResource {x:Static SystemColors.WindowBrush}}”/> a valid key, so this 

C#: code does not find 
button.Background = the resource.
(Brush)FindResource(SystemColors.WindowBrush);

XAML: This finds the resource.
<Button Background= This is like approach 
“{StaticResource {x:Static SystemColors.WindowBrushKey}}”/> #2 but also allows the

C#: application to override 
button.Background = the color (during initial-
(Brush)FindResource(SystemColors.WindowBrushKey); ization) for simple 

skinning purposes.

XAML: This is the preferred 
<Button Background= approach. It responds 
“{DynamicResource {x:Static SystemColors.WindowBrushKey}}”/> to any user-initiated

C#: changes and allows
button.SetResourceReference( the application to 

Button.BackgroundProperty, SystemColors.WindowBrushKey); override the values to 
reskin it at any time.

Logical Resources 361
1

2

  From the Library of Wow! eBook



ptg

Summary
Of all the WPF features covered in this part of the book, the support for resources is the 
one that is practically impossible to live without. It’s hard to build a professional-looking 
application without at least an icon and a few images!

But using resources is about much more than just making an application or a control look 
(or sound, if you’re using audio resources) a little better. It’s a fundamental piece of 
enabling software to be localized into different languages. It also enables higher produc-
tivity for developing software because the logical resources support enables you to consol-
idate information that might otherwise be duplicated, and even factor XAML files into 
more manageable chunks. The most fun—and perhaps most important—application of 
logical resources is their use with objects such as styles and templates, covered in 
Chapter 14.

CHAPTER 12 Resources362

  From the Library of Wow! eBook



ptg

CHAPTER 13

Data Binding

In WPF, the term data is generally used to describe an arbi-
trary .NET object. You can see this naming pattern in terms 
such as data binding, data templates, and data triggers, 
covered in this chapter and the next chapter. A piece of 
data could be a collection object, an XML file, a web 
service, a database table, a custom object, or even a WPF 
element such as a Button.

Therefore, data binding is about tying together arbitrary 
.NET objects. The classic scenario is providing a visual 
representation (for example, in a ListBox or DataGrid) of 
items in an XML file, a database, or an in-memory collec-
tion. For example, instead of iterating through a data 
source and manually adding a ListBoxItem to a ListBox 
for each one, it would be nice to just say, “Hey, ListBox! 
Get your items from over here. And keep them up to date, 
please. Oh yeah, and format them to look like this.” Data 
binding enables this and much more.

Introducing the Binding Object
The key to data binding is a System.Windows.Data.Binding 
object that “glues” two properties together and keeps a 
channel of communication open between them. You can 
set up a Binding once and then have it do all the synchro-
nization work for the remainder of the application’s life-
time.

Using Binding in Procedural Code
Imagine that you want to add a TextBlock to the Photo 
Gallery application used in earlier chapters that displays 
the current folder above the ListBox:

<TextBlock x:Name=”currentFolder” DockPanel.Dock=”Top” 

Background=”AliceBlue” FontSize=”16” />

IN THIS CHAPTER

. Introducing the Binding 
Object

. Controlling Rendering

. Customizing the View of a 
Collection

. Data Providers

. Advanced Topics

. Putting It All Together: The 
Pure-XAML Twitter Client

  From the Library of Wow! eBook



ptg

You could update this TextBlock’s text manually whenever the TreeView’s SelectedItem 
changes:

void treeView_SelectedItemChanged(object sender,

RoutedPropertyChangedEventArgs<object> e) 

{

currentFolder.Text = (treeView.SelectedItem as TreeViewItem).Header.ToString();

Refresh(); 

}

By using a Binding object, you can remove this line of code and replace it with the 
following one-time initialization inside MainWindow’s constructor:

public MainWindow() 

{

InitializeComponent();

Binding binding = new Binding(); 

// Set source object 

binding.Source = treeView; 

// Set source property 

binding.Path = new PropertyPath(“SelectedItem.Header”); 

// Attach to target property 

currentFolder.SetBinding(TextBlock.TextProperty, binding);

}

With this change, currentFolder.Text updates automatically as 
treeView.SelectedItem.Header changes. If an item in the TreeView is ever selected that 
doesn’t have a Header property (which doesn’t happen in Photo Gallery), the data 
binding silently fails and returns a default value for the property (an empty string in this 
case). There are ways to get diagnostics, however, discussed later in this chapter.

This code change doesn’t appear to be an improvement, because you’ve exchanged one 
line of code for four! Keep in mind, however, that this is a very simple use of data 
binding! In later examples, the use of data binding greatly reduces the amount of code 
you would have to write to achieve the same results.

Binding has the notion of a source property and a target property. The source property 
(treeView.SelectedItem.Header, in this case) is set in two steps—assigning the source 
object to Source and the name of its relevant property (or chain of property and subprop-
erties) to Path via an instance of PropertyPath. To associate the Binding with the target 
property (currentFolder.Text, in this case), you can call SetBinding (which is inherited 
by all FrameworkElements and FrameworkContentElements) with the relevant dependency 
property and the Binding instance.

CHAPTER 13 Data Binding364

  From the Library of Wow! eBook



ptg

Using Binding in XAML
Because you can’t call an element’s SetBinding method from XAML, WPF contains a 
markup extension to make declarative use of Binding possible. In fact, Binding itself is a 
markup extension class (despite the nonstandard name without the Extension suffix).

Introducing the Binding Object 365
1

3

There are actually two ways to set Binding in procedural code. One is to call the 
SetBinding instance method on the relevant FrameworkElement or 
FrameworkContentElement, as done previously. The other is to call the SetBinding static 
method on a class called BindingOperations. You pass this method the same objects you 
would pass to the instance method, but it has an additional first parameter that represents 
the target object: 

BindingOperations.SetBinding(currentFolder, TextBlock.TextProperty, binding);

The benefit of the static method is that the first parameter is defined as a 
DependencyObject, so it enables data binding on objects that don’t derive from 
FrameworkElement or FrameworkContentElement (such as Freezables).

T I P

Removing a Binding

If you don’t want a Binding to exist for the remainder of an application’s lifespan, you can 
“disconnect” it at any time with the static BindingOperations.ClearBinding method. (This 
is rarely done, however.) You pass it the target object and its dependency property. Here’s an 
example:

BindingOperations.ClearBinding(currentFolder, TextBlock.TextProperty);

If a target object has more than one Binding attached to it, you can clear them all in one 
fell swoop by calling BindingOperations.ClearAllBindings, like so:

BindingOperations.ClearAllBindings(currentFolder);

Another way to clear a Binding is simply to directly set the target property to a new value, 
as follows:

currentFolder.Text = “I am no longer receiving updates.”;

This only clears one-way Bindings, however. (The different types of Bindings are discussed 
in the “Customizing the Data Flow” section toward the end of this chapter.) The 
ClearBinding approach is more flexible anyway, as it still enables the dependency property 
to receive values from sources with a lower precedence (style triggers, property value inheri-
tance, and so on). Recall the order of precedence for determining a base property value in 
Chapter 3, “WPF Fundamentals.” A Binding set via SetBinding has the same precedence 
as a local value, and ClearBinding removes the value from the property value equation, 
just like ClearValue does for any local value. (In fact, all ClearBinding does internally is 
call ClearValue on the target object!)

D I G G I N G  D E E P E R

  From the Library of Wow! eBook



ptg

To use Binding in XAML, you directly set the target property to a Binding instance and 
then use the standard markup extension syntax to set its properties. Therefore, the 
preceding Binding code could be replaced with the following addition to currentFolder’s 
declaration:

<TextBlock x:Name=”currentFolder” DockPanel.Dock=”Top” 

Text=”{Binding ElementName=treeView, Path=SelectedItem.Header}”

Background=”AliceBlue” FontSize=”16” />

Data binding is now starting to look more attractive than the manual approach! The 
connection between the source and target properties is not only expressed succinctly, but 
it’s also abstracted away from all procedural code.

CHAPTER 13 Data Binding366

Besides its default constructor, Binding has a constructor that accepts Path as its single 
argument. Therefore, you can use alternative markup extension syntax to pass Path to the 
constructor rather than explicitly set the property. In other words, the preceding XAML 
snippet could also be expressed as follows:

<TextBlock x:Name=”currentFolder” DockPanel.Dock=”Top” 

Text=”{Binding SelectedItem.Header, ElementName=treeView}”

Background=”AliceBlue” FontSize=”16” />

These two approaches are identical except for subtle differences in how namespace prefixes 
in the property paths are resolved. Explicitly setting the Path property is the more reliable 
approach.

T I P

Notice that the XAML snippet uses Binding’s ElementName property to set the source 
object rather than Source, which was used in the preceding section. Both are valid in 
either context, but ElementName is easier to use from XAML because you only need to give 
it the source element’s name. However, with the introduction of the x:Reference markup 
extension in WPF 4, you could set Source as follows:

<TextBlock x:Name=”currentFolder” DockPanel.Dock=”Top”

Text=”{Binding Source={x:Reference TreeView}, Path=SelectedItem.Header}” 

Background=”AliceBlue” FontSize=”16” />

You can use Binding’s TargetNullValue property to swap in a pseudo-source value to use 
for data binding when the real source value is null. For example, this TextBlock shows the 
message “Nothing is selected.” rather than an empty string when the source value is null:

<TextBlock Text=”{Binding … TargetNullValue=Nothing is selected.}” …/>

Using TargetNullValue can also help in more advanced scenarios where objects do not 
tolerate having their properties set to null.

T I P

  From the Library of Wow! eBook



ptg

Binding to Plain .NET Properties
The example with the TreeView and the Label works because both the target and source 
properties are dependency properties. As discussed in Chapter 3, dependency properties 
have plumbing for change notification built in. This facility is the key to WPF’s ability to 
keep the target property and source property in sync.

However, WPF supports any .NET property on any .NET object as a data-binding source. 
For example, imagine that you want to add to the Photo Gallery application a Label that 
displays the number of photos in the current folder. Rather than manually update the 
Label with the Count property from the photos collection (of type Photos), you can use 
data binding to connect the Label’s Content with the collection’s Count property:

<Label x:Name=”numItemsLabel” 

Content=”{Binding Source={StaticResource photos}, Path=Count}”

DockPanel.Dock=”Bottom”/>

Introducing the Binding Object 367
1

3

Binding’s RelativeSource

Another way to specify a data source is by using Binding’s RelativeSource property, which 
refers to an element by its relationship to the target element. The property is of type 
RelativeSource, which also happens to be a markup extension. Here are some of the ways 
RelativeSource can be used:

To make the source element equal the target element:

{Binding RelativeSource={RelativeSource Self}}

To make the source element equal the target element’s TemplatedParent (a property 
discussed in the next chapter):

{Binding RelativeSource={RelativeSource TemplatedParent}}

To make the source element equal the closest parent of a given type:

{Binding RelativeSource={RelativeSource FindAncestor, 

AncestorType={x:Type desiredType}}}

To make the source element equal the nth closest parent of a given type:

{Binding RelativeSource={RelativeSource FindAncestor, 

AncestorLevel=n, AncestorType={x:Type desiredType}}}

To make the source element equal the previous data item in a data-bound collection:

{Binding RelativeSource={RelativeSource PreviousData}}

RelativeSource is especially useful for control templates, discussed in the next chapter. 
But using RelativeSource with the mode Self is handy for binding one property of an 
element to another without having to give the element a name. An interesting example is the 
following Slider, whose ToolTip is bound to its own value: 

<Slider ToolTip=”{Binding RelativeSource={RelativeSource Self}, Path=Value}”/>

D I G G I N G  D E E P E R

  From the Library of Wow! eBook



ptg

(Here, the collection is assumed to be defined as 
a resource so it can be set in XAML via Source. 
ElementName is not an option because the 
collection is not a FrameworkElement or 
FrameworkContentElement!) Figure 13.1 shows 
the result of this addition. Notice that the label 
says “54” when you really want it to say “54 
item(s).” This could be fixed with an adjacent 
label with a static “item(s)” string as its content 
or with better approaches, covered later in this chapter.

There’s a big caveat to using a plain .NET property as a data-binding source, however. 
Because such properties have no automatic plumbing for change notification, the target is 
not kept up to date as the source property value changes without doing a little extra work. 
Therefore, the value displayed in Figure 13.1 does not change as the current folder 
changes, which is clearly incorrect.

To keep the target and source properties synchronized, the source object must do one of 
the following:

. Implement the System.ComponentModel.INotifyPropertyChanged interface, which 
has a single PropertyChanged event.

. Implement an XXXChanged event, where XXX is the name of the property whose value 
changed.

The first technique is recommended, as WPF is optimized for this approach. (WPF only 
supports XXXChanged events for backward compatibility with older classes.) You could fix 
Photo Gallery by having the photos collection implement INotifyPropertyChanged. This 
would involve intercepting the relevant operations (such as Add, Remove, Clear, and Insert) 
and raising the PropertyChanged event. Fortunately, the .NET Framework already has a 
built-in class that does this work for you! It’s called ObservableCollection. Therefore, 
making the binding to photos.Count synchronized is a one-line change from this:

public class Photos : Collection<Photo>

to this:

public class Photos : ObservableCollection<Photo>

CHAPTER 13 Data Binding368

FIGURE 13.1 Displaying the value 
of photos.Count via data binding in 
the bottom-left corner of Photo Gallery’s 
main Window.

How Binding to a Plain .NET Property Works

When retrieving the value of a source property that’s a plain .NET property, WPF uses reflec-
tion. If the source object implements ICustomTypeDescriptor, WPF will leverage it (or more 
generally, any TypeDescriptionProvider registered for the object or its type) to determine 
which PropertyDescriptor to use for the reflection call. Implementing this interface is an 
advanced technique, but it can be useful for boosting performance or supporting additional 
scenarios (such as changing the set of properties exposed on the fly).

D I G G I N G  D E E P E R

  From the Library of Wow! eBook



ptg

Binding to an Entire Object
Although every example so far has used source 
objects and source properties, it turns out that 
the source property (that is, the Path in 
Binding) is optional! You can bind a target 
property to the entire source object.

But what does it mean to bind to an entire 
object? Figure 13.2 shows what the Label from 
Figure 13.1 would look like if the Path were 
omitted:

<Label x:Name=”numItemsLabel” 

Content=”{Binding Source={StaticResource photos}}”

DockPanel.Dock=”Bottom”/>

Because the photos object is not a UIElement, it gets rendered as the string returned from 
its ToString method. Binding to the whole object is not very useful in this case, but it’s 
essential for elements that can take better advantage of the object, such as the ListBox 
that we’ll examine next.

Introducing the Binding Object 369
1

3

Data sources and data targets aren’t treated equally!

Although the source property can be any .NET property on any .NET object, the same is not 
true for the data-binding target. The target property must be a dependency property. Also 
note that the source member must be a real (and public) property, not just a simple field.

WA R N I N G

FIGURE 13.2 Displaying the entire 
photos object via data binding in the 
bottom-left corner of Photo Gallery’s 
main Window.

Binding to an entire object is a handy technique for setting a property from XAML that 
requires an instance of an object that can’t be obtained via a type converter or markup 
extension.

For example, Photo Gallery contains a Popup that, when shown, is centered over a Button 
called zoomButton. Popup enables this with its Placement and PlacementTarget proper-
ties, the latter of which must be set to a UIElement. This could easily be done in C# as 
follows:

Button zoomButton = new Button(); 

…

Popup zoomPopup = new Popup(); 

zoomPopup.Placement = PlacementMode.Center; 

zoomPopup.PlacementTarget = zoomButton;

T I P

  From the Library of Wow! eBook



ptg

Binding to a Collection
Binding a Label to photos.Count is nice, but it would be even better to bind the ListBox 
(the Window’s main piece of user interface) to the photos collection. This is the part of the 
Photo Gallery application that screams the loudest for data binding. The application, as 
presented in previous chapters, manually maintained the relationship between the collec-
tion of photos stored in the ListBox and the physical photos. When a new directory is 
selected, it clears the ListBox and creates a new ListBoxItem for each photo. If the user 
decides to delete or rename a photo, the change raises an event on the source collection 
(because it’s internally using FileSystemWatcher), and an event handler manually 
refreshes the ListBox contents.

CHAPTER 13 Data Binding370

Continued

But instead, Photo Gallery uses the following XAML to accomplish this:

<Button x:Name=”zoomButton” … > 

…

</Button> 

<Popup PlacementTarget=”{Binding ElementName=zoomButton}” Placement=”Center” …>

… 

</Popup>

This technique has been used in previous chapters. Of course, using x:Reference in WPF 4 
is another way to accomplish this assignment without using Binding.

Be careful when binding to an entire UIElement!

When binding certain target properties to an entire UIElement, you might inadvertently be 
attempting to place the same element in multiple places on the visual tree. For example, the 
following XAML results in an InvalidOperationException explaining, “Specified element 
is already the logical child of another element.”

<Label x:Name=”one” Content=”{Binding ElementName=two}”/> 

<Label x:Name=”two” Content=”text”/>

However, you get no exception if you change the first Label to a TextBlock (and, therefore, 
the Content property to Text):

<TextBlock x:Name=”one” Text=”{Binding ElementName=two}”/> 

<Label x:Name=”two” Content=”text”/>

Whereas Label.Content is of type Object, TextBlock.Text is a string. Therefore, the 
Label undergoes type conversion when assigned to a string and its ToString method is 
called. In this case, the TextBlock is rendered with a “System.Windows.Controls.Label: 
text” string, which is still not very useful. To copy the text from one Label or TextBlock to 
another, you should really be binding to the specific property (Label or Content).

WA R N I N G

  From the Library of Wow! eBook



ptg

Fortunately, the procedure for replacing such logic with data binding is exactly the same 
as what we’ve already seen.

The Raw Binding
It would make sense to create a Binding with ListBox.Items as the target property, but, 
alas, Items is not a dependency property. But ListBox and all other items controls have 
an ItemsSource dependency property that exists specifically for this data-binding 
scenario. ItemsSource is of type IEnumerable, so you can use the entire photos object as 
the source and set up the Binding as follows:

<ListBox x:Name=”pictureBox” 

ItemsSource=”{Binding Source={StaticResource photos}}” …> 

…

</ListBox>

For the target property to stay updated with changes to the source collection (that is, the 
addition and removal of elements), the source collection must implement an interface 
called INotifyCollectionChanged. Indeed, ObservableCollection implements both 
INotifyPropertyChanged and INotifyCollectionChanged, so the earlier change to make 
Photos derive from ObservableCollection<Photo> is sufficient for making this binding 
work correctly.

Figure 13.3 shows the result of this data binding.

Introducing the Binding Object 371
1

3

FIGURE 13.3 Binding the ListBox to the entire photos object shows the data in raw form.

Improving the Display
Clearly, the default display of the photos collection—a ToString rendering—is not accept-
able. One way to improve this is to leverage the DisplayMemberPath property present on 
all items controls, introduced in Chapter 10, “Items Controls.” This property works hand

  From the Library of Wow! eBook



ptg

in hand with ItemsSource. If you set it to an appropriate property path, the correspond-
ing property value gets rendered for each item.

The collection in Photo Gallery consists of application-specific Photo objects, which have 
properties like Name, DateTime, and Size. Therefore, the following XAML produces the 
results in Figure 13.4, which is a slightly better rendering than Figure 13.3:

<ListBox x:Name=”pictureBox” DisplayMemberPath=”Name” 

ItemsSource=”{Binding Source={StaticResource photos}}” …> 

…

</ListBox>

However, because we’re defining the Photo class ourselves, we could have just changed 
Photo’s implementation of ToString to return Name instead of the full path to get the 
same results.

CHAPTER 13 Data Binding372

FIGURE 13.4 DisplayMemberPath is a simple mechanism for customizing the display of 
items in a data-bound collection.

For getting the actual images to display in the ListBox, you could add an Image property 
to the Photo class and use that as the DisplayMemberPath. But there are more flexible 
ways to control the presentation of bound data—ways that don’t require changes to the 
source object. (This is important because you might not be the one defining the source 
object. Also, don’t forget that one of the tenets of WPF is to separate look from logic!) 
One way (not specific to data binding) is to use a data template, and another way is to 
use a value converter. The upcoming “Controlling Rendering” section looks at both of 
these options.

  From the Library of Wow! eBook



ptg

Managing the Selected Item
As explained in Chapter 10, Selectors such as ListBox have a notion of a selected item or 
items. When binding a Selector to a collection (anything that implements IEnumerable), 
WPF keeps track of the selected item(s) so that other targets binding to the same source 
can make use of this information without the need for custom logic. This support can be 
used for creating master/detail user interfaces (as done in the final example in this 
chapter) or for synchronizing multiple Selectors, which we’ll look at now.

To opt in to this support, set the IsSynchronizedWithCurrentItem property (inherited by 
all Selectors) to true. The following XAML sets this property on three ListBoxes that 
each displays a single property per item from the same photos collection:

<ListBox IsSynchronizedWithCurrentItem=”True” DisplayMemberPath=”Name”

ItemsSource=”{Binding Source={StaticResource photos}}”></ListBox> 

<ListBox IsSynchronizedWithCurrentItem=”True” DisplayMemberPath=”DateTime”

ItemsSource=”{Binding Source={StaticResource photos}}”></ListBox> 

<ListBox IsSynchronizedWithCurrentItem=”True” DisplayMemberPath=”Size”

ItemsSource=”{Binding Source={StaticResource photos}}”></ListBox>

Because each is marked with IsSynchronizedWithCurrentItem=”True” and each is point-
ing to the same source collection, changing the selected item in any of them changes the 
selected item in the other two to match. 
(Although note that the scrolling of the 
ListBoxes is not synchronized automati-
cally!) Figure 13.5 gives an idea of what 
this looks like. If any one of the 
ListBoxes omitted 
IsSynchronizedWithCurrentItem or set it 
to false, changing its own selected item 
would not impact the other two 
ListBoxes, nor would changing the 
selected item in the other two ListBoxes 
impact its own selection.

Introducing the Binding Object 373
1

3

ItemsControl’s Items and ItemsSource properties can’t be modified simultane-
ously!

You must decide whether you want to populate an items control manually via Items or with 
data binding via ItemsSource, and you must not mix these techniques. ItemsSource can be 
set only when the Items collection is empty, and Items can be modified only when 
ItemsSource is null (otherwise, you’ll get an InvalidOperationException). Therefore, if 
you want to add or remove items to/from a data-bound ListBox, you must do this to the 
underlying collection (ItemsSource) rather than at the user interface level (Items). Note that 
regardless of which method is used to set items in an items control, you can always retrieve 
items via the Items collection.

WA R N I N G

IsSynchronizedWithCurrentItem does 
not support multiple selections!

When a Selector has multiple selected 
items (as with ListBox’s SelectionMode 
of Multiple or Extended), only the first 
selected item is seen by other synchro-
nized elements, even if they also support 
multiple selections!

WA R N I N G

  From the Library of Wow! eBook



ptg

FIGURE 13.5 Three synchronized ListBoxes, thanks to data binding.

Sharing the Source with DataContext
You’ve now applied data binding to several target properties, and all but one of them used 
the same source object (the photos collection). It’s quite common for many elements in 
the same user interface to bind to the same source object (different source properties, but 
the same source object). For this reason, WPF supports specifying an implicit data source 
rather than explicitly marking every Binding with a Source, RelativeSource, or 
ElementName. This implicit data source is also known as a data context.

To designate a source object such as the photos collection as a data context, you simply 
find a common parent element and set its DataContext property to the source object. (All 
FrameworkElements and FrameworkContentElements have this DataContext property of 
type Object.) When encountering a Binding without an explicit source object, WPF 
traverses up the logical tree until it finds a non-null DataContext.

Therefore, you can use DataContext as follows to make the Label and ListBox use it as 
the source object:

<StackPanel DataContext=”{StaticResource photos}”> 

<Label x:Name=”numItemsLabel”

Content=”{Binding Path=Count}” …/> 

… 

<ListBox x:Name=”pictureBox” DisplayMemberPath=”Name”

ItemsSource=”{Binding}” …> 

…

</ListBox> 

…

</StackPanel>

Because DataContext is a simple prop-
erty, it’s also really easy to set from 
procedural code, eliminating the need to 
store the source object as a resource:

parent.DataContext = photos;

CHAPTER 13 Data Binding374

Encountering a property set to just 
{Binding} in XAML might look confusing, 
but it simply means that the source object is 
specified somewhere up the tree as a data 
context and that the entire object is being 
bound rather than a single property on it.

T I P

  From the Library of Wow! eBook



ptg

Controlling Rendering
Data binding is pretty simple when the source and target properties are compatible data 
types and the default rendering of the source is all you need to display. But often a bit of 
customization is required. The need for this in the previous section is obvious, as you 
want to display Images, not raw strings, in Photo Gallery’s ListBox!

These types of customizations would be easy without data binding because you’re writing 
all the code to retrieve the data on your own (as done in the original version of Photo 
Gallery). But WPF provides three mechanisms for customizing how the source value is 
received and displayed, so you don’t need to give up the benefits of data binding to get 
the desired results in more customized scenarios. These mechanisms are string formatting, 
data templates, and value converters.

String Formatting
When you want to display a string as a result of data binding, Binding’s StringFormat 
property makes it easy to customize the display. When this is set, WPF will call 
String.Format with the value of StringFormat as the first parameter (format) and the raw 
target object as the second parameter (args[0]). Therefore, {0} represents the raw target 
object, and a variety of format specifiers are supported, such as {0:C} for currency format-
ting, {0:P} for percent formatting, and {0:X} for hexadecimal formatting.

The Label shown in Figure 13.1 can therefore be changed to say “54 item(s)” instead of 
just “54” by changing it to a TextBlock and making this simple StringFormat addition to 
the Binding:

<TextBlock x:Name=”numItemsLabel” 

Text=”{Binding StringFormat={}{0} item(s),

Source={StaticResource photos}, Path=Count}” 

DockPanel.Dock=”Bottom”/>

Controlling Rendering 375
1

3

When should I specify a source object using a data context versus specify-
ing it explicitly with Binding?

It’s mostly just a matter of personal preference. If a source object is being used by only one 
target property, using a data context might be a bit of overkill and less readable. But if you 
are sharing a source object, using a data context to specify the object in only one place 
makes development less error-prone if you change the source.

One case where the use of a data context is really helpful is when plugging in resources 
defined elsewhere. Resources can contain Bindings with no explicit source or data context, 
enabling the binding to be resolved in each usage context rather than in the declaration 
context. Each usage context would be the place in the logical tree that the resource is 
plugged into, which could provide a different data context. (Although using RelativeSource 
to specify an explicit yet relative source also can provide this kind of flexibility.)

?
FA Q

  From the Library of Wow! eBook



ptg

The funky {} at the beginning of the value is there to escape the { at the beginning of the 
string. Recall from Chapter 2, “XAML Demystified,” that without this, the string would be 
incorrectly interpreted as a markup extension. The {} is not necessary if you use the prop-
erty element form of Binding:

<TextBlock x:Name=”numItemsLabel” DockPanel.Dock=”Bottom”> 

<TextBlock.Text>

<Binding Source=”{StaticResource photos}” Path=”Count”> 

<Binding.StringFormat>{0} item(s)</Binding.StringFormat> 

</Binding>

</TextBlock.Text> 

</TextBlock>

It is also not necessary if the string doesn’t begin with a {:

<TextBlock x:Name=”numItemsLabel” 

Text=”{Binding StringFormat=Number of items: {0},

Source={StaticResource photos}, Path=Count}” 

DockPanel.Dock=”Bottom”/>

You could also enhance the formatting with the N0 specifier, which adds thousands-sepa-
rators without adding any decimal places. So the following Label displays “54 item(s)” 
when Count is 54 and “1,001 item(s)” when Count is 1,001—at least for the en-US culture:

<TextBlock x:Name=”numItemsLabel” 

Text=”{Binding StringFormat={}{0:N0} item(s),

Source={StaticResource photos}, Path=Count}” 

DockPanel.Dock=”Bottom”/>

CHAPTER 13 Data Binding376

Binding’s StringFormat only works if the target property is defined as a string!

A major shortcoming of Binding’s StringFormat property is that Binding completely 
ignores it unless the target property is of type string. Attempting to use it with Label’s 
Content property doesn’t have any effect because Content is of type Object: 

<Label x:Name=”numItemsLabel”

Content=”{Binding StringFormat={}{0} item(s),

Source={StaticResource photos}, Path=Count}” 

DockPanel.Dock=”Bottom”/>

In contrast, TextBlock’s Text property is of type string, so the same Binding works just 
fine when applied to Text. This is why the examples in this section change Label to 
TextBlock. An alternate workaround is to use Label’s ContentStringFormat property, 
discussed later in this section.

WA R N I N G

  From the Library of Wow! eBook



ptg

Many controls have a XXXStringFormat property as well, where XXX represents the piece 
that you are formatting. For example, content controls have a ContentStringFormat prop-
erty that applies to the Content property, and items controls have an ItemStringFormat 
property that apply to each item in a collection. Table 13.1 lists all the string format prop-
erties that are read/write.

TABLE 13.1 String Format Properties Throughout WPF 

Property Classes

StringFormat BindingBase

ContentStringFormat ContentControl, ContentPresenter, TabControl
ItemStringFormat ItemsControl, HierarchicalDataTemplate
HeaderStringFormat HeaderedContentControl, HeaderedItemsControl, 

DataGridColumn, GridViewColumn, GroupStyle
ColumnHeaderStringFormat GridView, GridViewHeaderRowPresenter

Rather than being forced to change Label to a TextBlock in order to take advantage of 
Binding’s StringFormat property, you can instead leverage Label’s own 
ContentStringFormat because Label is a content control:

<Label x:Name=”numItemsLabel” ContentStringFormat=”{}{0} item(s)”

Content=”{Binding Source={StaticResource photos}, Path=Count}”

DockPanel.Dock=”Bottom”/>

You can take advantage of this functionality with or without data binding. Figure 13.6 
shows the rendered result of the following ListBox for both U.S. English and Korean:

<ListBox ItemStringFormat=”{}{0:C}” 

xmlns:sys=”clr-namespace:System;assembly=mscorlib”>

Controlling Rendering 377
1

3

System.Xaml doesn’t process the {} escape sequence correctly!

The System.Xaml library that is new in WPF 4 has a flaw that breaks the processing of the 
{} escape sequence inside of a markup extension. When processed by System.Xaml, the {} 
escape sequence can still be used to escape the entire string value of a property (preventing 
it from being interpreted as a markup extension), but not within a markup extension.  For 
example, the following XAML snippet is not correctly parsed by System.Xaml:

<TextBlock Text=”{Binding StringFormat={}{0:C}}” />

Fortunately, System.Xaml is not yet used in mainstream scenarios (such as XAML compila-
tion), which limits this bug’s impact. The workaround is to use an alternate escape sequence 
within a markup extension. You can use a backslash to escape individual characters. For 
example:

<TextBlock Text=”{Binding StringFormat=\{0:C\}}” />

WA R N I N G

  From the Library of Wow! eBook



ptg

<sys:Int32>-9</sys:Int32> 

<sys:Int32>9</sys:Int32> 

<sys:Int32>1234</sys:Int32> 

<sys:Int32>1234567</sys:Int32>

</ListBox>

Using Data Templates
A data template is a piece of user interface 
that you’d like to apply to an arbitrary .NET 
object when it is rendered. Many WPF 
controls have properties (of type DataTemplate) for attaching a data template appropri-
ately. For example, ContentControl has a ContentTemplate property for controlling the 
rendering of its Content object, and ItemsControl has an ItemTemplate that applies to 
each of its items. Table 13.2 lists them all. As you can see, WPF defines more XXXTemplate 
properties than XXXStringFormat properties.

TABLE 13.2 Properties of Type DataTemplate Throughout WPF 

Property Classes

ContentTemplate ContentControl, ContentPresenter, TabControl
ItemTemplate ItemsControl, HierarchicalDataTemplate
HeaderTemplate HeaderedContentControl, HeaderedItemsControl, 

DataGridRow, DataGridColumn, GridViewColumn, 
GroupStyle

SelectedContentTemplate TabControl

DetailsTemplate DataGridRow 

RowDetailsTemplate DataGrid

RowHeaderTemplate DataGrid 

ColumnHeaderTemplate GridView, GridViewHeaderRowPresenter
CellTemplate DataGridTemplateColumn, GridViewColumn 
CellEditingTemplate DataGridTemplateColumn

By setting one of these properties to an instance of a DataTemplate, you can swap in a 
completely new visual tree. DataTemplate, like ItemsPanelTemplate introduced in 
Chapter 10, derives from FrameworkTemplate. Therefore, it has a VisualTree content 
property that can be set to an arbitrary tree of FrameworkElements. This is easy to set in 
XAML but cumbersome to set in procedural code.

Let’s try using a DataTemplate with Photo Gallery’s ListBox, which in Figure 13.4 shows 
raw strings rather than Images. The following snippet adds a simple DataTemplate by 
setting ListBox’s ItemTemplate property inline:

<ListBox x:Name=”pictureBox”

ItemsSource=”{Binding Source={StaticResource photos}}” …> 

<ListBox.ItemTemplate>

CHAPTER 13 Data Binding378

FIGURE 13.6 Numbers in a ListBox 
taking advantage of declarative string 
formatting.

Korean (Korea)English (United States)

  From the Library of Wow! eBook



ptg

<DataTemplate> 

<Image Source=”placeholder.jpg” Height=”35”/>

</DataTemplate>

</ListBox.ItemTemplate> 

…

</ListBox>

Figure 13.7 shows that this is a good start. Although a generic placeholder.jpg image is 
shown for each item, at least the items are now Images!

Controlling Rendering 379
1

3

FIGURE 13.7 A simple data template makes each item in the ListBox appear as a place-
holder Image.

With an Image data template in place, how do you set its Source property to the current 
Photo item’s FullPath property? With data binding, of course! When you apply a data 
template, it is implicitly given an appropriate data context (that is, a source object). 
When applied as an ItemTemplate, the data context is implicitly the current item in 
ItemsSource. So, you can simply update the data template as follows to get the result 
shown in Figure 13.8:

<ListBox x:Name=”pictureBox”

ItemsSource=”{Binding Source={StaticResource photos}}” …> 

<ListBox.ItemTemplate>

<DataTemplate> 

<Image Source=”{Binding Path=FullPath}” Height=”35”/>

</DataTemplate> 

</ListBox.ItemTemplate>

… 

</ListBox>

  From the Library of Wow! eBook



ptg

CHAPTER 13 Data Binding380

FIGURE 13.8 The updated data template gives the desired results—the right photo 
displayed for each item in the ListBox.

Of course, a DataTemplate doesn’t have to 
be declared inline. DataTemplates are 
most commonly exposed as resources, 
so they can be shared by multiple 
elements. You can even get 
DataTemplate to be automatically 
applied to a specific type wherever it 
might appear by setting its DataType 
property to the desired type. If you place 
such a DataTemplate in a Window’s 
Resources collection, for example, it auto-
matically gets applied anywhere an item of that data type is rendered inside the Window: 
inside items controls, inside content controls, and so on. If you place such a 
DataTemplate in an Application’s Resources collection, the same is true for the entire 
application.

A special subclass of DataTemplate exists for working with hierarchical data, such as XML 
or a file system. This class is called HierarchicalDataTemplate. It not only enables you to 
change the presentation of such data but enables you to directly bind a hierarchy of 
objects to an element that intrinsically understands hierarchies, such as a TreeView or 
Menu control. The “XmlDataProvider” section later in this chapter shows an example of 
using HierarchicalDataTemplate with XML data.

Although data templates can be used on 
non-data-bound objects (such as a ListBox 
with a manually constructed set of items), 
you’ll almost always want to use data 
binding inside the template to customize the 
appearance of the visual tree based on the 
underlying object(s).

T I P

  From the Library of Wow! eBook



ptg

Using Value Converters
Whereas data templates can customize the way certain target values are rendered, value 
converters can morph a source value into a completely different target value. They enable 
you to plug in custom logic without giving up the benefits of data binding.

Value converters are often used to reconcile a source and target that are different data 
types. For example, you could change the background or foreground color of an element 
based on the value of some non-Brush data source, much like conditional formatting in 
Microsoft Excel. Or you could use it to simply enhance the information being displayed, 
without the need for separate elements. The following two sections explore examples of 
each of these.

Bridging Incompatible Data Types
Imagine that you want to change the Label’s Background based on the number of items in 
the photos collection (the value of its Count property). The following Binding makes no 
sense because it tries to assign Background to a number rather than to a Brush:

<Label Background=”{Binding Path=Count, Source={StaticResource photos}}” …/>

Controlling Rendering 381
1

3

Template Selectors

Sometimes it can be desirable to heavily customize a data template based on the input data. 
Although a lot can be done inside a single data template, WPF also provides a mechanism to 
plug in procedural code that can select any template (or create a new one on-the-fly) at 
runtime when it is time for the data to be rendered. To do this, you create a class that 
derives from DataTemplateSelector and override its virtual SelectTemplate method. You 
can then associate an instance with the appropriate element by setting that element’s 
XXXTemplateSelector property. Every XXXTemplate property shown in Table 13.2 has a 
corresponding XXXTemplateSelector property, as shown in Table 13.3.

TABLE 13.3 Data Template Selector Properties Throughout WPF 

Property Classes

ContentTemplateSelector ContentControl, ContentPresenter, TabControl
ItemTemplateSelector ItemsControl, HierarchicalDataTemplate
HeaderTemplateSelector HeaderedContentControl,

HeaderedItemsControl, DataGridRow, 
DataGridColumn, GridViewColumn, GroupStyle

SelectedContentTemplateSelector TabControl 

DetailsTemplateSelector DataGridRow

RowDetailsTemplateSelector DataGrid

RowHeaderTemplateSelector DataGrid

ColumnHeaderTemplateSelector GridView, GridViewHeaderRowPresenter
CellTemplateSelector DataGridTemplateColumn, GridViewColumn 
CellEditingTemplateSelector DataGridTemplateColumn

D I G G I N G  D E E P E R

  From the Library of Wow! eBook



ptg

To fix this, you can plug in a value converter using Binding’s Converter property:

<Label Background=”{Binding Path=Count, Converter={StaticResource myConverter}, 

Source={StaticResource photos}}” …/>

This assumes that you’ve written a custom class that can convert an integer into a Brush 
and defined it as a resource:

<Window.Resources> 

<local:CountToBackgroundConverter x:Key=”myConverter”/>

</Window.Resources>

To create this class called CountToBackgroundConverter, you must implement a simple 
interface called IValueConverter (in the System.Windows.Data namespace). This interface 
has two simple methods—Convert, which is passed the source instance that must be 
converted to the target instance, and ConvertBack, which does the opposite.

Therefore, CountToBackgroundConverter could be implemented in C# as follows:

public class CountToBackgroundConverter : IValueConverter 
{
public object Convert(object value, Type targetType, object parameter,
CultureInfo culture) 

{
if (targetType != typeof(Brush)) 
throw new InvalidOperationException(“The target must be a Brush!”);

// Let Parse throw an exception if the input is bad 
int num = int.Parse(value.ToString());

return (num == 0 ? Brushes.Yellow : Brushes.Transparent); 
} 
public object ConvertBack(object value, Type targetType, object parameter,
CultureInfo culture) 

{
return DependencyProperty.UnsetValue; 

}

}

The Convert method is called every time the source value changes. It’s given the integral 
value and returns Brushes.Yellow if the value is 
zero, or Brushes.Transparent otherwise. (The 
idea is to highlight the Label’s background 
when an empty folder is displayed.) The 
ConvertBack method is not needed, so 
CountToBackgroundConverter simply returns a 
dummy value if it’s ever called. Part VI, 
“Advanced Topics,” discusses situations in which 
ConvertBack is used. Figure 13.9 shows 
CountToBackgroundConverter in action.

CHAPTER 13 Data Binding382

FIGURE 13.9 The value converter 
makes the Label’s Background yellow 
when there are no items in the photos 
collection, seen in the bottom-left 
corner of Photo Gallery’s main Window.

  From the Library of Wow! eBook



ptg

The methods of IValueConverter are passed a parameter and a culture. By default, 
parameter is set to null and culture is set to the value of the target element’s Language 
property. This Language property (defined on FrameworkElement and 
FrameworkContentElement, whose value is often inherited from the root element, if set at 
all) uses “en-US” (U.S. English) as its default value. However, the consumer of Bindings 
can control these two values via Binding.ConverterParameter and 
Binding.ConverterCulture. For example, rather than hard-code Brushes.Yellow inside 
CountToBackgroundConverter.Convert, you could set it to the user-supplied parameter:

return (num == 0 ? parameter : Brushes.Transparent);

This assumes that parameter is always set as follows:

<Label Background=”{Binding Path=Count, Converter={StaticResource myConverter}, 

ConverterParameter=Yellow, Source={StaticResource photos}}” Content=”…” />

Setting ConverterParameter to the simple “Yellow” string works, but the reason is subtle. 
Like all markup extension parameters, “Yellow” undergoes type conversion, but only to 
the type of the ConverterParameter property (Object). Therefore, Convert receives para-
meter as the raw “Yellow” string rather than a Brush. Because Convert does nothing with 
parameter other than return it when num is not zero, it ends up returning a string. At this 
point, the binding engine does the type conversion in order to make the assignment to 
Label’s Background property work.

ConverterCulture could be set to an Internet Engineering Task Force (IETF) language tag 
(for example, “ko-KR”), and the converter would receive the appropriate CultureInfo 
object.

Controlling Rendering 383
1

3

To avoid confusion, it’s a good idea to capture the semantics of a value converter in its 
name. I could have named CountToBackgroundConverter something like 
IntegerToBrushConverter because technically it can be used anyplace where the source 
data type is an integer and the target data type is a Brush. But it might make sense only 
when the source integer represents a count of items and when the Brush represents a 
Background. (For example, it’s unlikely that you’d ever want to set an element’s Foreground 
to Transparent!) You might also want to define additional Integer-to-Brush converters with 
alternate semantics.

T I P

WPF ships with a handful of value converters to handle a few very common data-binding 
scenarios. One of these is BooleanToVisibilityConverter, which converts between the 
three-state Visibility enumeration (which can be Visible, Hidden, or Collapsed) and a 
Boolean or nullable Boolean. In one direction, true is mapped to Visible, whereas false 
and null are mapped to Collapsed. In the other direction, Visible is mapped to true, 
whereas Hidden and Collapsed are mapped to false.

T I P

  From the Library of Wow! eBook



ptg

CHAPTER 13 Data Binding384

Continued

This is useful for toggling the visibility of elements based on the state of an otherwise unre-
lated element. For example, the following snippet of XAML implements a Show Status Bar 
CheckBox without requiring any procedural code: 

<Window.Resources>

<BooleanToVisibilityConverter x:Key=”booltoVis”/>

</Window.Resources> 

… 

<CheckBox x:Name=”checkBox”>Show Status Bar</CheckBox> 

… 

<StatusBar Visibility=”{Binding ElementName=checkBox, Path=IsChecked,

Converter={StaticResource booltoVis}}”>…</StatusBar>

In this case, the StatusBar is visible when (and only when) the CheckBox’s IsChecked prop-
erty is true.

Data-binding errors don’t appear as unhandled exceptions!

Instead of throwing exceptions on data-binding errors, WPF dumps explanatory text via debug 
traces that can be seen only with an attached debugger (or other trace listeners). Therefore, 
when data binding doesn’t work as expected, try running it under a debugger and be sure to 
check for traces. In Visual Studio, these can be found in the Output window. In Visual Studio 
2010 Ultimate, these can also be integrated into the handy IntelliTrace window.

The previous example of a nonsensical binding (hooking up Background directly to 
photos.Count) produces the following debug trace:

System.Windows.Data Error: 5 : Value produced by BindingExpression is not valid 

for target property.; Value=’39’ BindingExpression:Path=Count; DataItem=’Photos’ 

(HashCode=58961324); target element is ‘Label’ (Name=’numItemsLabel’); target 

property is ‘Background’ (type ‘Brush’)

Even exceptions thrown by the source object (or value converter) get swallowed and 
displayed as debug traces by default!

Because the tracing is implemented with System.Diagnostics.TraceSource objects, there 
are several standard options for capturing these same traces outside the debugger. Mike 
Hillberg, a WPF architect, shares details at 
http://blogs.msdn.com/mikehillberg/archive/2006/09/14/WpfTraceSources.aspx. You can 
capture traces WPF emits in a number of areas (that aren’t even enabled by default under a 
debugger), such as information about event routing, dependency property registration, 
resource retrieval, and much more.

You can also use the PresentationTraceSources.TraceLevel attached property (from the 
System.Diagnostics namespace in the WindowsBase assembly) on any Binding to 
increase or remove the trace information emitted for that specific binding. It can be set to a 
value from the PresentationTraceLevel enumeration: None, Low, Medium, or High.

WA R N I N G

  From the Library of Wow! eBook

http://blogs.msdn.com/mikehillberg/archive/2006/09/14/WpfTraceSources.aspx


ptg

Customizing Data Display
Sometimes, value converters are useful in cases where the source and target data types are 
already compatible. Earlier, when we set the Content of numItemsLabel to the Count prop-
erty of the photos collection (shown in Figure 13.1), it displayed just fine but required 
some additional text for the user to not be confused by what that number means. The use 
of StringFormat fixed that problem, but we can do better than a static “ item(s)” suffix. (I 
don’t know about you, but when I see a user interface report something like “1 item(s),” 
it just looks lazy to me.)

A value converter enables us to customize the text based on the value, so we can display 
“1 item” (singular) versus “2 items” (plural). The following 
RawCountToDescriptionConverter does just that:

public class RawCountToDescriptionConverter : IValueConverter 

{

public object Convert(object value, Type targetType, object parameter,

CultureInfo culture) 

{

// Let Parse throw an exception if the input is bad 

int num = int.Parse(value.ToString()); 

return num + (num == 1 ? “ item” : “ items”);

} 

public object ConvertBack(object value, Type targetType, object parameter,

CultureInfo culture) 

{

return

DependencyProperty.UnsetValue; 

}

}

Note that this uses hard-coded English 
strings, whereas a production-quality 
converter would use a localizable 
resource (or at least make use of the 
passed-in culture parameter).

Controlling Rendering 385
1

3

Value converters are the key to plugging in 
any kind of custom logic into the data-
binding process that goes beyond basic 
formatting. Whether you want to apply some 
sort of transformation to the source value 
before displaying it or change how the target 
gets updated based on the value of the 
source, you can easily accomplish this with 
a class that implements IValueConverter.

T I P

You can make a value converter temporarily cancel a data binding by returning the sentinel 
value Binding.DoNothing. This is different from returning null, as null might be a 
perfectly valid value for the target property.

Binding.DoNothing effectively means, “I don’t want to bind right now; pretend the Binding 
doesn’t exist.” In this case, the value of the target property doesn’t change from its current 
value unless there’s some other entity that happens to be influencing its value (an anima-
tion, a trigger, and so on). This only affects the current call to Convert or ConvertBack, so 
unless the Binding is cleared (via a call to ClearBinding, for example), the value converter 
will continue to be called every time the source value changes.

T I P

  From the Library of Wow! eBook



ptg

Customizing the View of a Collection
In the previous “Binding to a Collection” section, you saw that with the flip of a switch 
(setting IsSynchronizedWithCurrentItem to true), multiple Selectors pointing to the 
same source collection can see the same selected item. This behavior seems almost 
magical, at least when you’re watching it in person. (It’s hard to capture the synchronized 
motion in a static screenshot!) The source collection has no notion of a current item, so 
where is this information coming from, and where is the state being maintained?

It turns out that whenever you bind to a collection (anything that implements 
IEnumerable), a default view is implicitly 
inserted between the source and target 
objects. This view (which is an object 
implementing the ICollectionView 
interface) stores the notion of a current 
item, but it also has support for sorting, 
grouping, filtering, and navigating 
items. This section digs into these four 
topics as well as working with multiple 
views for the same source object.

Sorting
ICollectionView has a SortDescriptions property that provides a way to control how 
the view’s items are sorted. The basic idea is that you choose a property on the collection 
items to sort by (such as Name, DateTime, or Size on the Photo object) and you choose 
whether you want that property to be sorted in ascending or descending order. This 
choice is captured by a SortDescription object, which you can construct with a property 
name and a ListSortDirection. Here’s an example:

SortDescription sort = new SortDescription(“Name”, ListSortDirection.Ascending);

The SortDescriptions property, however, is a collection of SortDescription objects. It was 
designed this way so you can sort by multiple properties simultaneously. The first 
SortDescription in the collection represents the most significant property, and the last

CHAPTER 13 Data Binding386

How do I use a value converter to perform a conversion on each item when 
binding to a collection?

You can apply a data template to the ItemsControl’s ItemTemplate property and then 
apply value converters to any Bindings done inside the data template. If you were to apply 
the value converter to the ItemsControl’s Binding instead, an update to the source collec-
tion would prompt the Convert method to be called once for the entire collection (not on a 
per-item basis). You could implement such a converter that accepts a collection and returns 
a morphed collection, but that would not be a very efficient approach.

?
FA Q

Views are automatically associated with 
each source collection, not with the targets 
consuming the source. The result is that 
changes to the view (such as sorting or 
filtering it) are automatically seen by all 
targets.

T I P

  From the Library of Wow! eBook



ptg

SortDescription represents the least significant property. For example, if you add the 
following two SortDescriptions to the collection, the items get sorted in descending 
order by DateTime, but if there are any ties, the Name (in ascending order) is used as the 
tiebreaker:

view.SortDescriptions.Add(new SortDescription(“DateTime”, 

ListSortDirection.Descending)); 

view.SortDescriptions.Add(new SortDescription(“Name”, 

ListSortDirection.Ascending));

The SortDescriptions collection has a Clear method for returning the view to the 
default sort. A view’s default sort is simply the order in which items are placed in the 
source collection, which might not be sorted at all!

Listing 13.1 demonstrates how Photo Gallery could implement logic to sort its photos by 
Name, DateTime, or Size when the user clicks a corresponding Button. As in Windows 
Explorer, a repeated click toggles the sort between ascending and descending.

LISTING 13.1 Sorting by Three Different Properties

// Click event handlers for three different Buttons: 

void sortByName_Click(object sender, RoutedEventArgs e) 

{

SortHelper(“Name”); 

} 

void sortByDateTime_Click(object sender, RoutedEventArgs e) 

{

SortHelper(“DateTime”); 

} 

void sortBySize_Click(object sender, RoutedEventArgs e) 

{

SortHelper(“Size”); 

}

void SortHelper(string propertyName) 

{

// Get the default view

ICollectionView view = CollectionViewSource.GetDefaultView( 

this.FindResource(“photos”));

// Check if the view is already sorted ascending by the current property 

if (view.SortDescriptions.Count > 0

&& view.SortDescriptions[0].PropertyName == propertyName 

&& view.SortDescriptions[0].Direction == ListSortDirection.Ascending)

{

// Already sorted ascending, so “toggle” by sorting descending 

view.SortDescriptions.Clear();

Customizing the View of a Collection 387
1

3

  From the Library of Wow! eBook



ptg

view.SortDescriptions.Add(new SortDescription( 

propertyName, ListSortDirection.Descending));

} 

else 

{

// Sort ascending 

view.SortDescriptions.Clear(); 

view.SortDescriptions.Add(new SortDescription(

propertyName, ListSortDirection.Ascending)); 

}

}

Notice that this code has no explicit relationship with the ListBox displaying the photos. 
The view being operated on is associated with the source photos collection and is 
retrieved by a simple call to the static CollectionViewSource.GetDefaultView method. 
Indeed, if additional items controls were bound to the same photos collection, they 
would pick up the same view by default and would all sort together.

CHAPTER 13 Data Binding388

LISTING 13.1 Continued

Custom Sorting

If you want more control over the sorting process than what 
ICollectionView.SortDescriptions gives you (which seems unlikely), you can usually 
take advantage of custom sorting support. If the underlying collection implements IList (as 
most collections do), the ICollectionView returned by 
CollectionViewSource.GetDefaultView is actually an instance of the 
ListCollectionView class. If you can cast the ICollectionView to a 
ListCollectionView, you can assign a custom object implementing IComparer to its 
CustomSort property. When this is done, your implementation of IComparer.Compare will be 
called to determine the sort order. Inside the Compare method, you can use any method you 
want for sorting the items.

D I G G I N G  D E E P E R

Grouping
ICollectionView has a GroupDescriptions property that works much like 
SortDescriptions. You can add any number of PropertyGroupDescription objects to it 
to arrange the source collection’s items into groups and potential subgroups.

For example, the following code groups items in the photos collection by the value of 
their DateTime property:

// Get the default view

ICollectionView view = CollectionViewSource.GetDefaultView(

this.FindResource(“photos”)); 

// Do the grouping

  From the Library of Wow! eBook



ptg

view.GroupDescriptions.Clear(); 

view.GroupDescriptions.Add(new PropertyGroupDescription(“DateTime”));

Unlike with sorting, however, the effects of grouping are not noticeable unless you modify 
the items control displaying the data. To get grouping to behave properly, you must set 
the items control’s GroupStyle property to an instance of a GroupStyle object. This object 
has a HeaderTemplate property that should be set to a data template defining the look of 
the grouping header.

Photo Gallery’s ListBox could be given the following GroupStyle to support the preceding 
grouping code:

<ListBox x:Name=”pictureBox”

ItemsSource=”{Binding Source={StaticResource photos}}” …> 

<ListBox.GroupStyle>

<GroupStyle> 

<GroupStyle.HeaderTemplate>

<DataTemplate> 

<Border BorderBrush=”Black” BorderThickness=”1”>

<TextBlock Text=”{Binding Path=Name}” FontWeight=”Bold”/> 

</Border>

</DataTemplate> 

</GroupStyle.HeaderTemplate>

</GroupStyle>

</ListBox.GroupStyle> 

…

</ListBox>

Notice the use of data binding inside the data template. In this case, the data template is 
given a data context of a special CollectionViewGroup object that’s instantiated behind 
the scenes. The details of this class aren’t important aside from the fact that it has a Name 
property representing the value defining each group. Therefore, the data template uses 
data binding to display this Name in the grouping header. Figure 13.10 shows the result of 
running the preceding code with the updated XAML.

Customizing the View of a Collection 389
1

3

If you want to group items of an items control but don’t care about creating a fancy 
GroupStyle, you can use a built-in GroupStyle that ships with WPF. It’s exposed as a static 
GroupStyle.Default property. Therefore, you can reference it in XAML as follows: 

<ListBox x:Name=”pictureBox”

ItemsSource=”{Binding Source={StaticResource photos}}” …> 

<ListBox.GroupStyle>

<x:Static Member=”GroupStyle.Default”/>

</ListBox.GroupStyle> 

…

</ListBox>

T I P

  From the Library of Wow! eBook



ptg

FIGURE 13.10 A first attempt at grouping items in the ListBox.

After doing this, you see that perhaps grouping by Photo.DateTime is not a great idea. 
Because DateTime includes both a date and a time, each Photo tends to have a unique 
value, leaving many groups of one!

To fix this, you can leverage an overloaded constructor of the PropertyGroupDescription 
class that enables you to tweak the property value before using it as the basis for group-
ing. To do this, the constructor allows you to pass in a value converter. Therefore, you can 
write a DateTimeToDateConverter class that converts the raw DateTime into a string more 
suitable for grouping:

public class DateTimeToDateConverter : IValueConverter 

{

public object Convert(object value, Type targetType, object parameter,

CultureInfo culture) 

{

return ((DateTime)value).ToString(“MM/dd/yyyy”);

} 

public object ConvertBack(object value, Type targetType, object parameter,

CultureInfo culture) 

{

return DependencyProperty.UnsetValue; 

}

}

In this case, the returned string simply strips out the time component of the input 
DateTime. Group names don’t have to be strings, however, so Convert could alternatively 
strip out the time as follows and return the DateTime instance directly:

return ((DateTime)value).Date;

CHAPTER 13 Data Binding390

  From the Library of Wow! eBook



ptg

You could imagine supporting much fancier groupings with this mechanism, such as 
calculating date ranges and returning strings such as “Last Week”, “Last Month”, and so 
on. (Again, you should use the passed-in culture to tweak the formatting of the returned 
string.)

With this value converter defined, you can use it for grouping as follows:

// Get the default view 

ICollectionView view = CollectionViewSource.GetDefaultView(

this.FindResource(“photos”)); 

// Do the grouping 

view.GroupDescriptions.Clear(); 

view.GroupDescriptions.Add(

new PropertyGroupDescription(“DateTime”, new DateTimeToDateConverter()));

The result of this change is shown in Figure 13.11.

Customizing the View of a Collection 391
1

3

FIGURE 13.11 Improved grouping, based on the date component of Photo.DateTime.

To sort groups, you can use the same 
mechanism described in the preceding 
section. Sorting is always applied before 
grouping. The result is that the primary 
SortDescription applies to the groups, 
and any remaining SortDescriptions 
apply to items within each group. Just 
make sure that the property (or custom 
logic) used to do the sorting matches the 
property (or custom logic) used to do 
the grouping; otherwise, the resulting 
arrangement of items is not intuitive.

Perhaps you want to implement custom 
grouping based on the values of several 
properties. You can accomplish this by 
constructing PropertyGroupDescription 
with a null property name. When you do 
this, the value parameter passed to your 
value converter is the entire source item (a 
Photo object, in the Photo Gallery example) 
rather than a single property value.

T I P

  From the Library of Wow! eBook



ptg

Filtering
As with sorting and grouping, ICollectionView has a property that enables filtering— 
selective removal of items based on an arbitrary condition. This property is called Filter, 
and it is a Predicate<Object> type (in other words, a delegate that accepts a single Object 
parameter and returns a Boolean).

When Filter is null (which it is by default), all items in the source collection are shown 
in the view. But when it’s set to a delegate, the delegate is instantly called back for every 
item in the source collection. The delegate’s job is to determine whether each item should 
be shown (by returning true) or hidden (by returning false).

By using an anonymous delegate in C#, you can specify a filter pretty compactly. For 
example, the following code filters out all Photo items whose DateTime is older than 7 
days ago:

ICollectionView view = CollectionViewSource.GetDefaultView(this.FindResource 

(“photos”));

view.Filter = delegate(object o) { 

return ((o as Photo).DateTime – DateTime.Now).Days <= 7;

};

Although it can be hard for people to parse, you can express this even more compactly 
with a C# lambda expression:

ICollectionView view = CollectionViewSource.GetDefaultView(this.FindResource 

(“photos”));

view.Filter = (o) => { return ((o as Photo).DateTime – DateTime.Now).Days <= 7;};

To remove the filter, you simply set view.Filter back to null.

Navigating
In this context, navigating a view refers to managing the current item—not the kind of 
navigation discussed in Chapter 7, “Structuring and Deploying an Application.” 
ICollectionView not only has a CurrentItem property (and a corresponding 
CurrentPosition property that exposes the current item’s zero-based index), but it also 
has a handful of methods for programmatically changing the CurrentItem. The data-
binding version of Photo Gallery uses these methods to implement handlers for the Next 
Photo/Previous Photo Buttons, as follows:

void previous_Click(object sender, RoutedEventArgs e) 

{

// Get the default view

ICollectionView view = CollectionViewSource.GetDefaultView(

this.FindResource(“photos”)); 

// Move backward 

view.MoveCurrentToPrevious(); 

// Wrap around to the end

CHAPTER 13 Data Binding392

  From the Library of Wow! eBook



ptg

if (view.IsCurrentBeforeFirst) view.MoveCurrentToLast(); 

} 

void next_Click(object sender, RoutedEventArgs e) 

{

// Get the default view

ICollectionView view = CollectionViewSource.GetDefaultView(

this.FindResource(“photos”)); 

// Move forward 

view.MoveCurrentToNext(); 

// Wrap around to the beginning 

if (view.IsCurrentAfterLast) view.MoveCurrentToFirst();

}

Although a bit wordy, these navigation methods are straightforward to use. These 
handlers not only update the selected item in the ListBox without explicitly referencing 
it, but any additional elements that wish to display information about the current item 
can be automatically updated as well, as long as they bind to the same source. Note that 
until an item is selected on the source collection, CurrentItem is null and 
CurrentPosition is -1. However, this is only true because the ListBox made it so. On its 
own, the collection view initializes CurrentPosition to 0 and CurrentItem to the first 
item.

Customizing the View of a Collection 393
1

3

Property paths used in Bindings support referencing a collection’s current item with special 
forward-slash syntax. For example, the following Binding binds to the current item, assuming 
that the data source is a collection:

“{Binding Path=/}” 

The following binds to the DateTime property on the current item:

“{Binding Path=/DateTime}” 

The following binds to the current item of a collection exposed by a property called Photos 
on a different data source that isn’t a collection itself:

“{Binding Path=Photos/}” 

Finally, the following binds to the DateTime property on the current item from the preceding 
example:

“{Binding Path=Photos/DateTime}” 

This functionality is incredibly useful for implementing master/detail user interfaces without 
any procedural code.

T I P

  From the Library of Wow! eBook



ptg

Working with Additional Views
The previous examples of sorting, grouping, filtering, and navigating always operated on 
the default view associated with the source collection. But it’s conceivable that you might 
want elements to have different views of the same source collection. It turns out that the 
CollectionViewSource class has more uses than just returning the default view; it can 
also construct a brand-new view over any source. This view can then be selectively 
applied to any target, overriding the default view.

To create a new view over Photo Gallery’s photos collection, you could do the following:

CollectionViewSource viewSource = new CollectionViewSource(); 

viewSource.Source = photos; 

// viewSource.View now points to a nondefault ICollectionView implementation

CollectionViewSource is designed to make it easy to create custom views declaratively, so 
you can use the following XAML instead:

<Window.Resources> 

<local:Photos x:Key=”photos”/> 

<CollectionViewSource x:Key=”viewSource” Source=”{StaticResource photos}”/>

</Window.Resources>

To apply the custom view to a target property, simply bind to the CollectionViewSource 
rather than the underlying source object:

<ListBox x:Name=”pictureBox” 

ItemsSource=”{Binding Source={StaticResource photos viewSource}}” …> 

…

</ListBox>

Note that although the original source is now wrapped by a CollectionViewSource, WPF 
special-cases the CollectionViewSource class so that you don’t have to change any 
Binding Paths. Binding to the Count property, for example, still refers to the property of 
the underlying Photos object rather than the CollectionViewSource object.

CHAPTER 13 Data Binding394

Default view navigation isn’t exposed automatically!

Unlike sorting, grouping, and filtering, the effects of navigation on the default view can be 
seen only on a Selector that has IsSynchronizedWithCurrentItem set to true. Without 
this setting, Selector’s SelectedItem and the default view’s CurrentItem are detached; 
they can be updated independently without affecting one another. The WPF team wanted 
synchronization of the selected item to be an explicit choice to expose developers to the 
concept of a view and avoid potentially confusing behavior. But frankly, I find the inconsis-
tency with the other “automatic” aspects of the default view to be confusing.

WA R N I N G

  From the Library of Wow! eBook



ptg

Such a ListBox is now exempt from any sorting, grouping, filtering, or navigating being 
done on the default view. If you want to perform any of these actions on the custom 
view, you can follow all the same techniques outlined previously using the 
ICollectionView returned by the CollectionViewSource.View instance property rather 
than the CollectionViewSource.GetDefaultView static method.

To enable a custom view to be configured with sorting and grouping entirely within 
XAML, CollectionViewSource has its own SortDescriptions and GroupDescriptions 
properties that work just like the corresponding properties on ICollectionView. It also 
has its own Filter member, but it’s defined as an event rather than a delegate property so 
it can also be set inside XAML. (Of course, it must be set to an event handler written in 
procedural code.) Sorting, grouping, and filtering can, therefore, all be expressed in XAML 
as follows:

<CollectionViewSource x:Key=”viewSource” Filter=”viewSource_Filter” 

Source=”{StaticResource photos}”>

<CollectionViewSource.SortDescriptions> 

<componentModel:SortDescription PropertyName=”DateTime” Direction=”Descending”/>

</CollectionViewSource.SortDescriptions>

<CollectionViewSource.GroupDescriptions> 

<PropertyGroupDescription PropertyName=”DateTime”/>

</CollectionViewSource.GroupDescriptions>

</CollectionViewSource>

The SortDescription class happens to live in a .NET namespace not included in the stan-
dard XML namespace, so the following directive is needed:

xmlns:componentModel=”clr-namespace:System.ComponentModel;assembly=WindowsBase” 

The viewSource_Filter method referenced by the XAML could be implemented as 
follows, which is a translation of the previous filtering delegate that excludes all photos 
older than seven days from today’s date:

void viewSource_Filter(object sender, FilterEventArgs e) 

{

e.Accepted = ((e.Item as Photo).DateTime – DateTime.Now).Days <= 7; 

}

Rather than getting the source item 
passed in directly, the event handler 
receives it as e.Item. Rather than return a 
Boolean, it must set the Boolean
e.Accepted property to communicate 
whether the item is in or out.

Customizing the View of a Collection 395
1

3

Filtering

Sorting

Grouping

Even if you don’t require multiple views of 
the same source collection, you can opt to 
create and apply a custom view with the 
explicit CollectionViewSource simply so 
you can sort and group items without any 
procedural code!

T I P

  From the Library of Wow! eBook



ptg

Data Providers
Because the source object can be any arbitrary .NET object, you can perform just about 
any data binding imaginable with enough code. You could bind to a database, the 
Windows Registry, an Excel spreadsheet, and so on. All you need is an appropriate .NET 
object that exposes the right set of prop-
erties and notifications and handles all 
the messy implementation details! (That 
said, the work involved in creating such 
code might outweigh the benefits of 
data binding if you’re writing everything 
yourself!)

To cut down on the need for custom 
code, WPF ships with two classes that 
provide a generic “data 
binding–friendly” way to expose 
common items: XmlDataProvider and 
ObjectDataProvider.

CHAPTER 13 Data Binding396

If my application contains a collection, and nobody ever data binds directly 
to it (but rather to a CollectionViewSource), does the default view still

exist?

No. For performance reasons, the default view is created on demand. This is unlike a tree 
falling in a forest, which I’m told still makes a sound even if nobody is around to hear it.

?
FA Q

Navigation works differently in a custom view!

Changing the current item on a custom view automatically impacts any Selectors binding to 
that view by default; the Selector’s IsSynchronizedWithCurrentItem property must be 
explicitly set to false in order to opt out of the synchronized navigation. This is opposite the 
behavior of the default view!

Although the default value for IsSynchronizedWithCurrentItem is false, WPF automati-
cally sets it to true when a Selector’s ItemsSource is set to a custom view unless it has 
been given an explicit value (or the Selector’s SelectionMode isn’t Single). The idea is 
that using a custom view is an explicit acknowledgment of the view’s existence, so you 
should get the expected view navigation behavior by default. (These shenanigans are yet 
another reason I wish that IsSynchronizedWithCurrentItem defaulted to true for all 
views.)

WA R N I N G

Starting with WPF 3.5 SP1, data binding 
works really well with Language Integrated 
Query (LINQ). You can set a Binding’s 
Source (or an element’s DataContext) to a 
LINQ query, and the enumerable result can 
be used just like any other collection. 
Therefore, with the existence of LINQ to 
SQL, LINQ to XML, and more, using LINQ— 
rather than WPF’s data provider classes—is 
an easy way to bind to database tables, 
XML content, and more.

T I P

  From the Library of Wow! eBook



ptg

XmlDataProvider
The XmlDataProvider class provides an easy way to bind data to a chunk of XML, 
whether it’s an in-memory fragment or a complete file. Listing 13.2 shows an example of 
using XmlDataProvider to bind to an embedded data island.

LISTING 13.2 Binding to an Embedded XML Data Island

<Window xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation” 

xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml” 

Title=”XML Data Binding”>

<Window.Resources> 

<XmlDataProvider x:Key=”dataProvider” XPath=”GameStats”>

<x:XData>

<GameStats xmlns=””> 

<!-- One stat per game type --> 

<GameStat Type=”Beginner”>

<HighScore>1203</HighScore> 

</GameStat> 

<GameStat Type=”Intermediate”>

<HighScore>1089</HighScore> 

</GameStat> 

<GameStat Type=”Advanced”>

<HighScore>541</HighScore> 

</GameStat>

</GameStats>

</x:XData> 

</XmlDataProvider>

</Window.Resources> 

<Grid>

<ListBox ItemsSource=”{Binding Source={StaticResource dataProvider},

XPath=GameStat/HighScore}” /> 

</Grid>

</Window>

The XML data island is set as 
XmlDataProvider’s content property and 
contained within the XData element, 
which is a requirement to distinguish it 
from the surrounding XAML. (You get a 
compiler error if you omit the XData 
tags.) The XmlDataProvider’s XPath prop-
erty is set to an XPath query that tells it 
where the relevant data resides inside 
the XML tree. XPath, short for XML Path 
Language, is a W3C Recommendation 
published at http://www.w3.org/TR/xpath.

Data Providers 397
1

3

XML data island

When embedding an XML data island inside 
XAML, you should mark its root node with an 
empty xmlns attribute, as done in Listing
13.2. Otherwise, the elements get polluted 
with the default namespace (http:// 
schemas.microsoft.com/winfx/2006/ 
xaml/presentation in this example), 
preventing XPath queries from working as 
expected.

T I P

Binding to 
the XML

  From the Library of Wow! eBook

http://www.w3.org/TR/xpath
http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml/presentation


ptg

The consumption of the XmlDataProvider looks like the 
consumption of any source object, except that Binding’s XPath 
property is used rather than Path to extract the relevant pieces of 
the source. This listing uses XPath to display the content of each 
HighScore node as an item in the ListBox, as shown in Figure
13.12.

If the XML resides in a separate file (which is usually the case), 
you can simply set XmlDataProvider’s Source property to the 
appropriate uniform resource identifier (URI) rather than setting 
its content property. Just like other URIs, this could refer to a local file, a file from the 
Internet, an embedded resource, and so on. For Listing 13.2, you could replace the 
XmlDataProvider with the following:

<XmlDataProvider x:Key=”dataProvider” XPath=”GameStats” Source=”GameStats.xml”/>

XPath is a powerful query language—much more powerful than the property paths used 
in previous bindings. For example, Listing 13.2 could set XPath to “GameStat/@Type” to 
fill the ListBox with the values of each GameStat’s Type attribute (Beginner, Intermediate, 
and Advanced). It could even use the expression “comment()” to show the contents of the 
first XML comment!

CHAPTER 13 Data Binding398

FIGURE 13.12
The result of the
XML data binding 
performed in Listing
13.2.

Interactions Between XPath and Path

You can use XPath XPath and Path simultaneously on the same Binding. The XML data 
provided by XmlDataProvider is in the form of objects defined in System.Xml.dll (in the 
System.Xml namespace), such as XmlNode. This is important to know if you’re interacting 
with the data programmatically, and it also means that you can give Binding a Path that 
refers to the current XmlNode or XmlNodeList instance retrieved. For example, the following 
Label uses XmlNode’s OuterXml property to display <HighScore>1203</HighScore> rather 
than simply 1203 when used with the previously defined data provider:

<Label Content=”{Binding Source={StaticResource dataProvider}, 

XPath=GameStat/HighScore, Path=OuterXml}”/>

In addition to this support, ItemsControl’s DisplayMemberPath property supports both 
Path and XPath syntax.

D I G G I N G  D E E P E R

If you want to bind the entire set of XML data to an element that understands hierarchies 
(TreeView or Menu) without custom code, you must use one or more 
HierarchicalDataTemplates. Listing 13.3 is an update to Listing 13.2 that adds three data 
templates (two HierarchicalDataTemplates and one plain DataTemplate) and changes 
the ListBox to a TreeView with an updated XPath that includes all the XML content.

  From the Library of Wow! eBook



ptg

LISTING 13.3 Binding to a Hierarchy Using HierarchicalDataTemplate

<Window xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation” 

xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml” 

Title=”XML Data Binding”>

<Window.Resources> 

<HierarchicalDataTemplate DataType=”GameStats”

ItemsSource=”{Binding XPath=*}”> 

<TextBlock FontStyle=”Italic” Text=”All Game Stats”/>

</HierarchicalDataTemplate> 

<HierarchicalDataTemplate DataType=”GameStat” ItemsSource=”{Binding XPath=*}”>

<TextBlock FontWeight=”Bold” FontSize=”20” Text=”{Binding XPath=@Type}”/> 

</HierarchicalDataTemplate> 

<DataTemplate DataType=”HighScore”>

<TextBlock Foreground=”Blue” Text=”{Binding XPath=.}”/> 

</DataTemplate> 

<XmlDataProvider x:Key=”dataProvider” XPath=”GameStats”>

<x:XData> 

<GameStats xmlns=””>

<!-- One stat per game type --> 

<GameStat Type=”Beginner”>

<HighScore>1203</HighScore> 

</GameStat> 

<GameStat Type=”Intermediate”>

<HighScore>1089</HighScore> 

</GameStat> 

<GameStat Type=”Advanced”>

<HighScore>541</HighScore> 

</GameStat>

</GameStats> 

</x:XData>

</XmlDataProvider> 

</Window.Resources> 

<Grid>

<TreeView ItemsSource=”{Binding Source={StaticResource dataProvider},

XPath=.}” /> 

</Grid>

</Window>

The idea is to use a HierarchicalDataTemplate for every data type in the hierarchy but 
then use a simple DataTemplate for any leaf nodes. Each data template gives you the 
option to customize the rendering of the data type, but HierarchicalDataTemplate also 
enables you to specify its children in the hierarchy by setting its ItemsSource property. 
Both HierarchicalDataTemplates in Listing 13.3 bind ItemsSource to the XPath expres-
sion * to include all children in the XML data source.

Data Providers 399
1

3

  From the Library of Wow! eBook



ptg

The DataType value on each data template makes each one automatically affect any 
instances of the specified type within its scope (the Window in this example). When used 
with XmlDataProvider, the value of DataType corresponds to an XML element name. Note 
that the three data templates are not given explicit keys, despite being in a 
ResourceDictionary. This works because internally the value of DataType is used for the 
template’s key.

Figure 13.13 shows the rendered XAML from Listing 13.3. It also shows what happens if 
you replace the single occurrence of TreeView with Menu and leave the rest of the listing 
alone.

CHAPTER 13 Data Binding400

Changing TreeView to MenuThe TreeView in Listing 13.3

FIGURE 13.13 The use of HierarchicalDataTemplates can automatically fill TreeView 
and Menu with a hierarchy of data-bound objects.

Often, XML data defines its own namespace for its elements. For example, Really Simple 
Syndication (RSS) feeds from Twitter define two:

<rss version=”2.0” xmlns:atom=”http://www.w3.org/2005/Atom” 

xmlns:georss=”http://www.georss.org/georss”>

… 

</rss>

To reference elements in these namespaces (for example, atom:link) in an XPath, you can 
set an XmlNamespaceManager property on the XmlDataProvider or on individual Bindings. 
Here’s an example:

<XmlDataProvider Source=”http://twitter.com/statuses/user_timeline/24326956.rss”

XmlNamespaceManager=”{StaticResource namespaceMapping}”

XPath=”rss/channel” x:Key=”dataProvider”/>

The typical way to get an instance of an XmlNamespaceManager is to use the derived 
XmlNamespaceMappingCollection class, which assigns a prefix to each namespace. Here’s 
an example:

<XmlNamespaceMappingCollection x:Key=”namespaceMapping”> 

<XmlNamespaceMapping Uri=”http://www.w3.org/2005/Atom” Prefix=”atom”/> 

<XmlNamespaceMapping Uri=”http://www.georss.org/georss” Prefix=”georss”/>

</XmlNamespaceMappingCollection>

T I P

  From the Library of Wow! eBook



ptg

ObjectDataProvider
Whereas XmlDataProvider exposes XML as a data source, ObjectDataProvider exposes a 
.NET object as a data source. “But that doesn’t make any sense,” you’re probably thinking 
to yourself! “I can already use any arbitrary .NET object as a data source. What good does 
ObjectDataProvider do?” It opens up a few additional capabilities that you don’t get by 
binding to the raw object. For example, it enables you to do the following:

. Declaratively instantiate the source object with a parameterized constructor

. Bind to a method on the source object

. Have more options for asynchronous data binding

Data Providers 401
1

3

Continued

Although it’s natural to choose prefixes that match the ones in the XML, you can choose any 
prefixes you want. The prefixes you choose can be used in XPath expressions, such as:

“{Binding XPath=atom:link}” 

Whenever an XPath value has no prefix, the empty namespace is assumed to be the name-
space URI. Therefore, even if your XML source has a default namespace, you must assign an 
XmlNamespaceManager for the queries to work.

Asynchronous Data Binding

Whenever binding to data isn’t a quick operation, it should be done asynchronously to avoid 
freezing the user interface. WPF exposes two independent knobs for making binding happen 
asynchronously: Binding has an IsAsync property, and both XmlDataProvider and 
ObjectDataProvider have an IsAsynchronous property. (Don’t you just love the consis-
tency?)

When IsAsynchronous is true, the data provider creates the source object on a background 
thread. IsAsynchronous is false by default for ObjectDataProvider but true by default 
for XmlDataProvider (because the latter is often used with remote XML files such as RSS 
feeds that are slow to retrieve). On the other hand, when IsAsync (which is always false by 
default) is true, the source property is invoked on a background thread.

Binding.IsAsync exists to enable applications to work around poorly-designed objects. 
Property getters are supposed to be fast; they’re not supposed to invoke expensive calcula-
tions, network requests, and so on. If everyone obeyed this guideline, the WPF team wouldn’t 
have created the IsAsync property.

If you’re tempted to use IsAsync with one of your own objects, consider redesigning its slow 
properties. A nice pattern is to define a method called Recompute, for example, that 
performs the expensive calculation (perhaps on a worker thread) and caches the results. 
When it finishes, you can raise the relevant PropertyChanged events. The property getter 
should simply retrieve whatever value is in the cache, so it is always fast.

D I G G I N G  D E E P E R

  From the Library of Wow! eBook



ptg

Using a Parameterized Constructor in XAML
Most data sources that you’d use probably have a default constructor, such as the photos 
collection used earlier in the chapter. The following XAML “wraps” this collection in an 
ObjectDataProvider:

<Window.Resources> 

<local:Photos x:Key=”photos”/> 

<ObjectDataProvider x:Key=”dataProvider”

ObjectInstance=”{StaticResource photos}”/>

</Window.Resources>

In this case, whether you bind to photos or dataProvider, you get exactly the same 
results. Even the Binding Path to use is identical because Binding automatically 
“unwraps” objects inside data providers such as ObjectDataProvider.

ObjectDataProvider also can be given the desired type of its object to wrap (rather than 
an instance) and construct it on your behalf:

<Window.Resources> 

<!-- The collection object is instantiated internally by ObjectDataProvider: --> 

<ObjectDataProvider x:Key=”dataProvider” ObjectType=”{x:Type local:Photos}”/>

</Window.Resources>

When using ObjectDataProvider in this fashion, you can get it to instantiate an object 
via its parameterized constructor by setting its ConstructorParameters property to a 
collection of objects. For example, if the Photos constructor required a capacity to be 
passed in, you could use ObjectDataProvider as follows:

<ObjectDataProvider x:Key=”dataProvider” ObjectType=”{x:Type local:Photos}”> 

<ObjectDataProvider.ConstructorParameters>

<sys:Int32>23</sys:Int32> 

</ObjectDataProvider.ConstructorParameters> 

</ObjectDataProvider>

This mechanism is just like the x:Arguments keyword in XAML2009, except this works in 
XAML2006 as well. Therefore, this is useful for data sources whose definition you don’t 
control. (If you did control the definition of the data source, presumably you’d add an 
appropriate default constructor to it.) Of course, if declaring the source in XAML isn’t 
important to you, you could always construct it programmatically and easily set it as a 
data context for any XAML-defined elements.

Binding to a Method
One scenario that ObjectDataProvider enables that you otherwise can’t easily achieve 
declaratively or programmatically is binding to a method. As with support for parameter-
ized constructors, this is mostly useful for existing classes that aren’t data binding friendly 
and can’t be changed. For your own types, you might as well expose potential data 
sources as properties. But imagine that the photos collection exposed a method called

CHAPTER 13 Data Binding402

  From the Library of Wow! eBook



ptg

GetFolderName that returned a string representing the folder containing all the current 
items. You could expose this method as a data source as follows:

<ObjectDataProvider x:Key=”dataProvider” ObjectType=”{x:Type local:Photos}” 

MethodName=”GetFolderName”/>

If parameters need to be passed to the method, you can use ObjectDataProvider’s 
MethodParameters property (which works just like its ConstructorParameters property). 
To bind to this method, you simply bind to the entire ObjectDataProvider:

<TextBlock Text=”{Binding Source={StaticResource dataProvider}}”/>

Specifying a Path in this case would apply to the instance returned by the method.

Advanced Topics 403
1

3

Suppressing the Automatic Unwrapping of Data Providers

If you want to bind directly to properties of ObjectDataProvider rather than the wrapped 
data source, you can set Binding’s BindsDirectlyToSource property to true to suppress 
the automatic unwrapping. This works for any DataSourceProvider-derived source (as well 
as CollectionViewSource), so it includes ObjectDataProvider, XmlDataProvider, and 
any custom derived classes you might write.

D I G G I N G  D E E P E R

Advanced Topics
The final section of this chapter outlines some of the more esoteric but incredibly useful 
features of data binding. This includes customizing the flow of data between the source 
and target, plugging in custom validation logic, and combining disjoint sources into a 
single bindable entity.

Customizing the Data Flow
In all the data-binding examples you’ve seen so far, data updates flow from the source to 
the target. But, in some cases, the target property can be directly changed by users, and it 
would be useful to support the flowing of such changes back to the source. Indeed, 
Binding supports this (and more) via its Mode property, which can be set to one of the 
following values of the BindingMode enumeration:

. OneWay—The target is updated whenever the source changes.

. TwoWay—A change to either the target or source updates the other.

. OneWayToSource—This is the opposite of OneWay. The source is updated whenever 
the target changes.

. OneTime—This works just like OneWay, except changes to the source are not reflected 
at the target. The target retains a snapshot of the source at the time the Binding is 
initiated.

  From the Library of Wow! eBook



ptg

TwoWay binding is appropriate for 
editable DataGrids or other data-bound 
forms, where you might have TextBoxes 
that get filled with data that the user is 
allowed to change. In fact, whereas most 
dependency properties default to OneWay 
binding, dependency properties such as 
TextBox.Text default to TwoWay binding. 
(Although this section claims to be 
about relatively esoteric features, TwoWay 
binding is actually quite common. It’s 
used in almost any application that 
reacts to user input and properly sepa-
rates its user interface from its data.)

These different modes are the reason that value converters have both a Convert and a 
ConvertBack method. Both are called when performing TwoWay binding, and only 
ConvertBack is called when doing OneWayToSource binding.

CHAPTER 13 Data Binding404

Watch Out for Different Default
BindingModes!

The fact that different dependency proper-
ties have different default BindingModes 
can easily trip you up. For example, unlike 
with Label.Content, binding 
TextBox.Text to a collection’s Count 
property fails unless you explicitly set 
BindingMode to OneWay (or OneTime) 
because the Count property is read-only. 
TwoWay and OneWayToSource require a 
writable source property.

WA R N I N G

Why would I ever use a Binding with a Mode of OneWayToSource? In such a 
case, it sounds like the target should really be the source, and the source

should really be the target.

One reason could be that you’re using multiple Bindings, some with data flowing from the 
source to the target and others with data flowing from the target to the source. For example, 
you might want to share a source among many data-bound targets but want one of these 
target elements to update that source via data binding.

OneWayToSource can also be used as a sneaky way to get around the restriction that a 
Binding’s target property must be a dependency property. If you want to bind a source 
dependency property to a target property that is not a dependency property, 
OneWayToSource enables you to accomplish this by marking your “real source” as the target 
and your “real target” as the source!

?
FA Q

When using TwoWay or OneWayToSource binding, you might want different behaviors for 
when and how the source gets updated. For example, if a user types in a TwoWay data-
bound TextBox, do you want the source to be updated with each keystroke, or only when 
the user is done typing? Binding enables you to control such behavior with its 
UpdateSourceTrigger property.

UpdateSourceTrigger can be set to a member of the UpdateSourceTrigger enumeration, 
which has the following values:

. PropertyChanged—The source is updated whenever the target property value 
changes.

  From the Library of Wow! eBook



ptg

. LostFocus—When the target prop-
erty value changes, the source is 
updated only after the target 
element loses focus.

. Explicit—The source is updated 
only when you make an explicit 
call to BindingExpression. 
UpdateSource. You can get an 
instance of BindingExpression by 
calling the static BindingOperations. 
GetBindingExpression method or 
calling GetBindingExpression on any 
FrameworkElement or 
FrameworkContentElement.

Just as different properties have different default Mode settings, they also have different 
default UpdateSourceTrigger settings. TextBox.Text defaults to LostFocus.

Advanced Topics 405
1

3

Dependency Properties and Default 
Settings

The default settings for dependency proper-
ties are stored in a special set of metadata, 
as shown in Chapter 3. To programmatically 
check the setting for any dependency prop-
erty, you can call its GetMetadata method 
(for example, TextBox.TextProperty. 
GetMetadata()) and then check the value of 
properties such as BindsTwoWayByDefault 
or DefaultUpdateSourceTrigger. The 
easiest way to discover this information, of 
course, is with a tool such as .NET Reflector.

D I G G I N G  D E E P E R

Although the source and/or target data gets updated automatically when using data binding, 
you might want to take additional actions when a data update occurs. Perhaps you want to 
write some data to a log or show a visual effect to indicate the data change.

Fortunately, FrameworkElement and FrameworkContentElement have SourceUpdated and 
TargetUpdated events that you can handle. But for performance reasons, they only get 
raised for Bindings that have their NotifyOnSourceUpdated and/or 
NotifyOnTargetUpdated Boolean properties set to true.

T I P

Adding Validation Rules to Binding
When you accept user input, it’s a good idea to reject invalid data and give feedback to 
the user in a timely fashion. The early days of form filling on the Web were accompanied 
by horror stories of inappropriate validation, such as detecting errors only after every-
thing was submitted and then requiring the user to type in everything again from 
scratch! Fortunately, data binding has a built-in validation mechanism that makes it rela-
tively easy to create a rich and interactive experience. There are so many different ways to 
accomplish this and so many different knobs to configure, however, that it’s more confus-
ing than it should be.

Imagine that you want the user to type the name of an existing .jpg file into a data-
bound TextBox. There are two obvious error conditions here: The user could enter a 
nonexistent filename or a non-.jpg filename. If the TextBox weren’t data bound, you 
could insert custom validation logic that checks for these two conditions in the code that 
updates the data source. But when data binding propagates updates automatically, you

  From the Library of Wow! eBook



ptg

need a way to inject validation logic into 
the process. You could write a value 
converter that performs the logic and 
throws an exception for bad data. But 
besides the fact that value converters 
aren’t meant for that purpose, this still 
doesn’t solve the part about displaying 
the error to the user.

You can handle this situation in a few different ways. One way is to write your own vali-
dation rule, and another is to take advantage of exceptions that might already be thrown 
from attempts to update the source incorrectly.

Writing Your Own Validation Rule
Binding has a ValidationRules property that can be set to one or more ValidationRule-
derived objects. Each rule can check for specific conditions and mark the data as invalid. 
We could write the following JpgValidationRule class that enforces our requirements by 
deriving from ValidationRule and overriding its abstract Validate method:

public class JpgValidationRule : ValidationRule 

{

public override ValidationResult Validate(object value, CultureInfo cultureInfo) 

{

string filename = value.ToString();

// Reject nonexistent files: 

if (!File.Exists(filename))

return new ValidationResult(false, “Value is not a valid file.”);

// Reject files that don’t end in .jpg: 

if (!filename.EndsWith(“.jpg”, StringComparison.InvariantCultureIgnoreCase))

return new ValidationResult(false, “Value is not a .jpg file.”);

// The input passes the test! 

return new ValidationResult(true, null);

} 

}

Invalid data is reported by returning a false ValidationResult, and valid data is reported 
by returning a true ValidationResult. (The check for the “.jpg” suffix is not a good way 
to check that the file is a JPEG image, but it still gets the point across.)

With this class in place, it can be applied to a Binding as follows:

<TextBox> 

<TextBox.Text>

<Binding …>

CHAPTER 13 Data Binding406

The techniques described in this section 
apply only to propagating changes from the 
target to the source. Therefore, these 
features work only with a BindingMode of 
OneWayToSource or TwoWay.

T I P

  From the Library of Wow! eBook



ptg

<Binding.ValidationRules> 

<local:JpgValidationRule/>

</Binding.ValidationRules>

</Binding> 

</TextBox.Text> 

</TextBox>

The validation check is invoked during any attempt to update the underlying data (which, 
in this case, is when the TextBox loses focus because of the LostFocus default for 
UpdateSourceTrigger). This happens before a value converter is called (if present), and 
only one rule is needed to veto the update and mark the data as invalid.

So, what happens when data is marked as invalid? An error adorner is rendered on top of 
the element with the target property. By default, this adorner looks like a thin red border. 
But you can assign a custom control template to be used in such conditions by setting the 
Validation.ErrorTemplate attached property on the target element. (Control templates 
are covered in the next chapter.) If you use validation, you’ll want to assign a custom 
template because the default one is not very satisfactory.

In addition, when data is marked as invalid, the target element’s Validation.HasError 
attached property becomes true, and its Validation.Error attached event is raised (but 
only if Binding’s NotifyOnValidationError property is set to true). Therefore, you could 
implement rich error notification logic with an appropriate trigger or event handler. You 
can get detailed information about the validation failures, such as the strings returned by 
the JpgValidationRule class, by checking the target element’s Validation.Errors 
attached property. These properties are automatically cleared when a subsequent successful 
bind occurs.

Sending Existing Error Handling Through the Validation System
Writing a custom validation rule might duplicate error-checking logic that is already 
performed by the data source (or a value converter). If either of these already throws an 
exception for the same conditions you want to treat as invalid, you can use a built-in 
ExceptionValidationRule object. Here’s an example:

<TextBox> 

<TextBox.Text>

<Binding …> 

<Binding.ValidationRules>

<ExceptionValidationRule/> 

</Binding.ValidationRules> 

</Binding>

</TextBox.Text> 

</TextBox>

ExceptionValidationRule simply marks the data as invalid if any exception is thrown 
when attempting to update the source property. Therefore, this mechanism enables you to 
react properly to the exception rather than have it swallowed and emitted as a debug trace.

Advanced Topics 407
1

3

  From the Library of Wow! eBook



ptg

Similarly, if the data source provides error information by implementing 
System.ComponentModel.IDataErrorInfo, a simple interface used by several data sources 
(and also consumed by Windows Forms), you can use a built-in 
DataErrorValidationRule object to mark the corresponding data as invalid. The follow-
ing TextBox takes advantage of both:

<TextBox> 

<TextBox.Text>

<Binding …> 

<Binding.ValidationRules>

<ExceptionValidationRule/> 

<DataErrorValidationRule/>

</Binding.ValidationRules>

</Binding> 

</TextBox.Text> 

</TextBox>

Although it’s nice to see built-in validation behavior leverage the same mechanisms as 
custom code you would write, the WPF team realized that the syntax is pretty verbose 
and awkward. Therefore, in WPF 3.5 SP1, Binding was given two new Boolean proper-
ties—ValidatesOnExceptions and ValidatesOnDataErrors—that provide a shortcut to 
adding these validation rules to the ValidationRules collection. Therefore, the preceding 
XAML can be rewritten as follows:

<TextBox> 

<TextBox.Text>

<Binding ValidatesOnExceptions=”True” ValidatesOnDataErrors=”True” …/> 

</TextBox.Text> 

</TextBox>

CHAPTER 13 Data Binding408

There’s More Than One Way to Handle Exceptions

Another way to handle exceptions in source updates is to attach a delegate to Binding’s 
UpdateSourceExceptionFilter property. The delegate gets called whenever an exception 
occurs from attempting to update the source property, and that Exception object is passed 
to the delegate. Therefore, you can implement a custom error notification scheme without 
using any of the ValidationRule features. UpdateSourceExceptionFilter might be 
simpler to use programmatically, but only the ExceptionValidationRule approach can be 
used declaratively.

Interestingly, there is still a connection between the UpdateSourceExceptionFilter dele-
gate and the other validation scheme. If you return a ValidationError from your delegate, 
it will treat your delegate like a custom validation rule, and add the ValidationError to the 
target element’s Validation.Errors collection, set Validation.HasError to true, and 
potentially raise the Validation.Error event.

D I G G I N G  D E E P E R

  From the Library of Wow! eBook



ptg

To summarize, if the data source or a value converter in use already has logic to throw an 
exception on bad data, you can do one of the following:

. Use UpdateSourceExceptionFilter to plug in custom notification logic

. Set ValidatesOnExceptions or use ExceptionValidationRule, defining an 
ErrorTemplate and/or plugging in additional notification logic by monitoring 
Validation.HasError or Validation.Error (when NotifyOnValidationError is 
true)

If the data source uses IDataErrorInfo, you can set ValidatesOnDataErrors or use 
DataErrorValidationRule instead, and if the data source or value converter doesn’t have 
either kind of error handling, you still use a custom validation rule.

Validation for a Group of Bindings
The validation mechanism described thus far is applied on a Binding-by-Binding basis, 
but sometimes it’s useful to apply validation in bulk, such as for all cells in a DataGrid 
row or any kind of form in which multiple values are dependent on each other.

This kind of bulk validation is supported by an object known as BindingGroup. 
BindingGroup, like Binding, can be given a set of ValidationRules that are meant to 
apply to a group of Bindings. A BindingGroup instance can be assigned to any 
FrameworkElement (or FrameworkContentElement) as the value of its BindingGroup prop-
erty. (ItemsControl also defines an ItemBindingGroup property that applies the 
BindingGroup to each item rather than the ItemsControl itself.) This automatically “fills” 
the BindingGroup with all Bindings that share the same DataContext as the host element. 
If you give the BindingGroup a Name, you can then add any other Bindings to the group— 
regardless of their source data—by setting each Binding’s BindingGroupName to the Name of 
the BindingGroup.

When each BindingGroup’s ValidationRule is invoked, the value passed to Validate is 
the instance of the BindingGroup. Because BindingGroup contains a number of useful 
methods and properties, such as an Items collection that contains the values for each 
Binding that ended up in the group, the ValidationRule can contain arbitrary logic that 
determines whether the result is valid, based on the entire group of values. BindingGroup 
also enables transactional editing (leveraged by DataGrid) when the data source imple-
ments the IEditableObject interface.

Working with Disjoint Sources
WPF provides a few interesting ways to combine multiple sources of data. The key to 
these approaches is the following classes:

. CompositeCollection

. MultiBinding

. PriorityBinding

Advanced Topics 409
1

3

  From the Library of Wow! eBook



ptg

CompositeCollection

The CompositeCollection class provides an easy way to expose separate collections 
and/or arbitrary items as a single collection. This can be useful when you want to bind to 
a collection of items that come from more than one source. The following XAML defines 
a CompositeCollection with all the contents of the photos collection plus two more 
items:

<CompositeCollection> 

<CollectionContainer Collection=”{Binding Source={StaticResource photos}}”/> 

<local:Photo …/> 

<local:Photo …/>

</CompositeCollection>

The photos collection is wrapped in a CollectionContainer object so that its items are 
considered part of the CompositeCollection rather than the collection itself. If the photos 
collection were added directly to the CompositeCollection instead, the 
CompositeCollection would contain only three items!

MultiBinding

MultiBinding enables you to aggregate multiple Bindings together and spit out a single 
target value. It requires that you use a value converter because otherwise WPF would have 
no idea how to combine the multiple input values. The following XAML shows how 
MultiBinding could be used to calculate a ProgressBar’s value by adding together the 
progress values of three independent data-bound sources, assuming the presence of a 
value converter and three source objects as resources:

<ProgressBar …> 

<ProgressBar.Value>

<MultiBinding Converter=”{StaticResource converter}”> 

<Binding Source=”{StaticResource worker1}”/> 

<Binding Source=”{StaticResource worker2}”/> 

<Binding Source=”{StaticResource worker3}”/>

</MultiBinding>

</ProgressBar.Value> 

</ProgressBar>

Value converters used in MultiBinding are a little different than ones used in Binding, 
however. They must implement the IMultiValueConverter interface, whose methods 
accept/return an array of values rather than just one. Therefore, the following is an appro-
priate definition of the value converter used in the previous XAML snippet:

public class ProgressConverter : IMultiValueConverter 

{

public object Convert(object[] values, Type targetType, object parameter,

CultureInfo culture) 

{

int totalProgress = 0;

CHAPTER 13 Data Binding410

  From the Library of Wow! eBook



ptg

// Require that each input value is an instance of a Worker 

foreach (Worker worker in values)

totalProgress += worker.Progress;

return totalProgress; 

} 

public object[] ConvertBack(object value, Type[] targetTypes, object parameter,

CultureInfo culture) 

{

return DependencyProperty.UnsetValue; 

}

}

PriorityBinding

PriorityBinding looks a lot like 
MultiBinding, in that it encapsulates 
multiple Binding objects. But rather 
than aggregating Bindings together, the idea of PriorityBinding is to let multiple 
Bindings compete for setting the target value!

If you are data binding to a slow data source (and you can’t make it faster), you might 
want to allow faster sources to provide a “rough” version of the data while you wait. This 
technique can be seen in lots of software. For example, if you open a large document in 
Microsoft Word, you might first see something like “77,257 characters (an approximate 
value)” display in the lower-left corner for a few seconds, then something like “Page: 1 of 
3,” which is still not the correct page count, then finally the expected “Page: 1 of 46.” For 
the Photo Gallery application, this technique could be used to quickly bind to a collec-
tion of thumbnail images and then replace that with a collection of full-fidelity images 
after that slower bind completes.

The following XAML demonstrates a typical declaration of PriorityBinding:

<PriorityBinding> 

<Binding Source=”HighPri” Path=”SlowSpeed” IsAsync=”True”/> 

<Binding Source=”MediumPri” Path=”MediumSpeed” IsAsync=”True”/> 

<Binding Source=”LowPri” Path=”FastSpeed”/>

</PriorityBinding>

The Bindings are processed from begin-
ning to end, so the first Binding listed 
has the highest priority (and, therefore, 
should be the slowest one to complete), 
and the last Binding listed has the 
lowest priority (and should be the quick-
est one). As different values get returned, 
higher-priority values overwrite the 
lower-priority ones.

Advanced Topics 411
1

3

StringFormat can be used with 
MultiBinding. When it is used this way, 
{0} represents the first Binding, {1} repre-
sents the second Binding, and so on.

T I P

When using PriorityBinding, all but the 
last Bindings should set IsAsync to true 
so they are processed in the background. 
Without this setting, the highest-priority 
Binding would execute synchronously (prob-
ably freezing the user interface), and after it 
returned, there would be no reason to 
consult the lower-priority Bindings!

T I P

  From the Library of Wow! eBook



ptg

Putting It All Together: The Pure-XAML Twitter 
Client
The canonical example of the power of WPF data binding is a fully functioning RSS reader 
written without any procedural code. Listing 13.4 provides my version of such an imple-
mentation, pointed at my Twitter RSS feed. The result is a decent “Twitter client,” shown 
in Figure 13.14. I pasted the XAML into the wonderful Kaxaml tool (http://kaxaml.com), 
hence the Kaxaml icon inherited by the Window.

LISTING 13.4 The Entire Implementation of an RSS Reader/Twitter Client

<Window xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation” 

xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml” Title=”RSS Reader”>

<Window.Resources> 

<XmlDataProvider x:Key=”Feed”

Source=”http://twitter.com/statuses/user_timeline/24326956.rss”/> 

</Window.Resources>

<DockPanel 

DataContext=”{Binding Source={StaticResource Feed}, XPath=/rss/channel/item}”> 

<TextBox DockPanel.Dock=”Top” Text=”{Binding Source={StaticResource Feed},

BindsDirectlyToSource=true, Path=Source,

UpdateSourceTrigger=PropertyChanged}”/>

<Label DockPanel.Dock=”Top” Content=”{Binding XPath=/rss/channel/title}”

FontSize=”14” FontWeight=”Bold”/> 

<Label DockPanel.Dock=”Top”

Content=”{Binding XPath=/rss/channel/description}”/> 

<ListBox DockPanel.Dock=”Left” DisplayMemberPath=”title”

ItemsSource=”{Binding}” IsSynchronizedWithCurrentItem=”True” Width=”300”/> 

<Frame Source=”{Binding XPath=link}”/>

</DockPanel> 

</Window>

As expected, XmlDataProvider is used to retrieve the RSS feed.

Here are some of the interesting points about this application:

. The default TwoWay binding of TextBox.Text is leveraged to initially fill the TextBox 
with the XmlDataProvider’s Source and also enable the user to change the Source at 
runtime.

. To enable the XmlDataProvider’s Source to be bound, the TextBox’s Binding has 
BindsDirectlyToSource set to true. Otherwise, its Path would incorrectly refer to 
the RSS feed.

CHAPTER 13 Data Binding412

  From the Library of Wow! eBook

http://kaxaml.com


ptg

FIGURE 13.14 The all-XAML RSS reader/Twitter client implemented in Listing 13.4.

. The TextBox’s Binding uses an UpdateSourceTrigger of PropertyChanged, so an 
attempt to refresh the data is made with each keystroke. The best solution would 
probably be to use an UpdateSourceTrigger of Explicit instead and provide a Go 
button that can be used to manually refresh the source. But that would require a 
line of procedural code, which goes against the point of this example!

. The value of ListBox’s DisplayMemberPath is an XPath expression to extract the 
title element for each item in the XML source.

. The ListBox and Frame provide a master/detail view simply by sharing the same 
data source.

. Rather than use Frame, the raw content of each RSS item could have been displayed 
in something like a TextBlock. But that would give you raw HTML that would be 
difficult to read. And there’s no declarative way to render HTML properly other than 
using a Frame or WebBrowser with a persisted file (which the feed’s link element 
conveniently provides).

. As different RSS items (or whole RSS feeds) are selected, Frame’s navigation buttons 
keep track of your actions automatically.

Putting It All Together: The Pure-XAML Twitter Client 413
1

3

  From the Library of Wow! eBook



ptg

Summary
Data binding is a very powerful feature, although its use is also completely optional. After 
all, it’s not hard to write code that ties two objects together. But writing such code can be 
tedious, error prone, and a maintenance hassle, especially when managing multiple data 
sources that might need to be synchronized as items are added, removed, and changed. 
Such code also tends to tightly couple business logic with the user interface, which makes 
the software more brittle.

XmlDataProvider could be considered a “killer app” for data binding, as it makes retriev-
ing, parsing, navigating, and displaying remote XML data incredibly easy. The ability to 
get asynchronous behavior on any Binding or data provider simply by setting a Boolean 
property also makes data binding a compelling alternative to performing such work 
manually.

But there’s more to data binding than cutting down on the amount of code you need to 
write. Much of the appeal of WPF’s data binding comes from the fact that the majority of 
it can be done declaratively. This has some important implications. Design tools such as 
Expression Blend can (and do) surface data-binding functionality, so nonprogrammers can 
add sophisticated functionality to any user interface. With this support, Blend also 
enables designers to specify easily-removable dummy data for testing data-bound user 
interfaces. Data binding also enables loose XAML pages, which can’t use procedural code, 
to take advantage of functionality that makes them feel less like documents and more like 
miniature applications.

CHAPTER 13 Data Binding414

  From the Library of Wow! eBook



ptg

CHAPTER 14

Styles, Templates, Skins,
and Themes

Arguably the most celebrated feature in WPF is the ability 
to give any user interface element a radically different look 
without having to give up all of the built-in functionality 
that it provides. Even with Cascading Style Sheets (CSS), 
HTML lacks this much power, which is the reason most 
websites use images to represent buttons rather than “real 
buttons.” Of course, it’s pretty easy to simulate a button’s 
behavior with an image in HTML, but what if you want to 
give a completely different look to a SELECT element 
(HTML’s version of ComboBox)? It’s a lot of work if you want 
to do more than change simple properties (such as its fore-
ground and background colors).

This chapter explains the four main components of WPF’s 
restyling support:

. Styles—A simple mechanism for separating property 
values from user interface elements (similar to the 
relationship between CSS and HTML). Styles are also 
the foundation for applying the other mechanisms in 
this chapter.

. Templates—Powerful objects that most people are 
really referring to when they talk about “restyling” in 
WPF.

. Skins—Application-specific collections of styles 
and/or templates, typically with the ability to be 
replaced dynamically.

. Themes—Visual characteristics of the host operating 
system, with potential customizations by the end user.

As you’ll see, an important enabler of WPF’s restyling 
support is the semantics of resources.

IN THIS CHAPTER

. Styles

. Templates

. Skins

. Themes

  From the Library of Wow! eBook



ptg

CHAPTER 14 Styles, Templates, Skins, and Themes416

Why does WPF allow people to completely customize the look of standard 
controls? The inconsistencies from one application to another are going to

confuse users!

This “celebrated” feature of WPF also makes many people nervous. Is this power and flexibil-
ity going to usher in a new age of beautiful software, or is it going to be abused in ways that 
annoy and frustrate users (such as the BLINK element in HTML)?

The answer is certainly “both.” I, too, was skeptical about WPF back in 2003, when most 
demos consisted of bouncing buttons and spinning rainbow-filled list boxes. But it’s good to 
know that you could create completely insane user interfaces, even if you shouldn’t. WPF’s 
philosophy is to make an application’s experience limited only by the skill of its designers 
rather than by the underlying platform. It’s hard to disagree with that stance.

If you can’t hire graphic designers, fortunately the default visual appearance of a WPF appli-
cation looks consistent with the expectations of Windows users. The same goes for 
Silverlight, whose controls can easily adapt to different target environments, such as 
Windows phones. But if you can hire designers, WPF makes it easy for them to have an 
impact across the entire application (not just on icons or a splash screen).

As for inconsistencies between applications, the same could be said about web applications, 
which tend to infuse their own branding into the entire user experience much more than 
traditional Windows applications. Despite the lack of consistency (or even because of lack of 
consistency), websites with good user experiences can do very well. Also, people try to 
create non-standard-looking Windows applications anyway. And with lack of platform support, 
they have to jump through many hoops to get the desired effect, often producing buggy 
behavior or weird side effects.

?
FA Q

Styles
A style, represented by the System.Windows.Style class, is a 
pretty simple entity. Its main function is to group together 
property values that could otherwise be set individually. 
The intent is to then share this group of values among 
multiple elements.

Take, for example, the three customized Buttons in Figure
14.1. This look is achieved by setting seven properties. Without a Style, you would need 
to duplicate these identical assignments on all three Buttons, as shown in Listing 14.1.

LISTING 14.1 Copy/Paste Galore!

<StackPanel Orientation=”Horizontal”> 

<Button FontSize=”22” Background=”Purple” Foreground=”White”

Height=”50” Width=”50” RenderTransformOrigin=”.5,.5”> 

<Button.RenderTransform>

<RotateTransform Angle=”10”/> 

</Button.RenderTransform>

1

FIGURE 14.1 Three
Buttons whose look has 
been customized.

  From the Library of Wow! eBook



ptg

</Button> 

<Button FontSize=”22” Background=”Purple” Foreground=”White”

Height=”50” Width=”50” RenderTransformOrigin=”.5,.5”> 

<Button.RenderTransform>

<RotateTransform Angle=”10”/> 

</Button.RenderTransform>

2 

</Button> 

<Button FontSize=”22” Background=”Purple” Foreground=”White”

Height=”50” Width=”50” RenderTransformOrigin=”.5,.5”> 

<Button.RenderTransform>

<RotateTransform Angle=”10”/> 

</Button.RenderTransform>

3 

</Button> 

</StackPanel>,

But with a Style, you can add a level of indirection—setting the properties in one place 
and pointing each Button to this new element, as shown in Listing 14.2. Style uses a 
collection of Setters to set the target properties. Creating a Setter is just a matter of spec-
ifying the name of a dependency property (qualified with its class name) and a desired 
value for it.

LISTING 14.2 Consolidating Property Assignments Inside a Style,

<StackPanel Orientation=”Horizontal”> 

<StackPanel.Resources>

<Style x:Key=”buttonStyle”> 

<Setter Property=”Button.FontSize” Value=”22”/> 

<Setter Property=”Button.Background” Value=”Purple”/> 

<Setter Property=”Button.Foreground” Value=”White”/> 

<Setter Property=”Button.Height” Value=”50”/> 

<Setter Property=”Button.Width” Value=”50”/> 

<Setter Property=”Button.RenderTransformOrigin” Value=”.5,.5”/> 

<Setter Property=”Button.RenderTransform”> 

<Setter.Value>

<RotateTransform Angle=”10”/> 

</Setter.Value> 

</Setter>

</Style>

</StackPanel.Resources> 

<Button Style=”{StaticResource buttonStyle}”>1</Button> 

<Button Style=”{StaticResource buttonStyle}”>2</Button> 

<Button Style=”{StaticResource buttonStyle}”>3</Button>

</StackPanel>,

Styles 417

LISTING 14.1 Continued

1
4

Style
definition

Applying
the Style

  From the Library of Wow! eBook



ptg

Using a Style is nice for several reasons, such as having only one spot to change if you 
later have second thoughts about rotating the Buttons or if you want to change their 
Background. Defining a Style as a resource also gives you all the flexibility that the 
resource mechanism provides. For example, you could define one version of buttonStyle 
at the application level but override it with a different Style (still with a key of 
buttonStyle) in an individual Window’s Resources collection.

Note that despite its name, there’s nothing inherently visual about a Style. But it’s typi-
cally used for setting properties that affect visuals. Indeed, Style only enables the setting 
of dependency properties, which tend to be visual in nature.

CHAPTER 14 Styles, Templates, Skins, and Themes418

Styles can even inherit from one another! The following Style adds bold text to the 
buttonStyle defined in Listing 14.2 by using the BasedOn property,: 

<Style x:Key=”buttonStyleWithBold” BasedOn=”{StaticResource buttonStyle}”>

<!-- The seven properties set by buttonStyle are inherited --> 

<Setter Property=”Button.FontWeight” Value=”Bold”/>

</Style>

T I P

Sharing Styles
Although you could set an element’s Style property directly in its XAML definition 
(using property element syntax), the whole point of using a Style is to share it among 
multiple elements, as done in Listing 14.2. Style supports a few different mechanisms 
that enable you to control exactly how that sharing occurs.

Sharing Among Heterogeneous Elements
Although the Style in Listing 14.2 is shared among three Buttons, with some tweaks it 
can also be shared among heterogeneous elements. Listing 14.3 accomplishes this by 
changing each Button.XXX referenced inside the Style to Control.XXX and then applying 
the new style to many elements. The result is shown in Figure 14.2.

FIGURE 14.2 Heterogeneous elements given the same Style.

LISTING 14.3 Sharing a Single Style with Heterogeneous Elements

<StackPanel Orientation=”Horizontal”> 

<StackPanel.Resources>

<Style x:Key=”controlStyle”> 

<Setter Property=”Control.FontSize” Value=”22”/>

  From the Library of Wow! eBook



ptg

<Setter Property=”Control.Background” Value=”Purple”/> 

<Setter Property=”Control.Foreground” Value=”White”/> 

<Setter Property=”Control.Height” Value=”50”/> 

<Setter Property=”Control.Width” Value=”50”/> 

<Setter Property=”Control.RenderTransformOrigin” Value=”.5,.5”/> 

<Setter Property=”Control.RenderTransform”> 

<Setter.Value>

<RotateTransform Angle=”10”/> 

</Setter.Value> 

</Setter>

</Style> 

</StackPanel.Resources>

<Button Style=”{StaticResource controlStyle}”>1</Button> 

<ComboBox Style=”{StaticResource controlStyle}”> 

<ComboBox.Items>2</ComboBox.Items> 

</ComboBox> 

<Expander Style=”{StaticResource controlStyle}” Content=”3”/> 

<TabControl Style=”{StaticResource controlStyle}”> 

<TabControl.Items>4</TabControl.Items> 

</TabControl> 

<ToolBar Style=”{StaticResource controlStyle}”> 

<ToolBar.Items>5</ToolBar.Items> 

</ToolBar> 

<InkCanvas Style=”{StaticResource controlStyle}”/> 

<TextBox Style=”{StaticResource controlStyle}” Text=”7”/>

</StackPanel>

You don’t need to worry about a Style being applied to an element that doesn’t have all 
the listed dependency properties; the properties that exist are set and the ones that don’t 
exist are ignored. For example, InkCanvas doesn’t have Foreground or FontSize proper-
ties. Yet when the Style is applied to it in Listing 14.3, all the relevant properties 
(Background, Height, Width, and so on) are correctly applied. Similarly, adding the follow-
ing Setter to the Style in Listing 14.3 affects the TextBox but leaves all the other 
elements looking as they do in Figure 14.2:

<Setter Property=”TextBox.TextAlignment” Value=”Right”/>

Styles 419

LISTING 14.3 Continued

1
4

Strange (but True) Setter Behavior

An astute reader might wonder how any of the Setters in Listing 14.3 are able to affect the 
InkCanvas, given that they are all properties of Control, and InkCanvas doesn’t even 
derive from Control! This happens because of one of the more “magical” aspects of depen-
dency properties (which reinforces how different they are from normal .NET properties).

D I G G I N G  D E E P E R

  From the Library of Wow! eBook



ptg

Restricting the Use of Styles
If you want to enforce that a Style can be applied only to a particular type, you can set 
its TargetType property accordingly. For example, the following Style can be applied 
only to a Button (or a subclass of Button):

<Style x:Key=”buttonStyle” TargetType=”{x:Type Button}”> 

<Setter Property=”Button.FontSize” Value=”22”/> 

<Setter Property=”Button.Background” Value=”Purple”/>

CHAPTER 14 Styles, Templates, Skins, and Themes420

Continued

Although InkCanvas registers several of its own dependency properties (with
DependencyProperty.Register), it also has several—such as Background—whose “owner-
ship” is shared with other types (so it calls DependencyProperty.AddOwner instead). When 
multiple types own the same dependency property, it doesn’t matter which type name you 
use in Setter.Property, as long as it’s one of the owners. Unfortunately, the ownership of 
dependency properties is an implementation detail that is not well documented.

The implications of this can produce even more baffling results. For example, the Setters in 
Listing 14.3 didn’t even need to change from Listing 14.2. If they reference Button.XXX 
rather than Control.XXX, the result is identical. Also, if you add a TextBlock to Listing
14.3, you’d see that setting Button.Foreground successfully changes TextBlock’s 
Foreground property but setting Button.Background does not change TextBlock’s 
Background property! That’s because TextBlock and all Controls share an implementation 
of their Foreground dependency property but don’t share a Background implementation. 
(Control shares its Background with types such as Panel and InkCanvas, whereas 
TextBlock shares its completely independent implementation with TextElement, 
FlowDocument, and other types.)

My advice is to avoid all this nonsense and create distinct Styles for distinct types.

Any individual element can override aspects of its Style by directly setting a property to a 
local value. For example, the Button in Listing 14.3 could do the following to retain the rota-
tion, size, and so on from controlStyle yet have a red Background rather than a purple 
one:

<Button Style=”{StaticResource controlStyle}” Background=”Red”>1</Button>

This works because of the order of precedence for dependency property values presented in 
Chapter 3, “WPF Fundamentals.” The local value trumps anything set from a Style.

T I P

To enable sharing of complex property values even within a Style, Style has its own 
Resources property. You can leverage this collection to make your Style self-contained 
rather than create a potentially brittle dependency to resources defined elsewhere.

T I P

  From the Library of Wow! eBook



ptg

<Setter Property=”Button.Foreground” Value=”White”/> 

<Setter Property=”Button.Height” Value=”50”/> 

<Setter Property=”Button.Width” Value=”50”/> 

<Setter Property=”Button.RenderTransformOrigin” Value=”.5,.5”/> 

<Setter Property=”Button.RenderTransform”> 

<Setter.Value>

<RotateTransform Angle=”10”/> 

</Setter.Value> 

</Setter>

</Style>

Any attempt to apply this Style to a non-Button generates a compile-time error. 
Therefore, TargetType=”{x:Type Control}” could be applied to the Style in Listing 14.3, 
and it would still work with all the elements except InkCanvas.

In addition, when you apply a TargetType to a Style, you no longer need to prefix the 
property names inside Setters with the type name. So, the previous XAML snippet could 
be rewritten as follows and have exactly the same meaning:

<Style x:Key=”buttonStyle” TargetType=”{x:Type Button}”> 

<Setter Property=”FontSize” Value=”22”/> 

<Setter Property=”Background” Value=”Purple”/> 

<Setter Property=”Foreground” Value=”White”/> 

<Setter Property=”Height” Value=”50”/> 

<Setter Property=”Width” Value=”50”/> 

<Setter Property=”RenderTransformOrigin” Value=”.5,.5”/> 

<Setter Property=”RenderTransform”> 

<Setter.Value>

<RotateTransform Angle=”10”/> 

</Setter.Value> 

</Setter>

</Style>

Creating Implicit Styles
Applying a TargetType to a Style gives you another feature as well. If you omit its Key, 
the Style gets implicitly applied to all elements of that target type within the same scope. 
This is typically called a typed style as opposed to a named style, which is the only kind of 
Style you’ve seen so far.

The scope of a typed Style is determined by the location of the Style resource. For 
example, it could implicitly apply to all relevant elements in a Window if it’s a member of 
Window.Resources. Or, it could apply to an entire application if you define it as an appli-
cation-level resource, as follows:

<Application …> 

<Application.Resources>

<Style TargetType=”{x:Type Button}”>

Styles 421
1

4

No x:Key!

  From the Library of Wow! eBook



ptg

<Setter Property=”FontSize” Value=”22”/> 

<Setter Property=”Background” Value=”Purple”/> 

<Setter Property=”Foreground” Value=”White”/> 

<Setter Property=”Height” Value=”50”/> 

<Setter Property=”Width” Value=”50”/> 

<Setter Property=”RenderTransformOrigin” Value=”.5,.5”/> 

<Setter Property=”RenderTransform”> 

<Setter.Value>

<RotateTransform Angle=”10”/> 

</Setter.Value> 

</Setter>

</Style> 

</Application.Resources> 

</Application>

In such an application, all Buttons get this style by default. But each Button can still over-
ride its appearance by explicitly setting a different Style or explicitly setting individual 
properties. Any Button can restore its default Style by setting its Style property to null.

CHAPTER 14 Styles, Templates, Skins, and Themes422

TargetType must match exactly for a typed style to be applied!

With a named style, it’s okay for the target element to be a subclass of the TargetType. But 
a typed style typically gets applied only to elements whose type matches exactly. This is 
done to prevent surprises. For example, maybe you’ve created a Style for all 
ToggleButtons in your application but you don’t want it applied to any CheckBoxes. 
(CheckBox is a subclass of ToggleButton.) This behavior is controlled by each element (by 
its selection of a default style key, covered in the “Themes” section at the end of this 
chapter). Therefore, it’s possible to write a custom element that inherits the typed style from 
its base class.

WA R N I N G

The Magic Behind a Keyless Resource

You might be curious about how Style is able to get away with being a member of a 
ResourceDictionary without having a key. It actually does have a key—it’s just set implic-
itly. And the implicit key is simply the value of TargetType (which is a Type rather than a 
string). To explicitly access a keyless Style whose TargetType is Button, you could refer to 
it as follows:

<Button Style=”{StaticResource {x:Type Button}}” …/>

Only one keyless Style can be defined in a ResourceDictionary for each distinct 
TargetType; otherwise, you’ll get an error for attempting to have duplicate keys in the same 
collection.

D I G G I N G  D E E P E R

  From the Library of Wow! eBook



ptg

Triggers
Triggers, first introduced in Chapter 3, have a collection of Setters just like Style (and/or 
collections of TriggerActions). But whereas a Style applies its values unconditionally, a 
trigger performs its work based on one or more conditions.

Styles 423
1

4

Continued

Style behaves this way because it is marked with the following custom attribute: 

[DictionaryKeyProperty(“TargetType”)]

A class can use DictionaryKeyPropertyAttribute to name one if its properties as the 
provider of the default key whenever an instance is placed in a dictionary.

Styles can be applied in multiple places. For example, all FrameworkElements and 
FrameworkContentElements have a FocusVisualStyle property in addition to their Style 
property. A Style assigned to FocusVisualStyle is active only when the element has 
keyboard focus, and it is very handy for overriding the look of the standard dotted rectangle 
that indicates keyboard focus (which can look weird when a control has been drastically 
altered).

Some controls have their own additional places to plug in a Style. For example, 
ItemsControl has an ItemContainerStyle property that applies to each item’s container 
(such as ListBoxItem or ComboBoxItem). Other controls, such as ToolBar, expose 
ResourceKey properties that represent the keys for several Styles used internally, such as 
ButtonStyleKey and TextBoxStyleKey. Although these XXXStyleKey properties are read-
only, you can leverage these keys to define your own Styles that override the default ones. 
Here’s an example:

<Application …> 

<Application.Resources>

<Style x:Key=”{x:Static ToolBar.ButtonStyleKey}” TargetType=”{x:Type Button}”> 

…

</Style> 

</Application.Resources> 

</Application>

One reason ToolBar uses ResourceKey properties instead of Style properties is that 
dependency properties do not support dynamic resource references as their default value. 
ItemsControl can get away with giving ItemContainerStyle a default value of null 
because the default style for its item container is always the same. ToolBar, however, 
requires different default styles, depending on the theme.

T I P

  From the Library of Wow! eBook



ptg

Recall that there are three types of triggers:

. Property triggers—Invoked when the value of a dependency property changes

. Data triggers—Invoked when the value of a plain .NET property changes

. Event triggers—Invoked when a routed event is raised

FrameworkElement, Style, DataTemplate, and ControlTemplate (covered in the next 
section) all have a Triggers collection, but whereas Style and the template classes accept 
all three types, FrameworkElement accepts only event triggers. Fortunately, Style happens 
to be the logical place to put triggers even if you had a choice because of the ease in 
sharing them and their direct tie to the visual aspects of elements.

So, let’s look at a few examples of property triggers and data triggers inside styles. We’ll 
save event triggers for Chapter 17, “Animation.”

Property Triggers
A property trigger (represented by the Trigger class) executes a collection of Setters 
when a specified property has a specified value. And when the property no longer has this 
value, the property trigger “undoes” the Setters.

For example, the following update to buttonStyle makes the rotation happen only when 
the mouse pointer is hovering over the Button and sets the Foreground to Black rather 
than White:

<Style x:Key=”buttonStyle” TargetType=”{x:Type Button}”> 

<Style.Triggers>

<Trigger Property=”IsMouseOver” Value=”True”>

<Setter Property=”RenderTransform”> 

<Setter.Value>

<RotateTransform Angle=”10”/> 

</Setter.Value> 

</Setter> 

<Setter Property=”Foreground” Value=”Black”/>

</Trigger> 

</Style.Triggers>

<Setter Property=”FontSize” Value=”22”/> 

<Setter Property=”Background” Value=”Purple”/> 

<Setter Property=”Foreground” Value=”White”/> 

<Setter Property=”Height” Value=”50”/> 

<Setter Property=”Width” Value=”50”/> 

<Setter Property=”RenderTransformOrigin” Value=”.5,.5”/>

</Style>

Figure 14.3 shows the result of applying this Style to a Button. The trigger sets the 
Foreground to Black so the content is more readable against the light blue background

CHAPTER 14 Styles, Templates, Skins, and Themes424

  From the Library of Wow! eBook



ptg

that Buttons get by default in Windows 7 while 
the mouse is hovering. This “hover background” 
is not baked into Button but rather comes from 
a trigger on Button’s theme style (discussed in 
the “Themes” section at the end of the chapter). 
It can be overridden by explicitly setting the 
Background property inside the trigger we just 
created.

A more complicated example of a property 
trigger is one that works with data-binding validation rules. In the preceding chapter, we 
created a JpgValidationRule class attached to a data-bound TextBox and ensured that the 
user only typed in a valid .jpg filename. To declaratively and visually show the results of 
a failed validation, you can create a property trigger based on the Validation.HasError 
attached property, as follows:

<Style x:Key=”textBoxStyle” TargetType=”{x:Type TextBox}”> 

<Style.Triggers>

<Trigger Property=”Validation.HasError” Value=”True”>

<Setter Property=”Background” Value=”Red”/> 

<Setter Property=”ToolTip”

Value=”{Binding RelativeSource={RelativeSource Self}, 

Path=(Validation.Errors)[0].ErrorContent}”/>

</Trigger>

</Style.Triggers> 

</Style>

In this property trigger, data binding is used to provide an appropriate message inside the 
ToolTip. Notice the handy use of RelativeSource to grab the Validation.Errors 
attached property from whatever element this Style ends up being applied to.

Applying this Style to a TextBox such as the following produces the result shown in 
Figure 14.4 when a validation error is raised:

<TextBox Style=”{StaticResource textBoxStyle}”> 

<TextBox.Text>

<Binding …> 

<Binding.ValidationRules>

<local:JpgValidationRule/> 

</Binding.ValidationRules> 

</Binding>

</TextBox.Text> 

</TextBox>

Styles 425
1

4

FIGURE 14.3 A simple property 
trigger can change Button’s visuals 
while the mouse is hovering.

IsMouseOver=trueIsMouseOver=false

  From the Library of Wow! eBook



ptg

FIGURE 14.4 Declaratively reacting to a validation error.

Listing 14.4 demonstrates another use of property triggers in a style to take advantage of 
ItemsControl’s AlternationIndex property, introduced in Chapter 10, “Items Controls.” 
It also demonstrates the use of ItemsControl’s ItemContainerStyle property to style the 
sometimes-implicit item containers. (Recall that if you add arbitrary objects or elements 
to a ListBox, for example, they get wrapped in ListBoxItem containers.) Figure 14.5 
shows the result.

LISTING 14.4 A Style That Alternates Item Container Colors, Applied to ListBoxItems and 
TreeViewItems

<StackPanel xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation” 

xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml” 

Orientation=”Horizontal”>

<StackPanel.Resources> 

<Style x:Key=”AlternatingRowStyle” TargetType=”{x:Type Control}”>

<Setter Property=”Background” Value=”Green”/> 

<Setter Property=”Foreground” Value=”White”/> 

<Style.Triggers>

<Trigger Property=”ItemsControl.AlternationIndex” Value=”1”> 

<Setter Property=”Background” Value=”White”/> 

<Setter Property=”Foreground” Value=”Black”/>

</Trigger> 

</Style.Triggers>

</Style> 

</StackPanel.Resources> 

<ListBox AlternationCount=”2” Margin=”10” Width=”200”

ItemContainerStyle=”{StaticResource AlternatingRowStyle}”> 

<ListBoxItem>Item 1</ListBoxItem> 

<ListBoxItem>Item 2</ListBoxItem> 

<ListBoxItem>Item 3</ListBoxItem> 

<ListBoxItem>Item 4</ListBoxItem> 

<ListBoxItem>Item 5</ListBoxItem>

</ListBox> 

<TreeView AlternationCount=”2” Margin=”10” Width=”200”

ItemContainerStyle=”{StaticResource AlternatingRowStyle}”> 

<TreeViewItem Header=”Root 1” AlternationCount=”2” 

ItemContainerStyle=”{StaticResource AlternatingRowStyle}”> 

<TreeViewItem Header=”Subitem 1”/>

CHAPTER 14 Styles, Templates, Skins, and Themes426

No validation errors Validation error 

  From the Library of Wow! eBook



ptg

<TreeViewItem Header=”Subitem 2”/> 

<TreeViewItem Header=”Subitem 3”/>

</TreeViewItem> 

<TreeViewItem Header=”Root 2” AlternationCount=”2” 

ItemContainerStyle=”{StaticResource AlternatingRowStyle}”> 

<TreeViewItem Header=”Subitem 1”/> 

<TreeViewItem Header=”Subitem 2”/> 

<TreeViewItem Header=”Subitem 3”/>

</TreeViewItem> 

</TreeView>

</StackPanel>

Styles 427

LISTING 14.4 Continued

1
4

FIGURE 14.5 A ListBox and TreeView whose item containers are given the same alternat-
ing row style.

This style gives items a white foreground on a green background by default, but when its 
AlternationIndex attached property is 1, the triggers change the foreground to black and 
the background to white. Therefore, this style is meant to be applied as an item container 
style to an items control with AlternationCount set to 2 (giving the sequence 0, 1, 0, 1, 
…).

Notice that in order to be used for both ListBoxItems and TreeViewItems, the style gener-
ically applies to Control (the most derived base class common to both) and the attached 
property is referenced as ItemsControl.AlternationIndex instead of something more 
specific (such as ListBox.AlternationIndex). For this to work as shown in Figure 14.5, 
every TreeViewItem with children must also have AlternationCount set to 2 and the 
ItemContainerStyle set to the appropriate style. That’s because TreeViewItem (an items 
control itself) doesn’t inherit those settings from its parent.

Data Triggers
Data triggers are just like property triggers, except that they can be triggered by any .NET 
property rather than just dependency properties. (The Setters inside a data trigger are 
still restricted to setting dependency properties, however.)

  From the Library of Wow! eBook



ptg

To use a data trigger, you add a DataTrigger object to the Triggers collection and specify 
the property/value pair. To support plain .NET properties, you specify the relevant prop-
erty with a Binding rather than a simple property name.

The following TextBox has a Style that triggers the setting of IsEnabled, based on the 
value of its Text property, which is not a dependency property. When Text is the string 
“disabled”, IsEnabled is set to false (which is admittedly an unusual application of a 
data trigger):

<StackPanel Width=”200”> 

<StackPanel.Resources>

<Style TargetType=”{x:Type TextBox}”> 

<Style.Triggers>

<DataTrigger 

Binding=”{Binding RelativeSource={RelativeSource Self}, Path=Text}” 

Value=”disabled”> 

<Setter Property=”IsEnabled” Value=”False”/>

</DataTrigger>

</Style.Triggers> 

<Setter Property=”Background” 

Value=”{Binding RelativeSource={RelativeSource Self}, Path=Text}”/> 

</Style>

</StackPanel.Resources> 

<TextBox Margin=”3”/>

</StackPanel>

The same Binding to the Text property happens to 
be used outside the trigger, which sets the TextBox’s 
Background to whatever the Text value is (thanks to 
the string-to-Brush type converter). If Text isn’t set 
to a valid color name, Background reverts to its 
default color because of the way errors in data 
binding are handled. (The addition of data binding 
to a normal Setter such as this can make it seem 
like it’s part of a trigger when it’s really not.) Figure
14.6 shows this TextBox with a few different Text 
values.

Expressing More Complex Logic with Triggers
The logic expressed with the previous triggers has been in the form “when property=value, 
set the following properties.” But more powerful options exist:

. Multiple triggers can be applied to the same element (to get a logical OR).

. Multiple properties can be evaluated for the same trigger (to get a logical AND).

CHAPTER 14 Styles, Templates, Skins, and Themes428

FIGURE 14.6 The TextBox
Style’s data trigger disables it 
when its text is set to 
“disabled”.

  From the Library of Wow! eBook



ptg

Logical OR Because Style.Triggers can contain multiple triggers, you can create more 
than one with exactly the same Setters to express a logical OR relationship:

<Style.Triggers> 

<Trigger Property=”IsMouseOver” Value=”True”>

<Setter Property=”RenderTransform”> 

<Setter.Value>

<RotateTransform Angle=”10”/> 

</Setter.Value> 

</Setter> 

<Setter Property=”Foreground” Value=”Black”/>

</Trigger> 

<Trigger Property=”IsFocused” Value=”True”>

<Setter Property=”RenderTransform”> 

<Setter.Value>

<RotateTransform Angle=”10”/> 

</Setter.Value> 

</Setter> 

<Setter Property=”Foreground” Value=”Black”/>

</Trigger> 

</Style.Triggers>

This means, “if IsMouseOver is true or if 
IsFocused is true, apply the rotation 
and black foreground.”

Logical AND To express a logical AND 
relationship, you can use a variation of 
Trigger called MultiTrigger or a varia-
tion of DataTrigger called 
MultiDataTrigger. MultiTrigger and 
MultiDataTrigger have a collection of Conditions that contain the information you 
would normally put directly inside a Trigger or DataTrigger. Therefore, you can use 
MultiTrigger as follows:

<Style.Triggers> 

<MultiTrigger> 

<MultiTrigger.Conditions>

<Condition Property=”IsMouseOver” Value=”True”/> 

<Condition Property=”IsFocused” Value=”True”/>

</MultiTrigger.Conditions>

<Setter Property=”RenderTransform”> 

<Setter.Value>

<RotateTransform Angle=”10”/> 

</Setter.Value> 

</Setter>

Styles 429
1

4

Conflicting Triggers

If multiple triggers that have conflicting 
Setters are active simultaneously, the last 
one wins. The same is true of conflicting 
Setters inside a single trigger.

D I G G I N G  D E E P E R

  From the Library of Wow! eBook



ptg

<Setter Property=”Foreground” Value=”Black”/> 

</MultiTrigger>

</Style.Triggers>

This means, “if IsMouseOver is true and if IsFocused is true, apply the rotation and black 
foreground.” MultiDataTrigger works the same way as MultiTrigger but with support for 
plain .NET properties.

CHAPTER 14 Styles, Templates, Skins, and Themes430

If you want to add even more complex event-driven behavior to a Style, you can make use 
of an EventSetter (which shares a common base class with Setter) to attach an event 
handler to any element that makes use of the Style. EventSetters can be added to a 
Style just like Setters: 

<Style x:Key=”buttonStyle” TargetType=”{x:Type Button}”>

<Setter Property=”FontSize” Value=”22”/> 

<EventSetter Event=”MouseEnter” Handler=”Button_MouseEnter”/>

</Style>

Although this requires procedural code to handle the event, it is, nevertheless, a handy way 
to share a common handler among many elements without resorting to copying and pasting.

T I P

Templates
Controls have many properties you can use to customize their look: Button has config-
urable Background and Foreground Brushes (which can even be fancy gradients), 
TabControl’s tabs can be relocated by setting the TabStripPlacement property, and so on. 
But you can do only so much with such properties.

A template, on the other hand, allows you to completely replace an element’s visual tree 
with anything you can dream up, while keeping all of its functionality intact. And 
templates (like many other things in WPF) aren’t just some add-on mechanism for third 
parties; the default visuals for every Control in WPF are defined in templates (and 
customized for each Windows theme). The source code for every control is completely 
separated from its default visual tree representations (or “visual source code”).

Templates and the desire to separate visuals from logic are also the reasons that WPF’s 
controls don’t expose more simple properties for tweaking their look. For example, it 
would be nice to change the color of the Expander’s arrow back in Figure 14.2, as the gray 
color doesn’t show up nicely against the purple background. This relatively simple change 
can be accomplished only by defining a new template for Expander, however. Expander 
has no ArrowBrush or ArrowColor property because an Expander with a custom template 
might not even have an arrow!

There are a few different kinds of templates. What has been described so far is the focus 
of this section: control templates. Control templates are represented by the

  From the Library of Wow! eBook



ptg

ControlTemplate class that derives from the abstract FrameworkTemplate class. The other 
FrameworkTemplate-derived classes are covered in previous chapters: DataTemplate 
(described in the preceding chapter) and ItemsPanelTemplate (described in Chapter 10). 
Data templates customize the look of any .NET object, which is especially important for 
non-UIElements, whose default template is simply a TextBlock containing a string 
returned by its ToString method. ItemsPanelTemplates can be assigned to an 
ItemsControl’s ItemsPanel as an easy way to alter its layout.

Slick custom visuals undoubtedly involve using 2D (or 3D!) graphics, animation, or other 
rich media, covered in the next part of the book. This chapter sticks to some simple 2D 
drawings.

Introducing Control Templates
The important piece of the ControlTemplate class is its VisualTree 
content property, which contains the tree of elements that define 
the desired look. After you define a ControlTemplate (undoubtedly 
in XAML), you can attach it to any Control or Page by setting its 
Template property. Listing 14.5 defines a simple yet slick control 
template as a resource and then applies it to a single Button. Figure
14.7 shows the result.

LISTING 14.5 A Simple ControlTemplate Applied to a Button

<Grid> 

<Grid.Resources>

<ControlTemplate x:Key=”buttonTemplate”> 

<Grid>

<Ellipse Width=”100” Height=”100”> 

<Ellipse.Fill>

<LinearGradientBrush StartPoint=”0,0” EndPoint=”0,1”> 

<GradientStop Offset=”0” Color=”Blue”/> 

<GradientStop Offset=”1” Color=”Red”/>

</LinearGradientBrush> 

</Ellipse.Fill> 

</Ellipse> 

<Ellipse Width=”80” Height=”80”> 

<Ellipse.Fill>

<LinearGradientBrush StartPoint=”0,0” EndPoint=”0,1”> 

<GradientStop Offset=”0” Color=”White”/> 

<GradientStop Offset=”1” Color=”Transparent”/>

</LinearGradientBrush> 

</Ellipse.Fill> 

</Ellipse>

</Grid>

Templates 431
1

4

FIGURE 14.7
A fancy round
Button, created 
with a custom 
ControlTemplate.

  From the Library of Wow! eBook



ptg

</ControlTemplate> 

</Grid.Resources>

<Button Template=”{StaticResource buttonTemplate}”>OK</Button> 

</Grid>

To get this look, the template’s visual 
tree uses two circles (created with 
Ellipse elements) placed inside a single-
cell Grid. Despite the custom look, the 
resultant Button still has a Click event, 
an IsDefault property, and all the other 
functionality you’d expect. After all, it is 
still an instance of the Button class!

Getting Interactivity with Triggers
As with Styles, Templates can contain all types of triggers in a Triggers collection. 
Listing 14.6 adds triggers to the preceding ControlTemplate to visually respond to a 
mouse hover and click. A trigger on Button.IsMouseOver makes the Button orange, and a 
trigger on Button.IsPressed shrinks the button with a ScaleTransform to give it a 
“pushed in” look. Figure 14.8 shows the result.

LISTING 14.6 A ControlTemplate Enhanced with Triggers

<Grid> 

<Grid.Resources>

<ControlTemplate x:Key=”buttonTemplate”> 

<Grid>

<Ellipse x:Name=”outerCircle” Width=”100” Height=”100”> 

<Ellipse.Fill>

<LinearGradientBrush StartPoint=”0,0” EndPoint=”0,1”> 

<GradientStop Offset=”0” Color=”Blue”/> 

<GradientStop Offset=”1” Color=”Red”/>

</LinearGradientBrush> 

</Ellipse.Fill> 

</Ellipse> 

<Ellipse Width=”80” Height=”80”> 

<Ellipse.Fill>

<LinearGradientBrush StartPoint=”0,0” EndPoint=”0,1”> 

<GradientStop Offset=”0” Color=”White”/> 

<GradientStop Offset=”1” Color=”Transparent”/>

</LinearGradientBrush> 

</Ellipse.Fill> 

</Ellipse>

</Grid>

CHAPTER 14 Styles, Templates, Skins, and Themes432

LISTING 14.5 Continued

In Listing 14.5, the Button is considered 
the templated parent of the elements in the 
control template’s visual tree. 
FrameworkElement and 
FrameworkContentElement both have a 
TemplatedParent property that represents 
this relationship.

T I P

  From the Library of Wow! eBook



ptg

<ControlTemplate.Triggers> 

<Trigger Property=”Button.IsMouseOver” Value=”True”>

<Setter TargetName=”outerCircle” Property=”Fill” Value=”Orange”/> 

</Trigger> 

<Trigger Property=”Button.IsPressed” Value=”True”>

<Setter Property=”RenderTransform”> 

<Setter.Value>

<ScaleTransform ScaleX=”.9” ScaleY=”.9”/> 

</Setter.Value> 

</Setter> 

<Setter Property=”RenderTransformOrigin” Value=”.5,.5”/>

</Trigger> 

</ControlTemplate.Triggers> 

</ControlTemplate>

</Grid.Resources> 

<Button Template=”{StaticResource buttonTemplate}”>OK</Button>

</Grid>

Templates 433

LISTING 14.6 Continued

1
4

IsMouseOver=True IsPressed=True 
(and IsMouseOver=True)

FIGURE 14.8 The hover and pushed-in effects for the ControlTemplate in Listing 14.6.

Notice that the larger circle in the template’s visual tree is given the name outerCircle. 
This is done so it can be referenced by a 
trigger. The first trigger uses Setter’s 
TargetName property (which makes sense 
only inside a template) to make its 
setting of Fill to Orange apply to only 
the outerCircle element. Omitting the 
TargetName would cause an error in this 
case because the trigger would apply to 
the entire Button, which doesn’t have a 
Fill property. The capability to target 
subelements of a template with triggers 
is essential for sophisticated templates.

Analogous to Setter’s TargetName prop-
erty, Trigger (as well as EventTrigger and 
Condition) has a SourceName property that 
enables you to react to a change on a 
specific subelement of a template rather 
than the entire template. For example, you 
could have triggers for IsMouseOver on indi-
vidual subelements to get a richly 
customized hover effect.

T I P

  From the Library of Wow! eBook



ptg

The second trigger doesn’t need to target 
a subelement, however. The 
ScaleTransform (applied as a 
RenderTransform) applies to the entire 
Button, as does the setting of 
RenderTransformOrigin to center the 
scaling. It’s hard to convey in Figure
14.8, but a slight centered shrinkage 
(10% in this case) is a very effective 
visual effect for a Button press.

Restricting the Target Type
As with Style, ControlTemplate has a 
TargetType property that can restrict 
where the template can be applied. It 
also enables you to remove the class 
name qualifications on any property references inside a template (such as the values of 
Trigger.Property and Setter.Property). Therefore, the template from Listing 14.6 could 
be rewritten as follows:

<ControlTemplate x:Key=”buttonTemplate” TargetType=”{x:Type Button}”> 

<Grid>

… 

</Grid>

<ControlTemplate.Triggers> 

<Trigger Property=”IsMouseOver” Value=”True”>

<Setter TargetName=”outerCircle” Property=”Fill” Value=”Orange”/> 

</Trigger> 

<Trigger Property=”IsPressed” Value=”True”>

<Setter Property=”RenderTransform”> 

<Setter.Value>

<ScaleTransform ScaleX=”.9” ScaleY=”.9”/> 

</Setter.Value> 

</Setter> 

<Setter Property=”RenderTransformOrigin” Value=”.5,.5”/>

</Trigger> 

</ControlTemplate.Triggers> 

</ControlTemplate>

Note that the Setters in this example already had unqualified Property values in previ-
ous listings. That’s because the properties are either qualified by the use of TargetName or 
are common to all Controls. (Without an explicit TargetType, the target type is implicitly 
Control.)

CHAPTER 14 Styles, Templates, Skins, and Themes434

Named Elements in Templates

Outside a template, naming an element with 
x:Name generates a field for programmatic 
access. This is not the case when using 
x:Name inside a template, however. This is 
because a template can be applied to multi-
ple elements in the same scope. The main 
purpose of naming elements in a template 
is for referencing them from triggers (typi-
cally defined in XAML). But if you want 
programmatic access to a named element 
inside a template, you can use the 
template’s FindName method after the 
template has been applied to a target.

D I G G I N G  D E E P E R

  From the Library of Wow! eBook



ptg

Unlike with a Style, the use of TargetType does not enable you to remove the template’s 
x:Key (when used in a dictionary). There is no such thing as a default control template; 
you have to set the template inside a typed Style to get such behavior.

Respecting the Templated Parent’s Properties
There’s a bit of a problem with the templates we’ve created so far. Any Buttons they’re 
applied to look exactly the same, no matter what the values of its properties are. For 
example, in the last two listings, the Button has “OK” as content, but it never gets 
displayed. If you’re creating a control template that’s meant to be broadly reusable, you 
need to do some work to respect various properties of the target Control.

Respecting ContentControl’s Content Property
The key to inserting property values from the target element inside a control template is 
data binding. Fortunately, a class called TemplateBindingExtension makes this easy.

TemplateBindingExtension is a markup extension that is similar to Binding, but simpler, 
more lightweight, and customized for templates. It’s often referred to as simply 
TemplateBinding because of the tendency to omit the Extension suffix when used in 
XAML.

The data source for TemplateBinding is always the target element, and the path is any of 
its dependency properties, selected by setting TemplateBinding’s Property property. 
Therefore, you could add to the control template in Listing 14.6 a TextBlock that 
contains the target Button’s Content, as follows:

<TextBlock Text=”{TemplateBinding Property=Button.Content}”/>

Or, because TemplateBinding has a constructor that accepts a dependency property, you 
could simply write this:

<TextBlock Text=”{TemplateBinding Button.Content}”/>

If TargetType is used to restrict the template’s use for Buttons (or other ContentControls), 
you could simplify this even further, like so:

<TextBlock Text=”{TemplateBinding Content}”/>

Of course, a Button can contain nontext Content, so using a TextBlock to display it 
creates an artificial limitation. To ensure that all types of Content get displayed properly 
in the template, you can use a generic ContentControl instead of a TextBlock. Listing
14.7 does just that. The ContentControl is given a Margin and wrapped in a Viewbox so 
it’s displayed at a reasonable size relative to the rest of the Button.

Templates 435
1

4

  From the Library of Wow! eBook



ptg

LISTING 14.7 An Updated ControlTemplate That Displays the Target Button’s Content

<ControlTemplate x:Key=”buttonTemplate” TargetType=”{x:Type Button}”> 

<Grid>

<Ellipse x:Name=”outerCircle” Width=”100” Height=”100”> 

<Ellipse.Fill>

<LinearGradientBrush StartPoint=”0,0” EndPoint=”0,1”> 

<GradientStop Offset=”0” Color=”Blue”/> 

<GradientStop Offset=”1” Color=”Red”/>

</LinearGradientBrush> 

</Ellipse.Fill> 

</Ellipse> 

<Ellipse Width=”80” Height=”80”> 

<Ellipse.Fill>

<LinearGradientBrush StartPoint=”0,0” EndPoint=”0,1”> 

<GradientStop Offset=”0” Color=”White”/> 

<GradientStop Offset=”1” Color=”Transparent”/>

</LinearGradientBrush> 

</Ellipse.Fill> 

</Ellipse> 

<Viewbox>

<ContentControl Margin=”20” Content=”{TemplateBinding Content}”/> 

</Viewbox>

</Grid> 

<ControlTemplate.Triggers>

<Trigger Property=”IsMouseOver” Value=”True”> 

<Setter TargetName=”outerCircle” Property=”Fill” Value=”Orange”/>

</Trigger> 

<Trigger Property=”IsPressed” Value=”True”>

<Setter Property=”RenderTransform”> 

<Setter.Value>

<ScaleTransform ScaleX=”.9” ScaleY=”.9”/> 

</Setter.Value> 

</Setter> 

<Setter Property=”RenderTransformOrigin” Value=”.5,.5”/>

</Trigger> 

</ControlTemplate.Triggers> 

</ControlTemplate>

Figure 14.9 shows what two Buttons look like with this new control template applied. 
One Button has simple “OK” text content, and the other has an Image. In both cases, the 
content is reflected in the new visuals as expected.

CHAPTER 14 Styles, Templates, Skins, and Themes436

  From the Library of Wow! eBook



ptg

FIGURE 14.9 Two different Buttons with the control template defined in Listing 14.7.

Templates 437
1

4

Rather than use a ContentControl inside a control template, you should use the lighter-
weight ContentPresenter element. ContentPresenter displays content just like 
ContentControl, but it was designed specifically for use in control templates. 
ContentPresenter is a primitive building block, whereas ContentControl is a full-blown 
control with its own control template (that contains a ContentPresenter)!

In Listing 14.7, you can replace this:

<ContentControl Margin=”20” Content=”{TemplateBinding Content}”/>

with this:

<ContentPresenter Margin=”20” Content=”{TemplateBinding Content}”/>

ContentPresenter even has a built-in shortcut; if you omit setting its Content to 
{TemplateBinding Content}, it implicitly assumes that’s what you want. So, you can 
replace the preceding line of code with the following:

<ContentPresenter Margin=”20”/>

This works only when the control template is given an explicit TargetType of 
ContentControl or a ContentControl-derived class (such as Button).

The remaining templates in this chapter use ContentPresenter instead of 
ContentControl, as that’s what real-world templates use.

T I P

TemplateBinding works only inside a template’s visual tree and doesn’t work 
with properties on Freezables!

TemplateBinding doesn’t work outside a template or outside its VisualTree property, so 
you can’t even use TemplateBinding inside a template’s trigger. Furthermore, 
TemplateBinding doesn’t work when applied to a Freezable (for mostly artificial reasons). 
For example, attempting to bind the Color property of any explicit Brush fails.

WA R N I N G

  From the Library of Wow! eBook



ptg

Respecting Other Properties
No matter what type of control you’re creating a control template for, there are undoubt-
edly other properties on the target control that should be honored if you want the 
template to be reusable: Height and Width, perhaps Background, Padding, and so on. 
Some properties (such as Foreground, FontSize, FontWeight, and so on) might automati-
cally inherit their desired values thanks to property value inheritance in the visual tree, 
but other properties need explicit attention.

Listing 14.8 is an update to Listing 14.7 that respects the Background, Padding, and 
Content properties of the target Button. It also implicitly respects the size of the target 
element by removing the explicit Height and Width settings and letting the layout system 
do its job. Listing 14.8 uses a ContentPresenter rather than a ContentControl, although 
both produce the same result.

LISTING 14.8 Updates to the ControlTemplate That Make It More Reusable

<ControlTemplate x:Key=”buttonTemplate” TargetType=”{x:Type Button}”> 

<Grid>

<Ellipse x:Name=”outerCircle”> 

<Ellipse.Fill>

<LinearGradientBrush StartPoint=”0,0” EndPoint=”0,1”> 

<GradientStop Offset=”0”

Color=”{Binding RelativeSource={RelativeSource TemplatedParent}, 

Path=Background.Color}”/> 

<GradientStop Offset=”1” Color=”Red”/>

</LinearGradientBrush> 

</Ellipse.Fill> 

</Ellipse> 

<Ellipse RenderTransformOrigin=”.5,.5”> 

<Ellipse.RenderTransform>

<ScaleTransform ScaleX=”.8” ScaleY=”.8”/> 

</Ellipse.RenderTransform> 

<Ellipse.Fill>

<LinearGradientBrush StartPoint=”0,0” EndPoint=”0,1”> 

<GradientStop Offset=”0” Color=”White”/> 

<GradientStop Offset=”1” Color=”Transparent”/>

</LinearGradientBrush> 

</Ellipse.Fill>

CHAPTER 14 Styles, Templates, Skins, and Themes438

Continued

However, TemplateBinding is just a less-powerful but convenient shortcut for using a 
regular Binding. You can get the same effect by using a regular Binding with a 
RelativeSource equal to {RelativeSource TemplatedParent} and a Path equal to the 
dependency property whose value you want to retrieve. Such a Binding works in the cases 
mentioned where TemplateBinding does not.

  From the Library of Wow! eBook



ptg

</Ellipse> 

<Viewbox>

<ContentPresenter Margin=”{TemplateBinding Padding}”/> 

</Viewbox>

</Grid> 

<ControlTemplate.Triggers>

<Trigger Property=”IsMouseOver” Value=”True”> 

<Setter TargetName=”outerCircle” Property=”Fill” Value=”Orange”/>

</Trigger> 

<Trigger Property=”IsPressed” Value=”True”>

<Setter Property=”RenderTransform”> 

<Setter.Value>

<ScaleTransform ScaleX=”.9” ScaleY=”.9”/> 

</Setter.Value> 

</Setter> 

<Setter Property=”RenderTransformOrigin” Value=”.5,.5”/>

</Trigger> 

</ControlTemplate.Triggers> 

</ControlTemplate>

The target Button’s Padding is now used as the ContentPresenter’s Margin. It’s common 
to use the element’s Padding in a template as the Margin of an inner element. After all, 
that’s basically the definition of Padding!

In addition, a few nonintuitive changes have been made to the template’s visual tree to 
accommodate an externally specified size and Background. We could have simply used 
{TemplateBinding Background} as the Fill for outerCircle, giving each Button the flexi-
bility to specify a solid color, a gradient, and so on. But perhaps the “red glow” at the 
bottom is a characteristic that we’d like to keep consistent wherever the template is used. 
In other words, we want to replace only the blue part of the gradient with the externally 
specified Background. However, GradientStop.Color can’t be directly set to 
{TemplateBinding Background} because Color is of type Color, whereas Background is of 
type Brush (and because GradientStop derives from Freezable)! Therefore, the listing uses 
a normal Binding instead, which supports referencing the Color subproperty. (Note that 
this Binding works only when Background is set to a SolidColorBrush because other 
Brushes don’t have a Color property.)

Both Ellipses (or the parent Grid) could have been given an explicit Height and Width 
matching those of the target Button by binding to its ActualHeight and ActualWidth 
properties. Instead, these values are omitted altogether because the root element is implic-
itly given the templated parent’s size anyway! This means that an individual target Button 
has the power to make itself look like an ellipse by specifying different values for Width 
and Height. If we wanted to preserve the perfect circular look, we could wrap the entire 
visual tree in a Viewbox.

Templates 439

LISTING 14.8 Continued

1
4

  From the Library of Wow! eBook



ptg

The final trick used by Listing 14.8 is the ScaleTransform on the inner circle to make it 
80% of the size of the outer circle. In previous listings, this transform is unnecessary 
because both the outer and inner circles have a hard-coded size. But with a dynamic size, 
ScaleTransform enables us to effectively perform a little math on the size. (If we wanted a 
fixed-size difference between the circles, a simple Margin would do the trick.)

Figure 14.10 shows the rendered result for the following Buttons that make use of this 
new control template:

<StackPanel Orientation=”Horizontal”> 

<Button Template=”{StaticResource buttonTemplate}”

Height=”100” Width=”100” FontSize=”80” Background=”Black”

Padding=”20” Margin=”5”>1</Button>

<Button Template=”{StaticResource buttonTemplate}” 

Height=”150” Width=”250” FontSize=”80” Background=”Yellow”

Padding=”20” Margin=”5”>2</Button>

<Button Template=”{StaticResource buttonTemplate}” 

Height=”200” Width=”200” FontSize=”80” Background=”White”

Padding=”20” Margin=”5”>3</Button>

</StackPanel>

CHAPTER 14 Styles, Templates, Skins, and Themes440

FIGURE 14.10 Buttons that tweak the look of their custom template from Listing 14.8.

Each Button in Figure 14.10 has values for Background, Padding, and Content that are 
explicitly used by the control template. Their values for Height and Width are implicitly 
respected by the template, and their FontSize setting is implicitly picked up by the 
template’s ContentPresenter. The size 
of the font isn’t directly reflected in the 
rendered output because the template 
wraps the ContentPresenter inside a 
Viewbox to keep it within the bounds of 
the outer circle. The Margin specified on 
each Button is not used by the template, 
but it still affects the StackPanel layout 
as usual, giving a little bit of space 
between each Button.

TemplateBinding and Value Converters

Just like Binding, TemplateBinding 
supports a value converter. 
TemplateBinding has Converter and 
ConverterParameter properties but, oddly, 
no ConverterCulture property. If you 
require the use of ConverterCulture, you 
can simply use Binding instead.

D I G G I N G  D E E P E R

  From the Library of Wow! eBook



ptg

Hijacking Existing Properties for New Purposes
Sometimes, you might want to parameterize some aspect of a control template, despite 
there being no corresponding property on the target control. For example, the template 
in Listing 14.8 has a hard-coded orange Brush representing the hover state. What can you 
do to allow individual Buttons to customize this Brush? There’s no corresponding prop-
erty already on Button to be set!

One option is to define a custom control, using the techniques described in Chapter 20, 
“User Controls and Custom Controls.” It wouldn’t be too much work to write a new class 
that derives from Button and adds a single HoverBrush property. But that’s a bit heavy-
weight for such a simple task. Another option would be to define several control 
templates that each uses a different hover Brush. But that would be reasonable only if the 
set of desired Brushes were small and known. Yet another option would be to define an 
appropriate attached property somewhere, perhaps on a utility class that already exists.

Instead, what most people resort to is a devious little hack known as hijacking a depen-
dency property. This involves looking at the target control for any dependency properties 
of the desired type to see if you can leverage them in an unintended way. For example, all 
Controls have three properties of type Brush: Background, Foreground, and BorderBrush. 
Because Background and Foreground already play important roles in Listing 14.8, neither 
one would look very good as a hover Brush. (There would also be no way to set the hover 
Brush independently of the other two.) But BorderBrush is a different story. It’s 
completely unused by the template in Listing 14.8, so why not use that?

There really is no reason not to use it, other than the fact that it makes the usage of the 
template confusing and less readable. Nevertheless, here’s how you could update the 
IsMouseOver trigger from Listing 14.8 to hijack BorderBrush:

<Trigger Property=”IsMouseOver” Value=”True”> 

<Setter TargetName=”outerCircle” Property=”Fill”

Value=”{Binding RelativeSource={RelativeSource TemplatedParent},

Path=BorderBrush}”/> 

</Trigger>

A Binding must be used in this case rather than a TemplateBinding because the Trigger is 
outside the visual tree.

If the target control doesn’t have an appropriate property, you might even be able to 
hijack an attached property from a totally unrelated element! When choosing a property, 
be sure to pay attention to its metadata, such as its default value and what gets triggered 
when its value changes (such as invalidating layout).

If this hack leaves a bad taste in your mouth, then by all means use an alternative 
approach. This hack is definitely not recommended by the WPF team! But it’s a useful 
trick to know about if you’re looking for a quick fix.

Templates 441
1

4

  From the Library of Wow! eBook



ptg

Respecting Visual States with Triggers
When creating a control template for Buttons, visually reacting to hover and pressed 
states with corresponding triggers is a nice touch, but it’s purely optional. Imagine using 
the template from Listing 14.8 on a CheckBox or ToggleButton, however. (This can be 
done simply by changing the TargetType.) Because the template doesn’t show different 
visuals for the Checked versus Unchecked versus Indeterminate states, it’s a pretty lousy 
template for these controls!

In fact, the template in Listing 14.8 is still incomplete, even for a Button! The fact that it 
doesn’t show any different visuals when IsEnabled is false or IsDefaulted is true makes 
it a pretty lousy template!

Therefore, you should consider all the visual states a control should expose when design-
ing a control template for it. This might take the form of triggers on the appropriate prop-
erties or events, or it could just be a matter of binding them appropriately.

For example, to be useful, a control template for ProgressBar must show the current 
value. Listing 14.9 contains a control template (defined as an application-level resource) 
for ProgressBar that makes it look like a pie chart. The most important aspect of the 
template—filling up the pie according to the current Value—is accomplished by binding 
to the templated parent and using value converters to do the necessary trigonometry. In 
addition to this, triggers on IsEnabled and IsIndeterminate alter the visuals for these 
states. Figures 14.11 and 14.12 show the results for ProgressBars such as the following:

<ProgressBar Foreground=”{StaticResource foregroundBrush}” Width=”100” 

Height=”100” Value=”10” Template=”{StaticResource progressPie}”/>

The foregroundBrush resource is defined as a simple green gradient:

<LinearGradientBrush x:Key=”foregroundBrush” StartPoint=”0,0” EndPoint=”1,1”> 

<GradientStop Offset=”0” Color=”LightGreen”/> 

<GradientStop Offset=”1” Color=”DarkGreen”/>

</LinearGradientBrush>

LISTING 14.9 The Pie Chart Control Template for ProgressBar

<Application x:Class=”WindowsApplication1.App” 

xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation” 

xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml” 

xmlns:local=”clr-namespace:WindowsApplication1” 

StartupUri=”Window1.xaml”> 

<Application.Resources>

<ControlTemplate x:Key=”progressPie” TargetType=”{x:Type ProgressBar}”>

<!-- Resources --> 

<ControlTemplate.Resources>

<local:ValueMinMaxToPointConverter x:Key=”converter1”/>

CHAPTER 14 Styles, Templates, Skins, and Themes442

  From the Library of Wow! eBook



ptg

<local:ValueMinMaxToIsLargeArcConverter x:Key=”converter2”/> 

</ControlTemplate.Resources>

<!-- Visual Tree --> 

<Viewbox>

<Grid Width=”20” Height=”20”> 

<Ellipse x:Name=”background” Stroke=”{TemplateBinding BorderBrush}”

StrokeThickness=”{TemplateBinding BorderThickness}” 

Width=”20” Height=”20” Fill=”{TemplateBinding Background}”/>

<Path x:Name=”pie” Fill=”{TemplateBinding Foreground}”> 

<Path.Data>

<PathGeometry> 

<PathFigure StartPoint=”10,10” IsClosed=”True”>

<LineSegment Point=”10,0”/> 

<ArcSegment Size=”10,10” SweepDirection=”Clockwise”> 

<ArcSegment.Point>

<MultiBinding Converter=”{StaticResource converter1}”> 

<Binding RelativeSource=”{RelativeSource TemplatedParent}”

Path=”Value”/> 

<Binding RelativeSource=”{RelativeSource TemplatedParent}”

Path=”Minimum”/> 

<Binding RelativeSource=”{RelativeSource TemplatedParent}”

Path=”Maximum”/> 

</MultiBinding>

</ArcSegment.Point> 

<ArcSegment.IsLargeArc>

<MultiBinding Converter=”{StaticResource converter2}”> 

<Binding RelativeSource=”{RelativeSource TemplatedParent}”

Path=”Value”/> 

<Binding RelativeSource=”{RelativeSource TemplatedParent}”

Path=”Minimum”/> 

<Binding RelativeSource=”{RelativeSource TemplatedParent}”

Path=”Maximum”/> 

</MultiBinding>

</ArcSegment.IsLargeArc> 

</ArcSegment>

</PathFigure> 

</PathGeometry>

</Path.Data> 

</Path>

</Grid> 

</Viewbox>

<!-- Triggers -->

Templates 443

LISTING 14.9 Continued

1
4

  From the Library of Wow! eBook



ptg

<ControlTemplate.Triggers> 

<Trigger Property=”IsIndeterminate” Value=”True”>

<Setter TargetName=”pie” Property=”Visibility” Value=”Hidden”/> 

<Setter TargetName=”background” Property=”Fill”> 

<Setter.Value>

<LinearGradientBrush StartPoint=”0,0” EndPoint=”1,1”> 

<GradientStop Offset=”0” Color=”Yellow”/> 

<GradientStop Offset=”1” Color=”Brown”/>

</LinearGradientBrush> 

</Setter.Value> 

</Setter>

</Trigger> 

<Trigger Property=”IsEnabled” Value=”False”>

<Setter TargetName=”pie” Property=”Fill”> 

<Setter.Value>

<LinearGradientBrush StartPoint=”0,0” EndPoint=”1,1”> 

<GradientStop Offset=”0” Color=”Gray”/> 

<GradientStop Offset=”1” Color=”White”/>

</LinearGradientBrush> 

</Setter.Value> 

</Setter>

</Trigger> 

</ControlTemplate.Triggers> 

</ControlTemplate>

</Application.Resources> 

</Application>

CHAPTER 14 Styles, Templates, Skins, and Themes444

LISTING 14.9 Continued

FIGURE 14.11 Customized ProgressBar visuals for various stages of progress.

0% 10% 50% 75% 100%

IsEnabled=false IsIndeterminate=true 

FIGURE 14.12 Customized ProgressBar visuals for disabled and indeterminate states.

  From the Library of Wow! eBook



ptg

The root of the visual tree is a Viewbox, so the 20x20 single-cell Grid can scale appropri-
ately. The background circle (which has a radius of 10 prior to scaling) is given the 
templated parent’s Background, BorderBrush, and BorderThickness. The “pie” is a Path 
(an element covered in the next chapter) that is given the templated parent’s Foreground 
and relies on two MultiBindings with value converters defined in Listing 14.10 to get the 
right shape. MultiBinding is used rather than a simple TemplateBinding or Binding so the 
pie gets updated when any of ProgressBar’s three relevant properties change: Value, 
Minimum, and Maximum. The two triggers create the results in Figure 14.12 by filling an 
element with a hard-coded Brush (and in the case of IsIndeterminate, hiding the pie). A 
more appropriate effect for 
IsIndeterminate is probably an anima-
tion that spins the pie around, but at 
least there’s some visual distinction as is.
Note that not all of ProgressBar’s prop-
erties are honored by this template. For 
example, Orientation is unused, but 
there’s not a great way to honor it, 
considering the visual representation.

LISTING 14.10 The Value Converters Used in Listing 14.9

public class ValueMinMaxToIsLargeArcConverter : IMultiValueConverter 

{

public object Convert(object[] values, Type targetType, object parameter,

CultureInfo culture) 

{

double value = (double)values[0]; 

double minimum = (double)values[1]; 

double maximum = (double)values[2];

// Only return true if the value is 50% of the range or greater 

return ((value * 2) >= (maximum - minimum));

}

public object[] ConvertBack(object value, Type[] targetTypes, object parameter,

CultureInfo culture) 

{

throw new NotSupportedException(); 

}

}

public class ValueMinMaxToPointConverter : IMultiValueConverter 

{

public object Convert(object[] values, Type targetType, object parameter,

CultureInfo culture) 

{

Templates 445
1

4

Notice that Listing 14.9 defines value 
converters in ControlTemplate’s 
Resources collection. Like Style, all 
FrameworkTemplates have their own 
Resources collection. This collection can be 
used to keep templates self-contained.

T I P

  From the Library of Wow! eBook



ptg

double value = (double)values[0]; 

double minimum = (double)values[1]; 

double maximum = (double)values[2];

// Convert the value to one between 0 and 360 

double current = (value / (maximum - minimum)) * 360;

// Adjust the finished state so the ArcSegment gets drawn as a whole circle 

if (current == 360)

current = 359.999;

// Shift by 90 degrees so 0 starts at the top of the circle 

current = current - 90;

// Convert the angle to radians 

current = current * 0.017453292519943295;

// Calculate the circle’s point 

double x = 10 + 10 * Math.Cos(current); 

double y = 10 + 10 * Math.Sin(current); 

return new Point(x, y);

}

public object[] ConvertBack(object value, Type[] targetTypes, object parameter,

CultureInfo culture) 

{

throw new NotSupportedException(); 

}

}

The first value converter is pretty simple. ArcSegment’s IsLargeArc property (from Listing
14.9) must be true when the pie is more than half full and false otherwise. Therefore, 
ValueMinMaxToIsLargeArcConverter does this simple calculation based on the three 
values from the target ProgressBar and returns the appropriate Boolean value.

The second value converter is much more complicated. Its job is to return the proper 
Point along the circle’s circumference, according to the current values. To do this, it 
converts the ProgressBar’s Value to an angle (in degrees), makes some adjustments, and 
then converts it to radians. With this angle, a little trigonometry is used to get the point, 
based on the fixed radius of 10 and the center point of (10,10).

CHAPTER 14 Styles, Templates, Skins, and Themes446

LISTING 14.10 Continued

  From the Library of Wow! eBook



ptg

Respecting Visual States with the Visual State Manager (VSM)
For a control template designer, knowing all the visual states that need to be respected 
can be difficult. Each control has a large number of properties, and it might not always be 
clear which ones are visually important or how to manage all the possible states with trig-
gers. Fortunately, WPF 4 makes this task easier with the inclusion of the Visual State 
Manager (VSM), a feature that first appeared in Silverlight.

The VSM support includes a collection of types and members that make it easy for control 
authors to formally specify parts and states for their controls, taking the guesswork out of 
writing control templates that support them all. Importantly, it enables design tools to 
provide a decent experience for creating complex templates. Expression Blend takes great 
advantage of such parts and states.

Control Parts
The “parts” portion of the parts and states model has actually been in WPF from its first 
release. The idea is that controls can look for specially named elements in the visual tree 
of the template being applied to them, so that they can apply some logic to those visual 
pieces. Consider these examples:

. If a ProgressBar control template has elements named PART_Indicator and 
PART_Track, the control ensures that the Width (or Height, based on ProgressBar’s 
Orientation) of PART_Indicator remains the correct percentage of the Width (or 
Height) of PART_Track, based on ProgressBar’s Value, Minimum, and Maximum proper-
ties. For the pie chart template from Listing 14.9, this behavior is clearly undesir-
able. But for a template that more closely matches the standard ProgressBar look, 
taking advantage of this support greatly simplifies it (and removes the need for 
procedural code to do the math).

. If a ComboBox control template has a Popup named PART_Popup, ComboBox’s 
DropDownClosed event is automatically raised when the Popup is closed. If it has a 
TextBox named PART_EditableTextBox, it integrates automatically with ComboBox’s 
ability to update the selection as the user types.

. Controls such as TextBox and PasswordBox have most of their functionality tied to 
an element in the control template called PART_ContentHost. If you don’t have an 
element with this name in your control template, you’ll have to reimplement the 
entire editable surface!

In some cases, the named part can be any FrameworkElement, but in other cases the type 
of the named part must be something more specific in order to be respected. Table 14.1 
reveals all the named parts leveraged by WPF’s built-in controls. Derived classes that auto-
matically inherit the named part logic are not listed, such as TextBox and PasswordBox, 
which get their PART_ContentHost logic from TextBoxBase.

Templates 447
1

4

  From the Library of Wow! eBook



ptg

TABLE 14.1 Named Parts Used by WPF’s Controls 

Control Part Name Part Type

Calendar PART_CalendarItem CalendarItem

PART_Root Panel

CalendarItem DayTitleTemplate DataTemplate 

PART_DisabledVisual FrameworkElement

PART_HeaderButton Button

PART_MonthView Grid

PART_NextButton Button 

PART_PreviousButton Button

PART_Root FrameworkElement

PART_YearView Grid

ComboBox PART_EditableTextBox TextBox

PART_Popup Popup

DataGridColumnFloatingHeader PART_VisualBrushCanvas Canvas

DataGridColumnHeader PART_LeftHeaderGripper Thumb 

PART_RightHeaderGripper Thumb

DataGridColumnHeadersPresenter PART_FillerColumnHeader DataGridColumnHeader 

DataGridRowHeader PART_BottomHeaderGripper Thumb 

PART_TopHeaderGripper Thumb

DatePicker PART_Button Button

PART_Popup Popup

PART_Root Grid

PART_TextBox DatePickerTextBox

DatePickerTextBox PART_Watermark ContentControl

DocumentViewer PART_ContentHost ScrollViewer 

PART_FindToolBarHost ContentControl

DocumentViewerBase PART_FindToolBarHost Decorator

FlowDocumentReader PART_ContentHost Decorator 

PART_FindToolBarHost Decorator

FlowDocumentScrollViewer PART_ContentHost ScrollViewer 

PART_FindToolBarHost Decorator

PART_ToolBarHost Decorator

Frame PART_FrameCP ContentPresenter

GridViewColumnHeader PART_FloatingHeaderCanvas Canvas 

PART_HeaderGripper Thumb

MenuItem PART_Popup Popup

NavigationWindow PART_NavWinCP ContentPresenter

ProgressBar PART_GlowRect FrameworkElement

PART_Indicator FrameworkElement

PART_Track FrameworkElement

ScrollBar PART_Track Track

CHAPTER 14 Styles, Templates, Skins, and Themes448

  From the Library of Wow! eBook



ptg

Control Part Name Part Type

ScrollViewer PART_HorizontalScrollBar ScrollBar

PART_ScrollContentPresenter ScrollContentPresenter

PART_VerticalScrollBar ScrollBar

Slider PART_SelectionRange FrameworkElement

PART_Track Track

StickyNoteControl PART_ClipboardSeparator Separator

PART_CloseButton Button

PART_ContentControl ContentControl

PART_CopyMenuItem MenuItem

PART_EraseMenuItem MenuItem

PART_IconButton Button

PART_InkMenuItem MenuItem

PART_PasteMenuItem MenuItem

PART_ResizeBottomRightThumb Thumb

PART_SelectMenuItem MenuItem

PART_TitleThumb Thumb

TabControl PART_SelectedContentHost ContentPresenter

TextBoxBase PART_ContentHost FrameworkElement

ToolBar PART_ToolBarOverflowPanel ToolBarOverflowPanel

PART_ToolBarPanel ToolBarPanel

TreeViewItem PART_Header FrameworkElement

Therefore, claims of WPF’s controls being “lookless” and having an implementation that’s 
completely independent from their visuals (such as my own claim earlier in this chapter) 
aren’t entirely true! However, these “secret handshakes” with magically named parts are 
optional. This is important, as it means you still have the flexibility to radically change a 
control’s visuals, such as with the pie chart template for ProgressBar.

To give design tools the ability to discover every named part available for use, controls 
document them with a TemplatePartAttribute on their class—one for each named 
part—that reveals the name and expected type of the part. WPF also has a convention of 
using parts named PART_XXX (a convention broken by one of CalendarItem’s parts, seen in 
Table 14.1), although Silverlight does not have this convention.

On the one hand, named parts are an implementation detail that you don’t need to know 
about. On the other hand, you can sometimes create control templates with much less 
effort by taking advantage of this built-in logic!

Control States
The “states” portion of the parts and states model is the functionality that is new to WPF
4. As with control parts, controls can have internal logic to transition to named states 
that they define (by calling a static VisualStateManager.GoToState method). Control

Templates 449

TABLE 14.1 Continued

1
4

  From the Library of Wow! eBook



ptg

templates can then use a few new elements to organize visual settings specific to each 
state rather than use triggers. Writing control templates that take advantage of states is 
optional, but as of WPF 4, this is the recommended approach. Such templates are not 
only better supported by tools such as Expression Blend, they are more likely to work for 
Silverlight controls as well.

The states defined by each control are grouped into mutually exclusive state groups. For 
example, Button has four states in a group called CommonStates—Normal, MouseOver, 
Pressed, and Disabled—and two states in a group called FocusStates—Unfocused and 
Focused. At any time, Button is in one state from every group, so it is Normal and 
Unfocused by default. This grouping mechanism exists to avoid a long list of states meant 
to cover every combination of independent properties (such as NormalUnfocused, 
NormalFocused, MouseOverUnfocused, MouseOverFocused, and so on).

Table 14.2 lists all the groups and states supported by WPF’s built-in controls. Notice the 
explosion of states for DataGridRow and DataGridRowHeader; these states really should 
have been organized into three separate groups. (Someone didn’t get the memo.) States 
inherited from base classes are not listed; you can find Button’s states under ButtonBase. 
Similarly, DataGridColumnHeader lists only its SortStates group, even though it also 
inherits the two groups from ButtonBase. Some controls choose not to respect states 
defined by its base classes. For example, ProgressBar supports two CommonStates— 
Determinate and Indeterminate—but overrides functionality in the RangeBase base class 
such that its three CommonStates and two FocusStates never get invoked.

TABLE 14.2 State Groups and States Used by WPF’s Controls 

Control State Group States

ButtonBase CommonStates Normal, MouseOver, Pressed, 
Disabled

FocusStates Unfocused, Focused
CalendarButton SelectionStates Unselected, Selected 

CalendarButtonFocusStates CalendarButtonUnfocused,
CalendarButtonFocused

ActiveStates Inactive, Active
CalendarDayButton SelectionStates Unselected, Selected 

CalendarButtonFocusStates CalendarButtonUnfocused,
CalendarButtonFocused

ActiveStates Inactive, Active
DayStates RegularDay, Today
BlackoutDayStates NormalDay, BlackoutDay

CalendarItem CommonStates Normal, Disabled
ComboBox CommonStates Normal, MouseOver, Disabled

FocusStates Unfocused, Focused, 
FocusedDropDown

EditStates Editable, Uneditable

CHAPTER 14 Styles, Templates, Skins, and Themes450

  From the Library of Wow! eBook



ptg

TABLE 14.2 Continued 

Control State Group States

ComboBoxItem CommonStates Normal, MouseOver
SelectionStates Unselected, Selected, 

SelectedUnfocused

FocusStates Unfocused, Focused
Control ValidationStates Valid, InvalidFocused, 

InvalidUnfocused

DataGrid CommonStates Normal, Disabled
DataGridCell CommonStates Normal, MouseOver

SelectionStates Unselected, Selected
FocusStates Unfocused, Focused
CurrentStates Regular, Current 
InteractionStates Display, Editing

DataGridColumnHeader SortStates Unsorted, SortAscending, 
SortDescending

DataGridRow CommonStates Normal, Normal_AlternatingRow, 
Normal_Editing, Normal_Selected, 
Unfocused_Editing, 
Unfocused_Selected, MouseOver, 
MouseOver_Editing, 
MouseOver_Selected, 
MouseOver_Unfocused_Editing, 
MouseOver_Unfocused_Selected

DataGridRowHeader CommonStates Normal, Normal_Selected, 
Normal_EditingRow, 
Normal_CurrentRow, 
Normal_CurrentRow_Selected, 
Unfocused_Selected, 
Unfocused_EditingRow, 
Unfocused_CurrentRow_Selected, 
MouseOver, MouseOver_Selected, 
MouseOver_EditingRow, 
MouseOver_CurrentRow, 
MouseOver_CurrentRow_Selected, 
MouseOver_Unfocused_Selected, 
MouseOver_Unfocused_EditingRow, 
MouseOver_Unfocused_CurrentRow_ 
Selected

DatePicker CommonStates Normal, Disabled
DatePickerTextBox WatermarkStates Unwatermarked, Watermarked
Expander CommonStates Normal, MouseOver, Disabled

FocusStates Unfocused, Focused
ExpansionStates Expanded, Collapsed 
ExpandDirectionStates ExpandDown, ExpandUp, ExpandLeft, 

ExpandRight

Templates 451
1

4

  From the Library of Wow! eBook



ptg

TABLE 14.2 Continued 

Control State Group States

GridSpliter CommonStates Normal, MouseOver, Disabled
ListBoxItem CommonStates Normal, MouseOver, Disabled

SelectionStates Unselected, Selected, 
SelectedUnfocused

FocusStates Unfocused, Focused
ProgressBar CommonStates Determinate, Indeterminate
RangeBase CommonStates Normal, MouseOver, Disabled

FocusStates Unfocused, Focused
ScrollBar CommonStates Normal, MouseOver, Disabled

FocusStates Unfocused, Focused
TabControl CommonStates Normal, Disabled
TabItem CommonStates Normal, MouseOver, Disabled

SelectionStates Unselected, Selected
FocusStates Unfocused, Focused

TextBox CommonStates ReadOnly (and states from 
TextBoxBase)

TextBoxBase CommonStates Normal, MouseOver, Disabled
FocusStates Unfocused, Focused

Thumb CommonStates Normal, MouseOver, Pressed, 
Disabled

FocusStates Unfocused, Focused
ToggleButton CheckStates Checked, Unchecked, 

Indeterminate

ToolTip OpenStates Open, Closed
FocusStates Unfocused, Focused

TreeViewItem CommonStates Normal, MouseOver, Disabled
SelectionStates Unselected, Selected, 

SelectedInactive

FocusStates Unfocused, Focused
ExpansionStates Collapsed, Expanded
HasItemsStates HasItems, NoItems

To write a control template that takes advantage of states, you set the 
VisualStateManager.VisualStateGroups attached property on the root element in the 
template’s visual tree to a collection of VisualStateGroup objects, each of which has a 
collection of VisualState children.

Listing 14.11 updates the pie chart control template from Listing 14.9 to take advantage 
of ProgressBar’s visual states. Because ProgressBar only supports states for Determinate 
versus Indeterminate and does not have states for Normal versus Disabled, this template

CHAPTER 14 Styles, Templates, Skins, and Themes452

  From the Library of Wow! eBook



ptg

still needs one trigger for the case of IsEnabled being false. The previous trigger that 
acted on IsIndeterminate being true has been replaced by acting on the Indeterminate 
visual state, however.

LISTING 14.11 An Update to the Pie Chart Control Template from Listing 14.9 That Uses 
the VSM

<Application x:Class=”WindowsApplication1.App” 

xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation” 

xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml” 

xmlns:local=”clr-namespace:WindowsApplication1” 

StartupUri=”Window1.xaml”> 

<Application.Resources>

<ControlTemplate x:Key=”progressPie” TargetType=”{x:Type ProgressBar}”>

<!-- Resources --> 

<ControlTemplate.Resources>

<local:ValueMinMaxToPointConverter x:Key=”converter1”/> 

<local:ValueMinMaxToIsLargeArcConverter x:Key=”converter2”/>

</ControlTemplate.Resources>

<!-- Visual Tree --> 

<Viewbox>

<!-- Visual State Groups --> 

<VisualStateManager.VisualStateGroups>

<VisualStateGroup Name=”CommonStates”> 

<VisualState Name=”Determinate”/> <!-- Nothing to do for this state --> 

<VisualState Name=”Indeterminate”>

<Storyboard> 

<DoubleAnimation Storyboard.TargetName=”pie”

Storyboard.TargetProperty=”Opacity” To=”0” Duration=”0”/> 

<DoubleAnimation Storyboard.TargetName=”backgroundNormal”

Storyboard.TargetProperty=”Opacity” To=”0” Duration=”0”/> 

<DoubleAnimation Storyboard.TargetName=”backgroundIndeterminate”

Storyboard.TargetProperty=”Opacity” To=”1” Duration=”0”/> 

</Storyboard>

</VisualState> 

</VisualStateGroup>

</VisualStateManager.VisualStateGroups>

<Grid Width=”20” Height=”20”> 

<Ellipse x:Name=”backgroundIndeterminate” Opacity=”0”

Stroke=”{TemplateBinding BorderBrush}”

StrokeThickness=”{TemplateBinding BorderThickness}” Width=”20” 

Height=”20”>

<Ellipse.Fill>

Templates 453
1

4

  From the Library of Wow! eBook



ptg

<LinearGradientBrush StartPoint=”0,0” EndPoint=”1,1”> 

<GradientStop Offset=”0” Color=”Yellow”/> 

<GradientStop Offset=”1” Color=”Brown”/>

</LinearGradientBrush> 

</Ellipse.Fill>

</Ellipse>

<Ellipse x:Name=”backgroundNormal” Stroke=”{TemplateBinding BorderBrush}” 

StrokeThickness=”{TemplateBinding BorderThickness}” 

Width=”20” Height=”20” Fill=”{TemplateBinding Background}”/>

<Path x:Name=”pie” Fill=”{TemplateBinding Foreground}”> 

<Path.Data>

<PathGeometry> 

<PathFigure StartPoint=”10,10” IsClosed=”True”>

<LineSegment Point=”10,0”/> 

<ArcSegment Size=”10,10” SweepDirection=”Clockwise”> 

<ArcSegment.Point>

<MultiBinding Converter=”{StaticResource converter1}”> 

<Binding RelativeSource=”{RelativeSource TemplatedParent}”

Path=”Value”/> 

<Binding RelativeSource=”{RelativeSource TemplatedParent}”

Path=”Minimum”/> 

<Binding RelativeSource=”{RelativeSource TemplatedParent}”

Path=”Maximum”/> 

</MultiBinding>

</ArcSegment.Point> 

<ArcSegment.IsLargeArc>

<MultiBinding Converter=”{StaticResource converter2}”> 

<Binding RelativeSource=”{RelativeSource TemplatedParent}”

Path=”Value”/> 

<Binding RelativeSource=”{RelativeSource TemplatedParent}”

Path=”Minimum”/> 

<Binding RelativeSource=”{RelativeSource TemplatedParent}”

Path=”Maximum”/> 

</MultiBinding>

</ArcSegment.IsLargeArc> 

</ArcSegment>

</PathFigure> 

</PathGeometry>

</Path.Data> 

</Path>

</Grid> 

</Viewbox>

<!-- Only one Trigger -->

CHAPTER 14 Styles, Templates, Skins, and Themes454

LISTING 14.11 Continued

  From the Library of Wow! eBook



ptg

<ControlTemplate.Triggers> 

<Trigger Property=”IsEnabled” Value=”False”>

<Setter TargetName=”pie” Property=”Fill”> 

<Setter.Value>

<LinearGradientBrush StartPoint=”0,0” EndPoint=”1,1”> 

<GradientStop Offset=”0” Color=”Gray”/> 

<GradientStop Offset=”1” Color=”White”/>

</LinearGradientBrush> 

</Setter.Value> 

</Setter>

</Trigger> 

</ControlTemplate.Triggers> 

</ControlTemplate>

</Application.Resources> 

</Application>

The content of each VisualState is a Storyboard, a type covered in depth in Chapter 17. 
It enables you to change certain property values either instantly (as done in Listing 14.11) 
or with a smooth transition. Changing the arbitrary background Ellipse Fill to a specific 
LinearGradientBrush isn’t feasible with a Storyboard, so this listing changes the visual 
tree to contain two Ellipses—backgroundNormal that is visible by default and 
backgroundIndeterminate that is not (due to its Opacity being set to 0). The transition to 
the Indeterminate visual state therefore instantly “animates” the Opacity of 
backgroundNormal to 0 and the Opacity of backgroundIndeterminate to 1. To make this 
happen more gradually, you can increase the 
Duration value on the two 
DoubleAnimations. Chapter 17 reveals all 
the flexibility that the use of these 
animation objects can give you. It also 
revisits the Button control template 
created in this chapter (Listing 14.8), to 
show how it could be rewritten to lever-
age the VSM.

As with their parts, controls should document their state groups and states by using the 
TemplateVisualStateAttribute. However, the built-in WPF controls do not currently do 
this.

Templates 455

LISTING 14.11 Continued

1
4

VisualStateGroup has a Transitions 
property that can be set to one or more 
VisualTransitions that can do automatic 
animated transitions between any combina-
tions of states. See Chapter 17 for more 
information.

T I P

  From the Library of Wow! eBook



ptg

Mixing Templates with Styles
Although all the control templates thus far are applied directly to elements for simplicity, 
it’s more common to set a Control’s Template property inside a Style and then apply 
that style to the desired elements:

<Style TargetType=”{x:Type Button}”> 

<Setter Property=”Template”> 

<Setter.Value>

<ControlTemplate TargetType=”{x:Type Button}”> 

…

</ControlTemplate>

</Setter.Value> 

</Setter> 

…

</Style>

Besides the convenience of combining a template with arbitrary property settings, there 
are important advantages to doing this:

. It gives you the effect of default templates. For example, when a typed Style gets 
applied to elements by default and that Style contains a custom control template, 
the control template gets applied without any explicit markings on those elements!

. It enables you to provide default yet overridable property values that control the 
look of the template. In other words, it enables you to respect the templated 
parent’s properties but still provide your own default values.

The final point is very relevant for the templates examined so far. For the ProgressBar pie 
chart template, I wanted the pie to be filled with a green gradient by default. If such a 
Brush is hard-coded inside the template, consumers would have no way to customize the 
fill. On the other hand, by binding to the templated parent’s Foreground (which is what 
Listing 14.9 does), the onus is on every ProgressBar to set its Foreground appropriately. 
ProgressBar’s default Foreground is a solid green color, not the desired gradient!

By placing the green gradient in a Style’s Setter, however, you get the desired default 
look while still allowing individual ProgressBars to override the fill by explicitly setting 
their Foreground property locally. And the {TemplateBinding Foreground} expression 
inside the template doesn’t need to change. The Style could look as follows:

<Style x:Key=”pieStyle” TargetType=”{x:Type ProgressBar}”> 

<Setter Property=”Foreground”> 

<Setter.Value>

<LinearGradientBrush StartPoint=”0,0” EndPoint=”1,1”> 

<GradientStop Offset=”0” Color=”LightGreen”/> 

<GradientStop Offset=”1” Color=”DarkGreen”/>

</LinearGradientBrush>

CHAPTER 14 Styles, Templates, Skins, and Themes456

  From the Library of Wow! eBook



ptg

</Setter.Value> 

</Setter> 

<Setter Property=”Template”> 

<Setter.Value>

<ControlTemplate TargetType=”{x:Type ProgressBar}”> 

…

<Path x:Name=”pie” Fill=”{TemplateBinding Foreground}”> 

…

</ControlTemplate> 

</Setter.Value> 

</Setter>

</Style>

Consumers of the Style could do the following:

<!-- Use the default gradient fill --> 

<ProgressBar Style=”{StaticResource pieStyle}” 

Width=”100” Height=”100” Value=”10”/> 

<!-- Use a solid red fill instead --> 

<ProgressBar Style=”{StaticResource pieStyle}” Foreground=”Red”

Width=”100” Height=”100” Value=”10”/>

Of course, the same approach can be used for other properties, such as Width and Height.

Templates 457
1

4

Interactions Between Styles and Their Templates

When a Style contains a control template, it’s possible to see the same property set from 
several different places: from triggers in the Style, from triggers in the Style’s template, 
and from a Setter in the Style! The order of precedence is the order listed in the preceding 
sentence. So, Style triggers override template triggers, and all triggers override Style 
Setters.

D I G G I N G  D E E P E R

How do I make small tweaks to an existing control template rather than 
create a brand-new one from scratch?

There is no mechanism for tweaking existing templates (like Style’s BasedOn). Instead, you 
can easily retrieve a XAML representation for any existing Style or template, modify it, and 
then apply it as a brand-new Style or template. In fact, even if you want to create a 
completely different look, the best way to become familiar with how to design robust control 
templates is to look at the built-in WPF control templates used by their theme styles.

?
FA Q

  From the Library of Wow! eBook



ptg

Skins
Skinning refers to the act of changing an application’s appearance (or skin) on the fly, typi-
cally by third parties. WPF doesn’t have a distinct concept called a skin, nor does it have a 
formal notion of skinning, but it doesn’t need one. You can easily write an application or 
a component that supports dynamic skinning by using WPF’s dynamic resource mecha-
nism (described in Chapter 12, “Resources”) combined with Styles and/or templates.

To support skinning in an application, one of the first things you need to do is decide on 
a data format. Whereas it might make sense to invent a format for Win32 or Windows 
Forms applications, XAML is a no-brainer data format for skins in WPF applications if you 
are okay with loading arbitrary code into your process. (Loading someone’s XAML is like

CHAPTER 14 Styles, Templates, Skins, and Themes458

Continued

To obtain the “visual source code” in XAML for any control template, you simply use code 
such as the following (after the control has undergone layout, so the template gets applied):

string xaml = XamlWriter.Save(someControl.Template);

Or, you can retrieve the entire Style for any element by programmatically grabbing the 
correct resource. The following code grabs the theme style of an element by using a depen-
dency property called DefaultStyleKey (described in the “Themes” section) to identify the 
Style resource: 

// Get the default style key 

object defaultStyleKey = someElement.GetValue(

FrameworkElement.DefaultStyleKeyProperty); 

// Retrieve the resource with that key 

Style style = (Style)Application.Current.FindResource(defaultStyleKey); 

// Serialize its XAML representation into a string 

string xaml = System.Windows.Markup.XamlWriter.Save(style);

For other types of Styles, you could call FindResource with the appropriate key, such as 
typeof(Button) for a typed Button style (if it exists).

In addition, there are many alternative approaches that don’t involve writing code:

. Consult the Windows SDK, which contains XAML files with all the theme styles used by
WPF’s controls.

. Use the .NET Reflector tool with its BAML Viewer add-in to view the embedded styles
in assemblies such as PresentationFramework.Aero.dll.

. Create the appropriate control in Expression Blend and then choose Edit Template, Edit 
a Copy… to get a copy of its style pasted into your XAML. (You can also find a XAML 
file for each theme supported by WPF’s controls installed with Blend under Program 
Files.)

The last approach is my personal favorite. Blend also includes “simple styles” for the 
common controls, which are much easier to tweak and understand. These can be an instruc-
tive starting point for creating your own custom templates.

  From the Library of Wow! eBook



ptg

loading someone’s add-in; it has the power to invoke unrelated code and may therefore 
do something malicious. See the FAQ at the end of this section for more information.)

But what should such XAML files look like?

Often, the initial instinct is to load an entire Window or Page dynamically from a loose 
XAML file and hook it up to the appropriate logic (using the technique shown at the end 
of Chapter 2, “XAML Demystified”). Loading your entire user interface on the fly gives 
complete flexibility, but, in most cases, it’s probably too much flexibility. Authors of such 
XAML files would need a lot of discipline to include all the right elements with all the 
right names and all the right event handlers, and so on. (Either that or the code to 
connect the user interface to the application logic needs to be extremely forgiving.) Visual 
Studio 2010 follows this approach with its XAML-based Start Page. By loading an arbitrary 
Page, authors can plug in something completely different. If all they want to do is reskin 
what’s there, they need to start by copying the existing Page and tweak it from there.

For environments in which you don’t want to encourage complete user interface replace-
ment, the best approach is to make ResourceDictionary the root of a skin representation. 
ResourceDictionary makes a great extensibility point in general because of the ease with 
which it can be swapped in and out or merged with others. When defining a skin, it 
makes sense for the ResourceDictionary to contain Styles and/or templates.

To demonstrate skinning, the following Window is a hypothetical progress dialog, shown 
in Figure 14.13:

<Window x:Class=”WindowsApplication1.Window1” 

xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation” 

xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml” 

Title=”Please Wait” Height=”200” Width=”300” ResizeMode=”NoResize”> 

<Grid>

<StackPanel Style=”{DynamicResource DialogStyle}”> 

<Label Style=”{DynamicResource HeadingStyle}”>Loading...</Label> 

<ProgressBar Value=”35” MinHeight=”20” Margin=”20”/> 

<Button Style=”{DynamicResource CancelButtonStyle}” Width=”70”

Click=”Cancel_Click”>Cancel</Button> 

</StackPanel>

</Grid> 

</Window>

Notice that most of the Window’s 
elements are given explicit Styles. This 
is not a requirement for skinning, but 
it’s often a nice touch for giving skin 
authors more control over the visual 
experience. For example, suppose you 
want to give a specific look to a Cancel 
Button that’s different from the look you want for all other Buttons. Marking all Cancel 
Buttons with an explicit CancelButtonStyle allows you to do just that. Referencing the

Skins 459
1

4

FIGURE 14.13 A dialog box, shown with 
its default skin.

  From the Library of Wow! eBook



ptg

explicit Styles as dynamic resources is 
critical to enable them to be updated at 
arbitrary times.

So that it will have the look shown in
Figure 14.13, the preceding Window is 
paired with the following App.xaml file that 
provides a default definition of each Style resource:

<Application xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation” 

xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml” 

StartupUri=”Window1.xaml”> 

<Application.Resources>

<Style x:Key=”DialogStyle” TargetType=”{x:Type StackPanel}”> 

<Setter Property=”Margin” Value=”20”/>

</Style> 

<Style x:Key=”HeadingStyle” TargetType=”{x:Type Label}”>

<Setter Property=”FontSize” Value=”16”/> 

<Setter Property=”FontWeight” Value=”Bold”/>

</Style> 

<Style x:Key=”CancelButtonStyle” TargetType=”{x:Type Button}”/>

</Application.Resources> 

</Application>

Notice that CancelButtonStyle is empty, so applying it to a Button has no effect. This is 
perfectly valid because the expectation is that a skin might replace this Style with some-
thing more meaningful.

With this in place, a skin file could simply look like the following:

<ResourceDictionary 

xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation” 

xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”> 

<Style x:Key=”DialogStyle” TargetType=”{x:Type StackPanel}”>

… 

</Style> 

<Style x:Key=”HeadingStyle” TargetType=”{x:Type Label}”>

… 

</Style> 

<Style x:Key=”CancelButtonStyle” TargetType=”{x:Type Button}”>

… 

</Style>

Any additional styles…

</ResourceDictionary>

CHAPTER 14 Styles, Templates, Skins, and Themes460

When giving an element a Style that you 
expect to be reskinned dynamically, don’t 
forget to reference it as a dynamic resource!

T I P

  From the Library of Wow! eBook



ptg

Then all the host application needs to do is dynamically load the skin XAML file and 
assign it as the new Application.Resources dictionary. The following code does this for a 
.xaml file sitting in the current directory:

ResourceDictionary resources = null; 

using (FileStream fs = new FileStream(“CustomSkin.xaml”, FileMode.Open,

FileAccess.Read)) 

{

// Get the root element, which must be a ResourceDictionary 

resources = (ResourceDictionary)XamlReader.Load(fs);

}

Application.Current.Resources = resources;

You could alternatively use code like the following to retrieve a skin file from the Internet 
at an arbitrary URL:

ResourceDictionary resources = null;

System.Net.WebClient client = new System.Net.WebClient(); 

using (Stream s = client.OpenRead(“http://adamnathan.net/wpf/CustomSkin.xaml”)) 

{

// Get the root element, which must be a ResourceDictionary 

resources = (ResourceDictionary)XamlReader.Load(s);

}

Application.Current.Resources = resources;

Because assigning a dictionary to Application.Current.Resources code wipes out the 
current dictionary, you should also store the default ResourceDictionary if you want to 
restore it later!

Skins 461
1

4

What happens if a skin doesn’t define a named Style expected by the 
application?

If you take the approach of completely replacing the current Application.Resources dictio-
nary with a new ResourceDictionary, and if the new dictionary is missing Styles, the 
affected controls will silently revert to their default appearance. This is true of any dynamic 
resource that gets removed while the application is running. The dynamic resource mecha-
nism does emit a debug trace, however, much like how data binding reports errors. For 
example, applying a skin missing a Style called CancelButtonStyle causes the following 
message to be emitted inside a debugger:

System.Windows.ResourceDictionary Warning: 9 : Resource not found; 

ResourceKey=’CancelButtonStyle’

To avoid this, another approach would be to iterate through the new resource dictionary and 
individually set each key/value pair in the application’s resource dictionary.

?
FA Q

  From the Library of Wow! eBook



ptg

The progress dialog sample (whose full source code is included with the rest of the book’s 
code at http://informit.com/title/9780672331190) switches the skin when you click the 
Cancel Button for demonstration purposes, but for a real application, this action would 
likely be taken when a user initiates it from some skin-choosing user interface.

In this book’s source code, you’ll find two alternative skins for the progress dialog in 
Figure 14.13. Figure 14.14 shows the dialog with these two skins.

CHAPTER 14 Styles, Templates, Skins, and Themes462

The “Electric” skin The “Light and Fluffy” skin

FIGURE 14.14 Two alternate skins for the dialog.

Notice that the “electric” skin restyles the ProgressBar (using the pie chart template from 
the previous section) even though the application didn’t give it an explicit Style. It does 
this by making it a typed Style that applies to all ProgressBars. Fortunately, any addi-
tions of, removals of, or changes to typed styles in a ResourceDictionary are automati-
cally reflected the same way as explicit dynamic resources. The skin’s CancelButtonStyle 
uses a TranslateTransform to reposition it next to the ProgressBar rather than below it. 
It also does something quite unique for the Label’s Style: It uses a template to send the 
Label’s content through a “jive translator” web service. (This, of course, works only if the 
Label contains text.)

Skins That Require Procedural Code

The “electric” skin’s ProgressBar template requires procedural code (as shown in the previ-
ous section), so it can’t be implemented in a loose XAML file. In such cases, you can 
compile the ResourceDictionary into an assembly and still expose it as a skin. The key is 
to use Application.LoadComponent to retrieve the compiled resource. The resource can be 
compiled into the same assembly or a different assembly, as explained in Chapter 12.

The progress dialog sample compiles both skins into the same assembly, so it uses code 
like the following to load them:

ResourceDictionary resources = (ResourceDictionary)Application.LoadComponent( 

new Uri(“CustomSkin.xaml”, UriKind.RelativeOrAbsolute));

Application.Current.Resources = resources;

D I G G I N G  D E E P E R

  From the Library of Wow! eBook

http://informit.com/title/9780672331190


ptg

The “light and fluffy” skin has its own set of fairly radical changes. Listing 14.12 shows 
the complete source for this skin.

LISTING 14.12 The “Light and Fluffy” Skin

<ResourceDictionary 

xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation” 

xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”> 

<!-- Make the background a simple gradient --> 

<Style x:Key=”DialogStyle” TargetType=”{x:Type StackPanel}”>

<Setter Property=”Margin” Value=”0”/> 

<Setter Property=”Background”> 

<Setter.Value>

<LinearGradientBrush StartPoint=”0,0” EndPoint=”1,1”> 

<GradientStop Offset=”0” Color=”LightBlue”/> 

<GradientStop Offset=”1” Color=”White”/>

</LinearGradientBrush> 

</Setter.Value> 

</Setter>

</Style> 

<!-- Rotate and move the main text --> 

<Style x:Key=”HeadingStyle” TargetType=”{x:Type Label}”>

<Setter Property=”Foreground” Value=”White”/> 

<Setter Property=”FontSize” Value=”30”/> 

<Setter Property=”FontFamily” Value=”Segoe Print”/> 

<Setter Property=”RenderTransform”> 

<Setter.Value>

<TransformGroup> 

<RotateTransform Angle=”-35”/> 

<TranslateTransform X=”-19” Y=”55”/>

</TransformGroup> 

</Setter.Value> 

</Setter> 

<Setter Property=”Effect”> 

<Setter.Value>

<DropShadowEffect ShadowDepth=”2”/> 

</Setter.Value> 

</Setter>

</Style>

<!-- Remove the Cancel button --> 

<Style x:Key=”CancelButtonStyle” TargetType=”{x:Type Button}”>

<Setter Property=”Visibility” Value=”Collapsed”/> 

</Style>

<!-- Wrap the ProgressBar in an Expander -->

Skins 463
1

4

  From the Library of Wow! eBook



ptg

<Style TargetType=”{x:Type ProgressBar}”> 

<Setter Property=”Height” Value=”100”/> 

<Setter Property=”Template”> 

<Setter.Value>

<ControlTemplate TargetType=”{x:Type ProgressBar}”> 

<Expander Header=”More Details” ExpandDirection=”Left”>

<ProgressBar Style=”{x:Null}” 

Height=”30” Value=”{TemplateBinding Value}” 

Minimum=”{TemplateBinding Minimum}” 

Maximum=”{TemplateBinding Maximum}” 

IsEnabled=”{TemplateBinding IsEnabled}” 

IsIndeterminate=”{TemplateBinding IsIndeterminate}”/>

</Expander> 

</ControlTemplate>

</Setter.Value> 

</Setter>

</Style> 

</ResourceDictionary>

The customized DialogStyle and HeadingStyle are pretty straightforward (although the 
latter uses a slick drop shadow effect introduced in the next chapter). But this skin, to 
keep a minimalistic user interface, uses CancelButtonStyle to completely hide the Cancel 
Button! In this case, doing so is appropriate (assuming that closing the Window behaves the 
usual way). In other cases, users might not appreciate a skin that hides pieces of the user 
interface!

The typed Style for ProgressBar also performs an interesting trick for the purpose of 
simplifying the user interface. It defines a custom template to wrap the ProgressBar inside 
an Expander (that’s collapsed by default)! The wrapped ProgressBar has several 
TemplateBindings to keep its display in sync with the templated parent. Notice that this 
inner ProgressBar is given a null Style. This is necessary to avoid a nasty recursion 
problem. Without the explicit Style, the inner ProgressBar gets the default typed Style 
that it’s a part of, making it an Expander inside an Expander inside an Expander, and so on.

CHAPTER 14 Styles, Templates, Skins, and Themes464

LISTING 14.12 Continued

How can I prevent a user-contributed skin from acting maliciously?

There is no built-in mechanism to do this. It might be tempting to try to write your own 
logic to examine a user-supplied ResourceDictionary and remove things that you consider 
to be malicious, but this is basically a futile task. For example, if you want to prevent a skin 
from hiding elements, you can pretty easily remove Setters that operate on Visibility. 
But what about a skin that makes text the same color as the background? Or a skin that 
gives controls an empty-looking template? There’s more than one way to skin a cat! (Pun 
intended.)

?
FA Q

  From the Library of Wow! eBook



ptg

Themes
Whereas skins are application specific, themes generally refer to visual characteristics of the 
operating system that are reflected in user interface elements of all programs. For 
example, changing your Windows theme to Windows Classic gives buttons and scrollbars 
a flat and rectangular look. On Windows XP, switching the default theme’s color scheme 
between Blue, Olive Green, and Silver affects the color and sheen of standard controls. To 
maintain consistency with the user’s chosen Windows theme, the built-in WPF controls 
have a separate control template for each theme, as you saw with Button in Chapter 9, 
“Content Controls.”

Consistency with the operating system theme is important for the default control 
templates. But when somebody creates custom control templates, they typically do so to 
avoid consistency with the rest of the operating system! Nevertheless, it can still be a nice 
touch to incorporate elements of the user’s operating system theme to prevent the 
customized controls from sticking out like a sore thumb. It’s also important to understand 
how theming works if you create your own custom controls that should blend in with the 
operating system theme by default.

This section examines how easy it is to create Styles and templates (and, therefore, skins) 
that adapt to the current theme. There are basically two ways to do this. The first is 
simple but not as powerful, and the second is a bit more work but completely flexible.

Using System Colors, Fonts, and Parameters
The properties exposed by the SystemColors, SystemFonts, and SystemParameters classes 
automatically get updated when the Windows theme changes. Therefore, incorporating 
these into your Styles and templates is an easy way to blend them in with the user’s 
theme.

The following updated ProgressBar pie chart Style makes use of the SystemColors class 
to control the colors in its default fill (using the technique explained in Chapter 12):

<Style TargetType=”{x:Type ProgressBar}”> 

<Style.Resources>

<LinearGradientBrush x:Key=”foregroundBrush” StartPoint=”0,0” EndPoint=”1,1”>

Themes 465
1

4

Continued

And making your user interface unusable is the least of your concerns. Imagine a skin that 
finds a way to send private information displayed by the application back to a web server. 
There’s an inherent risk whenever arbitrary code (or XAML!) is executed inside a full-trust 
application. Loading the XAML in a separate process is one workaround but is probably too 
cumbersome for most scenarios.

If you’re concerned about this issue, you should probably define your own skin data format 
that is much more limited in expressiveness. But if you provide an easy way for a user to 
remove a “malicious skin,” then perhaps you don’t need to worry about this in the first 
place.

  From the Library of Wow! eBook



ptg

<GradientStop Offset=”0”

Color=”{DynamicResource {x:Static SystemColors.InactiveCaptionColorKey}}”/> 

<GradientStop Offset=”0.5” 

Color=”{DynamicResource {x:Static SystemColors.InactiveCaptionColorKey}}”/> 

<GradientStop Offset=”1” 

Color=”{DynamicResource {x:Static SystemColors.ActiveCaptionColorKey}}”/> 

</LinearGradientBrush>

</Style.Resources> 

<Setter Property=”Foreground” Value=”{StaticResource foregroundBrush}”/> 

<Setter Property=”Background”

Value=”{DynamicResource {x:Static SystemColors.ControlBrushKey}}”/> 

… 

</Style>

Figure 14.15 shows how the appearance of 
this Style subtly changes when the user 
switches Windows themes.

Per-Theme Styles and Templates
Many of the built-in WPF controls differ 
from theme to theme in richer ways than 
just colors, fonts, and simple measure-
ments. For example, they’re generally 
shinier in the Windows 7 Aero theme and dull in Windows Classic. This is accomplished 
by having a separate control template for each theme.

The ability to define your own styles and templates that differ in interesting ways based 
on the current theme can be quite useful. For example, it could be argued that the 
Windows Classic version of ProgressBar in Figure 14.15 is too pretty! Someone who uses 
the Windows Classic theme probably isn’t going to appreciate fancy gradients and other 
effects!

If you want to create your own per-theme styles and templates, you could programmati-
cally load and swap them whenever the theme changes (using the techniques discussed 
in the “Skins” section). WPF doesn’t expose a theme-changing event, however, so 
this would involve intercepting the Win32 WM_THEMECHANGE message (the same way 
WM_DWMCOMPOSITIONCHANGED is intercepted in Chapter 8, “Exploiting Windows 7”). 
Fortunately, WPF does expose a theming mechanism built on top of the low-level Win32 
APIs, enabling you to provide per-theme resources with almost no procedural code.

The first step is to organize your theme-specific resources into distinct resource dictionary 
XAML files (one per theme) that are compiled into your assembly. You can then designate 
each resource dictionary as a theme dictionary by placing it in a themes subfolder (which 
must be in the root of your project!) and naming it ThemeName.ThemeColor.xaml (case-
insensitive). A theme dictionary can be loaded and applied automatically by WPF when

CHAPTER 14 Styles, Templates, Skins, and Themes466

FIGURE 14.15 The same control with the 
same Style, viewed under two different 
themes.

Windows 7 (Aero) Windows Classic

  From the Library of Wow! eBook



ptg

your application launches and whenever the theme changes. Styles inside a theme 
dictionary are called theme styles.

The following are themes that Microsoft has created, along with their corresponding valid 
theme dictionary URIs:

. The Aero theme (Windows Vista and Windows 7): themes\Aero.NormalColor.xaml

. The default Windows XP theme: themes\Luna.NormalColor.xaml

. The olive green Windows XP theme: themes\Luna.Homestead.xaml

. The silver Windows XP theme: themes\Luna.Metallic.xaml

. The Windows XP Media Center Edition 2005 and Windows XP Tablet PC Edition 
2005 theme: themes\Royale.NormalColor.xaml

. The Windows Classic theme: themes\Classic.xaml

. The Zune Windows XP theme: themes\Zune.NormalColor.xaml

Note that Windows Classic is a bit special, as it doesn’t have the ThemeColor part of the 
URI.

Furthermore, you can specify a fallback 
resource dictionary that gets used if you 
don’t have a dictionary corresponding to 
the current theme and color. This fall-
back dictionary, often called the generic 
dictionary, must be named 
themes\Generic.xaml.

With one or more theme dictionaries and/or a generic dictionary in place, you must now 
opt in to the automatic theming mechanism with an assembly-level ThemeInfoAttribute. 
This attribute’s constructor takes two parameters of type ResourceDictionaryLocation. 
The first one specifies where WPF should find the theme dictionaries, and the second one 
specifies where WPF should find the generic dictionary. Each one can independently be 
set to the following values:

. None—Don’t look for a resource dictionary. This is the default value.

. SourceAssembly—Look for them inside the current assembly.

. ExternalAssembly—Look for them inside a different assembly, which must be 
named AssemblyName.ThemeName.dll (where AssemblyName matches the current 
assembly’s name). WPF uses this scheme for its built-in theme dictionaries, found in 
PresentationFramework.Aero.dll, PresentationFramework.Luna.dll, and so on. 
This is a nice way to avoid having extra copies of resources loaded in memory at all 
times.

Themes 467
1

4

Be sure to provide a generic dictionary 
whenever you create theme dictionaries. 
This enables you to provide a consistent 
experience when encountering an unex-
pected theme.

T I P

  From the Library of Wow! eBook



ptg

Therefore, a typical use of ThemeInfoAttribute looks like the following:

// Look for the theme dictionaries and the generic dictionary inside this assembly 

[assembly:ThemeInfo(ResourceDictionaryLocation.SourceAssembly,

ResourceDictionaryLocation.SourceAssembly)]

There’s one final catch to the theming support: It’s designed to provide the default styles 
for elements. As ThemeInfoAttribute indicates, theme styles must exist in the same 
assembly defining the target element or a specific companion assembly. Unlike with 
application-level (or lower) resource dictionaries, you can’t define a typed style for exter-
nally defined elements such as Button or ProgressBar in a theme dictionary or generic 
dictionary in your own application and have it override the default style—unless you use 
an additional mechanism involving ThemeDictionaryExtension.

ThemeDictionaryExtension is a markup extension that enables you to override the theme 
styles for any elements. It can reference any assembly containing a set of theme dictionar-
ies, even the current application. You can apply ThemeDictionaryExtension as the Source 
for a ResourceDictionary to affect everything under its scope. Here’s an example:

<Application …> 

<Application.Resources>

<ResourceDictionary> 

<ResourceDictionary.MergedDictionaries>

<ResourceDictionary …/> 

<ResourceDictionary Source=”{ThemeDictionary MyApplication}”/>

</ResourceDictionary.MergedDictionaries> 

</ResourceDictionary>

</Application.Resources> 

</Application>

Imagine that you want to make the pie chart style for ProgressBar vary, based on the 
Windows theme. If the MyApplication assembly contains per-theme styles with a 
TargetType of {x:Type ProgressBar}, all ProgressBars in this application get the 
customized per-theme style by default, thanks to the use of ThemeDictionaryExtension.

Another approach for attaching per-theme styles to existing elements is to define a 
custom subclass. Creating custom controls is the subject of Chapter 20, but creating a 
custom control (or another element) solely for the purpose of giving it a theme style is 
pretty simple. For the per-theme pie chart style example, you could create a custom 
control called ProgressPie, as follows:

public class ProgressPie : ProgressBar 

{

static ProgressPie() 

{

DefaultStyleKeyProperty.OverrideMetadata( 

typeof(ProgressPie),

CHAPTER 14 Styles, Templates, Skins, and Themes468

  From the Library of Wow! eBook



ptg

new FrameworkPropertyMetadata(typeof(ProgressPie))); 

}

}

Because ProgressPie derives from ProgressBar, it automatically has all the necessary 
functionality. But having a unique type gives you the ability to support a new theme style 
distinct from ProgressBar’s theme style. The only magic incantation is the single line of 
code in ProgressPie’s static constructor that sets the DefaultStyleKey dependency prop-
erty. DefaultStyleKey is a protected dependency property on FrameworkElement and 
FrameworkContentElement that determines the key to use for its default style. (The terms 
default style and theme style are often used interchangeably.)

WPF’s built-in elements set this property to their own type, so their corresponding theme 
dictionaries use typed styles. If the preceding code didn’t set a DefaultStyleKey, 
ProgressPie would inherit the value from ProgressBar, which is typeof(ProgressBar). 
Therefore, ProgressPie makes typeof(ProgressPie) its DefaultStyleKey.

This book’s source code contains a Visual Studio project that contains the preceding defi-
nition of ProgressPie, the preceding usage of ThemeInfoAttribute, and a handful of 
theme dictionaries that get compiled into the application. Each theme dictionary is a 
standalone XAML file with the following structure:

<ResourceDictionary 

xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation” 

xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml” 

xmlns:local=”clr-namespace:ThemedProgressPie”> 

<Style TargetType=”{x:Type local:ProgressPie}”>

… 

</Style>

</ResourceDictionary>

Figure 14.16 displays a theme-styled ProgressPie under two different themes. Although 
you can dig into how each Style was created, the point is that theme styles give you the 
flexibility to completely change an 
element’s visuals when the theme 
changes. Unlike the visuals in Figure
14.15, I think Figure 14.16 succeeds in 
making the Windows 7 ProgressPie 
extra sexy and the Windows Classic 
ProgressPie extra boring. Kidding aside, 
making theme styles too different from 
each other will probably confuse your 
users more than help them.

Themes 469
1

4

FIGURE 14.16 The same control with its 
theme style, viewed under two different 
themes.

Windows 7 (Aero) Windows Classic

  From the Library of Wow! eBook



ptg

Summary
The combination of styles, templates, skins, and themes is very powerful and often 
confusing to someone learning about WPF. Adding to the confusion is the fact that 
Styles can (and often do) contain templates, elements in templates all have Styles 
(whether marked explicitly or inherited implicitly), and theme styles are managed sepa-
rately from normal Styles (so an element like Button’s Style property is null by default, 
even though it clearly has a theme style applied).

These mechanisms are so powerful, in fact, that often you can restyle an existing control 
as an alternative to writing your own custom control. This is great news, as restyling an 
existing control is significantly easier than writing a custom control, and it can perhaps 
be done entirely by a graphic designer rather than a programmer. If you do find that you 
need to write a custom control (the topic of Chapter 20), the lessons learned here about 
creating robust templates and adapting to themes are still very applicable.

CHAPTER 14 Styles, Templates, Skins, and Themes470

Understanding Windows Themes and Color Schemes

Windows 7 and Windows Vista have a long list of color schemes, found on the advanced 
Appearance Settings dialog. Whether a user chooses Windows Aero or Windows Basic on 
either operating system, WPF uses the Aero.NormalColor theme dictionary. (This is still 
true when a user’s window color is no longer “normal” because of color customizations 
made via Control Panel.) And whether a user chooses Windows Standard, Windows Classic, 
or one of the high-contrast schemes, WPF uses the Classic theme dictionary. If you want to 
distinguish between these color schemes that map to the same theme, your best bet is to 
incorporate SystemColors into your styles and templates.

D I G G I N G  D E E P E R

You can play around with alternate skins for many WPF controls by downloading the WPF 
Themes .zip file from http://wpf.codeplex.com. These “themes” are what this chapter calls 
skins; they are just resource dictionaries that define new typed styles for most of WPF’s 
built-in controls. To use one of them, you can simply reference the resource dictionary as the 
Resources collection in your Application, Window, or elsewhere: 

<Application …>

<Application.Resources> 

<ResourceDictionary Source=”BureauBlack.xaml”/>

</Application.Resources> 

</Application>

Unfortunately, at the time of writing, these skins don’t include styles for the new controls in 
WPF 4 such as DataGrid, Calendar, and DatePicker. Figure 14.17 demonstrates the 
seven included skins applied to several controls.

T I P

  From the Library of Wow! eBook

http://wpf.codeplex.com


ptg

FIGURE 14.17 Applying skins from the “WPF Themes” download.

Summary 471
1

4

  From the Library of Wow! eBook



ptg

This page intentionally left blank 

  From the Library of Wow! eBook



ptg

PART V

Rich Media

IN THIS PART

CHAPTER 15 2D Graphics 475

CHAPTER 16 3D Graphics 537

CHAPTER 17 Animation 607

CHAPTER 18 Audio, Video, and Speech 653

  From the Library of Wow! eBook



ptg

This page intentionally left blank 

  From the Library of Wow! eBook



ptg

CHAPTER 15 

2D Graphics

Applications and components can have many reasons for 
drawing rectangles, ellipses, lines, or other shapes and 
paths. Most custom control templates tend to require some 
drawing to get their custom look, as was done in the previ-
ous chapter with Button and ProgressBar templates. But 
applications might simply want to provide an experience 
with custom rendering, regardless of whether it’s done in 
the context of controls. This could be in the form of a 
product logo or simple curves to separate areas of a Window. 
On the Web, these types of experiences are typically 
created by embedding images, but with the drawing capa-
bilities of WPF, you can do all this with vector drawings 
that scale perfectly to any size.

The ability to create and use vector-based 2D graphics is 
not unique to WPF; even GDI enabled the drawing of paths 
and shapes. The main difference with drawing in WPF 
versus GDI or any previous Windows technology is that 
WPF is a completely retained-mode graphics system rather 
than an immediate-mode graphics system.

In an immediate-mode system (GDI, GDI+, DirectX, and so 
on), you can draw “directly” onto the screen, but you must 
maintain the state of all visuals. In other words, it’s your 
responsibility to draw the correct pixels when a region of 
the screen is invalidated. This invalidation can be caused 
by user actions, such as resizing the window, or by applica-
tion-specific actions that require updated visuals.

In a retained-mode system, you can describe higher-level 
concepts such as “place a 10x10 blue square at (0,0),” and 
the system remembers and maintains the state for you. So, 
what you’re really saying is, “place a 10x10 blue square at 
(0,0) and keep it there.” You don’t need to worry about

IN THIS CHAPTER

. Drawings

. Visuals

. Shapes

. Brushes

. Effects

. Improving Rendering 
Performance

  From the Library of Wow! eBook



ptg

invalidation and repainting, so this can save a significant amount of work. It’s also the 
key to WPF’s seamless support for overlapping objects, transparency, video, resolution 
independence, and so on.

As with many other things in WPF, there are multiple ways to create and use two-dimen-
sional graphics. This chapter focuses on three important data types: Drawing, Visual, and 
Shape. Their relationship to each other is complex. For the most part, Drawings are simple 
descriptions of paths and shapes with associated fill and outline Brushes. Visuals are one 
way to draw Drawings onto the screen, but Visuals also unlock a lower-level and lighter-
weight approach for drawing that enable you to ditch Drawing objects altogether. Finally, 
Shapes are prebuilt Visuals that are the easiest (but most heavyweight) approach for 
drawing custom artwork onto the screen. Shapes also happen to be the only one of these 
three data types directly exposed by Silverlight. As we examine Drawings, Visuals, and 
Shapes, we’ll look at a simple piece of clip art and see what it means to create and use it 
in all three contexts.

The end of the chapter covers Brushes, special effects, and features for maximizing the 
performance of graphics-rich applications. Brushes are a vital part of all the topics in this 
chapter, and they have been used throughout the book for mundane tasks such as setting 
a control’s Foreground and Background. WPF has many different feature-rich Brushes, 
which is why they deserve a dedicated section. Effects such as drop shadows or blurring 
are not commonly used features, but they can add really slick touches to your user inter-
face that would be difficult to create without them.

Drawings
The abstract Drawing class represents a two-dimensional drawing. Drawing—specifically its 
GeometryDrawing subclass—was designed to be WPF’s version of clip art. It’s sufficient for 
representing any 2D illustration, and, as with all classes deriving from Animatable, it even 
supports animation, data binding, resource references, and more!

WPF includes five concrete subclasses of Drawing:

. GeometryDrawing—Combines a Geometry with a Brush that fills it and a Pen that 
outlines it. This is the subclass most relevant for this chapter.

. ImageDrawing—Combines an ImageSource with a Rect that defines its bounds.

. VideoDrawing—Combines a MediaPlayer (discussed in Chapter 18, “Audio, Video, 
and Speech”) with a bounding Rect.

. GlyphRunDrawing—Combines a GlyphRun, a low-level text class, with a Brush for its 
foreground.

. DrawingGroup—Contains a collection of Drawings and has a handful of properties 
for altering them in bulk (Opacity, Transform, and so on). DrawingGroup is itself a 
Drawing so it can be plugged in wherever a Drawing can be used. (This is just like 
the relationship between TransformGroup and Transform.)

CHAPTER 15 2D Graphics476

  From the Library of Wow! eBook



ptg

Here’s an example of a GeometryDrawing that contains a Geometry describing an ellipse 
(EllipseGeometry), an orange Brush, and a black Pen:

<GeometryDrawing Brush=”Orange”> 

<GeometryDrawing.Pen>

<Pen Brush=”Black” Thickness=”10”/>

</GeometryDrawing.Pen> 

<GeometryDrawing.Geometry>

<EllipseGeometry RadiusX=”100” RadiusY=”50”/>

</GeometryDrawing.Geometry> 

</GeometryDrawing>

Drawings are not UIElements; they don’t have any rendering behavior on their own. 
Therefore, if you try to place the preceding GeometryDrawing inside a Window or another 
ContentControl, you’ll get a simple TextBlock containing the string 
“System.Windows.Media.GeometryDrawing” (the fallback ToString rendering).

To get Drawings rendered appropriately, you can place them inside one of three different 
host objects:

. DrawingImage—Derives from ImageSource, so it can be used inside an Image rather 
than the typical BitmapImage.

. DrawingBrush—Derives from Brush, so it can be applied in many places, such as the 
Foreground, Background, or BorderBrush on a Control.

. DrawingVisual—Derives from Visual and is covered in the “Visuals” section, later 
in this chapter.

Therefore, you can use DrawingImage with the preceding GeometryDrawing as follows to 
get it drawn on the screen:

<Image> 

<Image.Source>

<DrawingImage> 

<DrawingImage.Drawing>

<GeometryDrawing Brush=”Orange”> 

<GeometryDrawing.Pen>

<Pen Brush=”Black” Thickness=”10”/> 

</GeometryDrawing.Pen> 

<GeometryDrawing.Geometry>

<EllipseGeometry RadiusX=”100” RadiusY=”50”/> 

</GeometryDrawing.Geometry> 

</GeometryDrawing>

</DrawingImage.Drawing> 

</DrawingImage>

</Image.Source> 

</Image>

Drawings 477
1

5

Brush

Pen

Geometry

  From the Library of Wow! eBook



ptg

Figure 15.1 shows the rendered result of this Image that ultimately contains the
GeometryDrawing.

CHAPTER 15 2D Graphics478

FIGURE 15.1 A simple EllipseGeometry inside a GeometryDrawing, inside a 
DrawingImage, inside an Image.

DrawingImage Versus ImageDrawing

It can be hard to keep the difference between DrawingImage and the previously mentioned 
ImageDrawing straight. They are both interesting because they enable mixing and matching 
of vector-based content with bitmap-based content.

DrawingImage is an ImageSource, enabling a typically vector-based Drawing to be its 
content rather than something bitmap based. Conversely, ImageDrawing is a Drawing, 
enabling a typically bitmap-based ImageSource to be its content rather than something 
vector based.

The following simple trick might help you remember the difference: For just about all the 
graphics classes in WPF (2D and 3D), a compound name like FooBar indicates that the 
class is a Bar that either contains or acts like a Foo. Therefore, DrawingImage is an 
ImageSource that contains a Drawing, whereas ImageDrawing is a Drawing that contains 
an ImageSource.

D I G G I N G  D E E P E R

The fact that DrawingImage is an ImageSource opens the door to generating images for 
vector-based content and using them in places you might not expect. Window.Icon is an 
ImageSource, as are TaskbarItemInfo.Overlay and ThumbButtonInfo.ImageSource (intro-
duced in Chapter 8, “Exploiting Windows 7”). Figure 15.2 shows what happens when you 
use DrawingImage to apply the same GeometryDrawing to all three of these properties, as 
in this example:

<Window …> 

<Window.Icon>

<DrawingImage> 

<DrawingImage.Drawing>

<GeometryDrawing Brush=”Orange”> 

<GeometryDrawing.Pen>

<Pen Brush=”Black” Thickness=”10”/> 

</GeometryDrawing.Pen> 

<GeometryDrawing.Geometry>

<EllipseGeometry RadiusX=”100” RadiusY=”50”/> 

</GeometryDrawing.Geometry> 

</GeometryDrawing>

  From the Library of Wow! eBook



ptg

</DrawingImage.Drawing> 

</DrawingImage>

</Window.Icon> 

…

</Window>

Previous chapters have used Brushes enough 
times that you should be fairly comfortable 
with the concept. Brushes have a lot more 
functionality than discussed so far, however, 
and are not specific to Drawings. Therefore, 
the “Brushes” section near the end of this 
chapter examines these features. For now, 
we’ll look at the two other components of 
GeometryDrawing: Geometry and Pen.

Geometries
A Geometry is the simplest possible 
abstract representation of a shape or 
path. It exposes methods that enable 
you to ask it geometric questions such as 
“What is your area?” or “Do you inter-
sect this point?” Geometry has a number 
of subclasses, which can be grouped into 
basic geometries and aggregate geome-
tries.

Basic Geometries
The four basic geometries are as follows:

. RectangleGeometry—Has a Rect property for defining its dimensions and RadiusX 
and RadiusY properties for defining rounded corners.

. EllipseGeometry—Has RadiusX and RadiusY properties, plus a Center property.

. LineGeometry—Has StartPoint and EndPoint properties to define a line segment.

. PathGeometry—Contains a collection of PathFigure objects in its Figures content 
property; a general-purpose Geometry.

The first three geometries are really just special cases of PathGeometry, provided for conve-
nience. You can express any rectangle, ellipse, or line segment in terms of a PathGeometry. 
So, let’s dig a little more into the components of the powerful PathGeometry class.

Drawings 479
1

5

FIGURE 15.2 Applying the same 
EllipseGeometry to a Window’s icon, 
taskbar item overlay, and all its thumb 
buttons.

Uses for Geometries

Although geometries are often used inside 
Drawings, they show up in other places in 
WPF’s APIs. For example, System.Windows. 
Ink.Stroke exposes ink strokes as geome-
tries (via its GetGeometry method), and 
DrawingGroup and Visual-derived classes 
expose a Clip property that enables you to 
clip visuals according to an arbitrary 
Geometry instance.

D I G G I N G  D E E P E R

  From the Library of Wow! eBook



ptg

PathFigures and PathSegments Each PathFigure in a PathGeometry contains one or 
more connected PathSegments in its Segments content property. A PathSegment is simply a 
straight or curvy line segment, represented by one of seven derived classes:

. LineSegment—A class for representing a line segment (of course!)

. PolyLineSegment—A shortcut for representing a connected sequence of 
LineSegments

. ArcSegment—A class for representing a segment that curves along the circumference 
of an imaginary ellipse

. BezierSegment—A class for representing a cubic Bézier curve

. PolyBezierSegment—A shortcut for representing a connected sequence of 
BezierSegments

. QuadraticBezierSegment—A class for representing a quadratic Bézier curve

. PolyQuadraticBezierSegment—A shortcut for representing a connected sequence of 
QuadraticBezierSegments

CHAPTER 15 2D Graphics480

Bézier Curves

Bézier curves (named after engineer Pierre Bézier) are commonly used in computer graphics 
for representing smooth curves. Bézier curves are even used by fonts to mathematically 
describe curves in their glyphs.

The basic idea is that in addition to two endpoints, a Bézier curve has one or more control 
points that give the line segment its curve. These control points are not visible (and not 
necessarily on the curve itself) but rather are used as input to a formula that dictates where 
each point on the curve exists. Intuitively, each control point acts like a center of gravity, so 
the line segment appears to be “pulled” toward these points.

Despite the scarier-sounding name, QuadraticBezierSegment is actually simpler than 
BezierSegment and computationally cheaper. A quadratic Bézier curve has only one control 
point, whereas a cubic Bézier curve has two. Therefore, a quadratic Bézier curve can only 
form a U-like shape (or a straight line), but a cubic Bézier curve can also take the form of an 
S-like shape.

D I G G I N G  D E E P E R

The following GeometryDrawing contains a PathGeometry with two simple LineSegments 
that create the L shape in Figure 15.3:

<GeometryDrawing> 

<GeometryDrawing.Pen>

<Pen Brush=”Black” Thickness=”10”/> 

</GeometryDrawing.Pen> 

<GeometryDrawing.Geometry>

<PathGeometry>

  From the Library of Wow! eBook



ptg

<PathFigure> 

<LineSegment Point=”0,100”/> 

<LineSegment Point=”100,100”/>

</PathFigure> 

</PathGeometry>

</GeometryDrawing.Geometry> 

</GeometryDrawing>

Of course, to produce the visuals in Figure 15.3, the 
GeometryDrawing must be hosted in something like a 
DrawingImage, as done previously.

Notice that the definition for each LineSegment includes only a single Point. That’s 
because it implicitly connects the previous point to the current one. The first LineSegment 
connects the default starting point of (0,0) to (0,100), and the second LineSegment 
connects (0,100) to (100,100). (The other six PathSegments act the same way.) If you want 
to provide a custom starting point, you can simply set PathFigure’s StartPoint property 
to a Point other than (0,0).

You might expect that applying a Brush to this 
GeometryDrawing is meaningless, but Figure 15.4 shows that 
it actually fills it as a polygon, pretending that a line 
segment exists to connect the last point back to the starting 
point. Figure 15.4 was created by adding the following 
Brush to the preceding XAML:

<GeometryDrawing Brush=”Orange”> 

…

</GeometryDrawing>

To turn the imaginary line segment into a real one, you 
could add a third LineSegment to the PathFigure explicitly, 
or you could simply set PathFigure’s IsClosed property to 
true. The result of doing either is shown in Figure 15.5.

Because all PathSegments within a PathFigure must be 
connected, you can place multiple PathFigures in a 
PathGeometry if you want disjoint shapes or paths in the 
same Geometry. You could also overlap PathFigures to create results that would be 
complicated to replicate in a single PathFigure. For example, the following XAML over-
laps the triangle from Figure 15.5 with a triangle that is given a different StartPoint but 
is otherwise identical:

<GeometryDrawing Brush=”Orange”> 

<GeometryDrawing.Pen>

<Pen Brush=”Black” Thickness=”10”/> 

</GeometryDrawing.Pen>

Drawings 481
1

5

FIGURE 15.3
A GeometryDrawing that 
ultimately contains a pair 
of LineSegments.

FIGURE 15.4 The 
GeometryDrawing from 
Figure 15.3 filled with an 
orange Brush.

FIGURE 15.5 The 
GeometryDrawing from 
Figure 15.4, but with 
IsClosed=”True”.

  From the Library of Wow! eBook



ptg

<GeometryDrawing.Geometry> 

<PathGeometry>

<!-- Triangle #1 --> 

<PathFigure IsClosed=”True”>

<LineSegment Point=”0,100”/> 

<LineSegment Point=”100,100”/>

</PathFigure> 

<!-- Triangle #2 --> 

<PathFigure StartPoint=”70,0” IsClosed=”True”>

<LineSegment Point=”0,100”/> 

<LineSegment Point=”100,100”/>

</PathFigure> 

</PathGeometry>

</GeometryDrawing.Geometry> 

</GeometryDrawing>

This dual-PathFigure GeometryDrawing is displayed in Figure 15.6. If you don’t want the 
sharp point at each corner, you can set each LineSegment’s IsSmoothJoin property (inher-
ited by all PathSegments) to true. Figure 15.6 also shows the result of doing this.

CHAPTER 15 2D Graphics482

From the original XAML

Adding IsSmoothJoin="True" on all LineSegments

FIGURE 15.6 Overlapping triangles created by using two PathFigures.

The behavior of the orange fill might not be what you expected to see. PathGeometry 
enables you to control this fill behavior with its FillRule property.

FillRule Whenever you have a geometry with intersecting points, whether via multiple 
overlapping PathFigures or overlapping PathSegments in a single PathFigure, there can 
be multiple interpretations of which area is inside a shape (and can, therefore, be filled) 
and which area is outside a shape.

With PathGeometry’s FillRule property (which can be set to a FillRule enumeration), 
you have two choices on how filling is done:

. EvenOdd—Fills a region only if you would cross an odd number of segments to 
travel from that region to the area outside the entire shape. This is the default.

. NonZero—Is a more complicated algorithm that takes into consideration the direc-
tion of the segments you would have to cross to get outside the entire shape. For 
many shapes, it is likely to fill all enclosed areas.

  From the Library of Wow! eBook



ptg

The difference between EvenOdd and NonZero is illus-
trated in Figure 15.7, with the same overlapping 
triangles from Figure 15.6.

Aggregate Geometries
WPF’s two classes for aggregating geometries—
GeometryGroup and CombinedGeometry—sound 
similar but behave quite differently. But like 
TransformGroup’s relationship to Transform and 
DrawingGroup’s relationship to Drawing, both aggre-
gate geometry classes derive from Geometry, so they can be used anywhere that a simpler 
Geometry can be used.

Drawings 483
1

5

FIGURE 15.7 Overlapping trian-
gles with different values for 
PathGeometry.FillRule.

NonZeroEvenOdd

StreamGeometry

For complex geometries that don’t need to be modified after they are created, you should 
consider using StreamGeometry rather than PathGeometry as a performance optimization. 
StreamGeometry works like PathGeometry, except that it can only be directly filled via proce-
dural code. Its odd name refers to an implementation detail: To use less memory (and less 
of the CPU), its PathFigures and PathSegments are stored as a compact byte stream 
rather than a graph of .NET objects.

The following code constructs a StreamGeometry with overlapping triangles that is identical 
to the PathGeometry used to create Figure 15.6:

StreamGeometry g = new StreamGeometry(); 

using (StreamGeometryContext context = g.Open()) 

{

// Triangle #1 

context.BeginFigure(new Point(0, 0), true /*isFilled*/, true /*isClosed*/); 

context.LineTo(new Point(0, 100), true /*isStroked*/, true /*isSmoothJoin*/); 

context.LineTo(new Point(100, 100), true /*isStroked*/, true /*isSmoothJoin*/);

// Triangle #2 

context.BeginFigure(new Point(70, 0), true /*isFilled*/, true /*isClosed*/); 

context.LineTo(new Point(0, 100), true /*isStroked*/, true /*isSmoothJoin*/); 

context.LineTo(new Point(100, 100), true /*isStroked*/, true /*isSmoothJoin*/);

} 

// Apply this Geometry to an existing GeometryDrawing: 

geometryDrawing.Geometry = g;

Rather than create LineSegments, ArcSegments, BezierSegments, and other objects, you 
call methods such as LineTo, ArcTo, and BezierTo. For performance reasons, WPF inter-
nally uses StreamGeometry in a number of situations.

D I G G I N G  D E E P E R

  From the Library of Wow! eBook



ptg

GeometryGroup GeometryGroup composes one or more Geometry instances together. For 
example, the previously shown XAML for creating the overlapping triangles in Figure 15.6 
could be rewritten to use two geometries (each with a single PathFigure) rather than one:

<GeometryDrawing Brush=”Orange”> 

<GeometryDrawing.Pen>

<Pen Brush=”Black” Thickness=”10”/> 

</GeometryDrawing.Pen> 

<GeometryDrawing.Geometry>

<GeometryGroup>

<!-- Triangle #1 --> 

<PathGeometry>

<PathFigure IsClosed=”True”> 

<LineSegment Point=”0,100”/> 

<LineSegment Point=”100,100”/>

</PathFigure> 

</PathGeometry> 

<!-- Triangle #2 --> 

<PathGeometry>

<PathFigure StartPoint=”70,0” IsClosed=”True”> 

<LineSegment Point=”0,100”/> 

<LineSegment Point=”100,100”/>

</PathFigure> 

</PathGeometry>

</GeometryGroup>

</GeometryDrawing.Geometry> 

</GeometryDrawing>

GeometryGroup, like PathGeometry, has a FillRule property that is set to EvenOdd by 
default. It takes precedence over any FillRule settings of its children.

This, of course, begs the question, “Why would I create a GeometryGroup when I can just 
as easily create a single PathGeometry with multiple PathFigures?” One minor advantage 
of doing this is that GeometryGroup enables you to aggregate other geometries such as 
RectangleGeometry and EllipseGeometry, which can be easier to use. But the major 
advantage of using GeometryGroup is that you can set various Geometry properties inde-
pendently on each child.

For example, the following GeometryGroup composes two identical triangles but sets the 
Transform on one of them to rotate it 25°:

<GeometryDrawing Brush=”Orange”> 

<GeometryDrawing.Pen>

<Pen Brush=”Black” Thickness=”10”/> 

</GeometryDrawing.Pen> 

<GeometryDrawing.Geometry>

<GeometryGroup>

CHAPTER 15 2D Graphics484

  From the Library of Wow! eBook



ptg

<!-- Triangle #1 --> 

<PathGeometry>

<PathFigure IsClosed=”True”> 

<LineSegment Point=”0,100” IsSmoothJoin=”True”/> 

<LineSegment Point=”100,100” IsSmoothJoin=”True”/>

</PathFigure> 

</PathGeometry> 

<!-- Triangle #2 --> 

<PathGeometry> 

<PathGeometry.Transform>

<RotateTransform Angle=”25”/> 

</PathGeometry.Transform>

<PathFigure IsClosed=”True”> 

<LineSegment Point=”0,100” IsSmoothJoin=”True”/> 

<LineSegment Point=”100,100” IsSmoothJoin=”True”/>

</PathFigure> 

</PathGeometry>

</GeometryGroup> 

</GeometryDrawing.Geometry> 

</GeometryDrawing>

The result of this is shown in Figure 15.8. Creating such a 
geometry with a single PathGeometry and a single PathFigure 
would be difficult. Creating it with a single PathGeometry 
containing two PathFigures would be easier but would still 
require manually doing the math to perform the rotation. With 
GeometryGroup, however, creating it is very straightforward.

Drawings 485
1

5

FIGURE 15.8 A
GeometryGroup with 
two identical triangles, 
except that one is 
rotated.

Because Brush and Pen are specified at the Drawing level rather than at the Geometry 
level, GeometryGroup doesn’t enable you to combine shapes with different fills or outlines. 
To achieve this, you can use a DrawingGroup to combine multiple drawings (which might or 
might not have multiple geometries).

T I P

Unlike UIElements, which can have only a single parent, instances of Geometry, 
PathFigure, and related classes can be shared. Sharing these objects when possible can 
result in a major performance improvement, especially for complex geometries. If they aren’t 
going to change, freezing them helps performance even more.

T I P

  From the Library of Wow! eBook



ptg

CombinedGeometry CombinedGeometry, unlike GeometryGroup, is not a general-purpose 
aggregator. Instead, it merges two (and only two) geometries using one of the approaches 
designated by the GeometryCombineMode enumeration:

. Union—Gives the combined geometry the entire area of both geometries. This is the 
default.

. Intersect—Gives the combined geometry only the area shared by both geometries.

. Xor—Gives the combined geometry only the area that is not shared by both geome-
tries.

. Exclude—Gives the combined geometry only the area that is unique to the first 
geometry.

CombinedGeometry defines Geometry1 and Geometry2 properties to hold the two inputs 
and a GeometryCombineMode property that accepts one of the preceding values. Figure 15.9 
demonstrates the result of using each GeometryCombineMode value with the overlapping 
triangles from Figure 15.8 as follows:

<GeometryDrawing Brush=”Orange”> 

<GeometryDrawing.Pen>

<Pen Brush=”Black” Thickness=”10”/> 

</GeometryDrawing.Pen> 

<GeometryDrawing.Geometry>

<CombinedGeometry GeometryCombineMode=”XXX”> 
<CombinedGeometry.Geometry1>

<!-- Triangle #1 -->

CHAPTER 15 2D Graphics486

Continued

For the GeometryGroup used for Figure 15.8, there’s no need to duplicate the identical
PathFigure instances. Instead, with the PathFigure defined as a resource with the key 
figure, you could rewrite the GeometryGroup as follows:

<GeometryGroup> 

<!-- Triangle #1 --> 

<PathGeometry>

<StaticResource ResourceKey=”figure”/>

</PathGeometry> 

<!-- Triangle #2 --> 

<PathGeometry> 

<PathGeometry.Transform>

<RotateTransform Angle=”25”/> 

</PathGeometry.Transform>

<StaticResource ResourceKey=”figure”/>

</PathGeometry> 

  From the Library of Wow! eBook



ptg

<PathGeometry> 

…

</PathGeometry> 

</CombinedGeometry.Geometry1> 

<CombinedGeometry.Geometry2>

<!-- Triangle #2 --> 

<PathGeometry>

… 

</PathGeometry>

</CombinedGeometry.Geometry2> 

</CombinedGeometry>

</GeometryDrawing.Geometry> 

</GeometryDrawing>

Drawings 487
1

5

Union Intersect Xor Exclude

FIGURE 15.9 CombinedGeometry with each of the GeometryCombineMode settings, with a 
surrounding square to provide a frame of reference.

Representing Geometries as Strings
Representing each segment in a Geometry with a separate element is fine for simple 
shapes and paths, but for complicated artwork, it can get very verbose. Although most 
people use a design tool to emit XAML-based geometries rather than craft them by hand, 
it makes sense to keep the resultant file size as small as reasonably possible.

Therefore, WPF has a GeometryConverter type converter that supports a flexible syntax 
for representing just about any PathGeometry as a string. For programmatic scenarios, 
Geometry even exposes a static Parse method that accepts the same syntax and returns a 
Geometry instance. (Although it’s an implementation detail, the Geometry returned by the 
type converter and Geometry.Parse is an instance of the efficient StreamGeometry class.)

For example, the PathGeometry representing the simple triangle displayed in Figure 15.6:

<GeometryDrawing> 

<GeometryDrawing.Pen>

<Pen Brush=”Black” Thickness=”10”/> 

</GeometryDrawing.Pen> 

<GeometryDrawing.Geometry>

<PathGeometry>

  From the Library of Wow! eBook



ptg

<PathFigure IsClosed=”True”> 

<LineSegment Point=”0,100”/> 

<LineSegment Point=”100,100”/>

</PathFigure> 

</PathGeometry>

</GeometryDrawing.Geometry> 

</GeometryDrawing>

can be represented with the following compact syntax:

<GeometryDrawing Geometry=”M 0,0 L 0,100 L 100,100 Z”> 

<GeometryDrawing.Pen>

<Pen Brush=”Black” Thickness=”10”/> 

</GeometryDrawing.Pen> 

</GeometryDrawing>

Representing the overlapping triangles from Figure 15.6 requires a slightly longer string:

<GeometryDrawing Geometry=”M 0,0 L 0,100 L 100,100 Z M 70,0 L 0,100 L 100,100 Z”> 

<GeometryDrawing.Pen>

<Pen Brush=”Black” Thickness=”10”/> 

</GeometryDrawing.Pen> 

</GeometryDrawing>

These strings contain a series of commands that control properties of PathGeometry and 
its PathFigures, plus commands that fill one or more PathFigures with PathSegments. 
The syntax is pretty simple but very powerful. Table 15.1 describes all the available 
commands.

TABLE 15.1 Geometry String Commands 

Command Meaning
PathGeometry and PathFigure Properties 

F n Set FillRule, where 0 means EvenOdd and 1 means NonZero. 
If you use this, it must be at the beginning of the string.

M x,y Start a new PathFigure and set StartPoint to (x,y). This 
must be specified before using any other commands (excluding 
F). The M stands for move.

Z End the PathFigure and set IsClosed to true. You can begin 
another disjoint PathFigure after this with an M command or 
use a different command to start a new PathFigure originating 
from the current point. If you don’t want the PathFigure to be 
closed, you can omit the Z command entirely.

CHAPTER 15 2D Graphics488

  From the Library of Wow! eBook



ptg

PathSegments

L x,y Create a LineSegment to (x,y).
A rx,ry d f1 f2 x,y Create an ArcSegment to (x,y), based on an ellipse with radii 

rx and yx, rotated d degrees. The f1 and f2 flags can be set to 
0 (false) or 1 (true) to control two of ArcSegment’s properties: 
IsLargeArc and Clockwise, respectively.

C x1,y1 x2,y2 x,y Create a BezierSegment to (x,y), using control points (x1,y1) 
and (x2,y2). The C stands for cubic Bézier curve.

Q x1,y1 x,y Create a QuadraticBezierSegment to (x,y), using control point 
(x1,y1).

Additional Shortcuts

H x Create a LineSegment to (x,y), where y is taken from the 
current point. The H stands for horizontal line.

V y Create a LineSegment to (x,y), where x is taken from the 
current point. The V stands for vertical line.

S x2,y2 x,y Create a BezierSegment to (x,y), using control points (x1,y1) 
and (x2,y2), where x1 and y1 are automatically calculated to 
guarantee smoothness. (This point is either the second control 
point of the previous segment or the current point if the previ-
ous segment is not a BezierSegment.) The S stands for smooth 
cubic Bézier curve.

Lowercase commands Any command can be specified in lowercase to cause its rele-
vant parameters to be interpreted as relative to the current 
point rather than absolute coordinates. This doesn’t change the 
meaning of the F, M, and Z commands, but they can also be 
specified in lowercase.

Drawings 489

TABLE 15.1 Continued

1
5

Spaces and Commas in Geometry Strings

The spaces between commands and parameters are optional, and all commas are optional. 
But you must have at least one space or comma between parameters. Therefore, the string 
M 0,0 L 0,100 L 100,100 Z is equivalent to the much more confusing M0 0L0 100L100 
100Z.

D I G G I N G  D E E P E R

Pens
Looking at the three components of GeometryDrawing, geometries and Brushes are large 
topics, but Pens are relatively simple. A Pen is basically a Brush with a Thickness. Indeed, 
the two Pen properties used in previous examples are Brush (of type Brush) and Thickness 
(of type double). But Pen defines a few more properties for controlling its appearance:

. StartLineCap and EndLineCap—Customize any open segment endpoints with a 
value from the PenLineCap enumeration: Flat (the default), Square, Round, or

  From the Library of Wow! eBook



ptg

Triangle. For any endpoints that 
join two segments, you can 
customize their appearance with 
LineJoin instead.

. LineJoin—Affects corners with a 
value from the PenLineJoin 
enumeration: Miter (the default), 
Round, or Bevel. A separate 
MiterLimit property can be used 
to limit how far a Miter join 
extends, which can otherwise be 
very large for small angles. Its 
default value is 10.

. DashStyle—Can make the Pen’s stroke a nonsolid line. It can be set to an instance 
of a DashStyle object. The endpoints of each dash can be customized with Pen’s 
DashCap property, which works just like StartLineCap and 
EndLineCap, except that its default value is Square instead of 
Flat.

Figure 15.10 shows each of the PenLineCap values applied to a 
LineSegment’s StartLineCap and EndLineCap. Figure 15.11 demon-
strates each of the LineJoin values on the corners of a triangle. 
Using a LineJoin of Round is like setting IsSmoothJoin to true on 
all PathSegments. The latter approach enables you to customize 
each corner individually, whereas setting Pen’s LineJoin applies to 
the entire geometry.

CHAPTER 15 2D Graphics490

What’s the difference between
PenLineCap’s Flat and Square

values?

A Flat line cap ends exactly on the 
endpoint, whereas a Square line cap 
extends beyond the endpoint. Much like the 
Round line cap, you can imagine a square 
with the same dimensions as the Pen’s 
Thickness centered on the endpoint. 
Therefore, the line ends up extending half 
the length of the Pen’s Thickness.

?
FA Q

FIGURE 15.10
Each type of 
PenLineCap on 
both ends of a 
LineSegment.

Flat

Square

Round

Triangle

FIGURE 15.11 Each type of LineJoin applied to the familiar triangle.

The DashStyle class defines a Dashes property, which is a simple DoubleCollection that 
can contain a pattern of numbers that represents the widths of dashes and the spaces 
between them. The odd values represent the widths (relative to the Pen’s Thickness) of 
dashes, and the even values represent the relative widths of spaces. Whatever pattern you 
choose is then repeated indefinitely. DashStyle also has a double Offset property that 
controls where the pattern begins.

Miter Round Bevel

  From the Library of Wow! eBook



ptg

The confusing thing about DashStyle is that because DashCap is set to Square by default, 
each dash is naturally wider when given the same numeric value as a space. Furthermore, 
giving a dash a width of 0 is common because it simply becomes the DashCap itself. 
However, a DashStyles class defines a few common patterns in static DashStyle proper-
ties. For example, you can use a DashDotDot pattern as follows:

<Pen Brush=”Black” Thickness=”10” DashStyle=”{x:Static DashStyles.DashDotDot}”/>

Figure 15.12 shows each of the built-in DashStyles, along with the numeric Dashes values 
they use internally.

Drawings 491
1

5

Solid Dash (2,2) Dot (0,2) DashDot (2,2,0,2) DashDotDot 
(2,2,0,2,0,2)

FIGURE 15.12 Each of the built-in DashStyles properties applied to a Pen, with the default 
Square DashCap and Miter LineJoin.

Clip Art Example
Now that you know everything there is to know about GeometryDrawing, you can create a 
simple piece of clip art. Listing 15.1 contains an Image-hosted DrawingGroup with three 
GeometryDrawings to render the ghost shown in Figure 15.13.

LISTING 15.1 The Drawing-Based Implementation of a Ghost, Hosted in an Image

<Image> 

<Image.Source>

<DrawingImage> 

<DrawingImage.Drawing>

<DrawingGroup>

<!-- The body --> 

<GeometryDrawing Brush=”Blue” Geometry=”M 240,250

C 200,375 200,250 175,200

C 100,400 100,250 100,200 

C 0,350   0,250   30,130 

C 75,0    100,0   150,0 

C 200,0   250,0   250,150 Z”/>

<!-- The eyes --> 

<GeometryDrawing Brush=”Black”>

  From the Library of Wow! eBook



ptg

<GeometryDrawing.Pen> 

<Pen Brush=”White” Thickness=”10”/>

</GeometryDrawing.Pen> 

<GeometryDrawing.Geometry>

<GeometryGroup> 

<!-- Left eye --> 

<EllipseGeometry RadiusX=”15” RadiusY=”15” Center=”95,95”/> 

<!-- Right eye --> 

<EllipseGeometry RadiusX=”15” RadiusY=”15” Center=”170,105”/>

</GeometryGroup> 

</GeometryDrawing.Geometry> 

</GeometryDrawing>

<!-- The mouth --> 

<GeometryDrawing> 

<GeometryDrawing.Pen>

<Pen Brush=”Black” StartLineCap=”Round” EndLineCap=”Round”

Thickness=”10”/> 

</GeometryDrawing.Pen> 

<GeometryDrawing.Geometry>

<LineGeometry StartPoint=”75,160” EndPoint=”175,150”/> 

</GeometryDrawing.Geometry> 

</GeometryDrawing>

</DrawingGroup> 

</DrawingImage.Drawing> 

</DrawingImage>

</Image.Source> 

</Image>

CHAPTER 15 2D Graphics492

LISTING 15.1 Continued

FIGURE 15.13 A ghost created with a DrawingGroup that contains three
GeometryDrawings.

  From the Library of Wow! eBook



ptg

Visuals
Visual, the abstract base class of UIElement (which is the base class of FrameworkElement), 
contains the low-level infrastructure required to draw anything onto the screen. The 
previous section uses Image elements as a way to render all Drawings onto the screen. 
Image ultimately derives from Visual, but its two intermediate base classes, 
FrameworkElement and UIElement, contain a number of features that often aren’t required 
for drawings—Styles, data binding, resources, participation in layout, support for 
keyboard/mouse/stylus/touch input and focus, support for routed events, and so on.

Now imagine an application or a component that might want to perform a lot of custom 
rendering: perhaps a side-scrolling game in the style of Super Mario Bros. or a mapping 
program like Bing Maps. If implemented with WPF vector graphics, such programs could 
have hundreds or thousands of Drawings on the screen at any point in time. If they were 
all hosted in a single Image, you would not be able to support fine-grained interactivity 
with individual Drawings. But if each one were hosted in a separate Image, there would be 
an unacceptable amount of overhead for unnecessary features.

Fortunately, a different Visual subclass provides a lightweight mechanism for rendering 
Drawings onto the screen: DrawingVisual. DrawingVisual has a few handy properties for 
controlling rendering aspects, such as Opacity and Clip (which DrawingGroup also 
happens to have). But it also has support for a minimal amount of interaction with input 
devices. This comes in a form of hit testing called visual hit testing.

Because DrawingVisual operates at a much lower level than typical WPF features, its use is 
not very obvious. This section explains how to fill a DrawingVisual with content, how to 
get that content rendered to the screen, and how to perform visual hit testing.

Filling a DrawingVisual with Content
DrawingVisual does not have a simple Drawing property to which you can attach a 
Drawing. (It actually does have a Drawing property, but it’s read-only.) Instead, you must 
call its RenderOpen method, which returns an instance of a DrawingContext. You can draw 
into this object and then close it with its Close method.

For example, the following code places the entire ghost Drawing from Listing 15.1 inside a 
DrawingVisual, assuming that it’s defined as a resource with a ghostDrawing key:

DrawingGroup ghostDrawing = FindResource(“ghostDrawing”) as DrawingGroup; 

DrawingVisual ghostVisual = new DrawingVisual(); 

using (DrawingContext dc = ghostVisual.RenderOpen()) 

{

dc.DrawDrawing(ghostDrawing);

}

This code makes use of the fact that DrawingContext implements IDisposable, mapping 
its Close method to Dispose (which is implicitly called in a finally block when exiting 
the using scope).

Visuals 493
1

5

  From the Library of Wow! eBook



ptg

Listing 15.1 uses a DrawingGroup to combine the three GeometryDrawings defining the 
ghost simply so it can be set as the single Drawing inside a DrawingImage. With 
DrawingVisual, however, consolidating the GeometryDrawings in a DrawingGroup is not 
necessary. The following code adds each of the three GeometryDrawings to the 
DrawingContext individually, assuming that they are defined as resources with their own 
keys:

GeometryDrawing bodyDrawing = FindResource(“bodyDrawing”) as GeometryDrawing; 

GeometryDrawing eyesDrawing = FindResource(“eyesDrawing”) as GeometryDrawing; 

GeometryDrawing mouthDrawing = FindResource(“mouthDrawing”) as GeometryDrawing; 

DrawingVisual ghostVisual = new DrawingVisual(); 

using (DrawingContext dc = ghostVisual.RenderOpen()) 

{

dc.DrawDrawing(bodyDrawing); 

dc.DrawDrawing(eyesDrawing); 

dc.DrawDrawing(mouthDrawing);

}

Later drawings are placed on top of earlier drawings, so this code preserves the proper Z 
ordering.

Just as you could get rid of the extra DrawingGroup layer and get the same result, you can 
also get rid of the Drawing objects altogether! Drawings are essentially just wrappers on 
top of the drawing commands that you can perform directly on DrawingContext. 
DrawingContext contains several methods for drawing geometries, images, and even video 
or text. (In other words, these methods cover the functionality provided by the entire list 
of Drawing types shown earlier in the chapter: GeometryDrawing, ImageDrawing, 
VideoDrawing, and GlyphRunDrawing.) It also supports pushing and popping a variety of 
effects. Table 15.2 lists all the DrawingContext methods.

TABLE 15.2 DrawingContext Methods 

Task Methods

Drawing a simple GeometryDrawing without a DrawRectangle,
Geometry or Drawing instance DrawRoundedRectangle,

DrawEllipse, DrawLine
Drawing arbitrary Drawings without a Drawing instance DrawGeometry, DrawImage, 

DrawVideo, DrawGlyphRun,
DrawText

Drawing Arbitrary Drawings with a Drawing instance DrawDrawing

Applying effects to drawing commands PushClip, PushEffect,
PushGuidelineSet, PushOpacity, 
PushOpacityMask, PushTransform, 
Pop

Finishing the sequence of drawing commands Close

CHAPTER 15 2D Graphics494

  From the Library of Wow! eBook



ptg

The PushXXX and Pop methods enable you to not only apply the same effect, such as 
translucency or rotation, to a series of commands but also to nest them. The PushEffect 
method is obsolete in WPF 4 and has no effect, but the others do what they advertise.

Listing 15.2 contains a new implementation of the ghost clip art from Listing 15.1, 
entirely in procedural code. In the Window’s constructor, the DrawingVisual is created and 
filled in without the aid of any Drawing instances. Note that the Window in this listing is 
still completely blank because we actually haven’t taken any steps to render the 
DrawingVisual! That task is saved for the next section.

LISTING 15.2 WindowHostingVisual.cs—The DrawingContext-Based Implementation of 
the Ghost from Listing 15.1

using System; 

using System.Windows; 

using System.Windows.Media;

public class WindowHostingVisual : Window 

{

public WindowHostingVisual() 

{

Title = “Hosting DrawingVisuals”; 

Width = 300;

Height = 350;

DrawingVisual ghostVisual = new DrawingVisual(); 

using (DrawingContext dc = ghostVisual.RenderOpen()) 

{

// The body 

dc.DrawGeometry(Brushes.Blue, null, Geometry.Parse(

@”M 240,250 

C 200,375 200,250 175,200

C 100,400 100,250 100,200 

C 0,350   0,250   30,130 

C 75,0    100,0   150,0 

C 200,0   250,0   250,150 Z”));

// Left eye 

dc.DrawEllipse(Brushes.Black, new Pen(Brushes.White, 10),

new Point(95, 95), 15, 15); 

// Right eye 

dc.DrawEllipse(Brushes.Black, new Pen(Brushes.White, 10),

new Point(170, 105), 15, 15); 

// The mouth 

Pen p = new Pen(Brushes.Black, 10);

p.StartLineCap = PenLineCap.Round;

p.EndLineCap = PenLineCap.Round;

Visuals 495
1

5

  From the Library of Wow! eBook



ptg

dc.DrawLine(p, new Point(75, 160), new Point(175, 150)); 

}

} 

}

This listing calls DrawGeometry to draw the ghost’s body, which is the simplest method for 
drawing a complex shape. Notice that Geometry.Parse is used so the path can be 
described as the same string used in Listing 15.1 rather than an explicit PathFigure 
containing a bunch of BezierSegment instances. The drawing of the eyes and mouth 
doesn’t even require using Geometry instances; DrawEllipse and DrawLine are used. A few 
extra lines of code are needed to initialize the Pen for the mouth because Pen’s constructor 
doesn’t let you specify advanced features such as the line caps.

Unlike the XAML-based Drawing in Listing 15.1, Listing 15.2 is not a particularly great 
way to share clip art. But it’s a valuable technique for drawing-heavy applications. Going 
back to the mapping program example, DrawingContext’s DrawGeometry method could be 
used to draw paths representing roads, lakes, and boundaries, and DrawText could be used 
to add labels on top of this content. Or, if the maps use satellite images, DrawImage can be 
used to position such images without the overhead of an Image element for each one. 
(DrawImage accepts an ImageSource rather than an Image.)

Therefore, the DrawingContext class is 
WPF’s closest analog to the Win32 
device context or the Windows Forms 
Graphics object. Note that the use of 
DrawingContext doesn’t change the fact 
that you’re operating within a retained-
mode system. The specified drawing 
doesn’t happen immediately; the 
commands are persisted by WPF until 
they are needed.

Displaying a Visual on the Screen
Displaying a Visual on the screen that happens to also be a UIElement is easy; if you add 
it as the Content of a content control such as Window, or a child in a Panel, or an item in 
an items control, and so on, it gets rendered appropriately based on its OnRender imple-
mentation. But if you have a non-UIElement Visual, such as the ghostly DrawingVisual, 
all you see rendered if you take one of these actions is the unsatisfactory ToString render-
ing.

To get such a Visual properly rendered, you need to manually add it to some UIElement’s 
visual tree. “Now, wait just a minute,” you might be saying. “I thought the whole point 
of using DrawingVisual was to avoid the extra overhead of UIElement!” Yes, but you still 
need at least one UIElement, even if that’s simply the top-level Window. In the mapping 
program example, you could host thousands of Visuals in a single Canvas or Window 
rather than having thousands of UIElements in that same host.

CHAPTER 15 2D Graphics496

LISTING 15.2 Continued

Using DrawingContext is a lightweight way 
to perform drawing because it can avoid the 
overhead of allocating a Drawing object on 
the managed heap for every line, shape, and 
so on. Therefore, it’s the best choice for 
rendering tens of thousands of items.

T I P

  From the Library of Wow! eBook



ptg

The tricky part about adding Visuals to an element is that you have to derive your own 
custom class from an existing UIElement and then override two protected virtual 
members: VisualChildrenCount and GetVisualChild. Listing 15.3 does this for the 
Window defined in Listing 15.2. This is all the code needed to display the DrawingVisual, 
as shown in Figure 15.14. Notice that the background is black, unlike when hosting a 
DrawingImage inside an Image element.

LISTING 15.3 WindowHostingVisual.cs—Update for Rendering the Ghost DrawingVisual

using System; 
using System.Windows; 
using System.Windows.Media;

public class WindowHostingVisual : Window 
{
DrawingVisual ghostVisual = null;

public WindowHostingVisual() 
{
Title = “Hosting DrawingVisuals”; 
Width = 300;
Height = 350;

ghostVisual = new DrawingVisual(); 
using (DrawingContext dc = ghostVisual.RenderOpen()) 
{
The same drawing commands from Listing 15.2… 

}

// Bookkeeping:
AddVisualChild(ghostVisual); 
AddLogicalChild(ghostVisual);

}

// The two necessary overrides, implemented for the single Visual: 
protected override int VisualChildrenCount 
{

get { return 1; } 
} 
protected override Visual GetVisualChild(int index) 
{
if (index != 0) 
throw new ArgumentOutOfRangeException(“index”);

return ghostVisual; 
}

}

Visuals 497
1

5

  From the Library of Wow! eBook



ptg

VisualChildrenCount must return the number of Visuals 
contained by the Window. This simple example has only the 
one DrawingVisual, so this property always returns 1. 
GetVisualChild must return the actual Visual associated with 
a zero-based index. Therefore, this method is implemented to 
return the DrawingVisual when the input is 0 and throw an 
exception otherwise. If you want to support multiple Visuals, 
you could maintain a collection of them and update these 
two members to use that collection. If you want to interact 
with the layout system, you must override two additional 
members—MeasureOverride and ArrangeOverride—covered 
in Chapter 21, “Layout with Custom Panels.”

Be aware that the VisualChildrenCount/GetVisualChild 
implementation in Listing 15.3 causes the Window’s Content 
property to never be rendered, even if it’s set. If that’s not 
acceptable, an easy solution is to move this Visual-hosting 
code to a different UIElement and then place that element in 
the Window as desired. For the mapping program example, 
this could mean hosting your custom Visuals in a Canvas-
derived class and then placing that in a Window’s Grid (or 
other Panel) so you can overlay Buttons 
and other controls.

Besides overriding the two members of 
Visual, Listing 15.3 also passes the 
DrawingVisual to two protected methods 
defined on Window’s base classes: 
AddVisualChild (defined on Visual) and 
AddLogicalChild (defined on 
FrameworkElement). Calling both of these 
isn’t strictly necessary for rendering the 
DrawingVisual, but it should be done to 
“register” the existence of this visual 
with the appropriate logical and visual trees. That way, features such as event routing, hit 
testing, and property inheritance work as expected. If you are maintaining a collection of 
Visual children and ever remove one of these children, you should call 
RemoveVisualChild and RemoveLogicalChild.

CHAPTER 15 2D Graphics498

FIGURE 15.14 The 
ghost DrawingVisual is 
rendered inside the 
Window after 
VisualChildrenCount 
and GetVisualChild are 
overridden.

Calling Visual.AddVisualChild is not 
enough for adding a visual child!

The name of the AddVisualChild method 
makes it sound like calling it is all you need 
to do to add a Visual child to an element. 
But that is not the case. You must still 
implement VisualChildrenCount and 
GetVisualChild to return the appropriate 
information.

WA R N I N G

Other Uses for Visuals

Although non-UIElement Visuals must be hosted in a UIElement to be rendered on the 
screen, you can do other things with these lightweight Visuals without requiring a 
UIElement host. For example, any Visual can be sent to a printer with PrintDialog’s 
PrintVisual method, and you can host any Visual in a Win32 application (as described in 
Chapter 19, “Interoperability with Non-WPF Technologies”). DrawingVisual is also conve-
nient when using RenderTargetBitmap, covered later in this chapter.

D I G G I N G  D E E P E R

  From the Library of Wow! eBook



ptg

Visual Hit Testing
The term hit testing refers to determining whether a point (or set of points) intersects with 
a given object. Hit testing is typically done in the context of a mouse, stylus, or touch 
event, where the point in question is the location of the mouse pointer, stylus tip, or 
finger(s).

In WPF, there are two kinds of hit testing: visual hit testing, which is supported by all 
Visuals, and input hit testing, which is supported only by UIElements. This section 
describes only visual hit testing; input hit testing is covered in the “Shapes” section.

Visual hit testing is crucial for enabling a Visual to respond to user actions such as clicks, 
taps, or hovering because it doesn’t have any of the input events that UIElements have 
(MouseLeftButtonDown, MouseEnter, MouseLeave, MouseMove, and so on). By handling such 
events on the host UIElement and then using visual hit testing to determine whether rele-
vant child Visuals were “hit,” you can make any Visual respond appropriately to any or 
all of these events.

Simple Hit Testing
Visual hit testing can be performed with the static VisualTreeHelper.HitTest method. 
The simplest overload of this method accepts a root Visual whose visual tree should be 
searched as well as the coordinate being tested (which must be expressed relative to the 
passed-in root). It returns a HitTestResult, which contains the topmost Visual hit by 
that point.

Therefore, the following method could be added to the Window in Listing 15.3 to process 
clicks on the ghost DrawingVisual and respond by rotating it by 1° each time (just for 
demonstration purposes):

protected override void OnMouseLeftButtonDown(MouseButtonEventArgs e) 

{

base.OnMouseLeftButtonDown(e);

// Retrieve the mouse pointer location relative to the Window

Visuals 499
1

5

Another Option for Performing Custom Rendering

If an application or a component uses only a single DrawingVisual, which means that you 
don’t require its drawings to be independently interactive, you might as well host it in a 
UIElement instead. The extra overhead of UIElement compared to DrawingVisual is not 
significant when dealing with a single instance. And working with a custom UIElement is 
easier than working with a DrawingVisual: You simply override its OnRender method, draw 
into its DrawingContext parameter, and host it anywhere, such as Content in a 
ContentControl. That said, hosting a Drawing inside an Image is easier still, doesn’t 
require any procedural code, and has insignificant overhead over a UIElement if you’re 
dealing with only one.

D I G G I N G  D E E P E R

  From the Library of Wow! eBook



ptg

Point location = e.GetPosition(this);

// Perform visual hit testing for the entire Window 

HitTestResult result = VisualTreeHelper.HitTest(this, location);

// If we hit the ghostVisual, rotate it 

if (result.VisualHit == ghostVisual) 

{

if (ghostVisual.Transform == null) 

ghostVisual.Transform = new RotateTransform();

(ghostVisual.Transform as RotateTransform).Angle++; 

}

}

Because Image is ultimately a Visual, you could have implemented the same scheme with 
the Image hosting the DrawingImage version of the ghost back in Listing 15.1. (Or you 
could have simply attached an event handler to Image’s MouseLeftButtonDown event.) 
There’s an important difference between doing this with an Image and doing the visual 
hit testing with a DrawingVisual, however. The preceding code considers the 
DrawingVisual to be hit only for coordinates physically within the ghost’s body, whereas 
an Image is considered to be hit for any coordinates within the Image’s rectangular 
bounds.

Hit Testing with Multiple Visuals
Having nonrectangular hit testing is nice, but perhaps you want to hit test for individual 
portions of the ghost, such as the eyes versus the mouth versus the body. To accomplish 
this, you need to split the single DrawingVisual into three DrawingVisuals. Listing 15.4 
does just that and performs the 1° rotation on any DrawingVisual each time it is clicked. 
Figure 15.15 shows the result of this ability to manipulate visuals independently, with a 
ghost that is starting to look like a Picasso painting.

LISTING 15.4 WindowHostingVisual.cs—Splitting the Ghost into Three DrawingVisuals 
for Independent Hit Testing

using System; 

using System.Windows; 

using System.Windows.Input; 

using System.Windows.Media; 

using System.Collections.Generic;

public class WindowHostingVisual : Window 

{

List<Visual> visuals = new List<Visual>();

public WindowHostingVisual()

CHAPTER 15 2D Graphics500

  From the Library of Wow! eBook



ptg

{

Title = “Hosting DrawingVisuals”; 

Width = 300;

Height = 350;

DrawingVisual bodyVisual = new DrawingVisual(); 

DrawingVisual eyesVisual = new DrawingVisual(); 

DrawingVisual mouthVisual = new DrawingVisual();

using (DrawingContext dc = bodyVisual.RenderOpen()) 

{

// The body 

dc.DrawGeometry(Brushes.Blue, null, Geometry.Parse(

@”M 240,250 

C 200,375 200,250 175,200

C 100,400 100,250 100,200 

C 0,350   0,250   30,130 

C 75,0    100,0   150,0 

C 200,0   250,0   250,150 Z”));

} 

using (DrawingContext dc = eyesVisual.RenderOpen()) 

{

// Left eye 

dc.DrawEllipse(Brushes.Black, new Pen(Brushes.White, 10),

new Point(95, 95), 15, 15); 

// Right eye 

dc.DrawEllipse(Brushes.Black, new Pen(Brushes.White, 10),

new Point(170, 105), 15, 15); 

} 

using (DrawingContext dc = mouthVisual.RenderOpen()) 

{

// The mouth

Pen p = new Pen(Brushes.Black, 10);

p.StartLineCap = PenLineCap.Round;

p.EndLineCap = PenLineCap.Round; 

dc.DrawLine(p, new Point(75, 160), new Point(175, 150));

}

visuals.Add(bodyVisual); 

visuals.Add(eyesVisual); 

visuals.Add(mouthVisual);

// Bookkeeping: 

foreach (Visual v in visuals)

Visuals 501

LISTING 15.4 Continued

1
5

  From the Library of Wow! eBook



ptg

{

AddVisualChild(v); 

AddLogicalChild(v);

}

}

// The two necessary overrides, implemented for the single Visual: 

protected override int VisualChildrenCount 

{

get { return visuals.Count; } 

} 

protected override Visual GetVisualChild(int index) 

{

if (index < 0 || index >= visuals.Count) 

throw new ArgumentOutOfRangeException(“index”);

return visuals[index]; 

}

protected override void OnMouseLeftButtonDown(MouseButtonEventArgs e) 

{

base.OnMouseLeftButtonDown(e);

// Retrieve the mouse pointer location relative to the Window 

Point location = e.GetPosition(this);

// Perform visual hit testing 

HitTestResult result = VisualTreeHelper.HitTest(this, location);

// If we hit any DrawingVisual, rotate it 

if (result.VisualHit.GetType() == typeof(DrawingVisual)) 

{

DrawingVisual dv = result.VisualHit as DrawingVisual; 

if (dv.Transform == null)

dv.Transform = new RotateTransform();

(dv.Transform as RotateTransform).Angle++; 

}

}

}

CHAPTER 15 2D Graphics502

LISTING 15.4 Continued

  From the Library of Wow! eBook



ptg

FIGURE 15.15 The ghost represented by three independent DrawingVisuals, after a few 
clicks on the body and several clicks on the eyes.

Because this Window now has three Visual children instead of one, it uses a List<Visual> 
collection to store them for the sake of the VisualChildrenCount and GetVisualChild 
implementation. Drawing into three DrawingVisuals instead of one is a simple change; 
the DrawingContext commands are simply split into three using blocks, one per 
DrawingVisual. In the processing of the HitTestResult, the code applies the rotation 
logic to any Visual as long as it’s a DrawingVisual.

Visuals 503
1

5

DrawingVisuals as Children of a DrawingVisual

DrawingVisual derives from ContainerVisual, which can contain any number of Visuals 
in its Children collection. (ContainerVisual really should have been called VisualGroup, 
for consistency with WPF classes such as TransformGroup, DrawingGroup, and 
GeometryGroup.) Therefore, another way to implement Listing 15.4 would be to add 
eyesVisual and mouthVisual as children of bodyVisual instead of adding them to the 
Window’s visuals collection. This also means that the listing could go back to the approach 
of managing a single Visual rather than a collection! Rendering and hit testing automatically 
work for children of a DrawingVisual because ContainerVisual overrides and implements 
VisualChildrenCount and GetVisualChild similar to how Listing 15.4 implements them. 
You just need to hook up the Window to the root DrawingVisual and let the DrawingVisual 
handle the rest!

D I G G I N G  D E E P E R

Hit Testing with Overlapping Visuals
Visual hit testing can inform you about all Visuals that intersect a location, not just the 
topmost Visual. For the three-Visuals ghost example, you can set up hit testing such 
that clicking on the eyes tells you that the eyes were hit and the body underneath the 
eyes was hit. It doesn’t matter if a Visual is completely obscured; it can still be hit.

To take advantage of this functionality, you must use a more powerful form of the 
HitTest method that accepts a HitTestResultCallback delegate. Before this version of

  From the Library of Wow! eBook



ptg

HitTest returns, the delegate is invoked once for each relevant Visual, starting from the 
topmost and ending at the bottommost.

The following code is an update to the OnMouseLeftButtonDown method from Listing 15.4 
that supports hit testing on overlapping Visuals:

protected override void OnMouseLeftButtonDown(MouseButtonEventArgs e) 

{

base.OnMouseLeftButtonDown(e);

// Retrieve the mouse pointer location relative to the Window 

Point location = e.GetPosition(this);

// Perform visual hit testing 

VisualTreeHelper.HitTest(this, null,

new HitTestResultCallback(HitTestCallback), 

new PointHitTestParameters(location));

}

public HitTestResultBehavior HitTestCallback(HitTestResult result)

{

// If we hit any DrawingVisual, rotate it 

if (result.VisualHit.GetType() == typeof(DrawingVisual)) 

{

DrawingVisual dv = result.VisualHit as DrawingVisual; 

if (dv.Transform == null)

dv.Transform = new RotateTransform();

(dv.Transform as RotateTransform).Angle++; 

} 

// Keep looking for hits 

return HitTestResultBehavior.Continue;

}

There are a few differences here from the earlier code. The most noticeable one is that the 
logic to process HitTestResult is moved to the callback method because this overload of 
HitTest doesn’t return anything. The callback method must return one of two 
HitTestResultBehavior values: Continue or Stop. Therefore, you can stop the probing for 
further Visuals at any time. If the callback always returns Stop, only the topmost Visual 
is processed, just like with the simpler hit-testing approach. The second parameter of this 
HitTest overload, where null is passed, can be set to a HitTestFilterCallback delegate 
to skip the processing of certain parts of a visual tree without stopping the processing 
altogether. You can implement very sophisticated hit-testing schemes with this approach.

Notice that this overload of HitTest isn’t given the relevant Point directly but rather is 
passed a PointHitTestParameters object wrapping the Point. That’s because the method 
accepts an abstract HitTestParameters instance, and WPF has two subclasses:

CHAPTER 15 2D Graphics504

  From the Library of Wow! eBook



ptg

PointHitTestParameters and GeometryHitTestParameters. The latter can be used to hit 
test against an arbitrary region. This is useful for supporting more complicated input 
actions, such as dragging a selection rectangle or drawing a “lasso” to select multiple 
objects.

Shapes 505
1

5

Why does the more powerful form of visual hit testing involve an awkward 
callback mechanism instead of simply returning an array of

HitTestResults?

The callback scheme was chosen for performance reasons. This way, WPF doesn’t have to 
allocate any extra memory, which is important when dealing with high numbers of Visuals or 
frequent hit testing. In addition, the callback scheme allows for scenario-specific optimiza-
tions by giving callback methods the power to halt processing by returning 
HitTestResultBehavior.Stop.

?
FA Q

If you want visual hit testing to report a hit anywhere within a Visual’s bounding box rather 
than its precise geometry, you can override Visual’s HitTestCore method, which is called 
whenever the bounding box is hit. (This method enables you to customize hit testing in other 
ways as well.)

A simpler way to accomplish this is to simply draw a transparent rectangle that matches the 
size of the bounding box inside the Visual. Visual hit testing doesn’t care about the trans-
parency of objects; they get hit just the same, as if they are panes of glass.

T I P

Don’t modify the visual tree in your hit-testing callback methods!

Hit-testing callback methods are called while the visual tree is in the process of being 
walked, so altering the tree can cause incorrect behavior. If you must modify the visual tree 
based on certain Visuals being hit, you should store the information you need during the 
callbacks so that you can act on it after HitTest returns. This is pretty easy to do because 
HitTest doesn’t return until after all callbacks have been called.

WA R N I N G

Shapes
A Shape, like a GeometryDrawing, is a basic 2D drawing that combines a Geometry with a 
Pen and Brush. Unlike GeometryDrawing, however, Shape derives from FrameworkElement, 
so it can be directly placed in a user interface without custom code or a complex 

  From the Library of Wow! eBook



ptg

hierarchy of objects. For example, Chapter 2, “XAML Demystified,” shows how easy it is 
to embed a square in a Button by using Rectangle (which derives from Shape):

<Button MinWidth=”75”> 

<Rectangle Height=”20” Width=”20” Fill=”Black”/>

</Button>

WPF provides six classes that derive from the abstract System.Windows.Shapes.Shape 
class:

. Rectangle

. Ellipse

. Line

. Polyline

. Polygon

. Path

Most of these should look pretty familiar, as they mirror the Geometry classes discussed 
earlier in the chapter. The following sections examine each one individually because they 
work slightly differently than their Geometry counterparts. (In addition, Polyline and 
Polygon are Shape-specific abstractions over a PathGeometry.) Shape itself defines many 
properties for controlling the appearance of its concrete subclasses. The two most impor-
tant ones are Fill and Stroke, both of type Brush.

CHAPTER 15 2D Graphics506

Why is Shape.Stroke a Brush rather than a Pen?

Shape’s Fill and Stroke properties have the same role as GeometryDrawing’s 
Brush and Pen properties: Fill is for the inner area, and Stroke is for the outline. 
Internally, a Pen is indeed used to create the outline of the Shape. But rather than exposing 
the Pen directly, Shape defines Stroke as a Brush and exposes eight additional properties 
to tweak the settings of the internal Pen wrapping the Stroke Brush: StrokeStartLineCap, 
StrokeEndLineCap, StrokeThickness, and so on.

This unfortunate inconsistency was created because setting the Pen-related properties 
directly on the Shape is simpler than using a separate Pen object, especially for the common 
case in which all you’re setting is the Brush and the Thickness.

?
FA Q

  From the Library of Wow! eBook



ptg

Rectangle
RectangleGeometry, discussed earlier in this chapter, has a Rect property for defining its 
dimensions. Rectangle, on the other hand, delegates to WPF’s layout system for control-
ling its size and position. This could involve using its Width and Height properties 
(among others) inherited from FrameworkElement or controlling its location with 
Canvas.Left and Canvas.Top, for example.

Just like RectangleGeometry, however, Rectangle defines its own RadiusX and RadiusY 
properties of type double that enable you to give it rounded corners. Figure 15.16 shows 
the following Rectangles in a StackPanel with various values of RadiusX and RadiusY:

<StackPanel> 

<Rectangle Width=”200” Height=”100”

Fill=”Orange” Stroke=”Black” StrokeThickness=”10” Margin=”4”/> 

<Rectangle Width=”200” Height=”100” RadiusX=”10” RadiusY=”30”

Fill=”Orange” Stroke=”Black” StrokeThickness=”10” Margin=”4”/> 

<Rectangle Width=”200” Height=”100” RadiusX=”30” RadiusY=”10”

Fill=”Orange” Stroke=”Black” StrokeThickness=”10” Margin=”4”/> 

<Rectangle Width=”200” Height=”100” RadiusX=”100” RadiusY=”50”

Fill=”Orange” Stroke=”Black” StrokeThickness=”10” Margin=”4”/> 

</StackPanel>

Shapes 507
1

5

Overuse of Shapes can lead to performance problems!

It’s tempting to use Shapes as the building blocks for any 2D drawings. They are much more 
discoverable and easier to work with than Drawings, and they work with the content model 
that WPF developers take for granted. Design tools and XAML exporters also tend to repre-
sent artwork as Shapes by default, so Shapes can sneak into your applications without you 
even realizing it. For example, when you select the XAML Export menu item in Microsoft 
Expression Design, the resultant .xaml file contains Shapes in a Canvas unless you explicitly 
change the Document Format option to Resource Dictionary. At this point, you can choose 
between a DrawingImage and a DrawingBrush. DrawingImage is generally a better choice 
than DrawingBrush because DrawingImage can usually avoid drawing to an intermediate 
surface before drawing to the back buffer.

When you have Shape-based artwork, every single Shape supports Styles, data binding, 
resources, layout, input and focus, routed events, and so on. It’s nice that you can take 
advantage of all this without extra work, but as discussed in the “Visuals” section, this is 
typically unnecessary overhead. Keep this in mind if you find yourself using more than a 
small number of Shapes.

WA R N I N G

  From the Library of Wow! eBook



ptg

FIGURE 15.16 Four Rectangles with different values for RadiusX and RadiusY.

RadiusX can be at most half the Width of 
the Rectangle, and RadiusY can be at 
most half the Height. Setting them any 
higher makes no difference.

Ellipse
After discovering the flexibility of 
Rectangle and realizing that it can be 
made to look like an ellipse (or circle), 
you’d think that a separate Ellipse class 
would be redundant. And you’d be right!
All Ellipse does is make it easier to get 
an elliptical shape. It defines no settable properties above and beyond what Shape and its 
base classes provide. Unlike EllipseGeometry, which exposes RadiusX, RadiusY, and 
Center properties, Ellipse simply fills its rectangular region with the largest possible 
elliptical shape.

The following Ellipse could replace the last Rectangle in the previous XAML snippet, 
and Figure 15.16 would look identical:

<Ellipse Width=”200” Height=”100” 

Fill=”Orange” Stroke=”Black” StrokeThickness=”10” Margin=”4”/>

The only change is replacing the element name and removing the references to RadiusX 
and RadiusY.

CHAPTER 15 2D Graphics508

No Radii

RadiusX=10, RadiusY=30

RadiusX=30, RadiusY=10

Maximum Radii

You must explicitly set Stroke or Fill
for a Shape to be seen!

This might sound obvious for someone 
used to working with GeometryDrawings, 
but it’s a common pitfall for people who 
think of Shapes the way they think of 
Buttons and ListBoxes. Although each 
Shape internally contains the appropriate 
Geometry, its Stroke and Fill are both 
set to null by default.

WA R N I N G

  From the Library of Wow! eBook



ptg

Line
Line defines four double properties to represent a line segment connecting points (x1,y1) 
and (x2,y2). These properties are called X1, Y1, X2, and Y2. These are defined as four prop-
erties rather than two Point properties (as in LineGeometry) for ease of use in data-
binding scenarios.

The values of Line’s properties are not absolute coordinates. They are relative to the space 
given to the Line element by the layout system. For example, the following StackPanel 
contains three Lines, rendered in Figure 15.17:

<StackPanel> 

<Line X1=”0” Y1=”0”   X2=”100” Y2=”100” Stroke=”Black” StrokeThickness=”10”

Margin=”4”/> 

<Line X1=”0” Y1=”0”   X2=”100” Y2=”0” Stroke=”Black” StrokeThickness=”10”

Margin=”4”/>

<Line X1=”0” Y1=”100” X2=”100” Y2=”0” Stroke=”Black” StrokeThickness=”10”

Margin=”4”/>

</StackPanel>

Shapes 509
1

5

How Shapes Work

Shapes internally override UIElement’s OnRender method and use DrawingContext 
methods to draw the appropriate geometry. For example, Ellipse has an OnRender imple-
mentation effectively like the following:

protected override void OnRender(DrawingContext drawingContext) 

{

Pen pen = …;   // Fabricate a Pen based on all the StrokeXXX properties 

Rect rect = …; // Layout determines the size of this rectangle 

drawingContext.DrawGeometry(this.Fill, pen, new EllipseGeometry(rect));

}

Furthermore, Rectangle has an OnRender implementation effectively like the following:

protected override void OnRender(DrawingContext drawingContext) 

{

Pen pen = …;   // Fabricate a Pen based on all the StrokeXXX properties 

Rect rect = …; // Layout determines the size of this rectangle 

drawingContext.DrawRoundedRectangle(this.Fill, pen, rect, this.RadiusX,

this.RadiusY);

}

The bulk of the code inside a Shape is the plumbing needed to interact with the layout 
system. This plumbing is covered in Chapter 21.

D I G G I N G  D E E P E R

  From the Library of Wow! eBook



ptg

Notice that each Line is given the space needed by its 
bounding box, so the horizontal line gets only 10 units 
(for the thickness of its Stroke) plus the specified Margin. 
Line inherits Shape’s Fill property, but it is meaningless 
because there is never any area to fill.

Polyline
Polyline represents a sequence of lines, expressed in its 
Points property (a collection of Point objects). The follow-
ing four Polylines are rendered in Figure 15.18:

<StackPanel> 

<Polyline Points=”0,0 100,100” Stroke=”Black” StrokeThickness=”10” Margin=”4”/> 

<Polyline Points=”0,0 100,100 200,0” Stroke=”Black” StrokeThickness=”10”

Margin=”4”/> 

<Polyline Points=”0,0 100,100 200,0 300,100” Stroke=”Black” StrokeThickness=”10”

Margin=”4”/> 

<Polyline Points=”0,0 100,100 200,0 300,100 100,100” Stroke=”Black”

StrokeThickness=”10” Margin=”4”/> 

</StackPanel>

CHAPTER 15 2D Graphics510

FIGURE 15.17 Three 
Lines in a StackPanel, 
demonstrating that their 
coordinates are relative.

(0,0) to (100,100)

(0,0) to (100,0)

(0,100) to (100,0)

FIGURE 15.18 Four Polylines, ranging from 2 to 5 points.

A type converter enables Points to be specified as a simple list of alternating x and y 
values. The commas can help with readability but are optional. You can place commas 
between any two values or use no commas at all.

Figure 15.19 demonstrates that setting Polyline’s Fill fills it like an open PathGeometry, 
pretending that a line segment exists that connects the first Point with the last Point. 
This happens because, internally, Polyline is using a PathGeometry! Figure 15.19 was 
created simply by taking the Polylines from Figure 15.18 and marking them with 
Fill=”Orange”.

  From the Library of Wow! eBook



ptg

Polygon
Just as Rectangle makes Ellipse redundant, Polyline 
makes Polygon redundant. The only difference between 
Polyline and Polygon is that Polygon automatically adds a 
line segment connecting the first Point and last Point. (In 
other words, it sets IsClosed to true in its internal 
PathGeometry’s PathFigure.)

If you take each Polyline from Figure 15.19 and simply 
change each element name to Polygon, you get the result 
shown in Figure 15.20. Notice that the initial line segment 
in the first and last Polygons is noticeably longer than in 
Figure 15.19. This is because of the Miter corners joining 
the initial line segment with the final line segment (which 
happens to share the same coordinates). Because the angle 
between the two line segments is 0°, the corner would be 
infinitely long if not for the StrokeMiterLimit property 
limiting it to 10 units by default.

Both Polygon and Polyline expose the underlying 
PathGeometry’s FillRule with their own FillRule 
property.

Path
As you probably expected, just as all basic geometries 
can be represented as a PathGeometry, all the other 
Shapes can be alternatively represented with the 
general-purpose Path. Path only adds a single Data 
property to Shape, which can be set to an instance of 
any geometry. Therefore, Path turns out to be the 
easiest (and most fully featured) way to embed an arbi-
trary geometry directly into a user interface. There’s no 
need for an explicit Drawing object or low-level 
DrawingContext techniques; you simply set the Data, 
Fill, and Stroke-related properties.

The following Path produces the same result as the 
overlapping triangles from Figure 15.6:

<Path Fill=”Orange” Stroke=”Black”

StrokeThickness=”10”> 

<Path.Data>

<PathGeometry> 

<!-- Triangle #1 --> 

<PathFigure IsClosed=”True”>

<LineSegment Point=”0,100”/> 

<LineSegment Point=”100,100”/>

Shapes 511
1

5

FIGURE 15.19 The 
same Polylines from 
Figure 15.18, but with an 
explicit Fill.

FIGURE 15.20 Polygons 
are just like Polylines, except 
that they always form a closed 
shape.

  From the Library of Wow! eBook



ptg

</PathFigure> 

<!-- Triangle #2 --> 

<PathFigure StartPoint=”70,0” IsClosed=”True”>

<LineSegment Point=”0,100”/> 

<LineSegment Point=”100,100”/>

</PathFigure> 

</PathGeometry>

</Path.Data> 

</Path>

Or, you can take advantage of Geometry’s type converter and express the whole thing as 
follows:

<Path Fill=”Orange” Stroke=”Black” StrokeThickness=”10” 

Data=”M 0,0 L 0,100 L 100,100 Z M 70,0 L 0,100 L 100,100 Z”/>

Clip Art Based on Shapes
Let’s revisit the ghost clip art that was represented as a DrawingImage in Listing 15.1 and 
as a sequence of DrawingContext commands in Listings 15.2 through 15.4. Listing 15.5 
places the pieces of the ghost, which are now independent Shapes, on a Canvas. The result 
looks identical to hosting the DrawingImage in an Image, as shown back in Figure 15.13.

LISTING 15.5 The Ghost Represented as Four Independent Shapes

<Canvas xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”> 

<Path Fill=”Blue” Data=”M 240,250

C 200,375 200,250 175,200 

C 100,400 100,250 100,200 

C 0,350   0,250   30,130 

C 75,0    100,0   150,0 

C 200,0   250,0   250,150 Z”/>

<Ellipse Fill=”Black” Stroke=”White” StrokeThickness=”10”

Width=”40” Height=”40” Canvas.Left=”75” Canvas.Top=”75”/> 

<Ellipse Fill=”Black” Stroke=”White” StrokeThickness=”10”

Width=”40” Height=”40” Canvas.Left=”150” Canvas.Top=”85”/> 

<Line X1=”75” Y1=”160” X2=”175” Y2=”150” StrokeStartLineCap=”Round”

StrokeEndLineCap=”Round” Stroke=”Black” StrokeThickness=”10”/> 

</Canvas>

The numeric data used for the Path (body) and the Line (mouth) is identical to the data 
used in the original DrawingImage. The property values for both Ellipses, however, 
needed a bit of translation to map from the original EllipseGeometry objects to the 
Ellipse objects. The original eyes had a radius of 15 and a Pen thickness of 10. Because 
the Pen outline is centered on any geometry’s edge, it only extends the total radius to 20. 
That’s why the Ellipses in Listing 15.5 are given a Height and Width of 40 (the radius 
multiplied by 2). In this case, the entire Shape, including its outline, fits inside the

CHAPTER 15 2D Graphics512

  From the Library of Wow! eBook



ptg

bounds. As for the values chosen for Canvas.Left and Canvas.Top, they are the original 
EllipseGeometry Center values minus the total radius of 20.

Unlike previous implementations of the ghost, this one supports input hit testing indepen-
dently on each of its four pieces (each eye is even treated separately!) because they all 
derive from UIElement. Input hit testing differs from visual hit testing in that it more 
closely represents what a user can physically hit with the mouse pointer, finger, or stylus. 
It only supports hitting the topmost element at any coordinate, and it allows elements to 
be hit only if IsEnabled and IsVisible (properties introduced by UIElement) are both 
true. (It also only supports hit testing against a single point rather than a geometry, but 
that’s just an artificial limitation rather than a philosophical difference.)

To perform input hit testing, you simply call InputHitTest on an instance of a UIElement 
whose visual tree you want to be tested. You can pass it a Point, and it returns an 
IInputElement instance (an interface implemented by UIElement and ContentElement). 
But input hit testing is rarely performed 
directly because all UIElements already 
have a host of events that expose 
whether they’ve been pressed, clicked, 
and so on: GotKeyboardFocus, KeyDown, 
KeyUp, GotMouseCapture, MouseEnter, 
MouseLeave, MouseMove, MouseWheel, 
GotStylusCapture, StylusEnter, 
StylusLeave, StylusInAirMove, and so 
on. And if the policy enforced by input 
hit testing is too restrictive for your 
needs, you can perform visual hit testing 
with any Shape.

Brushes
It’s not obvious when programming with WPF via XAML, but WPF elements almost never 
interact directly with colors. Instead, most uses of color are wrapped inside objects known 
as Brushes. This is an extremely powerful indirection because WPF contains seven differ-
ent kinds of Brushes that can do just about everything imaginable. There are three color 
brushes, three tile brushes, and one special brush covered at the end of the chapter 
(BitmapCacheBrush). Although this section mostly demonstrates Brushes on a Drawing or 
Window, keep in mind that Brushes can be used as the background, foreground, or outline 
of just about anything you can put on the screen.

Color Brushes
WPF’s three color brushes are SolidColorBrush, LinearGradientBrush, and 
RadialGradientBrush. You might think you already know everything there is to know 
about these Brushes from their limited use in the book so far, but all of these Brushes are 
more flexible than most people realize.

Brushes 513
1

5

Input Hit Testing’s Dirty Little Secret

Input hit testing is really just a special case 
of visual hit testing. In fact, the implementa-
tion of InputHitTest simply calls 
VisualTreeHelper.HitTest with its own 
internal callbacks for filtering and results 
processing! Its filter callback prunes 
disabled and invisible UIElements from the 
visual tree traversal, and its results callback 
stops the search after it finds the first 
match.

D I G G I N G  D E E P E R

  From the Library of Wow! eBook



ptg

SolidColorBrush

SolidColorBrush, used implicitly throughout this book, fills the target area with a single 
color. It has a simple Color property of type System.Windows.Media.Color. Because of the 
type converter that converts strings such as “Blue” or “#FFFFFF” into SolidColorBrushes, 
they are indistinguishable from their underlying Color in XAML.

The Color structure has more functionality than you might expect. It natively supports 
two color spaces:

. sRGB—This is the standard RGB color space designed for CRT monitors and familiar 
to most programmers and web designers. The values for red, green, and blue are 
each represented as a byte, so there are only 256 possible values.

. scRGB—This is an enhanced RGB color space that represents red, green, and blue as 
floating-point values. This enables a much wider gamut of colors that can be accu-
rately represented. Red, green, and blue values of 0.0 represent black, whereas three 
values of 1.0 represent white. However, scRGB allows for values outside this range, so 
information isn’t lost if you apply transformations to Colors that temporarily push 
any channel outside its normal range. scRGB also has increased accuracy because it 
is a linear color space.

Color exposes sets of properties (one per 
channel) for both color spaces: A, R, G, 
and B of type Byte for the more familiar 
sRGB and ScA, ScR, ScG, and ScB of type 
Single for the more flexible scRGB. (A 
and ScA represent the alpha channel, for 
varying the opacity.) Whenever any of these properties are set, Color updates both of its 
internal representations. Therefore, you can mix and match these properties with the 
same Color instance, and everything stays in sync. You can also leverage this behavior to 
easily convert sRGB values to scRGB values and vice versa.

Color defines operators that enable you to add, subtract, and multiply two instances and 
compare them for equality. However, because scRGB uses floating-point values (which 
should never be tested for strict equality), Color defines a static AreClose method that 
accepts two colors and returns true if all their channels are within a very small epsilon of 
each other.

Color’s type converter supports several different string representations:

. A name, like Red, Khaki, or DodgerBlue, matching one of the static properties on the 
Colors class.

. The sRGB representation #argb, where a, r, g, and b are hexadecimal values for the 
A, R, G, and B properties. For example, opaque Red is #FFFF0000, or more simply 
#FF0000 (because A is assumed to be the maximum 255, by default).

. The scRGB representation sc#a r g b, where a, r, g, and b are decimal values for the 
ScA, ScR, ScG, and ScB properties. In this representation, opaque Red is sc#1.0 1.0 0.0
0.0, or more simply sc#1.0 0.0 0.0. Commas are also allowed between each value.

CHAPTER 15 2D Graphics514

It is usually more efficient to use colors with 
translucency coming from their alpha chan-
nels than to use the Opacity property to 
apply translucency to an otherwise-opaque 
solid color.

T I P

  From the Library of Wow! eBook



ptg

Brushes 515
1

5

Custom Color Space Profiles

Advanced developers or designers can specify Colors based on a custom ICC profile. (ICC is 
the International Color Consortium, which has defined the cross-platform profile format.) In 
procedural code, you can construct such a Color by calling the static Color.FromValues 
method that accepts an array of Singles and a Uri pointing to the profile file. In XAML, you 
can take advantage of Color’s type converter that accepts a string of the form 
ContextColor Uri Values.

For example, the following SolidColorBrush gives a Button a red Background by using the 
sRGB profile file that you should have in your Windows system32 directory under 
spool\drivers\color:

<Button> 

<Button.Background>

<SolidColorBrush Color=”ContextColor 

file://C:/WINDOWS/system32/spool/drivers/color/sRGB%20Color%20Space%20Profile.icm 

1.0,1.0,0.0,0.0”/> 

</Button.Background> 

</Button>

Custom profiles can hurt performance because they usually cause color conversions to 
happen. This is particularly true for bitmaps. To give you some control over this, 
BitmapSource supports an option called BitmapCreateOptions.IgnoreColorProfile that 
can give faster results by ignoring a profile that might otherwise be applied.

D I G G I N G  D E E P E R

LinearGradientBrush

LinearGradientBrush, which has been used a few times already in this book, fills an area 
with a gradient defined by colors at specific points along an imaginary line segment, with 
linear interpolation between those points.

LinearGradientBrush contains a collection of GradientStop 
objects in its GradientStops content property, each of which 
contains a Color and an Offset. The offset is a double value rela-
tive to the bounding box of the area being filled, where 0 is the 
beginning and 1 is the end. Therefore, the following 
LinearGradientBrush can be applied to any version of the ghost 
clip art to create the result in Figure 15.21:

<LinearGradientBrush> 

<GradientStop Offset=”0” Color=”Blue”/> 

<GradientStop Offset=”1” Color=”Red”/>

</LinearGradientBrush>

FIGURE 15.21
A simple blue-to-red
LinearGradientBrush 
applied to the ghost.

  From the Library of Wow! eBook



ptg

By default, the gradient starts at the top-left corner of the area’s bounding box and ends 
at the bottom-right corner. You can customize these points, however, with 
LinearGradientBrush’s StartPoint and EndPoint properties. The values of these points 
are relative to the bounding box, just like the Offset in each GradientStop. Therefore, 
the default values for StartPoint and EndPoint are (0,0) and (1,1), respectively.

If you want to use absolute units instead of relative ones, you can set MappingMode to 
Absolute (rather than the default RelativeToBoundingBox). Note that this applies only to 
StartPoint and EndPoint; the Offset values in each GradientStop are always relative.

Figure 15.22 shows a few different settings of StartPoint and EndPoint on the 
LinearGradientBrush used in Figure 15.21 (with the default relative MappingMode). Notice 
that the relative values are not limited to a range of 0 to 1. You can specify smaller or 
larger numbers to make the gradient logically extend past the bounding box. (This applies 
to GradientStop Offset values as well.)

The default interpolation of colors is done using the sRGB color space, but you can set 
ColorInterpolationMode to ScRgbLinearInterpolation to use the scRGB color space 
instead. The result is a much smoother gradient, as shown in Figure 15.23.

CHAPTER 15 2D Graphics516

StartPoint = (0,0), 
EndPoint = (0,1)

StartPoint = (0,1), 
EndPoint = (0,0)

StartPoint = (0,0), 
EndPoint = (1,0)

StartPoint = (0.5,0), 
EndPoint = (1,0)

StartPoint = (-2,-2), 
EndPoint = (2,2)

FIGURE 15.22 Various settings of StartPoint and EndPoint.

  From the Library of Wow! eBook



ptg

FIGURE 15.23 ColorInterpolationMode affects the appearance of the gradient.

The final property for controlling LinearGradientBrush is SpreadMethod, which deter-
mines how any leftover area not covered by the gradient should be filled. This makes 
sense only when the LinearGradientBrush is explicitly set to not cover the entire bound-
ing box. The default value (from the GradientSpreadMethod enumeration) is Pad, 
meaning that the remaining space should be filled with the color at the endpoint. You 
could alternatively set it to Repeat or Reflect. Both of these values repeat the gradient in 
a never-ending pattern, but Reflect reverses every other gradient to maintain a smooth 
transition. Figure 15.24 demonstrates each of these SpreadMethod values on the following 
LinearGradientBrush that forces the gradient to cover only the middle 10% of the 
bounding box:

<LinearGradientBrush StartPoint=”.45,.45” EndPoint=”.55,.55” SpreadMethod=”XXX”> 
<GradientStop Offset=”0” Color=”Blue”/> 

<GradientStop Offset=”1” Color=”Red”/>

</LinearGradientBrush>

Brushes 517
1

5

SRgbLinearInterpolation ScRgbLinearInterpolation

Pad Repeat Reflect

FIGURE 15.24 Different values of SpreadMethod can create vastly different effects.

And don’t forget, because Pens use a Brush rather than a simple Color to fill their area, 
Drawings, Shapes, Controls, and many other elements in WPF can be outlined with

  From the Library of Wow! eBook



ptg

complicated fills. Figure 15.25 shows a version of the ghost that uses the following Pen on 
the GeometryDrawing defining its body:

<Pen Thickness=”20”> 

<Pen.Brush>

<LinearGradientBrush> 

<GradientStop Offset=”0” Color=”Red”/> 

<GradientStop Offset=”0.2” Color=”Orange”/> 

<GradientStop Offset=”0.4” Color=”Yellow”/> 

<GradientStop Offset=”0.6” Color=”Green”/> 

<GradientStop Offset=”0.8” Color=”Blue”/> 

<GradientStop Offset=”1” Color=”Purple”/>

</LinearGradientBrush> 

</Pen.Brush> 

</Pen>

Notice that the Pen’s LinearGradientBrush uses six
GradientStops spaced equally along the gradient path, rather than just two.

CHAPTER 15 2D Graphics518

FIGURE 15.25
Outlining the ghost with 
a Pen using a 
LinearGradientBrush.

To get crisp lines inside a gradient brush, you can simply add two GradientStops at the 
same Offset with different Colors. The following LinearGradientBrush does this at 
Offsets 0.2 and 0.6 to get two distinct lines defining the DarkBlue region: 

<LinearGradientBrush EndPoint=”0,1”>

<GradientStop Offset=”0” Color=”Aqua”/> 

<GradientStop Offset=”0.2” Color=”Blue”/> 

<GradientStop Offset=”0.2” Color=”DarkBlue”/> 

<GradientStop Offset=”0.6” Color=”DarkBlue”/> 

<GradientStop Offset=”0.6” Color=”Blue”/> 

<GradientStop Offset=”1” Color=”Aqua”/>

</LinearGradientBrush>

Figure 15.26 shows this applied to the ghost’s body.

FIGURE 15.26 Two crisp lines inside the gradient, enabled by duplicate Offsets.

T I P

  From the Library of Wow! eBook



ptg

RadialGradientBrush

RadialGradientBrush works like LinearGradientBrush, except it 
has a single starting point, with each GradientStop emanating 
from it in the shape of an ellipse. RadialGradientBrush and 
LinearGradientBrush share a common GradientBrush base class, 
which defines the GradientStops, SpreadMethod, 
ColorInterpolationMode, and MappingMode properties already 
examined on LinearGradientBrush.

Figure 15.27 shows the following simple RadialGradientBrush 
applied to the ghost:

<RadialGradientBrush> 

<GradientStop Offset=”0” Color=”Blue”/> 

<GradientStop Offset=”1” Color=”Red”/>

</RadialGradientBrush>

By default, the imaginary ellipse controlling the gradient is 
centered in the bounding box, with a width and height matching 
the width and height of the bounding box. This can clearly be 
seen on the ghost by setting SpreadMethod to Repeat, as shown in 
Figure 15.28.

To customize the size and position of the imaginary ellipse, 
RadialGradientBrush defines Center, RadiusX, and RadiusY prop-
erties. These have default values of (0.5,0.5), 0.5, and 0.5, 
respectively, because they’re expressed as coordinates relative to 
the bounding box. Because the default size of the ellipse often 
doesn’t cover the corner of the area being filled (as in Figure
15.28), increasing the radii is a simple way to cover the area 
without relying on SpreadMethod.

RadialGradientBrush also has a GradientOrigin property that 
specifies where the gradient should originate independently of 
the defining ellipse. To avoid getting strange results, it should be 
set to a point within the defining ellipse. Its default value is
(0.5,0.5), the center of the default ellipse, but Figure 15.29 
shows what happens when it is set to a different value, such as 
(0,0):

<RadialGradientBrush GradientOrigin=”0,0” 

SpreadMethod=”Repeat”> 

<GradientStop Offset=”0” Color=”Blue”/> 

<GradientStop Offset=”1” Color=”Red”/>

</RadialGradientBrush>

If you set MappingMode to Absolute, the values for all four of these 
RadialGradientBrush-specific properties (Center, RadiusX,

Brushes 519
1

5

FIGURE 15.27 A
simple blue-to-red 
RadialGradientBrush 
applied to the ghost.

FIGURE 15.28
Setting 
SpreadMethod to 
Repeat clearly 
reveals the bounds 
of the ellipse.

FIGURE 15.29
Shifting the gradi-
ent’s origin within 
the ellipse with the 
GradientOrigin 
property.

  From the Library of Wow! eBook



ptg

RadiusY, and GradientOrigin) are treated as absolute 
coordinates instead of relative to the bounding box.

Because all Colors have an alpha channel, you can incor-
porate transparency and translucency into any gradient 
by changing the alpha channel on any GradientStop’s 
Color. The following RadialGradientBrush uses two blue 
colors with different alpha values:

<RadialGradientBrush RadiusX=”0.7” RadiusY=”0.7”> 

<GradientStop Offset=”0” Color=”#990000FF”/> 

<GradientStop Offset=”1” Color=”#000000FF”/>

</RadialGradientBrush>

Figure 15.30 shows the result of applying this
RadialGradientBrush (quite appropriately!) to the ghost 
drawing, on top of a photographic background so the 
transparency is apparent.

CHAPTER 15 2D Graphics520

FIGURE 15.30 A ghost 
with translucency, accom-
plished by using colors with 
non-opaque alpha channels.

When it comes to gradients, not all transparent colors are equal!

Notice that the second GradientStop for Figure 15.30 uses a “transparent blue” color 
rather than simply specifying Transparent as the color. That’s because Transparent is 
defined as white with a 0 alpha channel (#00FFFFFF). Although both colors are completely 
invisible, the interpolation to each color does not behave the same way. If Transparent were 
used for the second GradientStop for Figure 15.30, you would not only see the alpha value 
gradually change from 0x99 to 0, you would also see the red and green values gradually 
change from 0 to 0xFF, giving the brush more of a gray look.

WA R N I N G

Tile Brushes
In addition to color brushes, WPF defines three tile brushes, which all derive from the 
abstract TileBrush base class. A tile brush fills the target area with a repeating pattern. 
Depending on which tile brush you choose to use, the source of the pattern can be any 
Drawing, Image, or Visual.

All three tile brushes act identically except for the type that they operate on. Therefore, 
the following section examines the main functionality of all tile brushes, using 
DrawingBrush as an example. Then we’ll briefly look at the other two tile brushes: 
ImageBrush and VisualBrush.

DrawingBrush

Hosting a Drawing in a DrawingBrush is just like hosting one in a DrawingImage. The 
following XAML uses the ghost DrawingGroup from Listing 15.1 and sets it as a 
DrawingImage’s Drawing to be used as the background of a window:

  From the Library of Wow! eBook



ptg

<Window xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”

Title=”DrawingBrush as the Background”> 

<Window.Background>

<DrawingBrush> 

<DrawingBrush.Drawing>

<DrawingGroup>

The three GeometryDrawings from Listing 15.1… 

</DrawingGroup>

</DrawingBrush.Drawing> 

</DrawingBrush>

</Window.Background> 

</Window>

Figure 15.31 shows the result of doing 
this. Unlike DrawingImage, 
DrawingBrush’s default background is 
black instead of white.

By default, the drawing is stretched to 
fill the area (or its bounding box, if the 
area is nonrectangular), but this behavior 
can be adjusted with the Stretch prop-
erty, which can be set to one of the 
Stretch enumeration values covered in 
Chapter 5, “Layout with Panels,” with Viewbox. Figure 15.32 shows the effect of each of 
these values.

When Stretch is set to a value other than Fill, the Drawing is centered both horizontally 
and vertically. But this behavior can also be customized by setting AlignmentX to Left, 
Center, or Right and AlignmentY to Top, Center, or Bottom.

The most interesting part of DrawingBrush, and the reason it’s called a tile brush, is its 
TileMode property. If you set it to Tile rather than its default value of None, the Drawing 
can repeat itself indefinitely in both directions. For this to work, however, you must 
specify a Rect for the first “tile” to occupy. This is done with DrawingBrush’s Viewport 
property. Figure 15.33 demonstrates the effect of setting Viewport to a few different Rect 
values (shown with the x,y,width,height syntax supported by Rect’s type converter). 
The incredible thing about the third Window in Figure 15.33 is that you could zoom in 
with a ScaleTransform and see each ghost Drawing in full fidelity!

Brushes 521
1

5

FIGURE 15.31 The default appearance 
of a DrawingBrush background containing 
the ghost drawing.

  From the Library of Wow! eBook



ptg

FIGURE 15.32 Applying different Stretch values to a DrawingBrush.

CHAPTER 15 2D Graphics522

None Fill (default)

Uniform UniformToFill

Viewport = 0, 0, 0.5, 0.5 Viewport = 0, 0, 0.1, 0.2

Viewport = 0, 0, 0.02, 0.02

FIGURE 15.33 Different Viewport values with TileMode=Tile and Stretch=Fill.

  From the Library of Wow! eBook



ptg

Just like with some of the gradient brush properties, the units of Viewport are relative to 
the bounding box by default. This enables you to effectively specify how many tiles you 
want horizontally and how many you want vertically. But you can also switch Viewport 
to use absolute coordinates by changing the value of ViewportUnits (a property of the 
familiar BrushMappingMode type).

The TileMode enumeration used by the TileMode property has more values than just Tile 
and None, however. It supports three more values that flip tiles in different ways:

. FlipX flips the tiles in every other column horizontally.

. FlipY flips the tiles in every other row vertically.

. FlipXY does both of the above.

Figure 15.34 demonstrates these three settings. Although these settings might not be very 
interesting for the ghost Drawing, you could use them with certain types of Drawings to 
help create the illusion of a continuous fill.

Brushes 523
1

5

FlipX FlipY

FlipXY

FIGURE 15.34 The three Flip settings for TileMode.

The final piece of customization is the Viewbox property, which enables you to specify a 
subset of the Drawing to use as the source of each tile (or the entire brush, if TileMode is

  From the Library of Wow! eBook



ptg

set to None). Viewbox is a rectangle specified in bounding-box-relative units by default, 
just like Viewport. And a separate ViewboxUnits property can be set to make Viewbox use 
absolute coordinates, independently of the ViewportUnits setting.

Figure 15.35 sets the DrawingBrush’s Viewbox property to the top-left quadrant of the 
ghost Drawing by giving it the Rect value 0, 0, 0.5, 0.5. It then mixes that setting with 
two different TileModes.

CHAPTER 15 2D Graphics524

Tile FlipXY

FIGURE 15.35 Setting Viewbox to retrieve only the top-left quadrant of the drawing, used 
with two different TileModes.

As a final note on DrawingBrush, remember that its Drawing does not have to be a 
GeometryDrawing. It could be a VideoDrawing, for example!

ImageBrush

ImageBrush is identical to DrawingBrush, except it has an ImageSource property of type 
ImageSource rather than a Drawing property of type Drawing. It is meant to hold bitmap 
content rather than vector content. (That said, with the existence of DrawingImage and 
ImageDrawing, discussed earlier in the chapter, you can make DrawingBrush contain 
bitmap content and ImageBrush contain vector content!)

The following XAML uses an ImageBrush as the background of a Window. The bitmap 
content comes from the Winter Leaves.jpg file that ships with Windows Vista:

<Window xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”

Title=”ImageBrush with TileMode = FlipXY”> 

<Window.Background>

<ImageBrush TileMode=”FlipXY” Viewport=”0,0,0.1,0.2”> 

<ImageBrush.ImageSource>

<BitmapImage UriSource=”C:\Users\Public\Pictures\Sample Pictures\Winter 

Leaves.jpg”/> 

</ImageBrush.ImageSource> 

</ImageBrush>

</Window.Background> 

</Window>

  From the Library of Wow! eBook



ptg

Figure 15.36 shows the resulting Window.

Brushes 525
1

5

FIGURE 15.36 The ImageBrush background, using TileMode=FlipXY to create an interest-
ing pattern.

VisualBrush

VisualBrush is also identical to DrawingBrush, except it has a Visual property of type 
Visual instead of a Drawing property of type Drawing. The power to paint with any 
Visual, however, even FrameworkElements such as Button and TextBox, makes 
VisualBrush very unique and powerful.

The following XAML paints a Window’s background with a VisualBrush containing a 
simple Button. Figure 15.37 shows the rendered result.

<Window xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”

Title=”ImageBrush with TileMode = FlipXY”> 

<Window.Background>

<VisualBrush TileMode=”FlipXY” Viewport=”0,0,0.5,0.5”> 

<VisualBrush.Visual>

<Button>OK</Button> 

</VisualBrush.Visual> 

</VisualBrush>

</Window.Background> 

</Window>

Note that the Button inside this 
VisualBrush can never be clicked. 
VisualBrush simply paints the appear-
ance of Visuals; there is no interactivity 
within the area that is painted.

Rather than embedding elements 
directly in a VisualBrush, it’s more 
common to set its Visual to an instance

FIGURE 15.37 The VisualBrush back-
ground based on a Button.

  From the Library of Wow! eBook



ptg

of a UIElement already on the screen and available for user interaction. This could be 
done with procedural code or a simple Binding, as demonstrated with the following 
Window:

<Window xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation” 

xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml” 

Title=”VisualBrush with TileMode = FlipXY”> 

<DockPanel>

<StackPanel Margin=”10” x:Name=”stackPanel”> 

<Button>Button</Button> 

<CheckBox>CheckBox</CheckBox>

</StackPanel> 

<Rectangle> 

<Rectangle.Fill>

<VisualBrush TileMode=”FlipXY” Viewport=”0,0,0.5,0.5” 

Visual=”{Binding ElementName=stackPanel}”/>

</Rectangle.Fill> 

</Rectangle>

</DockPanel> 

</Window>

Figure 15.38 shows the result that this
Window produces. The entire StackPanel 
docked on the left is used as the 
VisualBrush’s Visual. VisualBrush is 
applied as the Fill of a Rectangle that 
occupies the remainder of the Window. 
The “real” instances of the Button and 
CheckBox on the left support interactivity, 
but the visual copies do not. The visual 
copies do, however, reflect any changes to 
the Button and CheckBox visuals as they 
happen.

These examples may not have done a good job of convincing you that there can actually 
be a reasonable use for such an unusual Brush! But there are some good ones. 
Applications can leverage VisualBrush to provide “live previews” of inner content 
(perhaps documents) in a smaller, browsable form. Internet Explorer (versions 7 and later) 
does this with its Quick Tabs view. In addition, Windows leverages the technology under-
lying VisualBrush to create its live preview of each window when you hover over a 
taskbar item or switch between windows by using Alt+Tab or Windows+Tab.

Another popular use of VisualBrush is to create a live reflection effect. The following 
Window creates a simple reflection below a TextBox, using essentially the same technique 
employed in the previous XAML snippet:

CHAPTER 15 2D Graphics526

FIGURE 15.38 Copying the appearance 
of live Visuals inside a VisualBrush.

  From the Library of Wow! eBook



ptg

<Window xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation” 

xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”

Title=”TextBox with Reflection” Width=”500” Height=”200” Background=”DarkGreen”> 

<StackPanel Margin=”40”>

<TextBox x:Name=”textBox” FontSize=”30”/> 

<Rectangle Height=”{Binding ElementName=textBox, Path=ActualHeight}”

Width=”{Binding ElementName=textBox, Path=ActualWidth}”> 

<Rectangle.Fill>

<VisualBrush Visual=”{Binding ElementName=textBox}”/> 

</Rectangle.Fill> 

<Rectangle.LayoutTransform>

<ScaleTransform ScaleY=”-0.75”/> 

</Rectangle.LayoutTransform> 

</Rectangle>

</StackPanel> 

</Window>

The Rectangle containing the
VisualBrush reflection is flipped upside 
down by using a ScaleTransform. But 
rather than setting ScaleY to -1, the value 
of -0.75 is used to give the reflection a 
little bit of perspective. Figure 15.39 shows 
the result.

This effect isn’t quite satisfactory, however, because the reflection is too crisp and clear. 
You can improve this with an opacity mask, as discussed in the next section.

Brushes as Opacity Masks
All Visual subclasses (and DrawingGroup) have an Opacity property that affects the entire 
object evenly, but they also have an OpacityMask that can be used to apply custom 
opacity effects. OpacityMask can be set to any Brush, and that Brush’s alpha channel is 
used to determine which parts of the object should be opaque, which parts should be 
transparent, and which parts should be somewhere in between.

The alpha channel used by OpacityMask can come from the colors in a color brush, from 
drawings in a DrawingBrush, from images in an ImageBrush (for example, PNG trans-
parency), and so on. The following Window uses a LinearGradientBrush as an OpacityMask 
to create the obnoxious-looking Button in Figure 15.40:

<Window xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”

Title=”LinearGradientBrush OpacityMask”> 

<Window.Background>

<LinearGradientBrush> 

<GradientStop Offset=”0” Color=”Orange”/> 

<GradientStop Offset=”1” Color=”Brown”/>

</LinearGradientBrush>

Brushes 527
1

5

FIGURE 15.39 A simple live reflection 
effect.

  From the Library of Wow! eBook



ptg

</Window.Background> 

<Button Margin=”40” FontSize=”80”>OK 

<Button.OpacityMask>

<LinearGradientBrush EndPoint=”0.1,0.1” SpreadMethod=”Reflect”> 

<GradientStop Offset=”0” Color=”Blue”/> 

<GradientStop Offset=”1” Color=”Transparent”/>

</LinearGradientBrush> 

</Button.OpacityMask> 

</Button>

</Window>

The LinearGradientBrush used for the OpacityMask 
defines a repetitive gradient between blue and transparent, 
but the blue color is immaterial because it is never seen. 
All that matters is that it’s a completely opaque color.

Figure 15.41 shows what this same Button would look like if 
the OpacityMask were instead set to a DrawingBrush contain-
ing the familiar ghost Drawing. On the left, the ghost’s body 
is filled with a completely opaque color. The result is no 
different from what you could accomplish by clipping the Button to the ghost body’s 
Geometry. On the right, the ghost’s body is filled with a translucent color, but its eyes and 
mouth are still opaque. This gives a result that you could not achieve with clipping alone.

CHAPTER 15 2D Graphics528

FIGURE 15.40 A
Button with a striped
OpacityMask, courtesy of a 
LinearGradientBrush.

FIGURE 15.41 Using the ghost as DrawingBrush OpacityMask, with two different body fill 
colors.

With the features for creating a gadget-style application (setting AllowsTransparency to 
true and so on) described in Chapter 7, “Structuring and Deploying an Application,” you 
can even apply an OpacityMask to the top-level Window!

As promised, here’s how you could use OpacityMask to improve the live reflection effect 
from Figure 15.39:

<Window xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation” 

xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”

Title=”TextBox with Reflection” Width=”500” Height=”200” 

  From the Library of Wow! eBook



ptg

Background=”DarkGreen”> 

<StackPanel Margin=”40”>

<TextBox x:Name=”textBox” FontSize=”30”/> 

<Rectangle Height=”{Binding ElementName=textBox, Path=ActualHeight}”

Width=”{Binding ElementName=textBox, Path=ActualWidth}”> 

<Rectangle.Fill>

<VisualBrush Visual=”{Binding ElementName=textBox}”/> 

</Rectangle.Fill> 

<Rectangle.LayoutTransform>

<ScaleTransform ScaleY=”-0.75”/> 

</Rectangle.LayoutTransform> 

<Rectangle.OpacityMask>

<LinearGradientBrush EndPoint=”0,1”> 

<GradientStop Offset=”0” Color=”Transparent”/> 

<GradientStop Offset=”1” Color=”#77000000”/>

</LinearGradientBrush> 

</Rectangle.OpacityMask> 

</Rectangle>

</StackPanel> 

</Window>

Figure 15.42 shows the result of this 
change, which is undoubtedly the most 
tasteful use of OpacityMask in this chapter.

Effects
WPF has two special visual effects built in to the System.Windows.Media.Effects name-
space that can be applied to any Visual. These effects are DropShadowEffect and 
BlurEffect, which both derive from the abstract Effect class. Figure 15.43 shows each of 
them applied to a simple Button. WPF applies these effects to the rendered rasterized 
output as a postprocessing step.

Effects 529
1

5

FIGURE 15.42 The live reflection effect, 
enhanced with an OpacityMask.

(BlurEffect)

FIGURE 15.43 The two built-in effects applied to a Button.

Although Visual exposes this functionality via a protected VisualEffect property, all of its 
subclasses in WPF (such as UIElement) expose it as a public Effect property. To apply an 
effect to a relevant object, you simply set its Effect property to an instance of one of the 
Effect-derived classes. For example, the first Button in Figure 15.43 was created as follows:

<Button Width=”200”>

DropShadowEffect 

<Button.Effect>

  From the Library of Wow! eBook



ptg

Figure 15.43 uses both effects with their default settings. However, each class provides a 
handful of properties to customize their appearance. Table 15.3 summarizes these proper-
ties and their values.

TABLE 15.3 Properties on the Bitmap Effects 

Default
Effect Properties Value

DropShadowEffect RenderingBias: Choose between Performance and Performance 
Quality

BlurRadius: A nonnegative double 5

Color: Any color (even one with a non-opaque alpha) Black

Direction: A double representing an angle (in degrees) 315 
Opacity: A double between 0 (transparent) and 1 1

(opaque)
ShadowDepth: A nonnegative double 5

BlurEffect RenderingBias: Choose between Performance Performance 
and Quality

Radius: A nonnegative double 5

KernelType: Box or Gaussian Gaussian

The exciting part about WPF’s effects is not necessarily the two built-in ones but a third 
Effect subclass called ShaderEffect that enables you to easily inject your own custom

CHAPTER 15 2D Graphics530

Don’t use the BitmapEffect property!

The first version of WPF shipped with a different form of these effect classes derived from a 
class called BitmapEffect. Every class with an Effect property also has a BitmapEffect 
property that accepts an instance of a BitmapEffect. However, BitmapEffects have been 
deprecated, so setting the property no longer does anything. The biggest difference with the 
new Effects compared to the obsolete BitmapEffects is that Effects are generally hard-
ware accelerated, whereas BitmapEffects never were.

If you have code that uses one of these old BitmapEffects, switching to the newer 
BlurEffect or DropShadowEffect should be straightforward. Unfortunately, there are three 
other BitmapEffects that have no built-in replacements: BevelBitmapEffect, 
EmbossBitmapEffect, and OuterGlowBitmapEffect.

Of course, you can still use BitmapEffect in code that is running on an older version of 
WPF. They can easily sabotage an application’s performance, but they can be fine when used 
rarely and appropriately. Furthermore, just because Effects are hardware accelerated 
doesn’t mean they can be used with reckless abandon. They should still be used judiciously 
to avoid impacting performance.

WA R N I N G

<DropShadowEffect/> 

</Button.Effect> 

</Button>

  From the Library of Wow! eBook



ptg

effects. (The obsolete bitmap effects did not allow for this kind of extensibility without 
writing C++ COM code.) By deriving from the abstract ShaderEffect class, you can apply 
any pixel shader to any object with an Effect property. This leverages the pixel shader 
support in DirectX, which means that the shaders themselves must be written in High 
Level Shader Language (HLSL).

Effects 531
1

5

For a wide range of effects built on ShaderEffect, download the WPF Pixel Shader Effects 
Library from http://wpffx.codeplex.com. It contains the following single-input effects:

BandedSwirlEffect MagnifyEffect

BloomEffect MonochromeEffect

BrightExtractEffect PinchEffect

ColorKeyAlphaEffect PixelateEffect

ColorToneEffect RippleEffect

ContrastAdjustEffect SharpenEffect

DirectionalBlurEffect SmoothMagnifyEffect

EmbossedEffect SwirlEffect

GloomEffect ToneEffect

GrowablePoissonDiskEffect ToonEffect

InvertColorEffect ZoomBlurEffect

LightStreakEffect

It also contains the following two-input transition effects: 

BandedSwirlTransitionEffect PixelateInTransitionEffect

BlindsTransitionEffect PixelateOutTransitionEffect

BloodTransitionEffect PixelateTransitionEffect

CircleRevealTransitionEffect RadialBlurTransitionEffect

CircleStretchTransitionEffect RadialWiggleTransitionEffect

CircularBlurTransitionEffect RandomCircleRevealTransitionEffect

CloudReveralTransitionEffect RippleTransitionEffect

CloudyTransitionEffect RotateTransitionEffect

CrumbleTransitionEffect SaturateTransitionEffect

DissolveTransitionEffect ShrinkTransitionEffect

DropFadeTransitionEffect SlideInTransitionEffect

FadeTransitionEffect SmoothSwirlTransitionEffect

LeastBrightTransitionEffect SwirlTransitionEffect

LineRevealTransitionEffect WaterTransitionEffect

MostBrightTransitionEffect WaveTransitionEffect

T I P

  From the Library of Wow! eBook

http://wpffx.codeplex.com


ptg

Improving Rendering Performance
Vector graphics have a lot of advantages over bitmap-based graphics, but with those 
advantages come inherent scalability issues. Even when using the most lightweight 
drawing approach (the DrawingContext class discussed in the “Visuals” section), complex 
drawings can be expensive to redraw. In scenarios where there might be a rapid succes-
sion of redrawing, as with a zooming animation, the cost of rendering can significantly 
impact the resulting user experience.

Therefore, people often look for ways to avoid drawing when possible. WPF has two inter-
esting tricks that help in this regard. One is RenderTargetBitmap, which has been a part 
of WPF since its first version. The other is BitmapCache and the corresponding 
BitmapCacheBrush, collectively known as cached composition. Cached composition is the 
most significant new 2D feature in WPF 4.

RenderTargetBitmap
With RenderTargetBitmap, a subclass of BitmapSource (which is a subclass of 
ImageSource), you can render a Visual onto a bitmap and display the bitmap instead of 
the original Visual. Redrawing this bitmap is likely to be significantly faster than redraw-
ing the Visual.

The following method represents a common approach for producing a 
RenderTargetBitmap filled with the contents of a Visual:

private static ImageSource ProduceImageSourceForVisual(Visual source, 

double dpiX, double dpiY)

{

if (source == null) 

return null;

Rect bounds = VisualTreeHelper.GetDescendantBounds(source);

RenderTargetBitmap bitmap = new RenderTargetBitmap( 

(int)(bounds.Width * dpiX / 96), (int)(bounds.Height * dpiY / 96), 

dpiX, dpiY, PixelFormats.Pbgra32);

DrawingVisual drawingVisual = new DrawingVisual(); 

using (DrawingContext ctx = drawingVisual.RenderOpen()) 

{

ctx.DrawRectangle(new VisualBrush(source), null, 

new Rect(new Point(), bounds.Size));

} 

bitmap.Render(drawingVisual); 

return bitmap;

}

CHAPTER 15 2D Graphics532

  From the Library of Wow! eBook



ptg

Wrapping the source Visual in a VisualBrush is a trick to respect layout in the rendered 
result. If the content in the Visual doesn’t require layout behavior from its parent, you 
can omit this wrapping.

BitmapCache
RenderTargetBitmap can work well for improving rendering performance, but it has some 
problems:

. It uses software rendering

. It works synchronously on the UI thread

. It must be used with procedural code

. It is separate from the element tree

The new cached composition feature in WPF 4 addresses all of these problems, and it’s 
much easier to use than RenderTargetBitmap! BitmapCache can be used to automatically 
cache any UIElement, including its tree of subelements, as a bitmap in video memory. It 
provides hardware rendering on the render thread in the element tree, and it’s easy to use 
within XAML. It’s essentially a hardware version of RenderTargetBitmap, although it 
doesn’t provide a mechanism for accessing the raw bits in the bitmap.

To use this feature, you set the CacheMode property on any UIElement you wish to cache. 
The type of the CacheMode property is the abstract CacheMode class, although BitmapCache 
is the only CacheMode subclass that WPF ships. Therefore, you can set it on a Grid as 
follows:

<Grid …> 

<Grid.CacheMode>

<BitmapCache/> 

</Grid.CacheMode>

… 

</Grid>

When the cached element (including any of its children) is updated, BitmapCache auto-
matically and intelligently updates only the dirty region. Updates to any parents do not 
invalidate the cache, nor do updates to the element’s transforms or opacity! Furthermore, 
WPF automatically leverages the live element when needed in order to preserve its inter-
activity.

BitmapCache has three properties for controlling its behavior:

. RenderAtScale—A double whose value is 1 by default. Use this to specify the scale 
of the element when it is rendered to the cached bitmap. This property is especially 
interesting when you plan on changing the size of the element. If you zoom the 
element to a larger size, setting RenderAtScale to the final scale avoids a degraded 
result. Setting RenderAtScale to a smaller scale improves performance while sacrific-
ing quality.

Improving Rendering Performance 533
1

5

  From the Library of Wow! eBook



ptg

. SnapsToDevicePixels—A Boolean that can be set to true to enable pixel snapping 
on the rendered bitmap.

. EnableClearType—A Boolean that can be set to true to enable ClearType rendering 
instead of grayscale antialiasing. If you set this to true, you must also set 
SnapsToDevicePixels to true to ensure proper rendering.

Changes to any of these values invalidate the cache.

Figure 15.44 shows the use of RenderAtScale on a few different Buttons, as follows:

<Button> 

<Button.CacheMode>

<BitmapCache RenderAtScale=”…”/> 

</Button.CacheMode>

… 

</Button>

Notice that the caching is applied to the entire Button, not just its content, so the Button 
chrome also becomes noticeably pixelated at low values of RenderAtScale.

CHAPTER 15 2D Graphics534

RenderAtScale=1 RenderAtScale=0.5

RenderAtScale=0.1 RenderAtScale=0.01

FIGURE 15.44 Using RenderAtScale to reduce the resolution of the cached bitmap.

  From the Library of Wow! eBook



ptg

BitmapCacheBrush
BitmapCacheBrush enables the same cached bitmap to be used multiple times, and wher-
ever a Brush can be applied. Simply assign any Visual to BitmapCacheBrush’s Target 
property, and BitmapCacheBrush will leverage the cached bitmap if the Visual has 
CacheMode set. Even if the Visual doesn’t have CacheMode set, you can control caching 
directly on the BitmapCacheBrush. (BitmapCacheBrush doesn’t have a CacheMode property; 
instead it has a BitmapCache property of type BitmapCache that works the same way.)

Therefore, BitmapCacheBrush is a more efficient version of VisualBrush. This improved 
efficiency not only comes from leveraging a cached bitmap, but also from its support of 
dirty regions.

Summary 535
1

5

BitmapCache falls back to software rendering when hardware acceleration is not possible. 
However, when rendered in software, the maximum size allowed for the cached bitmap is 
2048x2048 pixels.

T I P

BitmapCache is most appropriate for static content that gets animated or scrolled, to avoid 
creating a bottleneck in WPF’s rendering pipeline due to the CPU-bound work of repeated 
tessellation and rasterization on every frame. There is a tradeoff, however. The more you 
cache, the bigger the memory consumption will be on the GPU.

T I P

BitmapCacheBrush ignores pixel snapping!

BitmapCacheBrush ignores the value of SnapsToDevicePixels and always treats it as 
false. Therefore, you should avoid setting EnableClearType to true on 
BitmapCacheBrush’s BitmapCache or on the CacheMode of any Visual used as 
BitmapCacheBrush’s Target.

WA R N I N G

Summary
Although it might have initially seemed like a stretch to include a chapter about 2D 
graphics in a section about “rich media,” you hopefully now understand just how rich 
WPF’s 2D support is. Unlike the 2D drawing support in previous Windows technologies, 
WPF gives you the power of DirectX mixed with the ease of use of a retained-mode 
graphics system.

  From the Library of Wow! eBook



ptg

This chapter focused on vector graphics, but it also highlighted where bitmap-based 
images fit seamlessly into the same picture. You’ve also seen the first few hints of video 
support, which is covered further in Chapter 18.

As with many other features in WPF, a big part of the power of 2D graphics comes from 
the tight integration with the rest of WPF. The drawing primitives used to create lines, 
shapes, and ghosts are the same ones used to create Buttons, Menus, and ListBoxes. In the 
next chapter, we’ll see how to expand on this support to take WPF into the third dimen-
sion.

CHAPTER 15 2D Graphics536

  From the Library of Wow! eBook



ptg

CHAPTER 16 

3D Graphics

The 3D APIs in Windows Presentation Foundation are 
designed to be as approachable and easy to use as other 
parts of the .NET Framework. Because 3D is a truly inte-
grated part of the WPF platform, many concepts are shared 
and reused from 2D graphics and elsewhere. This signifi-
cantly reduces the learning curve for 2D developers 
approaching 3D for the first time because the 3D APIs often 
follow familiar patterns and conventions. WPF is therefore 
an excellent tool for learning about 3D graphics.

This chapter focuses primarily on the aspects of the APIs 
that are unique to 3D, but it is important to remember that 
much of the power of the 3D features comes from deep 
integration with the rest of the platform. This integration 
spans everything from user interface remoting, to printing, 
to running in partial-trust web applications.

Like 2D, the 3D features are available from both procedural 
code and XAML. To display a 3D scene in WPF, you build a 
graph of objects similar to the way you build 2D artwork 
out of Shapes or Drawings. Once you have described your 
scene, the system takes care of invalidation and repainting 
on your behalf. All the features of the property engine, 
such as data binding and animation, work identically with 
3D objects.

3D content is not constrained to a box. Scenes contained 
within a Viewport3D are composed seamlessly with other 
UIElements and can be included in templates and 
ItemsControls. Likewise, 2D media such as video, 
Drawings, and Visuals can be displayed on the surfaces of 
3D models. Services such as hit testing automatically 
continue into the 3D portions of the Visual tree.

IN THIS CHAPTER

. Getting Started with 3D 
Graphics

. Cameras and Coordinate 
Systems

. Transform3D

. Model3D

. Visual3D

. Viewport3D

. 2D and 3D Coordinate System 
Transformation

  From the Library of Wow! eBook



ptg

This chapter has three purposes. First, it is an introduction to 3D graphics for developers 
who have no prior experience with 3D. Second, it is a reference for the 3D APIs in WPF. 
Third, it is a road map for experienced 3D developers familiar with other platforms, such 
as DirectX, or who need to write tools that interoperate with WPF.

Getting Started with 3D Graphics
The purpose of 3D graphics is to produce 2D images from 3D models suitable for display-
ing on an output device such as a computer screen. Creating images from 3D models is a 
different paradigm than most 2D developers are used to. When working in two dimen-
sions, you usually draw the exact shape that you want, using absolute coordinates. If you 
want a rectangle at (50,75) that is 100 units wide by 30 units tall, you typically create a 
Rectangle element (or a GeometryDrawing with a RectangleGeometry that has the corre-
sponding bounds). Consider the house drawn in Listing 16.1 using the 2D Drawing 
classes. Figure 16.1 shows the output.

LISTING 16.1 Drawing a House with 2D Drawings

<Page Background=”Black” 

xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation” 

xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”> 

<Image> 

<Image.Source>

<DrawingImage> 

<DrawingImage.Drawing>

<DrawingGroup x:Name=”House”> 

<GeometryDrawing x:Name=”Front” Brush=”Red”

Geometry=”M0,260 L0,600 L110,670 L110,500 L190,550 L190,710 L300,775

L300,430 L150,175”/> 

<GeometryDrawing x:Name=”Side” Brush=”Green”

Geometry=”M300,430 L300,775 L600,600 L600,260”/> 

<GeometryDrawing x:Name=”Roof” Brush=”Blue”

Geometry=”M150,175 L300,430 L600,260 L450,0”/> 

</DrawingGroup>

</DrawingImage.Drawing> 

</DrawingImage>

</Image.Source> 

</Image>

</Page>

Although the house might have been drawn to look somewhat three-dimensional, the 
data from which the image was produced is two-dimensional. From the system’s point of 
view, you’ve drawn some flat 2D polygons. Although you can rotate the polygons within 
a 2D plane, you cannot turn the house to see the back or generate images of the inside of

CHAPTER 16 3D Graphics538

  From the Library of Wow! eBook



ptg

the house. No information exists for the 
parts of the house you cannot see. If you 
want to be able to create images of the 
house from multiple vantage points 
(without creating independent 2D draw-
ings for each view), you have to give the 
system more information.

Listing 16.2 gives a preview of how the 
same image would be produced using 
Model3Ds instead of 2D Drawings. 
Although Listing 16.2 is longer than its 
2D counterpart, it provides a great deal 
more flexibility in what you can do with 
your house. Using the 3D model, you can 
now generate 2D images from any 
vantage point just by tweaking a few 
properties, as shown in Figure 16.2.

LISTING 16.2 A House Drawn Using Model3Ds

<Page Background=”Black” 

xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation” 

xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”> 

<Viewport3D> 

<Viewport3D.Camera>

<OrthographicCamera Position=”5,5,5” LookDirection=”-1,-1,-1” Width=”5”/> 

</Viewport3D.Camera> 

<Viewport3D.Children>

<ModelVisual3D x:Name=”Light”> 

<ModelVisual3D.Content>

<AmbientLight/> 

</ModelVisual3D.Content> 

</ModelVisual3D> 

<ModelVisual3D> 

<ModelVisual3D.Content>

<Model3DGroup x:Name=”House”>

<GeometryModel3D x:Name=”Roof”> 

<GeometryModel3D.Material>

<DiffuseMaterial Brush=”Blue”/> 

</GeometryModel3D.Material> 

<GeometryModel3D.Geometry>

<MeshGeometry3D Positions=”-1,1,1 0,2,1 0,2,-1 -1,1,-1 0,2,1 1,1,1 

1,1,-1 0,2,-1”

TriangleIndices=”0 1 2 0 2 3 4 5 6 4 6 7”/>

Getting Started with 3D Graphics 539
1

6

FIGURE 16.1 A simple house drawn 
using 2D Drawings.

  From the Library of Wow! eBook



ptg

</GeometryModel3D.Geometry> 

</GeometryModel3D>

<GeometryModel3D x:Name=”Sides”> 

<GeometryModel3D.Material>

<DiffuseMaterial Brush=”Green”/> 

</GeometryModel3D.Material> 

<GeometryModel3D.Geometry>

<MeshGeometry3D Positions=”-1,1,1 -1,1,-1 -1,-1,-1 -1,-1,1 1,1,-1 

1,1,1 1,-1,1 1,-1,-1” 

TriangleIndices=”0 1 2 0 2 3 4 5 6 4 6 7”/> 

</GeometryModel3D.Geometry> 

</GeometryModel3D>

<GeometryModel3D x:Name=”Ends”> 

<GeometryModel3D.Material>

<DiffuseMaterial Brush=”Red”/> 

</GeometryModel3D.Material> 

<GeometryModel3D.Geometry>

<MeshGeometry3D 

Positions=”-0.25,0,1 -1,1,1 -1,-1,1 -0.25,-1,1 -0.25,0,1 

-1,-1,1 0.25,0,1 1,-1,1 1,1,1 0.25,0,1 0.25,-1,1 1,-1,1 

1,1,1 0,2,1 -1,1,1 -1,1,1 -0.25,0,1 0.25,0,1 1,1,1 1,1,-1 

1,-1,-1 -1,-1,-1 -1,1,-1 1,1,-1 -1,1,-1 0,2,-1”

TriangleIndices=”0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 15 

17 18 19 20 21 19 21 22 23 24 25”/>

</GeometryModel3D.Geometry> 

</GeometryModel3D>

</Model3DGroup> 

</ModelVisual3D.Content> 

</ModelVisual3D>

</Viewport3D.Children> 

</Viewport3D>

</Page>

Listing 16.2 gives you a peek at most of the objects that are discussed in the remainder of 
the chapter. While many of the classes in the listing are new, they are straightforward 
extensions of the 2D types covered in Chapter 15, “2D Graphics.” Table 16.1 shows how 
some of the 3D types map to their nearest 2D equivalents.

CHAPTER 16 3D Graphics540

LISTING 16.2 Continued

  From the Library of Wow! eBook



ptg

FIGURE 16.2 Several views of the house.

TABLE 16.1 Mapping 2D Types to the Nearest 3D Equivalent 

2D Type 3D Type Description

Drawing Model3D Drawings represent pieces of 2D content, such as clip art, 
which may be rendered by a Visual.
Model3Ds represent pieces of 3D models, which may be 
rendered by a Visual3D.

Geometry Geometry3D A Geometry represents a 2D shape. Geometries can answer 
questions about bounds and intersections. By itself, a 
Geometry cannot be rendered. A GeometryDrawing 
combines a Geometry with a Brush to give it an appearance.
A Geometry3D represents a 3D surface. To render a 
Geometry3D, you combine it with a Material using a 
GeometryModel3D.

Visual Visual3D Visual is the base class for elements that render 2D 
content. This includes DrawingVisual and all 
FrameworkElements such as Controls and Shapes. 
Visual3D is the base class for elements that render 3D 
content. ModelVisual3D is a concrete Visual3D that 
renders 3D content represented as Model3Ds.

UIElement UIElement3D UIElement, a derivative of the Visual class, adds much of 
the core functionality associated with many of WPF’s frame-
work-level concepts. It is often said that the UIElement 
class introduces LIFE (layout, input, focus, and eventing) to 
the 2D class hierarchy.
UIElement3D, as the 3D analog to the 2D UIElement class, 
adds IFE (input, focus, and eventing) to the 3D world. It 
allows 3D objects to directly participate in application behav-
ior rather than act as purely visual representations of 3D 
content.

Transform Transform3D Subclasses of the 2D Transform class are used to position, 
rotate, and size 2D Drawings and Visuals.
There are no Transform3Ds in Listing 16.2, but when you 
encounter the 3D transform objects later in this chapter, you 
will see that they perform the same function for Model3Ds 
and Visual3Ds.

Getting Started with 3D Graphics 541
1

6

  From the Library of Wow! eBook



ptg

While most of the 3D objects are straightforward extensions of the 2D API, there are two 
concepts that are unique to 3D in WPF and also appear in Listing 16.2:

. Cameras—To generate images of 3D models, you place a virtual Camera within the 
scene. As with a real camera, the position, orientation, and other properties of the 
Camera determine your view of the scene.

. Materials and Lights—In 2D, you use Brushes to specify the appearance of a filled 
Geometry. In 3D, you also use Brushes, but there is an extra lighting step that influ-
ences the appearance of 3D surfaces.

As you will see in the upcoming sections, the Camera, Materials, and Lights all play 
important roles in enabling you to quickly render views of dynamic 3D scenes.

Cameras and Coordinate Systems
In the real world, what you see depends on where you stand, the direction you look, how 
you tilt your head, and so on. In WPF, you place a virtual Camera into your 3D scene to 
control what will appear in the Viewport3D. This is done by positioning and orienting the 
Camera in the world coordinate system (sometimes called world space for short). Figure
16.3 shows the 2D and 3D coordinate systems that WPF uses.

CHAPTER 16 3D Graphics542

2D 3D

FIGURE 16.3 The 2D and 3D coordinate systems.

Besides the extra z-axis, a couple additional differences exist between the 2D and 3D coor-
dinate systems.

In 3D, the y-axis typically points up instead of down. Also, negative coordinates, which 
are rarely used in 2D, are quite common in 3D. Because of this, you usually consider the 
origin to be at the center of space as opposed to the top-left corner, as you do in 2D. Of 
course, these are merely conventions, and you are free to use transformations to map into 
whatever system is most convenient for you.

The two common Camera classes you will use, OrthographicCamera and 
PerspectiveCamera, expose a set of properties to position and orient your Camera in 
world space. The upcoming sections discuss these properties and how you can use them 
to control what part of the 3D scene is visible.

  From the Library of Wow! eBook



ptg

Position
The Position property controls where the Camera is positioned in space. By moving the
Camera, you can create different views of a scene. The Position property is of type 
Point3D. Point3Ds contain x, y, and z coordinates and define a location in a coordinate 
system. When rendering the model of the house, Listing 16.2 used the position (5,5,5):

<Viewport3D.Camera> 

<OrthographicCamera Position=”5,5,5” LookDirection=”-1,-1,-1” Width=”5”/>

</Viewport3D.Camera>

Cameras and Coordinate Systems 543
1

6

WPF Uses a Right-Handed Coordinate System

The handedness of a coordinate system refers to the relationship of the z-axis to the x- and 
y-axes. If the positive x- and y-axes are arranged as shown in Figure 16.4, there are two 
directions the z-axis could point. In a left-handed coordinate system, the positive z-axis 
points away from the viewer, as shown on the left. In a right-handed system, the positive z-
axis points toward the viewer, as shown on the right.

FIGURE 16.4 Left-handed versus right-handed coordinate systems.

WPF standardized on a right-handed coordinate system. The right-handed coordinate system 
derives its name from the right-hand rule: If your index finger points in the direction of the 
positive x-axis and your middle finger points in the direction of the positive y-axis, your thumb 
indicates the direction of the positive z-axis, as shown in Figure 16.5.

FIGURE 16.5 The right-hand rule.

D I G G I N G  D E E P E R

Right-handedLeft-handed

  From the Library of Wow! eBook



ptg

This means that the Camera is positioned five units 
to the right on the x-axis, five units up on the y-axis, 
and five units forward on the z-axis. Looking at 
Figure 16.6, you can see that this locates the Camera 
above the house, looking at what we will call the 
southeast side. (There is no standard connection 
between the axes and the cardinal directions, but 
you can assign one for your application for conve-
nience.)

If you wanted to see the southwest side of the house, 
you would position the Camera at (-5,5,5):

<Viewport3D.Camera> 

<OrthographicCamera Position=”-5,5,5” LookDirection=”-1,-1,-1” Width=”5”/>

</Viewport3D.Camera>

The new position is shown in Figure 16.7.

However, setting the Camera to this new posi-
tion alone would not give you the desired 
view without adjusting the LookDirection. To 
use a physical analogy, this is like looking at 
your friend through the viewfinder of a 
camera and then taking 10 giant steps to the 
left. Unless you turn to face your friend again, 
you will now be taking a picture of the wall. 
You use the LookDirection property to 
control which direction the Camera is looking.

LookDirection
The LookDirection property specifies which direction the Camera is facing. LookDirection 
is of type Vector3D. Like Point3Ds, Vector3Ds also contain x, y, and z coordinates, but 
rather than specify a location in space, a Vector3D specifies a direction and a magnitude. 
The magnitude of a Vector3D is called its Length and is given by

CHAPTER 16 3D Graphics544

Continued 

This is an easy, if not somewhat awkward, way to remember the relationship between the 
axes. Later in this chapter, you’ll discover a different version of the right-hand rule to remem-
ber the winding order of triangles in a MeshGeometry3D.

FIGURE 16.6 Camera posi-
tioned to view the southeast side.

Camera

FIGURE 16.7 Camera positioned to 
view the southwest side.

Camera

x2+ y2+ z2

  From the Library of Wow! eBook



ptg

Cameras and Coordinate Systems 545
1

6

Remember, Cameras have a blind spot!

Surfaces closer than the Camera’s NearPlaneDistance will be clipped. When setting the 
Camera’s Position, you need to be careful that any objects you want to see are at least 
NearPlaneDistance units ahead of the Camera in the LookDirection. Figure 16.8 shows 
what would happen if you moved the Camera too close to the model of the house.

The purpose of a Camera’s NearPlaneDistance is to work around the limited floating-point 
precision of the GPU’s Z buffer. When the precision of the Z buffer is exhausted, a phenome-
non known as Z-fighting occurs, in which the GPU is unable to determine which surfaces are 
nearer to the Camera. Figure 16.9 shows an example of the type of rendering artifacts Z-
fighting causes. The pattern of the artifacts usually changes with the viewing angle.

Z-fighting is typically caused by attempting to render objects too close to the Camera’s 
Position. The NearPlaneDistance property of the Camera works around Z-fighting by clipping 
objects closer than a certain distance from the Camera. NearPlaneDistance defaults to
0.125, which is a good setting.

There are other, less common, ways that Z-fighting may occur. One is attempting to render 
objects that are really far away from the Camera. There is a corresponding 
FarPlaneDistance, which can be used to work around this if it occurs, but because it is 
rare, this property defaults to positive infinity.

Finally, Z-fighting can occur when you render two surfaces that are nearly, but not quite, on 
top of each other. The only way to fix this case is to move the surfaces sufficiently far apart, 
such that one is clearly closer to the Camera than the other. If two surfaces are exactly on 
top of each other, however, the rendering order is deterministic, and Z-fighting will not occur. 
In this case, the surface rendered second will always appear on top.

FIGURE 16.8 House clipped by the Camera’s near plane.

WA R N I N G

  From the Library of Wow! eBook



ptg

The Camera in Listing 16.2 uses a LookDirection of <-1,-1,-1>:

<Viewport3D.Camera> 

<OrthographicCamera Position=”5,5,5” LookDirection=”-1,-1,-1” Width=”5”/>

</Viewport3D.Camera>

The x, y, and z coordinates of this vector tell the camera to look downward, toward the 
northwest, as shown in Figure 16.10.

CHAPTER 16 3D Graphics546

Continued

FIGURE 16.9 Z-fighting artifacts.

FIGURE 16.10 Camera looking downward, toward the northwest.

Camera

  From the Library of Wow! eBook



ptg

It was mentioned previously that if you moved the Position of the Camera to (-5,5,5), 
the house would no longer be visible. Figure 16.11 shows you why. Moving the Camera 
does not change the LookDirection, so the Camera is no longer facing the house in its 
new location.

Cameras and Coordinate Systems 547
1

6

Camera

FIGURE 16.11 Moving the Camera does not change the LookDirection.

An easy way to figure out the required
LookDirection for the Camera is to find a 
point in world space that you want to see 
and subtract it from the Camera’s Position. 
In this case, the model of the house is 
roughly around the origin (0,0,0). 
Subtracting (-5,5,5) from (0,0,0) gives a 
vector in the direction of <5,-5,-5>, as 
shown in Figure 16.12.

Using this new LookDirection generates 
the image in Figure 16.13:

<Viewport3D.Camera> 

<OrthographicCamera Position=”-5,5,5” LookDirection=”5,-5,-5” Width=”5”/>

</Viewport3D.Camera>

FIGURE 16.12 The new LookDirection.

Camera

WPF APIs that take a Vector3D to indicate direction are only interested in the direction of 
the Vector3D, not the Length. A LookDirection of <1,-1,-1> produces an identical image 
to the one shown in Figure 16.13. If the Length of the Vector3D needs to be normalized for 
internal calculations, WPF does this for you automatically.

In general, you only need to be concerned that Vector3Ds define a direction (that is, they 
are not the zero vector <0,0,0>), unless you are using them to calculate Point3Ds. When 
adding a Vector3D to a Point3D to find a new Point3D, the Length determines how far 
away the new Point3D will be. You should be aware that the Length of Vector3Ds influ-
ences the direction during linear interpolation. Specifically, Vector3DAnimation does not 
normalize the Vector3Ds first.

T I P

  From the Library of Wow! eBook



ptg

FIGURE 16.13 Viewing the other side of the house.

If you are moving the Camera a lot, it might make sense to write a small utility method to 
assign the new LookDirection for the Camera based on its Position and the point you 
want to look at:

private void LookAt(ProjectionCamera camera, Point3D lookAtPoint) 

{

camera.LookDirection = lookAtPoint - camera.Position; 

}

UpDirection
The LookDirection tells which direction the 
Camera is facing, but this does not completely 
specify the Camera’s orientation. You can still 
twist the Camera while keeping the 
LookDirection fixed on the same point in 
space, as shown in Figure 16.14. This is what 
you do with a physical camera to go from land-
scape to portrait orientation. You can use the 
UpDirection property to disambiguate this 
final component of the Camera’s orientation.

The UpDirection property defaults to <0,1,0>. 
By specifying a different direction, such as 
<1,0,0>, you can turn the Camera on its side. 
Figure 16.15 shows the image produced with 
this UpDirection.

CHAPTER 16 3D Graphics548

FIGURE 16.14 The UpDirection 
property.

Camera

Look Direction

  From the Library of Wow! eBook



ptg

<Viewport3D.Camera> 

<OrthographicCamera Position=”5,5,5” LookDirection=”-1,-1,-1”

UpDirection=”1,0,0” Width=”5”/> 

</Viewport3D.Camera>

Cameras and Coordinate Systems 549
1

6FIGURE 16.15 Specifying the positive x-axis as the UpDirection.

In this section, you manipulated the 
Camera in the scene by using the 
Position, UpDirection, and 
LookDirection properties. Although this 
is often the most convenient way to set 
up a static Camera in a scene, most 
scenarios that involve moving or rotat-
ing the Camera are more easily accom-
plished by using the Camera.Transform 
property.

The key advantage of the Camera.Transform property is that it enables the Camera to be 
positioned and animated like other 3D objects in the scene. Keep this in mind when 
Transform3Ds are discussed later in this chapter.

The Camera.Transform property is espe-
cially helpful if you want the Camera to 
follow an object moving through the scene 
because the same Transform3D can be 
applied to both the Camera and the object 
you want to follow.

T I P

  From the Library of Wow! eBook



ptg

Don’t forget to transform the UpDirection!

If you are rotating the Camera around an object and the view abruptly flips over as you pass 
a certain spot, chances are that you forgot to adjust the UpDirection. The trouble happens 
if you move the LookDirection past the UpDirection, as shown in Figure 16.16.

As the Camera approaches the house, the LookDirection is adjusted so that you are 
looking downward. As the Camera goes over the roof, you would expect to be looking at the 
far side of the house upside down. However, because UpDirection is still pointing at the 
positive y-axis, the Camera instead spins in place right as you cross the center of the roof. 
Worse, when you are directly above the roof, the LookDirection and UpDirection are on 
the same line and the result is undefined. The correct way to rotate the Camera like this is 
to rotate the UpDirection along with the LookDirection, as illustrated in Figure 16.17.

FIGURE 16.16 Camera passing over the house incorrectly.

WA R N I N G

CHAPTER 16 3D Graphics550

Camera

Look Direction

Camera

Look Direction

Camera

Look Direction

  From the Library of Wow! eBook



ptg

OrthographicCamera Versus PerspectiveCamera
WPF has two types of Cameras that most applications choose from. The 
PerspectiveCamera creates a realistic image in which objects farther from the Camera 
appear smaller than those closer to the Camera. This models the way humans see things in 
the real world. The other type of Camera, OrthographicCamera, is more useful for editing 
tools and some visualizations because objects appear the same size, regardless of their 
distance from the Camera, allowing for precise measurement and analysis. Technical and 
manufacturing drawings frequently use OrthographicCameras. Figure 16.18 shows the 
same model rendered with an OrthographicCamera and a PerspectiveCamera.

All Cameras work by projecting the 3D models in the scene onto an image plane that is 
then displayed to the user. With an OrthographicCamera, each point on the image plane 
shows what is straight behind it, as shown in Figure 16.19. This enables you to view a 
section of space shaped like a rectangular right prism. The width of the viewable space is 
controlled by the OrthographicCamera.Width property. The height is computed automati-
cally from the Viewport3D’s bounding rectangle to preserve an aspect ratio of 1:1. Here is 
OrthographicCamera in action:

<Viewport3D.Camera> 

<OrthographicCamera Position=”5,5,5” LookDirection=”-1,-1,-1” Width=”5”/>

</Viewport3D.Camera>

Cameras and Coordinate Systems 551
1

6

Continued

FIGURE 16.17 UpDirection adjusted to preserve view as Camera passes house.

Camera

Look Direction

Camera

Look Direction

Camera

Look Direction

  From the Library of Wow! eBook



ptg

FIGURE 16.18 OrthographicCamera and PerspectiveCamera examples.

With a PerspectiveCamera, the width of the viewable area is not constant. As the 
distance from the Camera increases, more of the 3D world space is visible. This enables 
you to view a square frustum-shaped region of the scene, as shown in Figure 16.20. 
Because the viewable area expands as you get farther from the Camera, objects farther 
away appear smaller in a perspective projection. You control the rate of expansion with 
the FieldOfView property. In WPF, FieldOfView controls the horizontal angle at which 
the field of view expands. Here is PerspectiveCamera in action:

<Viewport3D.Camera> 

<PerspectiveCamera Position=”5,5,5” LookDirection=”-1,-1,-1” FieldOfView=”45””/>

</Viewport3D.Camera>

CHAPTER 16 3D Graphics552

OrthographicCamera example PerspectiveCamera example

FIGURE 16.19 Orthographic projection.

  From the Library of Wow! eBook



ptg

FIGURE 16.20 Perspective projection.

The FieldOfView property is comparable to the zoom lens on a physical camera. The 
Width property is the analogous concept for an OrthographicCamera. Small values for 
Width and FieldOfView “zoom in” on a small part of a 3D object. Larger values of Width 
and FieldOfView show more of the scene.

Cameras and Coordinate Systems 553
1

6

MatrixCamera

WPF supports a third type of Camera, the MatrixCamera, which enables you to specify the 
view and projection transforms as Matrix3Ds. The mathematics behind projective transforms 
is a fascinating topic but beyond the scope of this chapter.

MatrixCamera aids with porting code from other platforms, such as Direct3D. An advanced 
user can use MatrixCamera to create Cameras not directly supported by the other WPF 
Camera types, such as a frustum Camera.

The layout of the matrices used with a MatrixCamera is identical to what Direct3D uses. 
This makes it easy to port methods to construct view and projection matrices from utility 
libraries such as D3DX. These matrices are well documented in the DirectX SDK.

D I G G I N G  D E E P E R

  From the Library of Wow! eBook



ptg

Transform3D
As with Transforms in 2D, Transform3Ds allow you to position, rotate, and size 3D objects 
in space. Transform3Ds can be applied to Model3Ds, ModelVisual3Ds, and the Camera. This 
is done by setting their respective Transform properties. When you set the Transform 
property on a 3D object, you are mapping your object’s coordinate space into a new coor-
dinate space. This is no different than what happens when you position an element in 2D 
by using the Canvas.Left and Canvas.Top properties.

Figure 16.21 displays the 2D drawing of a ghost from Chapter 15. All the drawing instruc-
tions that make up the ghost are relative to the ghost’s local coordinate system. Using a 
2D TranslateTransform, you can change the ghost’s frame of reference so that the point 
(0,0) in the ghost’s coordinate system is no longer the same as point (0,0) in the 
container’s coordinate system. This is shown on the right side of Figure 16.21.

CHAPTER 16 3D Graphics554

The ghost’s coordinate system 
is the same as the container’s.

The ghost’s coordinate system 
is offset relative to the container’s.

FIGURE 16.21 The ghost’s coordinate system versus the container’s coordinate system.

The TranslateTransform causes the ghost and any child Visuals it might contain to 
move on the screen, but as far as the ghost is concerned, it’s business as usual. None of 
the ghost’s drawing instructions are modified, just its frame of reference. This is actually 
how a Canvas moves elements around—by constructing a TranslateTransform for its 
contained Visuals behind the scenes.

The same principles apply to 3D transforms. In 3D, there is a top-level world coordinate 
system. To position, size, and orient 3D objects within the world coordinate system, you 
use the five subclasses of Transform3D:

. TranslateTransform3D—Offsets a 3D object relative to its container.

. ScaleTransform3D—Scales a 3D object relative to its container.

. RotateTransform3D—Rotates a 3D object relative to its container.

. MatrixTransform3D—Transforms a 3D object by a Matrix3D.

. Transform3DGroup—Contains a collection of Transform3Ds. The Transform3DGroup is 
itself a Transform3D and is used to apply multiple transforms to a 3D object.

  From the Library of Wow! eBook



ptg

This section applies these transforms to the simple model of a house shown at the begin-
ning of this chapter. Listing 16.3 presents the same XAML as before, except with two 
emphasized changes. First, it has an added transform (currently the identity transform 
which does nothing). Second, it has an increased Width for the Camera so that you’ll be 
able to see the effect of applying various transforms.

LISTING 16.3 Updates to the House Drawn Using Model3Ds

<Page Background=”Black” 

xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation” 

xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”> 

<Viewport3D> 

<Viewport3D.Camera>

<OrthographicCamera Position=”5,5,5” LookDirection=”-1,-1,-1” Width=”10”/> 

</Viewport3D.Camera> 

<Viewport3D.Children>

<ModelVisual3D x:Name=”Light”> 

<ModelVisual3D.Content>

<AmbientLight/> 

</ModelVisual3D.Content> 

</ModelVisual3D> 

<ModelVisual3D> 

<ModelVisual3D.Transform>

<x:Static Member=”Transform3D.Identity”/> 

</ModelVisual3D.Transform> 

<ModelVisual3D.Content>

<Model3DGroup x:Name=”House”>

<GeometryModel3D x:Name=”Roof”> 

<GeometryModel3D.Material>

<DiffuseMaterial Brush=”Blue”/> 

</GeometryModel3D.Material> 

<GeometryModel3D.Geometry>

<MeshGeometry3D Positions=”-1,1,1 0,2,1 0,2,-1 -1,1,-1 0,2,1 1,1,1 

1,1,-1 0,2,-1”

TriangleIndices=”0 1 2 0 2 3 4 5 6 4 6 7”/> 

</GeometryModel3D.Geometry> 

</GeometryModel3D>

<GeometryModel3D x:Name=”Sides”> 

<GeometryModel3D.Material>

<DiffuseMaterial Brush=”Green”/> 

</GeometryModel3D.Material> 

<GeometryModel3D.Geometry>

Transform3D 555
1

6

  From the Library of Wow! eBook



ptg

<MeshGeometry3D Positions=”-1,1,1 -1,1,-1 -1,-1,-1 -1,-1,1 1,1,-1 

1,1,1 1,-1,1 1,-1,-1”

TriangleIndices=”0 1 2 0 2 3 4 5 6 4 6 7”/> 

</GeometryModel3D.Geometry> 

</GeometryModel3D>

<GeometryModel3D x:Name=”Ends”> 

<GeometryModel3D.Material>

<DiffuseMaterial Brush=”Red”/> 

</GeometryModel3D.Material> 

<GeometryModel3D.Geometry>

<MeshGeometry3D 

Positions=”-0.25,0,1 -1,1,1 -1,-1,1 -0.25,-1,1 -0.25,0,1 

-1,-1,1 0.25,0,1 1,-1,1 1,1,1 0.25,0,1 0.25,-1,1 1,-1,1 

1,1,1 0,2,1 -1,1,1 -1,1,1 -0.25,0,1 0.25,0,1 1,1,1 1,1,-1 

1,-1,-1 -1,-1,-1 -1,1,-1 1,1,-1 -1,1,-1 0,2,-1”

TriangleIndices=”0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 15 

17 18 19 20 21 19 21 22 23 24 25”/>

</GeometryModel3D.Geometry> 

</GeometryModel3D>

</Model3DGroup> 

</ModelVisual3D.Content> 

</ModelVisual3D>

</Viewport3D.Children> 

</Viewport3D>

</Page>

TranslateTransform3D
TranslateTransform3D moves an object by an offset 
relative to its container. The offset is specified by the 
OffsetX, OffsetY, and OffsetZ properties. For example, 
setting the OffsetZ property to 3 slides the house 
forward on the z-axis by three units, as shown in Figure
16.22:

<ModelVisual3D.Transform> 

<TranslateTransform3D OffsetZ=”3”/>

</ModelVisual3D.Transform>

Note that you can position 3D objects more easily by 
constructing your models such that the origin is at a 
convenient location. For example, the house model has

CHAPTER 16 3D Graphics556

LISTING 16.3 Continued

FIGURE 16.22 Translating 
the house forward three units 
on the z-axis.

  From the Library of Wow! eBook



ptg

the origin roughly at the center. To move the house so that the center is at the point 
(3,2,1), you can translate it as follows:

<ModelVisual3D.Transform> 

<TranslateTransform3D OffsetX=”3” OffsetY=”2” OffsetZ=”1”/>

</ModelVisual3D.Transform>

ScaleTransform3D
ScaleTransform3Ds are used to change the size of 3D objects.
The scale factor is expressed in each dimension by the ScaleX, 
ScaleY, and ScaleZ properties. Because you can specify differ-
ent scale factors for each dimension, it is possible to stretch 
an object using a ScaleTransform3D. For example, the follow-
ing transform makes the house twice as wide along the x-axis, 
as shown in Figure 16.23:

<ModelVisual3D.Transform> 

<ScaleTransform3D ScaleX=”2”/>

</ModelVisual3D.Transform>

Transform3D 557
1

6

FIGURE 16.23
Scaling the house along 
the x-axis.

Scale by 1, not 0, when you want to keep the original size!

To keep an object at its original size, you want a 1:1 scale—not a 1:0 scale. Setting ScaleX, 
ScaleY, or ScaleZ to 0 flattens the object in one or more directions. Flattening in one 
dimension can sometimes be useful—for example, to flatten a sphere into a disk. But flat-
tening in two dimensions collapses the 3D object into an invisible line, and flattening in 
three dimensions reduces the object to an invisible point!

WA R N I N G

To change the size of a 3D object while maintaining its proportions, set the ScaleX, ScaleY, 
and ScaleZ properties to the same value. This is called a uniform scale. A uniform scale factor 
of 2 doubles the size of an object. A uniform scale 
factor of 0.5 halves the size of an object.

When you apply a scale, you are expanding and 
contracting space. This causes all points to move 
except for the center of the scale. By default, 
this center is the origin. In Figure 16.23, the 
house remained in place because the center of 
the house is the origin. If you moved the house 
so that the center is at (0,0,3) and then scaled it 
to half the size, the center of the house would 
move to (1.5,0,0) as space contracted toward the 
origin. This is shown in the following XAML, 
and the results are shown in Figure 16.24: 

FIGURE 16.24 The house moves as 
space contracts toward the origin.

  From the Library of Wow! eBook



ptg

<ModelVisual3D.Transform> 

<Transform3DGroup>

<TranslateTransform3D OffsetX=”3”/> 

<ScaleTransform3D ScaleX=”0.5” ScaleY=”0.5” ScaleZ=”0.5”/>

</Transform3DGroup> 

</ModelVisual3D.Transform>

One way to prevent the house from moving during the scale is to specify a different point 
in space to be the center of the scale. You do this by setting the CenterX, CenterY, and 
CenterZ properties. The following XAML illustrates how to do this by choosing the scale 
center to be the new center of the house:

<ModelVisual3D.Transform> 

<Transform3DGroup>

<TranslateTransform3D OffsetX=”3”/> 

<ScaleTransform3D ScaleX=”0.5” ScaleY=”0.5” ScaleZ=”0.5” CenterX=”3”/>

</Transform3DGroup> 

</ModelVisual3D.Transform>

This causes the house to shrink “in place,” as shown in Figure 16.25.

CHAPTER 16 3D Graphics558

FIGURE 16.25 The scale is centered at the center of the house.

Another way to keep the house from moving is to reorder the translate and scale trans-
forms:

<ModelVisual3D.Transform> 

<Transform3DGroup>

<ScaleTransform3D ScaleX=”0.5” ScaleY=”0.5” ScaleZ=”0.5”/> 

<TranslateTransform3D OffsetX=”3”/>

</Transform3DGroup> 

</ModelVisual3D.Transform>

If you perform the translation after the scale, the scale does not affect the offset of the 
translation. This is because the house is first shrunk while it is still at the origin. After the

  From the Library of Wow! eBook



ptg

house is the desired size, it is then moved three 
units on the x-axis.

Looking at Figure 16.24, you might have noticed 
that as the scale factor approaches zero, the house 
moves toward the center of the scale. You might 
wonder what happens if the scale factor goes past 
zero to negative numbers. This causes the object to 
be reflected. Figure 16.26 shows how a negative 
ScaleZ causes the house model to be mirrored in 
the XY plane:

<ModelVisual3D.Transform> 

<Transform3DGroup>

<TranslateTransform3D OffsetZ=”3”/> 

<ScaleTransform3D ScaleZ=”-1”/>

</Transform3DGroup> 

</ModelVisual3D.Transform>

Notice that the reflection changes the direction of the z-axis. If you were to apply a trans-
lation after the scale, the OffsetZ property would now move the object in the opposite 
direction.

Transform3D 559
1

6

Scaling About a Nonprinciple Axis

Under the covers, the CenterX, CenterY, and CenterZ properties work by first translating an 
object so that the specified point is at the origin. The scale is then performed, and the 
object is translated back so the center point is at its original position.

You can use a similar technique to scale an object along a direction other than the x-, y-, or 
z-axes. First, you use RotationTransform3D to rotate the object so that the desired scale 
direction rests on one of the x-, y-, or z-axes. After performing the scale, you apply the oppo-
site rotation to restore the newly scaled object back to its original orientation.

D I G G I N G  D E E P E R

RotateTransform3D
RotateTransform3Ds are used to rotate 3D objects in space. The rotation is described by a 
Rotation3D object. Rotation3D is an abstract class with two concrete implementations:

. AxisAngleRotation3D—Rotates the object around the specified Axis by the number 
of degrees given by the Angle property. This is usually the most convenient and 
human-readable way to describe 3D rotations.

. QuaternionRotation3D—Specifies the rotation as a Quaternion. Quaternions are a 
clever encoding of an Axis/Angle rotation with some nice properties that make 
them popular with many 3D systems and tools.

FIGURE 16.26 Reflecting along 
the z-axis.

  From the Library of Wow! eBook



ptg

CHAPTER 16 3D Graphics560

Why doesn’t WPF standardize on one way to specify rotations?

Early releases of WPF had support for only Quaternions, but Quaternions turned out 
to be difficult for 2D developers approaching 3D for the first time. A common mistake was to 
create a rotation from 0 to 360°, which resulted in no movement during a 
Rotation3DAnimation because it started and ended in the same orientation. Rotating an 
object more than 179.9999…° required either cumulative animations or multiple key frames.

Later WPF releases added Axis/Angle rotations to make the trivial spinning-in-place anima-
tion easier for developers new to 3D. A simple spin could then be created by animating the 
Angle property with a DoubleAnimation. However, support for Quaternions was kept as an 
aid for people writing exporters for modeling packages that often represent rotations as 
Quaternions.

To support “layout-to-layout” animations where you might have defined one rotational 
configuration using Axis/Angle and another using Quaternions, WPF derives 
AxisAngleRotation3D and QuaternionRotation3D from the common Rotation3D base 
class. You can animate between any two Rotation3Ds using a Rotation3DAnimation, 
which always takes the shortest path between the two orientations.

One form of rotation not directly supported by WPF is Euler angles. An Euler angle rotation 
takes the form of three angles that represent rotations about three axes. Which three axes, 
the order in which the rotations are applied, and the direction of the rotation are not stan-
dardized.

There is no EulerAngleRotation3D in WPF, but you can construct an equivalent 
Transform3D by using a Transform3DGroup containing three RotateTransform3Ds, as in 
the following XAML: 

<Transform3DGroup> 

<RotateTransform3D> 

<RotateTransform3D.Rotation>

<AxisAngleRotation3D x:Name=”RotateX” Axis=”1,0,0” Angle=”0”/> 

</RotateTransform3D.Rotation> 

</RotateTransform3D> 

<RotateTransform3D> 

<RotateTransform3D.Rotation>

<AxisAngleRotation3D x:Name=”RotateY” Axis=”0,1,0” Angle=”0”/> 

</RotateTransform3D.Rotation> 

</RotateTransform3D> 

<RotateTransform3D> 

<RotateTransform3D.Rotation>

<AxisAngleRotation3D x:Name=”RotateZ” Axis=”0,0,1” Angle=”0”/> 

</RotateTransform3D.Rotation> 

</RotateTransform3D>

</Transform3DGroup>

Note that you might need to tweak the axes to match the ordering you want.

?
FA Q

  From the Library of Wow! eBook



ptg

Figure 16.27 shows the result of rotating the house model 45° around the y-axis, as 
follows:

<ModelVisual3D.Transform> 

<RotateTransform3D> 

<RotateTransform3D.Rotation>

<AxisAngleRotation3D Axis=”0,1,0” Angle=”45”/>

</RotateTransform3D.Rotation> 

</RotateTransform3D>

</ModelVisual3D.Transform>

In a right-handed coordinate system, a positive angle of rota-
tion rotates the coordinate space counterclockwise.

Note that after the rotation, the x- and z-axes are pointing in 
new directions. If you had applied a translation prior to the 
rotation, as follows, you would have encountered behavior 
similar to what was observed with the ScaleTransform3D:

<ModelVisual3D.Transform> 

<Transform3DGroup>

<TranslateTransform3D OffsetZ=”3”/>

<RotateTransform3D> 

<RotateTransform3D.Rotation>

<AxisAngleRotation3D Axis=”0,1,0” Angle=”45”/> 

</RotateTransform3D.Rotation> 

</RotateTransform3D>

</Transform3DGroup> 

</ModelVisual3D.Transform>

Rotations rotate space around a point. By 
default, that point is at the origin. If your 
model is not centered at the point of rotation, 
you will find it has moved, as shown in Figure
16.28.

Again, if you want the house to spin “in 
place,” one option is to change the center of 
rotation, using the CenterX, CenterY, and 
CenterZ properties:

<ModelVisual3D.Transform> 

<Transform3DGroup>

<TranslateTransform3D OffsetZ=”3”/> 

<RotateTransform3D CenterZ=”3”> 

<RotateTransform3D.Rotation>

<AxisAngleRotation3D Axis=”0,1,0” Angle=”45”/> 

</RotateTransform3D.Rotation> 

</RotateTransform3D>

Transform3D 561
1

6

FIGURE 16.27
Rotation of 45° about 
the positive y-axis.

FIGURE 16.28 Side effect of the 
rotation.

  From the Library of Wow! eBook



ptg

</Transform3DGroup> 

</ModelVisual3D.Transform>

Another way to work around this is to reorder the translate and rotate transforms. If you per-
form the translation after the rotation, the rotation does not affect the offset of the translation:

<ModelVisual3D.Transform> 

<Transform3DGroup>

<RotateTransform3D> 

<RotateTransform3D.Rotation>

<AxisAngleRotation3D Axis=”0,1,0” Angle=”45”/> 

</RotateTransform3D.Rotation> 

</RotateTransform3D> 

<TranslateTransform3D OffsetZ=”3”/>

</Transform3DGroup> 

</ModelVisual3D.Transform>

Combining Transform3Ds
Unlike in 2D, where the common case is to apply just a translation, the common case in 
3D is to apply three transforms: scale, rotate, and translate (generally in that order). To 
apply multiple transforms, use a Transform3DGroup. The following XAML shows the typical 
usage of a Transform3DGroup:

<Transform3DGroup> 

<ScaleTransform3D x:Name=”Size” ScaleX=”1” ScaleY=”1” ScaleZ=”1”/> 

<RotateTransform3D> 

<RotateTransform3D.Rotation>

<AxisAngleRotation3D x:Name=”Orientation” Axis=”0,1,0” Angle=”0”/> 

</RotateTransform3D.Rotation> 

</RotateTransform3D> 

<TranslateTransform3D x:Name=”Position” OffsetX=”0” OffsetY=”0” OffsetZ=”0”/>

</Transform3DGroup>

CHAPTER 16 3D Graphics562

MatrixTransform3D

WPF supports a fifth type of Transform3D: MatrixTransform3D. MatrixTransform3D 
enables you to specify a projective 3D transform as a Matrix3D. Here projective refers to 
the fact that a Matrix3D is a full 4x4 matrix. This does not necessarily mean that you must 
specify a Camera-style projection matrix, although you can. MatrixTransform3Ds are useful 
for defining transforms not directly supported by the other Transform3D objects and for 
porting code that calculates transforms as matrices.

It is worth noting that any of the Transform3D objects can be converted to a Matrix3D via 
the Value property. This includes Transform3DGroups, so it is possible to collapse a graph 
of Transform3Ds into a single MatrixTransform3D.

D I G G I N G  D E E P E R

  From the Library of Wow! eBook



ptg

Model3D
Model3Ds are the building blocks out of which you build a 3D model for a scene. Multiple 
Model3Ds are often grouped together to make a single 3D model. The Model3D classes are 
analogous to the 2D Drawing classes. However, unlike in 2D, where using Drawings is one 
of many ways to add 2D content to a WPF application, using Model3D is the only way to 
declare 3D content in WPF.

WPF includes three subclasses of Model3D:

. Light—Has several subclasses that emit light into the scene. It is often overlooked 
that Lights are, in fact, Model3Ds, which is very convenient for scenarios such as 
attaching the headlights to a car with a Model3DGroup.

. GeometryModel3D—Renders a surface (described as a Geometry3D) with a given 
Material. GeometryModel3D is analogous to the 2D GeometryDrawing.

. Model3DGroup—Contains a collection of Model3Ds. The Model3DGroup is itself a 
Model3D and is often used to group multiple GeometryModel3Ds and Lights into a 
single 3D model.

You have already seen all these classes in use in Listings 16.2 and 16.3, which rendered 
the simple house.

Model3D 563
1

6

Entering XAML by hand is very educational and might be useful for creating simple models or 
“stand-in” art such as cubes, but it’s not a good long-term strategy for creating 3D models.

Just as most bitmaps are created in a paint program, most 3D models are created using 
modeling software. Those that are not modeled in an application are usually generated 
procedurally.

When you need shapes more complex than planes and cubes, you should use a 3D model-
ing program with a XAML exporter. Numerous third-party exporters for the most popular 3D 
modeling packages exist, including some free packages. There are also 3D modeling 
programs such as Electric Rain’s ZAM 3D, which are explicitly targeted at WPF and use XAML 
natively.

T I P

Lights
Lighting is a concept that is unique to 3D in WPF. In 2D, the colors that appear from the 
screen usually come directly from the Brush or Pen used. In 3D, there is an extra lighting 
step, which dynamically calculates the shading of the 3D objects, depending on their 
proximity to light sources in the scene. Dynamic lighting makes it far easier to create and 
animate realistic-looking scenes.

There are three components to lighting: Light objects, which emit light into the scene, 
Materials, which reflect the light back to the Camera, and the Geometry of the model,

  From the Library of Wow! eBook



ptg

which determines the angles involved. This section introduces the various Light types 
supported by WPF:

. DirectionalLight—Casts parallel rays into the scene from an origin at infinity. 
DirectionalLight approximates a far-away light source such as the sun.

. PointLight—Radiates light uniformly in all directions from a point in the scene. 
The intensity of the light attenuates as distance from the point increases. 
PointLight approximates unfocused light sources such as light bulbs.

. SpotLight—Emits a cone of light from a point in the scene. As with PointLight, the 
intensity of the light attenuates as distance from the point increases. SpotLight 
approximates focused light sources such as the beam of a flashlight.

. AmbientLight—Lights every surface uniformly. A bright AmbientLight creates flat-
looking images because of lack of shading, but a low-intensity AmbientLight approx-
imates the effect of light that has been scattered by reflecting between diffuse 
surfaces in the scene.

You might have noticed that each of the previous descriptions contains the word approxi-
mates. It’s important to understand that the goal of lighting in real-time graphics systems 
such as WPF is not to produce an accurate physical simulation of the way light behaves in 
the real world. To achieve real-time frame rates, graphics systems use clever tricks and 
rough estimations. Two common approximations are that surfaces do not block light 
(that is, they do not cast shadows) and lighting is computed only at the vertices of a 
mesh and then is interpolated across the face. WPF uses both of these approximations.

There is an element of artistry in creating a scene that appears to be realistically lit. To 
accomplish the desired effect, you might need to do unrealistic things such as add extra 
light sources, bake lighting effects into your Materials, and so on. Don’t feel bad about 
doing these things. Although the lighting and material APIs use real-world metaphors, 
they are just tools.

DirectionalLight

A DirectionalLight approximates a light source so far away that the rays have become 
parallel, such as light from the sun striking the Earth. Figure 16.29 illustrates the effect of 
the following DirectionalLight shining down on a sphere:

<DirectionalLight Direction=”1,-1,-0.5” Color=”White”/>

The direction of the light entering the scene is controlled by the Direction property. Of 
course, the Transform property inherited from Model3D also influences the direction of 
the light. The color of the Light is controlled by the Color property.

CHAPTER 16 3D Graphics564

  From the Library of Wow! eBook



ptg

FIGURE 16.29 DirectionalLight shining on a sphere.

Model3D 565
1

6

You can control the intensity of lights by using the Color property. For example, #FFFFFF is a 
full-intensity white light. #808080 is a half-intensity white light. The alpha component of the 
light color has no effect.

Lights work additively. For example, two identical (same Position, same Direction, and so 
on) half-intensity lights yield the same effect as one full-intensity light.

T I P

Images created with a single DirectionalLight often look somewhat unnatural, and for 
good reason. In the real world, even when light enters a scene from a single direction (as 
does sunlight), it generally bounces around between objects in the scene, causing some 
illumination. One way to approximate this is to add a low-intensity AmbientLight, 
covered later in this section.

PointLight

A PointLight approximates a light source that radiates light uniformly in all directions 
from a point in space, such as a naked light bulb. Unlike a DirectionalLight, the inten-
sity of the light from a PointLight diminishes as distance from its position increases. 
Figure 16.30 illustrates the effect of the following PointLight illuminating a nearby 
sphere:

<PointLight Color=”White” Position=”2,2,2”

ConstantAttenuation=”0”

  From the Library of Wow! eBook



ptg

LinearAttenuation=”0” 

QuadraticAttenuation=”0.125”/>

The location of a PointLight is specified by its Position property. The rate at which the 
light intensity attenuates as distance increases is controlled by a combination of the 
ConstantAttenuation, LinearAttenuation, and QuadraticAttenuation properties.

The formula for attenuation is

CHAPTER 16 3D Graphics566

Attenuation 
C Ld Qd

=
+ +

1 
1 2max( , )

where C, L, and Q are ConstantAttenuation, LinearAttenuation, and 
QuadraticAttenuation, respectively. d is the distance between the Light’s position and 
the point being lit. You can derive some useful information from this formula. For 
example, C=1, L=0, Q=0 gives you a PointLight with constant intensity, regardless of 
distance. However, these properties are usually set by trial and error.

FIGURE 16.30 PointLight shining on a sphere.

PointLights also have a Range property, which specifies an abrupt cutoff radius outside of 
which the PointLight has no effect. Range is unrelated to the attenuation properties in 
that it does not affect the intensity of the light inside of the cutoff. The default value of 
Range is positive infinity.

SpotLight

SpotLights are PointLights that have been focused into a beam. In the real world, light is 
focused using lenses and reflectors. In real-time computer graphics, this is approximated 
by limiting the emissions from a PointLight to a cone. Figure 16.31 shows how a 
SpotLight is just a PointLight whose rays have been constrained to an angular spread.

  From the Library of Wow! eBook



ptg

FIGURE 16.31 SpotLight shining on a sphere.

Model3D 567
1

6

Why doesn’t my SpotLight or PointLight light my model?

The beginning of this section mentions that real-time lighting uses clever tricks and 
rough estimations to achieve real-time frame rates. One of the approximations that WPF 
uses is to compute the intensity of lights only at the vertices.

This approximation can sometimes causes surprising results with PointLights and 
SpotLights, as shown in Figure 16.32. The red circle shows where the light intersects the 
quadrilateral. This could be either the cone of a SpotLight or the lit sphere of a 
PointLight with limited Range. The surface remains unlit because the light did not extend 
to the vertices at the corners.

FIGURE 16.32 Light inside a quadrilateral.

?
FA Q

  From the Library of Wow! eBook



ptg

The Direction property specifies the direction in which the cone is pointing. The shape 
of the cone is controlled by the OuterConeAngle and InnerConeAngle properties. Here’s an 
example:

<SpotLight Color=”White” Position=”2,2,2” 

Direction=”-1,-1,-1”

InnerConeAngle=”45” 

OuterConeAngle=”90”/>

The area inside the InnerConeAngle receives light that is the color and intensity specified 
by the Color property. The intensity of the light diminishes between the InnerConeAngle 
and OuterConeAngle. By adjusting the difference between the InnerConeAngle and 
OuterConeAngle, you can vary the size of the falloff area. By setting the InnerConeAngle 
to be equal or greater than the OuterConeAngle, you can create a SpotLight with no 
falloff area.

CHAPTER 16 3D Graphics568

Continued

To work around this, the surface can be subdivided into a grid of quadrilaterals, as shown in
Figure 16.33. Adding vertices increases the number of sample points at which lighting is 
computed, and you will begin to see the effect of the SpotLight.

FIGURE 16.33 Light inside a subdivided grid.

As you continue to subdivide the mesh, the detail increases. However, to create a perfect 
circle of light, you need to subdivide until you have about one vertex per pixel.

If you have a reasonably sized falloff area similar to the one shown in Figure 16.31, a small 
number of subdivisions usually does the trick. If you need a hard boundary between your lit 
and unlit areas, it might be better to bake the lighting into your Material. This can work 
especially well if the lighting in your scene is static.

  From the Library of Wow! eBook



ptg

AmbientLight

AmbientLights are typically used to approximate the effect of light that has been scattered 
by reflecting off multiple diffuse surfaces in a scene. Rays from an AmbientLight strike all 
surfaces from all directions, as shown in Figure 16.34.

Model3D 569
1

6

FIGURE 16.34 AmbientLight shining on a sphere.

AmbientLights have only one interesting property, Color, which controls the intensity 
and the color of the light emitted. The Transform property inherited from Model3D has no 
effect on AmbientLights.

Adding a full-intensity AmbientLight like the following to the scene usually produces a 
flat-looking image such as the one shown in Figure 16.35:

<AmbientLight Color=”White”/>

However, a low-intensity AmbientLight added to the scene brightens the unlit areas in 
the scene to produce a softer image that resembles a scene that receives some natural 
lighting. Figure 16.36 shows a lit scene with and without the following AmbientLight:

<Model3DGroup> 

<DirectionalLight Direction=”1,-1,-1” Color=”White”/> 

<AmbientLight Color=”#FF333333”/>

</Model3DGroup>

  From the Library of Wow! eBook



ptg

FIGURE 16.35 Full-intensity AmbientLight.

CHAPTER 16 3D Graphics570

DirectionalLight only With a low-intensity AmbientLight

FIGURE 16.36 Lit scene with and without AmbientLight.

A good rule of thumb to prevent a scene from appearing flat is to only use one AmbientLight 
per scene and keep the intensity at less than one-third white (#555555 or lower).

To control how much the AmbientLight affects specific objects in a scene, use the 
DiffuseMaterial.AmbientColor property. For example, setting the AmbientColor to black 
prevents models rendered with that DiffuseMaterial from being affected by any 
AmbientLights in the scene.

T I P

  From the Library of Wow! eBook



ptg

GeometryModel3D
The shape of visible objects in a 3D scene is defined by their geometry. In WPF, you 
specify 3D geometry by using Geometry3D objects. However, a Geometry3D by itself defines 
a 3D surface with no appearance. In order to see the 3D surface, you need to combine it 
with a Material. A GeometryModel3D is a Model3D that combines both, using the Geometry 
and Material properties.

The following is an example of a GeometryModel3D that renders a square (described as a 
MeshGeometry3D) using a blue DiffuseMaterial:

<GeometryModel3D> 

<GeometryModel3D.Material>

<DiffuseMaterial Brush=”Blue”/> 

</GeometryModel3D.Material> 

<GeometryModel3D.Geometry>

<MeshGeometry3D Positions=”-1,1,0 -1,-1,0 1,-1,0 1,1,0”

TriangleIndices=”0 1 2, 0 2 3”/> 

</GeometryModel3D.Geometry> 

</GeometryModel3D>

This section first covers the various Material types and then examines MeshGeometry3D.

Material

As discussed earlier, properties of Light objects determine the orientation and color of 
light rays in a scene. The properties of Materials select which of those rays are reflected 
back to the viewer to create the image you see. In the real world, materials absorb some 
wavelengths of light and reflect others. An apple appears red to the human eye because 
the skin of the fruit reflects red light and absorbs other wavelengths. In WPF, the type and 
properties of the Material objects determine which colors are reflected back to the Camera 
to create the image. This section discusses the various Material types supported by WPF:

. DiffuseMaterial—Scatters light striking the surface in all directions, producing a 
flat, matte appearance such as newsprint.

. SpecularMaterial—Reflects light at the same angle as the incident ray. 
SpecularMaterials are used to create glossy highlights present on smooth surfaces 
such as plastic or metal.

. EmissiveMaterial—Approximates a surface that is emitting light. 
EmissiveMaterials always appear to be lit, regardless of the light objects in the 
scene; however, they will not cast light onto other objects. Often, 
EmissiveMaterials are combined with a Light to achieve this effect. 
EmissiveMaterials are also often used to create objects that are always shown at full 
intensity and for which no shading is desired, such as in many user interfaces.

. MaterialGroup—Applies multiple Materials to a model. Each Material is rendered 
in order, with the last Material in the group appearing on top.

Model3D 571
1

6

  From the Library of Wow! eBook



ptg

DiffuseMaterial DiffuseMaterial is the most commonly used type of Material. When 
light strikes a DiffuseMaterial, it is scattered in all directions, producing a matte appear-
ance. Figure 16.37 shows a teapot rendered with a red DiffuseMaterial.

CHAPTER 16 3D Graphics572

FIGURE 16.37 DiffuseMaterial on a teapot model.

The scattering is uniform and does not depend on the viewing angle of the Camera. 
However, the angle between the light and the surface does affect the intensity of the 
reflected light, as shown in Figure 16.38.
When the ray strikes the surface directly, it 
is reflected at maximum intensity. The 
reflection diminishes as the angle between 
the light and surface decreases. This is what 
causes the parts of the teapot facing the 
light to be illuminated while the parts 
facing away from the light source remain 
unlit.

The color reflected by the Material is controlled by the Material’s Brush property. The 
image of the red teapot in Figure 16.37 was created by shining a white light on a 
DiffuseMaterial that reflects only red light:

<DiffuseMaterial Brush=”Red”/>

You can vary which colors are reflected by the Material over the object’s surface by using 
one of the nonsolid color Brushes. For example, the left side of Figure 16.39 shows the 
same teapot with zebra stripes applied by an ImageBrush:

<DiffuseMaterial> 

<DiffuseMaterial.Brush>

<ImageBrush ImageSource=”C:\ZebraStripes.png” ViewportUnits=”Absolute”/>

FIGURE 16.38 Intensity of reflected 
light.

More light is reflected Less light is reflected

  From the Library of Wow! eBook



ptg

</DiffuseMaterial.Brush> 

</DiffuseMaterial>

Which part of the Brush appears on which part of the 3D surface is controlled by the 
texture coordinates (sometimes called UV coordinates) of the Geometry. Texture coordi-
nates are discussed in more detail in the upcoming “TextureCoordinates” section.

Model3D 573
1

6ImageBrush with white Material Color ImageBrush with orange Material Color

FIGURE 16.39 ImageBrush and the ImageBrush tinted orange.

If you’re not using a SolidColorBrush, you need TextureCoordinates!

If you attempt to use a GradientBrush, ImageBrush, DrawingBrush, or VisualBrush 
without specifying texture coordinates, your model will not render. Without texture coordi-
nates, there is no mapping between points on the surface to the colors in the Brush. This is 
not a problem for SolidColorBrushes because all points on the surface map to the same 
color.

Missing or bad texture coordinates are usually easy to diagnose. If switching your Material 
to use a SolidColorBrush causes the model to appear, the odds are good that your geome-
try is missing texture coordinates.

WA R N I N G

By allowing you to use Brushes rather than static images as your texture source, texture 
mapping is made far more expressive in WPF. Not only can the 3D models themselves be 
data bound and animated, so can the content of their Brushes, which might be animated 2D 
Drawings, video, or even 2D Controls such as a DocumentViewer!

T I P

  From the Library of Wow! eBook



ptg

The right side of Figure 16.39 shows the same ImageBrush tinted orange, to look like tiger 
stripes. There are three ways this effect could be achieved:

. Modify the image used by the ImageBrush.

. Change the Color of the Lights in the scene to orange. White regions of a 
DiffuseMaterial reflect any color of light. If only orange light exists in the scene, 
orange light is reflected.

. Change the Color property on the Material to orange. Effectively, this is equivalent 
to changing the Light Color to orange except that it affects only this specific 
Material instead of all the Materials in the scene.

Typically, you will want to use the Color property on the Lights to vary the light inten-
sity in the scene. You might also want to tint the Lights to match the ambient light of 
the environment—for example, green Lights for a scene in the forest, blue for underwa-
ter, and so on.

The Color property on Materials is useful when you want to filter the light that is 
reflected by specific objects. You might use this to tweak the lighting in a scene by 
darkening specific objects. Another use for this property is to get extra mileage out of an 
ImageSource by tinting it, as in Figure 16.39 to create tiger stripes from the zebra texture:

<DiffuseMaterial Color=”Orange”> 

<DiffuseMaterial.Brush>

<ImageBrush ImageSource=”C:\ZebraStripes.png” ViewportUnits=”Absolute”/> 

</DiffuseMaterial.Brush> 

</DiffuseMaterial>

This technique can be especially helpful if you want the user to be able to choose a 
custom color for a 3D model, such as selecting the paint job for a car.

CHAPTER 16 3D Graphics574

Calculating the Final Reflected Color

The final color that is reflected to the user is given by the formula

where Lc is the Color property of each Light, Mc is the Color property of the Material, 
and Mb is the color sampled from the Material’s Brush. The alpha components of the 
Material’s Color property and the color sampled from the Brush are multiplied together. 
The alpha component of the Light is ignored.

D I G G I N G  D E E P E R

Lc Mc Mbi i
i

n

=
∑

0

  From the Library of Wow! eBook



ptg

Model3D 575
1

6

Why can’t you always see through translucent DiffuseMaterials?

There are a number of ways to create a translucent DiffuseMaterial, including using 
an ImageSource with alpha, using the Brush.Opacity property, or using Alpha in the 
DiffuseMaterial.Color. If you create a translucent DiffuseMaterial, you might be 
surprised to find that objects behind it are sometimes not rendered.

This behavior is the result of how WPF handles overlapping surfaces. Rather than sort all the 
triangles in the scene and render them back-to-front, WPF uses a depth buffer to ensure that 
the surface nearest the Camera is rendered last (that is, on top). Using depth buffers is 
much faster than sorting the scene (and potentially subdividing interpenetrating geometry), 
but it has the side effect that once a surface near the Camera is rendered, surfaces further 
away are skipped. This is bad news if the nearer surface is intended to be translucent.

In order to ensure that translucent DiffuseMaterials render as intended, you need to take 
care when constructing a scene. Just as in 2D, objects in a 3D scene are rendered in the 
order in which they appear in the Children property. By placing translucent objects at the 
end of the Children collection, you can ensure that the objects behind the translucent 
objects are rendered first.

Another possibility is to create a translucent-like effect using EmissiveMaterials. 
EmissiveMaterials are blended additively and therefore do not use the depth buffer. 
EmissiveMaterials are discussed in the next section.

?
FA Q

Where is WPF’s AmbientMaterial class?

People porting code or importing file formats that are based on the fixed-function light-
ing from Direct3D or other 3D platforms might wonder why there is no AmbientMaterial 
class in WPF. Traditional fixed-function lighting allows the user to specify four material 
colors—ambient, diffuse, emissive, and specular—which are used to calculate the lighting 
contributions at the vertices.

Ambient and diffuse are similar but are specified separately so that users can limit the 
contributions of the omnipresent AmbientLight to portions of a scene. For example, you 
might have an outdoor scene that you want to brighten with an AmbientLight, but you do 
not want AmbientLight inside the entrance to a cave in a hillside. You would set the 
ambient color of the Material inside the cave to black to prevent AmbientLights from 
having an effect.

WPF exposes an AmbientColor property on DiffuseMaterial for this purpose. The normal 
Color property controls how the DiffuseMaterials reflect light from all Light types in the 
scene except AmbientLight. The AmbientColor limits the color of the light reflected from 
AmbientLights only.

Therefore, the diffuse, specular, and emissive materials colors in the traditional pipeline map 
to the Color properties of DiffuseMaterial, SpecularMaterial, and EmissiveMaterial, 
respectively. The ambient color maps to the AmbientColor property on DiffuseMaterial.

?
FA Q

  From the Library of Wow! eBook



ptg

EmissiveMaterial EmissiveMaterials always emit light visible to the Camera. They do 
not, however, emit light to other surfaces in the scene the way a Light does. The left side 
of Figure 16.40 shows the effect of the following EmissiveMaterial on the teapot model:

<EmissiveMaterial Brush=”Green”/>

CHAPTER 16 3D Graphics576

EmissiveMaterial EmissiveMaterial over Black DiffuseMaterial

FIGURE 16.40 EmissiveMaterial on a teapot model.

EmissiveMaterials are additively blended into the image. Additive blending adds light to 
the image but does not occlude light from objects behind the material. This is why the 
checkered background is visible through the teapot on the left side of Figure 16.40. The 
bright green regions come from overlapping geometry that you wouldn’t normally see. 
(This is the rim of the lid, plus the handle and spout extend a small amount into the 
body of the teapot.)

To prevent a model from being see-through, you can combine the EmissiveMaterial with
a DiffuseMaterial, using a MaterialGroup:

<MaterialGroup> 

<DiffuseMaterial Brush=”Black”/> 

<SpecularMaterial Brush=”Green”/>

</MaterialGroup>

The right side of Figure 16.40 shows the result of this change.

In this case, the EmissiveMaterial is still additively blended with the image. However, by 
rendering a black teapot underneath, the end result is black plus the emissive color, 
resulting in just the emissive color. Also, note that you can no longer see the overlapping 
geometry inside the teapot. This is because the near side of the black teapot prevents you 
from seeing through to the overlapping lid, handle, and spout.

  From the Library of Wow! eBook



ptg

SpecularMaterial SpecularMaterials reflect light back to the viewer when the Camera 
is close to the angle of reflection between the light and the surface. SpecularMaterial is 
also additively blended and by itself looks glasslike, as demonstrated by the following one 
shown on the left side of Figure 16.41:

<SpecularMaterial Brush=”White” SpecularPower=”10”/>

Often, a SpecularMaterial is combined with a DiffuseMaterial to add a bright highlight 
characteristic of hard, shiny surfaces, as follows (shown on the right side of Figure 16.41):

<MaterialGroup> 

<DiffuseMaterial Brush=”Red”/> 

<SpecularMaterial Brush=”White” SpecularPower=”40”/>

</MaterialGroup>

Compare this with the image of the red DiffuseMaterial alone in Figure 16.37.

The “hardness” of the highlight is controlled by the SpecularPower property. The larger 
the value for this property, the more focused the specular highlight.

Model3D 577
1

6

SpecularMaterial by itself SpecularMaterial over a red DiffuseMaterial

FIGURE 16.41 SpecularMaterial on a teapot model.

To make plastic-looking surfaces, you can combine a bright DiffuseMaterial with a white 
SpecularMaterial. To create metal-looking surfaces, you can use a dark DiffuseMaterial 
with a bright SpecularMaterial of the same hue.

T I P

  From the Library of Wow! eBook



ptg

Unlike DiffuseMaterial, which scatters light uniformly,
SpecularMaterial reflects light in the opposite direction of the 
incident ray. As shown in Figure 16.42, the reflected light 
bounces off a SpecularMaterial like a mirror and is visible only 
when the Camera is close to the reflected ray.

Note that because AmbientLights are directionless, they have no 
effect on SpecularMaterials.

As with the DiffuseMaterial, the final color reflected to the 
viewer is a combination of the Color properties of the Lights in 
the scene, the Brush of the SpecularMaterial, and the Material’s Color property. See the
“DiffuseMaterial” section for more details on how the final color is computed.

CHAPTER 16 3D Graphics578

FIGURE 16.42
Light bounces off a
SpecularMaterial.

Unlike traditional fixed-function lighting, which only allows you to specify a color for the spec-
ular highlight, WPF allows you to use any Brush. Using alpha in the image, you can create a 
Material in which specularity varies over the surface. This technique, called gloss mapping, 
can be used to add shininess only to the metallic parts of a texture for a car, fingerprints on 
glass, and so on.

T I P

Combining Materials As you’ve seen in previous examples, MaterialGroup enables you to 
apply multiple materials to a surface. Materials in a MaterialGroup are rendered on top 
of each other in the order specified. Common uses include applying an EmissiveMaterial 
or SpecularMaterial over a DiffuseMaterial, as was done to create the Materials for the 
teapot in this section.

Geometry3D

Similar to the 2D Geometry class, Geometry3Ds are used to define the shape of 3D objects. 
By themselves, Geometry3Ds have no appearance. Geometry3Ds are combined with 
Materials using a GeometryModel3D to create a Model3D that can be rendered. There is 
only one concrete Geometry3D class: MeshGeometry3D.

A MeshGeometry3D represents a set of 3D surfaces specified as a list of triangles. 
MeshGeometry3D is composed of the following properties:

. Positions—Defines the vertices of the triangles contained in the mesh.

. TriangleIndices—Describes the connections between the vertices to form triangles. 
If TriangleIndices is not specified, it is implied that the positions should be 
connected in the order they appear: 0 1 2, then 3 4 5, and so on.

. Normals—Allows you to optionally tweak the lighting of the mesh.

. TextureCoordinates—Provides a 3D-to-2D mapping for each position used by the 
Materials.

  From the Library of Wow! eBook



ptg

Each of the Positions, Normals, and TextureCoordinates properties is a collection with 
one entry for each vertex in the mesh. For example, the position for the 0th vertex comes 
from the 0th entry in the Positions collection, the normal for the 0th vertex comes from 
the 0th entry in the Normals collection, and so on.

Positions The triangles in the mesh are defined by specifying 
the 3D coordinates of their vertices. The coordinates are stored in 
the Positions collection of the MeshGeometry3D. By default, each 
group of three Point3Ds in the Positions collection is drawn as a 
triangle. The following snippet produces the triangle illustrated in 
Figure 16.43.

<MeshGeometry3D Positions=”-1,1,0 -1,-1,0 1,-1,0”/>

You can create a square by adding a second triangle, shown in
Figure 16.44.

<MeshGeometry3D Positions=”-1,1,0 -1,-1,0 1,-1,0 -1,1,0 1,-1,0 1,1,0”/>

Front Sides Versus Back Sides One of the things about 3D geom-
etry that often surprises 2D developers is that the triangles in a 
MeshGeometry3D have separate front and back sides. Each side can 
be rendered using a different material. You also might choose to 
not render a side by leaving the Material property null. Which 
side of a triangle is the front is determined by the winding of the 
vertices. Figure 16.45 illustrates the winding of the triangles in the 
square, as viewed from the front and back.

The winding is determined by the order in which the points are 
connected in the triangle. For example, connecting point 0 to 
point 1 creates a directed edge starting at 0 and ending at 1. The 
direction of the edges wind in a counterclockwise direction when 
viewed from the front, shown on the left of Figure 16.45.

Model3D 579
1

6

FIGURE 16.43
A triangle described 
by a 
MeshGeometry3D.

FIGURE 16.44
A square described 
by a 
MeshGeometry3D.

FIGURE 16.45 Viewing the square from two different perspectives.

Square from the front Square from the back

  From the Library of Wow! eBook



ptg

TriangleIndices A mesh is built into the desired shape by adding triangles. Even 
curved surfaces are approximated by lots of little triangles. As the number of triangles in a 
mesh increases, so does the number of shared edges.

TriangleIndices enables you to share positions between triangles. When the 
TriangleIndices collection is empty, it is implied that the points should be connected in 
the order in which they appear in the Positions collection. When TriangleIndices exist, 
the points are connected in groups of three, as specified by the TriangleIndices. For

CHAPTER 16 3D Graphics580

Winding Order and Handedness

The section about Cameras introduced a right-hand rule to remember which direction the z-
axis points in a right-handed coordinate system. There is a second right-hand rule that tells 
you which side of a triangle is the front. The direction your fingers curl when looking at your 
thumb indicates the winding direction. As illustrated in Figure 16.46, this is counterclockwise 
for a right-handed system.

FIGURE 16.46 The other right-hand rule.

The right-hand rule is also useful for remembering the positive direction of rotation in a right-
handed coordinate system.

D I G G I N G  D E E P E R

If you suspect that you have an issue with the winding in a mesh, you can set both the 
Material and BackMaterial properties so that the triangle will be visible, regardless of 
which side you view it from.

If it is acceptable to have the same material on both the front and back, you can ignore the 
issue of winding. However, it is sometimes useful to be able to specify different Materials 
for the front and the back. It is also faster to avoid rendering the BackMaterial if it will not 
be visible in the scene.

T I P

  From the Library of Wow! eBook



ptg

example, you can create a square using only four unique points, as 
illustrated in Figure 16.47:

<MeshGeometry3D Positions=”-1,1,0 -1,-1,0 1,-1,0 1,1,0” 

TriangleIndices=”0 1 2, 0 2 3”/>

Sharing the position between triangles has a slightly different 
semantic meaning than declaring the same point multiple times. 
When the position is shared, the triangles are considered to be 
part of a single continuous surface. When the positions are sepa-
rate, the triangles are separate abutting surfaces that can have 
different normals or texture coordinates.

Model3D 581
1

6

FIGURE 16.47
Indices of the 
vertices.

Regardless of whether you use TriangleIndices, you do not need to worry about cracks 
appearing between triangles within a single MeshGeometry3D. WPF has strict rendering rules 
which guarantee that triangles sharing points are rendered as adjacent, without a seam.

However, you do need to be aware that transforms are not always exact. If you are using 
different transforms on two MeshGeometry3Ds to make them adjacent, it is possible that 
floating-point error in the transformations might create small gaps between the meshes.

Sometimes, you can work around this error by fudging the transform to create a small 
amount of overlap. Other times, you need to construct the MeshGeometry3Ds with points 
that are adjacent rather than transform them to be so.

T I P

Normals A normal is a vector that is perpendicular to a surface at a point. You specify 
normals at vertices to tell the system whether triangles represent flat surfaces or are 
approximating curved surfaces. Figure 16.48 shows the difference between flat and 
smooth shading on a tube approximated using 12 quadrilaterals.

If you do not specify normals, the system generates them for you by averaging the face 
normals of each triangle that shares each vertex. If vertices are not shared between trian-
gles, the result is the face normals, which gives the flat shaded appearance shown on the 
left side of Figure 16.48. If the vertices are shaded between adjacent triangles using 
TriangleIndices, the averaging results in the smooth shaded appearance shown on the 
right side of Figure 16.48.

T I P

  From the Library of Wow! eBook



ptg

FIGURE 16.48 Two tubes approximated using 12 quadrilaterals.

When the normals for each vertex in a triangle are parallel, as illustrated in the cross 
section of the tube on the left side of Figure 16.49, the rendered surface appears flat. If the 
normals point in different directions, the shading is smoothly interpolated across the face 
of the triangle. To create a smooth surface like that illustrated on the right side of Figure
16.49, the normals of the adjacent triangles should be the same to prevent a crease from 
appearing.

CHAPTER 16 3D Graphics582

Flat shaded tube Smooth shaded tube

Cross section of the flat tube Cross section of the smooth tube

FIGURE 16.49 Cross sections of the tubes from Figure 16.48.

Let’s consider the simple square mesh you have been building. If you want the square to 
appear flat, you specify all the normals perpendicular to the surface, as illustrated on the 
left side of Figure 16.50:

<MeshGeometry3D Positions=”-1,1,0 -1,-1,0 1,-1,0 1,1,0” 

TriangleIndices=”0 1 2, 0 2 3” 

Normals=”0,0,1 0,0,1 0,0,1 0,0,1”/>

  From the Library of Wow! eBook



ptg

If you want the square to be lit as if it were an approximation of a slightly curved surface, 
you specify the normals to match the curvature of the surface, as illustrated on the right 
side of Figure 16.50:

<MeshGeometry3D Positions=”-1,1,0 -1,-1,0 1,-1,0 1,1,0” 

TriangleIndices=”0 1 2, 0 2 3”

Normals=”-0.25,0.25,1 -0.25,-0.25,1 0.25,-0.25,1 0.25,0.25,1”/>

Model3D 583
1

6

Flat Smooth

FIGURE 16.50 The result of using two different Normals values.

TextureCoordinates When you set the Fill 
property on a 2D Shape, it is assumed that you 
want the Brush to map to the 2D bounds of the 
Shape. In 3D, you need to provide this mapping 
yourself. Each entry in the TextureCoordinates 
collection is a 2D point in Brush space. These 
points map triangles in 3D space to triangles in 
Brush space. The triangles in Brush space provide 
the colors for the materials when the surface is 
rendered. Figure 16.51 illustrates how you would 
map the vertices in your square to stretch an 
image across it:

<MeshGeometry3D Positions=”-1,1,0 -1,-1,0 1,-1,0 1,1,0”

TriangleIndices=”0 1 2, 0 2 3” 

TextureCoordinates=”0,0 0,1 1,1 1,0”/>

Keep in mind that in the 2D coordinate system that WPF uses, the origin is at the top-left 
corner, and the positive y-axis extends downward. By convention, the source image is 
usually considered to extend from 0 to 1 in both the X and Y directions.

FIGURE 16.51 Mapping between 
2D Brush space and 3D surface.

  From the Library of Wow! eBook



ptg

CHAPTER 16 3D Graphics584

By default, WPF texture coordinates are interpreted differently than you might 
expect!

You should be aware of a couple quirks with the way WPF handles texture coordinates. The 
default behavior of WPF texture coordinates closely matches the default behavior of 2D 
geometry, which is very convenient for 2D/3D integration scenarios. However, when you are 
attempting to use a mesh containing texture coordinates generated for a different system, 
there are a few Brush settings you will want to change.

The first is that, by default, Brush space is mapped to the bounds of the texture coordi-
nates. This means that the following does not show the top-left quarter of the Brush as you 
might expect it to:

<MeshGeometry3D Positions=”-1,1,0 -1,-1,0 1,-1,0 1,1,0” 

TriangleIndices=”0 1 2, 0 2 3” 

TextureCoordinates=”0,0 0,0.5 0.5,0.5 0.5,0”/>

Instead, the bounds (0,0) – (0.5,0.5) become the relative bounds of the source, and the 
entire Brush is displayed. To prevent this, you set the ViewportUnits of the Brush to 
Absolute:

<ImageBrush ViewportUnits=”Absolute” …/>

You will almost always want to do this when applying Brushes to 3D meshes. The default 
behavior is useful in 2D to map Brush space to the bounds of the 2D geometry being filled. 
In 3D, it is rarely used.

The second issue to be aware of is that some systems specify their y-axis as pointing 
upward in 2D instead of downward, as in WPF. If you are using texture coordinates generated 
for such a system, your Brushes will be applied upside down. You can correct for this with a 
simple Brush transform:

<ImageBrush ViewportUnits=”Absolute” Transform=”1,0,0,-1,0,1” …/>

Finally, if your mesh has texture coordinates that extend outside the 0-to-1 range, it is likely 
that the intent was to tile. TileMode needs to be turned on explicitly in WPF:

<ImageBrush ViewportUnits=”Absolute” Transform=”1,0,0,-1,0,1” TileMode=”Tile” …/>

ImageBrush is shown as an example, but these tips apply to all Brushes that use 
TextureCoordinates.

WA R N I N G

Model3DGroup
Model3DGroup derives from Model3D. Model3DGroups are used to group together a collec-
tion of Model3Ds into a single model. Grouping multiple GeometryModel3Ds together with 
a Model3DGroup is a way to build a model that uses multiple materials. Listing 16.4 shows 
how six GeometryModel3Ds can be combined to form a model of a cube. An alternative 
approach would be to create one MeshGeometry3D that uses a MaterialGroup to achieve 
the same effect.

  From the Library of Wow! eBook



ptg

LISTING 16.4 A Cube

<Model3DGroup x:Name=”Cube”>

<GeometryModel3D x:Name=”Front”> 

<GeometryModel3D.Material>

<DiffuseMaterial Brush=”Orange”/> 

</GeometryModel3D.Material> 

<GeometryModel3D.Geometry>

<MeshGeometry3D Positions=”1,1,1 -1,1,1 -1,-1,1 1,-1,1” 

TextureCoordinates=”1,1 0,1 0,0 1,0” 

TriangleIndices=”0 1 2 0 2 3”/>

</GeometryModel3D.Geometry> 

</GeometryModel3D>

<GeometryModel3D x:Name=”Right”> 

<GeometryModel3D.Material>

<DiffuseMaterial Brush=”Yellow”/> 

</GeometryModel3D.Material> 

<GeometryModel3D.Geometry>

<MeshGeometry3D Positions=”1,1,-1 -1,1,-1 -1,1,1 1,1,1” 

TextureCoordinates=”0,0 1,0 1,1 0,1” 

TriangleIndices=”0 1 2 0 2 3”/>

</GeometryModel3D.Geometry> 

</GeometryModel3D>

<GeometryModel3D x:Name=”Back”> 

<GeometryModel3D.Material>

<DiffuseMaterial Brush=”Red”/> 

</GeometryModel3D.Material> 

<GeometryModel3D.Geometry>

<MeshGeometry3D Positions=”-1,-1,-1 -1,1,-1 1,1,-1 1,-1,-1” 

TextureCoordinates=”1,0 1,1 0,1 0,0” 

TriangleIndices=”0 1 2 0 2 3”/>

</GeometryModel3D.Geometry> 

</GeometryModel3D>

<GeometryModel3D x:Name=”Left”>

Model3D 585
1

6

Some 3D systems have an object called a “mesh,” which contains not only geometry infor-
mation but materials as well. Sometimes, even multiple materials are permitted in a mesh. 
In WPF, this corresponds to a Model3DGroup containing multiple GeometryModel3Ds, one for 
each Material.

T I P

  From the Library of Wow! eBook



ptg

<GeometryModel3D.Material> 

<DiffuseMaterial Brush=”Blue”/>

</GeometryModel3D.Material> 

<GeometryModel3D.Geometry>

<MeshGeometry3D Positions=”-1,1,1 -1,1,-1 -1,-1,-1 -1,-1,1” 

TextureCoordinates=”1,1 0,1 0,0 1,0” 

TriangleIndices=”0 1 2 0 2 3”/>

</GeometryModel3D.Geometry> 

</GeometryModel3D>

<GeometryModel3D x:Name=”Top”> 

<GeometryModel3D.Material>

<DiffuseMaterial Brush=”Green”/> 

</GeometryModel3D.Material> 

<GeometryModel3D.Geometry>

<MeshGeometry3D Positions=”1,-1,1 1,-1,-1 1,1,-1 1,1,1” 

TextureCoordinates=”1,1 0,1 0,0 1,0” 

TriangleIndices=”0 1 2 0 2 3”/>

</GeometryModel3D.Geometry> 

</GeometryModel3D>

<GeometryModel3D x:Name=”Bottom”> 

<GeometryModel3D.Material>

<DiffuseMaterial Brush=”Purple”/> 

</GeometryModel3D.Material> 

<GeometryModel3D.Geometry>

<MeshGeometry3D Positions=”-1,-1,1 -1,-1,-1 1,-1,-1 1,-1,1” 

TextureCoordinates=”0,1 0,0 1,0 1,1” 

TriangleIndices=”0 1 2 0 2 3”/>

</GeometryModel3D.Geometry> 

</GeometryModel3D>

</Model3DGroup>

Visual3D
All elements that draw 2D content to the screen inherit their ability to render from the 
Visual base class. Similarly, Visual3Ds are nodes in the visual tree that can display 3D 
content. The Visual services—hit testing, bounding, and so on—extend to Visual3Ds as 
well and are accessible via the VisualTreeHelper class.

WPF provides three direct subclasses of Visual3D: ModelVisual3D, UIElement3D, and 
Viewport2DVisual3D. This section examines each one.

CHAPTER 16 3D Graphics586

LISTING 16.4 Continued

  From the Library of Wow! eBook



ptg

ModelVisual3D
ModelVisual3D is similar to the 2D DrawingVisual and has been a part of WPF since its 
first version. To set the content of a ModelVisual3D, you use the Content property:

<Viewport3D> 

<Viewport3D.Camera>

<OrthographicCamera Position=”5,5,5” LookDirection=”-1,-1,-1” Width=”5”/> 

</Viewport3D.Camera> 

<Viewport3D.Children>

<ModelVisual3D Content=”{StaticResource CubeModel}”/> 

</Viewport3D.Children> 

</Viewport3D>

ModelVisual3D also has a Children property. Therefore, you use ModelVisual3Ds to 
compose multiple models into a scene inside your Viewport3D:

<Viewport3D> 

<Viewport3D.Camera>

<OrthographicCamera Position=”5,5,5” LookDirection=”-1,-1,-1” Width=”5”/> 

</Viewport3D.Camera> 

<Viewport3D.Children>

<ModelVisual3D Transform=”{DynamicResource SquadronTransform}”> 

<ModelVisual3D Content=”{StaticResource AirplaneModel}”

Transform=”{DynamicResource PlaneTransform1}”/> 

<ModelVisual3D Content=”{StaticResource AirplaneModel}”

Transform=”{DynamicResource PlaneTransform2}”/> 

</ModelVisual3D>

</Viewport3D.Children> 

</Viewport3D>

Children (and not Content!) is designated as ModelVisual3D’s content property, so the 
preceding XAML adds the two children directly to the parent element. Keep in mind that 
Model3Ds can be reused between ModelVisual3Ds.

Visual3D 587
1

6

When should I use Model3DGroup versus ModelVisual3D?

Although you can put together an entire scene by using a Model3DGroup displayed 
under a single ModelVisual3D (or ModelUIElement3D, covered later), you will be missing out 
on some important performance optimizations if you do this. ModelVisual3D (and 
ModelUIElement3D) are optimized to be scene nodes. They cache bounds and other infor-
mation that lightweight Model3DGroups do not.

Going to the other extreme, you could use ModelVisual3Ds for each and every 
GeometryModel3D in a scene. Doing so is inadvisable because it unnecessarily increases 
the working set of the application. Model3DGroups are lightweight constructs intended for 
grouping multiple GeometryModel3Ds into a single model.

?
FA Q

  From the Library of Wow! eBook



ptg

UIElement3D
Introduced in WPF 3.5, the abstract UIElement3D class and its subclasses take a step 
beyond the Visual3D class in bringing 2D framework principles to the world of WPF 3D. 
As mentioned earlier in this chapter, WPF’s 2D UIElements are often said to have LIFE 
(layout, input, focus, and eventing) support. Although there is no 3D layout, UIElement3D 
does have IFE (input, focus, and eventing). This dramatically simplifies tasks such as 
attaching mouse event handlers to 3D elements of a scene. Rather than being forced to 
process every mouse click event on your Viewport3D and then tease out exactly which of 
your 3D models was hit, you can simply add the event handlers directly to your individ-
ual UIElement3Ds.

There are two UIElement3D-derived classes in WPF: ModelUIElement3D and 
ContainerUIElement3D. If you remember the FooBar trick from the preceding chapter, 
then it shouldn’t be a surprise that ModelUIElement3D is a UIElement3D that contains a 
Model. ContainerUIElement3D is a UIElement3D that acts like a container.

ModelUIElement3D

Listings 16.5 and 16.6 leverage ModelUIElement3D to create a clickable cube that changes 
color with each click. ModelUIElement3D has its own Model3D but no children. Notice that 
the MouseDown event handler is on the ModelUIElement3D and not on the Viewport3D.

LISTING 16.5 MainWindow.xaml—A Clickable Cube

<Window x:Class=”MainWindow” 

xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation” 

xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”>

<Grid> 

<Viewport3D> 

<Viewport3D.Camera>

<PerspectiveCamera Position=”3,3,4” LookDirection=”-1,-1,-1”

FieldOfView=”60”/> 

</Viewport3D.Camera> 

<Viewport3D.Children>

<ModelVisual3D> 

<ModelVisual3D.Content>

<DirectionalLight Direction=”-0.3,-0.4,-0.5” /> 

</ModelVisual3D.Content> 

</ModelVisual3D>

CHAPTER 16 3D Graphics588

Continued

In general, you should use Model3DGroups to combine the various pieces of a single model 
(for example, the tires, windshield, and body of a car). ModelVisual3Ds (or 
ModelUIElement3Ds) should be used for displaying instances of 3D models (for example, 
use a ModelVisual3D for each car you add to the scene).

  From the Library of Wow! eBook



ptg

<ModelUIElement3D MouseDown=”Cube_MouseDown”> 

<ModelUIElement3D.Model>

<GeometryModel3D> 

<GeometryModel3D.Material>

<DiffuseMaterial> 

<DiffuseMaterial.Brush>

<SolidColorBrush Color=”Purple” x:Name=”CubeBrush”/>

</DiffuseMaterial.Brush> 

</DiffuseMaterial>

</GeometryModel3D.Material> 

<GeometryModel3D.Geometry>

<MeshGeometry3D

Positions=”1,1,-1 1,-1,-1 -1,-1,-1 -1,1,-1 1,1,1 -1,1,1 -1,-1,1 1,-1,1 

1,1,-1 1,1,1 1,-1,1 1,-1,-1 1,-1,-1 1,-1,1 -1,-1,1 -1,-1,-1 

-1,-1,-1 -1,-1,1 -1,1,1 -1,1,-1 1,1,1 1,1,-1 -1,1,-1 -1,1,1”

TriangleIndices=”0 1 2 0 2 3 4 5 6 4 6 7 8 9 10 8 10 11 12 13 14 12 14 

15 16 17 18 16 18 19 20 21 22 20 22 23”

TextureCoordinates=”0,1 0,0 1,0 1,1 1,1 -0,1 0,-0 1,0 1,1 -0,1 0,-0 

1,0 1,0 1,1 -0,1 0,-0 -0,0 1,-0 1,1 0,1 1,-0 1,1 

0,1 -0,0” />

</GeometryModel3D.Geometry> 

</GeometryModel3D>

</ModelUIElement3D.Model> 

</ModelUIElement3D>

</Viewport3D.Children> 

</Viewport3D>

</Grid> 

</Window>

LISTING 16.6 MainWindow.xaml.cs—Code-Behind for the Clickable Cube

using System; 

using System.Windows; 

using System.Windows.Input; 

using System.Windows.Media;

public partial class MainWindow : Window 

{

static Random r;

public MainWindow() 

{

InitializeComponent(); 

r = new Random();

Visual3D 589

LISTING 16.5 Continued

1
6

  From the Library of Wow! eBook



ptg

}

private void Cube_MouseDown(object sender, MouseButtonEventArgs e) 

{

// Pick a random color

CubeBrush.Color = Color.FromRgb((byte)r.Next(), (byte)r.Next(), 

(byte)r.Next());

}

}

ContainerUIElement3D

ContainerUIElement3D is a simple container for holding one or more ModelUIElement3Ds:

<Viewport3D> 

<Viewport3D.Children>

<ContainerUIElement3D>

<ModelUIElement3D …> 

<ModelUIElement3D …>

</ContainerUIElement3D>

</Viewport3D.Children> 

</Viewport3D>

The ContainerUIElement3D class itself does not have its own Model3D, just a Children 
collection of type Visual3DCollection as its content property. ModelUIElement3DGroup 
might have been a more appropriate name for this simple class.

Note the difference between ModelVisual3D and the two UIElement3D subclasses. 
ModelVisual3D has both a Model3D as well as a Visual3DCollection. The UIElement3D 
classes separate this container and model functionality into the ContainerUIElement3D 
and ModelUIElement3D classes, respectively.

Viewport2DVisual3D
Introduced in WPF 3.5, the Viewport2DVisual3D class allows live interactive 2D content 
to be directly mapped to a 3D surface. Previously it was possible to map live 2D content 
onto 3D surfaces with VisualBrushes and DrawingBrushes. However, because they were 
just Brushes, they did not allow for interactivity. A Button drawn on a 3D sphere using a 
VisualBrush could never actually be clicked. Viewport2DVisual3Ds overcome this interac-
tivity barrier: A Button mapped onto a 3D sphere actually responds to mouse clicks in 3D. 
A TextBox drawn on the face of a cube can be edited with the mouse and keyboard, just 
as you would expect. Multi-touch can be used to manipulate 2D elements mapped into 
3D space. Even context menus for features such as spelling correction on a TextBox work!

The name Viewport2DVisual3D sounds odd, but it basically follows WPF’s naming 
convention. It is a Visual3D that acts like a 2D viewport. One confusing aspect of this 
name is that there is no Viewport2D class in WPF.

CHAPTER 16 3D Graphics590

LISTING 16.6 Continued

  From the Library of Wow! eBook



ptg

Listing 16.7 demonstrates how Viewport2DVisual3D is used with a simple Button. You 
provide the Viewport2DVisual3D with a MeshGeometry3D, a Material, and a target Visual. 
The interactive Material needs the Viewport2DVisual3D.IsVisualHostMaterial attached 
property set to true. If a Brush is associated with the interactive Material, it is ignored. 
The color associated with the host material is modulated with the target Visual’s color as 
usual. Figure 16.52 shows the result.

LISTING 16.7 An Interactive Button in 3D

<Window xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”> 

<Grid>

<Viewport3D> 

<Viewport3D.Camera>

<PerspectiveCamera Position=”0.2,0.1,1” LookDirection=”-0.2,-.1,-1”

FieldOfView=”120”/> 

</Viewport3D.Camera> 

<Viewport3D.Children>

<ModelVisual3D> 

<ModelVisual3D.Content>

<DirectionalLight Direction=”-0.3,-0.4,-0.5” /> 

</ModelVisual3D.Content> 

</ModelVisual3D> 

<Viewport2DVisual3D> 

<Viewport2DVisual3D.Geometry>

<MeshGeometry3D Positions=”-1,1,0 -1,-1,0 1,-1,0 1,1,0”

TextureCoordinates=”0,0 0,1 1,1 1,0” TriangleIndices=”0 1 2 0 2 3” /> 

</Viewport2DVisual3D.Geometry> 

<Viewport2DVisual3D.Material>

<DiffuseMaterial Viewport2DVisual3D.IsVisualHostMaterial=”True” /> 

</Viewport2DVisual3D.Material>

<Button>Hello, 3D</Button> 

</Viewport2DVisual3D>

</Viewport3D.Children> 

</Viewport3D>

</Grid> 

</Window>

Visual3D 591
1

6

Viewport2DVisual3D supports cached 
composition. It has a CacheMode property 
that works the same way as the CacheMode 
property on UIElement.

T I P

  From the Library of Wow! eBook



ptg

FIGURE 16.52 An interactive 2D Button mapped into 3D space.

3D Hit Testing
As mentioned earlier, the simplest way to perform a hit test against a specific 3D model is 
to create a ModelUIElement3D and to give that ModelUIElement3D its own MouseDown event 
handler. But ModelUIElement3Ds are not a requirement for performing hit testing against 
3D models.

Like their 2D Visual counterparts, Visual3Ds participate in visual hit testing. To perform 
a hit test against a Visual3D, you must first receive a hit test event on some 2D UIElement 
that contains a 3D scene, such as the parent Viewport3D element:

<Viewport3D MouseDown=”MouseDownHandler”>

When the event handler is called, you can issue a visual hit test at that point:

private void MouseDownHandler(object sender, MouseButtonEventArgs e) 

{

base.OnMouseLeftButtonDown(e);

Viewport3D viewport = (Viewport3D)sender; 

Point location = e.GetPosition(viewport);

HitTestResult result = VisualTreeHelper.HitTest(viewport, location);

if (result != null && result.VisualHit is Visual3D) 

{

MessageBox.Show(“Hit Visual3D!”); 

}

}

CHAPTER 16 3D Graphics592

  From the Library of Wow! eBook



ptg

Of course, the overload of VisualTreeHelper.HitTest shown in Chapter 15, which uses 
callback delegates to report multiple results, also works with Visual3Ds. As in 2D, the 
results are returned in front-to-back order. To start a hit test from within the 3D scene, 
you can use the overload of VisualTreeHelper.HitTest that takes a Visual3D and a 
HitTestParameters3D.

Viewport3D 593
1

6

Getting Detailed Hit Test Information

HitTestResult is the base class for a number of classes, such as PointHitTestResult 
and GeometryHitTestResult. The type of HitTestResult returned to you depends on the 
type of hit test you initiated and what the hit test ended up intersecting in the scene. If you 
issue a point hit test that ends up hitting a 3D mesh, you may cast the HitTestResult to a 
RayMeshGeometry3DHitTestResult. RayMeshGeometry3DHitTestResult has a wealth of 
information about the details of the intersection.

D I G G I N G  D E E P E R

Viewport3D
Viewport3D provides the opposite functionality of Viewport2DVisual3D. Whereas 
Viewport2DVisual3D is a Visual3D that enables 2D elements to be embedded inside 3D, 
Viewport3D is the 2D FrameworkElement that enables 3D elements to be embedded inside 
2D.

The parent of a Viewport3D is always a 2D element such as a Window or Grid. The children 
of the Viewport3D are Visual3Ds. The 3D scene described by the Visual3D children is 
rendered inside the rectangular layout bounds of the Viewport3D. The Camera property on 
the Viewport3D controls the view of the 3D scene you see inside the Viewport3D.

Many container-like elements are normally sized during the layout system’s measure pass 
(described in Chapter 21, “Layout with Custom Panels”) to fit their contents. For example, a 
Button is typically sized to accommodate the text or other content inside it. Viewport3Ds 
work the other way around: Viewport3Ds adjust the view of the 3D scene to fit whatever its 
layout bounds turn out to be. By default, Viewport3D’s ClipToBounds property is set to 
false, meaning that its 3D content can actually exceed the layout bounds of the 
Viewport3D. If you’d like the Viewport3D’s content to stay within the rectangular region of 
the layout bounds, you set Viewport3D.ClipToBounds to true.

For this reason, you need to set the Width and Height properties of Viewport3D elements 
unless it is already being stretched to fit an area by layout. If you forget to do this, the 
Viewport3D defaults to a size of 0 by 0, and the 3D scene does not appear.

T I P

  From the Library of Wow! eBook



ptg

One of the neat things about a Viewport3D being a fully featured FrameworkElement that 
participates in layout is that you can easily integrate 3D elements into an application 
almost anywhere. In fact, it is possible for designers to use features such as Styles and 
ControlTemplates to replace the default appearance of controls with interactive 3D 
content. Figure 16.53 shows the result of applying such a style to the Photo Gallery 
example introduced in Chapter 7, “Structuring and Deploying an Application.” Note that 
the content and background that appear in the cube faces are data-bound to the 
templated Button. You can update the content and background, and the cubes update in 
real-time! When you click on the Button, the cube spins.

LISTING 16.8 The Cube Button Style

<!-- This style replaces the appearance of all Buttons with 3D cubes. 

Because the Viewport3D has no “natural size”, you need to set 

the Width and Height properties on your Buttons if they are not 

stretched to fit their container. -->

<Style TargetType=”{x:Type Button}”> 

<Setter Property=”Template”> 

<Setter.Value>

<ControlTemplate> 

<ControlTemplate.Triggers>

<!-- When the button is pressed, spin the cube --> 

<Trigger Property=”Button.IsPressed” Value=”true”> 

<Trigger.EnterActions>

<BeginStoryboard> 

<Storyboard TargetName=”RotateY” TargetProperty=”Angle”>

<DoubleAnimation Duration=”0:0:1” From=”0” To=”360”

DecelerationRatio=”1.0”/> 

</Storyboard>

</BeginStoryboard> 

</Trigger.EnterActions> 

</Trigger>

</ControlTemplate.Triggers> 

<Viewport3D> 

<Viewport3D.Camera>

<PerspectiveCamera Position=”2.9,2.65,2.9” LookDirection=”-1,-1,-1”/> 

</Viewport3D.Camera> 

<Viewport3D.Children>

<ModelVisual3D x:Name=”Light”> 

<ModelVisual3D.Content>

<DirectionalLight Direction=”-0.3,-0.4,-0.5”/> 

</ModelVisual3D.Content> 

</ModelVisual3D> 

<ModelVisual3D x:Name=”Cube”> 

<ModelVisual3D.Transform>

<RotateTransform3D>

CHAPTER 16 3D Graphics594

  From the Library of Wow! eBook



ptg

<RotateTransform3D.Rotation> 

<AxisAngleRotation3D x:Name=”RotateY” Axis=”0,1,0” Angle=”0”/>

</RotateTransform3D.Rotation> 

</RotateTransform3D>

</ModelVisual3D.Transform> 

<ModelVisual3D.Content>

<GeometryModel3D> 

<GeometryModel3D.Material>

<DiffuseMaterial> 

<DiffuseMaterial.Brush>

<!-- Use a VisualBrush to display the Button’s original 

Background and Content on the faces of the cube. --> 

<VisualBrush ViewportUnits=”Absolute” Transform=”1,0,0,-1,0,1”> 

<VisualBrush.Visual>

<Border Background=”{Binding Path=Background, 

RelativeSource={RelativeSource TemplatedParent}}”> 

<Label Content=”{Binding Path=Content,

RelativeSource={RelativeSource TemplatedParent}}”/> 

</Border>

</VisualBrush.Visual> 

</VisualBrush>

</DiffuseMaterial.Brush> 

</DiffuseMaterial>

</GeometryModel3D.Material> 

<GeometryModel3D.Geometry>

<MeshGeometry3D 

Positions=”1,1,-1 1,-1,-1 -1,-1,-1 -1,1,-1 1,1,1 -1,1,1 -1,-1,1 

1,-1,1 1,1,-1 1,1,1 1,-1,1 1,-1,-1 1,-1,-1 1,-1,1 -1,-1,1 -1,-1,-1 

-1,-1,-1 -1,-1,1 -1,1,1 -1,1,-1 1,1,1 1,1,-1 -1,1,-1 -1,1,1”

TriangleIndices=”0 1 2 0 2 3 4 5 6 4 6 7 8 9 10 8 10 11 12 

13 14 12 14 15 16 17 18 16 18 19 20 21 22 20 22 23”

TextureCoordinates=”0,1 0,0 1,0 1,1 1,1 0,1 0,-0 1,0 1,1 

0,1 0,-0 1,0 1,0 1,1 0,1 0,-0 0,0 1,-0 1,1 0,1 1,-0 

1,1 0,1 0,0”/>

</GeometryModel3D.Geometry> 

</GeometryModel3D>

</ModelVisual3D.Content> 

</ModelVisual3D>

</Viewport3D.Children> 

</Viewport3D>

</ControlTemplate> 

</Setter.Value> 

</Setter>

</Style>

Viewport3D 595

LISTING 16.8 Continued

1
6

  From the Library of Wow! eBook



ptg

2D and 3D Coordinate System Transformation
WPF provides a number of services for transforming 3D points into 2D space and vice 
versa. This can be invaluable when applications require interaction between 2D and 3D 
content. For example, imagine writing a 3D molecule viewer with 2D text labels for the 
various atoms comprising the molecule. You’d like the text labels to be drawn as a layer 
on top of the 3D content, but you want the text to follow the atoms as the model is 
rotated. With these coordinate space transformation services, you can achieve this. Let’s 
take a look at the 3D transformation APIs provided and how to use them.

Visual.TransformToAncestor
Visual has a TransformToAncestor method that returns a GeneralTransform2DTo3D. This 
is useful when a Visual is hosted by a Viewport2DVisual3D. The returned object converts 
the hosted Visual’s 2D coordinate space into the 3D coordinate space of the Visual3D.

In Listings 16.9 and 16.10, the Point (0,0) from the Viewport2DVisual3D’s hosted Button 
is mapped into 3D space, and a purple cube is drawn where that Point3D lies in 3D space. 
As the larger cube rotates, the smaller cube follows it because the 
GeneralTransform2DTo3D changes as the larger cube rotates. Figure 16.54 shows the result.

CHAPTER 16 3D Graphics596

The Viewport3DVisual

Under the covers, the Viewport3D element uses a Viewport3DVisual to bridge the 2D 
visual tree with the 3D visual tree. The Viewport3DVisual is primarily an implementation 
detail, but if you choose to program at the Visual level instead of at the FrameworkElement 
level, Viewport3DVisual is the 2D Visual you need to connect the Visual3D tree. The 
properties of Viewport3DVisual are identical to those of Viewport3D, with the addition of 
the Viewport property. Viewport is used to set the bounds in which the 3D scene will be 
displayed because there is no concept of layout at the Visual layer.

D I G G I N G  D E E P E R

FIGURE 16.53 The cube Button Style applied to Photo Gallery.

  From the Library of Wow! eBook



ptg

LISTING 16.9 MainWindow.xaml—The Cube of Buttons and the Small Purple Cube

<Window x:Class=”MainWindow” 

xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation” 

xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”>

<Grid> 

<Viewport3D Panel.ZIndex=”0”> 

<Viewport3D.Camera>

<PerspectiveCamera Position=”3,3,4” LookDirection=”-1,-1,-1”

FieldOfView=”60” /> 

</Viewport3D.Camera> 

<Viewport3D.Children>

<ModelVisual3D> 

<ModelVisual3D.Content>

<DirectionalLight Direction=”-0.3,-0.4,-0.5” /> 

</ModelVisual3D.Content> 

</ModelVisual3D> 

<ModelVisual3D x:Name=”Container”>

<Viewport2DVisual3D> 

<Viewport2DVisual3D.Transform>

<Transform3DGroup> 

<TranslateTransform3D OffsetX=”1.5” /> 

<RotateTransform3D> 

<RotateTransform3D.Rotation>

<AxisAngleRotation3D x:Name=”rotationY” Axis=”0,1,0” Angle=”0” /> 

</RotateTransform3D.Rotation> 

</RotateTransform3D>

</Transform3DGroup> 

</Viewport2DVisual3D.Transform> 

<Viewport2DVisual3D.Geometry>

<MeshGeometry3D Positions=”1,1,-1 1,-1,-1 -1,-1,-1 -1,1,-1 1,1,1 -1,1,1 

-1,-1,1 1,-1,1 1,1,-1 1,1,1 1,-1,1 1,-1,-1 

1,-1,-1 1,-1,1 -1,-1,1 -1,-1,-1 -1,-1,-1 

-1,-1,1 -1,1,1 -1,1,-1 1,1,1 1,1,-1 -1,1,-1 

-1,1,1”

TriangleIndices=”0 1 2 0 2 3 4 5 6 4 6 7 8 9 10 8 10 11 12 13 14 12 

14 15 16 17 18 16 18 19 20 21 22 20 22 23”

TextureCoordinates=”0,1 0,0 1,0 1,1 1,1 -0,1 0,-0 1,0 1,1 -0,1 0,-0 

1,0 1,0 1,1 -0,1 0,-0 -0,0 1,-0 1,1 0,1 1,-0 1,1 

0,1 -0,0” />

</Viewport2DVisual3D.Geometry> 

<Viewport2DVisual3D.Material>

<DiffuseMaterial Viewport2DVisual3D.IsVisualHostMaterial=”True” /> 

</Viewport2DVisual3D.Material>

<Button Name=”TestButton”> 

<Button.RenderTransform>

2D and 3D Coordinate System Transformation 597
1

6

  From the Library of Wow! eBook



ptg

<ScaleTransform ScaleY=”-1” /> 

</Button.RenderTransform>

Hello, 3D 

</Button>

</Viewport2DVisual3D> 

</ModelVisual3D> 

<ModelUIElement3D> 

<ModelUIElement3D.Transform>

<Transform3DGroup> 

<ScaleTransform3D ScaleX=”0.2” ScaleY=”0.2” ScaleZ=”0.2” /> 

<TranslateTransform3D x:Name=”cube_translation” />

</Transform3DGroup> 

</ModelUIElement3D.Transform> 

<ModelUIElement3D.Model>

<GeometryModel3D> 

<GeometryModel3D.Material>

<DiffuseMaterial> 

<DiffuseMaterial.Brush>

<SolidColorBrush Color=”Purple” /> 

</DiffuseMaterial.Brush> 

</DiffuseMaterial>

</GeometryModel3D.Material> 

<GeometryModel3D.Geometry>

<MeshGeometry3D 

Positions=”1,1,-1 1,-1,-1 -1,-1,-1 -1,1,-1 1,1,1 -1,1,1 -1,-1,1 

1,-1,1 1,1,-1 1,1,1 1,-1,1 1,-1,-1 1,-1,-1 1,-1,1 -1,-1,1 

-1,-1,-1 -1,-1,-1 -1,-1,1 -1,1,1 -1,1,-1 1,1,1 1,1,-1 

-1,1,-1 -1,1,1”

TriangleIndices=”0 1 2 0 2 3 4 5 6 4 6 7 8 9 10 8 10 11 12 13 14 12 

14 15 16 17 18 16 18 19 20 21 22 20 22 23”

TextureCoordinates=”0,1 0,0 1,0 1,1 1,1 -0,1 0,-0 1,0 1,1 -0,1 0,-0 

1,0 1,0 1,1 -0,1 0,-0 -0,0 1,-0 1,1 0,1 1,-0 1,1 

0,1 -0,0” />

</GeometryModel3D.Geometry> 

</GeometryModel3D>

</ModelUIElement3D.Model> 

</ModelUIElement3D>

</Viewport3D.Children> 

</Viewport3D>

</Grid> 

<Window.Triggers>

<EventTrigger RoutedEvent=”Window.Loaded”> 

<BeginStoryboard>

<Storyboard>

CHAPTER 16 3D Graphics598

LISTING 16.9 Continued

  From the Library of Wow! eBook



ptg

<DoubleAnimation Storyboard.TargetName=”rotationY” 

Storyboard.TargetProperty=”Angle” 

From=”0” To=”360” Duration=”0:0:12” RepeatBehavior=”Forever” />

</Storyboard> 

</BeginStoryboard>

</EventTrigger> 

</Window.Triggers> 

</Window>

LISTING 16.10 MainWindow.xaml.cs—Code-Behind That Keeps the Small Purple Cube in 
the Correct Location

using System; 

using System.Windows; 

using System.Windows.Media; 

using System.Windows.Media.Media3D;

public partial class MainWindow : Window 

{

public MainWindow() 

{

InitializeComponent();

CompositionTarget.Rendering += CompositionTarget_Rendering;

}

static TimeSpan lastRenderTime = new TimeSpan();

void CompositionTarget_Rendering(object sender, EventArgs e) 

{

// Ensure we only do this once per frame 

if (lastRenderTime == ((RenderingEventArgs)e).RenderingTime)

return;

lastRenderTime = ((RenderingEventArgs)e).RenderingTime;

GeneralTransform2DTo3D transform = 

TestButton.TransformToAncestor(Container);

Point3D point = transform.Transform(new Point(0, 0));

cube_translation.OffsetX = point.X; 

cube_translation.OffsetY = point.Y; 

cube_translation.OffsetZ = point.Z;

} 

}

2D and 3D Coordinate System Transformation 599

LISTING 16.9 Continued

1
6

  From the Library of Wow! eBook



ptg

FIGURE 16.54 Mapping (0,0), the Viewport2DVisual3D’s origin, into 3D space.

Listing 16.10 uses the CompositionTarget.Rendering event to perform the coordinate 
transformation once per frame. Be careful when using it, as structural changes in the 
scene can cause the event to be fired more than once within a given frame. This code 
ensures that the event handler logic runs only once per frame by leveraging the fact that 
the EventArgs instance is actually a RenderingEventArgs object that exposes a 
RenderingTime property.

Visual3D.TransformToAncestor and
Visual3D.TransformToDescendant
Visual3D contains methods for the opposite scenario of mapping from 3D space into 2D 
space. The GeneralTransform3DTo2D returned by Visual3D.TransformToAncestor maps 
from the Visual3D’s 3D coordinate space into some 2D parent’s coordinate space. This is 
especially useful when an application tracks a 3D point on the screen and then draws 2D 
content whose position must follow that 3D point.

Listings 16.11 and 16.12 use TransformToAncestor to make the TextBlocks to follow the 
corners of the rotating cube, as shown in Figure 16.55.

LISTING 16.11 MainWindow.xaml—The Cube and TextBlocks

<Window x:Class=”MainWindow” 

xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation” 

xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”>

<Grid Name=”myGrid”> 

<TextBlock Panel.ZIndex=”1” IsHitTestVisible=”False”> 

<TextBlock.RenderTransform>

CHAPTER 16 3D Graphics600

  From the Library of Wow! eBook



ptg

<TranslateTransform x:Name=”t_000” /> 

</TextBlock.RenderTransform>

(-1,-1,-1) 

</TextBlock> 

<TextBlock Panel.ZIndex=”1” IsHitTestVisible=”False”> 

<TextBlock.RenderTransform>

<TranslateTransform x:Name=”t_001” /> 

</TextBlock.RenderTransform>

(-1,-1,1) 

</TextBlock> 

<TextBlock Panel.ZIndex=”1” IsHitTestVisible=”False”> 

<TextBlock.RenderTransform>

<TranslateTransform x:Name=”t_010” /> 

</TextBlock.RenderTransform>

(-1,1,-1) 

</TextBlock> 

<TextBlock Panel.ZIndex=”1” IsHitTestVisible=”False”> 

<TextBlock.RenderTransform>

<TranslateTransform x:Name=”t_011” /> 

</TextBlock.RenderTransform>

(-1,1,1) 

</TextBlock> 

<TextBlock Panel.ZIndex=”1” IsHitTestVisible=”False”> 

<TextBlock.RenderTransform>

<TranslateTransform x:Name=”t_100” /> 

</TextBlock.RenderTransform>

(1,-1,-1) 

</TextBlock> 

<TextBlock Panel.ZIndex=”1” IsHitTestVisible=”False”> 

<TextBlock.RenderTransform>

<TranslateTransform x:Name=”t_101” /> 

</TextBlock.RenderTransform>

(1,-1,1) 

</TextBlock> 

<TextBlock Panel.ZIndex=”1” IsHitTestVisible=”False”> 

<TextBlock.RenderTransform>

<TranslateTransform x:Name=”t_110” /> 

</TextBlock.RenderTransform>

(1,1,-1) 

</TextBlock> 

<TextBlock Panel.ZIndex=”1” IsHitTestVisible=”False”> 

<TextBlock.RenderTransform>

<TranslateTransform x:Name=”t_111” />

2D and 3D Coordinate System Transformation 601

LISTING 16.11 Continued

1
6

  From the Library of Wow! eBook



ptg

</TextBlock.RenderTransform> 

(1,1,1)

</TextBlock> 

<Viewport3D Panel.ZIndex=”0”> 

<Viewport3D.Camera>

<PerspectiveCamera Position=”3,3,4” LookDirection=”-1,-1,-1”

FieldOfView=”60”/> 

</Viewport3D.Camera> 

<Viewport3D.Children>

<ModelVisual3D> 

<ModelVisual3D.Content>

<DirectionalLight Direction=”-0.3,-0.4,-0.5” /> 

</ModelVisual3D.Content> 

</ModelVisual3D> 

<ModelUIElement3D x:Name=”Cube”> 

<ModelUIElement3D.Transform>

<RotateTransform3D> 

<RotateTransform3D.Rotation>

<AxisAngleRotation3D x:Name=”rotationY” Axis=”0,1,0” Angle=”0” /> 

</RotateTransform3D.Rotation> 

</RotateTransform3D>

</ModelUIElement3D.Transform> 

<ModelUIElement3D.Model>

<GeometryModel3D x:Name=”OB_Cube”> 

<GeometryModel3D.Material>

<DiffuseMaterial> 

<DiffuseMaterial.Brush>

<SolidColorBrush Color=”Orange” x:Name=”CubeBrush” /> 

</DiffuseMaterial.Brush>

</DiffuseMaterial> 

</GeometryModel3D.Material> 

<GeometryModel3D.Geometry>

<MeshGeometry3D x:Name=”ME_Cube2” 

Positions=”1,1,-1 1,-1,-1 -1,-1,-1 -1,1,-1 1,1,1 -1,1,1 -1,-1,1 

1,-1,1 1,1,-1 1,1,1 1,-1,1 1,-1,-1 1,-1,-1 1,-1,1 

-1,-1,1 -1,-1,-1 -1,-1,-1 -1,-1,1 -1,1,1 -1,1,-1 1,1,1 

1,1,-1 -1,1,-1 -1,1,1”

TriangleIndices=”0 1 2 0 2 3 4 5 6 4 6 7 8 9 10 8 10 11 12 13 14 

12 14 15 16 17 18 16 18 19 20 21 22 20 22 23”

TextureCoordinates=”0,1 0,0 1,0 1,1 1,1 -0,1 0,-0 1,0 1,1 -0,1 

0,-0 1,0 1,0 1,1 -0,1 0,-0 -0,0 1,-0 1,1 0,1 

1,-0 1,1 0,1 -0,0”/>

</GeometryModel3D.Geometry>

CHAPTER 16 3D Graphics602

LISTING 16.11 Continued

  From the Library of Wow! eBook



ptg

</GeometryModel3D> 

</ModelUIElement3D.Model> 

</ModelUIElement3D>

</Viewport3D.Children> 

</Viewport3D>

</Grid> 

<Window.Triggers>

<EventTrigger RoutedEvent=”Window.Loaded”> 

<BeginStoryboard>

<Storyboard> 

<DoubleAnimation Storyboard.TargetName=”rotationY”

Storyboard.TargetProperty=”Angle”

From=”0” To=”360” Duration=”0:0:12” RepeatBehavior=”Forever” />

</Storyboard> 

</BeginStoryboard>

</EventTrigger> 

</Window.Triggers> 

</Window>

LISTING 16.12 MainWindow.xaml.cs—Code-Behind That Updates the Locations of all 
TextBlocks

using System; 

using System.Windows; 

using System.Windows.Input; 

using System.Windows.Media; 

using System.Windows.Media.Media3D;

public partial class MainWindow : Window 

{

public MainWindow() 

{

InitializeComponent();

CompositionTarget.Rendering += CompositionTarget_Rendering;

}

static TimeSpan lastRenderTime = new TimeSpan();

void CompositionTarget_Rendering(object sender, EventArgs e) 

{

// Ensure we only do this once per frame

2D and 3D Coordinate System Transformation 603

LISTING 16.11 Continued

1
6

  From the Library of Wow! eBook



ptg

if (lastRenderTime == ((RenderingEventArgs)e).RenderingTime) 

return;

lastRenderTime = ((RenderingEventArgs)e).RenderingTime;

GeneralTransform3DTo2D transform = Cube.TransformToAncestor(myGrid);

Point p = transform.Transform(new Point3D(-1, -1, -1)); 

t_000.X = p.X; t_000.Y = p.Y;

p = transform.Transform(new Point3D(-1, -1, 1)); 

t_001.X = p.X; t_001.Y = p.Y;

p = transform.Transform(new Point3D(-1, 1, -1)); 

t_010.X = p.X; t_010.Y = p.Y;

p = transform.Transform(new Point3D(-1, 1, 1)); 

t_011.X = p.X; t_011.Y = p.Y;

p = transform.Transform(new Point3D(1, -1, -1)); 

t_100.X = p.X; t_100.Y = p.Y;

p = transform.Transform(new Point3D(1, -1, 1)); 

t_101.X = p.X; t_101.Y = p.Y;

p = transform.Transform(new Point3D(1, 1, -1)); 

t_110.X = p.X; t_110.Y = p.Y;

p = transform.Transform(new Point3D(1, 1, 1)); 

t_111.X = p.X; t_111.Y = p.Y;

} 

}

CHAPTER 16 3D Graphics604

LISTING 16.12 Continued

  From the Library of Wow! eBook



ptg

FIGURE 16.55 Mapping the 3D points on the cube’s corners into 2D space.

Every frame, the code gets the GeneralTransform3DTo2D between the cube and its parent 
Grid. It uses this GeneralTransform3DTo2D to transform all eight of the cube’s corner posi-
tions into screen space. The TextBlocks are then transformed in 2D space so that their 
positions match the transformed corners of the cube. As before, the transformation is 
done in the CompositionTarget.Rendering handler.

The remaining 3D transformation methods on Visual3D, TransformToDescendant, and 
another overload of TransformToAncestor simply provide GeneralTransform3Ds that will 
allow transformations between different Visual3Ds in a 3D object hierarchy.

Summary
You should now understand how the 3D APIs in WPF are a straightforward extension of 
the 2D APIs you are already familiar with. As shown in Table 16.1 at the beginning of this 
chapter, most of the 3D types are direct corollaries of the classes discussed in previous 
chapters. This makes WPF an ideal platform for applications that need to mix 3D graphics 
with a 2D user interface.

Although the 3D features of WPF might seem basic at a glance, hidden power comes from 
being a tightly integrated component of the platform. WPF 3D transforms can be data 
bound. You can display video, Drawings, or even 2D Controls on the surfaces of a 3D 
object. Entire 3D scenes can be used as DataTemplates and ControlTemplates. And all this 
works when printing, remoting, or running as a partial-trust web application.

Summary 605
1

6

  From the Library of Wow! eBook



ptg

This chapter focuses on the 3D-specific APIs, but it tells only part of the story. D3DImage, a 
powerful feature that enables interoperability with Direct3D, is covered in Chapter 19, 
“Interoperability with Non-WPF Technologies.” In addition, many of the best 3D features 
are general features of the platform. As you learn about animation and media in the 
upcoming chapters, keep in mind that these features can also be applied to 3D objects.

CHAPTER 16 3D Graphics606

  From the Library of Wow! eBook



ptg

CHAPTER 17

Animation

WPF’s animation functionality makes it very straightfor-
ward to add dynamic effects to applications or compo-
nents. It’s also one of the most obvious features in WPF to 
abuse! But rather than worry about a future of applications 
filled with bouncing Buttons and spinning Menus, think 
instead of all the ways in which animation can be put to 
good use. Certainly you’ve come across an Adobe 
Flash–enabled website with a slick animation that left a 
good impression, or watched a baseball game or newscast 
on TV in which scrolling text or animated transitions 
enhanced the viewing experience. Subtle animations in 
user interfaces for iPhone, iPad, Windows phones, Xbox, 
and Windows 7, to name a few, are used very effectively. 
Sure, animation might not be appropriate for every piece of 
software, but many can benefit from its judicious use.

When exposed via design tools such as Microsoft 
Expression Blend, WPF’s animation support provides capa-
bilities much like those of Adobe Flash. But because it’s a 
core part of the WPF platform, with APIs that are fairly 
simple, you can easily create a wide range of animations 
without the help of such a tool. Indeed, this chapter 
demonstrates several different animation techniques with 
nothing more than short snippets of C# or XAML.

This chapter begins by examining WPF’s animation classes 
and their use from procedural code. After that, we’ll look at 
how to use the same classes from XAML, which involves a 
few additional concepts. After covering both approaches, 
the chapter examines more powerful forms of animation 
that use keyframes and/or easing functions. Finally, we’ll 
take a deeper look at how animations work with the Visual 
State Manager.

IN THIS CHAPTER

. Animations in Procedural 
Code

. Animations in XAML

. Keyframe Animations

. Easing Functions

. Animations and the Visual 
State Manager

  From the Library of Wow! eBook



ptg

Animations in Procedural Code
When most people think about animation, they think of a cartoon-like mechanism, 
where movement is simulated by displaying images in rapid succession. In WPF, anima-
tion has a more specific definition: varying the value of a property over time. This could 
be related to motion, such as making an element grow by increasing its Width, or it could 
be something like varying the value of a color.

Such animation can be accomplished without the special support discussed in this 
chapter, and even without much work—thanks to WPF’s retained-mode graphics model. 
This section begins by examining the options for performing this work manually. It then 
introduces WPF’s many classes that can do almost all the animation work for you.

Performing Animation “By Hand”
The classic way to implement such an animation scheme is to set up a timer and a call-
back function that is periodically called back based on the frequency of the timer. Inside 
the callback function, you can manually update the target property (doing a little math to 
determine the current value based on the elapsed time) until it reaches the final value. At 
that point, you can stop the timer and/or remove the event handler.

Of course, nothing is stopping you from following this classic approach in WPF. WPF 
even has its own DispatcherTimer class that can be used for implementing such a 
scheme. You get to choose DispatcherTimer’s frequency by setting its Interval property, 
and you can attach an event handler to its Tick event.

CHAPTER 17 Animation608

The Difference Between DispatcherTimer and Other .NET Timers

The key difference between DispatcherTimer and other timers, such as 
System.Threading.Timer or System.Timers.Timer, is that handlers for DispatcherTimer 
are invoked on the UI thread. This is important for WPF applications because you can manip-
ulate UIElements inside the handler without worrying about threading. If you use one of the 
other timers, you need to partition your update logic into a different function and use 
Dispatcher to invoke it on the UI thread. Here’s an example: 

void Callback(object sender, EventArgs e)

{

// Call DoTheRealWork on the UI thread: 

this.Dispatcher.Invoke(DispatcherPriority.Normal,

new TimerDispatcherDelegate(DoTheRealWork)); 

}

D I G G I N G  D E E P E R

  From the Library of Wow! eBook



ptg

Although this approach may be familiar to Windows programmers, performing animation 
with a timer is not recommended. The timers are not in sync with the monitor’s vertical 
refresh rate, nor are they in sync with the WPF rendering engine.

Instead of implementing custom timer-based animation, you could perform custom 
frame-based animation by attaching an event handler to the static Rendering event on 
System.Windows.Media.CompositionTarget. Rather than being raised at a customizable 
interval, this event is raised post-layout and pre-render once per frame. (This is like using 
enterFrame when developing Adobe Flash animations, and was used in the two examples 
at the end of the preceding chapter.)

Using the frame-based Rendering event is not only preferred over a timer-based approach, 
it’s even preferred over the animation classes that are the focus of this chapter when 
dealing with hundreds of objects that require high-fidelity animations. For example, colli-
sion detection or other physics-based animations should be done using this approach. 
Animations that morph a panel’s elements from one layout to another are also usually 
implemented using this approach. The Rendering event generally gives the best perfor-
mance and the most customizations (because you can write arbitrary code in the event 
handler), although there are tradeoffs. In normal conditions, WPF renders frames only 
when part of the user interface is invalidated. But as long as any event handler is attached 
to Rendering, WPF renders frames continuously. Therefore, using Rendering is best for 
short-lived animations.

Introducing the Animation Classes
Although using the CompositionTarget.Rendering event is a reasonable way to imple-
ment animations, the designers of WPF wanted animation to be a simpler and more 
declarative process. So, WPF has many classes in the System.Windows.Media.Animation 
namespace that enable you to describe and apply an animation without doing manual 
work to perform it. These classes are extremely useful when you know how you want 
your animation to behave for large amounts of time in advance.

Animations in Procedural Code 609
1

7

Continued

Dispatcher.Invoke performs a synchronous call. You could alternatively call
Dispatcher.BeginInvoke to perform an asynchronous call. However, when using 
DispatcherTimer, your callback can simply look like the following: 

void Callback(object sender, EventArgs e)

{

// Update the property directly in the callback 

}

By default, DispatcherTimer callbacks are handled with the DispatcherPriority of 
Background, but you can construct a DispatcherTimer with an explicit 
DispatcherPriority if you want the callbacks to be handled differently.

  From the Library of Wow! eBook



ptg

There are two important aspects to these animation classes:

. They can only vary the value of a dependency property. So, the definition 
of WPF animation is slightly more constrained than previously stated, unless you 
use one of the manual approaches with DispatcherTimer or the Rendering event.

. They enable animations that are “time resolution independent.” Similar 
in spirit to the resolution independence of WPF’s graphics, animations using the 
WPF animation classes do not speed up as hardware gets faster; they simply get 
smoother! WPF can vary the frame rate based on a variety of conditions, and you as 
the animation developer don’t need to care.

System.Windows.Media.Animation contains many similar-looking animation classes 
because distinct data types are animated with a distinct animation class. For example, if 
you wanted to vary the value of an element’s double dependency property over time, you 
could use an instance of DoubleAnimation. If you instead wanted to vary the value of an 
element’s Thickness dependency property over time, you could use an instance of 
ThicknessAnimation. WPF contains built-in animation classes for 22 different data types, 
listed in Table 17.1.

TABLE 17.1 Data Types with Built-In Animation Classes 

Core .NET Data Types WPF Data Types

Boolean Thickness

Byte Color

Char Size

Decimal Rect

Int16 Point

Int32 Point3D

Int64 Vector

Single Vector3D

Double Rotation3D

String Matrix

Object Quaternion

CHAPTER 17 Animation610

Animation Classes and the Lack of Generics

The System.Windows.Media.Animation namespace has the following classes:

. 22 XXXAnimationBase classes

. 17 XXXAnimation classes

. 22 XXXAnimationUsingKeyFrames classes

. 22 XXXKeyFrameCollection classes

D I G G I N G  D E E P E R

  From the Library of Wow! eBook



ptg

Using an Animation
To understand how the animation classes work, let’s look at the double data type. 
Animating a double is not only easy to understand, but it’s a very common scenario 
because of the number of useful double dependency properties on many elements.

Imagine that we want a Button’s Width property to grow from 50 to 100. For demonstra-
tion purposes, we can place the Button inside a simple Window with a Canvas:

<Window x:Class=”Window1” Title=”Animation” Width=”300” Height=”300” 

xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation” 

xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”> 

<Canvas>

<Button x:Name=”b”>OK</Button>

</Canvas> 

</Window>

In the code-behind file, we can use DoubleAnimation to very simply express the concept 
of animating Width from 50 to 100:

using System.Windows; 

using System.Windows.Controls;

Animations in Procedural Code 611
1

7

Continued

. 22 XXXKeyFrame classes

. 22 DiscreteXXXKeyFrame classes

. 17 LinearXXXKeyFrame classes

. 17 SplineXXXKeyFrame classes

. 17 EasingXXXKeyFrame classes

. 3 XXXAnimationUsingPath classes

(XXX represents a data type from Table 17.1.)

The classes within each of these 10 buckets are almost identical to each other, so 10 basic 
concepts have been exploded into a whopping 181 classes! When people familiar with .NET 
come across this design, the first reaction is often, “Why didn’t the WPF team use gener-
ics?” In other words, why isn’t there a single Animation<T> class that enables double to be 
animated with Animation<double>, Thickness to be animated with an 
Animation<Thickness>, and so on?

One obvious (but not very satisfactory) reason is the lack of complete support for generics in 
XAML prior to XAML2009. But even if generics were completely supported, there are aspects 
of these classes that make them a bad fit for generics. For example, the presence of an 
Animation<T> class implies that you could construct it with any data type, such as 
Animation<Window>. But there is no support for such an animation, nor is there a 
constraint that can be placed on the generic class that would sufficiently express what it 
supports.

  From the Library of Wow! eBook



ptg

using System.Windows.Media.Animation;

public partial class Window1 : Window 

{

public Window1() 

{

InitializeComponent();

// Define the animation

DoubleAnimation a = new DoubleAnimation();

a.From = 50;

a.To = 100;

// Start animating

b.BeginAnimation(Button.WidthProperty, a);

} 

}

The instance of DoubleAnimation contains the initial and end values for a double prop-
erty—any double property. The Button’s BeginAnimation method is then called to associ-
ate the animation with its Width dependency property and to initiate the animation at 
the point in time. If you were to compile and run this code, you would see the width of 
the Button smoothly grow from 50 to 100 over the course of 1 second.

Animation classes have a number of properties in addition to From and To that you can 
use to customize their behavior in interesting ways. We’ll be examining these properties 
throughout this section. Animation classes also have a handful of simple events, such as a 
Completed event that gets raised as soon the target property reaches its final value.

Linear Interpolation
It’s important to note that DoubleAnimation takes care of smoothly changing the double 
value over time via linear interpolation. (Otherwise, the animation would appear to be no 
different than a simple property set!) In other words, for this 1-second animation, the 
value of Width is 55 when 0.1 seconds have elapsed (5% progress in both the value and 
time elapsed), 75 when 0.5 seconds have elapsed (50% progress in both the value and 
time elapsed), and so on. Internally, there is a function being called at regular intervals 
performing the calculations that you would have to do if performing an animation the 
“raw” way. This is why most of the data types in Table 17.1 are numeric. (The nonnu-
meric data types, such as Boolean and String, are explained further later in this chapter.)

Figuring out how to apply an animation to get the desired results can take a little prac-
tice. Here are some examples:

. If you want to make an element fade in, it doesn’t make sense to animate its 
Visibility property because there’s no middle ground between Hidden and 
Visible. Instead, you should animate its Opacity property of type double from 0 
to 1.

CHAPTER 17 Animation612

  From the Library of Wow! eBook



ptg

. If you want an element inside a Grid to slide across the screen, you could animate its 
Grid.Column attached property with an Int32Animation, but the transition from 
column to column would be choppy. Instead, you could give the element a 
TranslateTransform as a RenderTransform and then animate its X property (of type 
double) with a DoubleAnimation.

. Animating the Width of a Grid’s column (which is useful for the “Creating a Visual 
Studio–Like Collapsible, Dockable, Resizable Pane” example at the end of Chapter 5, 
“Layout with Panels”) is not straightforward because ColumnDefinition.Width is 
defined as a GridLength structure, which has no corresponding animation class built 
in. Instead, you could animate ColumnDefinition’s MinWidth and/or MaxWidth proper-
ties, both of type double, or you could set ColumnDefinition’s Width to Auto and then 
insert an element in that column whose Width you animate.

Reusing Animations
The preceding code attached the animation to the Button with a BeginAnimation call. You 
can call BeginAnimation multiple times to apply exactly the same animation to multiple 
elements or even multiple properties of the same element. For example, adding the follow-
ing line of code to the preceding code-behind animates the Height of the Window in sync 
with the Button’s Width:

this.BeginAnimation(Window.HeightProperty, a);

The result of this addition is shown in Figure 17.1. (Before you sneer at the thought of a Window 
that grows, keep in mind that there could actually be legitimate uses for such a mechanism. 
For example, you might want to enlarge a dialog when the user expands an inner Expander, 
and a simple animation is more visually pleasing than an abrupt jump to the new size.)

Animations in Procedural Code 613
1

7

Beginning of animation (Value = 50) 

Halfway through animation (Value = 75)

End of animation (Value = 100) 

FIGURE 17.1 The same DoubleAnimation makes both the Button’s Width and the 
Window’s Height grow from 50 to 100.

  From the Library of Wow! eBook



ptg

Controlling Duration
The simple DoubleAnimation used thus far has the default duration of 1 second, but you 
can change the duration of an animation by setting its Duration property:

DoubleAnimation a = new DoubleAnimation();

a.From = 50;

a.To = 100;

a.Duration = new Duration(TimeSpan.Parse(“0:0:5”));

This makes the animation from Figure 17.1 take 5 seconds rather than one. The typical 
way to construct a Duration instance is with a standard TimeSpan object, which is a part 
of the .NET Framework that predates WPF. By using the static TimeSpan.Parse method, 
you can specify the length of time with a string in the format 
days.hours:minutes:seconds.fraction.

CHAPTER 17 Animation614

Be careful when specifying the length of a Duration or TimeSpan as a string!

TimeSpan.Parse, which is also used by a type converter for Duration for the benefit of 
XAML, accepts shortcuts in its syntax so you don’t need to specify every piece of 
days.hours:minutes:seconds.fraction. However, the behavior is not what you might 
expect. The string “2” means 2 days, not 2 seconds! The string “2.5” means 2 days and 5 
hours! And the string “0:2” means 2 minutes. Given that most animations are no more than 
a few seconds long, the typical syntax used is hours:minutes:seconds or 
hours:minutes:seconds.fraction. So, 2 seconds can be expressed as “0:0:2”, and half 
a second can be expressed as “0:0:0.5” or “0:0:.5”.

WA R N I N G

The Difference Between Duration and TimeSpan

The reason WPF defines a Duration type rather than just using TimeSpan is that Duration 
has two special values that can’t be expressed by TimeSpan: Duration.Automatic and 
Duration.Forever. Both of these values are designed for more complex classes, such as 
Storyboard, described later in this chapter.

Automatic is the default value for every animation class’s Duration property, which is 
equivalent to a 1-second TimeSpan. Forever is nonsensical for a simple animation such as 
DoubleAnimation because such a Duration would make it stay at its initial value indefi-
nitely. WPF has no way to interpolate values between now and the end of time!

D I G G I N G  D E E P E R

Flexibility with From and To
Right before the animation used in Figure 17.1 changes the Button’s Width and the Window’s 
Height from 50 to 100, these properties must jump from their natural values to 50. This 
isn’t noticeable for animations that begin as soon as the Window is shown. But if you were 
to call BeginAnimation in response to an event, the “jump” effect would be jarring.

  From the Library of Wow! eBook



ptg

You could fix this by setting To to the current Width/Height instead of 50, but doing so 
would require splitting the animation into two distinct objects—one that animates from 
the Button’s ActualWidth to 100 and another that animates from the Window’s 
ActualHeight to 100. Fortunately, there’s an alternative. Specifying the From field of the 
animation can be optional. If you omit it, the animation begins with the current value of 
the target property, whatever that might be. For example, you might try to update the 
previous animation as follows:

DoubleAnimation a = new DoubleAnimation(); 

// Comment out: a.From = 50;

a.To = 100;

a.Duration = new Duration(TimeSpan.Parse(“0:0:5”));

You might expect this to animate the Button’s Width from its default value (just wide 
enough to fit the “OK” content, with a little padding) to 100 over the course of 5 seconds. 
Instead, this produces an AnimationException that provides the following explanation in 
its inner exception:

‘System.Windows.Media.Animation.DoubleAnimation’ cannot use default origin value 

of ‘NaN’.

Because Width is unset, it has a value of NaN. And the animation can’t interpolate any 
values between NaN and 100! Furthermore, applying the animation to ActualWidth (which 
is set to the true width rather than NaN) instead of Width isn’t an option because it’s read-
only and it’s not a dependency property. Instead, you must explicitly set the Width of the 
target Button somewhere for the preceding animation to work. Here’s an example:

<!-- Now the animation can grow the Button without a From value: --> 

<Button x:Name=”b” Width=”20”>OK</Button>

The Window from Figure 17.1 works with the From-less animation as is because its Height is 
already set to 300. But note that the same animation now grows the Button’s Width from 
20 to 100 yet shrinks the Window’s Height from 300 to 100! Similarly, if you set the Button’s 
Width to a value larger than 100, the animation would shrink its Width to 100.

Animations in Procedural Code 615
1

7

Omitting an explicit From setting is important for getting smooth animations, especially when 
an animation is initiated in response to a repeatable user action. For example, if the anima-
tion to grow a Button’s Width from 50 to 100 is started whenever the Button is clicked, 
rapid clicks would make the Width jump back to 50 each time. By omitting From, however, 
subsequent clicks make the animation continue from its current animated value, keeping the 
visual smoothness of the effect. Similarly, if you have an element grow on MouseEnter and 
shrink on MouseLeave, omitting From on both animations prevents the size of the element 
from jumping if the mouse pointer leaves the element before it’s done growing or if it reen-
ters before it’s done shrinking.

T I P

  From the Library of Wow! eBook



ptg

In fact, specifying the To field can also be optional! If the following animation is applied 
to the preceding Button, its Width changes from 50 to 20 (its explicitly marked Width) 
over the course of 5 seconds:

DoubleAnimation a = new DoubleAnimation();

a.From = 50; 

// Comment out: a.To = 100;

a.Duration = new Duration(TimeSpan.Parse(“0:0:5”));

Each animation class also has a By field that can be set instead of the To field. The follow-
ing animation means “animate the value by 100 (to 150)” instead of “animate the value 
to 100”:

DoubleAnimation a = new DoubleAnimation();

a.From = 50;

a.By = 100; // Equivalent to a.To = 50 + 100;

Using By without From is a flexible way to express “animate the value from its current 
value to 100 units larger”:

DoubleAnimation a = new DoubleAnimation();

a.By = 100; // Equivalent to a.To = currentValue + 100;

Negative values are supported for shrinking the current value:

DoubleAnimation a = new DoubleAnimation();

a.By = -100; // Equivalent to a.To = currentValue - 100;

Simple Animation Tweaks
You’ve seen the core properties of animation classes: From, To, Duration, and By. But there 
are a lot more properties that can alter an animation’s behavior in more interesting ways.

As with the By property, some of these properties might look like silly tricks that could 
easily be accomplished manually with a little bit of code. That is true, but the main point 
of all these properties is to enable a lot of these easy-to-code tweaks purely from XAML.

BeginTime

If you don’t want an animation to begin immediately when you call BeginAnimation, you 
can insert a delay by setting BeginTime to an instance of a TimeSpan:

DoubleAnimation a = new DoubleAnimation(); 

// Delay the animation by 5 seconds:

a.BeginTime = TimeSpan.Parse(“0:0:5”);

a.From = 50;

a.To = 100;

a.Duration = new Duration(TimeSpan.Parse(“0:0:5”));

CHAPTER 17 Animation616

  From the Library of Wow! eBook



ptg

Besides being potentially useful in isolation, BeginTime can be useful for specifying a 
sequence of animations that start one after the other. You can even set BeginTime to a 
negative value:

DoubleAnimation a = new DoubleAnimation(); 

// Start the animation half-way through:

a.BeginTime = TimeSpan.Parse(“-0:0:2.5”);

a.From = 50;

a.To = 100;

a.Duration = new Duration(TimeSpan.Parse(“0:0:5”));

This starts the animation immediately, 
but at 2.5 seconds into the timeline (as 
if the animation really started 2.5 
seconds previously). Therefore, the 
preceding animation is equivalent to 
one with From set to 75, To set to 100, 
and Duration set to 2.5 seconds.

Note that BeginTime is of type 
Nullable<TimeSpan> rather than 
Duration because the extra expressive-
ness of Duration is not needed. (It would be 
nonsensical to set a BeginTime of Forever!)

SpeedRatio

The SpeedRatio property is a multiplier applied to Duration. It’s set to 1 by default, but 
you can set it to any double value greater than 0:

DoubleAnimation a = new DoubleAnimation();

a.BeginTime = TimeSpan.Parse(“0:0:5”); 

// Make the animation twice as fast:

a.SpeedRatio = 2;

a.From = 50;

a.To = 100;

a.Duration = new Duration(TimeSpan.Parse(“0:0:5”));

A value less than 1 slows down the animation, and a value greater than 1 speeds it up. 
SpeedRatio does not affect BeginTime; the preceding animation still has a 5-second delay, 
but the transition from 50 to 100 takes only 2.5 seconds rather than 5.

Animations in Procedural Code 617
1

7

The code in this section uses TimeSpan. 
Parse because it supports the same syntax 
used by TimeSpan’s type converter (and 
therefore the same syntax used in XAML). 
Procedural code can benefit by using other 
TimeSpan methods, however, such as its 
static FromSeconds or FromMilliseconds 
methods.

T I P

  From the Library of Wow! eBook



ptg

AutoReverse

If AutoReverse is set to true, the animation “plays backward” as soon as it completes. The 
reversal takes the same amount of time as the forward progress. For example, the follow-
ing animation makes the value go from 50 to 100 in the first 5 seconds, then from 100 
back to 50 over the course of 5 more seconds:

DoubleAnimation a = new DoubleAnimation();

a.AutoReverse = true;

a.From = 50;

a.To = 100;

a.Duration = new Duration(TimeSpan.Parse(“0:0:5”));

SpeedRatio affects the speed of both the forward animation and backward animation. 
Therefore, giving the preceding animation a SpeedRatio of 2 would make the entire 
animation run for 5 seconds and giving it a SpeedRatio of 0.5 would make it run for 20 
seconds. Note that any delay specified via BeginTime does not delay the reversal; it always 
happens immediately after the normal part of the animation completes.

RepeatBehavior

By setting RepeatBehavior, you can accomplish one of three different behaviors:

. Making the animation repeat itself a certain number of times, regardless of its dura-
tion

. Making the animation repeat itself until a certain amount of time has elapsed

. Cutting off the animation early

To repeat an animation a certain number of times, you can set RepeatBehavior to an 
instance of a RepeatBehavior class constructed with a double value:

DoubleAnimation a = new DoubleAnimation(); 

// Perform the animation twice in a row:

a.RepeatBehavior = new RepeatBehavior(2);

a.AutoReverse = true;

a.From = 50;

a.To = 100;

a.Duration = new Duration(TimeSpan.Parse(“0:0:5”));

If AutoReverse is true, the reversal is repeated as well. So, the preceding animation goes 
from 50 to 100 to 50 to 100 to 50 over the course of 20 seconds. If BeginTime is set to 
introduce a delay, that delay is not repeated. Because RepeatBehavior can be initialized 
with a double, you can even repeat by a fractional amount.

To repeat the animation until a certain amount of time has elapsed, you can construct 
RepeatBehavior with a TimeSpan instead of a double. The following animation is equiva-
lent to the preceding one:

CHAPTER 17 Animation618

  From the Library of Wow! eBook



ptg

DoubleAnimation a = new DoubleAnimation(); 

// Perform the animation twice in a row:

a.RepeatBehavior = new RepeatBehavior(TimeSpan.Parse(“0:0:20”));

a.AutoReverse = true;

a.From = 50;

a.To = 100;

a.Duration = new Duration(TimeSpan.Parse(“0:0:5”));

Twenty seconds is needed to make the animation complete two full cycles because 
AutoReverse is set to true. Note that the TimeSpan-based RepeatBehavior is not scaled by 
SpeedRatio; if you set SpeedRatio to 2 in the preceding animation, it performs the full 
cycle four times rather than two.

Animations in Procedural Code 619
1

7

You can make an animation repeat indefinitely by setting RepeatBehavior to the static 
RepeatBehavior.Forever field:

a.RepeatBehavior = RepeatBehavior.Forever;

T I P

To use RepeatBehavior as a way to cut off an animation early, you simply construct it 
with a TimeSpan value shorter than the natural duration. The following animation makes 
the value go from 50 to 75 over the course of 2.5 seconds:

DoubleAnimation a = new DoubleAnimation(); 

// Stop the animation halfway through:

a.RepeatBehavior = new RepeatBehavior(TimeSpan.Parse(“0:0:2.5”));

a.From = 50;

a.To = 100;

a.Duration = new Duration(TimeSpan.Parse(“0:0:5”));

The Total Timeline Length of an Animation

With all the different adjustments that can be made to an animation by using properties 
such as BeginTime, SpeedRatio, AutoReverse, and RepeatBehavior, it can be hard to 
keep track of how long it will take an animation to finish after it is initiated. Its Duration 
value certainly isn’t adequate for describing the true length of time! Instead, the following 
formula describes an animation’s true duration:

This applies if RepeatBehavior is specified as a double value (or left as its default value of
1). If RepeatBehavior is specified as a TimeSpan, the total timeline length is simply the 
value of RepeatBehavior plus the value of BeginTime.

D I G G I N G  D E E P E R

Total Timeline Length = BeginTime + 
Durationnn   * (AutoReverse ? 2 : 1)

SpeedRatio 
* RepeatttBehavior

  From the Library of Wow! eBook



ptg

AccelerationRatio, DecelerationRatio, and EasingFunction
By default, animations update the target value in a linear fashion. When an animation is 
25% done, the value is 25% of the way toward the final value, and so on. By changing 
the values of AccelerationRatio and DecelerationRatio, however, you can easily make 
the interpolation nonlinear. This has been a popular technique for causing elements to 
“spring” to the final value, making the animation more lifelike.

Both properties can be set to a double value from 0 to 1 (with 0 being their default value). 
The AccelerationRatio value represents the percentage of time that the target value 
should accelerate from being stationary. Similarly, the DecelerationRatio value repre-
sents the percentage of time that the target value should decelerate to being stationary. 
Therefore, the sum of both properties must be less than or equal to one (100%).

Figure 17.2 illustrates what various values of AccelerationRatio and DecelerationRatio 
mean in practice.

CHAPTER 17 Animation620

Start

Accelerating

End

AccelerationRatio = 1

Start

Constant SpeedAccelerating

End

AccelerationRatio = 0.33

Start

Constant 
Speed

DeceleratingAccelerating

End

AccelerationRatio = 0.33, DecelerationRatio = 0.33

FIGURE 17.2 The effects of AccelerationRatio and DecelerationRatio as the value 
changes from start to end.

Starting with WPF 4, animations also have an EasingFunction property that can be set to 
any object implementing the IEasingFunction interface. Such objects can control the 
rate of acceleration and deceleration in arbitrarily complex ways. WPF ships with 11 
objects that implement IEasingFunction, and writing your own is easy (if you know how 
to do the math that gives you the desired effect). See the “Easing Functions” section, later 
in this chapter, for more information.

  From the Library of Wow! eBook



ptg

IsAdditive and IsCumulative
You can set IsAdditive to true to implicitly add the target property’s current value (post-
animation) to the animation’s From and To properties. This doesn’t affect repeating an 
animation with RepeatBehavior but rather applies to manually repeating an animation at 
some later point in time. In essence, this makes an animation operate on a dependency 
property’s post-animation value rather than continue to operate on its pre-animation 
value.

IsCumulative is similar to IsAdditive, except that it works with RepeatBehavior (and 
only works with RepeatBehavior). For example, if you use RepeatBehavior to repeat an 
animation from 50 to 100 three times, the default behavior is to see the value go from 50 
to 100, jump back to 50 then go to 100, and then jump back to 50 one last time before 
ending at 100. With IsCumulative set to true, the animation instead smoothly changes 
the value from 50 to 200 over the same amount of time. If you take that same animation 
and set AutoReverse to true, you’ll see the value go from 50 to 100 to 50, then jump to 
100 and go from 100 to 150 to 100, then jump to 150 and go from 150 to 200 to 150.

FillBehavior

By default, when an animation completes, the target property remains at the final 
animated value unless some other mechanism later changes the value. This is typically 
the desired behavior, but if you want the property to jump back to its pre-animated value 
after the animation completes, you can set FillBehavior to Stop (rather than its default 
value of HoldEnd).

Animations in XAML
Given that animation classes consist of a bunch of useful properties, it’s easy to imagine 
defining one in XAML. Here’s an example:

<DoubleAnimation From=”50” To=”100” Duration=”0:0:5” AutoReverse=”True”/>

But where do you place such an object? One option is to define it as a resource, so that 
you can retrieve it from procedural code and call BeginAnimation at the right time. You 
could even adjust properties on the animation to get different effects as conditions in the 
application change.

But, unsurprisingly, WPF supports initiating animations purely in XAML. The key to this 
support lies in the Visual State Manager as well as triggers, with their ability to contain 
more than just Setters but also actions.

All three types of triggers can contain actions, but this chapter focuses on event triggers 
because actions are the only things they can contain. Visual State Manager is covered at 
the end of the chapter.

EventTriggers Containing Storyboards
As mentioned in Chapter 3, “WPF Fundamentals,” an event trigger (represented by the 
EventTrigger class) is activated when a routed event is raised. The event is specified by

Animations in XAML 621
1

7

  From the Library of Wow! eBook



ptg

the trigger’s RoutedEvent property, and it can contain one or more actions (objects deriv-
ing from the abstract TriggerAction class) in its Actions collection. Animation classes 
such as DoubleAnimation are not actions themselves, so you can’t add them directly to an 
EventTrigger’s Actions collection. Instead, animations are placed inside an object known 
as a Storyboard, which is wrapped in an action called BeginStoryboard.

Therefore, placing the preceding DoubleAnimation inside an event trigger that is activated 
when a Button is clicked can look as follows:

<Button>

OK 

<Button.Triggers>

<EventTrigger RoutedEvent=”Button.Click”> 

<EventTrigger.Actions>

<BeginStoryboard> 

<Storyboard TargetProperty=”Width”>

<DoubleAnimation From=”50” To=”100”

Duration=”0:0:5” AutoReverse=”True”/> 

</Storyboard>

</BeginStoryboard>

</EventTrigger.Actions> 

</EventTrigger>

</Button.Triggers> 

</Button>

These two extra objects fill the two roles 
that BeginAnimation plays in procedural 
code: Storyboard specifies the depen-
dency property that the animation oper-
ates on with TargetProperty, and 
BeginStoryboard specifies when the animation begins by attaching the Storyboard to the 
trigger.

The BeginStoryboard object might feel superfluous, but WPF ships with other 
TriggerAction-derived classes. One action is for playing sounds (covered in the next 
chapter), and several other actions work in concert with BeginStoryboard to declaratively 
pause a storyboard, seek it, stop it, and so on. (These are called PauseStoryboard, 
SeekStoryboard, and so on.)

Specifying the Target Property
In the preceding XAML, Storyboard’s TargetProperty property is set to the name of a 
property (Width) directly on the target object. But TargetProperty’s type is PropertyPath, 
which supports more complicated expressions (as seen in previous chapters), such as a 
property with a chain of subproperties.

The following Button has a LinearGradientBrush with three GradientStops as the 
Background. It uses a ColorAnimation to make the middle Color repeatedly animate from

CHAPTER 17 Animation622

An animation can’t be initiated in XAML 
unless it is placed inside a Storyboard.

T I P

  From the Library of Wow! eBook



ptg

black to white and back. (The idea of animating a Color might sound strange, but inter-
nally it has floating-point values representing the ScA, ScR, ScB, and ScG components, so 
ColorAnimation can interpolate those values much like DoubleAnimation does for its 
single value.) To animate the middle Color of the LinearGradientBrush, the Storyboard 
must have a complex TargetProperty expression:

<Button Padding=”30”>

OK 

<Button.Background>

<LinearGradientBrush> 

<GradientStop Color=”Blue” Offset=”0”/> 

<GradientStop Color=”Black” Offset=”0.5”/> 

<GradientStop Color=”Blue” Offset=”1”/>

</LinearGradientBrush> 

</Button.Background> 

<Button.Triggers>

<EventTrigger RoutedEvent=”Button.Loaded”> 

<EventTrigger.Actions>

<BeginStoryboard> 

<Storyboard TargetProperty=”Background.GradientStops[1].Color”>

<ColorAnimation From=”Black” To=”White” Duration=”0:0:2”

AutoReverse=”True” RepeatBehavior=”Forever”/> 

</Storyboard>

</BeginStoryboard> 

</EventTrigger.Actions> 

</EventTrigger>

</Button.Triggers> 

</Button>

The syntax for TargetProperty mimics what you would have to type to access the prop-
erty in C#, although without casting. This Storyboard assumes that the Button’s 
Background is set to some object with a GradientStops property that can be indexed, 
assumes that it has at least two items, and assumes that the second item has a Color 
property of type Color. If any of these assumptions is incorrect, the animation fails. Of 
course, in this case these are all correct assumptions, so the Button successfully animates, 
as shown in Figure 17.3.

Animations in XAML 623
1

7

FIGURE 17.3 Animating the middle Color in a LinearGradientBrush.

  From the Library of Wow! eBook



ptg

Similarly, you could attach a DoubleAnimation to a TargetProperty of 
Background.GradientStops[1].Offset and give the Brush an animated gleam by making 
the highlight move from 0 to 1. If you want to animate both Color and Offset in 
response to the same Loaded event, you can add two BeginStoryboard actions to the 
trigger as follows:

<EventTrigger RoutedEvent=”Button.Loaded”> 

<EventTrigger.Actions>

<BeginStoryboard> 

<Storyboard TargetProperty=”Background.GradientStops[1].Color”>

<ColorAnimation From=”Black” To=”White” Duration=”0:0:2”

AutoReverse=”True” RepeatBehavior=”Forever”/> 

</Storyboard>

</BeginStoryboard> 

<BeginStoryboard>

<Storyboard TargetProperty=”Background.GradientStops[1].Offset”> 

<DoubleAnimation From=”0” To=”1” Duration=”0:0:2” 

AutoReverse=”True” RepeatBehavior=”Forever”/> 

</Storyboard>

</BeginStoryboard> 

</EventTrigger.Actions> 

</EventTrigger>

Fortunately, WPF provides a mechanism for animating different properties within the 
same Storyboard. First of all, a Storyboard can contain multiple animations. Storyboard’s 
content property is Children, a collection of Timeline objects (a base class of all anima-
tion classes). Second, the TargetProperty property is not only a normal dependency 
property but also an attached property that can be applied to Storyboard’s children! 
Therefore, the previous XAML could be rewritten as follows:

<EventTrigger RoutedEvent=”Button.Loaded”> 

<EventTrigger.Actions>

<BeginStoryboard> 

<Storyboard>

<ColorAnimation From=”Black” To=”White” Duration=”0:0:2” 

Storyboard.TargetProperty=”Background.GradientStops[1].Color”

AutoReverse=”True” RepeatBehavior=”Forever”/> 

<DoubleAnimation From=”0” To=”1” Duration=”0:0:2”

Storyboard.TargetProperty=”Background.GradientStops[1].Offset”

AutoReverse=”True” RepeatBehavior=”Forever”/> 

</Storyboard>

</BeginStoryboard> 

</EventTrigger.Actions> 

</EventTrigger>

CHAPTER 17 Animation624

  From the Library of Wow! eBook



ptg

This single Storyboard contains two animations, with each one targeting a different prop-
erty on the target object. Both animations start simultaneously, but if you want a story-
board to contain animations that begin at different times, you can simply give each 
animation a different BeginTime value.

Specifying the Target Object
In the Storyboards shown so far, the target object containing the target property has been 
implicit. By default, it’s the object containing the triggers or, in the case of a Style, the 
templated parent. But you can specify a different target object by using Storyboard’s 
TargetName property. And just like TargetProperty, TargetName can be applied directly to 
a Storyboard or to individual children as an attached property.

Here’s a fun example using TargetName that morphs one picture to another by animating 
the opacity of the second picture that sits on top of the first:

<Grid xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”> 

<Grid.Triggers>

<EventTrigger RoutedEvent=”Grid.Loaded”> 

<BeginStoryboard>

<Storyboard TargetName=”jim2” TargetProperty=”Opacity”> 

<DoubleAnimation From=”1” To=”0” Duration=”0:0:4” 

AutoReverse=”True” RepeatBehavior=”Forever”/> 

</Storyboard>

</BeginStoryboard> 

</EventTrigger>

</Grid.Triggers> 

<Image Name=”jim1” Source=”jim1.gif”/> 

<Image Name=”jim2” Source=”jim2.gif”/>

</Grid>

Jim, the subject of these photos, shaved his impressive beard and got a long-overdue 
haircut, but he took before and after photos that are eerily similar. The result of this 
animation is shown in Figure 17.4.

Animations in XAML 625
1

7

Opacity = 0.5 Opacity = 0Opacity = 1

FIGURE 17.4 Animating an Image’s Opacity to morph between two similar photos.

  From the Library of Wow! eBook



ptg

In this example, the use of TargetName is a little contrived because the event trigger could 
have been placed directly on jim2 rather than the parent Grid. But in larger examples (for 
example, a slide show of Images), it can be desirable to accumulate animations in a single 
location with a single event trigger, perhaps even with a single Storyboard, by using 
TargetName as an attached property on each animation.

EventTriggers Inside a Style
Although each XAML snippet in this section adds an event trigger directly to elements, 
it’s more common to see event triggers used inside a Style. Listing 17.1 applies a Style 
with built-in animations to eight Buttons in a StackPanel. The animations make each 
Button grow to twice their size on MouseEnter and shrink back to normal size on 
MouseLeave, resulting in a simplified version of a “fisheye” effect. Figure 17.5 shows the 
result.

LISTING 17.1 Styling Buttons with Built-In Animations

<Window xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation” 

xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml” 

Title=”Animation”>

<Window.Resources> 

<Style TargetType=”{x:Type Button}”>

<Setter Property=”VerticalAlignment” Value=”Bottom”/> 

<Setter Property=”LayoutTransform”> 

<Setter.Value>

<ScaleTransform/> 

</Setter.Value> 

</Setter>

<Style.Triggers> 

<EventTrigger RoutedEvent=”Button.MouseEnter”> 

<EventTrigger.Actions>

<BeginStoryboard> 

<Storyboard>

<DoubleAnimation Storyboard.TargetProperty=”LayoutTransform.ScaleX”

To=”2” Duration=”0:0:0.25”/> 

<DoubleAnimation Storyboard.TargetProperty=”LayoutTransform.ScaleY” 

To=”2” Duration=”0:0:0.25”/> 

</Storyboard>

</BeginStoryboard> 

</EventTrigger.Actions>          

</EventTrigger> 

<EventTrigger RoutedEvent=”Button.MouseLeave”> 

<EventTrigger.Actions>

<BeginStoryboard> 

<Storyboard>

<DoubleAnimation Storyboard.TargetProperty=”LayoutTransform.ScaleX” 

To=”1” Duration=”0:0:0.25”/>

CHAPTER 17 Animation626

  From the Library of Wow! eBook



ptg

<DoubleAnimation Storyboard.TargetProperty=”LayoutTransform.ScaleY” 

To=”1” Duration=”0:0:0.25”/> 

</Storyboard>

</BeginStoryboard> 

</EventTrigger.Actions> 

</EventTrigger>

</Style.Triggers> 

</Style>

</Window.Resources> 

<StackPanel Orientation=”Horizontal”>

<Button>1</Button> 

<Button>2</Button> 

<Button>3</Button> 

<Button>4</Button> 

<Button>5</Button> 

<Button>6</Button> 

<Button>7</Button> 

<Button>8</Button>

</StackPanel> 

</Window>

This listing leverages TargetProperty as 
an attached property to animate both 
ScaleX and ScaleY in the same 
Storyboard. Both animations assume 
that LayoutTransform is set to an instance 
of a ScaleTransform. If LayoutTransform 
were instead set to a TransformGroup with 
a ScaleTransform as its first child, these animations could use the expressions 
LayoutTransform.Children[0].ScaleX and LayoutTransform.Children[0].ScaleY to 
access the desired properties.

Animations in XAML 627

LISTING 17.1 Continued

1
7

FIGURE 17.5 Each Button is restyled with 
grow and shrink animations.

The best way to animate the size and location of an element is to attach a ScaleTransform 
and/or TranslateTransform and animate its properties. Animating ScaleTransform’s 
ScaleX and ScaleY is generally more useful than animating Width and Height because it 
enables you to change the element size by a percentage rather than a fixed number of units. 
And animating TranslateTransform is better than animating something like Canvas.Left 
and Canvas.Top because it works regardless of what Panel contains the element.

T I P

  From the Library of Wow! eBook



ptg

To animate each Button via a 
ScaleTransform without requiring each 
Button to explicitly have 
ScaleTransform, Listing 17.1 sets 
LayoutTransform to an instance of 
ScaleTransform inside the Style. (Of 
course, this scheme breaks down if an 
individual Button has its 
LayoutTransform explicitly set.) From is 
omitted on all animations to keep the 
effect smooth. Duration is set with a simple string, thanks to a type converter that accepts 
the TimeSpan.Parse format (or “Automatic” or “Forever”).

CHAPTER 17 Animation628

Like Duration, RepeatBehavior has a type 
converter that makes it easy to use in 
XAML. A TimeSpan-formatted string can be 
used to set a fixed time, “Forever” can be 
used to indicate RepeatBehavior.Forever, 
and a number followed by “x” (for example, 
“2x” or “3x”) is treated as a multiplier.

T I P

Starting Animations from Property Triggers

You can replace the Style.Triggers collection from Listing 17.1 with the following equiva-
lent one that uses a single property trigger on IsMouseOver:

<Style.Triggers> 

<Trigger Property=”IsMouseOver” Value=”True”> 

<Trigger.EnterActions>

<BeginStoryboard> 

<Storyboard>

<DoubleAnimation Storyboard.TargetProperty=”LayoutTransform.ScaleX”

To=”2” Duration=”0:0:0.25”/> 

<DoubleAnimation Storyboard.TargetProperty=”LayoutTransform.ScaleY” 

To=”2” Duration=”0:0:0.25”/> 

</Storyboard>

</BeginStoryboard> 

</Trigger.EnterActions> 

<Trigger.ExitActions>

<BeginStoryboard> 

<Storyboard>

<DoubleAnimation Storyboard.TargetProperty=”LayoutTransform.ScaleX”

To=”1” Duration=”0:0:0.25”/> 

<DoubleAnimation Storyboard.TargetProperty=”LayoutTransform.ScaleY”

To=”1” Duration=”0:0:0.25”/> 

</Storyboard>

</BeginStoryboard> 

</Trigger.ExitActions> 

</Trigger>

</Style.Triggers>

D I G G I N G  D E E P E R

  From the Library of Wow! eBook



ptg

Using Storyboard as a Timeline
A Storyboard is more than just a simple container that associates one or more animations 
with one or more target objects and their properties. Storyboard derives from Timeline, a 
base class shared with all the animation classes (DoubleAnimation, ColorAnimation, and 
so on). This means that Storyboard has many of the same properties and events discussed 
earlier in the chapter: Duration, BeginTime, SpeedRatio, AutoReverse, RepeatBehavior, 
AccelerationRatio, DecelerationRatio, FillBehavior, and so on.

Listing 17.2 contains a Storyboard that fades one TextBlock in and out at a time, for an 
effect somewhat like that of a movie trailer. The Storyboard itself is marked with a 
RepeatBehavior to make the entire sequence of animation repeat indefinitely. Figure 17.6 
shows how this listing is rendered at three different spots of the sequence.

LISTING 17.2 A Storyboard Containing Several Animations

<Grid xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”

Background=”Black” TextBlock.Foreground=”White” TextBlock.FontSize=”30”> 

<Grid.Triggers>

<EventTrigger RoutedEvent=”Grid.Loaded”> 

<BeginStoryboard>

<Storyboard TargetProperty=”Opacity” RepeatBehavior=”Forever”> 

<DoubleAnimation Storyboard.TargetName=”title1” BeginTime=”0:0:2”

From=”0” To=”1” Duration=”0:0:2” AutoReverse=”True”/> 

<DoubleAnimation Storyboard.TargetName=”title2” BeginTime=”0:0:6”

From=”0” To=”1” Duration=”0:0:2” AutoReverse=”True”/> 

<DoubleAnimation Storyboard.TargetName=”title3” BeginTime=”0:0:10”

From=”0” To=”1” Duration=”0:0:2” AutoReverse=”True”/> 

<DoubleAnimation Storyboard.TargetName=”title4” BeginTime=”0:0:14”

From=”0” To=”1” Duration=”0:0:2” AutoReverse=”True”/> 

<DoubleAnimation Storyboard.TargetName=”title5” BeginTime=”0:0:18”

From=”0” To=”1” Duration=”0:0:2” AutoReverse=”True”/> 

</Storyboard>

</BeginStoryboard> 

</EventTrigger>

</Grid.Triggers> 

<TextBlock HorizontalAlignment=”Center” VerticalAlignment=”Center” Opacity=”0”

Name=”title1”>In a world</TextBlock>

Animations in XAML 629
1

7

Continued

Instead of a simple Actions collection, a property trigger has two collections: EnterActions 
and ExitActions. Actions inside EnterActions are activated when the trigger itself is acti-
vated (which is when any Setters would be applied). Actions inside ExitActions are acti-
vated when the trigger is deactivated (which is when any Setters would be undone). In this 
example, because the effect can be accomplished with either event triggers or a property 
trigger, the choice is one of personal preference.

  From the Library of Wow! eBook



ptg

<TextBlock HorizontalAlignment=”Center” VerticalAlignment=”Center” Opacity=”0”

Name=”title2”>where user interfaces need to be created</TextBlock> 

<TextBlock HorizontalAlignment=”Center” VerticalAlignment=”Center” Opacity=”0”

Name=”title3”>one book</TextBlock> 

<TextBlock HorizontalAlignment=”Center” VerticalAlignment=”Center” Opacity=”0”

Name=”title4”>will explain it all...</TextBlock> 

<TextBlock HorizontalAlignment=”Center” VerticalAlignment=”Center” Opacity=”0”

Name=”title5”>WPF 4 Unleashed</TextBlock> 

</Grid>

CHAPTER 17 Animation630

LISTING 17.2 Continued

FIGURE 17.6 Snapshots of the movie-trailer-like title sequence.

Setting the Timeline-inherited properties on Storyboard affects the entire set of child 
animations, although in a slightly different way than setting the same property individu-
ally on all children. For example, in Listing 17.2, setting RepeatBehavior=”Forever” on 
every child animation rather than on the Storyboard itself would wreak havoc. The first 
title would fade in and out as expected, but then at 6 seconds both title1 and title2 
would fade in and out together. At 10 seconds title1, title2, and title3 would fade in 
and out simultaneously. And so on.

Similarly, setting SpeedRatio=”2” on each DoubleAnimation would make each fade take 1 
second rather than 2, but the final animation would still start 18 seconds after the anima-
tion starts. On the other hand, setting SpeedRatio=”2” on the Storyboard would speed 
up the entire animation, including each BeginTime, by a factor of two. Therefore, the 
final animation would start 9 seconds after the animation starts. Setting 
AccelerationRatio=”1” on the Storyboard would make each animation (and the time 
between them) faster than the previous one. Setting Duration to a time shorter than the 
natural duration can cut off the entire sequence of animations early.

Keyframe Animations
The normal animation classes only support linear interpolation from one value to 
another (or limited forms of nonlinear interpolation, thanks to AccelerationRatio and 
DecelerationRatio) unless you use an easing function. If you want to specify a custom 
and more complicated animation declaratively, you can specify keyframes, which provide 
specific values at specific times. The use of keyframes requires a keyframe-enabled anima-
tion class. For example, DoubleAnimation has a companion class called 
DoubleAnimationUsingKeyFrames, as do all the other XXXAnimation classes.

  From the Library of Wow! eBook



ptg

The keyframe animation classes have the same properties and events as their counter-
parts, except for the From, To, and By properties. Instead, they have a KeyFrames collection 
that can hold keyframe instances specific to the type being animated. WPF has four types 
of keyframes, which this section examines.

Linear Keyframes
Listing 17.3 uses DoubleAnimationUsingKeyFrames to help move an Image of a house fly 
in a zigzag pattern, as illustrated in Figure 17.7. Because the Image is inside a Canvas, the 
motion is accomplished by animating the Canvas.Left and Canvas.Top attached proper-
ties rather than using the more versatile TranslateTransform.

LISTING 17.3 The Zigzag Animation for Figure 17.7

<Window xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation” 

Title=”Animation Using Keyframes” Height=”300” Width=”580”> 

<Canvas>

<Image Source=”fly.png”> 

<Image.Triggers>

<EventTrigger RoutedEvent=”Image.Loaded”> 

<EventTrigger.Actions>

<BeginStoryboard> 

<Storyboard>

<DoubleAnimation Storyboard.TargetProperty=”(Canvas.Left)”

From=”0” To=”500” Duration=”0:0:3”/> 

<DoubleAnimationUsingKeyFrames Storyboard.TargetProperty=”(Canvas.Top)”

Duration=”0:0:3”> 

<LinearDoubleKeyFrame Value=”0” KeyTime=”0:0:0”/> 

<LinearDoubleKeyFrame Value=”200” KeyTime=”0:0:1”/> 

<LinearDoubleKeyFrame Value=”0” KeyTime=”0:0:2”/> 

<LinearDoubleKeyFrame Value=”200” KeyTime=”0:0:3”/>

</DoubleAnimationUsingKeyFrames>

</Storyboard> 

</BeginStoryboard>

</EventTrigger.Actions> 

</EventTrigger>

</Image.Triggers> 

</Image>

</Canvas> 

</Window>

The fly’s motion consists of two animations that begin in parallel when the image loads. 
One is a simple DoubleAnimation that increases its horizontal position linearly from 0 to 
500. The other is the keyframe-enabled animation, which oscillates the vertical position 
from 0 to 200 then back to 0 then back to 200.

Keyframe Animations 631
1

7

  From the Library of Wow! eBook



ptg

FIGURE 17.7 Zigzag motion is easy to create with a keyframe animation.

CHAPTER 17 Animation632

Animation and Data Binding

To simplify the discussions in this section, Listing 17.3 uses hard-coded values when 
animating Canvas.Left and Canvas.Top. Alternatively, you could use data binding to set the 
various To values to match the dimensions of the Window or Canvas. Here’s an example:

<DoubleAnimation Storyboard.TargetProperty=”(Canvas.Left)” From=”0” 

To=”{Binding RelativeSource={RelativeSource FindAncestor, 

AncestorType={x:Type Canvas}}, Path=ActualWidth}” 

Duration=”0:0:3”/>

Unfortunately, such an animation can’t be performed in a trigger on Image.Loaded because 
the event is raised before the Window or Canvas is assigned its ActualHeight. (The value is 
still NaN, causing an AnimationException to be thrown.) You can perform such binding in 
animations associated with later events, however.

D I G G I N G  D E E P E R

An attached property must be wrapped in parentheses when specified as a
TargetProperty!

Notice that in Listing 17.3, both Canvas.Left and Canvas.Top are referenced inside paren-
theses when used as the value for Storyboard’s TargetProperty property. This is a 
requirement for any attached properties used in a property path. Without the parentheses, 
the animation would look for a property on Image called Canvas (expecting it to return an 
object with Left and Top properties) and throw an exception because it doesn’t exist.

WA R N I N G

Each keyframe instance (LinearDoubleKeyFrame) in Listing 17.3 gives a specific value and 
a time for that value to be applied. Setting KeyTime is optional, however. If you omit one, 
WPF assumes that the keyframe occurs halfway between the surrounding keyframes. If 
you omit KeyTime on all keyframes, they are spaced evenly across the duration of the

  From the Library of Wow! eBook



ptg

animation. (This can also be specified explicitly by setting KeyTime to 
KeyTimeType.Uniform, or just “Uniform” in XAML.)

Keyframe Animations 633
1

7

KeyTime can be specified as a percentage rather than as a TimeSpan value. This is handy 
for expressing the timing of a keyframe independently from the duration of the animation. For 
example, the DoubleAnimationUsingKeyFrames from Listing 17.3 can be replaced with the 
following to obtain the same result:

<DoubleAnimationUsingKeyFrames Storyboard.TargetProperty=”(Canvas.Top)” 

Duration=”0:0:3”> 

<LinearDoubleKeyFrame Value=”0” KeyTime=”0%”/> 

<LinearDoubleKeyFrame Value=”200” KeyTime=”33.3%”/> 

<LinearDoubleKeyFrame Value=”0” KeyTime=”66.6%”/> 

<LinearDoubleKeyFrame Value=”200” KeyTime=”100%”/>

</DoubleAnimationUsingKeyFrames>

KeyTime can also be set to Paced, which arranges the keyframes in such a way that gives 
the target property a constant rate of change. In other words, a pair of keyframes that 
changes the value from 0 to 200 is spaced twice as far apart as a pair of keyframes that 
changes the value from 0 to 100.

T I P

Although the keyframes in Listing 17.3 specify the exact vertical position of the fly at 0, 
1, 2, and 3 seconds, WPF still needs to calculate intermediate values between these “key 
times.” Because each keyframe is represented with an instance of LinearDoubleKeyFrame, 
the intermediate values are derived from simple linear interpolation. For example, at 0.5,
1.5, and 2.5 seconds, the calculated value is 100.

But DoubleAnimationUsingKeyFrames’s KeyFrames property is a collection of abstract 
DoubleKeyFrame objects, so it can be filled with other types of keyframe objects. In addi-
tion to LinearDoubleKeyFrame, DoubleKeyFrame has three other subclasses: 
SplineDoubleKeyFrame, DiscreteDoubleKeyFrame, and EasingDoubleKeyFrame.

Spline Keyframes
Every LinearXXXKeyFrame class has a corresponding SplineXXXKeyFrame class. It can be 
used just like its linear counterpart, so updating DoubleAnimationUsingKeyFrames from 
Listing 17.3 as follows produces exactly the same result:

<DoubleAnimationUsingKeyFrames Storyboard.TargetProperty=”(Canvas.Top)” 

Duration=”0:0:3”> 

<SplineDoubleKeyFrame Value=”0” KeyTime=”0:0:0”/> 

<SplineDoubleKeyFrame Value=”200” KeyTime=”0:0:1”/> 

<SplineDoubleKeyFrame Value=”0” KeyTime=”0:0:2”/> 

<SplineDoubleKeyFrame Value=”200” KeyTime=”0:0:3”/>

</DoubleAnimationUsingKeyFrames>

  From the Library of Wow! eBook



ptg

The spline keyframe classes have an additional KeySpline property that differentiates 
them from the linear classes. KeySpline can be set to an instance of a KeySpline object, 
which describes the desired motion as a cubic Bézier curve. KeySpline has two properties 
of type Point that represent the curve’s control points. (The start point of the curve is 
always 0, and the end point is always 1.) A type converter enables you to specify a 
KeySpline in XAML as a simple list of two points. For example, the following update 
changes the fly’s motion from the simple zigzag in Figure 17.7 to the more complicated 
motion in Figure 17.8:

<DoubleAnimationUsingKeyFrames Storyboard.TargetProperty=”(Canvas.Top)” 

Duration=”0:0:3”> 

<SplineDoubleKeyFrame KeySpline=”0,1 1,0” Value=”0” KeyTime=”0:0:0”/> 

<SplineDoubleKeyFrame KeySpline=”0,1 1,0” Value=”200” KeyTime=”0:0:1”/> 

<SplineDoubleKeyFrame KeySpline=”0,1 1,0” Value=”0” KeyTime=”0:0:2”/> 

<SplineDoubleKeyFrame KeySpline=”0,1 1,0” Value=”200” KeyTime=”0:0:3”/>

</DoubleAnimationUsingKeyFrames>

CHAPTER 17 Animation634

FIGURE 17.8 With KeySpline specified, the interpolation between keyframes is now based 
on cubic Bézier curves.

Finding the right value for KeySpline that gives the desired effect can be tricky and 
almost certainly requires the use of a design tool such as Expression Blend. But several 
free tools can be found online that help you visualize Bézier curves based on the specified 
control points.

Discrete Keyframes
A discrete keyframe simply indicates that no interpolation should be done from the previ-
ous keyframe. Updating DoubleAnimationUsingKeyFrames from Listing 17.3 as follows 
produces the motion illustrated in Figure 17.9:

<DoubleAnimationUsingKeyFrames Storyboard.TargetProperty=”(Canvas.Top)” 

Duration=”0:0:3”> 

<DiscreteDoubleKeyFrame Value=”0” KeyTime=”0:0:0”/> 

<DiscreteDoubleKeyFrame Value=”200” KeyTime=”0:0:1”/> 

<DiscreteDoubleKeyFrame Value=”0” KeyTime=”0:0:2”/>

  From the Library of Wow! eBook



ptg

<DiscreteDoubleKeyFrame Value=”200” KeyTime=”0:0:3”/> 

</DoubleAnimationUsingKeyFrames>

Keyframe Animations 635
1

7

FIGURE 17.9 Discrete keyframes makes the fly’s vertical position jump from one key value 
to the next, with no interpolation.

Of course, different types of keyframes can be mixed into the same animation. The 
following mixture makes the fly follow the path shown in Figure 17.10:

<DoubleAnimationUsingKeyFrames Storyboard.TargetProperty=”(Canvas.Top)” 

Duration=”0:0:3”> 

<DiscreteDoubleKeyFrame Value=”0” KeyTime=”0:0:0”/> 

<LinearDoubleKeyFrame Value=”200” KeyTime=”0:0:1”/> 

<DiscreteDoubleKeyFrame Value=”0” KeyTime=”0:0:2”/> 

<SplineDoubleKeyFrame KeySpline=”0,1,1,0” Value=”200” KeyTime=”0:0:3”/>

</DoubleAnimationUsingKeyFrames>

Because the first keyframe’s time is at the very beginning, its type is actually irrelevant. 
That’s because each frame only indicates how interpolation is done before that frame.

FIGURE 17.10 Mixing three types of keyframes into a single animation.

As with SplineXXXKeyFrame, every LinearXXXKeyFrame class has a corresponding 
DiscreteXXXKeyFrame. But WPF has five additional discrete keyframe classes that have no

  From the Library of Wow! eBook



ptg

linear or spline counterpart. These classes enable you to animate Boolean, Char, Matrix, 
Object, and String. WPF supports only discrete keyframe animations with these data 
types because interpolation would not be meaningful (or even possible, as in the case of 
Boolean).

For example, here’s an animation that could be applied to a TextBlock to animate its Text 
from a lowercase string to an uppercase string (with each keyframe using the default 
KeyTime of Uniform):

<StringAnimationUsingKeyFrames Storyboard.TargetProperty=”Text” Duration=”0:0:.5”> 

<DiscreteStringKeyFrame Value=”play”/> 

<DiscreteStringKeyFrame Value=”Play”/> 

<DiscreteStringKeyFrame Value=”PLay”/> 

<DiscreteStringKeyFrame Value=”PLAy”/> 

<DiscreteStringKeyFrame Value=”PLAY”/>

</StringAnimationUsingKeyFrames>

CHAPTER 17 Animation636

If you want to simply set a property value inside an event trigger rather than animate it in the 
traditional sense, you might be able to use a keyframe animation to simulate a Setter. For 
example, the following animation makes the Button disappear instantly when clicked by 
setting Opacity to 0 with a keyframe at the beginning of an otherwise empty animation:

<Button>

Click Me Once 

<Button.Triggers>

<EventTrigger RoutedEvent=”Button.Click”> 

<EventTrigger.Actions>

<BeginStoryboard> 

<Storyboard>

<DoubleAnimationUsingKeyFrames Storyboard.TargetProperty=”Opacity”> 

<DiscreteDoubleKeyFrame Value=”0” KeyTime=”0”/>

</DoubleAnimationUsingKeyFrames>

</Storyboard> 

</BeginStoryboard>

</EventTrigger.Actions> 

</EventTrigger>

</Button.Triggers> 

</Button>

T I P

Easing Keyframes
Starting with WPF 4, every LinearXXXKeyFrame and SplineXXXKeyFrame class has a corre-
sponding EasingXXXKeyFrame class. The easing keyframe classes have an EasingFunction 
property that can be set to any object implementing IEasingFunction. As with the

  From the Library of Wow! eBook



ptg

EasingFunction property on animations, this gives the greatest flexibility in how the 
interpolation is done. It’s now time to see what easing functions are all about.

Easing Functions 637
1

7

Path-Based Animations

WPF has yet another built-in alternative for animating Double, Point, and Matrix types. The 
DoubleAnimationUsingPath, PointAnimationUsingPath, and MatrixAnimationUsingPath 
classes enable you to specify a PathGeometry that dictates how the target value changes 
(with linear interpolation used between its points). Although these classes can technically be 
used with any properties of the right type, they are designed for animating the position of an 
object, using the PathGeometry as the “road” on which the object travels. (In the case of 
DoubleAnimationUsingPath, you would use a pair of these animations. One can apply the 
current X value from the PathGeometry to the target X value, whereas the other does the 
same for the Y value.)

D I G G I N G  D E E P E R

Easing Functions
WPF ships with 11 easing functions—classes implementing IEasingFunction—that can 
easily be applied to an animation or a keyframe. Each of them supports three different 
modes with a property called EasingMode. It can be set to EaseIn (the default value), 
EaseOut, or EaseInOut. Here’s how you can apply one of the easing function objects— 
QuadraticEase—to a basic DoubleAnimation:

<DoubleAnimation Storyboard.TargetProperty=”(Canvas.Top)” From=”200” To=”0”

Duration=”0:0:3”> 

<DoubleAnimation.EasingFunction>

<QuadraticEase/> 

</DoubleAnimation.EasingFunction> 

</DoubleAnimation>

And here is how you change EasingMode to something other than EaseIn:

<DoubleAnimation Storyboard.TargetProperty=”(Canvas.Top)” From=”200” To=”0”

Duration=”0:0:3”> 

<DoubleAnimation.EasingFunction>

<QuadraticEase EasingMode=”EaseOut”/> 

</DoubleAnimation.EasingFunction> 

</DoubleAnimation>

EaseOut inverts the interpolation done with EaseIn, and EaseInOut produces the EaseIn 
behavior for the first half of the animation and the EaseOut behavior for the second half.

Built-In Power Easing Functions
Table 17.2 demonstrates how five of the easing functions work in all three modes by 
showing the path an object takes if its horizontal position animates linearly but its verti-
cal position animates from bottom to top, with each easing function and mode applied.

  From the Library of Wow! eBook



ptg

TABLE 17.2 Five Power Easing Functions

CHAPTER 17 Animation638

CubicEase
(Power = 3)

QuarticEase
(Power = 4)

QuinticEase
(Power = 5)

PowerEase
(Power = 10)

EaseIn EaseOut EaseInOut

QuadraticEase
(Power = 2)

All five functions do interpolation based on a simple power function. With the default 
linear interpolation, when time has elapsed 50% (.5), the value has changed by 50% (.5). 
But with quadratic interpolation, the value has changed by 25% (.5 * .5 = .25) when time 
has elapsed 50%. With cubic interpolation, the value has changed by 12.5% (.5 * .5 * .5 = 
.125) when time has elapsed 50%. And so on. Although WPF provides four distinct classes 
for powers 2 through 5, all you really need is the general-purpose PowerEase class that 
performs the interpolation with the value of its Power property. The default value of 
Power is 2 (making it the same as QuadraticEase) but Table 17.2 demonstrates it with 
Power set to 10, just to show how the transition keeps getting sharper as Power increases. 
Applying PowerEase with Power set to 10 can look as follows:

<DoubleAnimation Storyboard.TargetProperty=”(Canvas.Top)” From=”200” To=”0”

Duration=”0:0:3”> 

<DoubleAnimation.EasingFunction>

  From the Library of Wow! eBook



ptg

<PowerEase Power=”10”/> 

</DoubleAnimation.EasingFunction> 

</DoubleAnimation>

Other Built-In Easing Functions
Table 17.3 demonstrates the remaining six easing functions in all three modes.

TABLE 17.3 The Other Six Built-In Easing Functions

Easing Functions 639
1

7

EaseIn EaseOut EaseInOut

BounceEase

CircleEase

ElasticEase

ExponentialEase

SineEase

BackEase

  From the Library of Wow! eBook



ptg

Each of these six functions has unique (and sometimes configurable) behavior:

. BackEase—Moves the animated value slightly back (away from the target value) 
before progressing. BackEase has an Amplitude property (default=1) that controls 
how far back the value goes.

. BounceEase—Creates what looks like a bouncing pattern (at least when used to 
animate position). BounceEase has two properties for controlling its behavior. 
Bounces (default=3) controls how many bounces occur during the animation, and 
Bounciness (default=2) controls how much the amplitude of each bounce changes 
from the previous bounce. For EaseIn, Bounciness=2 doubles the height of each 
bounce. For EaseOut, Bounciness=2 halves the height of each bounce.

. CircleEase—Accelerates (for EaseIn) or decelerates (for EaseOut) the value with a 
circular function.

. ElasticEase—Creates what looks like an oscillating spring pattern (at least when 
used to animate position). Like BounceEase, it has two properties for controlling its 
behavior. Oscillations (default=3) controls how many oscillations occur during the 
animation, and Springiness (default=3) controls the amplitude of oscillations. The 
behavior of Springiness is subtle: Larger values give smaller oscillations (as if the 
spring is thicker and more difficult to stretch), and smaller values give larger oscilla-
tions (which, in my opinion, seems to make the motion more springy rather than 
less.)

. ExponentialEase—Interpolates the value with an exponential function, using the 
value of its Exponent property (default=2).

. SineEase—Interpolates the value with a function based on the sine formula.

CHAPTER 17 Animation640

BackEase and ElasticEase can produce unexpected negative values!

Because BackEase and ElasticEase make changes to the value outside the range of From 
to To, any animation starting at zero (for EaseIn or EaseInOut) or ending at zero (for 
EaseOut or EaseInOut) will mostly likely veer into negative territory. If such an animation is 
applied to a value that cannot be negative, such as an element’s Width or Height, an excep-
tion will be thrown.

WA R N I N G

Writing Your Own Easing Function
Writing your own easing function is as simple as writing a class that implements 
IEasingFunction. The IEasingFunction interface has only one function, called Ease:

public double Ease(double normalizedTime) 

{

// Return a progress value, normalized from 0 to 1 

…

}

  From the Library of Wow! eBook



ptg

Ease is called throughout an animation with a value of time normalized to fall between 0 
and 1. For any normalized time value, the implementation of Ease must return a progress 
value normalized to fall between 0 and 1. (However, the value can go outside this range, 
as is the case for BackEase and ElasticEase.)

Therefore, the following class successfully (although pointlessly) implements a linear 
easing function:

public class LinearEase : IEasingFunction 

{

public double Ease(double normalizedTime) 

{

return normalizedTime; // Linear interpolation

} 

}

The following class implements a quadratic easing function, similar to the built-in 
QuadraticEase class:

public class SimpleQuadraticEase : IEasingFunction 

{

public double Ease(double normalizedTime) 

{

// Only covers the EaseIn behavior: 

return normalizedTime * normalizedTime; // Quadratic interpolation

} 

}

What makes this SimpleQuadraticEase class different from the built-in QuadraticEase is 
its lack of support for EasingMode. Fortunately, WPF provides an abstract 
EasingFunctionBase class (the base class of all 11 built-in easing functions) that gives you 
EasingMode behavior for free.

EasingFunctionBase defines the EasingMode dependency property and implements 
IEasingFunction. In its implementation of Ease, it calls an abstract method, EaseInCore, 
that derived classes must implement the same way as they would implement Ease (if the 
math considers only the EaseIn case). Based on the value of EasingMode, however, 
EasingFunctionBase modifies the value of normalizedTime before calling EaseInCore and 
modifies the value returned by it. These transformations make the same EaseIn logic 
applicable to all three modes. This is all transparent to the derived class, so implementing 
an easing function with complete support for EasingMode is as simple as changing the 
base class and renaming Ease to EaseInCore:

public class CompleteQuadraticEase : EasingFunctionBase 

{

protected override double EaseInCore(double normalizedTime) 

{

return normalizedTime * normalizedTime; // Quadratic interpolation

Easing Functions 641
1

7

  From the Library of Wow! eBook



ptg

}

// Required by any subclass of EasingFunctionBase: 

protected override Freezable CreateInstanceCore() 

{

return new CompleteQuadraticEase(); 

}

}

The only complication is the need to implement CreateInstanceCore, an abstract 
method defined by Freezable, the base class of EasingFunctionBase. This 
CompleteQuadraticEase class now behaves exactly like the built-in QuadraticEase. You 
can use this technique to define new and interesting easing functions, such as SexticEase 
(which would come after QuinticEase):

public class SexticEase : EasingFunctionBase 

{

protected override double EaseInCore(double normalizedTime) 

{

return normalizedTime * normalizedTime * normalizedTime 

* normalizedTime * normalizedTime * normalizedTime; 

}

// Required by any subclass of EasingFunctionBase: 

protected override Freezable CreateInstanceCore() 

{

return new SexticEase(); 

}

}

CHAPTER 17 Animation642

What EaseOut and EaseInOut Actually Mean

EaseIn is easy to understand because it corresponds exactly to the logic written inside 
EaseInCore implementations and maps to how most people think about an animated value 
progressing as a function of time. To understand what the EaseOut and EaseInOut modes 
actually do, let’s examine the transformations made by EasingFunctionBase.Ease before 
and after calling the derived class’s EaseInCore method.

For EaseIn, EaseInCore is called repeatedly with values starting at 0 and ending at 1. For 
EaseOut, however, EaseInCore is called repeatedly with values starting at 1 and ending at 0. 
(The normalizedTime passed to EaseInCore is actually 1-normalizedTime.) The value 
returned by EaseInCore is then inverted in this case; the actual value returned becomes 1-
value.

D I G G I N G  D E E P E R

  From the Library of Wow! eBook



ptg

Animations and the Visual State Manager
When a control makes use of the Visual State Manager (introduced in Chapter 14, “Styles, 
Templates, Skins, and Themes”), its template can include any number of VisualStates. 
Each VisualState is basically just a collection of Storyboards that transition properties 
that can be animated to their desired values for that state.

Now that you know everything there is to know about animations, you can see how easy 
and powerful such transitions can be. Listing 17.4 updates the Button control template 
from Listing 14.8 in Chapter 14, replacing its triggers with VisualStates (and handling 
some VisualStates that weren’t previously handled by the triggers).

LISTING 17.4 A Button ControlTemplate, Using VisualStates

<Style TargetType=”{x:Type Button}”> 

<Setter Property=”FocusVisualStyle” Value=”{x:Null}”/> 

<Setter Property=”Background” Value=”Black”/> 

<Setter Property=”Template”> 

<Setter.Value>

<ControlTemplate TargetType=”{x:Type Button}”> 

<Grid RenderTransformOrigin=”.5,.5”> 

<VisualStateManager.VisualStateGroups>

<VisualStateGroup Name=”CommonStates”> 

<VisualState Name=”Normal”/> 

<VisualState Name=”MouseOver”>

<Storyboard> 

<ColorAnimation Storyboard.TargetName=”outerCircle”

Storyboard.TargetProperty= 

“(Ellipse.Fill).(LinearGradientBrush.GradientStops)[1].(GradientStop.Color)”

To=”Orange” Duration=”0:0:.4”/> 

</Storyboard>

</VisualState> 

<VisualState Name=”Pressed”>

Animations and the Visual State Manager 643
1

7

Continued

For the EaseInOut case, the behavior is different between the first half of the animation 
(normalizedTime values from 0 up to but not including 0.5) and the second half 
(normalizedTime values from 0.5 to 1). For the first half, the normalizedTime value 
passed to EaseInCore is doubled (spanning the full range of 0 to 1 in half the time), but the 
value returned is halved. For the second half, the normalizedTime value passed to 
EaseInCore is doubled and inverted (spanning the full range of 1 to 0 in half the time). The 
value returned from EaseInCore is halved and inverted, then .5 is added to the value 
(because this is the second half of progress toward the final value). This is why every deter-
ministic EaseInOut animation is symmetrical and hits 50% progress when 50% of the time 
has elapsed.

  From the Library of Wow! eBook



ptg

<Storyboard> 

<DoubleAnimation Storyboard.TargetName=”scaleTransform”

Storyboard.TargetProperty=”ScaleX” To=”.9”

Duration=”0”/>

<DoubleAnimation Storyboard.TargetName=”scaleTransform” 

Storyboard.TargetProperty=”ScaleY” To=”.9”

Duration=”0”/>

</Storyboard> 

</VisualState> 

<VisualState Name=”Disabled”>

<Storyboard> 

<ColorAnimation Storyboard.TargetName=”outerCircle”

Storyboard.TargetProperty= 

“(Ellipse.Fill).(LinearGradientBrush.GradientStops)[1].(GradientStop.Color)”

To=”Gray” Duration=”0:0:.4”/> 

</Storyboard>

</VisualState> 

</VisualStateGroup> 

<VisualStateGroup Name=”FocusStates”>

<VisualState Name=”Unfocused”/> 

<VisualState Name=”Focused”>

<Storyboard> 

<DoubleAnimation Storyboard.TargetProperty=

“(Grid.RenderTransform).(TransformGroup.Children)[1].(TranslateTransform.Y)” 

To=”-20” AutoReverse=”True”

RepeatBehavior=”Forever” Duration=”0:0:.4”>

<DoubleAnimation.EasingFunction> 

<QuadraticEase/>

</DoubleAnimation.EasingFunction> 

</DoubleAnimation>

</Storyboard> 

</VisualState>

</VisualStateGroup> 

</VisualStateManager.VisualStateGroups> 

<Grid.RenderTransform>

<TransformGroup> 

<ScaleTransform x:Name=”scaleTransform”/> 

<TranslateTransform x:Name=”translateTransform”/>

</TransformGroup> 

</Grid.RenderTransform>

<Ellipse x:Name=”outerCircle”> 

<Ellipse.Fill>

<LinearGradientBrush StartPoint=”0,0” EndPoint=”0,1”> 

<GradientStop Offset=”0”

CHAPTER 17 Animation644

LISTING 17.4 Continued

  From the Library of Wow! eBook



ptg

Color=”{Binding RelativeSource={RelativeSource TemplatedParent}, 

Path=Background.Color}”/> 

<GradientStop x:Name=”highlightGradientStop” Offset=”1” Color=”Red”/>

</LinearGradientBrush> 

</Ellipse.Fill> 

</Ellipse> 

<Ellipse RenderTransformOrigin=”.5,.5”> 

<Ellipse.RenderTransform>

<ScaleTransform ScaleX=”.8” ScaleY=”.8”/> 

</Ellipse.RenderTransform> 

<Ellipse.Fill>

<LinearGradientBrush StartPoint=”0,0” EndPoint=”0,1”> 

<GradientStop Offset=”0” Color=”White”/> 

<GradientStop Offset=”1” Color=”Transparent”/>

</LinearGradientBrush> 

</Ellipse.Fill> 

</Ellipse> 

<Viewbox>

<ContentPresenter Margin=”{TemplateBinding Padding}”/> 

</Viewbox>

</Grid> 

</ControlTemplate>

</Setter.Value> 

</Setter>

</Style>

Figure 17.11 shows the results for the various Button combinations of states that you 
encounter in normal user interaction. The Normal state in CommonStates does nothing; it 
leaves the default visuals alone. The MouseOver state animates the highlight color to 
orange, the Pressed state scales the entire visual tree to 90%, and the Disabled state 
animates the highlight color to Gray. In the FocusStates state group, the default 
Unfocused state does nothing, but the Focused state uses a QuadraticEase easing function 
to give the Button a continual bounce, as long as it’s in that state. (For this type of auto-
reversing repeat-forever animation, QuadraticEase actually does a better job of simulating 
bouncing than BounceEase!) The Style also sets FocusVisualStyle to null to avoid the 
dotted rectangle that would otherwise appear around the bouncing Button when it has 
keyboard focus.

Animations and the Visual State Manager 645

LISTING 17.4 Continued

1
7

  From the Library of Wow! eBook



ptg

FIGURE 17.11 The behavior of Button’s VisualStates with the control template in Listing
17.4.

The Focused and Disabled behaviors are new compared to Chapter 14, but you can 
compare this listing’s MouseOver and Pressed states to the IsMouseOver and IsPressed 
triggers from Chapter 14:

<ControlTemplate.Triggers> 

<Trigger Property=”IsMouseOver” Value=”True”>

<Setter TargetName=”outerCircle” Property=”Fill” Value=”Orange”/> 

</Trigger> 

<Trigger Property=”IsPressed” Value=”True”>

<Setter Property=”RenderTransform”> 

<Setter.Value>

<ScaleTransform ScaleX=”.9” ScaleY=”.9”/> 

</Setter.Value> 

</Setter> 

<Setter Property=”RenderTransformOrigin” Value=”.5,.5”/>

</Trigger> 

</ControlTemplate.Triggers>

Storyboards can’t set properties such as RenderTransform or RenderTransformOrigin, so 
these two properties are now set directly inside the visual tree. The animations used for 
the Pressed state simply update the values of ScaleX and ScaleY on the existing 
ScaleTransform.

CHAPTER 17 Animation646

MouseOver, Unfocused Pressed, Focused

Disabled, Unfocused Normal, Focused

Normal, Unfocused

  From the Library of Wow! eBook



ptg

Transitions
There’s a slight problem with the states as defined in Listing 17.4. The transitions from 
one state to another are smooth unless the state being transitioned into is Normal or 
Unfocused. Because they are left empty, the result is an instant jump to the default visual 
behavior. This could be solved by adding Storyboards with explicit animations to the 
default values, but one would have to be added for every property animated by any other 
state in the group, to account for all possible transitions.

Fortunately, VisualStateGroup has a much better solution for this. It defines a 
Transitions property that can be set to one or more VisualTransition objects that can 
automatically generate appropriate animations to smooth the transition between any 
states. VisualTransition has To and From string properties that can be set to the names of 
the source and target states. You can omit both properties to make it apply to all transi-
tions, specify only a To to make it apply to all transitions to that state, and so on. When 
transitioning from one state to another, the Visual State Manager chooses the most 
specific VisualTransition that matches the transition. The order of precedence is as 
follows:

1. A VisualTransition with matching To and From

2. A VisualTransition with a matching To and no explicit From

3. A VisualTransition with a matching From and no explicit To

4. The default VisualTransition, with no To or From specified

If VisualStateGroup’s Transitions property isn’t set, the default transition between any 
states is a zero-duration animation.

To specify the characteristics of a VisualTransition, you can set its GeneratedDuration 
property to control the duration of the generated linear animation. You can also set its 
GeneratedEasingFunction property to get a nonlinear animation between states. For the 
most customization, you can even set its Storyboard property to a Storyboard with arbi-
trary custom animations.

Animations and the Visual State Manager 647
1

7

The easiest way to manage VisualStates and the transitions between them is to give the 
animations inside each VisualState a Duration of 0—making the animations more like 
Setters than real animations—and specify the desired animations between states (with 
non-zero Durations) via VisualStateGroup’s VisualTransitions property. An exception to 
this would be states with continual animations, such as the bouncing done in the Focused 
state in Listings 17.4 and 17.5.

T I P

  From the Library of Wow! eBook



ptg

Listing 17.5 updates each VisualStateGroup from the previous listing to take advantage 
of VisualTransitions to fix the snapping problem when transitioning to the Normal 
and/or Unfocused states.

LISTING 17.5 Updated VisualStateGroups That Use Transitions for Listing 17.4

<VisualStateManager.VisualStateGroups> 

<VisualStateGroup Name=”CommonStates”> 

<VisualStateGroup.Transitions>

<!-- Apply to all transitions... --> 

<VisualTransition GeneratedDuration=”0:0:.4”/> 

<!-- ...but override for transitions to/from Pressed: --> 

<VisualTransition To=”Pressed” GeneratedDuration=”0”/> 

<VisualTransition From=”Pressed” GeneratedDuration=”0”/>

</VisualStateGroup.Transitions>

<VisualState Name=”Normal”/> 

<VisualState Name=”MouseOver”>

<Storyboard> 

<ColorAnimation Storyboard.TargetName=”outerCircle”

Storyboard.TargetProperty= 

“(Ellipse.Fill).(LinearGradientBrush.GradientStops)[1].(GradientStop.Color)”

To=”Orange” Duration=”0”/> 

</Storyboard>

</VisualState> 

<VisualState Name=”Pressed”>

<Storyboard> 

<DoubleAnimation Storyboard.TargetName=”scaleTransform”

Storyboard.TargetProperty=”ScaleX” To=”.9” 

Duration=”0”/>

<DoubleAnimation Storyboard.TargetName=”scaleTransform” 

Storyboard.TargetProperty=”ScaleY” To=”.9” 

Duration=”0”/>

</Storyboard> 

</VisualState> 

<VisualState Name=”Disabled”>

<Storyboard> 

<ColorAnimation Storyboard.TargetName=”outerCircle”

Storyboard.TargetProperty= 

“(Ellipse.Fill).(LinearGradientBrush.GradientStops)[1].(GradientStop.Color)”

To=”Gray” Duration=”0”/> 

</Storyboard>

</VisualState> 

</VisualStateGroup>

CHAPTER 17 Animation648

  From the Library of Wow! eBook



ptg

<VisualStateGroup Name=”FocusStates”> 

<VisualStateGroup.Transitions>

<!-- Apply only in one direction: --> 

<VisualTransition To=”Unfocused” GeneratedDuration=”0:0:.4”> 

<VisualTransition.GeneratedEasingFunction>

<QuadraticEase/> 

</VisualTransition.GeneratedEasingFunction> 

</VisualTransition>

</VisualStateGroup.Transitions>

<VisualState Name=”Unfocused”/> 

<VisualState Name=”Focused”>

<Storyboard> 

<DoubleAnimation Storyboard.TargetProperty=

“(Grid.RenderTransform).(TransformGroup.Children)[1].(TranslateTransform.Y)” 

To=”-20” AutoReverse=”True”

RepeatBehavior=”Forever” Duration=”0:0:.4”>

<DoubleAnimation.EasingFunction> 

<QuadraticEase/>

</DoubleAnimation.EasingFunction> 

</DoubleAnimation>

</Storyboard> 

</VisualState>

</VisualStateGroup> 

</VisualStateManager.VisualStateGroups>

In the Transitions collection for CommonStates, a VisualTransition lasting 0.4 seconds 
applies to all state transitions. Two additional VisualTransitions override this behavior 
for transitions to and from the Pressed state in order to preserve the instant-press and 
instant-release behavior. Because the new VisualTransition takes care of the smooth 
animations, the Durations of the animations defined for the MouseOver and Disabled 
states are changed to 0.

The VisualTransition added to the FocusStates group applies only to transitions to the 
Unfocused state to avoid interfering with the continual bouncing animation in the 
Focused sate. In order to not look out of place when transitioning out of the bouncing 
Focused animation, the VisualTransition is given a QuadraticEase easing function to 
match the animation it’s transitioning from.

Animations and the Visual State Manager 649

LISTING 17.5 Continued

1
7

  From the Library of Wow! eBook



ptg

CHAPTER 17 Animation650

VisualTransitions don’t work with animations whose target isn’t in the element 
tree!

You may have noticed the lengthy Storyboard.TargetProperty property paths in three of 
the animations from Listings 17.4 and 17.5:

<ColorAnimation Storyboard.TargetName=”outerCircle” 

Storyboard.TargetProperty= 

“(Ellipse.Fill).(LinearGradientBrush.GradientStops)[1].(GradientStop.Color)”

To=”Orange” …/>

… 

<ColorAnimation Storyboard.TargetName=”outerCircle”

Storyboard.TargetProperty= 

“(Ellipse.Fill).(LinearGradientBrush.GradientStops)[1].(GradientStop.Color)”

To=”Gray” …/>

… 

<DoubleAnimation Storyboard.TargetProperty=

“(Grid.RenderTransform).(TransformGroup.Children)[1].(TranslateTransform.Y)”

To=”-20” AutoReverse=”True”

RepeatBehavior=”Forever” Duration=”0:0:.4”>

… 

</DoubleAnimation>

The draft version of these listings referenced the GradientStop (in the first two animations) 
and the TranslateTransform (in the last animation) directly via Storyboard.TargetName in 
order to make the property paths much simpler:

<ColorAnimation Storyboard.TargetName=”highlightGradientStop”

Storyboard.TargetProperty=”Color”

To=”Orange” …/>

… 

<ColorAnimation Storyboard.TargetName=”highlightGradientStop”

Storyboard.TargetProperty=”Color”

To=”Gray” …/>

… 

<DoubleAnimation Storyboard.TargetName=”translateTransform”

Storyboard.TargetProperty=”Y”

To=”-20” AutoReverse=”True”

RepeatBehavior=”Forever” Duration=”0:0:.4”>

… 

</DoubleAnimation>

WA R N I N G

  From the Library of Wow! eBook



ptg

Summary
With animation, you can do something as simple as a subtle rollover effect (which is 
becoming commonplace for even standard user interfaces) or as complex as an animated 
cartoon. Storyboards, which are a necessary part of performing animations purely in 
XAML, help to orchestrate complex series of animations.

The same could be said for other areas of WPF, but going overboard with animation can 
harm the usability and accessibility of an application or a component. Another factor to 
consider is the performance implication of animation. Too much animation could make 
an otherwise-useful application become unusable on a less-powerful computer, such as a 
netbook.

Summary 651
1

7

Continued

These animations have exactly the same meaning and work the same way as the animations 
in Listings 17.4 and 17.5, except when you try to use VisualTransitions. The generated 
animations do not work with animations when the target named by TargetName isn’t in the 
element tree. The workaround is either to put all behavior inside VisualStates rather than 
using VisualTransitions, or to ensure all relevant animations use an element in the tree 
as their target. Listing 17.5 uses the latter approach. (In the TranslateTransform anima-
tion, the target is implicitly the root Grid.)

Notice that the animations in the Pressed state do operate directly on the ScaleTransform. 
These were left alone because the transitions into and out of this state are instantaneous 
anyway. If you want to change Listing 17.5 to produce a smooth transition into and out of 
Pressed, you’ll need to change the Pressed animations to use the root Grid as the target 
and:

“(Grid.RenderTransform).(TransformGroup.Children)[0].(ScaleTransform.ScaleX)”

and:

“(Grid.RenderTransform).(TransformGroup.Children)[0].(ScaleTransform.ScaleY)”

as the TargetProperty values.

The property paths in this section use the most explicit syntax normally reserved for 
attached properties, but they don’t have to be quite so long. The various property paths can 
be shortened as follows:

“Fill.GradientStops[1].Color”

“RenderTransform.Children[1].Y”

“RenderTransform.Children[0].ScaleX”

“RenderTransform.Children[0].ScaleY”

  From the Library of Wow! eBook



ptg

Fortunately, WPF enables you to provide rich animations (or other functionality) on 
powerful computers while scaling back the experience on less-powerful systems. The key 
to this is the RenderCapability class in the System.Windows.Media namespace. It defines 
a static Tier property and a static TierChanged event. When you’re running on a tier 0 
computer, everything is rendered in software. On a tier 1 computer, hardware rendering is 
sometimes used. And on a tier 2 computer (the top tier), everything that can be rendered 
in hardware is rendered in hardware. Therefore, you should be reluctant to use multiple 
simultaneous animations (or complicated gradients or 3D) on a tier 0 system. Besides 
removing animations, another way to adjust to running in the bottom tier is to reduce 
the natural frame rate (which tends to be 60 fps) with Storyboard’s DesiredFrameRate 
attached property. This can decrease CPU utilization on such systems.

CHAPTER 17 Animation652

If you find yourself doing a lot of animation (or complicated static graphics, whether 2D or 
3D), use RenderCapability.Tier to adjust your behavior. Note that although Tier is a 32-
bit integer, the main value is stored in the high word. Therefore, you need to shift the value 
by 16 bits to see the true tier:

int tier = RenderCapability.Tier >> 16

This was done to enable subtiers in the future, but the result is pretty confusing for anyone 
using the API!

T I P

  From the Library of Wow! eBook



ptg

CHAPTER 18

Audio, Video, and
Speech

This chapter covers the areas of rich media that have 
been increasingly important to software over the past 
decade: audio, video, and speech (the latter of which could 
be considered a very special kind of audio). In all three of 
these areas, Windows Presentation Foundation significantly 
lowers the bar of difficulty compared to previous technolo-
gies. (Audio, video, and speech are also similar in that it’s 
difficult to demonstrate them in a book with static 
pictures!) So, although you might not have considered 
incorporating these feature areas in the past, you might 
change your mind after reading this chapter!

Audio
The audio support in WPF is simple to use. But unlike most 
of WPF, it’s not revolutionary or next-generation, nor does 
it exploit the latest advances in hardware. Instead, it’s a 
thin layer over existing functionality in Win32 and 
Windows Media Player that covers the most common 
audio needs. You won’t be able to build a professional 
audio application solely using WPF, but you can easily 
enhance an application with music and sound effects!

As with many other tasks in WPF, you can accomplish 
playing audio in multiple ways, each with its own pros and 
cons. The choices for audio are represented by several 
different classes:

. SoundPlayer

. SoundPlayerAction

. MediaPlayer

. MediaElement and MediaTimeline

IN THIS CHAPTER

. Audio

. Video

. Speech

  From the Library of Wow! eBook



ptg

SoundPlayer
The easiest way to play audio files in a WPF application is to use the same mechanism 
used by non-WPF applications: the System.Media.SoundPlayer class. SoundPlayer, a part 
of the .NET Framework since version 2.0, is a simple wrapper for the Win32 PlaySound 
API. This means that it has a bunch of limitations, such as the following:

. It only supports .wav audio files.

. It has no support for playing multiple sounds simultaneously. (Any new sound 
being played interrupts a currently playing sound.)

. It has no support for varying the volume of sounds.

It is, however, the most lightweight approach for playing a sound, so it’s very appropriate 
for simple sound effects. The following code shows how to use SoundPlayer to play a 
sound:

SoundPlayer player = new SoundPlayer(“tada.wav”); 

player.Play();

The string passed to SoundPlayer’s constructor can be any filename or a URL. Starting 
with version 3.5 of the .NET Framework, you can use any appropriate relative or absolute 
pack URI, as with controls such as Image. Therefore, the sound file can be included your 
project like other WPF binary resources (with a Resource or Content build action), or it 
can be loose at the site of origin.

Calling Play plays the sound asynchronously, but you can also call PlaySync to play it on 
the current thread, or PlayLooping to make the sound repeat asynchronously until you 
call Stop (or until any other sound is played from any instance of SoundPlayer, or even 
direct calls to the underlying Win32 API).

For performance reasons, the audio file isn’t loaded until the first time the sound is 
played. But this behavior could cause an unwanted pause, especially if you’re retrieving a 
large audio file over the network. Therefore, SoundPlayer also defines Load and 
LoadAsynch methods for performing the loading at any point prior to the first playing.

If you want to play a familiar system sound without worrying about its filename and path 
on the target computer, the System.Media namespace also contains a SystemSounds class 
with static Asterisk, Beep, Exclamation, Hand, and Question properties. Each property is 
of type SystemSound, which has its own Play method (for asynchronous nonlooping 
playing only). However, I would use sounds from this class sparingly (if at all) to avoid 
annoying users with sounds that they expect to come only from Windows itself!

SoundPlayerAction
If you want to use SoundPlayer to add simple sound effects to user interface events such 
as hovering over or clicking a Button, you can easily define the appropriate event 
handlers that use SoundPlayer in their implementation. However, WPF defines a

CHAPTER 18 Audio, Video, and Speech654

  From the Library of Wow! eBook



ptg

SoundPlayerAction class (which derives from TriggerAction) that enables you to use 
SoundPlayer without writing any procedural code.

The following XAML snippet adds EventTriggers directly to a Button that play an audio 
file when the Button is clicked or the mouse pointer enters its bounds:

<Button> 

<Button.Triggers>

<EventTrigger RoutedEvent=”Button.Click”> 

<EventTrigger.Actions>

<SoundPlayerAction Source=”click.wav”/>

</EventTrigger.Actions> 

</EventTrigger> 

<EventTrigger RoutedEvent=”Button.MouseEnter”> 

<EventTrigger.Actions>

<SoundPlayerAction Source=”hover.wav”/>

</EventTrigger.Actions> 

</EventTrigger>

</Button.Triggers> 

</Button>

SoundPlayerAction simply wraps SoundPlayer in a trigger-friendly way, so it has all the 
same limitations. Actually, it has even more limitations because you can’t customize how 
it interacts with SoundPlayer. SoundPlayerAction internally constructs a SoundPlayer 
instance with its Source value and calls Play whenever the action is invoked. You can’t 
play the sound synchronously (but why would you want to?), make it loop, or preload 
the audio file.

MediaPlayer
If the limitations of SoundPlayer and SoundPlayerAction are not acceptable, you can use 
the WPF-specific MediaPlayer class in the System.Windows.Media namespace. It is built on 
top of Windows Media Player, so it supports all of its audio formats (.wav, .wma, .mp3, and 
so on). Multiple sounds can be played simultaneously (although via different instances of 
MediaPlayer), and the volume can be controlled by setting its Volume property to a 
double between 0 and 1 (with 0.5 as the default value).

But MediaPlayer has even more features for giving you a lot of control over the audio:

. You can pause the audio with its Pause method (if CanPause is true).

. You can mute the audio by setting its IsMuted property to true.

. You shift the balance toward the left or right speaker by setting its Balance property 
to a value between -1 and 1. -1 means that all the audio is sent to the left speaker, 0 
(the default) means that all the audio is sent to both speakers, and 1 means that all 
the audio is sent to the right speaker.

Audio 655
1

8

  From the Library of Wow! eBook



ptg

. For audio formats that support it, you can speed up or slow down the audio 
(without affecting its pitch) by setting its SpeedRatio property to any nonnegative 
double value. 1.0 is the default value, so a value less than 1.0 slows it down, 
whereas a value greater than 1.0 speeds it up.

. You can get the length of the audio clip with its NaturalDuration property (which 
is unaffected by SpeedRatio) and get the current position with the Position prop-
erty.

. If the audio format supports seeking, you can even set the current position with the 
Position property.

Here is the simplest way to use MediaPlayer to play an audio file:

MediaPlayer player = new MediaPlayer(); 

player.Open(new Uri(“music.wma”, UriKind.Relative)); 

player.Play();

A single instance can play multiple 
audio files, but only one at a time. After 
you open a file with Open, methods such 
as Play, Pause, and Stop apply to that 
file. You can also call Close to release 
the file (which also stops the audio if it’s 
currently playing). The file is always 
played asynchronously, so you would not want to call Close immediately after the 
preceding code because you wouldn’t hear anything play!

MediaElement and MediaTimeline
MediaPlayer gives you a lot more flexibility than SoundPlayer, but it is designed for 
procedural code only. (Its main functionality is exposed through methods, its properties 
are not dependency properties, and its events are not routed events.) Somewhat like how 
SoundPlayerAction wraps SoundPlayer for declarative use, WPF provides a MediaElement 
class that wraps MediaPlayer for declarative use.

MediaElement is a full-blown FrameworkElement in the System.Windows.Controls name-
space, so it’s meant to be embedded in a user interface, it participates in layout, and so 
on. (This sounds odd until you realize that MediaElement is also used for video, as 
discussed in the next section.) MediaElement exposes most of the properties and events of 
MediaPlayer as dependency properties and routed events.

You can set MediaElement’s Source property to the URI of an audio file, but it would play 
as soon as the element is loaded. Instead, to declaratively play sounds at arbitrary times, 
you should set Source on the fly using animation with a MediaTimeline.

Just like the earlier example that uses SoundPlayerAction, the following XAML shows 
how to use MediaElement and MediaTimeline to play an audio file when a Button is 
clicked or the mouse pointer enters its bounds:

CHAPTER 18 Audio, Video, and Speech656

For more details and quirks related to
MediaPlayer, be sure to read the upcoming 
“Video” section, even if you have no inten-
tion of using WPF’s video support.

T I P

  From the Library of Wow! eBook



ptg

<MediaElement x:Name=”audio”/>

… 

<Button> 

<Button.Triggers>

<EventTrigger RoutedEvent=”Button.Click”> 

<EventTrigger.Actions>

<BeginStoryboard> 

<Storyboard>

<MediaTimeline Source=”click.wma” Storyboard.TargetName=”audio”/> 

</Storyboard>

</BeginStoryboard>

</EventTrigger.Actions> 

</EventTrigger> 

<EventTrigger RoutedEvent=”Button.MouseEnter”> 

<EventTrigger.Actions>

<BeginStoryboard> 

<Storyboard>

<MediaTimeline Source=”hover.wma” Storyboard.TargetName=”audio”/> 

</Storyboard>

</BeginStoryboard>

</EventTrigger.Actions> 

</EventTrigger>

</Button.Triggers> 

</Button>

In addition to the BeginStoryboard action, you can use the same Storyboard with the 
PauseStoryboard, ResumeStoryboard, SeekStoryboard, and StopStoryboard actions to 
pause, resume, seek, and stop the audio.

Audio 657
1

8

To create continuously looping background audio, you can set MediaTimeline’s 
RepeatBehavior to Forever and use it in a trigger on MediaElement’s Loaded event. Here’s 
an example:

<MediaElement x:Name=”audio”> 

<MediaElement.Triggers>

<EventTrigger RoutedEvent=”MediaElement.Loaded”> 

<EventTrigger.Actions>

<BeginStoryboard> 

<Storyboard>

<MediaTimeline Source=”music.mp3” Storyboard.TargetName=”audio”

RepeatBehavior=”Forever”/> 

</Storyboard>

T I P

  From the Library of Wow! eBook



ptg

Video
WPF’s video support is built on the same 
MediaPlayer class described in the previ-
ous section, and its companion classes, 
such as MediaElement and 
MediaTimeline. Therefore, all file 
formats supported by Windows Media 
Player (.wmv, .avi, .mpg, and so on) can 
be easily used in WPF applications as 
well. In addition, much of the discussion 
in this section also applies to playing audio with MediaPlayer and/or MediaElement.

CHAPTER 18 Audio, Video, and Speech658

Continued

</BeginStoryboard> 

</EventTrigger.Actions> 

</EventTrigger>

</MediaElement.Triggers> 

</MediaElement>

Unfortunately, a slight pause might be heard every time the audio reaches the end, before it 
is played again from the beginning. One (weird) workaround for this is to create a video with 
the desired audio then replace the Source with the video file (and keep the MediaElement 
hidden from view). This works because WPF has tighter integration with video and supports 
seamless looping in this case.

WPF’s audio and video support 
requires Windows Media Player 10 or 
higher!

Without at least Windows Media Player 
version 10 installed, the use of 
MediaPlayer (and related classes) throws 
an exception. This only affects versions of 
Windows prior to Windows Vista.

WA R N I N G

Prior to Windows Vista, Windows Media Player is 32-bit only!

The 64-bit versions of Windows prior to Windows Vista contain only a 32-bit version of 
Windows Media Player. Because WPF’s video (and richer audio) support is built on Windows 
Media Player, you can’t use it from a 64-bit application running on these platforms. Instead, 
you must ensure that your application runs as 32-bit. In this case, your application can auto-
matically use the 32-bit version of the .NET Framework (which is installed alongside the 64-
bit version).

WA R N I N G

Controlling the Visual Aspects of MediaElement
Like Viewbox and Image, MediaElement has Stretch and StretchDirection properties that 
control how the video fills the space given to it. Figure 18.1 shows the three different 
Stretch values operating on a MediaElement placed directly inside a Window:

<Window xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”> 

<MediaElement Source=”C:\Users\Public\Videos\Sample Videos\butterfly.wmv”

Stretch=”XXX”/> 

</Window>

  From the Library of Wow! eBook



ptg

FIGURE 18.1 MediaElement in a window with three different Stretch settings.

Of course, the neat thing about MediaElement is that it enables video to be manipulated 
in richer ways, like most other FrameworkElements. The following XAML, rendered in 
Figure 18.2, places two instances of a video on top of each other, both half-transparent, 
both clipped with a circle, and one rotated 180°:

<Canvas> 

<MediaElement Source=”C:\Users\Public\Videos\Sample Videos\butterfly.wmv”

Opacity=”0.5”> 

<MediaElement.Clip>

<EllipseGeometry Center=”220,220” RadiusX=”220” RadiusY=”220”/> 

</MediaElement.Clip> 

<MediaElement.LayoutTransform>

<RotateTransform Angle=”180”/> 

</MediaElement.LayoutTransform> 

</MediaElement>

<MediaElement Source=”C:\Users\Public\Videos\Sample Videos\butterfly.wmv”

Opacity=”0.5”> 

<MediaElement.Clip>

<EllipseGeometry Center=”220,220” RadiusX=”220” RadiusY=”220”/> 

</MediaElement.Clip> 

</MediaElement>

</Canvas>

Furthermore, by placing MediaElement inside a VisualBrush, you can easily use video just 
about anywhere—as a background for a ListBox, as a material on a 3D surface, and so on. 
Just be sure to measure the performance implications before going overboard with 
VisualBrush and video!

Video 659
1

8

UniformToFill Fill Uniform (default)

  From the Library of Wow! eBook



ptg

FIGURE 18.2 Clipped, rotated, and half-transparent video inside two MediaElements.

CHAPTER 18 Audio, Video, and Speech660

How do I take snapshots of individual video frames?

You can set the Position of video to a specific point to “freeze frame” it. But if you 
want to persist that frame as a separate Image, you render a MediaElement into a 
RenderTargetBitmap (just like any other Visual). Here’s an example:

MediaElement mediaElement = …;

Size desiredSize = …;

Size dpi = …;

RenderTargetBitmap bitmap = new RenderTargetBitmap(desiredSize.Width,

desiredSize.Height, dpi.Width, dpi.Height, PixelFormats.Pbgra32); 

bitmap.Render(mediaElement);

Image image = new Image(); 

image.Source = BitmapFrame.Create(bitmap);

If you are working with MediaPlayer rather than MediaElement, you could create a 
DrawingVisual to pass to RenderTargetBitmap’s Render method, as follows:

DrawingVisual visual = new DrawingVisual(); 

MediaPlayer mediaPlayer = …;

Size desiredSize = …; 

using (DrawingContext dc = visual.RenderOpen()) 

{

dc.DrawVideo(mediaPlayer, new Rect(0, 0, desiredSize.Width, 

desiredSize.Height));

}

The key to this code is DrawingContext’s DrawVideo method, which accepts an instance of 
MediaPlayer and a Rect. In fact, MediaElement uses DrawVideo inside its OnRender 
method to do its own video rendering!

?
FA Q

  From the Library of Wow! eBook



ptg

Controlling the Underlying Media
The previous two XAML snippets use the simple approach of setting MediaElement’s 
Source directly. This causes the media to play immediately when the element is loaded. 
It’s more likely that you’ll want to play, pause, and stop the video at specific times. As in 
the “Audio” section, the following XAML accomplishes this with a trigger that uses 
MediaTimeline. It also contains triggers that use PauseStoryboard and ResumeStoryboard 
to provide the functionality for a simple media player:

<Grid> 

<Grid.Triggers>

<EventTrigger RoutedEvent=”Button.Click” SourceName=”playButton”> 

<EventTrigger.Actions>

<BeginStoryboard Name=”beginStoryboard”> 

<Storyboard>

<MediaTimeline Source=”C:\Users\Public\Videos\Sample Videos\butterfly.wmv”

Storyboard.TargetName=”video”/> 

</Storyboard>

</BeginStoryboard>

</EventTrigger.Actions> 

</EventTrigger> 

<EventTrigger RoutedEvent=”Button.Click” SourceName=”pauseButton”> 

<EventTrigger.Actions>

<PauseStoryboard BeginStoryboardName=”beginStoryboard”/>

</EventTrigger.Actions> 

</EventTrigger> 

<EventTrigger RoutedEvent=”Button.Click” SourceName=”resumeButton”> 

<EventTrigger.Actions>

<ResumeStoryboard BeginStoryboardName=”beginStoryboard”/>

</EventTrigger.Actions> 

</EventTrigger>

</Grid.Triggers>

<MediaElement x:Name=”video”/> 

<StackPanel Orientation=”Horizontal” VerticalAlignment=”Bottom”>

<Button x:Name=”playButton” Background=”#55FFFFFF” Height=”40”>Play</Button> 

<Button x:Name=”pauseButton” Background=”#55FFFFFF” Height=”40”>Pause</Button> 

<Button x:Name=”resumeButton” Background=”#55FFFFFF” Height=”40”>Resume 

</Button>

</StackPanel> 

</Grid>

The user interface includes three translucent Buttons for controlling the video playing 
underneath them, as shown in Figure 18.3.

Video 661
1

8

  From the Library of Wow! eBook



ptg

FIGURE 18.3 A simple video player, with Buttons that use storyboards to control the video.

CHAPTER 18 Audio, Video, and Speech662

When combining a MediaTimeline with other animations inside the same Storyboard, you 
might want to customize the way in which these animations are synchronized. Playing media 
often has an initial delay from loading and buffering, causing it to fall behind other anima-
tions. And if you give a Storyboard a fixed duration, it might cut off the end of the media 
because of such delays.

To change this behavior, you can set Storyboard’s SlipBehavior property to Slip rather 
than its default value, Grow. This causes all animations to wait until the media is ready 
before doing anything.

T I P

Although the default behavior for media specified as the Source of a MediaElement is to 
begin playing when the element is loaded, you can change this behavior with 
MediaElement’s LoadedBehavior and UnloadedBehavior properties, both of type 
MediaState. MediaState is an enumeration with the values Play (the default for 
LoadedBehavior), Pause, Stop, Close (the default for UnloadedBehavior), and Manual.

If you want to control the media from procedural code, MediaElement exposes the 
methods of the MediaPlayer it wraps (Play, Stop, and so on), but you can call these only 
when LoadedBehavior and UnloadedBehavior are set to Manual. In addition, you can set 
the Position and SpeedRatio properties only when the element is in this manual mode.

Note that manual mode is applicable only when you don’t have any MediaTimelines in 
triggers attached to the MediaElement. When MediaElement is an animation target, its 
behavior is always driven by an animation clock (exposed as its Clock property of type 
MediaClock) and can’t be altered manually unless you interact with the clock.

To include streaming audio or video in an application, you can simply set Source to a 
streaming URL. Any encoding supported by Windows Media Player works, such as ASF-
encoded .wmv files. If you want to include a live video feed from a local webcam (which 
doesn’t have a URL you can point to), see Chapter 19, “Interoperability with Non-WPF 
Technologies,” which shows a way to accomplish this.

T I P

  From the Library of Wow! eBook



ptg

Video 663
1

8

Media files can’t be embedded resources!

The URIs given as Source values to MediaPlayer, MediaElement, and MediaTimeline are 
not as general-purpose as the URIs used elsewhere in WPF. They must be paths understood 
by Windows Media Player, such as absolute or relative file system paths or a URL. This 
means that there’s no built-in support for referencing a media file embedded as a resource. 
Ironically, the only mechanism discussed in this chapter that supports specifying media as 
an arbitrary stream is the otherwise very limited SoundPlayer/SoundPlayerAction!

This also means you can’t refer to files at the site of origin using the pack://siteOfOrigin 
syntax. Instead, you can hard-code the appropriate path or URL or programmatically retrieve 
the site of origin by using ApplicationDeployment.CurrentDeployment.ActivationUri 
(in the System.Deployment.Application namespace defined in System.Deployment.dll) 
and then prepend it to a filename to form a fully qualified URI.

WA R N I N G

To diagnose any errors when using MediaPlayer or MediaElement, you should attach an 
event handler to the MediaFailed event defined by both classes. This could look like the 
following:

<MediaElement Source=”nonExistentFile.wmv” MediaFailed=”OnMediaFailed”/>

where the OnMediaFailed code-behind method is defined as follows:

void OnMediaFailed(object o, ExceptionRoutedEventArgs e) 

{

MessageBox.Show(e.ErrorException.ToString()); 

}

If the Source file doesn’t exist, you’ll now see the following exception rather than silent 
failure:

System.IO.FileNotFoundException: Cannot find the media file. ---> 

System.Runtime.InteropServices.COMException (0xC00D1197): 

Exception from HRESULT: 0xC00D1197

Most people are surprised when they learn that you need to opt in to this behavior rather 
than get such exceptions by default. But because of the asynchronous nature of media 
processing, a directly thrown exception might not be catchable anywhere outside a global 
handler.

T I P

How can I get metadata associated with audio or video, such as artist or 
genre?

WPF does not expose a way to retrieve such metadata. Instead, you must use unmanaged 
Windows Media Player APIs to access this information.

?
FA Q

  From the Library of Wow! eBook



ptg

Speech
The speech APIs in the System.Speech namespace make it easy to incorporate both speech 
recognition and speech synthesis. They are built on top of Microsoft SAPI APIs and use 
W3C standard formats for synthesis and recognition grammars, so they integrate very 
well with existing engines.

Although these System.Speech APIs were introduced with WPF, they are not tied to WPF; 
you won’t find any dependency properties, routed events, the built-in ability to animate 
voice, and so on. Therefore, you can easily use them in any .NET application, whether 
WPF based, Windows Forms based, or even console based.

Speech Synthesis
Speech synthesis, also known as text-to-speech, is the process of turning text into audio. 
This requires a “voice” to speak the text. Recent versions of Windows have a great voice 
installed by default, called Microsoft Anna. Microsoft’s SAPI SDK (a free download at 
http://microsoft.com/speech) includes Microsoft Anna and other voices, such as the more 
robotic-sounding Microsoft Sam, and can be installed on just about all versions of 
Windows.

Bringing Text to Life
To get started with speech synthesis, add a reference to System.Speech.dll to your 
project. The relevant APIs are in the System.Speech.Synthesis namespace. Getting text 
to be spoken is as simple as this:

SpeechSynthesizer synthesizer = new SpeechSynthesizer(); 

synthesizer.Speak(“I love WPF!”);

The text is spoken synchronously, using the voice, rate, and volume settings chosen in 
the Text to Speech area of Control Panel. To have text spoken asynchronously, you can 
call SpeakAsync instead of Speak:

synthesizer.SpeakAsync(“I love WPF!”);

You can change the rate and volume of the spoken text by setting SpeechSynthesizer’s 
Rate and Volume properties. They are both integers, but Rate has a range of -10 to 10, 
whereas Volume has a range of 0 to 100. You can also cancel pending asynchronous speech 
by calling SpeakAsyncCancelAll.

If you have multiple voices installed, you can change the voice at any time by calling 
SelectVoice:

synthesizer.SelectVoice(“Microsoft Sam”);

You can enumerate the voices with GetInstalledVoices or even attempt to select a voice 
with a desired gender and age (which, for some reason, seems a little creepy):

synthesizer.SelectVoiceByHints(VoiceGender.Female, VoiceAge.Adult);

CHAPTER 18 Audio, Video, and Speech664

  From the Library of Wow! eBook

http://microsoft.com/speech


ptg

You can even send its output to a .wav file rather than to speakers with the 
SetOutputToWaveFile method:

synthesizer.SetOutputToWaveFile(“c:\Users\Adam\Documents\speech.wav”);

This affects any subsequent calls to Speak or SpeakAsync. You can point the synthesizer 
back to the speakers by calling SetOutputToDefaultAudioDevice.

SSML and PromptBuilder
You can do a lot by passing simple strings to SpeechSynthesizer and using its various 
members to change voices, rate, volume, and so on. But SpeechSynthesizer also supports 
input in the form of a standard XML-based language known as Speech Synthesis Markup 
Language (SSML). This enables you to encapsulate complex speech in a single chunk and 
have more control over the synthesizer’s behavior. You can pass SSML content to 
SpeechSynthesizer directly via its SpeakSsml and SpeakSsmlAsync methods, but 
SpeechSynthesizer also has overloads of Speak and SpeakAsync that accept an instance of 
PromptBuilder.

PromptBuilder is a handy class that 
makes it easy to programmatically build 
complex speech input. With 
PromptBuilder, you can express most of 
what you could accomplish with an 
SSML file, but it’s generally simpler to 
learn than SSML.

The following code builds a simple dialog with PromptBuilder and then speaks it by 
passing it to SpeakAsync:

SpeechSynthesizer synthesizer = new SpeechSynthesizer(); 

PromptBuilder promptBuilder = new PromptBuilder();

promptBuilder.AppendTextWithHint(“WPF”, SayAs.SpellOut); 

promptBuilder.AppendText(“sounds better than WPF.”);

// Pause for 2 seconds 

promptBuilder.AppendBreak(new TimeSpan(0, 0, 2));

promptBuilder.AppendText(“The time is”); 

promptBuilder.AppendTextWithHint(DateTime.Now.ToString(“hh:mm”), SayAs.Time);

// Pause for 2 seconds 

promptBuilder.AppendBreak(new TimeSpan(0, 0, 2));

promptBuilder.AppendText(“Hey Sam, can you spell queue?”);

Speech 665
1

8

Speech Synthesis Markup Language (SSML) 
is a W3C Recommendation published at 
http://w3.org/TR/speech-synthesis.

T I P

  From the Library of Wow! eBook

http://w3.org/TR/speech-synthesis


ptg

promptBuilder.StartVoice(“Microsoft Sam”);

promptBuilder.AppendTextWithHint(“queue”, SayAs.SpellOut); 

promptBuilder.EndVoice();

promptBuilder.AppendText(“Do it faster!”);

promptBuilder.StartVoice(“Microsoft Sam”); 

promptBuilder.StartStyle(new PromptStyle(PromptRate.ExtraFast)); 

promptBuilder.AppendTextWithHint(“queue”, SayAs.SpellOut); 

promptBuilder.EndStyle(); 

promptBuilder.EndVoice();

// Speak all the content in the PromptBuilder 

synthesizer.SpeakAsync(promptBuilder);

After you instantiate a PromptBuilder, you keep appending different types of content. 
The preceding code makes use of AppendTextWithHint to spell out some words (which 
produces a better pronunciation of WPF) and to pronounce a string representing time 
(such as “08:25”) more naturally. You can also surround chunks of content with 
StartXXX/EndXXX methods that change the voice or style of the surrounding text, and you 
can denote where paragraphs and sentences begin and end. These chunks can be nested, 
just like the XML elements you would create if you were writing raw SSML.

CHAPTER 18 Audio, Video, and Speech666

Converting a PromptBuilder to SSML

You can get the SSML representation of a PromptBuilder by calling its ToXml method (as 
long as the result is well formed at the time you call it—for example, as long as there are no 
StartXXX calls without matching EndXXX calls). Here’s the result when calling it on the 
PromptBuilder from the preceding code (at 8:25 p.m.): 

<speak version=”1.0” xmlns=”http://www.w3.org/2001/10/synthesis” 

xml:lang=”en-US”> 

<say-as interpret-as=”characters”>WPF</say-as> 

sounds better than WPF 

<break time=”2000ms”/>

The time is 

<say-as interpret-as=”time”>08:25</say-as> 

<break time=”2000ms”/>

Hey Bob, can you spell queue? 

<voice name=”Microsoft Sam”>

<say-as interpret-as=”characters”>queue</say-as> 

</voice>

Do it faster! 

<voice name=”Microsoft Sam”>

D I G G I N G  D E E P E R

  From the Library of Wow! eBook



ptg

Speech Recognition
Speech recognition is exactly the oppo-
site of speech synthesis. Recognition is 
all about extracting speech sounds from 
an audio input and turning it into text.

Converting Spoken Words into Text
To use speech recognition, you must add 
a reference to System.Speech.dll to 
your project (just as with speech synthe-
sis). This time, the relevant APIs are in 
the System.Speech.Recognition name-
space. The simplest form of recognition is demonstrated by the following code, which 
instantiates a SpeechRecognizer, loads a grammar, and attaches an event handler to its 
SpeechRecognized event:

SpeechRecognizer recognizer = new SpeechRecognizer(); 

recognizer.LoadGrammar(new DictationGrammar()); 

recognizer.SpeechRecognized +=

new EventHandler<SpeechRecognizedEventArgs>(recognizer_SpeechRecognized);

Speech 667
1

8

Continued

<prosody rate=”x-fast”> 

<say-as interpret-as=”characters”>queue</say-as>

</prosody> 

</voice>

</speak>

This can be a handy way to persist content that you want spoken at a later time.

SpeechSynthesizer even supports playing .wav audio files! You can do this in two easy 
ways. One is using PromptBuilder’s AppendAudio method:

promptBuilder.AppendAudio(“sound.wav”);

(You can also include the equivalent directive in an SSML file and pass it to SpeakSsml or 
SpeakSsmlAsync.)

Another way is to use an overload of Speak or SpeakAsync that accepts a Prompt instance 
such as FilePrompt. With FilePrompt, you can speak content of a file, whether it’s a plain-
text file, an SSML file, or a .wav file:

synthesizer.SpeakAsync(new FilePrompt(“text.txt”, SynthesisMediaType.Text)); 

synthesizer.SpeakAsync(new FilePrompt(“content.ssml”, SynthesisMediaType.Ssml)); 

synthesizer.SpeakAsync(new FilePrompt(“sound.wav”, SynthesisMediaType.WaveAudio));

T I P

For speech recognition to work, you need to 
have a speech recognition engine installed 
and running. Windows Vista or later comes 
with one, and Office XP or later comes with 
one as well. You can also install a free one 
from http://microsoft.com/speech. You can 
start the built-in Windows engine by select-
ing Windows Speech Recognition from the 
Start menu under Accessories, Ease of 
Access.

T I P

  From the Library of Wow! eBook

http://microsoft.com/speech


ptg

DictationGrammar, the only grammar shipped in the .NET Framework, is suitable for 
generic speech recognition. SpeechRecognized is called whenever spoken words or 
phrases are converted to text, so a simple implementation could be written as follows:

void recognizer_SpeechRecognized(object sender, SpeechRecognizedEventArgs e) 

{

if (e.Result != null) 

textBox.Text += e.Result.Text + “ “;

}

When instantiating SpeechRecognizer, you’ll see a dialog similar to Figure 18.4 if you 
haven’t previously configured speech recognition via Control Panel. Therefore, this is 
probably not something you want to do in the normal flow of your application! Even 
after speech recognition has been configured, using SpeechRecognizer automatically 
opens the Windows speech recognition program. This program displays the small window 
shown in Figure 18.5.

CHAPTER 18 Audio, Video, and Speech668

FIGURE 18.4 Using speech recognition for the first time summons a wizard that helps you 
configure your microphone and train the computer for the sound of your voice.

FIGURE 18.5 The Windows speech recognition program can float or dock to the top or 
bottom of the screen, but it must be open for SpeechRecognizer to work.

  From the Library of Wow! eBook



ptg

You can avoid this interaction with the Windows speech recognition system by using the 
SpeechRecognitionEngine class instead of SpeechRecognizer. The resulting experience is 
seamless for users that haven’t previously configured speech recognition, and requires 
only two additional steps:

SpeechRecognitionEngine engine = new SpeechRecognitionEngine(); 

engine.LoadGrammar(new DictationGrammar()); 

engine.SetInputToDefaultAudioDevice();

// Keep going until RecognizeAsyncStop or RecognizeAsyncCancel is called: 

engine.RecognizeAsync(RecognizeMode.Multiple);

// You can use the same event handler defined previously: 

engine.SpeechRecognized +=

new EventHandler<SpeechRecognizedEventArgs>(recognizer_SpeechRecognized);

SpeechRecognitionEngine exposes most of the same members as SpeechRecognizer, plus 
many more. When using it, you must manually configure SpeechRecognitionEngine’s 
input source (such as the default audio device, an audio stream, or a .wav file on disk) 
and tell it when to start listening via a call to Recognize or RecognizeAsync. If you call 
RecognizeAsync with RecognizeMode.Multiple, recognition will continually operate in 
the background until either RecognizeAsyncStop or RecognizeAsyncCancel is called. 
RecognizeAsyncStop terminates after the 
current recognition action finishes, 
whereas RecognizeAsyncCancel termi-
nates recognition immediately.
SpeechRecognitionEngine’s 
SpeechRecognized event works the same 
way as the event on SpeechRecognizer, 
so the preceding snippet reuses the same 
recognizer_SpeechRecognized handler 
defined earlier.

Either of the two approaches, when 
used with the previously-defined 
recognizer_SpeechRecognized handler, 
is adequate for dictating text into a 
TextBox. However, this is unnecessary on 
Windows Vista or later because you already get that functionality for free! For example, if 
you enable Windows speech recognition and give any WPF TextBox focus, the words you 
speak into the microphone automatically appear, as shown in Figure 18.6. This works 
because the Windows speech recognition system integrates with the UI Automation inter-
faces exposed by WPF elements. You can even invoke actions such as clicking on Buttons 
by speaking their automation names! (This is not specific to WPF, but also true of 
Windows Forms or any other user interface frameworks with built-in integration with 
Windows accessibility.)

Speech 669
1

8

There’s another advantage to using 
SpeechRecognitionEngine rather than 
SpeechRecognizer. When the Windows 
speech recognition window is present, it 
intercepts well-known spoken commands 
such as “Start” to open the Start menu or 
“File” to open the current program’s File 
menu (if there is one). When you use 
SpeechRecognitionEngine, none of these 
commands are intercepted, so you can 
process these words just like any other 
words.

T I P

  From the Library of Wow! eBook



ptg

FIGURE 18.6 Dictating content into a WPF TextBox using the Windows Speech Recognition 
program.

Speech recognition is typically used to add custom spoken commands to a program that 
are more sophisticated than the default functionality exposed through accessibility. Such 
commands typically consist of a few words or phrases that an application knows in 
advance. To handle this efficiently, you need to give SpeechRecognizer or 
SpeechRecognitionEngine more information about your expectations. That’s where SRGS 
comes in.

Specifying a Grammar with SRGS
If you want to programmatically act on certain words or phrases, writing a 
SpeechRecognized event handler is tricky if you don’t constrain the input. You need to 
ignore irrelevant phrases and possibly pick out relevant words from larger phrases that 
can’t be easily predicted. For example, if one of the words you want to act on is go, do 
you accept words such as goat, assuming that the recognizer simply misunderstood the 
user?

To avoid this kind of grunt work and guesswork, SpeechRecognizer and 
SpeechRecognitionEngine support speci-
fying a custom grammar based on the 
Speech Recognition Grammar 
Specification (SRGS). With a grammar 
that captures your possible valid inputs, 
the recognizer can automatically ignore 
meaningless results and improve the 
accuracy of its recognition.

To attach a custom grammar, you can call the same LoadGrammar method shown earlier. 
SRGS-based grammars can be described in XML, so the following code loads a custom 
grammar from an SRGS XML file in the current directory:

SpeechRecognitionEngine engine = new SpeechRecognitionEngine(); 

SrgsDocument doc = new SrgsDocument(“grammar.xml”); 

engine.LoadGrammar(new Grammar(doc));

SrgsDocument (and other SRGS-related types) are defined in the
System.Speech.Recognition.SrgsGrammar namespace.

CHAPTER 18 Audio, Video, and Speech670

Speech Recognition Grammar Specification 
(SRGS) is a W3C Recommendation 
published at http://w3.org/TR/speech-
grammar.

T I P

  From the Library of Wow! eBook

http://w3.org/TR/speech-grammar
http://w3.org/TR/speech-grammar


ptg

An SrgsDocument can also be built in-memory using a handful of APIs. The following 
code builds a grammar that allows only two commands, stop and go:

SpeechRecognitionEngine engine = new SpeechRecognitionEngine(); 

SrgsDocument doc = new SrgsDocument();

SrgsRule command = new SrgsRule(“command”, new SrgsOneOf(“stop”, “go”)); 

doc.Rules.Add(command); 

doc.Root = command; 

engine.LoadGrammar(new Grammar(doc));

You can express much more intricate grammars, however. The following example could 
be used by a card game, enabling a user to give commands such as three of hearts or ace of 
spaces to play those cards:

SpeechRecognitionEngine engine = new SpeechRecognitionEngine();

SrgsDocument doc = new SrgsDocument();

SrgsRule command = new SrgsRule(“command”);

SrgsRule rank = new SrgsRule(“rank”);

SrgsItem of = new SrgsItem(“of”);

SrgsRule suit = new SrgsRule(“suit”);

SrgsItem card = new SrgsItem(new SrgsRuleRef(rank), of, new SrgsRuleRef(suit)); 

command.Add(card); 

rank.Add(new SrgsOneOf(“two”, “three”, “four”, “five”, “six”, “seven”,

“eight”, “nine”, “ten”, “jack”, “queen”, “king”, “ace”)); 

of.SetRepeat(0, 1); 

suit.Add(new SrgsOneOf(“clubs”, “diamonds”, “spades”, “hearts”)); 

doc.Rules.Add(command, rank, suit); 

doc.Root = command; 

engine.LoadGrammar(new Grammar(doc));

This grammar defines the notion of a card as “rank of suit” where rank has 13 possible 
values, suit has 4 possible values, and “of” can be omitted (hence the SetRepeat call that 
allows it to be said zero or one time).

Specifying a Grammar with GrammarBuilder
Specifying grammars with the APIs in System.Speech.Recognition.SrgsGrammar or with 
an SRGS XML file (whose syntax is not covered here) can be complicated. Therefore, the 
System.Speech.Recognition namespace also contains a GrammarBuilder class that exposes 
the most commonly used aspects of recognition grammars via much simpler APIs. 
Grammar (the type passed to LoadGrammar) has an overloaded constructor that accepts an 
instance of GrammarBuilder, so it can easily be plugged in wherever you can use an 
SrgsDocument.

Speech 671
1

8

  From the Library of Wow! eBook



ptg

For example, here’s the first grammar from the previous section, reimplemented using
GrammarBuilder:

SpeechRecognitionEngine engine = new SpeechRecognitionEngine(); 

GrammarBuilder builder = new GrammarBuilder(new Choices(“stop”, “go”)); 

engine.LoadGrammar(new Grammar(builder));

And here’s the reimplemented card game grammar:

SpeechRecognitionEngine engine = new SpeechRecognitionEngine(); 

GrammarBuilder builder = new GrammarBuilder(); 

builder.Append(new Choices(“two”, “three”, “four”, “five”, “six”, “seven”,

“eight”, “nine”, “ten”, “jack”, “queen”, “king”, “ace”)); 

builder.Append(“of”, 0, 1); 

builder.Append(new Choices(“clubs”, “diamonds”, “spades”, “hearts”)); 

engine.LoadGrammar(new Grammar(builder));

GrammarBuilder doesn’t expose all the power and flexibility of SrgsDocument, but it’s 
often all that you need. In the card game example, the user can speak “two clubs” or 
perhaps something that sounds like “too uh cubs,” and the SpeechRecognized event 
handler should receive the canonical “two of clubs” string. You can get even fancier in 
your grammars and tag pieces with semantic labels so that the event handler can pick out 
concepts such as the rank and suit without having to parse even the canonical string.

Summary
WPF’s support for audio, video, and speech rounds out its rich media offerings. The audio 
support is limited but is enough to accomplish the most common tasks. The video 
support is only a subset of what’s provided by the underlying Windows Media Player 
APIs, but the seamless integration with the rest of WPF (so you can transform or animate 
video just as you can any other content) makes it extremely compelling. WPF’s standards-
based speech synthesis and recognition support is state of the art and easy to use, even 
though it’s mainly just a wrapper on top of the unmanaged Microsoft SAPI APIs.

CHAPTER 18 Audio, Video, and Speech672

  From the Library of Wow! eBook



ptg

PART VI

Advanced Topics

IN THIS PART

CHAPTER 19 Interoperability with Non-WPF 
Technologies 675

CHAPTER 20 User Controls and Custom Controls 721 

CHAPTER 21 Layout with Custom Panels 751

  From the Library of Wow! eBook



ptg

This page intentionally left blank 

  From the Library of Wow! eBook



ptg

CHAPTER 19 

Interoperability with
Non-WPF Technologies

Despite the incredible breadth of Windows Presentation 
Foundation, it lacks some features that other technologies 
have. When creating a WPF-based user interface, you might 
want to exploit such features. For example, the fourth 
release of WPF still doesn’t include some of the standard 
controls that Windows Forms has had for almost a decade: 
NumericUpDown, NotifyIcon, and more. Windows Forms 
also has support for multiple-document interface (MDI) 
window management, wrappers over additional Win32 
dialogs and APIs, and various handy APIs, such as 
Screen.AllScreens (which returns an array of screens with 
information about their bounds). Win32 has controls such 
as an IP Address text box (SysIPAddress32) that have no 
equivalent in either Windows Forms or WPF. Windows 
includes many Win32-based user interface pieces that don’t 
have first-class exposure to WPF, such as “glass” effects, task 
dialogs, and a wizard framework. Tons of ActiveX controls 
exist for the purpose of embedding rich functionality into 
your own software. And some technologies cover scenarios 
that are fundamentally different from what WPF is 
designed to enable, but it would still be nice to leverage 
such pieces in a WPF application. Some examples are high-
performance immediate-mode DirectX rendering and plat-
form-agnostic HTML-based rendering.

Perhaps you’ve already put a lot of effort into developing 
your own pre-WPF user interfaces or controls. If so, you 
might want to leverage some of your own work that’s 
already in place. Maybe you have developed an application 
in a non-WPF technology with an extremely complicated 
main surface (for example, a CAD program) and just want 
to “WPF-ize” the outer edges of the applications with rich

IN THIS CHAPTER

. Embedding Win32 Controls in 
WPF Applications

. Embedding WPF Controls in 
Win32 Applications

. Embedding Windows Forms 
Controls in WPF Applications

. Embedding WPF Controls in 
Windows Forms Applications

. Mixing DirectX Content with 
WPF Content

. Embedding ActiveX Controls 
in WPF Applications

  From the Library of Wow! eBook



ptg

menus, toolbars, and so on. Maybe you’ve created a web application with tons of HTML 
content that you want to enhance but not replace.

In earlier chapters, you’ve seen WPF’s HTML interoperability. Given that HTML can be 
hosted inside a WPF Frame or WebBrowser and WPF content can be hosted inside HTML 
(as a XAML Browser Application or a loose XAML page), you can leverage existing HTML 
content—and any Silverlight, Flash, and other content it contains—alongside new WPF 
content. Fortunately, WPF’s support for interoperability goes much deeper than that. It’s 
fairly easy for WPF applications and controls to leverage all kinds of non-WPF content or 
APIs, such as all the examples in the previous two paragraphs. Some of these scenarios are 
possible thanks to the features described in this chapter, some are possible thanks to the 
.NET Framework’s interoperability between managed and unmanaged code, and (in the 
case of calling miscellaneous Windows Forms APIs from WPF) some are possible simply 
because the other technology defines managed APIs that just happen to live in non-WPF 
assemblies.

Figure 19.1 summarizes different user interface technologies and the paths you can take 
to mix and match them. Win32 is a general bucket that includes any technology that 
runs on Windows: MFC, WTL, OpenGL, and so on. Notice that there’s a direct path 
between WPF and each technology except for Silverlight and ActiveX. In these cases, you 
must use another technology as an intermediate layer. Silverlight does provide a mecha-
nism for being directly hosted outside of HTML, leveraged by Visual Studio and 
Expression Blend. It involves using Silverlight’s HostingRenderTargetBitmap class to get a 
bitmap representation of the Silverlight content then feeding that information into a 
WPF InteropBitmap or WriteableBitmap. This support is pretty primitive, however, so it is 
omitted from the figure.

CHAPTER 19 Interoperability with Non-WPF Technologies676

Silverlight

HTML

Windows FormsDirectX

ActiveX

Win32
(MFC, OpenGL,…)

WPF

FIGURE 19.1 The relationship between various Windows user interface technologies.

  From the Library of Wow! eBook



ptg

All the blue lines connecting the technologies are discussed in this chapter. The line 
between Win32 and Windows Forms is enabled by standard .NET Framework interoper-
ability technologies for mixing managed and unmanaged code (and the fact that 
Windows Forms is based on Win32), and the lines between Win32 and ActiveX/DirectX 
are somewhat artificial because there are no big barriers separating Win32 and ActiveX or 
Win32 and DirectX.

This chapter focuses on embedding controls of one type inside applications of another 
type. It first examines both directions of WPF/Win32 interoperability separately, then 
both directions of WPF/Windows Forms interoperability separately. WPF/DirectX interop-
erability is examined in a single section because its seamless mixing can be used to effec-
tively get either direction of interoperability. The chapter ends by examining the options 
with WPF/ActiveX interoperability. Although the focus is on embedding controls, we’ll 
look at another important scenario at the end of most sections that isn’t as straightfor-
ward as you might imagine: launching heterogeneous dialogs.

Embedding Win32 Controls in WPF Applications 677
1

9

You cannot overlap WPF content with non-WPF content (except when using
D3DImage)!

As with hosting HTML content in Frame or WebBrowser, any non-WPF content that’s hosted in 
a WPF application has extra limitations that don’t apply to native WPF content. For example, 
you can’t apply Transforms to non-WPF content. Furthermore, you cannot overlap content 
from one technology over content from another. You can arbitrarily nest (for example) Win32 
inside WPF inside Windows Forms inside WPF, and so on, but every pixel must have one and 
only one technology responsible for its rendering. DirectX is the only exception to this rule— 
and only if you use the D3DImage feature described later in this chapter—because WPF inter-
nally uses DirectX for rendering. Therefore, you can mix WPF and DirectX on the same pixels, 
and there is still only one technology (DirectX) ultimately responsible for rendering them.

WA R N I N G

Embedding Win32 Controls in WPF Applications
In Win32, all controls are considered to be “windows,” and Win32 APIs interact with 
them via window handles known as HWNDs. All Windows-based user interface technologies 
(such as DirectX and MFC) ultimately use HWNDs to some degree, so the ability to work 
with HWNDs provides the ability to work with all of these technologies.

Although WPF’s subsystems (layout, animation, and so on) don’t know how to interact 
directly with HWNDs, WPF defines a FrameworkElement that can host an arbitrary HWND. This 
FrameworkElement is System.Windows.Interop.HwndHost, and it makes HWND-based 
controls look and act almost exactly like WPF controls.

To demonstrate the use of HwndHost in a WPF application, let’s look at embedding a 
custom Win32 control to add webcam functionality to WPF. WPF’s video support doesn’t 
include anything for interacting with local video capture devices such as a simple 
webcam. Microsoft’s DirectShow technology has support for this, however, so Win32 
interoperability enables you to leverage that webcam support in a WPF application.

  From the Library of Wow! eBook



ptg

A Win32 Webcam Control
Listing 19.1 contains the unmanaged C++ definition for a custom Win32 Webcam control 
that wraps a few DirectShow COM objects.

LISTING 19.1 Webcam.h—Definition of Some Webcam Win32 APIs

#if !defined(WEBCAM_H) 

#define WEBCAM_H

#include <wtypes.h>

class Webcam  

{ 

public:

static HRESULT Initialize(int width, int height); 

static HRESULT AttachToWindow(HWND hwnd); 

static HRESULT Start(); 

static HRESULT Pause(); 

static HRESULT Stop(); 

static HRESULT Repaint(); 

static HRESULT Terminate(); 

static int GetWidth(); 

static int GetHeight();

}; 

#endif // !defined(WEBCAM_H)

The Webcam class is designed to work with a computer’s default video capture device, so it 
contains a set of simple static methods for controlling this device. It is initialized with a 
width and height (which can be later retrieved via GetWidth and GetHeight methods). 
Then, after telling Webcam (via AttachToWindow) what HWND to render itself on, the behav-
ior can be controlled with simple Start, Pause, and Stop methods.

Listing 19.2 contains the implementation of the Webcam class. The complete implementa-
tions of Webcam::Initialize and Webcam::Terminate are omitted for brevity, but the 
entire implementation can be found with this book’s source code 
(http://informit.com/title/9780672331190).

LISTING 19.2 Webcam.cpp—Implementation of the Webcam APIs

LRESULT WINAPI WndProc(HWND hwnd, UINT msg, WPARAM wParam, LPARAM lParam) 

{

switch (msg) 

{

case WM_ERASEBKGND: 

DefWindowProc(hwnd, msg, wParam, lParam); 

Webcam::Repaint(); 

break;

CHAPTER 19 Interoperability with Non-WPF Technologies678

  From the Library of Wow! eBook

http://informit.com/title/9780672331190


ptg

default: 

return DefWindowProc(hwnd, msg, wParam, lParam);

} 

return 0;

}

HRESULT Webcam::Initialize(int width, int height) 

{

_width = width; 

_height = height;

// Create and register the Window Class 

WNDCLASS wc; 

wc.style         = CS_VREDRAW | CS_HREDRAW; 

wc.lpfnWndProc   = WndProc; 

wc.cbClsExtra    = 0; 

wc.cbWndExtra    = 0; 

wc.hInstance     = GetModuleHandle(NULL); 

wc.hIcon         = LoadIcon(NULL, IDI_APPLICATION); 

wc.hCursor       = LoadCursor(NULL, IDC_ARROW); 

wc.hbrBackground = (HBRUSH)(COLOR_SCROLLBAR+1); 

wc.lpszMenuName  = 0; 

wc.lpszClassName = L”WebcamClass”; 

RegisterClass(&wc);

HRESULT hr = CoCreateInstance(CLSID_FilterGraph, NULL, CLSCTX_INPROC_SERVER, 

IID_IGraphBuilder, (void **)&_graphBuilder);

…Create and interact with several COM objects… 

return hr;

}

HRESULT Webcam::AttachToWindow(HWND hwnd) 

{

if (!_initialized || !_windowlessControl) 

return E_FAIL;

_hwnd = hwnd;

// Position and size the video 

RECT rcDest; 

rcDest.left = 0; 

rcDest.right = _width; 

rcDest.top = 0;

Embedding Win32 Controls in WPF Applications 679

LISTING 19.2 Continued

1
9

  From the Library of Wow! eBook



ptg

rcDest.bottom = _height; 

_windowlessControl->SetVideoClippingWindow(hwnd); 

return _windowlessControl->SetVideoPosition(NULL, &rcDest);

}

HRESULT Webcam::Start() 

{

if (!_initialized || !_graphBuilder || !_mediaControl) 

return E_FAIL;

_graphBuilder->Render(_pin); 

return _mediaControl->Run();

}

HRESULT Webcam::Pause() 

{

if (!_initialized || !_mediaControl) 

return E_FAIL;

return _mediaControl->Pause(); 

}

HRESULT Webcam::Stop() 

{

if (!_initialized || !_mediaControl) 

return E_FAIL;

return _mediaControl->Stop(); 

}

HRESULT Webcam::Repaint() 

{

if (!_initialized || !_windowlessControl) 

return E_FAIL;

return _windowlessControl->RepaintVideo(_hwnd, GetDC(_hwnd)); 

}

HRESULT Webcam::Terminate() 

{

HRESULT hr = Webcam::Stop();

…Release several COM objects… 

return hr;

}

CHAPTER 19 Interoperability with Non-WPF Technologies680

LISTING 19.2 Continued

  From the Library of Wow! eBook



ptg

int Webcam::GetWidth() 

{

return _width; 

}

int Webcam::GetHeight() 

{

return _height; 

}

The implementation begins with a simple Win32 window procedure, which makes sure to 
repaint the video whenever a WM_ERASEBKGND message is received. Inside Initialize, a 
Win32 window class called WebcamClass is defined and registered, and a bunch of 
DirectShow-specific COM objects are created and initialized. (The Terminate method 
releases all these COM objects.) AttachToWindow not only tells DirectShow which window 
to render on, but it sets the size of the video to match the dimensions passed to 
Initialize. The other methods are simple wrappers for the underlying DirectShow 
methods.

Using the Webcam Control in WPF
The first step in using the Webcam control in a WPF application is to create a project that is 
able to “see” this unmanaged control from the WPF-specific managed code that must be 
written. Many options exist for integrating managed code into an unmanaged codebase.
If you’re comfortable with C++, using C++/CLI to seamlessly mix managed and unman-
aged code is usually the best approach. This is especially true for the Webcam class because 
it doesn’t expose any functionality outside the DLL in which it is compiled.

Embedding Win32 Controls in WPF Applications 681

LISTING 19.2 Continued

1
9

What Is C++/CLI?

C++/CLI is a version of the C++ language that supports managed code. Ignoring the 
now-deprecated Managed C++ features in earlier versions of Visual C++, C++/CLI is the way 
for C++ developers to consume and produce .NET components. (CLI stands for Common 
Language Infrastructure, which is the name of the Ecma-standardized pieces of the .NET 
Framework’s common language runtime.) C++/CLI is has been standardized by Ecma (like 
the CLI and C#).

Just to put some context around these standards: Visual C++ is Microsoft’s implementation 
of C++/CLI, Visual C# is Microsoft’s implementation of C#, and the common language 
runtime (CLR) is Microsoft’s implementation of the CLI. Using the managed code features in 
Visual C++ is often as simple as adding the /clr compilation switch to relevant source files 
or projects, changing incompatible switches, and learning some new bits of syntax specific to 
managed data types.

?
FA Q

  From the Library of Wow! eBook



ptg

Listing 19.3 defines a WPF Window—all in C++/CLI—and uses the HwndHost type to inte-
grate the Win32 Webcam control. Because it is using and defining managed data types, it 
must be compiled with the /clr compiler option.

CHAPTER 19 Interoperability with Non-WPF Technologies682

Mixing Managed and Unmanaged Code

C++/CLI is a language-specific mechanism for mixing managed and unmanaged code (and 
managed and unmanaged data) at the source code level. But the .NET Framework provides 
two language-neutral technologies for integrating managed and unmanaged code (meaning 
that they work in any .NET-based language):

. Platform invoke (or PInvoke), which enables calling any static entry points in any 
managed language, as long as the unmanaged signature is redeclared in managed 
code. This is similar to the Declare functionality in Visual Basic 6.

. COM interoperability, which enables using COM components in any managed language 
in a manner similar to using normal managed components, and vice versa.

Some of the general advantages of using C++/CLI over PInvoke and COM interoperability are 
as follows:

. The unmanaged and managed code can easily be compiled into the same DLL.

. Consuming DLLs with static entry points can be done directly rather than having to 
redefine the unmanaged signatures.

. If unmanaged APIs are changed, you get compile-time errors for callers that need to be 
updated. With PInvoke, you need to remember to update the managed signature to 
match the unmanaged one; otherwise, you can get subtle runtime errors.

. COM objects can be accessed directly, so various limitations of the COM interoperabil-
ity layer are avoided. On the flip side, directly accessing COM objects from managed 
code can be error-prone, but Visual C++ ships a few templates (such as com_handle) 
that make this easier.

D I G G I N G  D E E P E R

Visual C++ does not support compiled XAML!

This is why Listing 19.3 defines the Window entirely in procedural code. Other options would 
be to load and parse XAML at runtime (as shown in Chapter 2, “XAML Demystified”) or to 
define the Window in a different language that supports compiled XAML.

WA R N I N G

  From the Library of Wow! eBook



ptg

LISTING 19.3 Window1.h—A WPF Window Using an HwndHost-Derived Class

#include “stdafx.h” 

#include “Webcam.h”

#using <mscorlib.dll> 

#using <PresentationFramework.dll> 

#using <WindowsBase.dll> 

#using <PresentationCore.dll>

using namespace System; 

using namespace System::Windows; 

using namespace System::Windows::Controls; 

using namespace System::Windows::Interop; 

using namespace System::Runtime::InteropServices;

ref class MyHwndHost : HwndHost 

{ 

protected: 

virtual HandleRef BuildWindowCore(HandleRef hwndParent) override 

{

HWND hwnd = CreateWindow(L”WebcamClass”, // Registered class 

NULL,                                  // Title

WS_CHILD,                              // Style 

CW_USEDEFAULT, 0,                      // Position 

Webcam::GetWidth(),                    // Width 

Webcam::GetHeight(),                   // Height 

(HWND)hwndParent.Handle.ToInt32(),     // Parent 

NULL,                                  // Menu 

GetModuleHandle(NULL),                 // hInstance 

NULL);                                 // Optional parameter

if (hwnd == NULL) 

throw gcnew ApplicationException(“CreateWindow failed!”);

Webcam::AttachToWindow(hwnd);

return HandleRef(this, IntPtr(hwnd)); 

}

virtual void DestroyWindowCore(HandleRef hwnd) override 

{

// Just a formality: 

::DestroyWindow((HWND)hwnd.Handle.ToInt32());

}

Embedding Win32 Controls in WPF Applications 683
1

9

  From the Library of Wow! eBook



ptg

};

ref class Window1 : Window 

{ 

public:

Window1() 

{

DockPanel^ panel = gcnew DockPanel();

MyHwndHost^ host = gcnew MyHwndHost();

Label^ label = gcnew Label(); 

label->FontSize = 20; 

label->Content = “The Win32 control is docked to the left.”; 

panel->Children->Add(host); 

panel->Children->Add(label); 

this->Content = panel;

if (FAILED(Webcam::Initialize(640, 480))) 

{

::MessageBox(NULL, L”Failed to communicate with a video capture device.”,

L”Error”, 0); 

} 

Webcam::Start();

}

~Window1() 

{

Webcam::Terminate(); 

}

};

The first thing to notice about Listing 19.3 is that it defines a subclass of HwndHost called 
MyHwndHost. This is necessary because HwndHost is actually an abstract class. It contains 
two methods that need to be overridden:

. BuildWindowCore—In this method, you must return the HWND to be hosted. This is 
typically where initialization is done as well. The parent HWND is given to you as a 
parameter to this method. If you do not return a child HWND whose parent matches 
the passed-in parameter, WPF throws an InvalidOperationException.

. DestroyWindowCore—This method gives you the opportunity to do any 
cleanup/termination when the HWND is no longer needed.

For both methods, HWNDs are represented as HandleRef types. HandleRef is a lightweight 
wrapper (in the System.Runtime.InteropServices namespace) that ties the lifetime of the

CHAPTER 19 Interoperability with Non-WPF Technologies684

LISTING 19.3 Continued

  From the Library of Wow! eBook



ptg

HWND to a managed object. You’ll typi-
cally pass this as the managed object 
when constructing a HandleRef.

Listing 19.3 calls the Win32 
CreateWindow API inside 
BuildWindowCore to create an instance of 
the WebcamClass window that was regis-
tered in Listing 19.2, passing the input 
HWND as the parent. The HWND returned by 
CreateWindow is not only returned by 
BuildWindowCore (inside a HandleRef), 
but it is also passed to the 
Webcam::AttachToWindow method so the 
video is rendered appropriately. Inside 
DestroyWindowCore, the Win32 
DestroyWindow API is called to signify 
the end of the HWND’s lifespan.

Inside the Window’s constructor, the 
MyHwndHost is instantiated and added to 
a DockPanel just like any other 
FrameworkElement. The Webcam is then initialized, and the video stream is started.

Listing 19.4 contains the final piece needed for the WPF webcam application, which is 
the main method that creates the Window and runs the Application. It is also compiled 
with the /clr option. Figure 19.2 shows the running application.

LISTING 19.4 HostingWin32.cpp—The Application’s Entry Point

#include “Window1.h”

using namespace System; 

using namespace System::Windows; 

using namespace System::Windows::Media;

[STAThreadAttribute] 

int main(array<System::String ^> ^args) 

{

Application^ application = gcnew Application();

Window^ window = gcnew Window1(); 

window->Title = “Hosting Win32 DirectShow Content in WPF”; 

window->Background = Brushes::Orange; 

application->Run(window); 

return 0;

}

Embedding Win32 Controls in WPF Applications 685
1

9

A typical implementation of an HwndHost 
subclass calls CreateWindow inside 
BuildWindowCore and DestroyWindow 
inside DestroyWindowCore. Note, however, 
that calling DestroyWindow isn’t really 
necessary. That’s because a child HWND is 
automatically destroyed by Win32 when the 
parent HWND is destroyed. So in Listing
19.3, the implementation of 
DestroyWindowCore could be left empty.

T I P

For some applications, initialization of the 
Win32 content might need to wait until all 
the WPF content has been rendered. In such 
cases, you can perform this initialization 
from Window’s ContentRendered event.

T I P

  From the Library of Wow! eBook



ptg

FIGURE 19.2 A live webcam feed is embedded in the WPF window.

CHAPTER 19 Interoperability with Non-WPF Technologies686

With Visual C++’s /clr compiler option, you can compile entire projects or individual source 
files as managed code. It’s tempting to simply compile entire projects as managed code, but 
it’s usually best if you decide on a file-by-file basis what should be compiled as managed and 
what should be compiled as unmanaged. Otherwise, you could create extra work for yourself 
without any real gain.

The /clr option works well, but it often increases build time and can sometimes require 
code changes. For example, .C files must be compiled as C++ under /clr, but .C files often 
require some syntax changes to be compiled as such. Also, managed code can’t run under 
the Windows loader lock, so compiling DllMain (or any code called by it) as managed results 
in a (fortunately quite descriptive) runtime error.

Note that when you first turn on /clr, other now-incompatible settings need to be changed 
(such as /Gm and /EHsc). Fortunately, the compiler gives clear error messages telling you 
what needs to be done.

T I P

Notice the gray area underneath the video stream in Figure 19.2. The reason this appears 
is quite simple. The MyHwndHost element is docked to the left side of the DockPanel in 
Listing 19.3, but the Webcam control is initialized with a fixed size of 640x480.

If the implementation of Webcam::AttachToWindow in Listing 19.2 were changed to 
discover the size of the HWND, the video could stretch to fill that area. This change is 
shown in the following code, and Figure 19.3 shows the result:

HRESULT Webcam::AttachToWindow(HWND hwnd) 

{

  From the Library of Wow! eBook



ptg

if (!_initialized || !_windowlessControl) 

return E_FAIL;

_hwnd = hwnd;

// Position and size the video 

RECT rcDest;

GetClientRect(hwnd, &rcDest); 

_windowlessControl->SetVideoClippingWindow(hwnd); 

return _windowlessControl->SetVideoPosition(NULL, &rcDest);

}

Embedding Win32 Controls in WPF Applications 687
1

9

FIGURE 19.3 The Webcam control, altered to fill the entire rectangle given to it.

Although the best solution for a webcam application is probably to give the HwndHost-
derived element a fixed (or at least unstretched) size, it’s important to understand that 
WPF layout applies only to the HwndHost. Within its bounds, you need to play by Win32 
rules to get the layout you desire.

Supporting Keyboard Navigation
In addition to the two abstract methods that must be implemented, HwndHost has a few 
virtual methods that can optionally be overridden if you want to handle seamless 
keyboard navigation between WPF elements and hosted Win32 content. This doesn’t

  From the Library of Wow! eBook



ptg

apply to the hosted Webcam control as is, as it never needs to gain keyboard focus. But for 
controls that accept input, there are some common features that you’d undoubtedly want 
to support:

. Tabbing into the hosted Win32 content

. Tabbing out of the hosted Win32 content

. Supporting access keys

Figure 19.4 illustrates the contents of a hypothetical WPF Window with two WPF controls 
surrounding a Win32 control (hosted in HwndHost) with four child Win32 controls. We’ll 
use this illustration when discussing each of these three features. The numbers represent 
the expected order of navigation. For the three WPF controls (1, 6, and the HwndHost 
containing 2–5), the ordering could come implicitly from the way in which they were 
added to their parent, or it could come from an explicit TabIndex being set for each 
control. For the four Win32 controls (2–5), the order is defined by application-specific 
logic.

CHAPTER 19 Interoperability with Non-WPF Technologies688

FIGURE 19.4 A scenario in which keyboard navigation is important with hosted Win32 
content.

Tabbing Into the Hosted Win32 Content
“Tabbing into” the Win32 content means two things:

. When the previous WPF element has focus, pressing Tab moves focus to the first 
item in the Win32 control. In Figure 19.4, this means focus moves from 1 to 2.

. When the next WPF element has focus, pressing Shift+Tab moves focus back to the 
last item in the Win32 control. In Figure 19.4, this means focus moves from 6 to 5.

Both of these actions can be supported fairly easily by overriding HwndHost’s TabInto 
method, which is called when HwndHost receives focus via Tab or Shift+Tab. In C++/CLI, a 
typical implementation would look like the following:

virtual bool TabInto(TraversalRequest^ request) override 

{

if (request->FocusNavigationDirection == FocusNavigationDirection::Next)

SetFocus(hwndForFirstWin32Control); 

else

  From the Library of Wow! eBook



ptg

SetFocus(hwndForLastWin32Control); 

return true;

}

TabInto’s parameter reveals whether the user has just pressed Tab (giving 
FocusNavigationDirection.Next) or Shift+Tab (giving 
FocusNavigationDirection.Previous). Therefore, this code uses this information to 
decide whether to give focus to its first child or last child. It does this using the Win32 
SetFocus API. After setting focus to the correct element, it returns true to indicate that it 
successfully handled the request.

Tabbing Out of the Hosted Win32 Content
Supporting tabbing into a Win32 control is not enough, of course. If you don’t also 
support tabbing out of the control, keyboard navigation can get “stuck” inside the Win32 
control. For Figure 19.4, tabbing out of the control means being able to navigate from 5 
to 6 with Tab or from 2 to 1 with Shift+Tab.

Supporting this direction is a little more complicated than the other direction. That’s 
because after focus enters Win32 content, WPF no longer has the same kind of control 
over what’s going on. The application still receives Windows messages that are ultimately 
passed along to HwndHost, but WPF’s keyboard navigation functionality can’t “see” what’s 
going on with focus.

Therefore, there is no TabOutOf method to override. Instead, there is a 
TranslateAccelerator method, which gets called whenever the application receives 
WM_KEYDOWN or WM_SYSKEYDOWN message from Windows (much like the Win32 API with the 
same name). Listing 19.5 shows a typical C++/CLI implementation of 
TranslateAccelerator for the purpose of supporting tabbing out of Win32 content (and 
tabbing within it).

LISTING 19.5 A Typical C++/CLI Implementation for TranslateAccelerator

virtual bool TranslateAccelerator(MSG% msg, ModifierKeys modifiers) override 

{

if (msg.message == WM_KEYDOWN && msg.wParam == IntPtr(VK_TAB)) 

{

// Handle Shift+Tab 

if (GetKeyState(VK_SHIFT)) 

{

if (GetFocus() == hwndOfFirstControl) 

{

// We’re at the beginning, so send focus to the previous WPF element 

return this->KeyboardInputSite->OnNoMoreTabStops(

gcnew TraversalRequest(FocusNavigationDirection::Previous));

} 

else 

return (SetFocus(hwndOfPreviousControl) != NULL);

Embedding Win32 Controls in WPF Applications 689
1

9

  From the Library of Wow! eBook



ptg

} 

// Handle Shift without Tab 

else 

{

if (GetFocus() == hwndOfLastControl) 

{

// We’re at the end, so send focus to the next WPF element 

return this->KeyboardInputSite->OnNoMoreTabStops(

gcnew TraversalRequest(FocusNavigationDirection::Next));

} 

else 

return (SetFocus(hwndOfNextControl) != NULL); 

}

} 

}

TranslateAccelerator is passed a reference to a “raw” Windows message (represented as 
a managed System.Windows.Interop.MSG structure) and a ModifierKeys enumeration that 
reveals whether the user is pressing Shift, Alt, Control, and/or the Windows key. (This 
information can also be retrieved using the Win32 GetKeyState API.)

In this listing, the code takes action only if the message is WM_KEYDOWN and if Tab is being 
pressed (which includes Shift+Tab). After determining whether the user pressed Tab or 
Shift+Tab using GetKeyState, the code must determine whether it is time to tab out of the 
control or within the control. Tabbing out should occur if focus is already on the first 
child control and the user pressed Shift+Tab, or if focus is already on the last child control 
and the user pressed Tab. In these cases, the implementation calls OnNoMoreTabStops on 
HwndHost’s KeyboardInputSite property. This is the way to tell WPF that focus should 
return under its control. OnNoMoreTabStops needs to be passed a 
FocusNavigationDirection value so it knows which WPF element should get focus (1 or 6 
in Figure 19.4). The implementation of TranslateAccelerator must return true if it 
handles the keyboard event. Otherwise, the event bubbles or tunnels to other elements. 
One point that Listing 19.5 glosses over is that setting the values of 
hwndOfPreviousControl and hwndOfNextControl appropriately involves a small amount of 
application-specific code to determine what the previous/next Win32 control is, based on 
the HWND that currently has focus.

With such an implementation of TranslateAccelerator and TabInto (from the previous 
section), a user of the application represented by Figure 19.4 would now be able to navi-
gate all the way from 1 to 6 and back from 6 to 1 by using Tab and Shift+Tab, 
respectively.

CHAPTER 19 Interoperability with Non-WPF Technologies690

LISTING 19.5 Continued

  From the Library of Wow! eBook



ptg

Supporting Access Keys
The final piece of keyboard navigation to support is jumping to a control via an access 
key (sometimes called a mnemonic). For example, the text boxes in Figure 19.4 would 
likely have corresponding labels with an access key (indicated by an underlined letter). 
When they are hosted in a WPF application, you still want focus to jump to the corre-
sponding controls when the user presses Alt and the access key.

To support access keys, you can override HwndHost’s OnMnemonic method. Like 
TranslateAccelerator, it is given a raw Windows message and a ModifierKeys enumera-
tion. So you could implement it as follows, if you want to support two access keys, a 
and b:

virtual bool OnMnemonic(MSG% msg, ModifierKeys modifiers) override 

{

// Ensure that we got the expected message 

if (msg.message == WM_SYSCHAR && (modifiers | ModifierKeys.Alt)) 

{

// Convert the IntPtr to a char 

char key = (char)msg.wParam.ToPointer();

// Only handle the ‘a’ and ‘b’ characters 

if (key == ‘a’)

return (SetFocus(someHwnd) != NULL); 

else if (key == ‘b’)

return (SetFocus(someOtherHwnd) != NULL); 

} 

return false;

}

Embedding Win32 Controls in WPF Applications 691
1

9

C++/CLI compilation is likely to run into a conflict with TranslateAccelerator!

The standard Windows header file winuser.h defines TranslateAccelerator as an alias 
for the Win32 TranslateAcceleratorW function (if compiling with UNICODE defined) or the 
Win32 TranslateAcceleratorA function (if compiling with UNICODE undefined). Therefore, 
this is likely to conflict with the WPF-based TranslateAccelerator method in a Win32-
based C++ project. To prevent compilation errors, you can undefine this symbol immediately 
before your TranslateAccelerator method as follows:

#undef TranslateAccelerator

WA R N I N G

  From the Library of Wow! eBook



ptg

Embedding WPF Controls in Win32 Applications
Lots of compelling WPF features can be integrated into a Win32 application: 3D, rich 
documents support, animation, easy restyling, and so on. Even if you don’t require this 
extra “flashiness,” you can still take advantage of important features, such as flexible 
layout and resolution independence.

WPF’s HWND interoperability is bidirectional, so WPF controls can be embedded in Win32 
applications much like the way Win32 controls are embedded in WPF applications. In 
this section, you’ll see how to embed a built-in WPF control—DocumentViewer, the viewer 
for XPS documents—in a simple Win32 window using a class called HwndSource.

Introducing HwndSource
HwndSource does the opposite of HwndHost: It exposes any WPF Visual as an HWND. Listing
19.6 demonstrates the use of HwndSource with the relevant C++ source file from a Win32 
project included with this book’s source code. It is compiled with /clr, so it is managed 
code that uses both managed and unmanaged data types.

CHAPTER 19 Interoperability with Non-WPF Technologies692

Because C++/CLI was introduced with Visual C++ 2005, you might find yourself needing to 
upgrade an older codebase to a later compiler to take advantage of it. This can sometimes 
be tricky because of increased ISO standard compliance in the compiler and various changes 
to Windows libraries and headers. Although it might not be an automatic process, there are 
many benefits to upgrading to the latest Visual C++ compiler, even for your unmanaged 
code!

T I P

How do I launch a Win32 modal dialog from a WPF application?

You can still use your favorite Win32 technique for showing the dialog (such as calling 
the Win32 DialogBox function). With C++/CLI, this can be a direct call. With a language 
such as C#, you can use PInvoke to call the relevant function(s). The only trick is to get the 
HWND of a WPF Window to pass as the dialog’s parent.

Fortunately, you can get the HWND for any WPF Window by using the WindowInteropHelper 
class from the System.Windows.Interop namespace.

This looks as follows in C++/CLI:

WindowInteropHelper^ helper = gcnew WindowInteropHelper(wpfParentWindow); 

HWND hwnd = (HWND)helper->Handle.ToPointer();  

DialogBox(hinst, MAKEINTRESOURCE(MYDIALOG), hwnd, (DLGPROC)MyDialogProc);

?
FA Q

  From the Library of Wow! eBook



ptg

LISTING 19.6 HostingWPF.cpp—Embedding a WPF Control in a Win32 Dialog

#include “stdafx.h” 

#include “HostingWPF.h” 

#include “commctrl.h”

#using <PresentationFramework.dll> 

#using <PresentationCore.dll> 

#using <WindowsBase.dll>

LRESULT CALLBACK DialogFunction(HWND hDlg, UINT message, WPARAM wParam,

LPARAM lParam) 

{

switch (message) 

{

case WM_INITDIALOG: 

{

// Describe the HwndSource

System::Windows::Interop::HwndSourceParameters p;

p.WindowStyle = WS_VISIBLE | WS_CHILD;

p.PositionX = 10;

p.PositionY = 10;

p.Width = 500;

p.Height = 350;

p.ParentWindow = System::IntPtr(hDlg);

System::Windows::Interop::HwndSource^ source = 

gcnew System::Windows::Interop::HwndSource(p); 

// Attach a new DocumentViewer to the HwndSource 

source->RootVisual = gcnew System::Windows::Controls::DocumentViewer();

return TRUE; 

}

case WM_CLOSE: 

EndDialog(hDlg, LOWORD(wParam)); 

return TRUE;

} 

return FALSE;

}

[System::STAThread] 

int APIENTRY _tWinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance,

Embedding WPF Controls in Win32 Applications 693
1

9

  From the Library of Wow! eBook



ptg

LPTSTR lpCmdLine, int nCmdShow) 

{

DialogBox(hInstance, (LPCTSTR)IDD_MYDIALOG, NULL, (DLGPROC)DialogFunction); 

return 0;

}

In this project, a simple dialog is defined via a Win32 resource script (not shown here). 
The application’s entry point (_tWinMain) simply shows this dialog via the Win32 
DialogBox function, specifying DialogFunction as the window procedure that receives the 
Win32 messages.

Inside DialogFunction, only two messages are processed—WM_INITDIALOG, which creates 
and embeds the WPF control on initialization, and WM_CLOSE, which terminates the dialog 
appropriately. Inside the processing of WM_INITDIALOG, an HwndSourceParameters structure 
is created, and some of its fields are initialized to give the HwndSource an initial size, posi-
tion, and style. Most important, it is given a parent HWND (which, in this case, is the dialog 
itself). For Win32 programmers, this type of initialization should look very familiar. It’s 
mostly the same kind of information that you would pass to the Win32 CreateWindow 
function.

After HwndSourceParameters is populated, the code only needs to do two simple steps to 
put the WPF content in place. It instantiates an HwndSource object with the 
HwndSourceParameters data, and then it sets HwndSource’s RootVisual property (of type 
System.Windows.Media.Visual) to an appropriate instance. Here, a DocumentViewer is 
instantiated. Figure 19.5 shows the resul.

CHAPTER 19 Interoperability with Non-WPF Technologies694

LISTING 19.6 Continued

FIGURE 19.5 The WPF DocumentViewer control hosted in a simple Win32 dialog.

Although this example uses a built-in WPF control, you can follow the same approach 
with your own arbitrarily complex WPF content. Just take the top-level element (for

  From the Library of Wow! eBook



ptg

example, a Grid or Page) and use HwndSource to expose it to the rest of Win32 as one big 
HWND.

Embedding WPF Controls in Win32 Applications 695
1

9

WPF must run on an STA thread!

As with Windows Forms and earlier technologies, the main thread in an application using 
WPF must live in a single-threaded apartment. In Listing 19.6, STAThreadAttribute must 
be applied to the entry point because the entire file is compiled as managed code, and 
managed code defaults to MTA.

However, the most reliable way to force the main thread to be STA in Visual C++ is to use 
the linker option /CLRTHREADATTRIBUTE:STA. This works regardless of whether the applica-
tion’s entry point is managed or unmanaged. STAThreadAttribute, on the other hand, can 
be used only when the entry point is managed.

WA R N I N G

Be sure to set the Visual C++ debugger mode to Mixed!

For large Win32 applications, it can often make sense to integrate WPF (and managed code 
in general) into DLLs loaded by the executable but to leave the executable as entirely 
unmanaged. This can cause a few development-time gotchas, however.

The debugger in Visual C++ defaults to an Auto mode, which means it performs unmanaged-
only or managed-only debugging, based on the type of executable. But when an unmanaged 
EXE loads a DLL with managed code, you aren’t able to properly debug that managed code 
with unmanaged-only debugging. The solution is simply to set the project’s debugger mode to 
Mixed.

WA R N I N G

If you don’t specify a parent HWND when creating an HwndSource, the result is a top-level 
Win32 window, with HwndSourceParameters.Name used as the window title. So creating a 
parent-less HwndSource and setting its RootVisual property to arbitrary WPF content gives 
pretty much the same result as creating a WPF Window and setting its Content property to 
that same content. In fact, Window is really just a rich wrapper over HwndSource. By using 
HwndSource directly to create a top-level window, you have more control over the various 
style bits used when creating the HWND, but you lack all sorts of handy members defined by 
Window and related classes (such as the automatic message loop handled by 
Application.Run).

T I P

  From the Library of Wow! eBook



ptg

Getting the Right Layout
Because you’re in the world of Win32 when doing this type of integration, there’s no 
special layout support for the top-level WPF control. In Listing 19.6, the DocumentViewer 
is given an initial placement of (10,10) and a size of (500,350). But that placement and 
size are never going to change without some explicit code to change them. Listing 19.7 
makes the DocumentViewer occupy the entire space of the window, even as the window is 
resized. Figure 19.6 shows the result.

LISTING 19.7 HostingWPF.cpp—Updating the Size of the WPF Control

#include “stdafx.h” 

#include “HostingWPF.h” 

#include “commctrl.h”

#using <PresentationFramework.dll> 

#using <PresentationCore.dll> 

#using <WindowsBase.dll>

ref class Globals 

{ 

public:

static System::Windows::Interop::HwndSource^ source; 

};

LRESULT CALLBACK DialogFunction(HWND hDlg, UINT message, WPARAM wParam, 

LPARAM lParam) 

{

switch (message) 

{

case WM_INITDIALOG: 

{

System::Windows::Interop::HwndSourceParameters p;

p.WindowStyle = WS_VISIBLE | WS_CHILD; 

// Initial size and position don’t matter due to WM_SIZE handling:

p.PositionX = 0; p.PositionY = 0;

p.Width = 100; p.Height = 100;

p.ParentWindow = System::IntPtr(hDlg);

Globals::source = gcnew System::Windows::Interop::HwndSource(p);   

Globals::source->RootVisual = 

gcnew System::Windows::Controls::DocumentViewer(); 

return TRUE;

}

case WM_SIZE: 

RECT r;

CHAPTER 19 Interoperability with Non-WPF Technologies696

  From the Library of Wow! eBook



ptg

GetClientRect(hDlg, &r);

SetWindowPos((HWND)Globals::source->Handle.ToPointer(), NULL,

r.left, r.top, r.right - r.left, r.bottom - r.top, 0); 

return TRUE;

case WM_CLOSE: 

EndDialog(hDlg, LOWORD(wParam)); 

return TRUE;

} 

return FALSE;

}

[System::STAThreadAttribute] 

int APIENTRY _tWinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance,

LPTSTR lpCmdLine, int nCmdShow) 

{

DialogBox(hInstance, (LPCTSTR)IDD_MYDIALOG, NULL, (DLGPROC)DialogFunction); 

return 0;

}

Embedding WPF Controls in Win32 Applications 697

LISTING 19.7 Continued

1
9

FIGURE 19.6 The WPF DocumentViewer control hosted and resized in a simple Win32 
dialog.

The most important code in Listing 19.7 is the handling of the WM_SIZE message. It uses 
the Win32 GetClientRect API to get the current window size, and then it applies it to the 
HwndSource using the Win32 SetWindowPos API. There are two interesting points about 
this new implementation:

. The HwndSource variable is now “global,” so it can be shared by multiple places in 
the code. But C++/CLI does not allow a managed variable to be truly global, so the 
listing uses a common technique of making it a static variable of a managed class.

. To operate on the HwndSource with Win32 APIs such as SetWindowPos, you need its 
HWND. This is exposed via a Handle property of type IntPtr. In C++/CLI, you can call 
its ToPointer method (which returns a void*) and then cast the result to an HWND.

  From the Library of Wow! eBook



ptg

CHAPTER 19 Interoperability with Non-WPF Technologies698

You don’t need to share an HwndSource globally as long as you have its corresponding HWND. 
HwndSource defines a static FromHwnd method, which returns an HwndSource instance 
corresponding to any HWND (assuming that the HWND belongs to an HwndSource in the first 
place). This is very handy when retrofitting Win32 codebases with WPF content because 
HWNDs are often passed around as parameters. With this technique, you can avoid the need 
to define a managed Globals class, as was done in Listing 19.7.

T I P

You can use HwndSource with a pure WPF application to respond to obscure Windows 
messages. In pure WPF applications, you don’t need to define a window procedure and 
respond to Windows messages. But that’s not because Windows messages don’t exist; the 
top-level window still has an HWND and still plays by Win32 rules. As mentioned in a previous 
tip, WPF’s Window object actually uses HwndSource to host any content inside the top-level 
HWND. And internally, WPF has a window procedure that exposes relevant messages in its 
own way. For example, WPF handles WM_SIZE messages and raises a SizeChanged event.

There are, however, Windows messages that WPF does not expose. But you can use 
HwndSource with any WPF Window to get exposure to all messages. The key is to use the 
System.Windows.Interop.WindowInteropHelper class, which exposes the HWND for any 
WPF Window. After you have this handle, you can get the corresponding HwndSource object 
(using HwndSource.FromHwnd) and attach a window procedure by calling HwndSource’s 
AddHook method.

In Chapter 8, “Exploiting Windows 7,” we performed these actions to discover 
WM_DWMCOMPOSITIONCHANGED messages. The following Window intercepts WM_TCARD, an 
obscure message that can be sent by Windows Help when certain directives are selected 
inside an application’s help file:

public partial class AdvancedWindow : Window 

{

… 

void AdvancedWindow_Loaded(object sender, RoutedEventArgs e) 

{

// Get the HWND for the current Window 

IntPtr hwnd = new WindowInteropHelper(this).Handle; 

// Get the HwndSource corresponding to the HWND 

HwndSource source = HwndSource.FromHwnd(hwnd); 

// Add a window procedure to the HwndSource 

source.AddHook(new HwndSourceHook(WndProc));

}

private static IntPtr WndProc(

IntPtr hwnd, int msg, IntPtr wParam, IntPtr lParam, ref bool handled) 

{

T I P

  From the Library of Wow! eBook



ptg

Embedding Windows Forms Controls in WPF 
Applications
You’ve seen that WPF can host Win32 controls by wrapping any HWND inside an HwndHost. 
And Windows Forms controls can easily be exposed as Win32 controls. (Unlike WPF 
controls, they are all HWND based, so System.Windows.Forms.Control directly defines a

Embedding Windows Forms Controls in WPF Applications 699
1

9

Continued

// Handle any Win32 message 

if (msg == WM_TCARD) 

{

… 

handled = true;

} 

return IntPtr.Zero;

}

// Define any Win32 message constants 

private const int WM_TCARD = 0x0052;

}

How do I launch a WPF modal dialog from a Win32 application?

To launch a WPF Window, whether from Win32 code or WPF code, you can instantiate 
it and call its ShowDialog method. The trick, as with the reverse direction, is assigning the 
proper parent to the WPF Window. Correctly setting the parent of a modal dialog is important 
to get the desired behavior—ensuring that it remains on top of the parent window at all 
times, that both windows minimize together, and so on.

The problem is that Window’s Owner property is of type Window, and it has no other property 
or method that enables its parent to be set to an arbitrary HWND. Furthermore, you can’t 
fabricate a Window object from an arbitrary HWND.

The solution to this dilemma is to use the WindowInteropHelper class in the 
System.Windows.Interop namespace. This class not only exposes the HWND for any WPF 
Window but enables you to set its owner to an arbitrary HWND. This looks as follows in 
C++/CLI:

Nullable<bool> LaunchWpfDialogFromWin32Window(Window^ dialog, HWND parent) 

{

WindowInteropHelper^ helper = gcnew WindowInteropHelper(dialog); 

helper->Owner = parent; 

return dialog->ShowDialog();

}

?
FA Q

  From the Library of Wow! eBook



ptg

Handle property exposing the HWND.) Therefore, you could use the same techniques previ-
ously discussed to host Windows Forms controls inside WPF.

However, there is an opportunity for much richer integration between Windows Forms 
and WPF, without delving into the underlying HWND-based plumbing. Sure, they have 
different rendering engines and different controls. But they both have rich .NET-based 
object models with similar properties and events, and both have services (such as layout 
and data binding) that go above and beyond their Win32 common denominator.

Indeed, WPF takes advantage of this opportunity and also has built-in functionality for 
direct interoperability with Windows Forms. This support is still built on top of the 
Win32 HWND interoperability described in the preceding two sections, but with many 
features to make the integration much simpler. The hard work is done for you, so you can 
communicate more directly between the technologies, usually without needing to write 
any unmanaged code.

As with Win32 interoperability, WPF defines a pair of classes to cover both directions of 
communication. The analog to HwndHost is called WindowsFormsHost, and it appears in the 
System.Windows.Forms.Integration namespace (in the WindowsFormsIntegration.dll 
assembly).

Embedding a PropertyGrid with Procedural Code
This chapter’s introduction mentions that Windows Forms has several interesting built-in 
controls that WPF lacks. One such control—the powerful PropertyGrid—helps to high-
light the deep integration between Windows Forms and WPF, so let’s use that inside a 
WPF Window. (Of course, you can also create custom Windows Forms controls and embed 
them in WPF Windows as well.)

The first step is to add a reference to System.Windows.Forms.dll and 
WindowsFormsIntegration.dll to your WPF-based project. After you’ve done this, your 
Window’s Loaded event is an appropriate place to create and attach a hosted Windows 
Forms control. For example, consider this simple Window containing a Grid called grid:

<Window x:Class=”HostingWindowsFormsControl.Window1” 

xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation” 

xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml” 

Title=”Hosting a Windows Forms Property Grid in WPF” 

Loaded=”Window_Loaded”>

<Grid Name=”grid”/> 

</Window>

The following handler of the Loaded event adds the PropertyGrid to the Grid, using 
WindowsFormsHost as the intermediate element:

private void Window_Loaded(object sender, RoutedEventArgs e) 

{

// Create the host and the PropertyGrid control 

System.Windows.Forms.Integration.WindowsFormsHost host =

CHAPTER 19 Interoperability with Non-WPF Technologies700

  From the Library of Wow! eBook



ptg

new System.Windows.Forms.Integration.WindowsFormsHost(); 

System.Windows.Forms.PropertyGrid propertyGrid =

new System.Windows.Forms.PropertyGrid();

// Add the PropertyGrid to the host, and the host to the WPF Grid 

host.Child = propertyGrid; 

grid.Children.Add(host);

// Set a PropertyGrid-specific property 

propertyGrid.SelectedObject = this;

}

The integration-specific code is as simple as instantiating WindowsFormsHost and setting 
its Child property to the desired object. WindowsFormsHost’s Child property can be set to 
any object that derives from System.Windows.Forms.Control.

The last line, which sets PropertyGrid’s SelectedObject property to the instance of the 
current WPF Window, enables a pretty amazing scenario. PropertyGrid displays the proper-
ties of any .NET object, and, in some cases, enables the editing of the object’s values. It 
does this via .NET reflection. Because WPF objects are .NET objects, PropertyGrid 
provides a fairly rich way to edit the current Window’s properties on the fly, without 
writing any extra code. Figure 19.7 shows the previously defined Window in action. When 
running this application, you can see values change as you resize the Window, you can 
type in new property values to resize the Window, you can change its background color or 
border style, and so on.

Embedding Windows Forms Controls in WPF Applications 701
1

9

FIGURE 19.7 The hosted Windows Forms PropertyGrid enables you to change properties 
of the WPF Window on the fly.

  From the Library of Wow! eBook



ptg

Notice that the enumeration values for properties such as HorizontalContentAlignment 
are automatically populated in a drop-down list, thanks to the standard treatment of .NET 
enums. But Figure 19.7 highlights some additional similarities between Windows Forms 
and WPF, aside from being .NET-based. Notice that Window’s properties are grouped into 
categories such as “Behavior,” “Content,” and “Layout.” This comes from 
CategoryAttribute markings that are used by both Windows Forms and WPF. The type 
converters that WPF uses are also compatible with Windows Forms, so you can type in 
“red” as a color, for example, and it gets 
automatically converted to the hexadeci-
mal ARGB representation (#FFFF0000).
Another neat thing about the 
PropertyGrid used in this manner is 
that you can see attached properties that 
could be applied to the object, with the 
syntax you would expect.

Embedding a PropertyGrid with XAML
There’s no reason that you have to instantiate a WindowsFormsHost instance in procedural 
code; you could instead define it right inside your XAML file. Furthermore, there’s 
nothing to stop you from using Windows Forms controls inside XAML, except for limita-
tions of the expressiveness of XAML. (The controls must have a default constructor, useful 
instance properties to set, and so on, unless you’re in an environment in which you can 
use XAML2009.)

Not all Windows Forms controls work well within XAML, but PropertyGrid works reason-
ably well. For example, the previous XAML can be replaced with the following XAML:

<Window x:Class=”HostingWindowsFormsControl.Window1” 

xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation” 

xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml” 

xmlns:swf=”clr-namespace:System.Windows.Forms;assembly=System.Windows.Forms” 

Title=”Hosting a Windows Forms Property Grid in WPF” 

Loaded=”Window_Loaded” x:Name=”rootWindow”> 

<Grid>

<WindowsFormsHost> 

<swf:PropertyGrid x:Name=”propertyGrid”

SelectedObject=”{x:Reference rootWindow}”/> 

</WindowsFormsHost>

</Grid> 

</Window>

The System.Windows.Forms.Integration .NET namespace is already included as part of 
WPF’s standard XML namespace, so WindowsFormsHost can be used without any addi-
tional work, as long as your project has a reference to WindowsFormsIntegration.dll. And 
with the System.Windows.Forms .NET namespace given the prefix swf, the PropertyGrid 
object can be instantiated directly in the XAML file. Notice that the PropertyGrid can be

CHAPTER 19 Interoperability with Non-WPF Technologies702

The WindowsFormsHost class actually 
derives from HwndHost, so it supports the 
same HWND interoperability features 
described earlier, just in case you want to 
dig into lower-level mechanics, such as over-
riding its WndProc method.

T I P

  From the Library of Wow! eBook



ptg

added as a child element to WindowsFormsHost because its Child property is marked as a 
content property. PropertyGrid’s properties can generally be set in XAML rather than C#. 
Thanks to x:Reference, SelectedObject can be set to the current Window instance (now 
named rootWindow), replicating the entire example without any procedural code needed!

Embedding Windows Forms Controls in WPF Applications 703
1

9

The x:Reference markup extension is often mistakenly associated with the XAML2009 
features that can only be used from loose XAML at the time of this writing. Although 
x:Reference is a new feature in WPF 4, it can be used from XAML2006 just fine as long as 
your project is targeting version 4 or later of the .NET Framework. One glitch is that the 
XAML designer in Visual Studio 2010 doesn’t properly handle x:Reference, so it gives the 
following design-time error that you can safely ignore:

Service provider is missing the INameResolver service

T I P

By default, Windows Forms controls hosted in WPF applications might look old-fashioned. 
That’s because they use the “classic” Win32 Common Controls library unless you explicitly 
enable the Windows XP–era visual styles. You can do this by embedding a special manifest 
file in an application, but it’s easiest to just call the System.Windows.Forms.Application. 
EnableVisualStyles method before any of the Windows Forms controls are instantiated. 
The Visual Studio template for Windows Forms projects automatically inserts this method 
call, but the template for WPF projects does not.

T I P

How do I launch a Windows Forms modal dialog from a WPF application?

The answer to this question seems like it should be simple: Instantiate your Form-
derived class and call its ShowDialog method. But for it to behave like a correct modal 
dialog, you should call the overload of ShowDialog that accepts an owner. This owner, 
however, must be in the form of an IWin32Window, a type that’s incompatible with a WPF 
Window.

As explained in the previous section, you can get the HWND for a WPF Window by using the 
WindowInteropHelper class from the System.Windows.Interop namespace, but how do 
you get an IWin32Window? You actually have to define a custom class that implements it. 
Fortunately, this is pretty easy because IWin32Window defines only a single Handle property. 
The following code defines an OwnerWindow class that can be used in this situation:

class OwnerWindow : IWin32Window 

{

private IntPtr handle;

?
FA Q

  From the Library of Wow! eBook



ptg

Embedding WPF Controls in Windows Forms 
Applications
WPF controls can be embedded inside a Windows Forms application, thanks to a 
companion class of WindowsFormsHost called ElementHost. ElementHost is like HwndSource 
but it is customized for hosting WPF elements inside a Windows Forms Form rather than 
inside an arbitrary HWND. ElementHost is a Windows Forms control (deriving from 
System.Windows.Forms.Control) and internally knows how to display WPF content.

To demonstrate the use of ElementHost, we’ll create a simple Windows Forms application 
that hosts a WPF Expander control. After creating a standard Windows Forms project in 
Visual Studio, the first step is to add ElementHost to the Toolbox using the Tools, Choose 
Toolbox Items menu item. This presents the dialog shown in Figure 19.8.

With ElementHost in the Toolbox, you can drag it onto a Windows Forms Form just like 
any other Windows Forms control. Doing this automatically adds references to the neces-
sary WPF assemblies (PresentationFramework.dll, PresentationCore.dll, and so on). 
Listing 19.8 shows the main source file for a Windows Forms project whose Form contains 
an ElementHost called elementHost docked to the left and a Label on the right.

LISTING 19.8 Form1.cs—Embedding a WPF Expander in a Windows Forms Form

using System.Windows.Forms; 

using System.Windows.Controls;

namespace WindowsFormsHostingWPF 

{

CHAPTER 19 Interoperability with Non-WPF Technologies704

Continued

public IntPtr Handle 

{

get { return handle; } 

set { handle = value; }

} 

}

With this class in place, you can write code like the following that launches a modal 
Windows Forms dialog, using a WPF Window as its parent:

DialogResult LaunchWindowsFormsDialogFromWpfWindow(Form dialog, Window parent) 

{

WindowInteropHelper helper = new WindowInteropHelper(parent); 

OwnerWindow owner = new OwnerWindow(); 

owner.Handle = helper.Handle; 

return dialog.ShowDialog(owner);

}

  From the Library of Wow! eBook



ptg

public partial class Form1 : Form 

{

public Form1() 

{

InitializeComponent();

// Create a WPF Expander 

Expander expander = new Expander(); 

expander.Header = “WPF Expander”; 

expander.Content = “Content”;

// Add it to the ElementHost 

elementHost.Child = expander;

} 

}

}

Embedding WPF Controls in Windows Forms Applications 705

LISTING 19.8 Continued

1
9

FIGURE 19.8 Adding ElementHost to the Toolbox in a Windows Forms project.

This code uses the System.Windows.Controls namespace for Expander, which it simply 
instantiates and initializes inside the Form’s constructor. ElementHost, like 
WindowsFormsHost, has a simple Child property that can be set to any UIElement. This 
property must be set in source code rather than in the Windows Forms designer, so here 
it is set to the Expander instance. Figure 19.9 shows the result. Notice that, by default, the 
Expander occupies all the space given to the ElementHost.

  From the Library of Wow! eBook



ptg

FIGURE 19.9 A Windows Forms application containing a WPF Expander control.

Taking this example one step further, you can use a combination of ElementHost and 
WindowsFormsHost to have a Windows Forms control embedded in a WPF control embed-
ded in a Windows Forms application! All you need to do is set the Content of the WPF 
Expander to a WindowsFormsHost, which can contain an arbitrary Windows Forms control. 
Listing 19.9 does just that, placing a Windows Forms MonthCalendar inside a WPF 
Expander, all on the same Windows Forms Form. Figure 19.10 shows the result.

LISTING 19.9 Form1.cs—Using Both Directions of Windows Forms and WPF Integration

using System.Windows.Forms; 

using System.Windows.Controls; 

using System.Windows.Forms.Integration;

namespace WindowsFormsHostingWPF 

{

public partial class Form1 : Form 

{

public Form1() 

{

InitializeComponent();

// Create a WPF Expander

Expander expander = new Expander(); 

expander.Header = “WPF Expander”;

// Create a MonthCalendar and wrap it in a WindowsFormsHost 

WindowsFormsHost host = new WindowsFormsHost(); 

host.Child = new MonthCalendar();

CHAPTER 19 Interoperability with Non-WPF Technologies706

  From the Library of Wow! eBook



ptg

// Place the WindowsFormsHost in the Expander 

expander.Content = host;

// Add the Expander to the ElementHost 

elementHost.Child = expander;

} 

}

}

Embedding WPF Controls in Windows Forms Applications 707

LISTING 19.9 Continued

1
9

FIGURE 19.10 The Windows Forms MonthCalendar is inside the WPF Expander, which is 
on a Windows Forms Form.

Converting Between Two Representations

One of the headaches of working with a hybrid Windows Forms/WPF application is dealing 
with the separate managed data types defined for the same concepts. For example, WPF has 
its own Color, Cursor, Size, Rect, and Point types that are different from the Windows 
Forms Color, Cursor, Size, Rectangle, and Point types. In most cases, however, convert-
ing between the two types is fairly simple. For example:

. Both Color types have a FromArgb static method, so you can create one Color from 
the other by passing this method the A, R, G, and B values from the source Color.

. To get a Windows Forms font size from a WPF font size, multiply the value by 0.75. To 
get a WPF font size from a Windows Forms font size, divide the value by 0.75.

In other cases, doing the conversion requires more work. In the case of converting from a 
System.Drawing.Bitmap to a System.Windows.Media.Imaging.BitmapSource, you need 
to work with a representation that both technologies understand—a Win32 HBITMAP.

D I G G I N G  D E E P E R

  From the Library of Wow! eBook



ptg

Mixing DirectX Content with WPF Content
As with Windows Forms content, DirectX content can be hosted in WPF applications 
using HwndHost, and WPF content can be hosted in DirectX applications using 
HwndSource. In the first version of WPF, using such HWND interoperability mechanisms was 
the only way to mix WPF and DirectX. Given that WPF is built on top of DirectX, 
however, there was again the opportunity for much richer integration between the two 
technologies, without being forced through a largely orthogonal HWND mechanism.

Starting with WPF 3.5 SP1 (and WPF 3.0 SP2), direct mixing of WPF and DirectX is now 
possible, no matter which direction you want to achieve interoperability. This feature—an 
ImageSource called D3DImage—doesn’t make interoperability significantly easier, but it 
does remove the inability to overlap that is unavoidable in the other interoperability 
scenarios. This means that you can blend, layer, and transform the two types of content 
with the same seamlessness that you get with any two WPF elements. The D3DImage func-
tionality is not layered on top of HWND interoperability; it is a distinct and more powerful 
mechanism.

CHAPTER 19 Interoperability with Non-WPF Technologies708

Continued

The Windows Forms Bitmap object is based on an HBITMAP, so it has a simple GetHbitmap 
function that returns the handle (as an IntPtr). On the WPF side, BitmapSource has 
nothing to do with HBITMAPs, but fortunately the System.Windows.Interop.Imaging class 
defines three static helper methods for creating BitmapSources from three different 
origins—a memory section, an HICON, and an HBITMAP. That last method, called 
CreateBitmapSourceFromHBitmap, can be given the handle and dimensions from the 
Windows Forms Bitmap, and it returns the desired WPF object.

How do I launch a WPF modal dialog from a Windows Forms application?

The technique for doing this is almost identical to the way you launch a WPF modal 
dialog from Win32. You can instantiate a Window-derived class and call its ShowDialog 
method. But you also need to set the Window’s Owner property for it to behave correctly. 
Owner must be set to a Window, whereas in a Windows Forms application, the owner is 
undoubtedly a System.Windows.Forms.Form.

Once again, you can use the WindowInteropHelper class to set its owner to an arbitrary 
HWND. Therefore, you can set it to the value returned by Form’s Handle property. The follow-
ing code does just that:

bool? LaunchWpfDialogFromWindowsForm(Window dialog, Form parent) 

{

WindowInteropHelper helper = new WindowInteropHelper(dialog); 

helper.Owner = parent.Handle; 

return dialog.ShowDialog();

}

?
FA Q

  From the Library of Wow! eBook



ptg

D3DImage is a container that can host an arbitrary DirectX surface. (Despite the name, this 
surface can contain 2D as well as 3D content.) Because D3DImage is an ImageSource, it can 
be used in a number of places, such as an Image, ImageBrush, or ImageDrawing.

For the example that demonstrates D3DImage, we’ll use a slightly different approach than 
the previous examples. This section’s example uses a simple unmanaged C++ application 
from the DirectX SDK. (The details of the example are unimportant for this chapter, 
but the full source code is available with this book’s source code on the website, 
http://informit.com/title/9780672331190.) This DirectX SDK example will remain 
completely unmanaged, but it will be 
turned into a DLL instead of an EXE.
Then, a WPF C# application will access 
the functionality of the DirectX sample 
by using PInvoke to call three unman-
aged APIs that it exposes.

The resulting sample is a hypothetical 
order form for tigers, where the back-
ground is a 3D spinning tiger provided 
by the DirectX DLL, and the foreground 
contains a bunch of standard WPF 
controls directly on top of the spinning 
tiger. Figure 19.11 shows the result.

Listing 19.10 contains the XAML for this
WPF Window. It uses a D3DImage as its 
background, thanks to ImageBrush. It 
then places several WPF controls inside the Window at 70% opacity, to help demonstrate 
the blending of these controls with the DirectX background.

LISTING 19.10 MainWindow.xaml—A WPF Window Control with DirectX Background Content

<Window x:Class=”WpfDirectX.MainWindow” 

xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation” 

xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml” 

xmlns:interop=”clr-namespace:System.Windows.Interop;assembly=PresentationCore” 

Title=”Mixing DirectX with WPF” Height=”350” Width=”400”>

<Window.Background> 

<ImageBrush> 

<ImageBrush.ImageSource>

<interop:D3DImage x:Name=”d3dImage” 

IsFrontBufferAvailableChanged=”d3dImage_IsFrontBufferAvailableChanged”/>

</ImageBrush.ImageSource> 

</ImageBrush>

</Window.Background> 

<Grid Margin=”20” Opacity=”.7” TextBlock.Foreground=”White”>

Mixing DirectX Content with WPF Content 709
1

9

FIGURE 19.11 A WPF Window containing 
a DirectX-based spinning 3D tiger underneath 
basic WPF controls.

  From the Library of Wow! eBook

http://informit.com/title/9780672331190


ptg

… 

</Grid>

</Window>

The IsFrontBufferAvailableChanged event on D3DImage is important to handle. 
Throughout the application’s lifetime, WPF’s DirectX surface might occasionally become 
unavailable. (This can happen in a number of situations, such as when the user presses 
Ctrl+Alt+Delete to bring up Winlogon or when the video driver changes.) Therefore, this 
event can trigger the initialization (or reinitialization) of the custom DirectX content as 
well as its cleanup, based on the value of D3DImage’s IsFrontBufferAvailable property.

The work of connecting the empty D3DImage to the actual DirectX content happens in the 
code-behind file, shown in its entirety in Listing 19.11.

LISTING 19.11 MainWindow.xaml.cs—Making D3DImage Work with DirectX Content from 
an Unmanaged C++ DLL

using System; 

using System.Runtime.InteropServices; 

using System.Windows; 

using System.Windows.Interop; 

using System.Windows.Media;

namespace WpfDirectX 

{

// Three PInvoke signatures for communicating 

// with the unmanaged C++ DirectX Sample DLL 

class Sample 

{

[DllImport(“DirectXSample.dll”)] 

internal static extern IntPtr Initialize(IntPtr hwnd, int width, int height);

[DllImport(“DirectXSample.dll”)] 

internal static extern void Render();

[DllImport(“DirectXSample.dll”)] 

internal static extern void Cleanup();

}

public partial class MainWindow : Window 

{

public MainWindow() 

{

CHAPTER 19 Interoperability with Non-WPF Technologies710

LISTING 19.10 Continued

  From the Library of Wow! eBook



ptg

InitializeComponent(); 

}

protected override void OnSourceInitialized(EventArgs e) 

{

base.OnSourceInitialized(e); 

// Now that we can get an HWND for the Window, force the initialization 

// that is otherwise done when the front buffer becomes available: 

d3dImage_IsFrontBufferAvailableChanged(this,

new DependencyPropertyChangedEventArgs()); 

}

private void d3dImage_IsFrontBufferAvailableChanged(object sender,

DependencyPropertyChangedEventArgs e) 

{

if (d3dImage.IsFrontBufferAvailable) 

{

// (Re)initialization:

IntPtr surface = Sample.Initialize(new WindowInteropHelper(this).Handle, 

(int)this.Width, (int)this.Height);

if (surface != IntPtr.Zero) 

{

d3dImage.Lock(); 

d3dImage.SetBackBuffer(D3DResourceType.IDirect3DSurface9, surface); 

d3dImage.Unlock();

CompositionTarget.Rendering += CompositionTarget_Rendering; 

}

} 

else 

{

// Cleanup:

CompositionTarget.Rendering -= CompositionTarget_Rendering; 

Sample.Cleanup();

} 

}

// Render the DirectX scene when WPF itself is ready to render 

private void CompositionTarget_Rendering(object sender, EventArgs e) 

{

if (d3dImage.IsFrontBufferAvailable) 

{

d3dImage.Lock();

Mixing DirectX Content with WPF Content 711

LISTING 19.11 Continued

1
9

  From the Library of Wow! eBook



ptg

Sample.Render(); 

// Invalidate the whole area: 

d3dImage.AddDirtyRect(new Int32Rect(0, 0,

d3dImage.PixelWidth, d3dImage.PixelHeight)); 

d3dImage.Unlock();

} 

}

} 

}

The listing begins by defining three simple PInvoke signatures for the three unmanaged 
APIs exported from DirectXSample.dll. Although the source code for DirectXSample.dll 
is not shown here, it is included in this book’s source code. (To build it yourself, you must 
first download and install a recent DirectX SDK from http://microsoft.com.) Regardless of 
the actual work done by the DirectX code, the pattern of Initialize, Render, and 
Cleanup is pretty universal. Initialize requires an HWND, because the underlying DirectX 
API—creating a Direct3D device—requires an HWND.

Because Initialize needs an HWND, you can’t call it from MainWindow’s constructor (unless 
you give it an HWND for a different window). Therefore, Window’s OnSourceInitialized 
method is overridden so initialization can be done from there. At this point, 
WindowInteropHelper is able to give you a valid HWND for the WPF Window. But rather than 
duplicate the initialization code from the d3dImage_IsFrontBufferAvailableChanged 
event handler, the code in OnSourceInitialized just calls it.

CHAPTER 19 Interoperability with Non-WPF Technologies712

LISTING 19.11 Continued

If you want to obtain an HWND for a WPF Window before it is shown, WindowInteropHelper’s 
EnsureHandle method enables you to do so. EnsureHandle creates the underlying Win32 
window (and raises the SourceInitialized event) if it hasn’t been created yet then returns 
the appropriate HWND. After calling this method, you could even decide never to show the 
Window! For example, Visual Studio 2010 does exactly that when it is invoked during a 
command-line build.

T I P

Inside d3dImage_IsFrontBufferAvailableChanged, the initialization path calls Initialize 
with the Window’s HWND, width, and height and gets back a reference to an 
IDirect3DSurface9 interface pointer disguised as an IntPtr (a common trick to avoid the 
need to create a managed definition of the interface). This IntPtr can then be passed to 
D3DImage.SetBackBuffer (while the D3DImage is locked) to associate the content. The 
unmanaged Render method needs to be called once per frame, so CompositionTarget’s 
static Rendering event is perfect for this purpose. The cleanup path of 
d3dImage_IsFrontBufferAvailableChanged—when IsFrontBufferAvailable is false— 
simply detaches the Rendering event handler and calls the unmanaged Cleanup method 
so the C++ code has a chance to release its resources.

  From the Library of Wow! eBook

http://microsoft.com


ptg

Finally, the CompositionTarget_Rendering event handler calls the unmanaged Render 
method (while the D3DImage is locked) and also invalidates the entire area of the D3DImage 
by calling AddDirtyRect with the dimensions of the D3DImage. WPF composes any dirty 
regions from the D3DImage with its own internal surface and then renders the result. In 
some applications, this could be optimized by reducing invalidation to one or more 
smaller regions. In addition, some applications might not require the DirectX rendering 
and D3DImage invalidation to happen every frame.

Mixing DirectX Content with WPF Content 713
1

9

Remember that WPF has a reference to the Direct3D surface!

Memory management can be tricky in hybrid managed/unmanaged applications. It’s easy to 
forget about reference counting when you’re primarily using managed code, but be aware that 
WPF is referencing the surface passed to SetBackBuffer until IsFrontBufferAvailable 
becomes false or until SetBackBuffer is called again. Therefore, if you want to break that 
reference, you can call SetBackBuffer with IntPtr.Zero as the second parameter.

WA R N I N G

D3DImage must be locked before any modifications are done to the back buffer!

Locking is necessary to avoid WPF presenting an incomplete frame. (If you’re in the midst of 
drawing to it when WPF wants to present it, it won’t look right.) Operations that require 
locking include method calls on D3DImage—SetBackBuffer and AddDirtyRect—as well as 
any rendering done by the custom DirectX code that is using the IDirect3DSurface9 
pointer. This locking can be accomplished by either calling D3DImage.Lock, which blocks 
when WPF is busy reading the back buffer, or D3DImage.TryLock, which will wait only as long 
as a user-specified timeout. Regardless of which you use, be sure to call D3DImage.Unlock 
when you are done modifying the back buffer!

WA R N I N G

Allow WPF to present the back buffer!

If you’re modifying existing DirectX code to be used with WPF (as in this example), you need 
to make sure it no longer calls Present on the Direct3D device. That’s because WPF 
presents its own back buffer, based on internal contents and the contents of the surface you 
passed to SetBackBuffer. Doing your own presenting of the back buffer would interfere with 
the proper operation of the rendering system.

WA R N I N G

  From the Library of Wow! eBook



ptg

Embedding ActiveX Controls in WPF Applications
There must thousands of ActiveX controls in existence, and they can be easily embedded 
in WPF applications. But that’s not because of any hard work done by the WPF team. Ever 
since version 1.0, Windows Forms has had a bunch of plumbing built in for interoperabil-
ity with ActiveX controls. Rather than duplicate all that plumbing natively inside WPF, 
the team decided to simply depend on Windows Forms for this scenario. WPF gets the 
functionality “for free” just by working well with Windows Forms.

Using Windows Forms as an intermediate layer between ActiveX and WPF might sound 
suboptimal, but the development experience is just about as pleasant as can be expected. 
To demonstrate how to embed an ActiveX control in a WPF application, this section uses 
the Microsoft Terminal Services control that ships with Windows. This control contains 
basically all the functionality of Remote Desktop, but it is controllable via a few simple 
APIs.

CHAPTER 19 Interoperability with Non-WPF Technologies714

Ensuring That DirectX Usage Is Compatible with D3DImage

There are a number of small details to be aware of for the code that is directly using the 
DirectX APIs (the unmanaged C++ code inside DirectXSample.dll in this case) to ensure 
that it works or that it gets the best performance.

First and foremost, only DirectX 9 and later are supported, as evidenced by the fact that the 
only value of the D3DResourceType enumeration used by D3DImage.SetBackBuffer is 
IDirect3DSurface9! (You can exploit later versions of Direct3D and use an intermediate 
IDirect3DDevice9Ex device to still work inside this scheme.)

When running on Windows XP, Direct3DCreate9 must be used, and then you can create an 
IDirect3DDevice9 device. This surface must use D3DPOOL_DEFAULT , D3DUSAGE_ 
RENDERTARGET, and D3DFMT_X8R8G8B8 (RGB) or D3DFMT_A8R8G8B8 (ARGB). On Windows 
Vista or later, however, using Direct3DCreate9Ex (and an IDirect3DDevice9Ex device) 
provides better performance, assuming that the display is using the Windows Display Driver 
Model (WDDM) and the video card supports the right capabilities.

You can get better performance (from hardware acceleration) on Windows XP when the 
Direct3D surface is created as lockable, but lockable surfaces generally perform worse when 
running on Windows Vista or later. Details like these hopefully help you appreciate how much 
easier WPF makes programming compared to its DirectX underpinnings!

D I G G I N G  D E E P E R

D3DImage doesn’t work under software rendering!

When the WPF render thread is doing software rendering (for less powerful hardware, remote 
desktop, and similar situations), the content inside D3DImage simply doesn’t get rendered. 
D3DImage does work when printing or using RenderTargetBitmap, however. Despite the fact 
that these mechanisms use software rendering, they operate on the UI thread and therefore 
don’t run into this limitation.

WA R N I N G

  From the Library of Wow! eBook



ptg

The first step for using an ActiveX control is to get a managed and Windows 
Forms–compatible definition of the relevant types. This can be done in two different 
ways:

. Run the ActiveX Importer (AXIMP.EXE) on the ActiveX DLL. This utility is included 
in the .NET Framework component of the Windows SDK.

. In any Windows Forms project in Visual Studio, add the component to the Toolbox 
using the COM Components tab from the dialog shown by choosing the Tools, 
Choose Toolbox Items menu item. Then drag the control from the Toolbox onto 
any Form. This process causes Visual Studio to invoke the ActiveX Importer behind 
the scenes.

No matter which approach you use, two DLLs are generated. You should add references to 
these in your WPF-based project (along with System.Windows.Forms.dll and 
WindowsFormsIntegration.dll). One is an interop assembly that contains “raw” managed 
definitions of the unmanaged interfaces, classes, enums, and structures defined in the 
type library contained inside the ActiveX DLL. The other is an assembly that contains a 
Windows Forms control that corresponds to each ActiveX class. The first DLL is named 
with the library name from the original type library, and the second DLL is named the 
same but with an Ax prefix.

For the Microsoft Terminal Services control, the original ActiveX DLL is called 
mstscax.dll and is found in the Windows system32 directory. (In the Choose Toolbox 
Items dialog, it shows up as Microsoft Terminal Services Client Control.) Running the 
ActiveX Importer generates MSTSCLib.dll and AxMSTSCLib.dll.

With the four relevant assemblies added to a project (MSTSCLib.dll, AxMSTSCLib.dll, 
System.Windows.Forms.dll, and WindowsFormsIntegration.dll), Listings 19.12 and 19.13 
contain the XAML and C# code to host the control and get the resulting application 
shown in Figure 19.12.

LISTING 19.12 Window1.xaml—XAML for the Terminal Services WPF Application

<Window x:Class=”HostingActiveX.Window1” 

xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation” 

xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml” 

Title=”Hosting the Terminal Services ActiveX Control”> 

<DockPanel Name=”panel” Margin=”10”>

<StackPanel Margin=”0,0,0,10” DockPanel.Dock=”Top” Orientation=”Horizontal”> 

<TextBox x:Name=”serverBox” Width=”180” Margin=”0,0,10,0”/> 

<Button x:Name=”connectButton” Click=”connectButton_Click”>Connect</Button>

</StackPanel> 

</DockPanel>

</Window>

Embedding ActiveX Controls in WPF Applications 715
1

9

  From the Library of Wow! eBook



ptg

LISTING 19.13 Window1.xaml.cs—C# Code for Hosting the Terminal Services ActiveX 
Control

using System; 

using System.Windows; 

using System.Windows.Forms.Integration;

namespace HostingActiveX 

{

public partial class Window1 : Window 

{

AxMSTSCLib.AxMsTscAxNotSafeForScripting termServ;

public Window1() 

{

InitializeComponent();

// Create the host and the ActiveX control

WindowsFormsHost host = new WindowsFormsHost(); 

termServ = new AxMSTSCLib.AxMsTscAxNotSafeForScripting();

// Add the ActiveX control to the host, and the host to the WPF panel 

host.Child = termServ; 

panel.Children.Add(host);

}

void connectButton_Click(object sender, RoutedEventArgs e) 

{

termServ.Server = serverBox.Text; 

termServ.Connect();

} 

}

}

There’s nothing special about the XAML in Listing 19.12; it simply contains a DockPanel 
with a TextBox and Button for choosing a server and connecting to it. In Listing 19.13, a 
WindowsFormsHost is added to the DockPanel, and the Windows Forms representation of 
the ActiveX control is added to the WindowsFormsHost. This control is called 
AxMsTscAxNotSafeForScripting. (In versions of Windows prior to Windows Vista, it has 
the somewhat simpler name AxMsTscAx.) The interaction with the complicated-sounding 
AxMsTscAxNotSafeForScripting control is quite simple. Its Server property can be set to a 
simple string, and you can connect to the server by calling Connect.

CHAPTER 19 Interoperability with Non-WPF Technologies716

  From the Library of Wow! eBook



ptg

FIGURE 19.12 Hosting the Terminal Services ActiveX control in a WPF Window.

Of course, the instantiation of the WindowsFormsHost and the
AxMsTscAxNotSafeForScripting control can be done directly in XAML, replacing the 
boldface code in Listing 19.13. This is shown in Listing 19.14. You could go a step further 
and use data binding to replace the first line in connectButton_Click, but you would still 
need the event handler for calling the Connect method.

LISTING 19.14 Window1.xaml—Updated XAML for the Terminal Services WPF Application

<Window x:Class=”HostingActiveX.Window1” 

xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation” 

xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml” 

xmlns:ax=”clr-namespace:AxMSTSCLib;assembly=AxMSTSCLib” 

Title=”Hosting the Terminal Services ActiveX Control”> 

<DockPanel Name=”panel” Margin=”10”>

<StackPanel Margin=”0,0,0,10” DockPanel.Dock=”Top” Orientation=”Horizontal”> 

<TextBox x:Name=”serverBox” Margin=”0,0,10,0”/> 

<Button x:Name=”connectButton” Click=”connectButton_Click”>Connect</Button>

</StackPanel> 

<WindowsFormsHost>

<ax:AxMsTscAxNotSafeForScripting x:Name=”termServ”/> 

</WindowsFormsHost>

</DockPanel> 

</Window>

Embedding ActiveX Controls in WPF Applications 717
1

9

  From the Library of Wow! eBook



ptg

Summary
Most developers understand that it’s possible to build really powerful applications with 
WPF. But with the HWND, Windows Forms, DirectX, and ActiveX interoperability features 
discussed in this chapter, there’s essentially no limit to the power. That’s because you can 
tap into decades of effort that has been poured into controls and functionality that have 
already been developed, tested, and deployed. For organizations with huge investments in 
existing code, this is a critical feature.

The main scenarios discussed in this chapter boil down to five classes. Their names are a 
bit confusing and inconsistent, so Table 19.1 provides a summary that you can flip back 
to if you ever forget which class is which.

CHAPTER 19 Interoperability with Non-WPF Technologies718

It’s possible to host ActiveX controls in a partial-trust XAML Browser Application or loose 
XAML page, but you can’t use Windows Forms interoperability to do so (because this feature 
requires a higher level of trust). Instead, you can use a Frame or WebBrowser control that 
hosts a webpage containing the ActiveX control. For example:

<Frame Source=”pack://siteoforigin:,,,/webpage.html”/>

where webpage.html contains the following:

<html> 

<body>

<object Width=”100%” Height=”100%” ClassId=”clsid:…”/> 

</body>

</html>

As far as security goes, you will see the same behavior as if you navigated to webpage.html 
directly in Internet Explorer. You might get security prompts, determined by the user’s 
settings and the current zone. But you can avoid prompts in some cases by using a signed, 
safe-for-scripting ActiveX control.

T I P

What about the reverse direction—exposing WPF controls as ActiveX 
controls?

There is no built-in support for this above and beyond HWND interoperability, so your best 
bet is to use your favorite means of creating a non-WPF ActiveX control (using Active 
Template Library [ATL], for example) and inject WPF content inside it.

?
FA Q

  From the Library of Wow! eBook



ptg

TABLE 19.1 The Five Main Interoperability Classes 

Class Name Usage

HwndHost Hosting an HWND in WPF
WindowsFormsHost Hosting Windows Forms in WPF
D3DImage Hosting DirectX in WPF without an HWND
HwndSource Hosting WPF in an HWND
ElementHost Hosting WPF in Windows Forms

The benefits of interoperability are broader than the features discussed in this chapter, 
however. You could completely overhaul an application’s user interface with WPF but 
hook it up to back-end logic already in place—even if that logic is unmanaged code. This 
could be done using a number of techniques, such as using C++/CLI, PInvoke, or COM 
interoperability.

Despite the ease and power of the features described in this chapter, there are still clear 
benefits to having an all-WPF user interface rather than a hybrid one. For example, in a 
pure WPF user interface, all the elements can be scaled, styled, and restyled in a similar 
fashion. They can be seamlessly overlaid on top of each other. Keyboard navigation and 
focus works naturally without much extra effort. In addition, you don’t have to worry 
about mixing resolution-independent elements with resolution-dependent elements. A 
pure WPF user interface also opens the door to being able to run in a partial-trust envi-
ronment (depending on how you separate your back-end logic)—perhaps even buildable 
for Silverlight as well.

Even complex applications with years of user-interface investment can easily benefit from 
WPF if they are well factored. For example, I once came across an MFC-based program 
that showed street maps across the United States. The application used various MFC 
(therefore GDI-based) primitives to draw each line and shape in the current scene. By 
swapping in a WPF surface and performing the same drawing actions using the drawing 
APIs discussed in Chapter 15, “2D Graphics,” the map could be replaced with a WPF 
version with relatively small code changes. After making the leap to WPF, the application 
could now easily support features that would have been difficult otherwise: crisp 
zooming, tilting the map in 3D, and so on.

Therefore, if you have developed a pre-WPF application, there are many ways to improve 
its look or functionality by using interoperability to incrementally add WPF features. If 
you’ve developed pre-WPF controls, there’s another nice use of interoperability that 
doesn’t necessarily involve updating end-user functionality: Simply wrap such controls in 
a WPF object model so consumers can treat it like a first-class WPF control without 
having to learn about WPF’s interoperability features. Creating custom controls (whether 
pure WPF or not) is the topic of the next chapter.

Summary 719
1

9

  From the Library of Wow! eBook



ptg

This page intentionally left blank 

  From the Library of Wow! eBook



ptg

CHAPTER 20

User Controls and
Custom Controls

Chapter 9, “Content Controls,” claims that no modern 
presentation framework would be complete without a stan-
dard set of controls that enable you to quickly assemble 
traditional user interfaces. I think it’s also safe to say that 
no modern presentation framework would be complete 
without the ability to create your own reusable controls. 
You might want to create a control because your own 
applications have custom needs, or because there’s money 
to be made by selling unique controls to other software 
developers! This chapter is about two WPF mechanisms for 
writing your own controls: user controls (the easier of the 
two) and custom controls (the more complicated but also 
more flexible variety).

The role that user controls and custom controls play in
WPF is quite different than in other technologies. In other 
technologies, custom controls are often created simply to 
get a nonstandard look. But WPF has many options for 
achieving nonstandard-looking controls without creating 
brand-new controls. You can completely restyle built-in 
controls with WPF’s style and template mechanisms, 
demonstrated in Chapter 14, “Styles, Templates, Skins, and 
Themes.” Or you can sometimes simply embed complex 
content inside built-in controls to get the look you want. 
In other technologies, a Button containing an Image or a 
TreeView containing ComboBoxes might necessitate a 
custom control, but not in WPF! (That’s not to say that 
there are fewer opportunities for selling reusable compo-
nents. It just means you have more implementation 
options.)

IN THIS CHAPTER

. Creating a User Control

. Creating a Custom Control

  From the Library of Wow! eBook



ptg

The decision to create a new control should be based on the APIs you want to expose 
rather than the look you want to achieve. If no existing control has a programmatic inter-
face that naturally represents your concept, go ahead and create a user control or custom 
control. The biggest mistake people make with user controls and custom controls is creat-
ing one from scratch when an existing control can suffice!

CHAPTER 20 User Controls and Custom Controls722

I’ve concluded that I need to write my own control. But should I write a 
user control or a custom control?

You should create a user control if its reuse will be limited and you don’t care about expos-
ing rich styling and theming support. You should create a custom control if you want it to be 
a robust first-class control (like WPF’s built-in controls). A user control tends to contain a 
logical tree defining its look and tends to have logic that directly interacts with these child 
elements. A custom control, on the other hand, tends to get its look from a visual tree 
defined in a separate control template and generally has logic that works even if a consumer 
changes its visual tree completely (using the techniques from Chapter 14).

This distinction is mostly imposed by the default development experience provided by Visual 
Studio, however. Visual Studio pushes you in a certain direction based on the type of control 
you add to a project. When you add a user control, you get a XAML file with a corresponding 
code-behind file, so you can easily build your user control much as you would build a Window 
or Page. But when you add a custom control to a project, you get a normal .cs (or .vb) code 
file plus a theme style with a simple control template injected into the project’s generic 
dictionary (themes\generic.xaml).

Therefore, to answer this question with less hand-waving, let’s look at the precise differences 
between user controls and custom controls. A custom control can derive from Control or 
any of its subclasses. The definition of a user control, on the other hand, is a class that 
derives from UserControl, which itself derives from ContentControl, which derives from 
Control. So, user controls are technically a type of custom control, but this chapter uses 
the term custom control to mean any Control-derived class that isn’t a user control.

If the control you want to create would benefit from taking advantage of functionality already 
present in a non-ContentControl (such as RangeBase or Selector) or a ContentControl-
derived class (such as HeaderedContentControl or Button), it’s logical to derive your class 
from it. If your control doesn’t need any of the extra functionality that classes such as 
ContentControl add on top of Control, deriving directly from Control makes sense. Both 
of these choices mean that you’re writing a custom control rather than a user control.

But if neither of these conditions is true, the choice between deriving directly from 
ContentControl (which means you’re writing a custom control) versus deriving from 
UserControl (which means you’re writing a user control) is fairly insignificant if you ignore 
the development experience. That’s because UserControl differs very little from its 
ContentControl base class; it has a different default control template, it has a default 
content alignment of Stretch in both directions (rather than Left and Top), it sets 
IsTabStop and Focusable to false by default, and it changes the source of any events 
raised from inner content to be the UserControl itself. And that’s all. WPF does no special-
casing of UserControl at runtime. Therefore, in this case, it makes sense to choose based 
on your intention to create a “lookless” control (which would be a custom control) versus a 
“look-filled” control (which would be a user control).

?
FA Q

  From the Library of Wow! eBook



ptg

Creating a User Control
There’s no better way to understand the process of creating a user control than actually 
creating one. So in this section, we’ll create a user control called FileInputBox.

FileInputBox combines a TextBox with a Browse Button. The intention is that a user 
could type a raw filename in the TextBox or click the Button to get a standard 
OpenFileDialog. If the user chooses a file in this dialog box, its fully qualified name is 
automatically pasted into the TextBox. This control works exactly like <INPUT 
TYPE=”FILE”/> in HTML.

Creating the User Interface of the User Control
Listing 20.1 contains the user control’s XAML file that defines the user interface, and 
Figure 20.1 shows the rendered result.

LISTING 20.1 FileInputBox.xaml—The User Interface for FileInputBox

<UserControl x:Class=”Chapter20.FileInputBox” 

xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation” 

xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”>

<DockPanel> 

<Button x:Name=”theButton” DockPanel.Dock=”Right” Click=”theButton_Click”>

Browse...</Button> 

<TextBox x:Name=”theTextBox”

MinWidth=”{Binding ActualWidth, ElementName=theButton}” Margin=”0,0,2,0”/> 

</DockPanel>

</UserControl>

The Button is docked on the right and 
has an event handler for the Click event 
(covered in the next section). The 
TextBox fills the remaining space except 
for a two-unit margin on the right to 
give some space between itself and the 
Button. The XAML definition is very simple, but it handles every layout situation flaw-
lessly. The setting of MinWidth on TextBox isn’t necessary, but it’s a slick way to ensure 
that the TextBox doesn’t look too small in certain layout conditions. And by making its 
minimum width match the width of the Button (which is always just big enough to fit its 
content, thanks to the right-docking), a hard-coded size is avoided.

Figure 20.2 shows what happens when an application uses an instance of FileInputBox 
and sets various properties inherited from ContentControl and Control, as follows:

<local:FileInputBox BorderBrush=”Orange” BorderThickness=”4” Background=”Blue” 

HorizontalContentAlignment=”Right”/>

Creating a User Control 723
2

0

FIGURE 20.1 The FileInputBox user 
control combines a simple TextBox with a 
simple Button.

  From the Library of Wow! eBook



ptg

The fact that setting these properties 
works correctly seems like a no-brainer, 
but it’s actually not as automatic as you 
might think. The appearance of 
FileInputBox depends on its control 
template, which it inherits from 
UserControl. Fortunately, UserControl’s 
default control template respects properties such as the ones used in Figure 20.2:

<ControlTemplate TargetType=”{x:Type UserControl}”> 

<Border Background=”{TemplateBinding Background}”

BorderBrush=”{TemplateBinding BorderBrush}”

BorderThickness=”{TemplateBinding BorderThickness}” 

Padding=”{TemplateBinding Padding}”> 

<ContentPresenter

HorizontalAlignment=”{TemplateBinding HorizontalContentAlignment}”

VerticalAlignment=”{TemplateBinding VerticalContentAlignment}”/> 

</Border>

</ControlTemplate>

If FileInputBox derived directly from 
ContentControl (UserControl’s base 
class) instead, these properties would not 
be respected unless FileInputBox were 
given a custom template. As is, 
FileInputBox can be restyled by its 
consumers, and individual elements (the 
TextBox, Button, and/or DockPanel) can 
even be restyled if the consumer creates typed styles for them!

From a visual perspective, consuming a FileInputBox as follows:

<Window xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation” 

xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml” 

xmlns:local=”clr-namespace:Chapter20”> 

<StackPanel Margin=”20”>

<local:FileInputBox/>

</StackPanel> 

</Window>

is just a shortcut for plopping the logical tree of elements from FileInputBox.xaml into 
your user interface:

<Window xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation” 

xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml” 

xmlns:local=”clr-namespace:Chapter20”> 

<StackPanel Margin=”20”>

CHAPTER 20 User Controls and Custom Controls724

FIGURE 20.2 FileInputBox automatically 
respects visual properties from its base 
classes.

If you want to prevent an application’s typed 
styles from impacting elements inside your 
control, your best bet is to give them an 
explicit Style (which can be null to get the 
default look).

T I P

  From the Library of Wow! eBook



ptg

<UserControl> 

<DockPanel>

<Button DockPanel.Dock=”Right”>Browse...</Button> 

<TextBox MinWidth=”{Binding ActualWidth, ElementName=theButton}”

Margin=”0,0,2,0”/> 

</DockPanel>

</UserControl>

</StackPanel> 

</Window>

This alone can be handy, but it is also achievable by giving an arbitrary existing control 
an explicit control template containing the DockPanel, Button, and TextBox (ignoring the 
subtle differences from the elements being in a visual tree rather than the logical tree). 
However, user controls typically add value by encapsulating custom behavior.

Creating the Behavior of the User Control
Listing 20.2 contains the entire code-behind file for Listing 20.1. This gives FileInputBox 
the appropriate behavior when the Button is clicked, exposes the text from the TextBox as 
a read/write property, and exposes a simple FileNameChanged event corresponding to the 
TextChanged event exposed by the TextBox. The event handler for TextChanged marks the 
event as handled (to stop its bubbling) and raises the FileNameChanged event instead.

LISTING 20.2 FileInputBox.xaml.cs—The Logic for FileInputBox

using System; 

using System.Windows; 

using System.Windows.Controls; 

using Microsoft.Win32;

namespace Chapter20 

{

public partial class FileInputBox : UserControl 

{

public FileInputBox() 

{

InitializeComponent(); 

theTextBox.TextChanged += new TextChangedEventHandler(OnTextChanged);

}

private void theButton_Click(object sender, RoutedEventArgs e) 

{

OpenFileDialog d = new OpenFileDialog(); 

if (d.ShowDialog() == true) // Result could be true, false, or null

this.FileName = d.FileName;

Creating a User Control 725
2

0

  From the Library of Wow! eBook



ptg

}

public string FileName 

{

get { return theTextBox.Text; } 

set { theTextBox.Text = value; }

}

void OnTextChanged(object sender, TextChangedEventArgs e) 

{

e.Handled = true; 

if (FileNameChanged != null)

FileNameChanged(this, EventArgs.Empty); 

}

public event EventHandler<EventArgs> FileNameChanged; 

}

}

That’s all there is to it! If you don’t care about broadly sharing your user control or maxi-
mizing the integration with WPF’s subsystems, you can often expose plain .NET methods, 
properties, and events and have a control that’s “good enough.” Figure 20.3 shows the 
control in action.

CHAPTER 20 User Controls and Custom Controls726

LISTING 20.2 Continued

FIGURE 20.3 FileInputBox spawns a standard OpenFileDialog when its Button is 
clicked.

  From the Library of Wow! eBook



ptg

Consuming a user control is very straightforward. If you want to use it from a Window or 
Page in the same assembly, you simply reference the appropriate namespace, which, in 
this case, is Chapter20:

<Window xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation” 

xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml” 

xmlns:local=”clr-namespace:Chapter20”> 

<StackPanel Margin=”20”>

<local:FileInputBox/>

</StackPanel> 

</Window>

If you want to use it from a separate assembly, the clr-namespace directive simply needs 
to include the assembly information along with the namespace:

xmlns:local=”clr-namespace:Chapter20;assembly=Chapter20Controls”

Creating a User Control 727
2

0

Protecting User Controls from Accidental Usage

The following is a valid way to initialize FileInputBox, giving its TextBox an initial FileName 
value of c:\Lindsay.htm:

<local:FileInputBox FileName=”c:\Lindsay.htm”/>

But because FileInputBox ultimately derives from ContentControl, here are two other 
ways a consumer might attempt to use FileInputBox:

<local:FileInputBox Content=”c:\Lindsay.htm”/>

or:

<local:FileInputBox>c:\Lindsay.htm</local:FileInputBox>

Can you guess what happens in these cases? The default value of Content (the DockPanel 
containing the Button and TextBox) gets completely replaced with this string! This is clearly 
not what the consumer intended; otherwise, they should have just used a TextBlock 
element!

Fortunately, you can take some actions to prevent such mistakes. For FileInputBox, you 
can designate FileName to be the content property instead of Content, as follows:

[ContentProperty(“FileName”)]

public partial class FileInputBox : UserControl 

{

… 

}

This simple change makes this:

<local:FileInputBox>c:\Lindsay.htm</local:FileInputBox>

equivalent to this:

<local:FileInputBox FileName=”c:\Lindsay.htm”/>

D I G G I N G  D E E P E R

  From the Library of Wow! eBook



ptg

Adding Dependency Properties to the User Control
One possible enhancement to FileInputBox is to change FileName from a plain .NET 
property to a dependency property. That way, consumers of the control can use it as a 
data-binding target, more easily use the value in a custom control template, and so on.

To turn FileName into a dependency property, you can add a DependencyProperty field to 
the class, initialize it appropriately, and change the implementation of the FileName prop-
erty to use the dependency property mechanism:

public static readonly DependencyProperty FileNameProperty = 

DependencyProperty.Register(“FileName”, typeof(string), typeof(FileInputBox));

public string FileName 

{

get { return (string)GetValue(FileNameProperty); } 

set { SetValue(FileNameProperty, value); }

}

By convention, WPF’s built-in objects give the field the name PropertyNameProperty. You 
should follow this convention with your own controls to avoid confusion.

The preceding implementation of FileName as a dependency property is flawed, however. 
It’s no longer associated with the Text property of the control’s inner TextBox! To update 
FileName when Text changes, you could add a line of code inside OnTextChanged:

void OnTextChanged(object sender, TextChangedEventArgs e) 

{

this.FileName = theTextBox.Text;

e.Handled = true; 

if (FileNameChanged != null)

FileNameChanged(this, EventArgs.Empty); 

}

CHAPTER 20 User Controls and Custom Controls728

Continued

But how can you change the explicit setting of Content from being disastrous? One way is to 
add the following method to FileInputBox:

protected override void OnContentChanged(object oldContent, object newContent) 

{

if (oldContent != null) 

throw new InvalidOperationException(“You can’t change Content!”);

}

Another solution is to place your control’s user interface inside a control template (rather 
than Content) and bind TextBox.Text to the Content property. But if you do that, you 
might as well write a custom control rather than a user control!

  From the Library of Wow! eBook



ptg

And to update Text when FileName changes, it’s tempting to add a line of code to the 
FileName property’s set accessor as follows:

set { theTextBox.Text = value; SetValue(FileNameProperty, value); }

But this isn’t a good idea because, as explained in Chapter 3, “WPF Fundamentals,” the 
set accessor never gets called unless someone sets the .NET property in procedural code. 
When setting the property in XAML, data binding to it, and so on, WPF calls SetValue 
directly.

To respond properly to any value change in the FileName dependency property, you could 
register for a notification provided by the dependency property system. But the easiest 
way to keep Text and FileName in sync is to use data binding. Listing 20.3 contains the 
entire C# implementation of FileInputBox, updated with FileName as a dependency 
property. This assumes that the XAML for FileInputBox has been updated to take advan-
tage of data binding as follows:

<UserControl x:Class=”Chapter20.FileInputBox” 

xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation” 

xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml” 

x:Name=”root”>

<DockPanel> 

<Button x:Name=”theButton” DockPanel.Dock=”Right” Click=”theButton_Click”>

Browse...</Button> 

<TextBox x:Name=”theTextBox”

MinWidth=”{Binding ActualWidth, ElementName=theButton}” 

Text=”{Binding FileName, ElementName=root}” Margin=”0,0,2,0”/>

</DockPanel> 

</UserControl>

LISTING 20.3 FileInputBox.xaml.cs—An Alternate Version of Listing 20.2, in Which 
FileName Is a Dependency Property 

using System;

using System.Windows; 

using System.Windows.Controls; 

using Microsoft.Win32;

namespace Chapter20 

{

public partial class FileInputBox : UserControl 

{

public FileInputBox() 

{

InitializeComponent(); 

theTextBox.TextChanged += new TextChangedEventHandler(OnTextChanged);

Creating a User Control 729
2

0

  From the Library of Wow! eBook



ptg

}

private void theButton_Click(object sender, RoutedEventArgs e) 

{

OpenFileDialog d = new OpenFileDialog(); 

if (d.ShowDialog() == true) // Result could be true, false, or null

this.FileName = d.FileName; 

}

public string FileName 

{

get { return (string)GetValue(FileNameProperty); } 

set { SetValue(FileNameProperty, value); }

}

private void OnTextChanged(object sender, TextChangedEventArgs e) 

{

e.Handled = true; 

if (FileNameChanged != null)

FileNameChanged(this, EventArgs.Empty); 

}

public static readonly DependencyProperty FileNameProperty = 

DependencyProperty.Register(“FileName”, typeof(string), typeof(FileInputBox));

public event EventHandler<EventArgs> FileNameChanged; 

}

}

With the data binding in place on TextBox.Text (which is two-way by default), the stan-
dard dependency property implementation works with no extra code, despite the fact 
that the value for FileName is stored separately from the TextBox.

CHAPTER 20 User Controls and Custom Controls730

LISTING 20.3 Continued

Avoid implementing logic in a dependency property’s property wrapper other 
than calling GetValue and SetValue!

If you deviate from the standard implementation, you’ll introduce semantics that apply only 
when the property is directly set from procedural code. To react to calls to SetValue, regard-
less of the source, you should register for a dependency property changed notification and 
place your logic in the callback method instead. Or you can find another mechanism to 
respond to property value changes with the help of data binding, as done in Listing 20.3.

WA R N I N G

  From the Library of Wow! eBook



ptg

Adding Routed Events to the User Control
If you go to the effort of giving a user control appropriate dependency properties, you 
should probably make the same effort to transform appropriate events into routed events. 
Consumers can write triggers based on a routed event you expose, but they can’t directly 
do that for normal .NET events. For FileInputBox, it makes sense for its FileNameChanged 
event to be a bubbling routed event, especially because the TextChanged event it’s wrap-
ping is itself a bubbling routed event!

As discussed in Chapter 6, “Input Events: Keyboard, Mouse, Stylus, and Multi-Touch,” 
defining a routed event is much like defining a dependency property: You define a 
RoutedEvent field (with an Event suffix by convention), register it, and optionally provide 
a .NET event that wraps the AddHandler and RemoveHandler APIs. Listing 20.4 shows what 
it looks like to update the FileNameChanged event from the previous two listings to be a 
bubbling routed event. In addition to the routed event implementation, the private 
OnTextChanged method is updated to raise the routed event with the RaiseEvent method 
inherited from UIElement.

LISTING 20.4 FileInputBox.xaml.cs—An Update to Listing 20.3, Making FileNameChanged 
a Routed Event

using System; 

using System.Windows; 

using System.Windows.Controls; 

using Microsoft.Win32;

namespace Chapter20 

{

public partial class FileInputBox : UserControl 

{

public FileInputBox() 

{

InitializeComponent(); 

theTextBox.TextChanged += new TextChangedEventHandler(OnTextChanged);

}

private void theButton_Click(object sender, RoutedEventArgs e)

Creating a User Control 731
2

0

FrameworkPropertyMetadata, an instance of which can be passed to 
DependencyProperty.Register, contains several properties for customizing the behavior of 
the dependency property. Besides attaching a property changed handler, you can set a 
default value, control whether the property is inherited by child elements, set the default 
data flow for data binding, control whether a value change should refresh the control’s layout 
or rendering, and so on.

T I P

  From the Library of Wow! eBook



ptg

{

OpenFileDialog d = new OpenFileDialog(); 

if (d.ShowDialog() == true) // Result could be true, false, or null

this.FileName = d.FileName; 

}

public string FileName 

{

get { return (string)GetValue(FileNameProperty); } 

set { SetValue(FileNameProperty, value); }

}

private void OnTextChanged(object sender, TextChangedEventArgs e) 

{

e.Handled = true;

RoutedEventArgs args = new RoutedEventArgs(FileNameChangedEvent); 

RaiseEvent(args);

}

public event RoutedEventHandler FileNameChanged 

{

add { AddHandler(FileNameChangedEvent, value); } 

remove { RemoveHandler(FileNameChangedEvent, value); }

}

public static readonly DependencyProperty FileNameProperty = 

DependencyProperty.Register(“FileName”, typeof(string), typeof(FileInputBox));

public static readonly RoutedEvent FileNameChangedEvent = 

EventManager.RegisterRoutedEvent(“FileNameChanged”, 

RoutingStrategy.Bubble, typeof(RoutedEventHandler), typeof(FileInputBox));

} 

}

Creating a Custom Control
Just as the previous section uses FileInputBox to illustrate creating a user control, this 
section uses a PlayingCard control to illustrate the process of creating a custom control. 
Whereas the tendency for designing a user control is to start with the user interface and 
then later add behavior, it usually makes more sense to start with the behavior when 
designing a custom control. That’s because a good custom control has a pluggable user 
interface.

CHAPTER 20 User Controls and Custom Controls732

LISTING 20.4 Continued

  From the Library of Wow! eBook



ptg

Creating the Behavior of the Custom Control
The PlayingCard control should have a notion of a face, which can be set to one of 52 
possible values. It should be clickable. It could also have a notion of being selected, for 
which each click toggles its state between selected and unselected.

Before implementing the control, it helps to think about the similarities between the 
control and any of the built-in WPF controls. That way, you can choose a base class more 
specific than just Control and leverage as much built-in support as possible.

For PlayingCard, the notion of a face is sort of like the Foreground property that all 
controls have. But Foreground is a Brush, and I want to enable setting the control’s face to 
a simple string such as “H2” for two of hearts or “SQ” for queen of spades. We could 
hijack some control’s existing property of type string (for example, TextBlock.Text), as 
described in Chapter 14, but such a hack would be a poor experience for consumers of 
the control. Therefore, it feels logical to implement a distinct Face property.

The notion of being clickable is what defines a Button, so it seems obvious that Button 
should be the base class we choose. But what about the notion of being selected? 
ToggleButton already provides that in the form of an IsChecked property, as well as the 
notion of being clickable! So ToggleButton sounds like an ideal base class.

A First Attempt
Listing 20.5 contains an implementation of a ToggleButton-derived PlayingCard control.

LISTING 20.5 PlayingCard.cs—Logic for the PlayingCard Custom Control

using System.Windows.Media; 

using System.Windows.Controls.Primitives;

namespace Chapter20 

{

public class PlayingCard : ToggleButton 

{

public string Face 

{

get { return face; } 

set { face = value; Foreground = (Brush)TryFindResource(face); }

} 

private string face;

} 

}

With the Click, Checked, and Unchecked events and the IsChecked property inherited 
from ToggleButton, all PlayingCard needs to do is implement a Face property. Listing
20.5 uses the input string as the key to a resource used for the control’s Foreground. By

Creating a Custom Control 733
2

0

  From the Library of Wow! eBook



ptg

using TryFindResource, any invalid strings result in the Foreground being set to null, 
which is reasonable behavior. But this also implies that we need to store valid resources 
somewhere with the keys “HA”, “H2”, “H3”, and so on. That’s not a problem; we could 
store them in PlayingCard’s Resources collection, and the TryFindResource call will find 
them.

To create the visuals for PlayingCard, I designed 52 drawings in Adobe Illustrator—one 
for each possible face—and then exported them to XAML, using the exporter from 
http://mikeswanson.com/xamlexport. Each of the 52 resources is a DrawingBrush with a 
number of GeometryDrawing objects. These are the resources to add to PlayingCard’s 
Resources collection. It would be ridiculous to attempt to convert such a large chunk of 
XAML to C# code, so one approach we could take is to split the definition of PlayingCard 
between a XAML file and a C# file, making the code in Listing 20.5 the code-behind file. 
Listings 20.6 and 20.7 show what this would look like.

LISTING 20.6 PlayingCard.xaml.cs—The Code from Listing 20.5, Now as a Code-Behind 
File

using System.Windows.Media; 

using System.Windows.Controls.Primitives;

namespace Chapter20 

{

public partial class PlayingCard : ToggleButton 

{

public PlayingCard() 

{

InitializeComponent(); 

}

public string Face 

{

get { return face; } 

set { face = value; Foreground = (Brush)TryFindResource(face); }

} 

private string face;

} 

}

LISTING 20.7 PlayingCard.xaml—Resources for the PlayingCard Custom Control

<ToggleButton x:Class=”Chapter20.PlayingCard” 

xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation” 

xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml” 

xmlns:local=”clr-namespace:Chapter20”>

<ToggleButton.Resources>

CHAPTER 20 User Controls and Custom Controls734

  From the Library of Wow! eBook

http://mikeswanson.com/xamlexport


ptg

<DrawingBrush x:Key=”HA” Stretch=”Uniform”> 

<DrawingBrush.Drawing>

… 

</DrawingBrush.Drawing> 

</DrawingBrush> 

<DrawingBrush x:Key=”H2” Stretch=”Uniform”> 

<DrawingBrush.Drawing>

… 

</DrawingBrush.Drawing> 

</DrawingBrush> 

… 

<Style TargetType=”{x:Type local:PlayingCard}”>

… 

<Setter Property=”Template”> 

<Setter.Value>

<ControlTemplate TargetType=”{x:Type local:PlayingCard}”> 

… 

<Rectangle Fill=”{TemplateBinding Foreground}”/> 

…

</ControlTemplate> 

</Setter.Value> 

</Setter>

</Style> 

</ToggleButton.Resources> 

</ToggleButton>

The changes to the C# code are straightforward additions needed to support the compila-
tion of PlayingCard across both files. Listing 20.7 fills the Resources collection with all
52 DrawingBrushes, plus a typed Style with a template that improves the visual appear-
ance (so PlayingCard looks even less like a Button). The Style contains triggers that start 
animations based on the Checked, Unchecked, MouseEnter, and MouseLeave events (not 
shown in this listing). Alternatively, it could leverage the Visual State Manager because 
ToggleButton defines Checked and Unchecked states in its CheckStates group, plus it 
respects the Normal and MouseOver states from ButtonBase’s CommonStates group.

The key to the template is that the control’s Foreground, which is assigned to one of the 
DrawingBrush resources whenever Face is assigned a value, fills a Rectangle. Showing the 
entire contents of Listing 20.7 would occupy over 100 pages (I kid you not!) because of the 
size and number of DrawingBrushes. Therefore, the whole listing isn’t provided here, but 
this book’s source code includes it in its entirety (on the website, 
http://informit.com/title/9780672331190).

Creating a Custom Control 735

LISTING 20.7 Continued

2
0

  From the Library of Wow! eBook

http://informit.com/title/9780672331190


ptg

Figure 20.4 shows instances of PlayingCard in action, using the following Window that 
assigns a unique Face to each instance and rotates them in a “fan” formation:

<Window xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation” 

xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml” 

xmlns:local=”clr-namespace:Chapter20” 

Title=”Window Hosting PlayingCards”>

<Window.Background> 

…

</Window.Background> 

<Viewbox>

<Canvas Width=”220” Height=”400”> 

<local:PlayingCard Face=”C3” Width=”100” Height=”140” Canvas.Left=”0”

Canvas.Top=”100”> 

<local:PlayingCard.RenderTransform>

<RotateTransform CenterX=”50” CenterY=”140” Angle=”300”/> 

</local:PlayingCard.RenderTransform> 

</local:PlayingCard> 

<local:PlayingCard Face=”CQ” Width=”100” Height=”140” Canvas.Left=”10”

Canvas.Top=”100”> 

<local:PlayingCard.RenderTransform>

<RotateTransform CenterX=”50” CenterY=”140” Angle=”310”/> 

</local:PlayingCard.RenderTransform> 

</local:PlayingCard> 

…

</Canvas> 

</Viewbox>

</Window>

This approach to implementing PlayingCard works, and the output looks just fine on 
paper. But if you run the application shown in Figure 20.4, you’ll probably notice that the 
performance is sluggish. It also consumes a lot of memory. And both of these issues get 
worse for every additional PlayingCard you place in the Window. The problem is that the
52 DrawingBrush resources are stored inside the control, so every instance has its own 
copy of all of them! (100 book pages of resources x 13 instances = a lot of memory!)

This approach also suffers from unexpected behavior for consumers of the control. For 
example, if the preceding Window attempts to set an individual PlayingCard’s Resources 
property in XAML, an exception is thrown, explaining that the ResourceDictionary can’t 
be reinitialized.

There was a warning sign that indicated that we were heading down the wrong path (in 
addition to the title of this section being “A First Attempt”): The logic in Listings 20.5 and
20.6 does not purely focus on the behavior of the PlayingCard control. Instead, it dictates 
a visual implementation detail by requiring resources with specific keys and by assigning 
them to Foreground.

CHAPTER 20 User Controls and Custom Controls736

  From the Library of Wow! eBook



ptg

FIGURE 20.4 A hand of PlayingCard instances that individually react to hover and 
selection.

A quick fix is to take the contents of PlayingCard.Resources and slap them into any 
consumer’s Application.Resources instead. This avoids the performance and memory 
problems, but it breaks the encapsulation of the control. If the application pictured in 
Figure 20.4 accidentally omitted these resources, it would look like Figure 20.5.

The bottom line is that when creating this version of PlayingCard, we were still thinking 
in terms of the user control model, in which the control “owns” its user interface. We 
need to break free of that thinking and reorganize the code.

The Recommended Approach
Looking back at Listing 20.5, we should remove the resource retrieval and setting of 
Foreground, leaving that detail to the Style applied to PlayingCard:

public string Face 

{

get { return face; } 

set { face = value; Foreground = (Brush)TryFindResource(face); }

}

Creating a Custom Control 737
2

0

PlayingCard jumps up or down 
when you click to select or unselect it.

PlayingCard “springs out” at 
you when you hover over it.

  From the Library of Wow! eBook



ptg

FIGURE 20.5 A hand of PlayingCard instances looks no different than ToggleButtons 
when the necessary resources aren’t present.

The reasonable place to put PlayingCard’s Style is inside the assembly’s generic dictio-
nary (themes\generic.xaml, covered in Chapter 14). Therefore, to apply the custom Style 
to PlayingCard (and avoid having it look as it does in Figure 20.5), we should place the 
following line of code in PlayingCard’s static constructor:

DefaultStyleKeyProperty.OverrideMetadata(typeof(PlayingCard), 

new FrameworkPropertyMetadata(typeof(PlayingCard)));

Also, to facilitate the use of Face with WPF subsystems, we should turn it into a depen-
dency property. Listing 20.8 contains all three of these changes, giving the final imple-
mentation of PlayingCard.

LISTING 20.8 PlayingCard.cs—The Final Logic for the PlayingCard Custom Control

using System.Windows; 

using System.Windows.Media; 

using System.Windows.Controls.Primitives;

namespace Chapter20 

{

public class PlayingCard : ToggleButton 

{

static PlayingCard() 

{

// Override style

DefaultStyleKeyProperty.OverrideMetadata(typeof(PlayingCard),

CHAPTER 20 User Controls and Custom Controls738

  From the Library of Wow! eBook



ptg

new FrameworkPropertyMetadata(typeof(PlayingCard))); 

// Register Face dependency property 

FaceProperty = DependencyProperty.Register(“Face”,

typeof(string), typeof(PlayingCard)); 

}

public string Face 

{

get { return (string)GetValue(FaceProperty); } 

set { SetValue(FaceProperty, value); }

} 

public static DependencyProperty FaceProperty;

} 

}

It almost seems too simple, but this is all the logic you need. The code captures the 
essence of PlayingCard: The only way it’s unique from ToggleButton is that it has a string 
Face property. The rest is just a difference in default visuals.

Creating a Custom Control 739

LISTING 20.8 Continued

2
0

When you create a WPF Custom Control Library project in Visual Studio or use Add, New Item 
to add a WPF custom control to an existing project, Visual Studio automatically creates a 
code file with the correct DefaultStyleKeyProperty.OverrideMetadata call and a place-
holder Style inside the generic dictionary (generating the file if it doesn’t already exist). It 
does not give you a XAML file that shares the class definition. Therefore, if you use these 
mechanisms, you’re unlikely to fall into implementation traps such as the first attempt at 
implementing PlayingCard shown in this section.

T I P

Creating the User Interface of the Custom Control
To give the final implementation of PlayingCard an appropriate user interface, we need 
to fill the assembly’s generic dictionary with the appropriate Style and supporting 
resources. (You should also fill one or more theme dictionaries if you care about customiz-
ing the visuals for specific Windows themes.) To get the same visual results achieved in 
Figure 20.4, we should move all the resources that we originally defined inside 
PlayingCard (in Listing 20.7) into the generic dictionary.

The following line of the control template from Listing 20.7 also needs to be modified:

<Rectangle Fill=”{TemplateBinding Foreground}”/>

Filling the main Rectangle with Foreground’s value isn’t appropriate anymore because 
PlayingCard itself doesn’t set its value, and it would be too much of a burden to require 
consumers of the control to set this Brush.

  From the Library of Wow! eBook



ptg

What we want to do instead is set Fill to the appropriate DrawingBrush resource in the 
generic dictionary, based on the current value of Face. We should use StaticResource to 
do this because the DynamicResource mechanism won’t find resources inside a generic or 
theme dictionary. Because Face is a dependency property, your first instinct might be to 
change the value of Fill as follows:

<Rectangle> 

<Rectangle.Fill>

<StaticResource ResourceKey=”{TemplateBinding Face}”/> 

</Rectangle.Fill> 

</Rectangle>

Unfortunately, this produces an exception at runtime with the following horribly confus-
ing message:

Cannot convert the value in attribute ‘ResourceKey’ to object of type ‘’.

If you replace TemplateBinding with the equivalent Binding:

<Rectangle> 

<Rectangle.Fill>

<StaticResource ResourceKey= 

“{Binding Face, RelativeSource={RelativeSource TemplatedParent}}”/>

</Rectangle.Fill> 

</Rectangle>

you’ll still get an exception, but at least its message makes sense:

‘Binding’ cannot be set on the ‘ResourceKey’ property of type 

‘StaticResourceExtension’. A ‘Binding’ can only be set on a DependencyProperty 

of a DependencyObject.

ResourceKey isn’t a dependency property (and couldn’t possibly be because 
StaticResourceExtension doesn’t even derive from DependencyObject), so you can’t use 
it as the target of data binding.

If we define the key to each DrawingBrush as a ComponentResourceKey (with the 
PlayingCard type as its TypeInTargetAssembly and the face name as its ResourceId) 
rather than a simple string, we could restore the C# code that programmatically sets 
Foreground by calling TryFindResource and leave the TemplateBinding to Foreground 
intact. (The use of the ComponentResourceKey class is important because otherwise 
FindResource and TryFindResource can’t find resources inside a generic or theme dictio-
nary.) There’s another option, however, that enables us to keep the C# code as shown in 
Listing 20.8 and keep the resource keys as simple strings: Define 52 property triggers (one 
per valid Face value) that assign Fill to a resource specified at compile time. Although 
this is verbose, it’s also simple. Listing 20.9 shows 13 of these 52 triggers.

CHAPTER 20 User Controls and Custom Controls740

  From the Library of Wow! eBook



ptg

LISTING 20.9 Generic.xaml—The Generic Dictionary Containing PlayingCard’s Default 
Style and Control Template 

<ResourceDictionary

xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation” 

xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml” 

xmlns:local=”clr-namespace:Chapter20”> 

… 

<Style TargetType=”{x:Type local:PlayingCard}”> 

… 

<Setter Property=”Template”> 

<Setter.Value> 

<ControlTemplate TargetType=”{x:Type local:PlayingCard}”> 

… 

<Rectangle Name=”faceRect”/> 

… 

<ControlTemplate.Triggers> 

<Trigger Property=”Face” Value=”HA”> 

<Setter TargetName=”faceRect” Property=”Fill” Value=”{StaticResource HA}”/> 

</Trigger> 

<Trigger Property=”Face” Value=”H2”> 

<Setter TargetName=”faceRect” Property=”Fill” Value=”{StaticResource H2}”/> 

</Trigger> 

<Trigger Property=”Face” Value=”H3”> 

<Setter TargetName=”faceRect” Property=”Fill” Value=”{StaticResource H3}”/> 

</Trigger> 

<Trigger Property=”Face” Value=”H4”> 

<Setter TargetName=”faceRect” Property=”Fill” Value=”{StaticResource H4}”/> 

</Trigger> 

<Trigger Property=”Face” Value=”H5”> 

<Setter TargetName=”faceRect” Property=”Fill” Value=”{StaticResource H5}”/> 

</Trigger> 

<Trigger Property=”Face” Value=”H6”> 

<Setter TargetName=”faceRect” Property=”Fill” Value=”{StaticResource H6}”/> 

</Trigger> 

<Trigger Property=”Face” Value=”H7”> 

<Setter TargetName=”faceRect” Property=”Fill” Value=”{StaticResource H7}”/> 

</Trigger> 

<Trigger Property=”Face” Value=”H8”> 

<Setter TargetName=”faceRect” Property=”Fill” Value=”{StaticResource H8}”/> 

</Trigger> 

<Trigger Property=”Face” Value=”H9”> 

<Setter TargetName=”faceRect” Property=”Fill” Value=”{StaticResource H9}”/> 

</Trigger> 

<Trigger Property=”Face” Value=”H10”> 

<Setter TargetName=”faceRect” Property=”Fill” Value=”{StaticResource H10}”/>

Creating a Custom Control 741
2

0

  From the Library of Wow! eBook



ptg

</Trigger> 

<Trigger Property=”Face” Value=”HJ”>

<Setter TargetName=”faceRect” Property=”Fill” Value=”{StaticResource HJ}”/> 

</Trigger> 

<Trigger Property=”Face” Value=”HQ”> 

<Setter TargetName=”faceRect” Property=”Fill” Value=”{StaticResource HQ}”/> 

</Trigger> 

<Trigger Property=”Face” Value=”HK”> 

<Setter TargetName=”faceRect” Property=”Fill” Value=”{StaticResource HK}”/> 

</Trigger> 

… 

</ControlTemplate.Triggers> 

</Setter.Value> 

</Setter> 

</Style>

</ResourceDictionary>

Of course, as long as we are manually mapping values of Face to resource keys, we might 
as well redefine Face as an integer from 0 to 51, to be friendlier to typical algorithms that 
operate on playing cards. We could then add properties such as Suit and Rank to make 
working with the information easier.

This approach fixes the performance problems of the first attempt because the generic 
resources are shared among all instances of PlayingCard. (And if you don’t want to share 
a certain resource, you can mark it with x:Shared=”False”.) But more than that, the 
complete separation of user interface and logic enables PlayingCard to be restyled with 
maximum flexibility. Unlike the first version of the code, it doesn’t require a Brush for 
each face, so you could even plug in a control template that represents each card as a 
simple TextBlock. If you want to advertise the customizable resources from a control such 
as PlayingCard and encourage them to be overridden by others, you could define 52 
static properties that return an appropriate ComponentResourceKey for each resource.

CHAPTER 20 User Controls and Custom Controls742

LISTING 20.9 Continued

Other Approaches for Designing PlayingCard

Rather than embed the notion of being selected into PlayingCard itself, you could place 
PlayingCards into a ListBox and rely on its selection behavior. You could then change its 
SelectionMode to automatically switch between allowing single selections or multiple selec-
tions.

If you host the items in a ListBox, however, you won’t get the nice “fan” layout shown in 
Figures 20.4 and 20.5 by default. But you could write a custom “fan” panel and plug it into 
the ListBox as its ItemsPanel template. The next chapter creates such a panel, and calls 
it FanCanvas.

D I G G I N G  D E E P E R

  From the Library of Wow! eBook



ptg

Considerations for More Sophisticated Controls
The PlayingCard control has minimal interactivity that could be handled in the control 
template with some simple triggers or visual states. But controls with more interactivity 
need to use other techniques. For example, imagine that you want to change 
FileInputBox from the beginning of this chapter from a user control to a custom control. 
This implies that you’ll move its user interface (repeated in the following XAML) into a 
control template:

<DockPanel> 

<Button x:Name=”theButton” DockPanel.Dock=”Right” Click=”theButton_Click”>

Browse...</Button> 

<TextBox x:Name=”theTextBox”

MinWidth=”{Binding ActualWidth, ElementName=theButton}” 

Text=”{Binding FileName, ElementName=root}” Margin=”0,0,2,0”/>

</DockPanel>

But how should you attach the clicking of the Button to FileInputBox’s 
theButton_Click event handler? You can’t set the Click event the same way inside the 
control template. (Well, you could if you redefined theButton_Click in a code-behind file 
for the generic dictionary. But that would effectively reimplement all the control’s logic, 
and it would mean that anyone overriding the default template with his or her own 
would have to do the same thing!)

You can handle this kind of interactivity using two reasonable approaches, both of which 
are employed by WPF’s built-in controls in different situations:

. Using control parts

. Using commands

Creating a Custom Control 743
2

0

Continued

You could also rewrite PlayingCard as a simple object rather than a custom control and use 
a data template to give it the appropriate visuals. You could even use simple strings, as long 
as a data template is in place to treat the strings like card faces!

The “Creating the Behavior of the Custom Control” section discusses reusing as much exist-
ing logic as possible by choosing an appropriate base class for a custom control. On the 
user interface side of things, WPF also has many built-in elements that you should try to 
leverage in your control template.

For the nontraditional user interface inside PlayingCard, it makes sense to start from 
scratch. But for other controls, you might find a lot of unfamiliar reusable components to 
leverage in the System.Windows.Controls.Primitives namespace, such as 
BulletDecorator, ResizeGrip, ScrollBar, Thumb, Track, and so on.

T I P

  From the Library of Wow! eBook



ptg

This section also examines the technique of defining and using new control states, using 
the PlayingCard control as an example.

Using Control Parts
As mentioned in Chapter 14, a control part is a loose contract between a control and its 
template. A control can retrieve an element in its template with a given name and then 
do whatever it desires with that element.

After you decide on elements to designate as control parts, you should choose a name for 
each one. The general naming convention is PART_XXX, where XXX is the name of the 
control. You should then document each part’s existence by marking your class with 
TemplatePartAttribute (one for each part). This looks as follows for a version of 
FileInputBox that expects a Browse Button in its control template:

[TemplatePart(Name=”PART_Browse”, Type=typeof(Button))]

public class FileInputBox : Control 

{

… 

}

WPF doesn’t do anything with TemplatePartAttribute, but it serves as documentation 
that design tools can leverage.

To process your specially designated control parts, you should override the 
OnApplyTemplate method inherited from FrameworkElement. This method is called any 
time a template is applied, so it gives you the opportunity to handle dynamic template 
changes gracefully. To retrieve the instances of any elements inside your control template, 
you can call GetTemplateChild, also inherited from FrameworkElement. The following 
implementation retrieves the designated Browse Button and attaches the necessary logic 
to its Click event:

public override void OnApplyTemplate() 

{

base.OnApplyTemplate();

// Retrieve the Button from the current template 

Button browseButton = base.GetTemplateChild(“PART_Browse”) as Button;

// Hook up the event handler 

if (browseButton != null)

browseButton.Click += new RoutedEventHandler(theButton_Click); 

}

Note that this implementation gracefully handles templates that omit PART_Browse, 
causing the Button variable to be null. This is the recommended approach, making your 
control handle any control template with varying degrees of functionality. After all, it’s 
quite reasonable to imagine someone wanting to restyle FileInputBox such that it doesn’t

CHAPTER 20 User Controls and Custom Controls744

  From the Library of Wow! eBook



ptg

have a Browse Button. If you want to go against recommendations and be stricter, you 
could always throw an exception in OnApplyTemplate if the template doesn’t contain the 
parts you require. But such a control likely won’t work well inside graphic design tools 
such as Expression Blend.

Using Commands
A more flexible way to attach logic to pieces of a template is to define and use 
commands. With a command on FileInputBox representing the notion of browsing, a 
control template could associate a subelement with it as follows:

<Button Command=”{x:Static local:FileInputBox.BrowseCommand}”>Browse...</Button>

Not only does this avoid the need for magical names, but the element triggering this 
command no longer has to be a Button!

To implement this command, FileInputBox needs a static .NET property of type 
RoutedCommand or RoutedUICommand (with a static backing field that can be private):

private static RoutedUICommand browseCommand = new 

RoutedUICommand(“Browse...”, “BrowseCommand”, typeof(FileInputBox));

public static RoutedUICommand BrowseCommand 

{

get { return browseCommand; } 

}

The control should bind this command to the desired custom logic (theButton_Click in 
this case) in its static constructor:

static FileInputBox() 

{

// Specify the gesture that triggers the command: 

CommandManager.RegisterClassInputBinding(typeof(FileInputBox),

new MouseGesture(MouseAction.LeftClick));

// Attach the command to custom logic: 

CommandManager.RegisterClassCommandBinding(typeof(FileInputBox),

new CommandBinding(browseCommand, theButton_Click)); 

}

Using Control States
As explained in Chapter 14, WPF 4 adds the ability for controls to define control states in 
order to provide an optimal experience inside design tools such as Expression Blend. Both 
user controls and custom controls can—and do—support states. Any class that derives 
from Control already supports three states from the ValidationStates group: Valid, 
InvalidFocused, and InvalidUnfocused. The PlayingCard control automatically supports 
the CheckStates group (with Checked, Unchecked, and Indeterminate states) from its

Creating a Custom Control 745
2

0

  From the Library of Wow! eBook



ptg

ToggleButton base class and the CommonStates group (with Normal, MouseOver, Pressed, 
and Disabled states) from its ButtonBase base class.

Thanks to the richness of PlayingCard’s base classes, defining additional states is not 
necessary. Still, it might be nice to define the notion of a PlayingCard being flipped on its 
back rather than always showing its face. That way, a graphic designer could easily plug in 
a beautiful design for a card back without worrying about what events or properties might 
cause the card to be flipped over.

For this scenario, it makes sense to have two states—Front and Back—and assign them to 
a new state group called FlipStates. (Every new state group should include one state that 
acts as the default state.) You should document the existence of these states by marking 
the PlayingCard class with two TemplateVisualState custom attributes:

[TemplateVisualState(Name=”Front”, GroupName=”FlipStates”)] 

[TemplateVisualState(Name=”Back”, GroupName=”FlipStates”)] 

public class PlayingCard : ToggleButton 

{

… 

}

CHAPTER 20 User Controls and Custom Controls746

Controls should not add any states to state groups already defined by a base 
class!

New states should be added to new state group(s). Because each state group works inde-
pendently, new transitions among states in a new state group cannot interfere with base 
class logic. If you add new states to an existing state group, however, there’s no guarantee 
that the base class logic to transition among states will continue operate correctly.

WA R N I N G

Every state must have a unique name, even across different state groups!

Despite any partitioning into multiple state groups, a control must not have two states with 
the same name. This limitation can be surprising until you’ve implemented state transitions 
and realize that VisualStateManager’s GoToState method doesn’t have the concept of 
state groups. State groups are really just a documentation tool for understanding the behav-
ior of a control’s states and the possible transitions.

This limitation is why state names tend to be very specific. For example, the default set of 
states for CalendarDayButton include Normal (from the CommonStates group), NormalDay 
(from the BlackoutDayStates group), RegularDay (from the DayStates group), Unfocused 
(from the FocusStates group), CalendarButtonUnfocused (from the 
CalendarButtonFocusStates group), and more. They could not all simply be called Default 
or Normal.

WA R N I N G

  From the Library of Wow! eBook



ptg

Once you have chosen and documented your states, the only other thing to do is transi-
tion to the appropriate states at the appropriate times by calling VisualStateManager’s 
static GoToState method. This is usually done from a helper method such as the 
following:

internal void ChangeState(bool useTransitions) 

{

// Assume that IsShowingFace is the property that determines the state: 

if (this.IsShowingFace)

VisualStateManager.GoToState(this, “Front”, useTransitions); 

else

VisualStateManager.GoToState(this, “Back”, useTransitions); 

}

Controls typically call such a method in the following situations:

. Inside OnApplyTemplate (with useTransitions=false)

. When the control first loads (with useTransitions=false)

. Inside appropriate event handlers (for this example, it should be called inside a 
PropertyChanged handler for the IsShowingFace property)

There is no harm in calling GoToState when the destination state is the same as the 
current state. (When this is done, the call does nothing.) Therefore, helper methods such 
as ChangeState typically set the current state for every state group without worrying about 
which property just changed.

Creating a Custom Control 747
2

0

When a control loads, it must explicitly transition to the default state in every 
state group!

If a control does not explicitly transition to the default state(s), it introduces a subtle bug for 
consumers of the control. Before the initial transition for any state group, the control is not 
yet in any of those states. That means that the first transition to a non-default state will not 
invoke any transition from the default state that consumers may have defined.

When you perform this initial transition, you should pass false for 
VisualStateManager.GoToState’s useTransitions parameter to make it happen instanta-
neously.

WA R N I N G

Control defines a similar helper method called ChangeVisualState that is effectively 
implemented as follows:

internal virtual void ChangeVisualState(bool useTransitions) 

{

// Handle the states in the ValidationStates group: 

if (Validation.GetHasError(this))

  From the Library of Wow! eBook



ptg

{

if (this.IsKeyboardFocused)

VisualStateManager.GoToState(this, “InvalidFocused”, useTransitions); 

else

VisualStateManager.GoToState(this, “InvalidUnfocused”, useTransitions); 

} 

else 

{

VisualStateManager.GoToState(this, “Valid”, useTransitions); 

}

}

ChangeVisualState is a virtual method, and other controls in WPF override it. ButtonBase 
effectively overrides it as follows:

internal override void ChangeVisualState(bool useTransitions) 

{

// Handle the base states in the ValidationStates group: 

base.ChangeVisualState(useTransitions);

// Independently handle states in the CommonStates group: 

if (!this.IsEnabled)

VisualStateManager.GoToState(this, “Disabled”, useTransitions); 

else if (this.IsPressed)

VisualStateManager.GoToState(this, “Pressed”, useTransitions); 

else if (this.IsMouseOver)

VisualStateManager.GoToState(this, “MouseOver”, useTransitions); 

else

VisualStateManager.GoToState(this, “Normal”, useTransitions);

// Independently handle states in the FocusStates group: 

if (this.IsKeyboardFocused)

VisualStateManager.GoToState(this, “Focused”, useTransitions); 

else

VisualStateManager.GoToState(this, “Unfocused”, useTransitions); 

}

ToggleButton effectively overrides ButtonBase’s implementation as follows:

internal override void ChangeVisualState(bool useTransitions) 

{

// Handle the base states in the ValidationStates, 

// CommonStates, and FocusStates groups: 

base.ChangeVisualState(useTransitions);

// Independently handle states in the CheckStates group: 

if (this.IsChecked == true)

CHAPTER 20 User Controls and Custom Controls748

  From the Library of Wow! eBook



ptg

VisualStateManager.GoToState(this, “Checked”, useTransitions); 

else if (this.IsChecked == false)

VisualStateManager.GoToState(this, “Unchecked”, useTransitions); 

else // this.isChecked == null 

{

// Try to transition to the Indeterminate state. If one isn’t defined, 

// fall back to the Unchecked state 

if (!VisualStateManager.GoToState(this, “Indeterminate”, useTransitions))

VisualStateManager.GoToState(this, “Unchecked”, useTransitions); 

}

}

GoToState returns false if it is unable to transition to a state. This happens if a template 
has been applied that simply doesn’t include a corresponding VisualState definition. 
Controls should be resilient to this condition, and normally they are by simply ignoring 
the return value from GoToState. ToggleButton, however, attempts to transition to the 
Unchecked state if an Indeterminate state doesn’t exist. (Note that this condition does not 
affect the value of IsChecked; the ToggleButton is still logically indeterminate even if 
visually it looks unchecked.)

Although PlayingCard is unable to override ToggleButton’s ChangeVisualState method 
(because it is internal to the WPF assembly), it still inherits all of its behavior as a conse-
quence of deriving from ToggleButton. The code from PlayingCard’s ChangeState 
method defined earlier happily runs independently of the existing ChangeVisualState 
logic, and the resulting control supports all the expected states from all five state groups.

Creating a Custom Control 749
2

0

Supporting UI Automation

For a custom control to be truly first class, it should support UI Automation. 
The pattern for doing this is to create a companion class that derives from 
FrameworkElementAutomationPeer, named ControlNameAutomationPeer, that describes 
the control to the automation system. You should then override OnCreateAutomationPeer 
(inherited from UIElement) in the custom control, making it return an instance of the 
companion class:

protected override AutomationPeer OnCreateAutomationPeer() 

{

return new FileInputBoxAutomationPeer(this); 

}

Whenever an event occurs that should be communicated to the automation system, you can 
retrieve the companion class and raise an automation-specific event, as follows:

FileInputBoxAutomationPeer peer =

UIElementAutomationPeer.FromElement(myControl) as FileInputBoxAutomationPeer; 

if (peer != null)

peer.RaiseAutomationEvent(AutomationEvents.StructureChanged);

D I G G I N G  D E E P E R

  From the Library of Wow! eBook



ptg

Summary
If you’re reading this book in order, you should be familiar enough with WPF to find the 
process of creating a custom control fairly understandable. For WPF beginners, however, 
creating a custom control—even when guided by Visual Studio—involves many unortho-
dox concepts. And if such a user doesn’t care about restyling and theming but rather just 
wants to build simple applications and controls as with Windows Forms, all that extra 
complication doesn’t even add much value! That’s why WPF takes a bifurcated view of 
custom controls versus user controls.

Of course, even these two approaches are not the only options for plugging reusable 
pieces into WPF applications. For example, you could create a custom lower-level element 
that derives directly from FrameworkElement. A common non-Control to derive from is 
Panel, for creating custom layout schemes. That’s the topic of the next (and final) 
chapter.

CHAPTER 20 User Controls and Custom Controls750

A sophisticated control might want to determine whether it is running in design mode (for 
example, being displayed in the Visual Studio or Expression Blend designer). The static 
System.ComponentModel.DesignerProperties class exposes an IsInDesignMode 
attached property that gives you this information. Design tools change the default value 
when appropriate, so a custom control can call the static GetIsInDesignMode method with 
a reference to itself to obtain the value.

T I P

  From the Library of Wow! eBook



ptg

CHAPTER 21 

Layout with Custom
Panels

Chapter 5, “Layout with Panels,” examines the variety of 
panels included with WPF. If none of the built-in panels do 
exactly what you want, you have the option of writing 
your own panel. Of course, with all the flexibility of the 
built-in panels, the layout properties on child elements 
(discussed in Chapter 4, “Sizing, Positioning, and 
Transforming Elements”), plus the ability to embed panels 
within other panels to create arbitrarily complex layout, it’s 
unlikely that you’re going to need a custom panel. 
Actually, you never need a custom panel; with enough 
procedural code, you can achieve any layout with just a 
Canvas. It’s just a matter of how easy and automatic you 
want to be able to repetitively apply certain types of layout.

For example, perhaps you want to create a version of 
WrapPanel that stacks or wraps in a different direction than 
the two built-in directions. Or perhaps you want to create a 
version of StackPanel that stacks from the bottom up, 
although you could alternatively get this effect pretty easily 
with a DockPanel by giving each element a Dock value of 
Bottom. User interface virtualization might be a good incen-
tive for creating a custom panel, such as creating a 
VirtualizingWrapPanel much like the 
VirtualizingStackPanel that already exists. You could also 
create a custom panel that incorporates automatic drag and 
drop, similar to ToolBarTray.

Although writing a custom panel can often be avoided by 
combining more primitive panels, creating a new panel can 
be useful when you want to repetitively arrange controls in 
a unique way. Encapsulating the custom logic in a panel

IN THIS CHAPTER

. Communication Between 
Parents and Children

. Creating a SimpleCanvas

. Creating a SimpleStackPanel

. Creating an OverlapPanel

. Creating a FanCanvas

  From the Library of Wow! eBook



ptg

can make the arrangement of a user interface less error prone and help to enforce consis-
tency. Panels that are made for very limited scenarios can also perform much better than 
the super-flexible WPF panels, especially if you replace multiple nestings of generic panels 
with a single, limited one.

To understand the steps involved in creating a custom panel, we’ll first create two panels 
in this chapter that replicate the functionality of existing panels in WPF. After that, we’ll 
create two unique panels. The good news is that there is no special mechanism for creat-
ing a custom panel; you use exactly the same approach used by the built-in panels. But 
this also means we should take a closer look at how panels and their children communi-
cate, which was glossed over in Chapters 4 and 5.

Communication Between Parents and Children
Chapters 4 and 5 explain that parent panels and their children work together to deter-
mine their final sizes and positions. To strike a reasonable balance between the needs of 
the parent and its children, layout is a recursive two-pass process. The first pass is called 
measure, and the second pass is called arrange.

The Measure Step
In the measure step, parents ask their children how big they want to be, given the 
amount of space available. Panels (and children, when appropriate) do this by overriding 
the MeasureOverride method from FrameworkElement. Here’s an example:

protected override Size MeasureOverride(Size availableSize) 

{

… 

// Ask each child how big it would like to be, given a certain amount space 

foreach (UIElement child in this.Children) 

{

child.Measure(new Size(…)); 

// The child’s answer is now in child.DesiredSize 

…

} 

… 

// Tell my parent how big I would like to be given the passed-in availableSize 

return new Size(…);

}

All children can be accessed via the panel’s Children collection (a UIElementCollection), 
and asking each child for its desired size is done by simply calling its Measure method 
(inherited from UIElement). Measure doesn’t return a value, but after the call, the child’s 
DesiredSize property contains its answer. As the parent, you can decide if you want to 
alter your behavior based on the desired sizes of any of your children.

CHAPTER 21 Layout with Custom Panels752

  From the Library of Wow! eBook



ptg

The preceding snippet of C# code, like all MeasureOverride implementations, uses two 
important Size values, discussed in the following sections.

The Size Passed to Each Child’s Measure Method
This value should represent the amount of space you’re planning to give the child. It 
could be all the space given to you (captured in MeasureOverride’s availableSize para-
meter), some fraction of your space, or some absolute value, depending on your desires.

In addition, you can use Double.PositiveInfinity for either or both of Size’s dimen-
sions to find out how large the child wants to be in an ideal situation. In other words, 
this line of code means, “How big do you want to be given all the space in the world?”:

child.Measure(new Size(Double.PositiveInfinity, Double.PositiveInfinity));

The layout system automatically handles the child layout properties discussed in Chapter 
4, such as Margin, so the size ultimately passed to the child’s implementation of 
MeasureOverride is the size you passed to Measure minus any margins. This also means 
that the availableSize parameter passed to your own MeasureOverride implementation 
represents whatever your parent allocated for you minus your own margins.

The Size Returned by MeasureOverride
The Size you return represents how big you want to be (answering your parent’s request, 
just as your children have already answered it for you). You could return an absolute size, 
but that would ignore the requests from your children. More likely, you’d pick a value 
that enables you to “size to content,” being big enough to fit all your children in their 
ideal sizes but no bigger.

Communication Between Parents and Children 753
2

1In MeasureOverride, panels must always call Measure on each child!

You might want to implement a panel that doesn’t have any use for checking its children’s 
DesiredSize values simply because it doesn’t care how big its children want to be. Still, all 
panels must ask their children anyway (by calling Measure) because some elements don’t 
work correctly if their Measure method never gets called. This is somewhat like asking your 
spouse “How was your day?” when you really don’t care about the answer but want to avoid 
the repercussions. (Or so I’m told. Personally, I always care about the answer!)

WA R N I N G

You can’t simply return availableSize from MeasureOverride!

Whether because of its simplicity or because of your own greediness, it’s tempting to use 
the passed-in availableSize parameter as the return value for MeasureOverride. This 
basically means, “Give me all the space you’ve got.”

WA R N I N G

  From the Library of Wow! eBook



ptg

If you have only one child, sizing to your content is as simple as returning that child’s 
DesiredSize as your own desired size. For multiple children, you would need to combine 
the widths and heights of your children according to how you plan to arrange them.

The Arrange Step
After measurement has been completed all the way through the element tree, it’s time for 
the physical arranging of elements. In the arrange step, parents tell their children where 
they are getting placed and how much space they are given (which might be a different 
Size than the one given earlier). Panels (and children, when appropriate) do this by over-
riding the ArrangeOverride method from FrameworkElement. Here’s an example:

protected override Size ArrangeOverride(Size finalSize) 

{

… 

// Tell each child how much space it is getting 

foreach (UIElement child in this.Children) 

{

child.Arrange(new Rect(…)); 

// The child’s size is now in child.ActualHeight & child.ActualWidth 

…

} 

… 

// Set my own actual size (ActualHeight & ActualWidth) 

return new Size(…);

}

You tell each child its location and size by passing a Rect and a Size to its Arrange 
method (inherited from UIElement). For example, you can give each child its desired size 
simply by passing the value of its DesiredSize property to Arrange. You can be certain 
that this size is set appropriately because all measuring is done before any arranging 
begins.

Unlike with Measure, you cannot pass an infinite size to Arrange (and the finalSize 
passed to you will never be infinite). The child can choose to occupy a different amount 
of space than what you’ve specified, such as a subset of the space. Parents can determine

CHAPTER 21 Layout with Custom Panels754

Continued

However, whereas a Size with Double.PositiveInfinity in both dimensions is a legal 
value for availableSize, it is not a valid value for DesiredSize. Even when given unlimited 
space, you must choose a concrete size. If you ever end up returning an infinite size, 
UIElement’s Measure implementation throws an InvalidOperationException with a 
helpful message: “Layout measurement override of element ‘XXX’ should not 
return PositiveInfinity as its DesiredSize, even if Infinity is passed in 
as available size.”

  From the Library of Wow! eBook



ptg

what actions (if any) they want to take if this happens. The actual size chosen by each 
child can be obtained from its ActualHeight and ActualWidth properties after the call to 
Arrange.

As with your children, the size you return from ArrangeOverride becomes the value of 
your RenderSize and ActualHeight/ActualWidth properties. The size must not be infinite, 
but unlike with MeasureOverride, it’s valid to simply return the passed-in Size if you 
want to take up all the available space because finalSize can never be infinite.

As with the measure step, in the arrange step, properties such as Margin are handled auto-
matically, so the information getting passed to children (and the finalSize passed to 
you) has any margins subtracted. In addition, alignment is automatically handled by the 
arrange step. When a child is given exactly the amount of space it needs (for example, 
passing its DesiredSize to its Arrange method), alignment appears to have no effect 
because there’s no extra space for the element to align within. But when you give a child 
more space than it occupies, the results of its HorizontalAlignment and/or 
VerticalAlignment settings are seen.

Creating a SimpleCanvas 755
2

1

Don’t do anything in MeasureOverride or ArrangeOverride that invalidates layout!

You can do some exotic things in MeasureOverride or ArrangeOverride, such as apply 
additional transforms to children (either as LayoutTransforms or RenderTransforms). But 
be sure that you don’t invoke any code that invalidates layout; otherwise, you could wind up 
in an infinite loop!

Any method or property invalidates layout if it calls UIElement.InvalidateMeasure or 
UIElement.InvalidateArrange. These are public methods, however, so it can be difficult to 
know what code calls them. Within WPF, dependency properties that use these methods 
document this fact with one or more metadata flags from the 
FrameworkPropertyMetadataOptions enumeration: AffectsMeasure, AffectsArrange, 
AffectsParentArrange, and/or AffectsParentMeasure.

If you feel that you must execute some code that invalidates layout, and you have a plan for 
avoiding a never-ending cycle, you can factor that logic into a separate method then use 
Dispatcher.BeginInvoke to schedule its execution after the current layout pass 
completes. To do this, be sure to use a DispatcherPriority value no higher than Loaded.

WA R N I N G

Creating a SimpleCanvas
Before creating some unique panels, let’s see how to replicate the behavior of existing 
panels. The first one we’ll create is a simplified version of Canvas called SimpleCanvas. 
SimpleCanvas behaves exactly like Canvas, except that it only respects Left and Top 
attached properties on its children rather than Left, Top, Right, and Bottom. This is done 
only to reduce the amount of repetitive code, as supporting Right and Bottom looks 
almost identical to supporting Left and Top. (As a result, the arrange pass in 
SimpleCanvas is negligibly faster than in Canvas, but only for children not already 
marked with Left and Top.)

  From the Library of Wow! eBook



ptg

Implementing SimpleCanvas (or any other custom panel) consists of the following four 
steps:

1. Create a class that derives from Panel.

2. Define any properties that would be useful for customizing layout, potentially 
including attached properties for the children.

3. Override MeasureOverride and measure each child.

4. Override ArrangeOverride and arrange each child.

Listing 21.1 contains the entire implementation of SimpleCanvas.

LISTING 21.1 SimpleCanvas.cs—The Implementation of SimpleCanvas

using System; 

using System.ComponentModel; 

using System.Windows; 

using System.Windows.Controls; 

using System.Windows.Media;

namespace CustomPanels 

{

public class SimpleCanvas : Panel 

{

public static readonly DependencyProperty LeftProperty = 

DependencyProperty.RegisterAttached(“Left”, typeof(double), 

typeof(SimpleCanvas), new FrameworkPropertyMetadata(Double.NaN, 

FrameworkPropertyMetadataOptions.AffectsParentArrange));

public static readonly DependencyProperty TopProperty = 

DependencyProperty.RegisterAttached(“Top”, typeof(double), 

typeof(SimpleCanvas), new FrameworkPropertyMetadata(Double.NaN, 

FrameworkPropertyMetadataOptions.AffectsParentArrange));

[TypeConverter(typeof(LengthConverter)),AttachedPropertyBrowsableForChildren] 

public static double GetLeft(UIElement element) 

{

if (element == null) { throw new ArgumentNullException(“element”); } 

return (double)element.GetValue(LeftProperty);

}

[TypeConverter(typeof(LengthConverter)),AttachedPropertyBrowsableForChildren] 

public static void SetLeft(UIElement element, double length) 

{

if (element == null) { throw new ArgumentNullException(“element”); }

CHAPTER 21 Layout with Custom Panels756

  From the Library of Wow! eBook



ptg

element.SetValue(LeftProperty, length); 

}

[TypeConverter(typeof(LengthConverter)),AttachedPropertyBrowsableForChildren] 

public static double GetTop(UIElement element) 

{

if (element == null) { throw new ArgumentNullException(“element”); } 

return (double)element.GetValue(TopProperty);

}

[TypeConverter(typeof(LengthConverter)),AttachedPropertyBrowsableForChildren] 

public static void SetTop(UIElement element, double length) 

{

if (element == null) { throw new ArgumentNullException(“element”); } 

element.SetValue(TopProperty, length);

}

protected override Size MeasureOverride(Size availableSize) 

{

foreach (UIElement child in this.Children) 

{

// Give each child all the space it wants 

if (child != null)

child.Measure(new Size(Double.PositiveInfinity, 

Double.PositiveInfinity));

}

// The SimpleCanvas itself needs no space 

return new Size(0, 0);

}

protected override Size ArrangeOverride(Size finalSize) 

{

foreach (UIElement child in this.Children) 

{

if (child != null) 

{

double x = 0; 

double y = 0;

// Respect any Left and Top attached properties, 

// otherwise the child is placed at (0,0) 

double left = GetLeft(child); 

double top = GetTop(child);

Creating a SimpleCanvas 757

LISTING 21.1 Continued

2
1

  From the Library of Wow! eBook



ptg

if (!Double.IsNaN(left)) x = left; 

if (!Double.IsNaN(top)) y = top;

// Place at the chosen (x,y) location with the child’s DesiredSize 

child.Arrange(new Rect(new Point(x, y), child.DesiredSize));

} 

}

// Whatever size you gave me is fine 

return finalSize;

} 

}

}

Listing 21.1 begins by defining the Left and Top attached properties, which each consist 
of the DependencyProperty field with the pair of static Get/Set methods. As with Canvas’s 
Left and Top attached properties, their default value is Double.NaN, which serves as the 
not-set-to-anything value. The registration passes 
FrameworkPropertyMetadataOptions.AffectsParentArrange to the 
FrameworkPropertyMetadataOptions constructor to tell WPF that when the values of 
these properties change on child elements, the parent SimpleCanvas needs to redo its 
arrange layout pass so it can place the element in its new location.

The static Get/Set methods are a standard implementation of the two attached properties. 
Notice the association with the LengthConverter type converter, which allows these prop-
erties to be set to a variety of strings in XAML, such as “Auto” (mapped to Double.NaN) or 
numbers with explicit units (“px”, “in”, “cm”, or “pt”). The 
AttachedPropertyBrowsableForChildren attribute helps with design-time support by 
requesting that designers show these two properties in the list of available properties that 
can be set on children.

The implementation of MeasureOverride couldn’t be simpler, which makes sense consid-
ering the desired behavior of SimpleCanvas. It just tells each child to take all the space it 
wants, and then it tells its parent that it doesn’t require any space for itself (because its 
children do not get clipped to its bounds unless ClipToBounds is set to true, thanks to 
behavior inherited from FrameworkElement).

ArrangeOverride is where the interesting work is done. Each child is placed at (0,0) with 
its DesiredSize unless it is marked with a Left and/or Top attached property. To check for 
this, ArrangeOverride simply calls GetLeft and GetTop and looks for values other than 
Double.NaN.

You can see that the panel doesn’t need to care about any of the children’s layout proper-
ties (Height, MinHeight, MaxHeight, Width, MinWidth, MaxWidth, Margin, Padding, 
Visibility, HorizontalAlignment, VerticalAlignment, LayoutTransform, and so on). In

CHAPTER 21 Layout with Custom Panels758

LISTING 21.1 Continued

  From the Library of Wow! eBook



ptg

addition, tabbing between child elements is handled automatically. The tab order is 
defined by the order in which children are added to the parent.

The project included with this book’s source code consumes SimpleCanvas as follows:

<Window x:Class=”CustomPanels.SimpleCanvasWindow” 

xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation” 

xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml” 

xmlns:local=”clr-namespace:CustomPanels”

Title=”Four Buttons in a SimpleCanvas”>

<local:SimpleCanvas>

<Button Content=”1” Background=”Red”/> 

<Button local:SimpleCanvas.Left=”40” local:SimpleCanvas.Top=”40”

Content=”2” Background=”Orange”/> 

<Button local:SimpleCanvas.Left=”80” local:SimpleCanvas.Top=”80”

Content=”3” Background=”Yellow”/> 

<Button local:SimpleCanvas.Left=”120” local:SimpleCanvas.Top=”120”

Content=”4” Background=”Lime”/> 

</local:SimpleCanvas>

</Window>

The XAML for the Window maps the CustomPanels .NET namespace to a local prefix, so 
SimpleCanvas and its attached properties can be used with the local: prefix. Because 
SimpleCanvas.cs is compiled into the same assembly, no Assembly value needs to be set 
with the clr-namespace directive.

Note that the SimpleCanvas implementation could reuse Canvas’s existing Left and Top 
attached properties by getting rid of its own and changing two lines of code inside 
ArrangeOverride:

double left = Canvas.GetLeft(child); 

double top = Canvas.GetTop(child);

Then the panel could be used as follows:

<Window x:Class=”CustomPanels.SimpleCanvasWindow” 

xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation” 

xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml” 

xmlns:local=”clr-namespace:CustomPanels”

Title=”Four Buttons in a SimpleCanvas”>

<local:SimpleCanvas> 

<Button Content=”1” Background=”Red”/> 

<Button Canvas.Left=”40” Canvas.Top=”40”

Content=”2” Background=”Orange”/> 

<Button Canvas.Left=”80” Canvas.Top=”80”

Content=”3” Background=”Yellow”/>

Creating a SimpleCanvas 759
2

1

  From the Library of Wow! eBook



ptg

<Button Canvas.Left=”120” Canvas.Top=”120”

Content=”4” Background=”Lime”/> 

</local:SimpleCanvas>

</Window>

It’s pretty nonstandard, however, for one panel to require the use of a different panel’s 
attached properties.

Creating a SimpleStackPanel
Let’s look at replicating one more existing panel, but one that does a bit more work while 
measuring and arranging. We’ll create a SimpleStackPanel that acts just like StackPanel. 
The only major difference between SimpleStackPanel and StackPanel is that our version 
is missing some performance optimizations. Listing 21.2 contains the entire implementa-
tion.

LISTING 21.2 SimpleStackPanel.cs—The Implementation of SimpleStackPanel

using System; 

using System.Windows; 

using System.Windows.Controls;

namespace CustomPanels 

{

public class SimpleStackPanel : Panel 

{

// The direction of stacking 

public static readonly DependencyProperty OrientationProperty = 

DependencyProperty.Register(“Orientation”, typeof(Orientation), 

typeof(SimpleStackPanel), new FrameworkPropertyMetadata( 

Orientation.Vertical, FrameworkPropertyMetadataOptions.AffectsMeasure));

public Orientation Orientation 

{

get { return (Orientation)GetValue(OrientationProperty); } 

set { SetValue(OrientationProperty, value); }

}

protected override Size MeasureOverride(Size availableSize) 

{

Size desiredSize = new Size();

// Let children grow indefinitely in the direction of stacking, 

// overwriting what was passed in 

if (Orientation == Orientation.Vertical)

availableSize.Height = Double.PositiveInfinity;

CHAPTER 21 Layout with Custom Panels760

  From the Library of Wow! eBook



ptg

else 

availableSize.Width = Double.PositiveInfinity;

foreach (UIElement child in this.Children) 

{

if (child != null) 

{

// Ask the first child for its desired size, given unlimited space in 

// the direction of stacking and all our available space (whatever was 

// passed in) in the other direction 

child.Measure(availableSize);

// Our desired size is the sum of child sizes in the direction of 

// stacking, and the size of the largest child in the other direction 

if (Orientation == Orientation.Vertical) 

{

desiredSize.Width = Math.Max(desiredSize.Width, 

child.DesiredSize.Width);

desiredSize.Height += child.DesiredSize.Height; 

} 

else 

{

desiredSize.Height = Math.Max(desiredSize.Height, 

child.DesiredSize.Height);

desiredSize.Width += child.DesiredSize.Width; 

}

} 

}

return desiredSize; 

}

protected override Size ArrangeOverride(Size finalSize) 

{

double offset = 0;

foreach (UIElement child in this.Children) 

{

if (child != null) 

{

if (Orientation == Orientation.Vertical) 

{

// The offset moves the child down the stack. 

// Give the child all our width, but as much height as it desires.

Creating a SimpleStackPanel 761

LISTING 21.2 Continued

2
1

  From the Library of Wow! eBook



ptg

child.Arrange(new Rect(0, offset, finalSize.Width, 

child.DesiredSize.Height));

// Update the offset for the next child 

offset += child.DesiredSize.Height;

} 

else 

{

// The offset moves the child down the stack. 

// Give the child all our height, but as much width as it desires. 

child.Arrange(new Rect(offset, 0, child.DesiredSize.Width,

finalSize.Height));

// Update the offset for the next child 

offset += child.DesiredSize.Width;

} 

}

}

// Fill all the space given 

return finalSize;

} 

}

}

Similar to Listing 21.1, this listing begins with the definition of a dependency property— 
Orientation. Its default value is Vertical, and its FrameworkPropertyMetadataOptions 
reveals that a change in its value requires its measure layout pass to be re-invoked. (This 
also re-invokes the arrange pass, after the measure pass.)

In MeasureOverride, each child is given the panel’s available size in the non-stacking 
direction (which may or may not be infinite) but is given infinite size in the stacking 
direction. As each child’s desired size is revealed, SimpleStackPanel keeps track of the 
results and updates its own desired size accordingly. In the stacking dimension, its desired 
length is the sum of all its children’s desired lengths. In the non-stacking dimension, its 
length is the length of its longest child.

CHAPTER 21 Layout with Custom Panels762

LISTING 21.2 Continued

  From the Library of Wow! eBook



ptg

In ArrangeOverride, an offset (“stack pointer,” if you will) keeps track of the position to 
place the next child as the stack grows. Each child is given the entire panel’s length in the 
stacking direction and its desired length in the non-stacking direction. Finally, 
SimpleStackPanel consumes all the space given to it by returning the input finalSize. 
With that, SimpleStackPanel behaves just like the real StackPanel.

Creating an OverlapPanel
The OverlapPanel is truly a custom panel. It builds on the work we did to create 
SimpleStackPanel but adds a few tweaks that make its behavior unique. Like 
SimpleStackPanel, it sequentially stacks its children based on the value of its Orientation 
property. But, as its name suggests, rather than allow its children to be arranged beyond 
its bounds, it overlaps its children when the available space is less than the desired space. 
In this case, children are still given the same size as they are given in SimpleStackPanel, 
but their locations are evenly “compressed” to completely fill the width or height 
(depending on Orientation) of the panel. When OverlapPanel is given more space than 
needed to stack its children, it stretches its children to (again) completely fill the dimen-
sion of stacking. Figure 21.1 shows OverlapPanel in action, used in the following Window:

<Window x:Class=”CustomPanels.OverlapPanelWindow” 

xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation” 

xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml” 

xmlns:local=”clr-namespace:CustomPanels”

Title=”Four Buttons in an OverlapPanel”>

<local:OverlapPanel>

<Button FontSize=”40” Content=”1” Background=”Red”/> 

<Button FontSize=”40” Content=”2” Background=”Orange”/> 

<Button FontSize=”40” Content=”3” Background=”Yellow”/> 

<Button FontSize=”40” Content=”4” Background=”Lime”/>

</local:OverlapPanel>

</Window>

With its evenly distributed overlapping and stretching behavior, OverlapPanel behaves 
somewhat like a single-column (or single-row) Grid, where each child is in its own *-sized 
cell. The main difference is that it allows each child to render outside its effective “cell,” 
which doesn’t happen in a Grid cell unless each child is wrapped in a Canvas. But when 
you wrap an element in a Canvas, you lose the stretching behavior. In Figure 21.1, you 
can’t tell whether the Buttons are truly overlapping or just cropped, but you can tell the 
difference with nonrectangular elements or, in the case of Figure 21.2, translucent 
elements.

Creating an OverlapPanel 763
2

1

  From the Library of Wow! eBook



ptg

FIGURE 21.1 OverlapPanel containing four Buttons inside a Window at different sizes.

CHAPTER 21 Layout with Custom Panels764

Overlapping when space is less than desired Stretching when space is more than desired

FIGURE 21.2 Giving the Buttons in Figure 21.1 an Opacity of .5 reveals that they are truly 
overlapping and not simply cropped.

Listing 21.3 contains the entire implementation of OverlapPanel and uses boldface for 
the code that differs from SimpleStackPanel from Listing 21.2.

LISTING 21.3 OverlapPanel.cs—An Updated SimpleStackPanel That Either Overlaps or 
Stretches Children

using System; 

using System.Windows; 

using System.Windows.Controls;

namespace CustomPanels 

{

  From the Library of Wow! eBook



ptg

public class OverlapPanel : Panel 

{

double _totalChildrenSize = 0;

// The direction of stacking 

public static readonly DependencyProperty OrientationProperty =

DependencyProperty.Register(“Orientation”, typeof(Orientation), 

typeof(OverlapPanel), new FrameworkPropertyMetadata(Orientation.Vertical, 

FrameworkPropertyMetadataOptions.AffectsMeasure));

public Orientation Orientation 

{

get { return (Orientation)GetValue(OrientationProperty); } 

set { SetValue(OrientationProperty, value); }

}

protected override Size MeasureOverride(Size availableSize) 

{

Size desiredSize = new Size();

foreach (UIElement child in this.Children) 

{

if (child != null) 

{

// See how big each child wants to be given all our available space 

child.Measure(availableSize);

// Our desired size is the sum of child sizes in the direction of 

// stacking, and the size of the largest child in the other direction 

if (Orientation == Orientation.Vertical) 

{

desiredSize.Width = Math.Max(desiredSize.Width, 

child.DesiredSize.Width);

desiredSize.Height += child.DesiredSize.Height; 

} 

else 

{

desiredSize.Height = Math.Max(desiredSize.Height, 

child.DesiredSize.Height);

desiredSize.Width += child.DesiredSize.Width; 

}

} 

}

Creating an OverlapPanel 765

LISTING 21.3 Continued

2
1

  From the Library of Wow! eBook



ptg

_totalChildrenSize = (Orientation == Orientation.Vertical ? 

desiredSize.Height : desiredSize.Width);

return desiredSize; 

}

protected override Size ArrangeOverride(Size finalSize) 

{

double offset = 0; 

double overlap = 0;

// Figure out the amount of overlap by seeing how much less space 

// we got than desired, and divide it equally among children. 

if (Orientation == Orientation.Vertical) 

{

if (finalSize.Height > _totalChildrenSize) 

// If we’re given more than _totalChildrenSize, the negative overlap 

// represents how much the layout should stretch 

overlap = (_totalChildrenSize - finalSize.Height) /

this.Children.Count;

else

// In this case, this.DesiredSize gives us the actual smaller size 

overlap = (_totalChildrenSize - this.DesiredSize.Height) / 

this.Children.Count;

} 

else 

{

if (finalSize.Width > _totalChildrenSize) 

// If we’re given more than _totalChildrenSize, the negative overlap 

// represents how much the layout should stretch 

overlap = (_totalChildrenSize - finalSize.Width) / 

this.Children.Count;

else

// In this case, this.DesiredSize gives us the actual smaller size 

overlap = (_totalChildrenSize - this.DesiredSize.Width) / 

this.Children.Count;

}

foreach (UIElement child in this.Children) 

{

if (child != null) 

{

if (Orientation == Orientation.Vertical) 

{

CHAPTER 21 Layout with Custom Panels766

LISTING 21.3 Continued

  From the Library of Wow! eBook



ptg

// The offset moves the child down the stack. 

// Give the child all our width, but as much height as it desires 

// or more if there is negative overlap. 

child.Arrange(new Rect(0, offset, finalSize.Width,

child.DesiredSize.Height + (overlap > 0 ? 0 : -overlap)));

// Update the offset for the next child 

offset += (child.DesiredSize.Height - overlap);

} 

else 

{

// The offset moves the child down the stack. 

// Give the child all our height, but as much width as it desires 

// or more if there is negative overlap. 

child.Arrange(new Rect(offset, 0,

child.DesiredSize.Width + (overlap > 0 ? 0 : -overlap), 

finalSize.Height));

// Update the offset for the next child 

offset += (child.DesiredSize.Width - overlap);

} 

}

}

// Fill all the space given 

return finalSize;

} 

}

}

The only difference between OverlapPanel’s MeasureOverride and SimpleStackPanel’s 
MeasureOverride is that OverlapPanel doesn’t give each child infinite space in the direc-
tion of stacking; instead, it gives the availableSize in both dimensions. That’s because 
this panel tries to compress its children to fit in its bounds when they are too big. It also 
captures the total length of its children in the dimension of stacking (which is also its 
desired size in that dimension) in a separate _totalChildrenSize variable to be used by 
ArrangeOverride.

In ArrangeOverride, the difference between the available space and desired space is deter-
mined in order to calculate a proper overlap value that can be subtracted from the 
offset when each child is arranged. A positive overlap value indicates how many logical 
pixels of overlap there are between each child, and a negative overlap indicates how 
many logical pixels of additional space each child is given.

Creating an OverlapPanel 767

LISTING 21.3 Continued

2
1

  From the Library of Wow! eBook



ptg

Notice the odd-looking expression added to the stacking dimension length in each call to 
child.Arrange:

(overlap > 0 ? 0 : -overlap)

This adds the absolute value of overlap to the size of the child, but only when overlap is 
negative. This is necessary to enable the children to stretch when they are spaced out 
further than their natural lengths, as seen in Figure 21.1. Without adding this value, the 
stretched Buttons would appear as they do in Figure 21.3.

CHAPTER 21 Layout with Custom Panels768

FIGURE 21.3 How OverflowPanel would behave if it didn’t give its children the gift of extra 
space in the direction of stacking.

Note that the stretching in Figure 21.1 happens only because of Button’s default 
VerticalAlignment of Stretch. If each Button were marked with a VerticalAlignment of 
Top, then the correct implementation of OverlapPanel would still give the result shown 
in Figure 21.3. But that’s fine; it’s the panel’s job to indicate how much space each child 
is really given, and it’s each child’s decision whether it wants to stretch to fill that space 
or align with certain edges of it.

Creating a FanCanvas
The final custom panel is a bit unusual and special purpose. FanCanvas arranges its chil-
dren in a fan shape. The killer application for such a panel is to arrange playing cards like 
the ones from the previous chapter. It could also be interesting for other purposes. 
FanCanvas made an appearance in Chapter 10, “Items Controls,” as the items panel for a 
ListBox that displays photos. Listing 21.4 contains the entire implementation of 
FanCanvas.

  From the Library of Wow! eBook



ptg

LISTING 21.4 FanCanvas.cs—The Implementation of FanCanvas

using System; 

using System.Windows; 

using System.Windows.Controls; 

using System.Windows.Media;

namespace CustomPanels 

{

public class FanCanvas : Panel 

{

public static readonly DependencyProperty OrientationProperty = 

DependencyProperty.Register(“Orientation”, typeof(Orientation), 

typeof(FanCanvas), new FrameworkPropertyMetadata(Orientation.Horizontal, 

FrameworkPropertyMetadataOptions.AffectsArrange));

public static readonly DependencyProperty SpacingProperty = 

DependencyProperty.Register(“Spacing”, typeof(double), 

typeof(FanCanvas), new FrameworkPropertyMetadata(10d, 

FrameworkPropertyMetadataOptions.AffectsArrange));

public static readonly DependencyProperty AngleIncrementProperty = 

DependencyProperty.Register(“AngleIncrement”, typeof(double), 

typeof(FanCanvas), new FrameworkPropertyMetadata(10d, 

FrameworkPropertyMetadataOptions.AffectsArrange));

public Orientation Orientation 

{

get { return (Orientation)GetValue(OrientationProperty); } 

set { SetValue(OrientationProperty, value); }

}

public double Spacing 

{

get { return (double)GetValue(SpacingProperty); } 

set { SetValue(SpacingProperty, value); }

}

public double AngleIncrement 

{

get { return (double)GetValue(AngleIncrementProperty); } 

set { SetValue(AngleIncrementProperty, value); }

}

protected override Size MeasureOverride(Size availableSize)

Creating a FanCanvas 769
2

1

  From the Library of Wow! eBook



ptg

{

foreach (UIElement child in this.Children) 

{

// Give each child all the space it wants 

if (child != null)

child.Measure(new Size(Double.PositiveInfinity, 

Double.PositiveInfinity));

}

// The FanCanvas itself needs no space, just like SimpleCanvas 

return new Size(0, 0);

}

protected override Size ArrangeOverride(Size finalSize) 

{

// Center the children

Point location = new Point(0,0); 

double angle = GetStartingAngle();

foreach (UIElement child in this.Children) 

{

if (child != null) 

{

// Give the child its desired size 

child.Arrange(new Rect(location, child.DesiredSize));

// WARNING: Overwrite any RenderTransform with one that 

//          arranges children in the fan shape 

child.RenderTransform = new RotateTransform(angle,

child.RenderSize.Width / 2, child.RenderSize.Height);

// Update the offset and angle for the next child 

if (Orientation == Orientation.Vertical)

location.Y += Spacing; 

else

location.X += Spacing;

angle += AngleIncrement; 

}

}

// Fill all the space given 

return finalSize;

}

CHAPTER 21 Layout with Custom Panels770

LISTING 21.4 Continued

  From the Library of Wow! eBook



ptg

double GetStartingAngle() 

{

double angle;

if (this.Children.Count % 2 != 0) 

// Odd, so the middle child will have angle == 0 

angle = -AngleIncrement * (this.Children.Count / 2);

else 

// Even, so the middle two children will be half of 

// the AngleIncrement on either side of 0 

angle = -AngleIncrement * (this.Children.Count / 2) + AngleIncrement / 2;

// Rotate 90 degrees if vertical 

if (Orientation == Orientation.Vertical)

angle += 90;

return angle; 

}

} 

}

FanCanvas shares some similarities with each of the three previous panels. FanCanvas is 
similar to SimpleStackPanel and OverflowPanel in that children are basically stacked in 
one dimension. FanCanvas defines an Orientation dependency property like the others, 
although it defaults to Horizontal and is marked AffectsArrange instead of 
AffectsMeasure. Changes to Orientation don’t affect the measure pass because of a 
difference in FanCanvas’s MeasureOverride implementation that makes it agnostic to 
Orientation.

FanCanvas defines two more dependency properties that control the amount of fanning 
done. Spacing controls how far children are spread apart in terms of logical pixels. It’s like 
the overlap variable in OverlapPanel, except that it’s the amount of nonoverlap. 
AngleIncrement controls how much each child is rotated compared to the previous child. 
It is expressed in terms of degrees. Both Spacing and AngleIncrement have a default value 
of 10 and, like Orientation, affect only the arrange pass. The fact that these are depen-
dency properties opens the door to performing some cool animations with this panel.

FanCanvas is called a “Canvas” mainly because its MeasureOverride implementation is 
identical to Canvas (and SimpleCanvas earlier in this chapter). It tells each child to take all 
the space it wants, and then it tells its parent that it doesn’t require any space for itself 
(again because its children do not get clipped to its bounds unless ClipToBounds is set to 
true). That’s why measurement is Orientation agnostic; the logic doesn’t care in which 
direction the stacking is performed. The “Canvas” designation also helps to justify its rela-
tively simplistic layout support! A better implementation would account for the exact

Creating a FanCanvas 771

LISTING 21.4 Continued

2
1

  From the Library of Wow! eBook



ptg

angles and spacing of the children to figure out an appropriate bounding box for its own 
desired size. Instead, the consumer of FanCanvas likely needs to give it an explicit size and 
appropriate Margin in order to get the exact results desired.

The logic in ArrangeOverride is pretty close to ArrangeOverride in SimpleStackPanel, 
aside from the fact that it rotates each child with a RenderTransform that uses an ever-
increasing angle. The starting angle is determined by GetStartingAngle, which ensures 
that the middle child is unrotated or, if there are an even number of children, the middle 
two children evenly straddle the unrotated angle (0° when Horizontal or 90° when 
Vertical).

Changing properties on the children (such as RenderTransform) is generally not a good 
thing for a panel to do. It can cause confusion when child properties that were already set 
by the consumer don’t end up working, and it can break programmatic assumptions 
made by the consuming code. Another approach would be to define and use a 
FanCanvasItem content control that implicitly contains each child so you can apply the 
transforms to these instead. This is normally done for items controls, however, rather 
than panels. Despite its limitations, this version of FanCanvas works perfectly well for 
limited reuse.

Figure 21.4 shows FanCanvas in action with instances of the PlayingCard custom control 
from the previous chapter. Lots of interesting patterns can be created by adjusting the 
Spacing and AngleIncrement properties!

CHAPTER 21 Layout with Custom Panels772

Spacing=10, AngleIncrement=10 (default) Spacing=30, AngleIncrement=10

Spacing=10, AngleIncrement=30 Spacing=0, AngleIncrement=30

FIGURE 21.4 Using FanCanvas with the previous chapter’s PlayingCard control.

  From the Library of Wow! eBook



ptg

Summary
This chapter digs into the mechanism used by child elements and parent panels—how 
they compromise to give great results in a wide variety of situations. Implementing your 
own custom panels is considered an advanced topic only because it’s rare that you would 
need to do so. As you’ve seen, custom panels are pretty easy to write. Because of the 
measure/arrange protocol and all the work automatically handled by WPF, existing 
controls can be placed inside brand-new custom panels, and they still behave very reason-
ably.

As with creating a custom control, you should spend a little time determining the appro-
priate base class for a custom panel. The choices for panels are easy, however. Most of the 
time, as with the panels in this chapter, it makes sense to simply derive from Panel. If 
you plan on supporting user interface virtualization, you should derive from 
VirtualizingPanel, the abstract base class of VirtualizingStackPanel. Otherwise, it 
could be handy to derive from a different Panel subclass (such as Canvas or DockPanel), 
especially if you plan on supporting the same set of attached properties that these classes 
define.

Summary 773
2

1

  From the Library of Wow! eBook



ptg

This page intentionally left blank 

  From the Library of Wow! eBook



ptg

Symbols/Numbers
\ (backslash), 34 

{ } (curly braces), 33-34, 377 

2D graphics

2D and 3D coordinate system 
transformation, 541, 590-591 

explained, 596 

Visual.TransformToAncestor method,
596-600

Visual3D.TransformToAncestor method,
600-605

Visual3D.TransformToDescendant
method, 600-605

Brushes 

BitmapCacheBrush class, 535

DrawingBrush class, 520-524 

explained, 513 

ImageBrush class, 524-525 

LinearGradientBrush class, 515-518 

as opacity masks, 527-529 

RadialGradientBrush class, 519-520 

SolidColorBrush class, 514 

VisualBrush class, 525-527

drawings 

clip art example, 491-492 

Drawing class, 476 

DrawingBrush class, 477 

DrawingContext methods, 494 

DrawingImage class, 477-479 

DrawingVisual class, 477 

GeometryDrawing class, 476-477 

GlyphRunDrawing class, 476 

ImageDrawing class, 476-478 

Pen class, 489-491 

VideoDrawing class, 476

Effects, 529-531

  From the Library of Wow! eBook



ptg

explained, 475-476 

geometries

aggregate geometries, 483 

Bézier curves, 480 

CombinedGeometry class, 486-487 

defined, 479 

EllipseGeometry class, 479 

GeometryGroup class, 484-486 

LineGeometry class, 479 

PathGeometry class, 479-483 

RectangleGeometry class, 479 

representing as strings, 487-489 

StreamGeometry class, 483

house example, 538 

Shapes

clip art based on Shapes, 512-513 

Ellipse class, 508 

explained, 505-506 

how they work, 509 

Line class, 509-510 

overuse of, 507 

Path class, 511-512 

Polygon class, 511 

Polyline class, 510 

Rectangle class, 507-508

transforms. See transforms 

Visuals

custom rendering, 499 

displaying on screen, 496-498 

DrawingContext methods, 494 

DrawingVisuals, 493-496 

explained, 493 

visual hit testing, 499-505

WPF 3.5 enhancements, 15

3D graphics 

2D and 3D coordinate system 
transformation, 541, 590-591 

explained, 596 

Visual.TransformToAncestor method,
596-600 

Visual3D.TransformToAncestor method,
600-605 

Visual3D.TransformToDescendant
method, 600-605 

3D hit testing, 592-593 

Cameras

blind spots, 545 

coordinate systems, 542-544 

explained, 542 

LookDirection property, 544-548 

MatrixCamera, 553 

OrthographicCamera versus
PerspectiveCamera, 551-553 

Position property, 543-544 

Transform property, 549 

UpDirection property, 548-550 

Z-fighting, 545

coordinate systems, 542-544 

explained, 537-538 

hardware acceleration

explained, 12 

GDI and, 13

house example, 538-540 

Lights, 542 

Materials

AmbientMaterial, 575 

combining, 578 

DiffuseMaterial, 572-575 

EmissiveMaterial, 576-578 

explained, 571

2D graphics776

  From the Library of Wow! eBook



ptg

Model3Ds 

explained, 563 

GeometryModel3D, 571 

Lights, 563-570 

Model3DGroup class, 584-586

pixel boundaries, 17 

resolution independence, 12 

texture coordinates, 584 

Transform3Ds

combining, 562 

explained, 554-555 

house drawing example, 555-556 

MatrixTransform3D class, 554, 562 

RotateTransform3D class, 554, 559-562 

ScaleTransform3D class, 554, 557-559 

Transform3DGroup class, 554 

TranslateTransform3D class, 554-557

Viewport2DVisual3D class, 590-591 

Viewport3D class, 593-596 

Visual3Ds

explained, 586 

ModelVisual3D class, 587-588 

UIElement3D class, 588-590

WPF 3.5 enhancements, 15 

3D hit testing, 592-593

A
About dialog 

attached events, 165-167 

with font properties moved to inner
StackPanel, 90 

with font properties set on root 
window, 85-86

How can we make this index more useful? Email us at indexes@samspublishing.com

Help command, 191-192 

initial code listing, 75-76 

routed events, 162-164

absolute sizing, 130 

accessing

binary resources 

embedded in another assembly, 348 

from procedural code, 349-350 

at site of origin, 348-349 

from XAML, 345-348

logical resources, 360 

Action property (QueryContinueDragEventArgs
class), 173 

ActiveEditingMode property (InkCanvas 
class), 317 

ActiveX controls, 714-718 

ActualHeight property (FrameworkElement
class), 100 

ActualWidth property (FrameworkElement
class), 100 

AddBackEntry method, 218 

AddHandler method, 160-161 

advantages of WPF, 13 

Aero Glass, 249-253 

aggregate geometries, 483 

AlternationCount property (ItemsControl 
class), 276 

AlternationIndex property (ItemsControl 
class), 276 

AmbientLight, 564, 569-570 

AmbientMaterial class, 575 

AnchoredBlock class, 326-327 

AND relationships (logical), 429-430 

Angle property (RotateTransform class), 108 

AngleX property (SkewTransform class), 112 

AngleY property (SkewTransform class), 112

AngleY property (SkewTransform class) 777

  From the Library of Wow! eBook



ptg

animation 

animation classes

AutoReverse property, 618 

BeginTime property, 616-617 

By property, 616 

DoubleAnimation, 611-612 

Duration property, 614 

EasingFunction property, 620 

explained, 609-610 

FillBehavior property, 621 

From property, 614-616 

IsAdditive property, 621 

IsCumulative property, 621 

lack of generics, 610-611 

linear interpolation, 612-613 

RepeatBehavior property, 618-619 

SpeedRatio property, 617 

To property, 614-616

data binding and, 632

easing functions, 16 

BackEase, 640 

BounceEase, 640 

CircleEase, 640 

EasingMode property, 637 

ElasticEase, 640 

ExponentialEase, 640 

power easing functions, 637-638 

SineEase, 640 

writing, 640-642

explained, 89, 607 

frame-based animation, 609 

keyframe animation

discrete keyframes, 634-636 

easing keyframes, 636 

explained, 630 

linear keyframes, 631-633 

spline keyframes, 633-634

path-based animations, 637 

reusing animations, 613 

timer-based animation, 608-609 

and Visual State Manager

Button ControlTemplate with
VisualStates, 643-646 

transitions, 647-651

with XAML EventTriggers/Storyboards 

explained, 621-622 

starting animations from property 
triggers, 628-629 

Storyboards as Timelines, 629-630 

TargetName property, 625-626 

TargetProperty property, 622-625

annotations, adding to flow documents,
331-334 

AnnotationService class, 331 

Application class

creating applications without, 204 

events, 202 

explained, 199-200 

Properties collection, 203 

Run method, 200-201 

single-instance applications, 204 

Windows collection, 202

ApplicationCommands class, 189 

ApplicationPath property (JumpTask), 238 

applications

associating Jump Lists with, 234 

embedding Win32 controls in WPF 
applications 

explained, 677 

keyboard navigation, 687-691 

Webcam control, 678-687

embedding Windows Forms controls in 
WPF applications 

explained, 699-700 

PropertyGrid, 700-703

animation778

  From the Library of Wow! eBook



ptg

embedding WPF controls in 
Win32 applications 

HwndSource class, 692-695 

layout, 696-699

embedding WPF controls in Windows 
Forms applications 

converting between two representatives,
707-708 

ElementHost class, 704-706 

launching modal dialogs, 708

gadget-style applications, 223-224 

loose XAML pages, 231-232 

multiple-document interface (MDI), 203 

navigation-based Windows applications

explained, 211-212 

hyperlinks, 215-216 

journal, 216-218 

Navigate method, 214-215 

navigation containers, 212-214 

navigation events, 218-219 

Page elements, 212-214 

returning data from pages, 221-222 

sending data to pages, 220-221

standard Windows applications 

Application class, 199-204 

application state, 209-210 

ClickOnce, 210-211 

common dialogs, 206-207 

custom dialogs, 207-208 

explained, 195-196 

multithreaded applications, 205 

retrieving command-line arguments 
in, 202 

single-instance applications, 204 

splash screens, 205-206 

Window class, 196-198 

Windows Installer, 210

How can we make this index more useful? Email us at indexes@samspublishing.com

XAML Browser applications (XBAPs) 

ClickOnce caching, 226 

deployment, 229 

explained, 224-226 

full-trust XAML Browser 
applications, 228 

integrated navigation, 228-229 

limitations, 226-227 

on-demand download, 230-231 

security, 229

Apply method, 245 

arbitrary objects, content and, 263 

ArcSegment class, 480 

Arguments property (JumpTask), 238 

ArrangeOverride method, overriding, 754-755 

associating Jump Lists with applications, 234 

asynchronous data binding, 401 

attached events, 165-167 

attached properties

About dialog example, 90-91 

as extensibility mechanism, 92-93 

attached property providers, 92 

defined, 89

attached property providers, 92 

attenuation, 566 

attributes, setting, 25 

audio support

embedded resources, 663 

explained, 653 

MediaElement, 656-658 

MediaPlayer, 655-656 

MediaTimeline, 656-658 

SoundPlayer, 654 

SoundPlayerAction class, 654-655

audio support 779

  From the Library of Wow! eBook



ptg

speech recognition 

converting spoken words into text,
667-670 

specifying grammar with
GrammarBuilder, 671-672 

specifying grammar with SRGS, 670-671

speech synthesis 

explained, 664 

GetInstalledVoices method, 664 

PromptBuilder class, 665-667 

SelectVoice method, 664 

SelectVoiceByHints method, 664 

SetOutputToWaveFile method, 665 

SpeakAsync method, 664 

Speech Synthesis Markup Language
(SSML), 665-667 

SpeechSynthesizer, 664

SystemSounds class, 654 

“Auto” length, 99 

automation

automation IDs, 289 

UI Automation, supporting in custom 
controls, 749-750 

AutoReverse property (animation classes), 618 

autosizing, 128-130 

AxisAngleRotation3D class, 559-560 

AxMsTscAxNotSafeForScripting control, 716-717

B
BackEase function, 640 

backslash (\), 34 

BAML (Binary Application Markup Language)

decompiling back into XAML, 47-48 

defined, 45

Baml2006Reader class, 53

base values of dependency properties,
calculating, 87-88 

BaseValueSource enumeration, 88 

BeginTime property (animation classes),
616-617 

behavior

adding to custom controls 

behavior, 737-739 

code-behind file, 734 

initial implementation, 733-737 

resources, 734-735

creating for user controls, 725-727 

Bézier curves, 480 

BezierSegment class, 480 

Binary Application Markup Language (BAML)

decompiling back into XAML, 47-48 

defined, 45

binary resources 

accessing

embedded in another assembly, 348 

from procedural code, 349-350 

at site of origin, 348-349 

from XAML, 345-348

defining, 344-345 

explained, 343 

localizing

creating satellite assembly with
LocBaml, 351 

explained, 350 

marking user interfaces with localization
IDs, 351 

preparing projects for multiple 
cultures, 350 

Binding object. See also data binding

binding 

to .NET properties, 367-368 

to collections, 370-373

audio support780

  From the Library of Wow! eBook



ptg

to entire objects, 369-370 

to UIElement, 370

DoNothing values, 385 

ElementName property, 366 

IsAsync property, 401 

in procedural code, 363-365 

RelativeSource property, 367 

removing, 365 

sharing source with DataContext, 374-375 

StringFormat property, 375-376 

TargetNullValue property, 366 

UpdateSourceExceptionFilter property, 408 

UpdateSourceTrigger property, 404 

validation rules, 405-409 

ValidationRules property, 406 

in XAML, 365-367

BindingMode enumeration, 403 

BitmapCache class, 533-535 

BitmapCacheBrush class, 535 

BitmapEffect, 530 

bitmaps

nearest-neighbor bitmap scaling, 310 

WriteableBitmap class, 15

BitmapScalingMode property 
(RenderOptions), 306 

BlackoutDates property (Calendar control),
337-338 

blind spots (Cameras), 545 

Block TextElements

AnchoredBlock class, 326-327 

BlockUIContainer, 321 

List, 320 

Paragraph, 320 

sample code listing, 321-324 

Section, 320 

Table, 320

How can we make this index more useful? Email us at indexes@samspublishing.com

BlockUIContainer Blocks, 321 

BlurEffect, 529-530 

BooleanToVisibilityConverter, 383-384 

Bottom property (Canvas), 116 

BounceEase function, 640 

BrushConverter type converter, 32 

Brushes

applying without logical resources, 352-353 

BitmapCacheBrush class, 535 

consolidating with logical resources,
353-355 

explained, 513 

ImageBrush class, 524-525 

LinearGradientBrush class, 515-518 

as opacity masks, 527-529 

RadialGradientBrush class, 519-524 

SolidColorBrush class, 514 

VisualBrush class, 525-527

bubbling, 161 

BuildWindowCore class, 684 

built-in commands, 189-192 

Button class, 81, 264-265 

ButtonAutomationPeer class, 265 

ButtonBase class, 263-264 

buttons

Button class, 81, 264-265 

Button ControlTemplate with VisualStates,
643-646 

ButtonBase class, 263-264 

CheckBox class, 266 

defined, 263 

RadioButton class, 266-268 

RepeatButton class, 265 

styling with built-in animations, 626-628 

ToggleButton class, 265-266

By property (animation classes), 616

By property (animation classes) 781

  From the Library of Wow! eBook



ptg

C
C++/CLI, 681-682 

cached composition

BitmapCache class, 533-535 

BitmapCacheBrush class, 535 

Viewport2DVisual3D support for, 591

caching, ClickOnce, 226 

Calendar control, 336-338 

calendar controls

Calendar, 336-338

DatePicker, 338-339

Cameras 

blind spots, 545 

coordinate systems, 542-544 

explained, 542 

LookDirection property, 544-548 

MatrixCamera, 553 

OrthographicCamera versus
PerspectiveCamera, 551-553 

Position property, 543-544 

Transform property, 549 

UpDirection property, 548-550 

Z-fighting, 545

CAML (Compiled Application Markup
Language), 46 

CanUserDeleteRows property (DataGrid), 298 

cancel buttons, 264 

Cancel method, 185 

CanExecute method, 189 

CanExecuteChanged method, 189 

CanUserAddRows property (DataGrid), 298 

Canvas, 116-118. See also SimpleCanvas

mimicking with Grid, 136 

capturing mouse events, 173-174 

cells (DataGrid), selecting, 295 

Center property (RadialGradientBrush), 519

CenterX property 

RotateTransform class, 108-110

SkewTransform class, 112

CenterY property 

RotateTransform class, 108-110

SkewTransform class, 112

change notification (dependency properties),
83-84 

CheckBox class, 266 

child object elements

content property, 35-36 

dictionaries, 37-38 

lists, 36-37 

processing rules, 40 

values type-converted to object 
elements, 38 

/clr compiler option, 686 

CircleEase function, 640 

class hierarchy, 73-75 

Class keyword, 44 

classes. See specific classes 

ClearAllBindings method, 365 

ClearBinding method, 365 

ClearHighlightsCommand, 331 

clearing

bindings, 365 

local values, 88

ClearValue method, 88 

CLI (Common Language Infrastructure), 681 

Click event, 263-264 

clickable cube example, 588-590 

ClickCount property 
(MouseButtonEventArgs), 172 

ClickMode property (ButtonBase class), 263 

ClickOnce, 210-211

ClickOnce caching, 226 

with unmanaged code, 211

C++/CLI782

  From the Library of Wow! eBook



ptg

clients, pure-XAML Twitter client, 412-413 

clip art example, 491-492

clip art based on Shapes, 512-513 

drawing-based implementation, 491-492 

DrawingContext-based implementation,
495-496 

WindowHostingVisual.cs file, 497

clipboard interaction (DataGrid), 296 

ClipboardCopyMode property (DataGrid), 296 

clipping, 139-141 

ClipToBounds property (panels), 140 

clr-namespace directive, 39 

code-behind files, 44, 734 

CoerceValueCallback delegate, 89 

cold start time, 205 

Collapsed value (Visibility enumeration), 102 

collections

binding to, 370-373

customizing collection views 

creating new views, 394-396 

explained, 386 

filtering, 392 

grouping, 388-391 

navigating, 392-393 

sorting, 386-388

dictionaries, 37-38 

ItemsSource, 297 

lists, 36-37 

Properties, 203 

SortDescriptions, 387 

Triggers, 85 

Windows, 202

CollectionViewSource class, 394 

color brushes

applying without logical resources, 352-353 

consolidating with logical resources,
353-355

How can we make this index more useful? Email us at indexes@samspublishing.com

LinearGradientBrush class, 515-518 

RadialGradientBrush class, 519-520 

SolidColorBrush class, 514

color space profiles, 515 

Color structure, 514 

columns (Grid)

auto-generated columns, 294-295 

column types, 293-294 

freezing, 297 

sharing row/column sizes, 134-136 

sizing

absolute sizing, 130 

autosizing, 130 

GridLength structures, 131-132 

interactive sizing with GridSplitter,
132-133 

percentage sizing, 131 

proportional sizing, 130

CombinedGeometry class, 486-487 

combining

Materials, 578 

Transform3Ds, 562 

transforms, 113-114

ComboBox control 

ComboBoxItem objects, 286-287 

customizing selection box, 282-285 

events, 282 

explained, 282 

IsEditable property, 282 

IsReadOnly property, 282 

SelectionChanged event, 285-286

ComboBoxItem objects, 286-287 

ComCtl32.dll, 255-256 

command-line arguments, retrieving, 202

command-line arguments, retrieving 783

  From the Library of Wow! eBook



ptg

commands. See also specific commands 

built-in commands, 189-192 

controls with built-in command bindings,
193-194 

executing with input gestures, 192-193 

explained, 188-189 

implementing with custom controls, 745

commas in geometry strings, 489 

common dialogs, 206-207 

Common Language Infrastructure (CLI), 681 

Compiled Application Markup Language
(CAML), 46 

compiling XAML, 43-45 

Complete method, 185 

CompleteQuadraticEase class, 642 

ComponentCommands class, 190 

CompositeCollection class, 410 

CompositionTarget_Rendering event 
handler, 713 

conflicting triggers, 429 

consolidating routed event handlers, 167-168 

ConstantAttenuation property (PointLights), 566 

containers

Expander class, 273-274 

Frame class, 271-272 

GroupBox class, 273 

Label class, 268 

navigation containers, 212-214 

ToolTop class, 269-271

ContainerUIElement3D class, 590 

Content build action, 344 

content controls

and arbitrary objects, 263

buttons 

Button class, 264-265 

ButtonBase class, 263-264 

CheckBox class, 266

defined, 263 

RadioButton class, 266-268 

RepeatButton class, 265 

ToggleButton class, 265-266

containers 

Expander class, 273-274 

Frame class, 271-272 

GroupBox class, 273 

Label class, 268 

ToolTip class, 269-271

ContentControl class, 262 

defined, 262

content overflow, handling 

clipping, 139-141 

explained, 139 

scaling, 143-147 

scrolling, 141-143

Content property, 35-36 

ContentControl class, 435-437 

Frame class, 272

ContentControl class, 262, 435-437 

ContentElement class, 74 

ContextMenu control, 301-302 

ContextMenuService class, 302 

Control class, 75 

control parts, 744-745 

control states, 745-749 

control templates

ControlTemplate with triggers, 432-434 

editing, 457-458 

explained, 430-431 

mixing with styles, 456-457 

named elements, 434 

reusability of, 438-440 

simple control template, 431-432 

target type, restricting, 434-435

commands784

  From the Library of Wow! eBook



ptg

TargetType property, 434-435 

templated parent properties, respecting

Content property (ContentControl class),
435-437 

hijacking existing properties for new 
purposes, 441 

other properties, 438-440

triggers, 432-434 

visual states

respecting with triggers, 442-446 

respecting with VSM (Visual State
Manager), 447-455 

controls

ActiveX controls, 714-718 

buttons

Button class, 264-265 

ButtonBase class, 263-264 

CheckBox class, 266 

defined, 263 

RadioButton class, 266-268 

RepeatButton class, 265 

ToggleButton class, 265-266

Calendar, 336-338 

ComboBox

ComboBoxItem objects, 286-287 

customizing selection box, 282-285 

events, 282 

explained, 282 

IsEditable property, 282 

IsReadOnly property, 282 

SelectionChanged event, 285-286

containers 

Expander class, 273-274 

Frame class, 271-272 

GroupBox class, 273 

Label class, 268 

ToolTip class, 269-271

How can we make this index more useful? Email us at indexes@samspublishing.com

ContextMenu, 301-302 

control parts, 447-449 

control states, 449-455 

controls with built-in command bindings,
193-194 

custom controls, creating 

behavior, 733-739 

code-behind file, 734 

commands, 745 

control parts, 744-745 

control states, 745-749 

explained, 12, 721-722 

generic resources, 741-742 

resources, 734-735 

UI Automation, 749-750 

user controls versus custom 
controls, 722 

user interfaces, 739-740, 742

DataGrid, 293 

auto-generated columns, 294-295 

CanUserAddRows property, 298 

CanUserDeleteRows property, 298 

clipboard interaction, 296 

ClipboardCopyMode property, 296 

column types, 293-294 

displaying row details, 296-297 

editing data, 297-298 

EnableColumnVirtualization 
property, 296 

EnableRowVirtualization property, 296 

example, 292-293 

freezing columns, 297 

FrozenColumnCount property, 297 

RowDetailsVisibilityMode property, 297 

selecting rows/cells, 295 

SelectionMode property, 295

controls 785

  From the Library of Wow! eBook



ptg

SelectionUnit property, 295 

virtualization, 296

DatePicker, 338-339 

explained, 261-263 

GridView, 290-291 

InkCanvas, 316-318 

ItemsControl class, 275-276

AlternationCount property, 276 

AlternationIndex property, 276 

DisplayMemberPath property, 276-277 

HasItems property, 276 

IsGrouping property, 276 

IsTextSearchCaseSensitive property, 285 

IsTextSearchEnabled property, 285 

Items property, 275 

ItemsPanel property, 276-280 

ItemsSource property, 276 

scrolling behavior, controlling, 280-281

ListBox 

automation IDs, 289 

example, 287-288 

scrolling, 289 

SelectionMode property, 288 

sorting items in, 289 

support for multiple selections, 288

ListView, 290-291 

Menu, 298-301 

PasswordBox, 316 

ProgressBar, 335 

RichTextBox, 316 

ScrollViewer, 141-143 

Selector class, 281 

Slider, 335-336 

states, 745-749 

StatusBar, 307-308 

TabControl, 291-292

TextBlock 

explained, 313 

explicit versus implicit runs, 314 

properties, 313 

support for multiple lines of text, 315 

whitespace, 314

TextBox, 315 

ToolBar, 304-306 

TreeView, 302-304 

user controls, creating

behavior, 725-727 

dependency properties, 728-731 

explained, 721-722 

protecting controls from accidental
usage, 727-728 

routed events, 731-732 

user controls versus custom 
controls, 722 

user interfaces, 723-725

ControlTemplate class. See control templates 

Convert method, 382 

converting spoken words into text, 667-670 

ConvertXmlStringToObjectGraph method, 65 

coordinate systems, 542-544 

CountToBackgroundConverter class, 382-384 

CreateBitmapSourceFromHBitmap method, 708 

CreateHighlightCommand, 331 

CreateInkStickyNoteCommand, 331 

CreateTextStickyNoteCommand, 331 

CreateWindow method, 685 

Cube example

clickable cube, 588-590 

cube and TextBlocks, 600-604 

cube button style, 594-595 

cube of buttons and small purple cube,
597-599 

initial code listing, 585-586

controls786

  From the Library of Wow! eBook



ptg

cultures, preparing projects for multiple 
cultures, 350 

curly braces ({}), 33-34 

CurrentItem property (ICollectionView), 392 

curves, Bézier, 480 

CustomCategory property (JumpTask), 239-240 

customization

advantages/disadvantages, 416 

collection views

creating new views, 394-396 

explained, 386 

filtering, 392 

grouping, 388-391 

navigating, 392-393 

sorting, 386-388

color space profiles, 515 

custom controls, creating

behavior, 733-739 

commands, 745 

control parts, 744-745 

control states, 745-749 

explained, 721-722 

generic resources, 741-742 

UI Automation, 749-750 

user controls versus custom 
controls, 722 

user interfaces, 739-742

custom rendering, 499 

custom sorting, 388 

data display, 385 

data flow, 403-405 

dialogs, 207-208 

JumpTask behavior, 237-240 

keyboard navigation, 306 

panels

communication between parents and
children, 752-755 

explained, 751-752

How can we make this index more useful? Email us at indexes@samspublishing.com

selection boxes (ComboBox control),
282-285 

taskbar

explained, 245-246 

taskbar item progress bars, 246 

taskbar overlays, 247 

thumb buttons, 248-249 

thumbnail content, 247

D
D3DImage class, 708-714 

DashStyle class, 490-491 

DashStyle property (Pen class), 490 

data binding, 15

animation and, 632 

asynchronous data binding, 401 

Binding object, 363

binding to .NET properties, 367-368 

binding to collections, 370-373 

binding to entire objects, 369-370 

binding to UIElement, 370 

ElementName property, 366 

IsAsync property, 401 

in procedural code, 363-365 

RelativeSource property, 367 

removing, 365 

sharing source with DataContext,
374-375 

StringFormat property, 375-376 

TargetNullValue property, 366 

UpdateSourceExceptionFilter 
property, 408 

UpdateSourceTrigger property, 404 

validation rules, 405-409

data binding 787

  From the Library of Wow! eBook



ptg

ValidationRules property, 406 

in XAML, 365-367

canceling temporarily, 385 

CompositeCollection class, 410 

controlling rendering

data templates, 378-380 

explained, 375 

string formatting, 375-377 

value converters, 381-386

customizing collection views 

creating new views, 394-396 

explained, 386 

filtering, 392 

grouping, 388-391 

navigating, 392-393 

sorting, 386-388

customizing data flow, 403-405

data providers 

explained, 396 

ObjectDataProvider class, 401-403 

XmlDataProvider class, 397-401

defined, 363 

Language Integrated Query (LINQ), 396 

to methods, 402-403 

MultiBinding class, 410-411 

PriorityBinding class, 411 

pure-XAML Twitter client, 412-413 

troubleshooting, 384

data flow, customizing, 403-405 

Data property (DragEventArgs class), 172 

data providers

explained, 396 

ObjectDataProvider class, 401-403 

XmlDataProvider class, 397-401

data templates, 378-380 

HierarchicalDataTemplate, 399-400 

template selectors, 381

data triggers, 84, 427-428 

data types

bridging incompatible data types, 381-384 

in XAML 2009, 50

DataContext property, 374-375 

DataGrid control

CanUserAddRows property, 298 

CanUserDeleteRows property, 298 

clipboard interaction, 296 

ClipboardCopyMode property, 296 

column types, 293-295 

displaying row details, 296-297 

editing data, 297-298 

EnableColumnVirtualization property, 296 

EnableRowVirtualization property, 296 

example, 292-293 

freezing columns, 297 

FrozenColumnCount property, 297 

RowDetailsVisibilityMode property, 297 

selecting rows/cells, 295 

SelectionMode property, 295 

SelectionUnit property, 295 

virtualization, 296

DataGridCheckBoxColumn, 294 

DataGridComboBoxColumn, 294 

DataGridHyperlinkColumn, 293 

DataGridTemplateColumn, 294 

DataGridTextColumn, 293 

DataTrigger class, 427-428 

DatePicker control, 338-339 

DateValidationError event, 339 

DayOfWeek enumeration, 338 

DeadCharProcessedKey property (KeyEventArgs
class), 168 

debugger (Visual C++), 695 

declaration context, 375 

declarative programming, 12

data binding788

  From the Library of Wow! eBook



ptg

decorators, 144 

default buttons, 264 

default styles, 88 

defining

binary resources, 344-345 

object elements, 25 

properties, 53

delegates 

CoerceValueCallback, 89 

delegate contravariance, 168 

ValidateValueCallback, 89

DeleteStickyNotesCommand, 331 

dependency properties, 419-420

adding to user controls, 728-731 

attached properties

About dialog example, 90-91 

attached property providers, 92 

defined, 89 

as extensibility mechanism, 92-93

attached property providers, 92 

change notification, 83-84 

explained, 80-81 

hijacking, 441 

implementation, 81-83 

property triggers, 83-85 

property value inheritance, 85-86 

support for multiple providers

applying animations, 89 

coercion, 89 

determining base values, 87-88 

evaluating, 89 

explained, 87 

validation, 89

DependencyObject class, 74, 82 

DependencyPropertyHelper class, 88

How can we make this index more useful? Email us at indexes@samspublishing.com

deployment 

ClickOnce, 210-211 

Windows Installer, 210 

WPF 3.5 enhancements, 16 

WPF 4 enhancements, 17 

XAML Browser applications, 229

DesiredSize property (FrameworkElement
class), 99 

DestroyWindowCore class, 684 

device-independent pixels, 102 

DialogFunction method, 694 

dialogs

About dialog 

with font properties moved to inner
StackPanel, 90 

with font properties set on root 
window, 85-86 

initial code listing, 75-76

common dialogs, 206-207 

custom dialogs, 207-208 

dialog results, 208 

modal dialogs

launching from Win32 applications, 699 

launching from Windows Forms 
applications, 708 

launching from WPF applications,
692, 703 

modeless dialogs, 196 

TaskDialogs, 253-256

dictionaries, 37-38, 50 

DiffuseMaterial, 572-575 

direct routing, 161 

Direct3D, 12 

Direction property

DirectionalLight, 564 

PointLights, 568

DirectionalLight, 564-565 

directives. See specific directives

directives 789

  From the Library of Wow! eBook



ptg

DirectX 

development of, 10-11 

versus WPF, 13-14 

when to use, 13-14 

WPF interoperability, 15, 708-714

discrete keyframes, 634-636 

DispatcherObject class, 74 

DispatcherPriority enumeration, 205 

DispatcherTimer class, 608-609 

DisplayDateEnd property (Calendar 
control), 337 

DisplayDateStart property (Calendar 
control), 337

displaying 

flow documents, 329-331 

Visuals on screen, 496-498

DisplayMemberPath property, 276-277, 371 

Dock property (DockPanel), 122 

DockPanel

examples, 122-125 

explained, 122 

interaction with child layout properties, 125 

mimicking with Grid, 136 

properties, 122

documents, flow 

annotations, 331-334 

Blocks

AnchoredBlock class, 326-327 

BlockUIContainer, 321 

List, 320 

Paragraph, 320 

sample code listing, 321-324 

Section, 320 

Table, 320

creating, 318-319 

defined, 318 

displaying, 329-331

Inlines

AnchoredBlock, 326-327 

defined, 324-325 

InlineUIContainer, 329 

LineBreak, 327 

Span, 325-326

DoNothing value (Binding), 385 

DoubleAnimation class, 611-612 

download groups, 230 

DownloadFileGroupAsync method, 231 

drag-and-drop events, 172-173 

DragEventArgs class, 172 

Drawing class, 476 

DrawingBrush class, 477, 520-524 

DrawingContext class

clip art example, 495-496 

methods, 494

DrawingImage class, 477-479 

drawings

clip art example, 491-492 

Drawing class, 476 

DrawingBrush class, 477 

DrawingContext methods, 494 

DrawingImage class, 477-479 

DrawingVisual class, 477 

geometries. See geometries 

GeometryDrawing class, 476-477 

GlyphRunDrawing class, 476 

ImageDrawing class, 476-478 

Pen class, 489-491 

VideoDrawing class, 476 

WPF 3.5 enhancements, 15

DrawingVisuals 

explained, 477, 493 

filling with content, 493-496

DropDownOpened event, 282 

DropShadowEffect, 529-530

DirectX790

  From the Library of Wow! eBook



ptg

duration of animations, controlling, 614 

Duration property (animation classes), 614 

DwmExtendFrameIntoClientArea method,
249-252 

dynamic versus static resources, 355-357 

DynamicResource markup extension, 356-357

E
Ease method, 640 

EaseIn method, 642-643 

EaseInOut method, 642-643 

easing functions, 16 

easing keyframes, 636 

EasingFunction property (animation 
classes), 620 

EasingFunctionBase class, 641 

EasingMode property (easing functions), 637 

editing

control templates, 457-458 

DataGrid data, 297-298

EditingCommands class, 190 

EditingMode property (InkCanvas class), 317 

EditingModeInverted property (InkCanvas 
class), 317 

Effects, 529-531 

ElasticEase function, 640 

element trees. See trees 

ElementHost class, 704-706 

ElementName property (Binding object), 366 

elements. See object elements; 
property elements 

EllipseGeometry class, 479 

embedded resources, 663 

EmbeddedResource build action, 345

How can we make this index more useful? Email us at indexes@samspublishing.com

embedding 

ActiveX controls in WPF applications,
714-718 

Win32 controls in WPF applications

explained, 677 

keyboard navigation, 687-691 

Webcam control, 678-687

Windows Forms controls in 
WPF applications 

explained, 699-700 

PropertyGrid, 700-703

WPF controls in Win32 applications 

HwndSource class, 692-695 

layout, 696-699

WPF controls in Windows 
Forms applications 

converting between two representatives,
707-708 

ElementHost class, 704-706 

launching modal dialogs, 708

EmissiveMaterial class, 576-578 

EnableClearType property (BitmapCache 
class), 534 

EnableColumnVirtualization property 
(DataGrid), 296 

EnableRowVirtualization property 
(DataGrid), 296 

EnableVisualStyles method, 703 

EndLineCap property (Pen class), 489 

EndMember value (NodeType property), 57 

EndObject value (NodeType property), 57 

EndPoint property (LinearGradientBrush), 516 

enumerations

BaseValueSource, 88 

BindingMode, 403 

DayOfWeek, 338 

DispatcherPriority, 205 

GeometryCombineMode, 486

enumerations 791

  From the Library of Wow! eBook



ptg

GradientSpreadMethod, 517 

JumpItemRejectionReason, 244 

Key, 168-169 

MouseButtonState, 171 

PixelFormats, 311 

RoutingStrategy, 161 

ShutdownMode, 202 

Stretch, 144 

StretchDirection, 144 

TileMode, 523 

UpdateSourceTrigger, 404-405 

Visibility, 102-103

error handling, 407-409 

Error ProgressState, 246 

EscapePressed property
(QueryContinueDragEventArgs class), 173 

Euler angles, 560 

EvenOdd fill (FillRule property), 482 

event handlers, 52 

event wrappers, 160 

events

attributes, 25 

Click, 263-264 

DateValidationError, 339 

DropDownOpened, 282 

event wrappers, 160 

JumpItemsRejected, 244 

JumpItemsRemovedByUser, 244 

keyboard events, 168-170 

mouse events

capturing, 173-174 

drag-and-drop events, 172-173 

explained, 170-171 

MouseButtonEventArgs, 171 

MouseEventArgs, 171-172

MouseWheelEventArgs, 171 

transparent and null regions, 171

multi-touch events 

basic touch events, 177-180 

explained, 176 

manipulation events, 180-188

navigation events, 218-219 

order of processing, 26 

Rendering, 609 

routed events

About dialog example, 162-164 

adding to user controls, 731-732 

attached events, 165-167 

consolidating routed event handlers,
167-168 

defined, 159 

explained, 159-160 

implementation, 160-161 

RoutedEventArgs class, 162 

routing strategies, 161-162 

stopping, 165

SelectedDatesChanged, 339 

SelectionChanged, 281, 285-286 

stylus events, 174-176

EventTriggers, 84, 621-622 

ExceptionValidationRule object, 407 

Execute method, 189 

executing commands with input gestures,
192-193 

Expander class, 273-274 

Expansion property (ManipulationDelta 
class), 181 

explicit sizes, avoiding, 99 

explicit versus implicit runs, 314 

ExponentialEase function, 640 

Expression Blend, 14 

expressions, 89

enumerations792

  From the Library of Wow! eBook



ptg

ExtendGlassFrame method, 252 

extensibility mechanisms, attached properties
as, 92-93 

extensibility of XAML, 39 

Extensible Application Markup Language. 
See XAML

F
factoring XAML, 357 

FanCanvas, 768-772 

FileInputBox control

behavior, 725-727 

dependency properties, 728-731 

protecting from accidental usage, 727-728 

routed events, 731-732 

user interface, 723-725

files. See also specific files 

code-behind files, 44 

MainWindow.xaml.cs, 178-179, 186-187 

raw project files, opening in Visual 
Studio, 350 

VisualStudioLikePanes.xaml, 151-153 

VisualStudioLikePanes.xaml.cs, 153-157

FillBehavior property (animation classes), 621 

FillRule property (PathGeometry 
class), 482-483 

Filter property (ICollectionView), 392 

filtering, 392 

finding type converters, 32 

FindResource method, 359 

FirstDayOfWeek property (Calendar 
control), 338 

Flat line cap (Pen), 490

How can we make this index more useful? Email us at indexes@samspublishing.com

flow documents 

annotations, 331-334 

Blocks

AnchoredBlock class, 326-327 

BlockUIContainer, 321 

List, 320 

Paragraph, 320 

sample code listing, 321-324 

Section, 320 

Table, 320

creating, 318-319 

defined, 318 

displaying, 329-331 

Inlines

AnchoredBlock, 326-327 

defined, 324-325 

InlineUIContainer, 329 

LineBreak, 327 

Span, 325-326

FlowDirection property (FrameworkElement
class), 105-106 

FlowDocument element, 318 

FlowDocumentPageViewer control, 329 

FlowDocumentReader control, 329-333 

FlowDocumentScrollViewer control, 329 

FontSizeConverter type converter, 32 

Form1.cs file, 704, 707 

FormatConvertedBitmap class, 310 

formatting strings, 375-377 

Frame class, 212-214, 271-272 

frame-based animation, 609 

FrameworkContentElement class, 75, 80, 318 

FrameworkElement class

ActualHeight property, 100 

ActualWidth property, 100

FrameworkElement class 793

  From the Library of Wow! eBook



ptg

DesiredSize property, 99 

explained, 75, 80 

FlowDirection property, 105-106 

Height property, 98-100 

HorizontalAlignment property, 103-104 

HorizontalContentAlignment property,
104-106 

LayoutTransform property, 106 

Margin property, 100-102 

Padding property, 100-102 

RenderSize property, 99 

RenderTransform property, 106 

Triggers property, 85 

VerticalAlignment property, 103-105 

Visibility property, 102-103 

Width property, 98-100

FrameworkPropertyMetadata, 731 

Freezable class, 74 

freezing columns, 297 

From property (animation classes), 614-616 

FromArgb method, 707 

FrozenColumnCount property (DataGrid), 297 

full-trust XAML Browser applications, 228 

functions. See specific functions

G
gadget-style applications, 223-224 

GDI (graphics device interface), 10

GDI+, 10 

hardware acceleration and, 13

generated source code, 46 

generic dictionaries, 467, 741-742 

generics support (XAML2009), 49

geometries 

aggregate geometries, 483 

Bézier curves, 480 

CombinedGeometry class, 486-487 

defined, 479 

EllipseGeometry class, 479 

Geometry3D class, 578 

GeometryGroup class, 484-486 

LineGeometry class, 479 

MeshGeometry3D class, 578-579

Normals property, 581-583 

Positions property, 579 

TextureCoordinates property, 583 

TriangleIndices property, 580-581

PathGeometry class 

ArcSegment, 480 

BezierSegment, 480 

example, 480-482 

explained, 479 

FillRule property, 482-483 

LineSegment, 480 

PolyBezierSegment, 480 

PolyLineSegment, 480 

PolyQuadraticBezierSegment, 480 

QuadraticBezierSegment, 480

RectangleGeometry class, 479 

representing as strings, 487-489 

StreamGeometry class, 483

Geometry3D class, 578 

GeometryCombineMode enumeration, 486 

GeometryDrawing class, 476-477 

GeometryGroup class, 484-486 

GeometryModel3D

defined, 563 

explained, 571 

Geometry3D class, 578

FrameworkElement class794

  From the Library of Wow! eBook



ptg

Materials

AmbientMaterial, 575 

combining, 578 

DiffuseMaterial, 572-575 

EmissiveMaterial, 576-578 

explained, 571

MeshGeometry3D class, 578-579 

Normals property, 581-583 

Positions property, 579 

TextureCoordinates property, 583 

TriangleIndices property, 580-581

GetCommandLineArgs method, 202 

GetExceptionForHR method, 51 

GetGeometry method, 479 

GetHbitmap function, 708 

GetInstalledVoices method, 664 

GetIntermediateTouchPoints method, 177 

GetObject value (NodeType property), 57 

GetPosition method, 171-175 

GetTouchPoint method, 177 

GetValueSource method, 88 

GetVisualChild method, 497-498 

GlyphRunDrawing class, 476 

GradientOrigin property 
(RadialGradientBrush), 519 

gradients

GradientSpreadMethod enumeration, 517 

GradientStop objects, 515 

LinearGradientBrush class, 515-518 

RadialGradientBrush class, 519-520 

transparent colors, 520

GradientSpreadMethod enumeration, 517 

GradientStop objects, 515 

GrammarBuilder class, 671-672

How can we make this index more useful? Email us at indexes@samspublishing.com

grammars 

GrammarBuilder class, 671-672 

Speech Recognition Grammar Specification
(SRGS), 670-671 

graphics device interface (GDI), 10 

graphics hardware, advances in, 11 

graphics. See 2D graphics; 3D graphics 

Grid

cell properties, 128 

compared to other panels, 136 

explained, 125 

interaction with child layout properties, 137 

interactive sizing with GridSplitter, 132-133 

mimicking Canvas with, 136 

mimicking DockPanel with, 136 

mimicking StackPanel with, 136 

sharing row/column sizes, 134-136 

ShowGridLines property, 129 

sizing rows/columns

absolute sizing, 130 

autosizing, 130 

GridLength structures, 131-132 

percentage sizing, 131 

proportional sizing, 130

start page with Grid, 126-129 

GridLength structures, 131-132 

GridLengthConverter, 131 

GridSplitter class, 132-133 

GridView control, 290-291 

GridViewColumn object, 290 

GroupBox control, 273 

GroupDescriptions property 
(ICollectionView), 388 

grouping, 388-391 

GroupName property (RadioButton class), 267

GroupName property (RadioButton class) 795

  From the Library of Wow! eBook



ptg

H
Handled property (RoutedEventArgs class), 162 

HandleRef, 684 

hardware acceleration, 12-13 

HasContent property (ContentControl 
class), 262 

HasItems property (ItemsControl class), 276 

Header property (ToolBar), 306 

headered items controls, 299 

HeaderedItemsControl class, 299 

headers, containers with headers

Expander class, 273-274 

GroupBox class, 273

Height property (FrameworkElement class),
98-100 

Help command, 191-192 

Hidden value (Visibility enumeration), 102 

HierarchicalDataTemplate class, 380, 399-400 

hijacking dependency properties, 441 

Hillberg, Mike, 384 

hit testing

3D hit testing, 592-593 

input hit testing

explained, 499 

InputHitTest method, 513

visual hit testing 

callback methods, 505 

explained, 499 

with multiple Visuals, 500-503 

with overlapping Visuals, 503-505 

simple hit testing, 499-500

HitTest method, 502-505 

HitTestCore method, 505 

HitTestFilterCallback delegate, 504 

HitTestResultCallback delegates, 503 

HorizontalAlignment property
(FrameworkElement class), 103-104

HorizontalContentAlignment property
(FrameworkElement class), 104-105 

HostingWin32.cpp file, 685 

HostingWPF.cpp file, 693-697 

house drawing, 538-539

2D drawing, 538 

3D drawing, 539-540 

Transform3Ds, 555-556

HwndHost class, 685 

HwndSource class, 692-695 

HwndSource variable, 697-698 

hyperlinks, 215-216

I
ICC (International Color Consortium), 515 

ICommand interface, 189 

Icon property (MenuItem class), 299 

IconResourceIndex property (JumpTask), 238 

IconResourcePath property (JumpTask), 238 

ICustomTypeDescriptor interface, 368 

IEasingFunction interface, 640 

IList interface, 36 

Image control, 309-311 

ImageBrush class, 524-525 

ImageDrawing class, 476, 478 

images. See 2D graphics; 3D graphics 

ImageSource class, 310 

ImageSourceConverter type converter, 309 

ImeProcessedKey property (KeyEventArgs
class), 168 

immediate-mode graphics systems, 14, 475 

implicit .NET namespaces, 27 

implicit styles, creating, 421-422 

implicit versus explicit runs, 314 

InAir property (StylusDevice class), 174

Handled property (RoutedEventArgs class)796

  From the Library of Wow! eBook



ptg

Indeterminate ProgressState, 246 

inertia, enabling, 183-188 

Ingebretsen, Robby, 23 

inheritance

class hierarchy, 73-75 

property value inheritance, 85-86 

styles, 418

InitializeComponent method, 46-48, 198 

InitialShowDelay property (ToolTip class), 270 

InkCanvas class, 316-318 

Inline elements

AnchoredBlock, 326-327 

defined, 324-325 

InlineUIContainer, 329 

LineBreak, 327 

Span, 325-326

Inlines property (TextBlock control), 314 

InlineUIContainer class, 329 

InnerConeAngle property (PointLights), 568 

input gestures, executing commands with,
192-193 

input hit testing

explained, 499 

InputHitTest method, 513

InputGestureText property (MenuItem 
class), 300 

InputHitTest method, 513 

inspecting WPF elements, 14 

instantiating objects

with factory methods, 51-52 

with non-default constructors, 51

integration of WPF, 11 

IntelliSense, 71 

intensity of lights, 565 

interfaces. See specific interfaces 

International Color Consortium (ICC), 515

How can we make this index more useful? Email us at indexes@samspublishing.com

interoperability (WPF) 

ActiveX content, 714-718 

C++/CLI, 681 

DirectX content, 15, 708-714 

explained, 675-677 

overlapping content, 677 

Win32 controls

explained, 677 

HwndSource class, 692-695 

keyboard navigation, 687-691 

launching modal dialogs, 692, 699 

layout, 696-699 

Webcam control, 678-687

Windows Forms controls 

converting between two representatives,
707-708 

ElementHost class, 704-706 

explained, 699-700 

launching modal dialogs, 703, 708 

PropertyGrid, 700-703

InvalidItem value (JumpItemRejectionReason
enumeration), 244 

Inverted property (StylusDevice class), 174 

IsAdditive property (animation classes), 621 

IsAsync property (Binding object), 401 

IsCheckable property (MenuItem class), 299 

IsChecked property (ToggleButton class), 265 

IsCumulative property (animation classes), 621 

IsDefault property (Button class), 81, 264 

IsDefaulted property (Button class), 264 

IsDown property (KeyEventArgs class), 168 

IsEditable property (ComboBox), 282 

IsFrontBufferAvailableChanged event 
handler, 712 

IsGrouping property (ItemsControl class), 276 

IsIndeterminate property (ProgressBar 
control), 335

IsIndeterminate property (ProgressBar control) 797

  From the Library of Wow! eBook



ptg

IsKeyboardFocused property (UIElement 
class), 170 

IsKeyDown method, 169 

IsMouseDirectlyOver property (UIElement class),
171 

IsNetworkDeployed method, 231 

isolated storage, 209-210 

IsolatedStorage namespace, 210 

IsolatedStorageFile class, 210 

IsolatedStorageFileStream class, 210 

IsPressed property (ButtonBase class), 263 

IsReadOnly property (ComboBox), 282 

IsRepeat property (KeyEventArgs class), 168 

IsSelected property (Selector class), 281 

IsSelectionActive property (Selector class), 281 

IsSynchronizedWithCurrentItem method, 373 

IsSynchronizedWithCurrentItem property
(Selector), 373 

IsTextSearchCaseSensitive property
(ItemsControl class), 285 

IsTextSearchEnabled property (ItemsControl
class), 285 

IsThreeState property (ToggleButton class), 265 

IsToggled property (KeyEventArgs class), 168 

IsUp property (KeyEventArgs class), 168 

ItemHeight property (WrapPanel), 120 

items controls

ComboBox 

ComboBoxItem objects, 286-287 

customizing selection box, 282-285 

events, 282 

explained, 282 

IsEditable property, 282 

IsReadOnly property, 282 

SelectionChanged event, 285-286

ContextMenu, 301-302

DataGrid 

auto-generated columns, 294-295 

CanUserAddRows property, 298 

CanUserDeleteRows property, 298 

clipboard interaction, 296 

ClipboardCopyMode property, 296 

column types, 293-294 

displaying row details, 296-297 

editing data, 297-298 

EnableColumnVirtualization 
property, 296 

EnableRowVirtualization property, 296 

example, 292-293 

freezing columns, 297 

FrozenColumnCount property, 297 

RowDetailsVisibilityMode property, 297 

selecting rows/cells, 295 

SelectionMode property, 295 

SelectionUnit property, 295 

virtualization, 296

GridView, 290-291 

ItemsControl class

AlternationCount property, 276 

AlternationIndex property, 276 

DisplayMemberPath property, 276-277 

HasItems property, 276 

IsGrouping property, 276 

IsTextSearchCaseSensitive property, 285 

IsTextSearchEnabled property, 285 

Items property, 275 

ItemsPanel property, 276-280 

ItemsSource property, 276

ListBox 

automation IDs, 289 

example, 287-288 

scrolling, 289

IsKeyboardFocused property (UIElement class)798

  From the Library of Wow! eBook



ptg

SelectionMode property, 288 

sorting items in, 289 

support for multiple selections, 288

ListView, 290-291 

Menu, 298-301 

scrolling behavior, controlling, 280-281 

Selector class, 281 

StatusBar, 307-308 

TabControl, 291-292 

ToolBar, 304-306 

TreeView, 302-304

items panels, 278 

Items property (ItemsControl class), 275, 373 

ItemsCollection object, 289 

ItemsControl class

AlternationCount property, 276 

AlternationIndex property, 276 

DisplayMemberPath property, 276-277 

HasItems property, 276 

IsGrouping property, 276 

IsTextSearchCaseSensitive property, 285 

IsTextSearchEnabled property, 285 

Items property, 275 

ItemsPanel property, 276-280 

ItemsSource property, 276 

scrolling behavior, controlling, 280-281

ItemsPanel property (ItemsControl class),
276-280 

ItemsSource collection, 297 

ItemsSource property (ItemsControl class),
276, 373 

ItemWidth property (WrapPanel), 120 

IValueConverter interface, 382-383 

IXamlLineInfo interface, 58

How can we make this index more useful? Email us at indexes@samspublishing.com

J
journal, 216-218 

JournalOwnership property (Frame class),
216-217 

Jump Lists

associating with applications, 234 

explained, 233-234 

JumpPaths

adding, 242-243 

explained, 241 

recent and frequent JumpPaths,
243-244 

responding to rejected or removed
items, 244 

JumpTasks

customizing behavior of, 237-240 

example, 235 

explained, 234

and Visual Studio debugger, 236 

JumpItemRejectionReason enumeration, 244 

JumpItemsRejected event, 244 

JumpItemsRemovedByUser event, 244 

JumpPaths

adding, 242-243 

explained, 241 

recent and frequent JumpPaths, 243-244 

responding to rejected or removed 
items, 244 

JumpTasks

customizing behavior of, 237-240 

example, 235 

explained, 234

JumpTasks 799

  From the Library of Wow! eBook



ptg

K
Kaxaml, 22-23 

Key enumeration, 168-169 

Key property (KeyEventArgs class), 168 

keyboard events, 168-170 

keyboard navigation

customizing, 306 

supporting in Win32 controls, 687-688

access keys, 691 

tabbing into Win32 content, 688-689 

tabbing out of Win32 content, 689-690

KeyboardDevice property (KeyEventArgs 
class), 168 

KeyboardNavigation class, 306 

KeyDown event, 168 

KeyEventArgs class, 168 

keyframe animation

discrete keyframes, 634-636 

easing keyframes, 636 

explained, 630 

linear keyframes, 631-633 

spline keyframes, 633-634

keyless resources, 422-423 

KeyStates property

KeyEventArgs class, 168 

QueryContinueDragEventArgs class, 173

KeyUp event, 168 

keywords. See specific keywords

L
Label class, 268 

Language Integrated Query (LINQ), 396 

LastChildFill property (DockPanel), 122

launching modal dialogs 

from Win32 applications, 699 

from Windows Forms applications, 708 

from WPF applications, 692, 703

layout 

content overflow, handling

clipping, 139-141 

explained, 139 

scaling, 143-147 

scrolling, 141-143

custom panels 

communication between parents and
children, 752-755 

explained, 751-752 

FanCanvas, 768-772 

OverlapPanel, 763-768 

SimpleCanvas, 755-760 

SimpleStackPanel, 760-763

explained, 97-98 

panels

Canvas, 116-118 

DockPanel, 122-125 

explained, 115-116 

Grid. See Grid 

SelectiveScrollingGrid, 138-139 

StackPanel, 118-119 

TabPanel, 137 

ToolBarOverflowPanel, 138 

ToolBarPanel, 138 

ToolBarTray, 138 

UniformGrid, 138 

WrapPanel, 120-122

positioning elements 

content alignment, 104-105 

explained, 103 

flow direction, 105-106

Kaxaml800

  From the Library of Wow! eBook



ptg

horizontal and vertical alignment,
103-104 

stretch alignment, 104

sizing elements 

explained, 98 

explicit sizes, avoiding, 99 

height and width, 98-100 

margin and padding, 100-102 

visibility, 102-103

transforms 

applying, 106-107 

combining, 113-114 

explained, 106 

MatrixTransform, 112-113 

RotateTransform, 108-109 

ScaleTransform, 109-111 

SkewTransform, 112 

support for, 114 

TranslateTransform, 112

Visual Studio-like panes, creating 

sequential states of user interface,
147-151 

VisualStudioLikePanes.xaml, 151-153 

VisualStudioLikePanes.xaml.cs, 153-157

LayoutTransform property (FrameworkElement
class), 106 

Left property (Canvas), 116 

LengthConverter type converter, 102 

Light and Fluffy skin example, 463-464 

Light objects

AmbientLight, 564, 569-570 

defined, 563 

DirectionalLight, 564-565 

explained, 542, 563 

intensity of, 565 

PointLight, 564-566 

SpotLight, 564, 566-568

Line class, 509-510

How can we make this index more useful? Email us at indexes@samspublishing.com

linear interpolation, 612-613 

linear keyframes, 631-633 

LinearAttenuation property (PointLights), 566 

LinearGradientBrush class, 515-518 

LineBreak class, 327 

LineGeometry class, 479 

LineJoin property (Pen class), 490 

LineSegment class, 480 

LINQ (Language Integrated Query), 396 

ListBox control

arranging items horizontally, 279 

automation IDs, 289 

example, 287-288 

placing PlayingCards custom control 
into, 742 

scrolling, 289 

SelectionMode property, 288 

sorting items in, 289 

support for multiple selections, 288

lists, 36-37 

Jump Lists 

associating with applications, 234 

explained, 233-234 

JumpPaths, 241-244 

JumpTasks, 234-240 

and Visual Studio debugger, 236

ListBox control 

arranging items horizontally, 279 

automation IDs, 289 

example, 287-288 

placing PlayingCards custom control 
into, 742 

scrolling, 289 

SelectionMode property, 288 

sorting items in, 289 

support for multiple selections, 288

ListView control, 290-291

lists 801

  From the Library of Wow! eBook



ptg

ListView control, 290-291 

live objects, writing to, 61-63 

Load method, 40-41, 64 

LoadAsync method, 41 

LoadComponent method, 47 

loading XAML at runtime, 40-42 

Lobo, Lester, 23 

local values, clearing, 88 

localization IDs, marking user interfaces 
with, 351 

localizing binary resources

creating satellite assembly with 
LocBaml, 351 

explained, 350 

marking user interfaces with localization
IDs, 351 

preparing projects for multiple cultures, 350

LocBaml, creating satellite assembly with, 351 

locking D3DImage, 713 

logical AND relationships, 429-430 

logical OR relationships, 429 

logical resources

accessing directly, 360 

consolidating color brushes with, 353-355 

defining and applying in procedural code,
359-360 

explained, 351-352 

interaction with system resources, 360-361 

resource lookup, 355 

resources without sharing, 358 

static versus dynamic resources, 355-357

logical trees, 75-80 

LogicalChildren property, 80 

LogicalTreeHelper class, 77 

LookDirection property (Cameras), 544-548 

lookup, resource lookup, 355 

loose XAML pages, 231-232

M
mage.exe command-line tool, 210 

mageUI.exe graphical tool, 210 

Main method, 199-201 

MainWindow class, 197-198 

MainWindow.xaml file, 710 

MainWindow.xaml.cs file, 178-179,
186-187, 710-712 

malicious skins, preventing, 464-465 

managed code, mixing with unmanaged 
code, 682 

manipulation events

adding inertia with, 183-188 

enabling panning/rotating/zooming with,
182-183 

explained, 180-181 

ManipulationCompleted, 181 

ManipulationDelta, 181 

ManipulationStarted, 181 

ManipulationStarting, 181

ManipulationBoundaryFeedback event, 185 

ManipulationCompleted event, 181 

ManipulationDelta event, 181-183 

ManipulationDeltaEventArgs instance, 181 

ManipulationInertiaStarting event, 183, 187 

ManipulationStarted event, 181 

ManipulationStarting event, 181 

Margin property (FrameworkElement 
class), 100-102 

marking user interfaces with localization 
IDs, 351 

markup compatibility, 61 

markup extensions

explained, 32-35 

parameters, 33 

in procedural code, 35

ListView control802

  From the Library of Wow! eBook



ptg

Materials

AmbientMaterial, 575 

combining, 578 

DiffuseMaterial, 572-575 

EmissiveMaterial, 576-578 

explained, 571

MatrixCamera class, 553 

MatrixTransform, 112-113 

MatrixTransform3D class, 562 

MDI (multiple-document interface), 203 

MeasureOverride method, overriding, 752-754 

MediaCommands class, 190 

MediaElement class

playing audio, 656-658 

playing video, 658-660

MediaPlayer class, 655-656 

MediaTimeline class

playing audio, 656-658 

playing video, 661-662

Menu control, 298-301 

MenuItem class, 299 

menus

ContextMenu control, 301-302 

Menu control, 298-301 

MenuItem class, 299

MergedDictionaries property
(ResourceDictionary class), 357 

MeshGeometry3D class, 578-579

Normals property, 581-583 

Positions property, 579 

TextureCoordinates property, 583 

TriangleIndices property, 580-581

methods, binding to, 402-403. See also 
specific methods 

Microsoft Anna, 664 

missing styles, troubleshooting, 461 

mnemonics, 691

How can we make this index more useful? Email us at indexes@samspublishing.com

modal dialogs, launching 

from Win32 applications, 699 

from Windows Forms applications, 708 

from WPF applications, 692, 703

Model3DGroup class, 563, 584-586 

Model3Ds

explained, 563 

GeometryModel3D

defined, 563 

explained, 571 

Geometry3D class, 578 

Materials, 571-578 

MeshGeometry3D class, 578-583

Lights 

AmbientLight, 564, 569-570 

DirectionalLight, 564-565 

explained, 563 

intensity of, 565 

PointLight, 564-566 

SpotLight, 564-568

Model3DGroup class, 563, 584-586 

modeless dialogs, 196 

ModelUIElement3D class, 588-590 

ModelVisual3D class, 587-588 

Modifiers property (KeyboardDevice), 169 

Mouse class, 173 

mouse events

capturing, 173-174 

drag-and-drop events, 172-173 

explained, 170-171 

MouseButtonEventArgs, 171 

MouseEventArgs, 171-172 

MouseWheelEventArgs, 171 

transparent and null regions, 171

MouseButtonEventArgs class, 171 

MouseButtonState enumeration, 171

MouseButtonState enumeration 803

  From the Library of Wow! eBook



ptg

MouseEventArgs class, 171-172 

MouseWheelEventArgs class, 171 

multi-touch events

basic touch events, 177-180 

explained, 176 

manipulation events

adding inertia with, 183-188 

enabling panning/rotating/zooming 
with, 182-183 

explained, 180-181 

ManipulationCompleted, 181 

ManipulationDelta, 181 

ManipulationStarted, 181 

ManipulationStarting, 181

multi-touch support, 16 

MultiBinding class, 410-411 

multiple providers, support for

applying animations, 89 

coercion, 89 

determining base values, 87-88 

evaluating, 89 

explained, 87 

validation, 89

multiple Visuals, hit testing with, 500-503 

multiple-document interface (MDI), 203 

MultiPoint Mouse SDK, 176 

multithreaded applications, 205 

MyHwndHost class, 684-686

N
Name keyword, 42 

named elements, 434 

named styles, 421-422 

NamespaceDeclaration value (NodeType 
property), 57

namespaces 

explained, 26-28 

implicit .NET namespaces, 27 

mapping, 26

naming elements, 42-43 

Navigate method, 214-215 

navigation

keyboard navigation, supporting in Win32
controls, 687-691 

views, 392-393 

XAML Browser applications, 228-229

navigation-based Windows applications 

explained, 211-212 

hyperlinks, 215-216 

journal, 216-218 

Navigate method, 214-215 

navigation containers, 212-214 

navigation events, 218-219 

Page elements, 212-214 

returning data from pages, 221-222 

sending data to pages, 220-221

NavigationCommands class, 190 

NavigationProgress event, 219 

NavigationStopped event, 219 

NavigationWindow class, 212-214 

nearest-neighbor bitmap scaling, 310 

.NET properties, binding to, 367-368 

NodeType property (XAML), 57-58 

None ProgressState, 246 

None value (NodeType property), 58 

nonprinciple axis, scaling about, 559 

NonZero fill (FillRule property), 482 

NoRegisteredHandler value
(JumpItemRejectionReason
enumeration), 244 

Normal ProgressState, 246 

normals, 581

MouseEventsArgs class804

  From the Library of Wow! eBook



ptg

Normals property (MeshGeometry3D class),
581-583 

null regions, 171

O
Object class, 73 

object elements

attributes, 25 

content property, 35-36 

declaring, 25 

dictionaries, 37-38 

explained, 24-26 

lists, 36-37 

naming, 42-43 

positioning

content alignment, 104-105 

explained, 103 

flow direction, 105-106 

horizontal and vertical alignment,
103-104 

stretch alignment, 104 

processing child elements, 40 

sizing

explained, 98 

explicit sizes, avoiding, 99 

height and width, 98-100 

margin and padding, 100-102 

visibility, 102-103

transforms 

applying, 106-107 

combining, 113-114 

explained, 106 

MatrixTransform, 112-113 

RotateTransform, 108-109

How can we make this index more useful? Email us at indexes@samspublishing.com

ScaleTransform, 109-111 

SkewTransform, 112 

support for, 114 

TranslateTransform, 112

values type-converted to object 
elements, 38 

ObjectDataProvider class, 401-403 

objects

binding to, 369-370 

instantiating via factory methods, 51-52 

instantiating with non-default 
constructors, 51 

live objects, writing to, 61-63 

logical trees, 75-76 

Object class, 73 

visual trees, 76-80

on-demand download (XAML Browser 
applications), 230-231 

OneTime binding, 403 

OneWay binding, 403 

OneWayToSource binding, 403-404 

OnMnemonic method, 691 

OnNoMoreTabStops method, 690 

opacity masks, brushes as, 527-529 

Opacity property (brushes), 527 

OpacityMask property (brushes), 527-529 

OpenGL, 10 

opening project files in Visual Studio, 350 

OR relationships (logical), 429 

order of property and event processing, 26 

Orientation property

ProgressBar control, 335 

StackPanel, 118 

WrapPanel, 120

OriginalSource property (RoutedEventArgs
class), 162

OriginalSource property (RoutedEventArgs class) 805

  From the Library of Wow! eBook



ptg

OrthographicCamera class 

blind spots, 545 

compared to PerspectiveCamera class,
551-553 

LookDirection property, 544-548 

Position property, 543-544 

UpDirection property, 548-550 

Z-fighting, 545

OuterConeAngle property (PointLights), 568 

OverlapPanel, 763-768 

overlapping content, 677 

overlapping Visuals, hit testing with, 503-505 

Overlay property (TaskbarItemInfo), 247 

overlays, adding to taskbar items, 247 

overriding

ArrangeOverride method, 754-755 

MeasureOverride method, 752-754

P
packageURI, 349 

Padding property (FrameworkElement class),
100-102 

Page elements, 212-214 

PageFunction class, 221-222 

pages

loose XAML pages, 231-232 

Page elements, 212-214 

refreshing, 217 

returning data from, 221-222 

sending data to, 220-221 

stopping loading, 217

panels 

Canvas, 116-118, 136 

content overflow, handling

clipping, 139-141 

explained, 139

scaling, 143-147 

scrolling, 141-143

custom panels 

communication between parents and
children, 752-755 

explained, 751-752 

FanCanvas, 768-772 

OverlapPanel, 763-768 

SimpleCanvas, 755-760 

SimpleStackPanel, 760-763

DockPanel 

examples, 122-125 

explained, 122 

interaction with child layout 
properties, 125 

mimicking with Grid, 136 

properties, 122

explained, 115-116 

Grid

cell properties, 128 

compared to other panels, 136 

explained, 125 

interaction with child layout 
properties, 137 

interactive sizing with GridSplitter,
132-133 

mimicking Canvas with, 136 

mimicking DockPanel with, 136 

mimicking StackPanel with, 136 

sharing row/column sizes, 134-136 

ShowGridLines property, 129 

sizing rows/columns, 130-132 

start page with Grid, 126-129

SelectiveScrollingGrid, 138-139

OrthographicCamera class806

  From the Library of Wow! eBook



ptg

StackPanel 

explained, 118 

interaction with child layout 
properties, 119 

mimicking with Grid, 136

TabPanel, 137 

ToolBarOverflowPanel, 138 

ToolBarPanel, 138 

ToolBarTray, 138 

UniformGrid, 138 

Visual Studio-like panes, creating

sequential states of user interface,
147-151 

VisualStudioLikePanes.xaml, 151-153 

VisualStudioLikePanes.xaml.cs, 153-157

WrapPanel 

examples, 121 

explained, 120 

interaction with child layout properties,
121-122 

properties, 120 

and right-to-left environments, 121

panning 

enabling with multi-touch events, 182-183 

with inertia, 184-185

Paragraph Blocks, 320 

Parse method, 64 

parsing XAML at runtime, 40-42 

partial keyword, 44 

partial-trust applications, 15 

parts (control), 447-449 

PasswordBox control, 316 

path-based animations, 637 

Path class, 511-512 

PathGeometry class

ArcSegment, 480

BezierSegment, 480

How can we make this index more useful? Email us at indexes@samspublishing.com

example, 480-482 

explained, 479 

FillRule property, 482-483 

LineSegment, 480 

PolyBezierSegment, 480 

PolyLineSegment, 480 

PolyQuadraticBezierSegment, 480 

QuadraticBezierSegment, 480

Paused ProgressState, 246 

Pen class, 489-491 

percentage sizing, 131 

performance

cached composition 

BitmapCache class, 533-535 

BitmapCacheBrush class, 535 

Viewport2DVisual3D support for, 591

improving rendering performance 

BitmapCache class, 533-535 

BitmapCacheBrush class, 535 

RenderTargetBitmap class, 532-533

XAML, 71 

WPF 3.5 enhancements, 16 

WPF 4 enhancements, 17

persisting application state, 209-210 

PerspectiveCamera class

blind spots, 545

compared to OrthographicCamera class,
551-553 

LookDirection property, 544-548 

Position property, 544 

UpDirection property, 548-550 

Z-fighting, 545

Petzold, Charles, 23 

PInvoke, 251 

PixelFormats enumeration, 311

PixelFormats enumeration 807

  From the Library of Wow! eBook



ptg

pixels 

device-independent pixels, 102 

pixel boundaries, 17 

pixel shaders, 531

Play method, 654 

PlayingCard control

behavior 

code-behind file, 734 

final implementation, 737-739 

initial implementation, 733-737 

resources, 734-735

generic resources, 741-742 

placing into ListBox, 742 

user interface, 739-742

PointLight, 564-566 

PolyBezierSegment class, 480 

Polygon class, 511 

Polyline class, 510 

PolyLineSegment class, 480 

PolyQuadraticBezierSegment class, 480 

Position property (Cameras), 543-544 

positioning elements

content alignment, 104-105 

explained, 103 

flow direction, 105-106 

horizontal and vertical alignment, 103-104 

stretch alignment, 104

Positions property (MeshGeometry3D 
class), 579 

power easing functions, 637-638 

PressureFactor property (StylusPoint 
object), 175 

PreviewKeyDown event, 168 

PreviewKeyUp event, 168 

printing logical/visual trees, 78-79 

PrintLogicalTree method, 79 

PrintVisualTree method, 78

PriorityBinding class, 411 

procedural code

accessing binary resources from, 349-350 

animation classes

AutoReverse property, 618 

BeginTime property, 616-617 

DoubleAnimation, 611-612 

Duration property, 614 

EasingFunction property, 620 

explained, 608-610 

FillBehavior property, 621 

From property, 614-616 

IsAdditive property, 621 

IsCumulative property, 621 

lack of generics, 610-611 

linear interpolation, 612-613 

RepeatBehavior property, 618-619 

reusing animations, 613 

SpeedRatio property, 617 

To property, 614-616

Binding object in, 363-365 

compared to XAML, 24 

defining and applying resources in, 359-360 

embedding PropertyGrid with, 700-702 

frame-based animation, 609 

markup extensions in, 35 

mixing XAML with

BAML (Binary Application Markup
Language), 45-48 

CAML (Compiled Application Markup
Language), 46 

compiling XAML, 43-45 

generated source code, 46 

loading and parsing XAML at runtime,
40-42 

naming XAML elements, 42-43 

procedural code inside XAML, 47

pixels808

  From the Library of Wow! eBook



ptg

skins, 462 

timer-based animation, 608 

type converters in, 31 

inside XAML, 47

procedural code timer-based animation, 609 

ProgressBar, 335

adding to taskbars, 246 

pie chart control template, 442-444,
453-455 

ProgressState property (TaskbarItemInfo), 246 

ProgressValue property (TaskbarItemInfo), 246 

project files, opening in Visual Studio, 350 

PromptBuilder class, 665-667 

properties. See also specific properties

dependency properties 

attached properties, 89-93 

attached property providers, 92 

change notification, 83-84 

explained, 80-81 

implementation, 81-83 

property value inheritance, 85-86 

support for multiple providers, 87-89

.NET properties, binding to, 367-368 

order of processing, 26 

Properties collection, 203

Properties collection, 203 

property attributes, 25 

property elements, 29-30 

property paths, 277 

property triggers, 83-85, 424-427, 628-629 

property value inheritance, 85-86 

property wrappers, 82 

PropertyGrid

embedding with procedural code, 700-702 

embedding with XAML, 702-703

PropertyGroupDescription class, 390

How can we make this index more useful? Email us at indexes@samspublishing.com

proportional sizing, 130 

protecting controls from accidental usage,
727-728 

pure-XAML Twitter client, 412-413

Q
QuadraticAttenuation property 

(PointLights), 566 

QuadraticBezierSegment class, 480 

QuaternionRotation3D class, 559 

QueryContinueDragEventArgs class, 173

R
RadialGradientBrush class, 519-520 

RadioButton class, 266-268 

RadiusX property

RadialGradientBrush, 519 

Rectangle class, 507

RadiusY property 

RadialGradientBrush, 519 

Rectangle class, 507

range controls 

explained, 334 

ProgressBar, 335 

Slider, 335-336

Range property (PointLights), 566 

raw project files, opening in Visual Studio, 350 

readers (XAML)

explained, 53-54 

markup compatibility, 61 

node loops, 56-57 

NodeType property, 57-58

readers (XAML) 809

  From the Library of Wow! eBook



ptg

sample XAML content, 58-59 

XAML node stream, 59-61 

XamlServices class, 64-67

recent and frequent JumpPaths, 243-244 

Rectangle class, 507-508 

RectangleGeometry class, 479 

Refresh method, 217 

refreshing pages, 217 

Register method, 82 

rejected items, reponding to, 244 

RelativeSource property (Binding object), 367 

releases of WPF

future releases, 17 

WPF 3.0, 14 

WPF 3.5, 14-16 

WPF 3.5 SP1, 15-16 

WPF 4, 14, 16-17 

WPF Toolkit, 14

removed items, reponding to, 244 

RemovedByUser value
(JumpItemRejectionReason
enumeration), 244 

RemoveHandler method, 160-161 

removing Binding objects, 365 

RenderAtScale property (BitmapCache 
class), 533 

rendering

custom rendering, 499 

improving rendering performance

BitmapCache class, 533-535 

BitmapCacheBrush class, 535 

RenderTargetBitmap class, 532-533

text, 17 

TextOptions class, 312 

WPF 4 enhancements, 311-312

Rendering event, 609

rendering, controlling 

data templates, 378-380 

explained, 375 

string formatting, 375-377 

value converters

Binding.DoNothing values, 385 

bridging incompatible data types,
381-384 

customizing data display, 385 

explained, 381

RenderSize property (FrameworkElement 
class), 99 

RenderTargetBitmap class, 532-533 

RenderTransform property (FrameworkElement
class), 106 

RenderTransformOrigin property (UIElement
class), 107 

RepeatBehavior property (animation classes),
618-619 

RepeatButton class, 265 

ResizeBehavior property (GridSplitter), 133 

ResizeDirection property (GridSplitter), 133 

resolution independence, 12 

Resource build action, 344-345 

ResourceDictionary class, 357 

ResourceDictionaryLocation parameter, 467 

resources

binary resources 

accessing, 345-350 

defining, 344-345 

explained, 343 

localizing, 350-351

defined, 343 

keyless resources, 422-423 

logical resources

accessing directly, 360 

consolidating color brushes with,
353-355

readers (XAML)810

  From the Library of Wow! eBook



ptg

defining and applying in procedural code,
359-360 

explained, 351-352 

interaction with system resources,
360-361 

resource lookup, 355 

resources without sharing, 358 

static versus dynamic resources,
355-357 

for PlayingCard custom control, 734-735

responding to rejected or removed items, 244 

restoring application state, 209-210 

restricting style usage, 420-421 

results, dialog results, 208 

retained-mode graphics systems, 14, 475-476 

returning data from pages, 221-222 

reusing animations, 613 

RichTextBox control, 316 

Right property (Canvas), 116 

right-hand rule, 543, 580 

right-handed coordinate systems, 543-544 

RotateTransform, 108-109 

RotateTransform3D class, 559-562 

rotation

enabling with multi-touch events, 182-183 

with inertia, 184-185 

RotateTransform3D class, 559-562

Rotation property (ManipulationDelta 
class), 181 

routed events

About dialog example, 162-164 

adding to user controls, 731-732 

attached events, 165-167 

consolidating routed event handlers,
167-168 

defined, 159 

explained, 159-160

How can we make this index more useful? Email us at indexes@samspublishing.com

implementation, 160-161 

RoutedEventArgs class, 162 

routing strategies, 161-162 

stopping, 165

RoutedEvent property (RoutedEventArgs 
class), 162 

RoutedEventArgs class, 162 

RoutedUICommand objects, 190 

routing strategies, 161-162 

RoutingStrategy enumeration, 161 

RowDetailsVisibilityMode property 
(DataGrid), 297 

rows (Grid)

displaying row details, 296-297 

selecting, 295 

sharing row/column sizes, 134-136 

sizing

absolute sizing, 130 

autosizing, 130 

GridLength structures, 131-132 

interactive sizing with GridSplitter,
132-133 

percentage sizing, 131 

proportional sizing, 130

rules, 405-409 

Run method, 200-201 

running XAML examples, 22 

runtime, loading and parsing XAML at, 40-42

S
satellite assemblies, creating with 

LocBaml, 351 

Save method, 64 

Scale property (ManipulationDelta class), 181 

ScaleTransform, 109-111, 144

ScaleTransform 811

  From the Library of Wow! eBook



ptg

ScaleTransform3D class, 557-559 

ScaleX property (RotateTransform class), 109 

ScaleY property (RotateTransform class), 109 

scaling, 143-147

nearest-neighbor bitmap scaling, 310 

about nonprinciple axis, 559 

ScaleTransform3D class, 557-559

scope of typed styles, 421 

scRGB color space, 514 

ScrollBars, 142-143 

scrolling behavior, 141-143

controlling in items controls, 280-281 

ListBox control, 289

ScrollViewer control, 141-143 

Section Blocks, 320 

security, XAML Browser applications, 229 

SelectedDatesChanged event, 339 

SelectedIndex property (Selector class), 281 

SelectedItem property (Selector class), 281 

SelectedValue property (Selector class), 281 

selecting rows/cells, 295 

selection boxes (ComboBox control),
customizing, 282-285 

SelectionChanged event, 281, 285-286 

SelectionMode property

Calendar control, 337 

DataGrid, 295 

ListBox, 288

SelectionUnit property (DataGrid), 295 

SelectiveScrollingGrid, 138-139 

Selector class, 281 

selectors, data template selectors, 381 

SelectVoice method, 664 

SelectVoiceByHints method, 664 

sending data to pages, 220-221 

Separator control, 299 

SetBinding method, 365

SetCurrentValue method, 89 

SetOutputToDefaultAudioDevice method, 665 

SetOutputToWaveFile method, 665 

SetResourceReference method, 359 

Setters, 419-420 

Settings class, 210 

ShaderEffect, 530-531 

Shapes

clip art based on Shapes, 512-513 

Ellipse class, 508 

explained, 505-506 

how they work, 509 

Line class, 509-510 

overuse of, 507 

Path class, 511-512 

Polygon class, 511 

Polyline class, 510 

Rectangle class, 507-508

sharing 

data source with DataContext, 374-375 

Grid row/column sizes, 134-136 

resources without sharing, 358 

styles, 418-420

ShowDialog method, 208-209 

ShowDuration property (ToolTip class), 270 

ShowFrequentCategory property (JumpList
class), 243 

ShowGridLines property (Grid), 129 

ShowOnDisabled property

ContextMenuService class, 302 

ToolTipService class, 271

ShowRecentCategory property (JumpList 
class), 243 

ShutdownMode enumeration, 202 

Silicon Graphics OpenGL, 10 

Silverlight, 18-19, 180 

Silverlight XAML Vocabulary Specification 2008
(MS-SLXV), 24

ScaleTransform3D class812

  From the Library of Wow! eBook



ptg

SimpleCanvas, 755-760 

SimpleQuadraticEase class, 641 

SimpleStackPanel, 760-763 

SineEase function, 640 

single-instance applications, 204 

single-threaded apartment (STA), 199 

sizing

Grid rows/columns 

absolute sizing, 130 

autosizing, 130 

GridLength structures, 131-132 

interactive sizing with GridSplitter,
132-133 

percentage sizing, 131 

proportional sizing, 130 

sharing row/column sizes, 134-136

elements 

explained, 98 

explicit sizes, avoiding, 99 

height and width, 98-100 

margin and padding, 100-102 

visibility, 102-103

SkewTransform, 112 

skins

defined, 415 

examples, 459-461 

explained, 458-459, 462 

Light and Fluffy skin example, 463-464 

malicious skins, preventing, 464-465 

missing styles, troubleshooting, 461 

procedural code, 462

Skip method, 63 

Slider control, 335-336 

snapshots of individual video frames,
taking, 660 

SnapsToDevicePixels property, 17, 534 

Snoop, 14

How can we make this index more useful? Email us at indexes@samspublishing.com

SolidColorBrush class, 514 

SortDescription class, 395 

SortDescriptions collection, 387 

SortDescriptions property

ICollectionView class, 386 

ItemsCollection object, 289

sorting, 289, 386-388 

SoundPlayer class, 654 

SoundPlayerAction class, 654-655 

Source property

MediaElement class, 656 

RoutedEventArgs class, 162

SourceName property (Trigger class), 433 

spaces in geometry strings, 489 

spans, 325-326 

SpeakAsync method, 664 

SpeakAsyncCancelAll method, 664 

speech recognition

converting spoken words into text, 667-670 

specifying grammar with GrammarBuilder,
671-672 

specifying grammar with SRGS, 670-671

Speech Recognition Grammar Specification
(SRGS), 670-671 

speech synthesis

explained, 664 

GetInstalledVoices method, 664 

PromptBuilder class, 665-667 

SelectVoice method, 664 

SelectVoiceByHints method, 664 

SetOutputToWaveFile method, 665 

SpeakAsync method, 664 

Speech Synthesis Markup Language
(SSML), 665-667 

SpeechSynthesizer, 664

Speech Synthesis Markup Language (SSML),
665-667

Speech Synthesis Markup Language (SSML) 813

  From the Library of Wow! eBook



ptg

SpeechRecognitionEngine class, 669-670 

SpeechSynthesizer, 664 

SpeedRatio property (animation classes), 617 

spell checking, 315 

Spinning Prize Wheel, 186-187 

splash screens, 205-206 

spline keyframes, 633-634 

SpotLight, 564-568 

SpreadMethod property 
(LinearGradientBrush), 517 

Square line cap (Pen), 490 

sRGB color space, 514 

SRGS (Speech Recognition Grammar
Specification), 670-671 

SSML (Speech Synthesis Markup Language),
665-667 

STA (single-threaded apartment), 199 

StackPanel. See also SimpleStackPanel

explained, 118 

interaction with child layout properties, 119 

mimicking with Grid, 136 

setting font properties on, 90-91 

with Menu control, 300

standard Windows applications 

Application class 

creating applications without, 204 

events, 202 

explained, 199-200 

Properties collection, 203 

Run method, 200-201 

Windows collection, 202

application state, 209-210 

ClickOnce, 210-211 

common dialogs, 206-207 

custom dialogs, 207-208 

explained, 195-196 

multiple-document interface (MDI), 203

multithreaded applications, 205 

retrieving command-line arguments in, 202 

single-instance applications, 204 

splash screens, 205-206 

Window class, 196-198 

Windows Installer, 210

start pages, building with Grid, 126-129 

starting animations from property triggers,
628-629 

StartLineCap property (Pen class), 489 

StartMember value (NodeType property), 57 

StartObject value (NodeType property), 57 

StartPoint property (LinearGradientBrush), 516 

StartupUri property (Application class), 200-201 

states

control states, 449-455, 745-749 

persisting and restoring, 209-210 

visual states

respecting with triggers, 442-446 

respecting with VSM (Visual State
Manager), 447-455 

STAThreadAttribute, 695 

static versus dynamic resources, 355-357 

StaticResource markup extension, 355-357 

StatusBar control, 307-308 

StopLoading method, 217 

stopping

page loading, 217 

routed events, 165

Storyboards 

EventTriggers containing Storyboards,
621-622 

Storyboards as Timelines, 629-630 

TargetName property, 625-626 

TargetProperty property, 622-625

StreamGeometry class, 483 

Stretch alignment, 104

SpeechRecognitionEngine class814

  From the Library of Wow! eBook



ptg

Stretch enumeration, 144 

Stretch property

DrawingBrush class, 521 

MediaElement class, 658

StretchDirection enumeration, 144 

StretchDirection property (MediaElement 
class), 658 

StringFormat property (Binding object), 375-376 

strings

formatting, 375-377 

representing geometries as, 487-489

Stroke objects, 317 

structures, ValueSource, 88 

styles

consolidating property assignments in, 417 

default styles, 88 

defined, 415 

explained, 416-418 

implicit styles, creating, 421-422 

inheritance, 418 

keyless resources, 422-423 

missing styles, troubleshooting, 461 

mixing with control templates, 456-457 

named styles, 421-422 

per-theme styles and templates, 466-469 

restricting usage of, 420-421 

Setter behavior, 419-420 

sharing, 418-420 

theme styles, 88 

triggers

conflicting triggers, 429 

data triggers, 427-428 

explained, 423-424 

expressing logic with, 428-430 

property triggers, 424-427 

respecting visual states with, 442-446

typed styles, 421-422

How can we make this index more useful? Email us at indexes@samspublishing.com

stylus events, 174-176 

StylusButtonEventArgs instance, 176 

StylusButtons property (StylusDevice class), 175 

StylusDevice class, 174-175 

StylusDownEventArgs instance, 176 

StylusEventArgs class, 176 

StylusPoint objects, 175 

StylusSystemGestureEventArgs instance, 176 

Surface Toolkit for Windows Touch, 188 

system resources, interaction with logical
resources, 360-361 

SystemKey property (KeyEventArgs class), 168 

SystemSounds class, 654

T
TabControl control, 291-292 

TabInto method, 688 

Table Blocks, 320 

TabletDevice property (StylusDevice class), 175 

TabPanel, 137 

TargetName property (Storyboards), 625-626 

TargetNullValue property (Binding object), 366 

TargetProperty property (Storyboards), 622-625 

TargetType property

ControlTemplate class, 434-435 

Style class, 420-421

taskbar, customizing 

explained, 245-246 

taskbar item overlays, 247 

taskbar item progress bars, 246 

thumb buttons, 248-249 

thumbnail content, 247

TaskDialogs, 253-256

TaskDialogs 815

  From the Library of Wow! eBook



ptg

tasks, JumpTasks 

customizing behavior of, 237-240 

example, 235 

explained, 234

TemplateBindingExtension class, 435-437 

templated parent properties, respecting,
435-439 

Content property (ContentControl class),
435-437 

hijacking existing properties for new 
purposes, 441 

other properties, 440

templates 

control templates

editing, 457-458 

mixing with styles, 456-457 

named elements, 434 

resuability of, 438-440 

simple control template, 431-432 

target type, restricting, 434-435 

templated parent properties, respecting,
435-441 

other properties, 438-439 

triggers, 432-434 

visual states, respecting with triggers,
442-446 

visual states, respecting with VSM
(Visual State Manager), 447-455 

DataTemplates, 378-380 

defined, 415 

explained, 430-431 

HierarchicalDataTemplate, 399-400 

per-theme styles and templates, 466-469 

template selectors, 381 

Windows themes, 470

temporarily canceling data binding, 385

testing 

3D hit testing, 592-593 

input hit testing

explained, 499 

InputHitTest method, 513

visual hit testing 

callback methods, 505 

explained, 499 

simple hit testing, 499-500 

with multiple Visuals, 500-503 

with overlapping Visuals, 503-505

text 

converting spoken words into, 667-670 

InkCanvas class, 316-318 

PasswordBox control, 316 

rendering, 17, 311-312 

RichTextBox control, 316 

text-to-speech

explained, 664 

GetInstalledVoices method, 664 

PromptBuilder class, 665-667 

SelectVoice method, 664 

SelectVoiceByHints method, 664 

SetOutputToWaveFile method, 665 

SpeakAsync method, 664 

Speech Synthesis Markup Language
(SSML), 665-667 

SpeechSynthesizer, 664

TextBlock control 

explained, 313-314 

explicit versus implicit runs, 314 

properties, 313 

support for multiple lines of text, 315 

whitespace, 314

TextBox control, 315 

TextOptions class, 312

tasks, JumpTasks816

  From the Library of Wow! eBook



ptg

text-to-speech 

explained, 664 

GetInstalledVoices method, 664 

PromptBuilder class, 665-667 

SelectVoice method, 664 

SelectVoiceByHints method, 664 

SetOutputToWaveFile method, 665 

SpeakAsync method, 664 

Speech Synthesis Markup Language
(SSML), 665-667 

SpeechSynthesizer, 664

TextBlock control 

explained, 313-314 

explicit versus implicit runs, 314 

properties, 313 

support for multiple lines of text, 315 

whitespace, 314

TextBox control, 315 

TextElement class, 319-320

Blocks 

AnchoredBlock class, 326-327 

BlockUIContainer, 321 

List, 320 

Paragraph, 320 

sample code listing, 321-324 

Section, 320 

Table, 320

Inlines 

AnchoredBlock, 326-327 

defined, 324-325 

InlineUIContainer, 329 

LineBreak, 327 

Span, 325-326

TextFormattingMode property (TextOptions), 312 

TextHintingMode property (TextOptions), 312 

TextOptions class, 312

How can we make this index more useful? Email us at indexes@samspublishing.com

TextRenderingMode property (TextOptions), 312 

texture coordinates, 584 

TextureCoordinates property (MeshGeometry3D
class), 583 

theme dictionaries, 466 

theme styles, 88 

ThemeDictionaryExtension, 468 

ThemeInfoAttribute, 467-468 

themes

defined, 415, 465 

generic dictionaries, 467 

per-theme styles and templates, 466-469 

system colors, fonts, and parameters,
465-466 

theme dictionaries, 466

Thickness class, 100-102 

ThicknessConverter type converter, 102 

thumb buttons (taskbar), adding, 248-249 

ThumbButtonInfo property (TaskbarItemInfo),
248-249 

thumbnail content (taskbar), customizing, 247 

ThumbnailClipMargin property
(TaskbarItemInfo), 247 

tile brushes

DrawingBrush class, 520-524 

ImageBrush class, 524-525 

VisualBrush class, 525-527

TileMode enumeration, 523 

TileMode property (DrawingBrush class),
521-523 

Timelines, 629-630 

timer-based animation, 608-609 

To property (animation classes), 614-616 

ToggleButton class, 265-266 

ToolBar control, 304-306 

ToolBarOverflowPanel, 138 

ToolBarPanel, 138 

ToolBarTray class, 138, 305

ToolBarTray class 817

  From the Library of Wow! eBook



ptg

ToolTip class, 269-271 

ToolTipService class, 271 

Top property (Canvas), 116 

touch events, 177-180 

TouchDevice property (TouchEventArgs 
class), 177 

TouchDown event, 178-180 

TouchEventArgs class, 177 

TouchMove event, 178-180 

TouchUp event, 178-180 

TraceSource object, 384 

Transform method, 65 

Transform property (Cameras), 549 

Transform3Ds

combining, 562 

explained, 554-555 

house drawing example, 555-556 

MatrixTransform3D class, 554, 562 

RotateTransform3D class, 554, 559-562 

ScaleTransform3D class, 554, 557-559 

Transform3DGroup class, 554 

TranslateTransform3D class, 554-557

TransformConverter type converter, 113 

transforms

applying, 106-107 

clipping and, 141 

combining, 113-114 

explained, 106 

MatrixTransform, 112-113 

RotateTransform, 108-109 

ScaleTransform, 109-111 

SkewTransform, 112 

support for, 114 

Transform3Ds

combining, 562 

explained, 554-555

house drawing example, 555-556 

MatrixTransform3D class, 554, 562 

RotateTransform3D class, 554, 559-562 

ScaleTransform3D class, 554, 557-559 

Transform3DGroup class, 554 

TranslateTransform3D class, 554-557

TranslateTransform, 112 

TransformToAncestor method, 596-605 

TransformToDescendant method, 600-605 

transitions (animation), 647-651 

Transitions property (VisualStateGroup 
class), 455 

TranslateAccelerator method, 689-691 

TranslateTransform, 112 

TranslateTransform3D class, 556-557 

Translation property (ManipulationDelta 
class), 181 

transparent colors, 520 

transparent regions and mouse events, 171 

trees

logical trees, 75-76 

visual trees, 76-80

TreeView control, 302-304 

TreeViewItem class, 303-304 

TriangleIndices property (MeshGeometry3D
class), 580-581 

Trigger class. See triggers 

TriggerBase class, 85 

triggers

conflicting triggers, 429 

data triggers, 84, 427-428 

event triggers, 84 

explained, 423-427 

expressing logic with, 428

logical AND, 429-430 

logical OR, 429

in control templates, 432-434

ToolTip class818

  From the Library of Wow! eBook



ptg

property triggers, 83-85, 424-427 

respecting visual states with, 442-446

Triggers collection, 85 

Triggers property (FrameworkElement class), 85 

troubleshooting

data binding, 384 

missing styles, 461

TryFindResource method, 359 

tunneling, 161 

turning off type conversion, 50 

Twitter, pure-XAML Twitter client, 412-413 

TwoWay binding, 403 

type converters

BrushConverter, 32 

explained, 30-31 

finding, 32 

FontSizeConverter, 32 

GridLengthConverter, 131 

ImageSourceConverter, 309 

LengthConverter, 102 

in procedural code, 31 

ThicknessConverter, 102 

TransformConverter, 113 

turning off type conversion, 50 

values type-converted to object 
elements, 38 

typed styles, 421-422

U
UI Automation, supporting in custom controls,

749-750 

UICulture element, 350 

Uid directive, 351

How can we make this index more useful? Email us at indexes@samspublishing.com

UIElement class 

binding to, 370 

explained, 74 

IsKeyboardFocused property, 170 

IsMouseDirectlyOver property, 171 

RenderTransformOrigin property, 107

UIElement3D class, 15, 588 

ContainerUIElement3D, 590 

explained, 74 

ModelUIElement3D, 588-590

uniform scale, 557 

UniformGrid, 138 

unmanaged code, mixing with managed 
code, 682 

UpdateLayout method, 100 

UpdateSourceExceptionFilter property (Binding
object), 408 

UpdateSourceTrigger enumeration, 404-405 

UpdateSourceTrigger property (Binding 
object), 404 

UpDirection property (Cameras), 548-550 

URIs

packageURI, 349 

URIs for accessing binary resources,
346-347 

usage context, 375 

UseLayoutRounding property, 17 

user controls, creating

behavior, 725-727 

dependency properties, 728-731 

explained, 721-722 

protecting controls from accidental usage,
727-728 

routed events, 731-732 

user controls versus custom controls, 722 

user interfaces, 723-725

user controls, creating 819

  From the Library of Wow! eBook



ptg

user interfaces 

creating for PlayingCard custom control,
739-742 

creating for user controls, 723-725 

marking with localization IDs, 351

USER subsystems, 10

V
ValidateValueCallback delegate, 89 

validation rules, 405-409 

ValidationRules property (Binding object), 406 

value converters

Binding.DoNothing values, 385 

bridging incompatible data types, 381-384 

customizing data display, 385 

explained, 381 

temporarily canceling data binding, 385 

ValueMinMaxToIsLargeArcConverter,
445-446 

ValueMinMaxToPointConverter, 445-446

Value value (NodeType property), 57 

ValueMinMaxToIsLargeArcConverter, 445-446 

ValueMinMaxToPointConverter, 445-446 

ValueSource structure, 88 

variables, HwndSource, 697-698 

verbosity of XAML, 71 

versions of WPF

future releases, 17 

WPF 3.0, 14 

WPF 3.5, 14-16 

WPF 3.5 SP1, 15-16 

WPF 4, 14, 16-17 

WPF Toolkit, 14

VerticalAlignment property (FrameworkElement
class), 103-105 

video support

controlling underlying media, 661-662 

embedded resources, 663

explained, 658 

MediaElement, 658-660 

taking snapshots of individual video 
frames, 660 

Windows Media Player, 658

VideoDrawing class, 476 

Viewbox class, 144-147 

Viewbox property (DrawingBrush class),
523-524 

Viewport2DVisual3D class, 15, 590-591 

Viewport3D class, 593-596 

Viewport3DVisual class, 596 

views

customizing collection views 

creating new views, 394-396 

explained, 386 

filtering, 392 

grouping, 388-391 

navigating, 392-393 

sorting, 386-388

TreeView control, 302-304 

viewSource_Filter method, 395 

virtualization, 289, 296 

VirtualizingPanel class, 120 

VirtualizingStackPanel, 120, 279 

Visibility property (FrameworkElement class),
102-103 

Visible value (Visibility enumeration), 102 

Visual C++, 681, 695 

Visual class, 80

explained, 74 

TransformToAncestor method, 596-600

visual effects, 529-531 

visual hit testing

callback methods, 505 

explained, 499 

simple hit testing, 499-500 

with multiple Visuals, 500-503 

with overlapping Visuals, 503-505

user interfaces820

  From the Library of Wow! eBook



ptg

Visual State Manager (VSM), 17 

animations and

Button ControlTemplate with
VisualStates, 643-646 

transitions, 647-651

respecting visual states with 

control parts, 447-449 

control states, 449-455

visual states 

respecting with triggers, 442-446 

respecting with VSM (Visual State Manager)

control parts, 447-449 

control states, 449-455

Visual Studio debugger, 236 

Visual Studio-like panes, creating

sequential states of user interface,
147-151 

VisualStudioLikePanes.xaml, 151-153 

VisualStudioLikePanes.xaml.cs, 153-157

Visual3Ds 

explained, 74, 586 

ModelVisual3D class, 587-588 

TransformToAncestor method, 600-605 

TransformToDescendant method, 600-605 

UIElement3D class, 588

ContainerUIElement3D, 590 

ModelUIElement3D, 588-590

VisualBrush class, 525-527 

VisualChildrenCount method, 497-498 

Visuals

custom rendering, 499 

displaying on screen, 496-498 

DrawingContext methods, 494 

DrawingVisuals

explained, 493

filling with content, 493-496

explained, 493

How can we make this index more useful? Email us at indexes@samspublishing.com

visual hit testing 

callback methods, 505 

explained, 499 

simple hit testing, 499-500 

with multiple Visuals, 500-503 

with overlapping Visuals, 503-505

VisualStateGroup class, 455 

VisualStateManager. See Visual State Manager 

VisualStudioLikePanes.xaml file, 151-153 

VisualStudioLikePanes.xaml.cs file, 153-157 

VisualTransition objects, 647-651 

VisualTreeHelper class, 77 

vshost32.exe, 236 

VSM (Visual State Manager), 17

animations and 

Button ControlTemplate with
VisualStates, 643-646 

transitions, 647-651

respecting visual states with 

control parts, 447-449 

control states, 449-455

W
Webcam control (Win32) 

HostingWin32.cpp file, 685-687 

Webcam.cpp file, 678-681 

Webcam.h file, 678 

Window1.h file, 683-684

Webcam.cpp file, 679-681 

Webcam.h file, 678 

whitespace, TextBlock control, 314 

Width property (FrameworkElement class),
98-100 

Win32 controls, WPF interoperability

explained, 677 

HwndSource class, 692-695

Win32 controls, WPF interoperability 821

  From the Library of Wow! eBook



ptg

keyboard navigation, 687-691 

launching modal dialogs, 692, 699 

layout, 696-699 

Webcam control, 678-687

winding order (mesh), 579-580 

Window class, 196-198 

Window1.h file, 683 

Window1.xaml file, 717 

Window1.xaml.cs file, 716 

WindowHostingVisual.cs file, 495-497 

WindowInteropHelper class, 708 

Windows 7 user interface features

Aero Glass, 249-253 

Jump Lists

and Visual Studio debugger, 236 

associating with applications, 234 

explained, 233-234 

JumpPaths, 241-244 

JumpTasks, 234-240

taskbar item customizations 

explained, 245-246 

taskbar item overlays, 247 

taskbar item progress bars, 246 

thumb buttons, 248-249 

thumbnail content, 247

TaskDialogs, 253-256 

WPF 4 support for, 16

Windows applications 

multiple-document interface (MDI), 203 

navigation-based Windows applications

explained, 211-212 

hyperlinks, 215-216 

journal, 216-218 

Navigate method, 214-215 

navigation containers, 212-214 

navigation events, 218-219 

Page elements, 212-214 

returning data from pages, 221-222 

sending data to pages, 220-221

single-instance applications, 204 

standard Windows applications

Application class, 199-204 

application state, 209-210 

ClickOnce, 210-211 

common dialogs, 206-207 

custom dialogs, 207-208 

explained, 195-196 

multithreaded applications, 205 

retrieving command-line arguments in,
202 

splash screens, 205-206 

Window class, 196-198 

Windows Installer, 210

Windows collection, 202 

Windows Forms controls, WPF 
interoperability, 10 

converting between two representatives,
707-708 

ElementHost class, 704-706 

explained, 699-700 

launching modal dialogs, 703, 708 

PropertyGrid, 700-703

Windows Installer, 210 

Windows Media Player, 658 

Windows themes, 470 

Windows XP, WPF differences on, 18 

WindowsFormsHost class, 702 

WorkingDirectory property (JumpTask), 238 

WPF 3.0, 14 

WPF 3.5, 14-16 

WPF 3.5 SP1, 15-16 

WPF 4, 14, 16-17 

WPF Toolkit, 14 

WPF XAML Vocabulary Specification 2006 (MS-
WPFXV), 24 

WrapPanel

examples, 121 

explained, 120

Win32 controls, WPF interoperability822

  From the Library of Wow! eBook



ptg

interaction with child layout properties,
121-122 

properties, 120 

and right-to-left environments, 121

WriteableBitmap class, 15 

writers (XAML)

explained, 53-54 

node loops, 56-57 

writing to live objects, 61-63 

writing to XML, 63-64 

XamlServices class, 64-67

writing 

easing functions, 640-642 

validation rules, 406-407

X
X property 

StylusPoint object, 175

TranslateTransform class, 112

x:Arguments keyword, 51, 67 

x:Array keyword, 70 

x:AsyncRecords keyword, 67 

x:Boolean keyword, 67 

x:Byte keyword, 67 

x:Char keyword, 67 

x:Class keyword, 45, 67 

x:ClassAttributes keyword, 68 

x:ClassModifier keyword, 68 

x:Code keyword, 68 

x:ConnectionId keyword, 68 

x:Decimal keyword, 68 

x:Double keyword, 68 

x:FactoryMethod keyword, 51-52, 68 

x:FieldModifier keyword, 68 

x:Int16 keyword, 68

How can we make this index more useful? Email us at indexes@samspublishing.com

x:Int32 keyword, 68 

x:Int64 keyword, 68 

x:Key keyword, 68 

x:Members keyword, 53, 68 

x:Name keyword, 42, 68, 434 

x:Null keyword, 70 

x:Object keyword, 68 

x:Property keyword, 53, 68 

x:Reference keyword, 70, 703 

x:Shared keyword, 69, 358 

x:Single keyword, 69 

x:Static keyword, 70 

x:String keyword, 69 

x:Subclass keyword, 69 

x:SynchronousMode keyword, 69 

x:TimeSpan keyword, 69 

x:Type keyword, 70 

x:TypeArguments keyword, 69 

x:Uid keyword, 69 

x:Uri keyword, 69 

x:XData keyword, 69 

XAML (Extensible Application Markup
Language) 

{ } escape sequence, 377 

accessing binary resources from, 345-348 

advantages of, 22-24 

animation with EventTriggers/Storyboards

explained, 621-622 

starting animations from property 
triggers, 628-629 

Storyboards as Timelines, 629-630 

TargetName property, 625-626 

TargetProperty property, 622-625

BAML (Binary Application Markup Language) 

decompiling back into XAML, 47-48 

defined, 45

Binding object in, 365-367

XAML (Extensible Application Markup Language) 823

  From the Library of Wow! eBook



ptg

CAML (Compiled Application Markup
Language), 46 

common complaints about, 70-71 

compiling, 43-45 

defined, 23-24 

embedding PropertyGrid with, 702-703 

explained, 12, 21-22 

extensibility, 39 

factoring, 357 

generated source code, 46 

keywords, 67-70 

loading and parsing at runtime, 40-42 

loose XAML pages, 231-232 

markup extensions

explained, 32-35 

in procedural code, 35 

parameters, 33

namespaces 

explained, 26-28 

implicit .NET namespaces, 27 

mapping, 26

object elements 

attributes, 25 

content property, 35-36 

declaring, 25 

dictionaries, 37-38 

explained, 24-26 

lists, 36-37 

naming, 42-43 

processing child elements, 40 

values type-converted to object 
elements, 38 

order of property and event processing, 26 

procedural code inside, 47 

property elements, 29-30 

pure-XAML Twitter client, 412-413 

readers

explained, 53-54 

markup compatibility, 61

node loops, 56-57 

NodeType property, 57-58 

sample XAML content, 58-59 

XAML node stream, 59-61 

XamlServices class, 64-67

running XAML examples, 22

specifications, 24

type converters 

BrushConverter, 32 

explained, 30-31 

finding, 32 

FontSizeConverter, 32 

in procedural code, 31 

values type-converted to object 
elements, 38 

writers

explained, 53-54 

node loops, 56-57 

writing to live objects, 61-63 

writing to XML, 63-64 

XamlServices class, 64-67

XAML Browser Applications (XBAPs), 15 

ClickOnce caching, 226 

deployment, 229 

explained, 224-226 

full-trust XAML Browser 
applications, 228 

integrated navigation, 228-229 

limitations, 226-227 

on-demand download, 230-231 

security, 229

XAML2009 

built-in data types, 50 

dictionary keys, 50 

event handler flexibility, 52 

explained, 48-49 

full generics support, 49 

object instantiation via factory 
methods, 51-52

XAML (Extensible Application Markup Language)824

  From the Library of Wow! eBook



ptg

object instantiation with non-default 
constructors, 51 

properties, defining, 53 

XAML Browser Applications (XBAPs)

ClickOnce caching, 226 

deployment, 229 

explained, 224-226 

full-trust XAML Browser applications, 228 

integrated navigation, 228-229 

limitations, 226-227 

on-demand download, 230-231 

security, 229

XAML Cruncher, 23 

XAML Object Mapping Specification 2006 
(MS-XAML), 24 

XAML2009

built-in data types, 50 

dictionary keys, 50 

event handler flexibility, 52 

explained, 48-49 

full generics support, 49 

object instantiation via factory methods,
51-52 

object instantiation with non-default 
constructors, 51 

properties, defining, 53

XamlBackgroundReader class, 53 

XamlMember class, 58 

XamlObjectReader class, 53 

XamlObjectWriter class, 54 

XamlObjectWriterSettings.
PreferUnconvertedDictionaryKeys property, 50 

XamlPad, 23 

XAMLPAD2009, 22-23 

XamlPadX, 23, 77 

XamlReader class

explained, 53-54 

Load method, 40-41 

LoadAsync method, 41

How can we make this index more useful? Email us at indexes@samspublishing.com

zooming 825

XamlServices class, 64-67 

XamlType class, 58 

XamlWriter class, 48, 53-54 

XamlXmlReader class, 53-56

markup compatibility, 61 

sample XAML content, 58-59 

XAML node stream, 59-61

XamlXmlWriter class, 54 

XBAPs. See XAML Browser Applications 

XML, writing to, 63-64 

XML Paper Specification (XPS), 319 

XML Path Language (XPath), 397 

xml:lang attibute, 67 

xml:space attribute, 67 

XmlDataProvider class, 397-401 

XNA Framework, 11 

XPath (XML Path Language), 397 

XPS (XML Paper Specification), 319

Y-Z
Y property 

StylusPoint object, 175

TranslateTransform class, 112

Z order, 117-118 

Z-fighting, 545 

zooming

enabling with multi-touch events, 182-183 

with inertia, 184-185

  From the Library of Wow! eBook


	Table of Contents
	Introduction
	Who Should Read This Book?
	Software Requirements
	Code Examples
	How This Book Is Organized
	Part I: Background
	Part II: Building a WPF Application
	Part III: Controls
	Part IV: Features for Professional Developers
	Part V: Rich Media
	Part VI: Advanced Topics

	Conventions Used in This Book

	Part I: Background
	1 Why WPF, and What About Silverlight?
	A Look at the Past
	Enter WPF
	The Evolution of WPF
	What About Silverlight?
	Summary

	2 XAML Demystified
	XAML Defined
	Elements and Attributes
	Namespaces
	Property Elements
	Type Converters
	Markup Extensions
	Children of Object Elements
	Mixing XAML with Procedural Code
	Introducing XAML2009
	Fun with XAML Readers and Writers
	XAML Keywords
	Summary

	3 WPF Fundamentals
	A Tour of the Class Hierarchy
	Logical and Visual Trees
	Dependency Properties
	Summary


	Part II: Building a WPF Application
	4 Sizing, Positioning, and Transforming Elements
	Controlling Size
	Controlling Position
	Applying Transforms
	Summary

	5 Layout with Panels
	Canvas
	StackPanel
	WrapPanel
	DockPanel
	Grid
	Primitive Panels
	Handling Content Overflow
	Putting It All Together: Creating a Visual Studio–Like Collapsible, Dockable, Resizable Pane
	Summary

	6 Input Events: Keyboard, Mouse, Stylus, and Multi-Touch
	Routed Events
	Keyboard Events
	Mouse Events
	Stylus Events
	Multi-Touch Events
	Commands
	Summary

	7 Structuring and Deploying an Application
	Standard Windows Applications
	Navigation-Based Windows Applications
	Gadget-Style Applications
	XAML Browser Applications
	Loose XAML Pages
	Summary

	8 Exploiting Windows 7
	Jump Lists
	Taskbar Item Customizations
	Aero Glass
	TaskDialog
	Summary


	Part III: Controls
	9 Content Controls
	Buttons
	Simple Containers
	Containers with Headers
	Summary

	10 Items Controls
	Common Functionality
	Selectors
	Menus
	Other Items Controls
	Summary

	11 Images, Text, and Other Controls
	The Image Control
	Text and Ink Controls
	Documents
	Range Controls
	Calendar Controls
	Summary


	Part IV: Features for Professional Developers
	12 Resources
	Binary Resources
	Logical Resources
	Summary

	13 Data Binding
	Introducing the Binding Object
	Controlling Rendering
	Customizing the View of a Collection
	Data Providers
	Advanced Topics
	Putting It All Together: The Pure-XAML Twitter Client
	Summary

	14 Styles, Templates, Skins, and Themes
	Styles
	Templates
	Skins
	Themes
	Summary


	Part V: Rich Media
	15 2D Graphics
	Drawings
	Visuals
	Shapes
	Brushes
	Effects
	Improving Rendering Performance
	Summary

	16 3D Graphics
	Getting Started with 3D Graphics
	Cameras and Coordinate Systems
	Transform3D
	Model3D
	Visual3D
	Viewport3D
	2D and 3D Coordinate System Transformation
	Summary

	17 Animation
	Animations in Procedural Code
	Animations in XAML
	Keyframe Animations
	Easing Functions
	Animations and the Visual State Manager
	Summary

	18 Audio, Video, and Speech
	Audio
	Video
	Speech
	Summary


	Part VI: Advanced Topics
	19 Interoperability with Non-WPF Technologies
	Embedding Win32 Controls in WPF Applications
	Embedding WPF Controls in Win32 Applications
	Embedding Windows Forms Controls in WPF Applications
	Embedding WPF Controls in Windows Forms Applications
	Mixing DirectX Content with WPF Content
	Embedding ActiveX Controls in WPF Applications
	Summary

	20 User Controls and Custom Controls
	Creating a User Control
	Creating a Custom Control
	Summary

	21 Layout with Custom Panels
	Communication Between Parents and Children
	Creating a SimpleCanvas
	Creating a SimpleStackPanel
	Creating an OverlapPanel
	Creating a FanCanvas
	Summary


	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y-Z


