
Understanding Deep Learning Errata
March 26, 2024

Much gratitude to everyone who has pointed out mistakes. If you find a problem not
listed here, please contact me via github or by mailing me at udlbookmail@gmail.com.

https://github.com/udlbook/udlbook/issues

2

Copyright ©2023 Simon Prince.

Instructions

To find which errata are relevant to your version of the book, first consult the copyright
page at the start of the book just before the dedication. The printing will be stated (e.g.,
“Second printing”) just before the line that says “Library of Congress...”. If it doesn’t
specify the printing here, then you have the first printing.

This document is organized by printing. If you have the first printing of the book, all
errata are relevant to you. If you have the second printing, then only the errata in the
sections for second printing are relevant, and so on.

Copyright ©2023 Simon Prince.

4

Copyright ©2023 Simon Prince.

Second printing (Mar. 2024)

Errors

These are things that might genuinely confuse you:

• Equation 6.12

mt+1 ← β ·mt + (1− β)
∑
i∈Bt

∂ℓi[ϕt − αβ ·mt]

∂ϕ

ϕt+1 ← ϕt − α ·mt+1, (1.1)

• Equation 6.18:

mt+1 ← β ·mt + (1− β)
∑
i∈Bt

∂ℓi[ϕt]

∂ϕ

vt+1 ← γ · vt + (1− γ)

(∑
i∈Bt

∂ℓi[ϕt]

∂ϕ

)2

, (1.2)

• Equation 19.40:
r[τ it] ≈ rit + γ · v[si,t+1,ϕ].

• Section B.3.6: Definition of nullspace was ambiguous/wrong. Last line of this
section changed to: Conversely, for a landscape matrix A, the part of the input
space that maps to zero (i.e., those x where Ax = 0) is termed the nullspace of the
matrix.

Minor fixes

These are things that are wrong and need to be fixed, but that will probably not affect
your understanding (e.g., math symbols that are in bold but should not be).

Copyright ©2023 Simon Prince.

6

• Multiple places in Chapters 2-9. Loss functions L[ϕ] sometimes written as L[ϕ].
Have now all been converted to italic for consistency.

• Chapter 4 Notes, page 52. Montúfar

• Problem 4.7: Choose values for the parameters ϕ = {ϕ0, ϕ1, ϕ2, ϕ3, θ10, θ11, θ20, θ21, θ30, θ31}
for the shallow neural network in equation 3.1 (with ReLU activation functions)
that will define an identity function over a finite range x ∈ [a, b].

• Equation 4.11: How many parameters does each network have? How many linear
regions can each network make (see equation 4.17)?

• Problem 5.1 Reworded to be more precise with limits: Show that the logistic sig-
moid function sig[z] becomes 0 as z → −∞, is 0.5 when z = 0, and becomes 1
when z →∞.

• Problem 5.3: The term Bessel0[κ] is a modified Bessel function of the first kind of
order 0.

• Figure 7.4 legend: We work backward from the end of the function computing
the derivatives ∂ℓi/∂fk and ∂ℓi/∂hk of the loss with respect to the intermediate
quantities.

• Section 7.3 Finally, we consider how the loss ℓi changes when we change the pa-
rameters {βk} and {ωk}.

• Figure 7.5 legend: Finally, we compute the derivatives ∂ℓi/∂βk and ∂ℓi/∂ωk

• Problem 7.13 For the same function as in problem 7.12, compute the derivative...

• Equation 8.2:

L[x] =
(
f[x,ϕ]− y[x]

)2
(1.3)

=
((

f[x,ϕ]− µ[x]
)
+
(
µ[x]− y[x]

))2
=

(
f[x,ϕ]− µ[x]

)2
+ 2
(
f[x,ϕ]��CC)− µ[x]

)(
µ[x]− y[x]

)
+
(
µ[x]− y[x]

)2
,

• Equation 9.6 LHS should be total derivative, not partial derivative:

dϕ

dt
= −∂L

∂ϕ
. (1.4)

• Figure 9.4 Added to legend for panel (a) Blue point represents global minimum.
Added to legend for panel (b) Blue point represents global minimum which may
now be in a different place from panel (a).

• Figure 9.9 legend Here we are using full-batch gradient descent, and the model
(from figure 8.4) fits the data as well as possible, so further training won’t remove
the kink

Copyright ©2023 Simon Prince.

7

• Figure 9.9 legend Consider what happens if we remove the eighth hidden unit

• Figure 9.11 legend: a-c) Two sets of parameters (cyan and gray curves) sampled
from the posterior

• Figure 9.11 legend When the prior variance σ2
ϕ is small

• Equation 9.15 Should be total derivative not partial:

dϕ

dt
= g[ϕ]. (1.5)

• Equation 9.16 Should be total derivative not partial:

dϕ

dt
≈ g[ϕ] + αg1[ϕ] + . . . , (1.6)

• Equation 9.17 Should be total derivative not partial:

ϕ[α] ≈ ϕ+ α
dϕ

dt
+

α2

2

d2ϕ

dt2

∣∣∣∣
ϕ=ϕ0

≈ ϕ+ α (g[ϕ] + αg1[ϕ]) +
α2

2

(
∂g[ϕ]

∂ϕ

dϕ

dt
+ α

∂g1[ϕ]

∂ϕ

dϕ

dt

)∣∣∣∣
ϕ=ϕ0

= ϕ+ α (g[ϕ] + αg1[ϕ]) +
α2

2

(
∂g[ϕ]

∂ϕ
g[ϕ] + α

∂g1[ϕ]

∂ϕ
g[ϕ]

)∣∣∣∣
ϕ=ϕ0

≈ ϕ+ αg[ϕ] + α2

(
g1[ϕ] +

1

2

∂g[ϕ]

∂ϕ
g[ϕ]

)∣∣∣∣
ϕ=ϕ0

, (1.7)

• Equation 9.19 Should be total derivative not partial:

dϕ

dt
≈ g[ϕ] + αg1[ϕ]

= −∂L

∂ϕ
− α

2

(
∂2L

∂ϕ2

)
∂L

∂ϕ
. (1.8)

• Page 156 Notes: Wrong marginal reference — Appendix B.3.7 Spectral Norm

• Figure 10.3 legend – In dilated or atrous convolution (from the French “à trous” –
with holes), we intersperse zeros in the weight vector...

• Section 10.5.1 A final max-pooling layer yields a 6×6 representation with 256 chan-
nels which is resized into a vector of length 9, 216 and passed through three fully
connected layers containing 4096, 4096, and 1000 hidden units, respectively.

• Section 10.5.1 The complete network contains ∼60 million parameters, most of
which are in the fully connected layers and the end of the network.

Copyright ©2023 Simon Prince.

8

• Equation 11.10:

f1 = E[zi]
f2i = zi − f1

f3i = f2
2i

f4 = E[f3i]

f5 =
√

f4 + ϵ

f6 = 1/f5

f7i = f2i × f6

z′i = f7i × γ + δ,

(1.9)

• Figure 12.10 legend: A small fraction of the input tokens are randomly replaced
with...

• Section 12.3.1 Each element of the attention matrix corresponds to a particular
offset between key position a and query position b.

• Section 12.3.2 title: Scaled dot-product self-attention

• Section 12.3.2 This is known as scaled dot-product self-attention.

• Problem 12.1 How many weights and biases would there be in a fully connected
shallow network relating all DN inputs to all DN outputs?

• Notes Page 236 Much subsequent work has modified just the attention matrix so
that in the scaled dot product self-attention equation:

• Problem 12.10: Extra bracket removed:

a[xm,xn] = softmaxm
[
kT
• qn

]
=

exp
[
kT
mqn

]∑N
m′=1 exp

[
kT
m′qn ��CC)

] . (1.10)

• Figure 13.10 Right hand column should be labelled as “output” not “hidden layer
two”.

• Section 15.2.1 When I = J , the optimal discriminator for an example x̃ of unknown
origin is:

• Equation 16.12:

f[h,ϕ] =

(
b−1∑
k=1

ϕk

)
+ (hK − b)ϕb, (1.11)

• Equation 16.25:

ϕ̂ = argmin
ϕ

[
KL

[
1

I

I∑
i=1

δ
[
x− f[zi,ϕ]

]∣∣∣∣∣∣∣∣q(x)
]]

. (1.12)

• Section 16.2 The first term is the inverse of the determinant of the D×D Jacobian
matrix ∂f[z,ϕ]/∂z, which contains elements ∂fi[z,ϕ]/∂zj at position (i, j).

Copyright ©2023 Simon Prince.

9

• Section 16.3.2 ...where the parameters ϕ1, ϕ2, . . . , ϕK are positive and sum to 1,
and b = ⌊Kh⌋ is the index of the bin that contains h.

• Section 17.5 we can’t evaluate the evidence term Pr(x|ϕ) in the denominator (see
section 17.3).

• Section 18.6.1 The obvious architectural choice for this image-to-image mapping is
the U-Net (figure 11.10).

• Section 18.7 Hence, the decision transformer replaces the reward rt with the returns-
to-go Rt:T =

∑T
t′=t rt′ (i.e., the sum of the empirically observed future rewards).

• Section 20.5.1 In general, the smaller the model, the larger the proportion of weights
that can... Note that this statement is only true for pure pruning methods, and
not for lottery tickets where the pruned network is retrained from scratch, and so
it has been removed.

• Section C.2.1 Rule 2:

E
[
k · f[x]

]
=

∫
k · f[x]Pr(x)dx

= k ·
∫

f[x]Pr(x)dx

= k · E
[
f[x]
]
.

Copyright ©2023 Simon Prince.

10

Copyright ©2023 Simon Prince.

First printing (Dec. 2023)

Errors

These are things that might genuinely confuse you:

• Figure 4.7b had the wrong calculated numbers in it (but pattern is same). Correct
version is in figure 1.1 of this document.

• Section 6.3.1 where now the gradients are evaluated at ϕt − αβ ·mt.

• Section 7.5.1 The expectation (mean) E[fi′] of the intermediate values fi
′ is:

• Equation 15.7 The optimal discriminator for an example x̃ depends on the under-
lying probabilities:

Pr(real|x̃) = sig
[
f[x̃,ϕ]

]
=

Pr(x̃|real)
Pr(x̃|generated) + Pr(x̃|real)

=
Pr(x)

Pr(x∗) + Pr(x)
.

(1.13)
where on the right hand side, we evaluate x̃ against the generated distribution
Pr(x∗) and the real distribution Pr(x).

• Equation 15.9. First integrand should be with respect to x∗. Correct version is:

DJS

[
Pr(x∗) || Pr(x)

]
=

1

2
DKL

[
Pr(x∗)

∣∣∣∣∣∣∣∣Pr(x∗) + Pr(x)

2

]
+

1

2
DKL

[
Pr(x)

∣∣∣∣∣∣∣∣Pr(x∗) + Pr(x)

2

]
=

1

2

∫
Pr(x∗) log

[
2Pr(x∗)

Pr(x∗) + Pr(x)

]
dx∗︸ ︷︷ ︸

quality

+
1

2

∫
Pr(x) log

[
2Pr(x)

Pr(x∗) + Pr(x)

]
dx︸ ︷︷ ︸

coverage

.

• Equation 15.12.

Dw

[
Pr(x)||q(x)

]
= max

f

∑
i

Pr(x = i)fi −
∑
j

q(x = j)fj

 , (1.14)

Copyright ©2023 Simon Prince.

12

Figure 1.1 Corrected version of figure 4.7: The maximum number of linear regions
for neural networks increases rapidly with the network depth. a) Network with
Di = 1 input. Each curve represents a fixed number of hidden layers K, as
we vary the number of hidden units D per layer. For a fixed parameter budget
(horizontal position), deeper networks produce more linear regions than shallower
ones. A network with K = 5 layers and D = 10 hidden units per layer has 471
parameters (highlighted point) and can produce 161,051 regions. b) Network with
Di = 10 inputs. Each subsequent point along a curve represents ten hidden units.
Here, a model with K = 5 layers and D = 50 hidden units per layer has 10,801
parameters (highlighted point) and can create more than 1040 linear regions.

• Section 15.2.4 Consider distributions Pr(x = i) and q(x = j) defined over K bins.
Assume there is a cost Cij associated with moving one unit of mass from bin i in
the first distribution to bin j in the second;

• Equation 15.14. Missing bracket and we don’t need to use x∗ notation here. Correct
version is:

Dw

[
Pr(x), q(x)

]
= min

π[•,•]

[∫ ∫
π(x1,x2) · ||x1 − x2||dx1dx2

]
.

• Equation 15.15. Don’t need to use x∗ notation here, and second term on right
hand side should have q[x] term not Pr(x). Correct version is:

Dw

[
Pr(x), q(x)

]
= max

f[x]

[∫
Pr(x)f[x]dx−

∫
q(x)f[x]dx

]
.

• Equation 16.12 has a mistake in the second term. It should be:

f[hd,ϕ] =

(
b−1∑
k=1

ϕk

)
+ (hK − b)ϕb.

Copyright ©2023 Simon Prince.

13

Figure 1.2 Corrected version of figure 19.11

• Equation 17.34.

∂

∂ϕ
EPr(x|ϕ)

[
f[x]
]

= EPr(x|ϕ)

[
f[x]

∂

∂ϕ
log
[
Pr(x|ϕ)

]]
≈ 1

I

I∑
i=1

f[xi]
∂

∂ϕ
log
[
Pr(xi|ϕ)

]
.

• Figure 19.11 is wrong in that only the state-action values corresponding to the
current state-action pair should be moderated. Correct version above.

• Equation B.4. Square root sign should cover x. Correct version is:

x! ≈
√
2πx

(x
e

)x
.

• Appendix B.3.6. Consider a matrix A ∈ RD1×D2 . If the number of columns D2 of
the matrix is fewer than the number of rows D1 (i.e., the matrix is “portrait”),

• Equation C.20. Erroneous minus sign on covariance matrix. Correct version is:

x = µ+Σ1/2z.

Copyright ©2023 Simon Prince.

14

Minor fixes

These are things that are wrong and need to be fixed, but that will probably not affect
your understanding (e.g., math symbols that are in bold but should not be).

• Section 1.1: ...and what is meant by “training” a model.

• Figure 1.13: Adapted from Pablok (2017).

• Figure 2.3 legend: Each combination of parameters ϕ = [ϕ0,ϕ1]
T .

• Section 2.3: 1D linear regression has the obvious drawback

• Figure 3.5 legend: The universal approximation theorem proves that, with enough
hidden units, there exists a shallow neural network that can describe any given
continuous function defined on a compact subset of RDi to arbitrary precision.

• Notes page 38 Most of these are attempts to avoid the dying ReLU problem while
limiting the gradient for negative values.

• Figure 4.1 legend: The first network maps inputs x ∈ [−1, 1] to outputs y ∈
[−1, 1] using a function comprising three linear regions that are chosen so that they
alternate the sign of their slope (fourth linear region is outside range of graph).

• Figure 4.2: Colors changed to avoid ambiguity

• Equation 4.13 is missing a prime sign:

h = a [θ0 + θx]

h′ = a [ψ0 +Ψh]

y′ = ϕ′
0 + ϕ

′h′,

• Equation 4.14: ϕ′
0 should not be bold.

y = ϕ′
0 + ϕ

′h′

• Equation 4.17 is not technically wrong, but the product is unnecessary and it’s
unclear if the last term should be included in it (no). Better written as:

Nr =

(
D

Di
+ 1

)Di(K−1)

·
Di∑
j=0

(
D

j

)
.

• Equation 5.10. Second line is disambiguated by adding brackets:

Copyright ©2023 Simon Prince.

15

ϕ̂ = argmin
ϕ

[
−

I∑
i=1

log

[
1√
2πσ2

exp

[
− (yi − f[xi,ϕ])

2

2σ2

]]]

= argmin
ϕ

[
−

I∑
i=1

(
log

[
1√
2πσ2

]
− (yi − f[xi,ϕ])

2

2σ2

)]

= argmin
ϕ

[
−

I∑
i=1

− (yi − f[xi,ϕ])
2

2σ2

]

= argmin
ϕ

[
I∑

i=1

(yi − f[xi,ϕ])
2

]
,

• Equation 5.12. More properly written as:

ŷ = argmax
y

[
Pr(y|f[x, ϕ̂, σ2])

]
. (1.15)

although the value of σ2 does not actually matter or change the position of the
maximum.

• Equation 5.15. Disambiguated by adding brackets:

ϕ̂ = argmin
ϕ

[
−

I∑
i=1

(
log

[
1√

2πf2[xi,ϕ]2

]
− (yi − f1[xi,ϕ])

2

2f2[xi,ϕ]2

)]
.

• Section 5.5 The likelihood that input x has label y = k (figure 5.10) is hence:

• Section 5.6 Removed i index from this paragraph for consistency. Independence
implies that we treat the probability Pr(y|f[x,ϕ]) as a product of univariate terms
for each element yd ∈ y:

Pr(y|f[x,ϕ]) =
∏
d

Pr(yd|fd[x,ϕ]),

where fd[x,ϕ] is the d
th set of network outputs, which describe the parameters of the

distribution over yd. For example, to predict multiple continuous variables yd ∈
R, we use a normal distribution for each yd, and the network outputs fd[x,ϕ]
predict the means of these distributions. To predict multiple discrete variables yd ∈
{1, 2, . . . ,K}, we use a categorical distribution for each yd. Here, each set of network
outputs fd[x,ϕ] predicts theK values that contribute to the categorical distribution
for yd.

• Problem 5.8. Construct a loss function for making multivariate predictions y∈ RDi

based on independent normal distributions. . .

Copyright ©2023 Simon Prince.

16

• Notes page 94. However, this is strange since SGD is a special case of Adam
(when β = γ = 0)

• Section 7.3. The final derivatives from the term f0 = β0 + ω0 · xi are:

• Section 7.4. Similarly, the derivative for the weights matrix Ωk, is given by

• Section 7.5.1 and the second moment E[h2
j] will be half the variance σ2

f

• Figure 7.8. Not wrong, but changed to “nn.init.kaiming normal (layer in.weight)”
for compatability with text and to avoid deprecated warning.

• Section 8.3.3 (i.e., with four hidden units and four linear regions in the range of
the data) + minor changes in text to accommodate extra words

• Figure 8.9 number of hidden units / linear regions in range of data

• Section 8.4.1 When the number of parameters is very close to the number of training
data examples (figure 8.11b)

• Figure 9.5 legend: Effect of learning rate (LR) and batch size for 4000 training and
4000 test examples from MNIST-1D (see figure 8.1) for a neural network with two
hidden layers. a) Performance is better for large learning rates than for intermediate
or small ones. In each case, the number of iterations is 6000/LR, so each solution
has the opportunity to move the same distance.

• Figure 10.3. The dilation rates are wrong by one, so should be 1,1,1, and 2 in
panels a,b,c,d, respectively.

• Section 10.2.1 Not wrong, but could be disambiguated: The size of the region over
which inputs are combined is termed the kernel size.

• Section 10.2.3 The number of zeros we intersperse between the weights determines
the dilation rate.

• Section 10.2.4 With kernel size three, stride one, and dilation rate one.

• Section 10.2.7 The convolutional network has 2,050 parameters, and the fully con-
nected network has 59,065 parameters.

• Figure 10.8 Number of parameters also wrong in figure 10.8 (correct version in this
document). Recalculated curve is slightly different.

• Section 10.5.3 The first part of the network is a smaller version of VGG (fig-
ure 10.17) that contains thirteen rather than sixteen convolutional layers.

• Section 10.6 The weights and the bias are the same at every spatial position, so
there are far fewer parameters than in a fully connected network, and the number
of parameters doesn’t increase with the input image size.

Copyright ©2023 Simon Prince.

17

Corrected version of figure 10.8

• Problem 10.1 Show that the operation in equation 10.3 is equivariant with respect
to translation.

• Problem 10.2 Equation 10.3 defines 1D convolution with a kernel size of three,
stride of one, and dilation one.

• Problem 10.3 Write out the equation for the 1D dilated convolution with a kernel
size of three and a dilation rate of two.

• Problem 10.4 Write out the equation for a 1D convolution with kernel size of seven,
a dilation rate of three, and a stride of three.

• Problem 10.9 A network consists of three 1D convolutional layers. At each layer,
a zero-padded convolution with kernel size three, stride one, and dilation one is
applied.

• Problem 10.10 A network consists of three 1D convolutional layers. At each layer,
a zero-padded convolution with kernel size seven, stride one, and dilation one is
applied.

• Problem 10.11 Consider a convolutional network with 1D input x. The first hidden
layer H1 is computed using a convolution with kernel size five, stride two, and a
dilation rate of one. The second hidden layer H2 is computed using a convolution
with kernel size three, stride one, and a dilation rate of one. The third hidden
layer H3 is computed using a convolution with kernel size five, stride one, and a
dilation rate of two. What are the receptive field sizes at each hidden layer?

• Legend to figure 11.15. Computational graph for batch normalization (see prob-
lem 11.5).

• Section 12.2: Not a mistake, but this is clearer: where βv∈ RD and Ωv∈ RD×D

represent biases and weights, respectively.

• Section 12.3.3 to make self-attention work well

• Section 12.4 Title changed to Transformer layers

• Section 12.4 a larger transformer mechanism

Copyright ©2023 Simon Prince.

18

• Section 12.4 a series of these transformer layers ...

• Section 12.5 The previous section described the transformer layer... a series of
transformer layers...

• Figure 12.8 legend: The transformer → Transformer layer...The transformer layer
consists

• Figure 12.8 has some minor mistakes in the calculation. The corrected version is
shown at the end of this document.

• Figure 12.8 legend. At each iteration, the sub-word tokenizer looks for the most
commonly occurring adjacent pair of tokens

• Section 12.5.3 a series of K transformer layers

• Section 12.6 through 24 transformer layers

• Section 12.6 in the fully connected networks in the transformer is 4096

• Figure 12.10 legend: a series of transformer layers

• Section 12.7.2 the transformer layers use masked...

• Figure 12.12 are passed through a series of transformer layers... and those of tokens
earlier

• Section 12.7.4 There are 96 transformer layers

• Section 12.7 comprises a series of transformer layers

• Section 12.8 Originally, these

• Section 12.8 a series of transformer layers... a series of transformer layers

• Section 13.5.1 Given I training graphs {Xi,Ai} and their labels yi, the parame-
ters Φ = {βk,Ωk}Kk=0 can be learned using SGD...

• Figure 15.3 legend: At the end is a tanh function that maps the...

• Figure 15.3 arctan → tanh. Corrected version nearby in this document.

• Section 15.1.3: At the final layer, the 64×64×3 signal is passed through a tanh
function to generate an image x∗

• Equation 15.6. Minor problems with brackets in this equation. Should be:

Copyright ©2023 Simon Prince.

19

...

Corrected version of figure 15.3

L[ϕ] =
1

J

J∑
j=1

(
log
[
1− sig[f[x∗

j ,ϕ]]
])

+
1

I

I∑
i=1

(
log
[
sig[f[xi,ϕ]]

])

≈ Ex∗

[
log
[
1− sig[f[x∗,ϕ]]

]]
+ Ex

[
log
[
sig[f[x,ϕ]]

]]
=

∫
Pr(x∗) log

[
1− sig[f[x∗,ϕ]]

]
dx∗ +

∫
Pr(x) log

[
sig[f[x,ϕ]]

]
dx.

• Equation 16.2 (last line). For some reason, this didn’t print properly, although it
looks fine in my original pdf. Should be:

ϕ̂ = argmax
ϕ

[
I∏

i=1

Pr(xi|ϕ)

]

= argmin
ϕ

[
I∑

i=1

− log
[
Pr(xi|ϕ)

]]

= argmin
ϕ

[
I∑

i=1

log

[∣∣∣∣∂f[zi,ϕ]∂zi

∣∣∣∣
]
− log

[
Pr(zi)

]]
,

• Equation 16.25. ϕ should change to ϕ̂ on left hand side. Correct version is:

ϕ̂ = argmin
ϕ

[
KL

[
I∑

i=1

δ
[
x− f[zi,ϕ]

]∣∣∣∣∣∣∣∣q(x)
]]

.

• Equation 16.26. ϕ should change to ϕ̂ on left hand side. Correct version is:

ϕ̂ = argmin
ϕ

[
KL

[
1

I

I∑
i=1

δ[x− xi]

∣∣∣∣∣∣∣∣Pr(xi,ϕ)

]]
.

Copyright ©2023 Simon Prince.

20

• Equation 18.24 has a minor formatting mistake. Better written as:

log

[
Pr(x, z1...T |ϕ1...T)

q(z1...T |x)

]
= log

[
Pr(x|z1,ϕ1)

q(z1|x)

]
+ log

[∏T
t=2 Pr(zt−1|zt,ϕt) · q(zt−1|x)∏T

t=2 q(zt−1|zt,x) · q(zt|x)

]
+ log

[
Pr(zT)

]
= log [Pr(x|z1,ϕ1)] + log

[∏T
t=2 Pr(zt−1|zt,ϕt)∏T
t=2 q(zt−1|zt,x)

]
+ log

[
Pr(zT)

q(zT |x)

]

≈ log [Pr(x|z1,ϕ1)] +

T∑
t=2

log

[
Pr(zt−1|zt,ϕt)

q(zt−1|zt,x)

]
,

• Equation 18.34 missing indices on noise term:

L[ϕ1...T] =

I∑
i=1

− log
[
Normxi

[
f1[zi1,ϕ1], σ

2
1I
]]

(1.16)

+

T∑
t=2

1

2σ2
t

∥∥∥∥(1√
1− βt

zit −
βt√

1− αt

√
1− βt

ϵit

)
− ft[zit,ϕt]

∥∥∥∥2 .
• Section 20.2.2 Another possible explanation for the ease with which models are
trained is that some regularization methods like L2 regularization (weight decay)
make the loss surface flatter and more convex.

• Section 20.2.4 For example, Du et al. (2019a) show that residual networks converge
to zero training loss when the width of the network D (i.e., the number of hidden
units) is Ω[I4K2] where I is the amount of training data, and K is the depth of
the network.

• Section 21.7 the Conference on AI, Ethics, and Society

• Appendix A. The notation {0, 1, 2, . . .} denotes the set of non-negative integers.

• Appendix A ...big-O notation, which represents an upper bound...

• Appendix A. f[n] < c·g[n] for all n > n0

• Equation B. 18

y1 = ϕ10 + ϕ11z1 + ϕ12z2 + ϕ13z3

y2 = ϕ20 + ϕ21z1 + ϕ22z2 + ϕ23z3

y3 = ϕ30 + ϕ31z1 + ϕ32z2 + ϕ33z3. (1.17)

Copyright ©2023 Simon Prince.

21

Corrected version of figure 12.8

• Appendix C.5.4 Accent in wrong place: The Fréchet and Wasserstein distances...

• Equation C.32.

DKL

[
Norm[µ1,Σ1]

∣∣∣∣∣∣Norm[µ2,Σ2]
]

=

1

2

(
log

[
|Σ2|
|Σ1|

−D + tr
[
Σ−1

2 Σ1

]
+ (µ2 − µ1)Σ

−1
2 (µ2 − µ1)

])
.

Copyright ©2023 Simon Prince.

