Chapter 01: Giving Computers the Ability to Learn from Data

(attributes, measurements, dimensions)

Chapter 02: Training Simple Machine Learning Algorithms for Classification

	0	1	2	3	4
145	6.7	3.0	5.2	2.3	Iris-virginica
146	6.3	2.5	5.0	1.9	Iris-virginica
147	6.5	3.0	5.2	2.0	Iris-virginica
148	6.2	3.4	5.4	2.3	Iris-virginica
149	5.9	3.0	5.1	1.8	Iris-virginica

Adaptive Linear Neuron (Adaline)

Chapter 03: A Tour of Machine Learning Classifiers Using scikit-learn

φ(z)

-0.5

-1.0

-1.5 -1.5

-1.0

-0.5

0.0

 \mathbf{x}_1

0.5

1.0

1.5

Chapter 04: Building Good Training Datasets – Data Preprocessing

	Α	В	С	D
0	1.0	2.0	3.0	4.0
1	5.0	6.0	7.5	8.0
2	10.0	11.0	12.0	6.0

	Class label	Alcohol	Malic acid	Ash	Alcalinity of ash	Magnesium	Total phenols	Flavanoids	Nonflavanoid phenols	Proanthocyanins	Color intensity	Hue	OD280/OD315 of diluted wines	Proline
0	1	14.23	1.71	2.43	15.6	127	2.80	3.06	0.28	2.29	5.64	1.04	3.92	1065
1	1	13.20	1.78	2.14	11.2	100	2.65	2.76	0.26	1.28	4.38	1.05	3.40	1050
2	1	13.16	2.36	2.67	18.6	101	2.80	3.24	0.30	2.81	5.68	1.03	3.17	1185
3	1	14.37	1.95	2.50	16.8	113	3.85	3.49	0.24	2.18	7.80	0.86	3.45	1480
4	1	13.24	2.59	2.87	21.0	118	2.80	2.69	0.39	1.82	4.32	1.04	2.93	735

Feature Importance

Chapter 05: Compressing Data via Dimensionality Reduction

Chapter 06: Learning Best Practices for Model Evaluation and Hyperparameter Tuning

Chapter 07: Learning Best Practices for Model Evaluation and Hyperparameter Tuning

Sample indices	Bagging round I	Bagging round 2	•••
1	2	7	
2	2	3	
3	I	2	•••
4	3	1	
5	7	1	
6	2	7	
7	4	7	

X₁

*x*₂

Index	x	у	Weights	ŷ(x <= 3.0)?	Correct?	Updated weights
I	1.0	I	0.1	I	Yes	0.072
2	2.0	I	0.1	I	Yes	0.072
3	3.0	I	0.1	I	Yes	0.072
4	4.0	-1	0.1	-1	Yes	0.072
5	5.0	-1	0.1	-1	Yes	0.072
6	6.0	-1	0.1	-1	Yes	0.072
7	7.0	I	0.1	-1	No	0.167
8	8.0	I	0.1	-1	No	0.167
9	9.0	1	0.1	-1	No	0.167
10	10.0	-1	0.1	-1	Yes	0.072

Chapter 08: Applying Machine Learning to Sentiment Analysis

	review	sentiment
0	In 1974, the teenager Martha Moxley (Maggie Gr	1
1	OK so I really like Kris Kristofferson a	0
2	***SPOILER*** Do not read this, if you think a	0

Chapter 09: Embedding a Machine Learning Model into a Web Application

• •	•		B DB Browser for S	QLite					
New Database 🕞 Open Database 📑 Write Changes 😪 Revert Changes									
	Database Structure	Browse D	ata Edit Pragmas	Execute SQL					
Т	able: review_db	•	🔏 📑 New	Record, Delete Record					
	review	sentiment	date						
	Filter	Filter	Filter						
1	1 I love this movie	1	2019-06-15 17:40:57						
2	2 I disliked this movie	0	2019-06-15 17:40:57						

•••	< >	127.0.0.1	Ċ	O >>

Hi, this is my first Flask web app!

<input type=submit value='Say Hello' name='submit_btn'>

18 <inpu
19
20 </form>
21

22

</body>

23 </html>

12 </body>

13 </html>

Webpage rendered when http://127.0.0.1:5000/	opening /		
	127.0.0.1	Ċ	>> +
What's your name	e?		
Sebastian //			
Say Hello			
Webpage rendered when	clicking "Say He	ello"	
	127.0.0.1	Ċ	» +
Hello Sebastian			

$\bullet \bullet \bullet < >$		A A 🛈	raschkas.pythonanywhere.com/	Ċ	
Please	enter yo	our mov	vie review:		
			<u>//</u>		
Submit rev	view				
••• <>		A A 🛈	raschkas.pythonanywhere.com/	results 🖒	Δ O ſ

Your movie review:

I love this movie!

Prediction:

This movie review is **positive** (probability: 90.86%).

Correct Incorrect	
-------------------	--

Thank you for your feedback!

Submit another review

+

Please enter your movie review:

Submit review

```
68
             y = int(not(y))
69
        train(review, y)
        sqlite_entry(db, review, y)
return render_template('thanks.html')
70
71
72
73
   if name
                  == ' main ':
        app.run(debbg True)
74
75
76
77
78
```


Chapter 10: Predicting Continuous Target Variables with Regression Analysis

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В	LSTAT	MEDV
0	0.00632	18.0	2.31	0	0.538	6.575	65.2	4.0900	1	296.0	15.3	396.90	4.98	24.0
1	0.02731	0.0	7.07	0	0.469	6.421	78.9	4.9671	2	242.0	17.8	396.90	9.14	21.6
2	0.02729	0.0	7.07	0	0.469	7.185	61.1	4.9671	2	242.0	17.8	392.83	4.03	34.7
3	0.03237	0.0	2.18	0	0.458	6.998	45.8	6.0622	3	222.0	18.7	394.63	2.94	33.4
4	0.06905	0.0	2.18	0	0.458	7.147	54.2	6.0622	3	222.0	18.7	396.90	5.33	36.2

Chapter 11: Working with Unlabeled Data – Clustering Analysis

(complete linkage)

	X	Y	Z		
ID_0	6.964692	2.861393	2.268515		
ID_1	5.513148	7.194690	4.231065		
ID_2	9.807642	6.848297	4.809319		
ID_3	3.921175	3.431780	7.290497		
ID_4	4.385722	0.596779	3.980443		
	ID_0	ID_1	ID_2	ID_3	ID_4
------	----------	----------	----------	----------	----------
ID_0	0.000000	4.973534	5.516653	5.899885	3.835396
ID_1	4.973534	0.000000	4.347073	5.104311	6.698233
ID_2	5.516653	4.347073	0.000000	7.244262	8.316594
ID_3	5.899885	5.104311	7.244262	0.000000	4.382864
ID_4	3.835396	6.698233	8.316594	4.382864	0.000000

	row label 1	row label 2	distance	no. of items in clust.
cluster 1	0.0	4.0	3.835396	2.0
cluster 2	1.0	2.0	4.347073	2.0
cluster 3	3.0	5.0	5.899885	3.0
cluster 4	6.0	7.0	8.316594	5.0

Chapter 12: Implementing a Multilayer Artificial Neural Network from Scratch

Chapter 13: Parallelizing Neural Network Training with **TensorFlow**

Specifications	Intel® Core™ i9-9960X X-series Processor	NVIDIA GeForce® RTX™ 2080 Ti
Base Clock Frequency	3.1 GHz	1.35 GHz
Cores	16 (32 threads)	4352
Memory Bandwidth	79.47 GB/s	616 GB/s
Floating-Point Calculations	1290 GFLOPS	13400 GFLOPS
Cost	~ \$1700.00	~ \$1100.00

Rank 3:

cat_dog_images/dog-01.jpg

cat_dog_images/cat-02.jpg

cat_dog_images/dog-03.jpg

1

0

1

Activation functi	on Equation		Example	1D graph
Linear	$\phi(z) = z$		Adaline, linear regression	
Unit step (Heaviside function)	$\phi(z) = \begin{cases} 0\\ 0.5\\ 1 \end{cases}$	z < 0 z = 0 z > 0	Perceptron variant	
Sign (signum)	$\phi(z) = \begin{cases} -1 \\ 0 \\ 1 \end{cases}$	z < 0 z = 0 z > 0	Perceptron variant	
Piece-wise $\phi($ linear $\phi($	$z = \begin{cases} 0 \\ z + \frac{1}{2} \\ 1 \end{cases}$	$Z \leq -\frac{1}{2}$ $-\frac{1}{2} \leq Z \leq \frac{1}{2}$ $Z \geq \frac{1}{2}$	Support vector machine	
Logistic (sigmoid)	$\phi(z) = \frac{1}{1+1}$	1 e ^{-z}	Logistic regression, multilayer NN	
Hyperbolic tangent (tanh)	$\phi(z) = \frac{e^z}{e^z}$	e ^{-z}	Multilayer NN, RNNs	
ReLU	$\phi(z) = \begin{cases} 0 \\ z \end{cases}$	z < 0 z > 0	Multilayer NN, CNNs	,

Chapter 14: Going Deeper – The Mechanics of TensorFlow

Computation graph implementing the equation $z = 2 \times (a - b) + c$

	MPG	Cylinders	Displacement	Horsepower	Weight	Acceleration	ModelYear	Origin
203	28.0	-0.824303	-0.901020	-0.736562	-0.950031	0.255202	76	3
255	19.4	0.351127	0.413800	-0.340982	0.293190	0.548737	78	1
72	13.0	1.526556	1.144256	0.713897	1.339617	-0.625403	72	1
235	30.5	-0.824303	-0.891280	-1.053025	-1.072585	0.475353	77	1
37	14.0	1.526556	1.563051	1.636916	1.470420	-1.359240	71	1

Chapter 15: Classifying Images with Deep Convolutional Neural Networks

Step 1: Rotate the filter

Step 2: For each output element *i*, compute the dot-product x[i: i + 4]. w^r

(move the filter two cells)

$$y[0] = 3 \times \frac{1}{4} + 2 \times 1 + 1 \times \frac{3}{4} + 7 \times \frac{1}{2}$$

 $\rightarrow y[0] = 7$

$$y[1] = 1 \times \frac{1}{4} + 7 \times 1 + 1 \times \frac{3}{4} + 2 \times \frac{1}{2}$$

 $\rightarrow y[1] = 9$

$$y[2] = 1 \times \frac{1}{4} + 2 \times 1 + 5 \times \frac{3}{4} + 4 \times \frac{1}{2}$$

 $\rightarrow y[2] = 8$

W

0.5	0.7	0.4
0.3	0.4	0.1
0.5	1	0.5

Pooling $(P_{3\times 3})$

		Examples		
Loss function	Usage	Using probabilities	Using logits	
		from_logits=False	from_logits=True	
BinaryCrossentropy	Binary	y_true: 1	y_true: 1	
	Classification	y_pred: 0.69	y_pred: 0.8	
CatagonicalChassonthamy	Multiclass classification	y_true: 0 0 1	y_true: 0 0 1	
categoricatcrossentropy		y_pred: 0.30 0.15 0.55	y_pred: 1.5 0.8 2.1	
Sparse	Multiclass	y_true: 2	y_true: 2	
CategoricalCrossentropy	classification	y_pred: 0.30 0.15 0.55	y_pred: 1.5 0.8 2.1	

GT: Male Pr(Male)=80%

GT: Male Pr(Male)=99%

GT: Female Pr(Male)=0%

GT: Female Pr(Male)=0%

GT: Male Pr(Male)=100%

GT: Female

Pr(Male)=0%

GT: Female Pr(Male)=89%

GT: Male Pr(Male)=99%

GT: Male Pr(Male)=89%

GT: Male Pr(Male)=100%

Chapter 16: Modeling Sequential Data Using Recurrent Neural Networks

Mapping characters to integers

Mapping integers to characters

Chapter 17: Generative Adversarial Networks for Synthesizing New Data

	EXAMPLES	RECENT	1- GOOGLE DRIVE	GITHUB	UPLOAD
Filter n	notebooks		Ŧ		
	Title		Owner	Last modified	Last opened
4	colab-W-DCGAN_ch17.ipynb		Vahid Mirjalili	Aug 28, 2019	
4	ch17-basic-GAN.ipynb		Vahid Mirjalili	Aug 28, 2019	
4	ch17-DCGAN.ipynb		Vahid Mirjalili	Aug 24, 2019	
4	colab-GAN-original_mnist.ipy	nb	Vahid Mirjalili	Aug 22, 2019	
			2		
			Ζ.	NEW PYTHO	N 3 NOTEBOOK CANCEL

Measures	Formulation		
Total variation (TV)	$TV(P,Q) = \sup_{x} P(x) - Q(x) $		
Kullback-Leibler (KL) divergence	$KL(P Q) = \int P(x) \log \frac{P(x)}{Q(x)} dx$		
Jensen-Shannon (JS) divergence	$JS(P,Q) = \frac{1}{2} \left(KL\left(P \frac{P+Q}{2}\right) + KL\left(Q \frac{P+Q}{2}\right) \right)$		
Earth mover's (EM) distance	$EM(P,Q) = \inf_{\gamma \in \Pi(P,Q)} E_{(u,v) \in \gamma}(u-v)$		

Total variation:

KL divergence:

$$TV(P,Q) = \sup_{x} \left\{ \left| \frac{1}{3} - 0.2 \right|, \left| \frac{1}{3} - 0.5 \right|, \left| \frac{1}{3} - 0.3 \right| \right\} = 0.167$$

$$KL(P||Q) = 0.33 \log\left(\frac{0.33}{0.2}\right) + 0.33 \log\left(\frac{0.33}{0.5}\right) + 0.33 \log\left(\frac{0.33}{0.3}\right) = 0.101$$
$$KL(Q||P) = 0.2 \log\left(\frac{0.2}{0.33}\right) + 0.5 \log\left(\frac{0.5}{0.33}\right) + 0.33 \log\left(\frac{0.3}{0.33}\right) = 0.099$$

JS divergence:

$$P_m \rightarrow \left[\frac{0.33+0.2}{2}, \frac{0.33+0.5}{2}, \frac{0.33+0.3}{2}\right] = [0.26, 0.42, 0.32]$$
$$KL(P||P_m) = 0.0246 \\ KL(Q||P_m) = 0.0246 \\ \end{bmatrix} \rightarrow JS(P||Q) = 0.0248$$

EM distance:

EM(P,Q) = (0.33 - 0.2) + (0.33 - 0.3) = 0.16

Chapter 18: Reinforcement Learning for Decision Making in Complex Environments

Cart's

movement

0

24	25	26	27	28	29
18	19	20	21	22	23
12	13	14	15	16	17
6	7	8	9	10	11
0	1	2	3	4	5

Cart -

Action space: 🛛 ←	-
{up, down, left, right}	¥

1

Rewards:

- $\begin{pmatrix} +1 & \text{If landed in gold state} \\ -1 & \text{If landed in a trap} \end{cases}$
 - Otherwise

